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ABSTRACT

Tomi Koskinen: Oriented Bounding Box Detection for Bird’s Eye View Camera
Master of Science Thesis
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Master’s Degree Programme in Information Technology
February 2024

Oriented bounding box detection has seen a lot of development and new methods in the recent
years. Almost without exception, the detection target for these methods has been objects in aerial
images, taken with drones or satellites. Generally object detection methods use axis-aligned
horizontal bounding boxes to localize objects in an image, but object detection from aerial images
benefits from using oriented bounding boxes, because they are able to surround the objects with
less background clutter and less overlapping with other objects.

This thesis considers another similar perspective, that could also benefit from the use of ori-
ented bounding boxes. This perspective, defined as bird’s eye view, can be achieved by using
high up surveillance cameras pointed downwards towards the ground. Places like parking lots,
container ports and other locations that can have densely packed objects like cars, containers,
boats and trucks, can use object detection combined with software to better manage these areas
and make operations faster and more efficient. A simple example would be to detect the number
of vehicles in different areas of a huge parking lot, and then directing incoming traffic based on
that information.

The main objective in this thesis were to find out answers for these research questions: Does
the bird’s eye view object detection benefit from using oriented bounding boxes? Which open-
source oriented bounding box detection method performs the best on bird’s eye view images? Are
there some oriented bounding box detection method key attributes that are always better than the
others? To answer these questions a small dataset of 820 images from the defined perspective
was created. Six open-source implementations of oriented bounding box detection methods were
trained and evaluated on this created dataset.

Rotated RetinaNet was evaluated to being slightly(1.9 percentage-points) more accurate while
using oriented bounding boxes instead of horizontal bounding boxes. The fastest and most accu-
rate method on the created dataset was YOLOv5+Circular Smooth Labeling(CSL), with a 0.405
mean average precision and 112.4 frames per second. This makes YOLOv5+CSL easy to rec-
ommend. The key attributes were: angle-free/based, anchor-free/based and single/two-stage. No
correlation could be found between detectors’ key attributes and their performance on the created
dataset.

Keywords: Oriented bounding box, oriented object detection, object detection, rotated bounding
box, bird’s eye view, computer vision

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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TIIVISTELMÄ

Tomi Koskinen: Kiertyneen kohteen tunnistaminen lintuperspektiivi kameralla
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Tietotekniikan DI-ohjelma
Helmikuu 2024

Kiertyneen kohteen tunnistus on nähnyt paljon kehitystä ja uusia menetelmiä viime vuosina.
Lähes poikkeuksetta näiden menetelmien tunnistuskohteena ovat olleet ilmakuvissa olevat koh-
teet, joiden kuvat on otettu drooneilla tai satelliiteilla. Yleensä kohteentunnistusmenetelmät käyt-
tävät koordinaattiakselien suuntaisia vaakatasossa olevia rajauslaatikoita kohteiden paikallistami-
seen kuvassa, mutta kohteentunnistus ilmakuvista hyötyy kiertyneiden rajauslaatikoiden käytöstä,
koska ne pystyvät ympäröimään kohteet niin, että rajauslaatikoissa on vähemmän turhaa taustaa
ja päällekkäisyyksiä muiden kohteiden kanssa.

Tässä opinnäytetyössä tarkastellaan toista samankaltaista näkökulmaa, joka voisi hyötyä myös
kiertyneiden rajauslaatikoiden käytöstä. Tämä lintuperspektiiviksi määritelty näkökulma voidaan
saavuttaa käyttämällä korkealle ylös asetettuja, alaspäin maata kohti suunnattuja valvontakame-
roita. Sellaiset alueet, kuten parkkipaikat, konttisatamat ja muut paikat, joissa voi olla tiheästi ase-
tettuja kohteita, kuten autoja, kontteja, veneitä ja kuorma-autoja, voivat käyttää kohteentunnistus-
ta yhdistettynä tietokoneohjelmistojen kanssa näiden alueiden hallinnan parantamiseksi ja toimin-
nan nopeuttamiseksi ja tehostamiseksi. Yksinkertainen esimerkki tästä olisi tunnistaa ajoneuvojen
määrää valtavan pysäköintialueen eri alueilla ja ohjata sitten saapuvaa liikennettä näiden tietojen
perusteella.

Tämän opinnäytetyön päätavoitteena oli löytää vastauksia näihin tutkimuskysymyksiin: Hyö-
tyykö lintuperspektiivistä tehtävä kohteentunnistus kiertyneistä rajauslaatikoista? Mikä avoimen
lähdekoodin kiertyneen kohteentunnistuksen menetelmä suoriutuu parhaiten lintuperspektiiviku-
villa? Onko olemassa joitakin kiertyneen kohteentunnistusmenetelmien -avainattribuutteja, jotka
ovat aina parempia kuin muut? Vastatakseen näihin kysymyksiin, pieni 820 kuvan tietoaineis-
to luotiin määritellystä perspektiivistä. Tämän luodun tietoaineiston pohjalta opetettiin ja arvioitiin
kuusi avoimen lähdekoodin toteutusta kiertyneiden rajauslaatikoiden tunnistusmenetelmistä.

Rotated RetinaNet arvioitiin olevan hieman(1.9 prosenttiyksikköä) tarkempi käyttäessään kier-
tyneitä rajauslaatikoita vaakatasoisten rajauslaatikoiden sijaan. Luodun tietoaineiston nopein ja
tarkin menetelmä oli YOLOv5+Circular Smooth Labeling(CSL), jonka keskimääräinen tarkkuus oli
0,405 ja tunnistusnopeus 112,4 kuvaa sekunnissa. Tämä tekee YOLOv5+CSL:stä helpon suositel-
la. Tärkeimmät avainattribuutit olivat: kulmavapaa tai kulmapohjainen, ankkuriton tai ankkuripoh-
jainen ja yksi- tai kaksivaiheinen. tunnistusmenetelmien avainattribuuttien ja niiden suorituskyvyn
välillä ei löytynyt korrelaatiota luodussa tietoaineistossa.

Avainsanat: Kiertynyt rajauslaatikko, kiertynyt kohteentunnistus, kohteentunnistus, pyöritetty ra-
jauslaatikko, lintuperspektiivi, konenäkö

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1. INTRODUCTION

Computer vision is a field of artificial intelligence that uses computers to collect inter-

esting information from visual data like digital images, videos or three-dimensional point

clouds. The best known task of computer vision is called object detection, which is used

to find objects from images or video frames, draw a horizontal bounding box around them

and classify them with a label. Nowadays object detection methods are trained to detect

objects by feeding images that have labeled/annotated objects in them to a neural net-

work, which moves the network’s weight parameters and eventually, with enough training

images, the network can hopefully detect those objects from unseen images.

Camera-based object detection has many important and interesting application areas, like

detecting vehicles, pedestrians and road signs from a camera on a self-driving vehicle.

But sometimes the camera feed is too complicated for generic object detection methods

to perform at a required level. One of these situations is aerial images, where the ob-

jects that require detecting, like boats or cars, are in such orientations and so densely

presented in the image, that the axis-aligned horizontal bounding box has lots of mean-

ingless background or even other objects inside of it. This of course negatively affects

the training and detection performance of the network. The solution for this has been

oriented object detection, which generally adds an angle parameter, to create an oriented

bounding box (OBB). Now this OBB can be rotated to better fit the objects in an aerial

image, and remove useless clutter and overlap, thus increasing accuracy.

This thesis considers the high up bird’s eye view camera perspective, which can be

achieved by placing surveillance cameras in parking lots, container ports and other lo-

cations that can have densely packed objects like cars, containers, boats and trucks. The

detection of these objects combined with software can be used to better manage these

areas and make operations faster and more efficient. A simple example would be to de-

tect the number of vehicles in different areas of a huge parking lot, and then directing

incoming traffic based on that information.

The bird’s eye view images much more resemble the aerial satellite images used in the

popular oriented bounding box dataset DOTA [72] compared to the natural scene images

of popular object detection datasets like Microsoft’s COCO [39], which suggests that the

use of oriented bounding boxes would be more well suited for this use case. The first
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research question for this thesis is: Does the bird’s eye view object detection benefit

from using oriented bounding boxes? To answer this question this thesis aims to

create a small dataset, featuring bird’s eye view images of a parking lot and an annotated

vehicle class. Using this dataset, an object detection method will be trained and evaluated

using horizontal bounding boxes and oriented bounding boxes.

Lately there has been an increase in the development of oriented object detection meth-

ods. Sometimes an open-source implementation is also available for these methods.

These developed methods do not consider or evaluate their performance on the defined

bird’s eye view circumstance, which is why in this thesis, the second research question

is: Which open-source oriented bounding box detection method performs the best

on bird’s eye view images? This question is answered by training and evaluating six

different open-source OBB detection methods on the created dataset.

Often the methods share some key techniques or attributes that separates the methods

into different categories, which leads to the third research question: Are there some

OBB detection method key attributes that are always better than the others? This is

answered by categorizing the used methods based on their key attributes and analyzing

their evaluation results on the created dataset.

This thesis is structured as follows: Chapter 2 discusses the basics of object detection and

oriented object detection. Chapter 3 introduces all the oriented bounding box detection

methods and covers their key attributes. Chapter 4 introduces the dataset and how it was

created, and describes the training and evaluation process and their results with the used

methods. Then Chapter 5 summarizes and concludes the thesis.
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2. BACKGROUND

In this chapter the core concepts of modern day object detection are explained and the

most influential convolutional neural network object detection methods are introduced.

Following this, oriented object detection and the most important topics around it are pre-

sented, which provides context for the rest of the thesis.

2.1 Object detection

Localizing and classifying objects of interest from a digital image is referred to as object

detection. The localization part is usually done by finding the bounding box coordinates,

which the object in the image resides inside of. The classifying task’s job is to label what

is the class of the object inside the bounding box. For example if it is a dog, a cat or a car.

Some researchers use the term object localization when the image has only one object

of interest to be pinpointed and classified, and object detection when there are multiple

objects in the image [48].

Object detection is one of the best known computer vision tasks and as such the de-

velopment of better and better object detection techniques has been rapid from the first

popular neural network implementations to this day. Object detection has a large amount

of possible use cases in numerous fields. For example, in surveillance for detecting peo-

ple, vehicles or dangerous objects, or in self-driving cars detecting pedestrians, roads,

vehicles and other obstacles and signs using the attached cameras in the vehicle.

The object detection process can be typically loosely divided into 4 phases:

• Feature extraction from the image. Using a trained convolutional neural network

(CNN), relevant visual features/patterns are extracted from the image and stored in

a data structure

• Network predictions. Localization(bounding box) and classification(label) predic-

tions are made from the extracted features. Two-stage object detectors make re-

gion proposals from the image first, and then these regions of interest(RoIs) are

classified. Single-stage detectors don’t use region proposals, instead they make

the bounding box and label predictions straight from the extracted features.

• Non-maximum suppression (NMS). Often the object detection model finds multiple
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slightly different bounding boxes/RoIs for the same object in the image. NMS is

a post-processing method designed to remove these overlapping boxes and leave

just one combined bounding box.

• Evaluation metrics. Finally the detection process needs to be evaluated somehow,

for this object detection has different popular metrics like mean average precision

(mAP) and intersection over union (IoU), which we will discuss further in this chap-

ter. [10]

Object detection is a multi-task problem, since it needs to predict the coordinates of the

bounding box and the class of the object at the same time. For this we need to use

multi-task learning, which typically means that we have one branch for the coordinates

and another branch for the classes at the end of the network. From both of these layers

we get parameters to our loss function. When training a model, the aim is to minimize

the loss function, because the loss function gives you the difference between the ground

truth values of the image and the network’s predicted values. [48]

Before neural network based approaches became the norm, there were traditional non-

neural methods like HOG [5], SIFT [45] and Viola-Jones [67]. Nowadays, almost every

object detection method uses a convolutional neural network, that has been pretrained

with some popular dataset, like MS COCO [39] or ImageNet [6], for feature extraction

from the input image. One reason to use CNNs is that they provide end-to-end detection

with automatic feature extraction, without the need for handcrafted feature selection that

needs to be done with the traditional methods [10].

The neural network based object detection approaches can be broadly divided into: two-

stage methods that use region proposal and single-stage methods that use regression

[50, 10]. The most significant networks that are often used as the base of today’s state of

the art models will be discussed later in this chapter.

2.1.1 Evaluation metrics

There are 2 main performance metrics in object detection: mean Average Precision and

Frames Per Second (FPS) [10]. FPS is quite straightforward, it tells you the number of

images/frames that the network can detect in a second, so it measures the speed of

the network, which is a really important metric when discussing real-time systems. FPS

is usually measured over a set of images, by dividing the number of images with the

total time that went into processing them. Of course FPS is also highly dependent on

hardware architecture and software implementation, so that should be taken into account

when comparing results between different environments.

To measure the accuracy of a network we have the mAP. The Precision-Recall Curve

(PR Curve) and IoU terms need to be explained first. In object detection IoU is used
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to calculate the relative overlap between the ground truth bounding box and a predicted

bounding box, so it is a metric for the localization task [48, 60]. Visualization of IoU can

be seen in Figure 2.1

Figure 2.1. The overlap between the predicted bounding box and ground truth bounding
box divided by their combined area is the IoU score. Adapted from [10].

In Formula (2.1), where B is a bounding box, it can be seen that the maximum value for

IoU is 1 and the minimum is 0. IoU value of 1 means that the bounding boxes are identical

and 0 means that they do not overlap at all [10]

IoU =
Bground truth ∩Bprediction

Bground truth ∪Bprediction
=

Area of intersection
Area of union

. (2.1)

A threshold value is used for the value of IoU to determine if a predicted box is a True

Positive (TP) or a False Positive (FP). A False Negative (FN) occurs when the network

does not detect a ground truth object from the image. When evaluating, the popular MS

COCO dataset uses IoU threshold values from 0.50 to 0.95, with 0.05 incrementations

and averages out the results [39].

With these detection definitions the Formula (2.2) shows how Precision is calculated and

Formula (2.3) shows how Recall is calculated [10]

Precision =
TP

TP + FP
, (2.2)

Recall =
TP

TP + FN
. (2.3)

Precision gives the ratio of true detections to all detections [10]. So if there are a lot of

detections by the network where there are no object in the image(FPs), then precision

gets closer to zero. In an opposite way Recall gives the ratio of true detections to the total
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amount of ground truth objects [10]. So if there are a lot of missed objects by the network,

then recall gets closer to zero.

Object detection methods output a confidence score from 0 to 1 for every detection. By

changing the confidence threshold we can get different values for Precision and Recall

and create a PR Curve. Typically the PR Curve starts from Precision being close to 1 as

Recall is close to 0, because the confidence threshold is high and there are no FPs. When

the confidence threshold gets smaller, the value of Recall starts rising and Precision starts

to come down, as can be seen from Figure 2.2.

Figure 2.2. The accuracy of an object detector can be evaluated by using the Precision-
Recall curve. Adapted from [10].

The Average Precision (AP) can now be calculated from the area under the PR Curve.

This means that the higher Precision stays as Recall rises the better the AP value of the

network is. Now to tie all of this back to mAP, the average AP value over all of the classes

combined is the mAP. [10]

2.1.2 Non-maximum suppression

Object detection algorithms usually end up outputting multiple slightly different bounding

box predictions for the same object in the image, this can be seen in Figure 2.3. For this

problem a post-processing technique called Non-maximum suppression is used [10, 48].

NMS is designed to leave only the best bounding box prediction for each object in the

image.

Object detectors typically output the class predictions as a percentage confidence value.
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Figure 2.3. Bounding box predictions before and after applying non-maximum suppres-
sion. Adapted from [10].

For example, if a dataset has three classes: "dog", "cat" and "person", then the output

of the classification part of the network could be: [80.0, 15.0, 5.0], which would mean

that this bounding box is predicted as a dog at an 80.0% confidence. This is how NMS

typically works:

• Remove detections that have a confidence value under a chosen threshold, like

0.4.

• Take the highest confidence bounding box and compare the IoU value of all other

same class bounding boxes to that, if the IoU value is above a chosen threshold, like

0.5, then the lower confidence bounding box is overlapping and should be removed

from the output list.

• Repeat the previous point with the next highest confidence bounding box until you

have gone through all of them. [10, 48]

After running NMS you should only have one bounding box for every object in the image,

but you may have to tinker with the confidence and IoU thresholds, depending on the

detector’s precision.

2.1.3 Loss function

When training neural networks, the aim is to minimize the loss function, because it shows

the difference between the ground truth values and the predicted values. In object de-
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tection, the loss function can differ between network architectures, but generally it always

contains localization and classification components. For example, the loss function can

often be comprised of 3 parts: Localization loss, Confidence loss and Classification loss

[48]. The original YOLO object detection architecture paper follows this style of loss func-

tion [58].

The Localization loss is the error between the ground truth bounding box coordinates and

the predicted bounding box coordinates. The typical format for horizontal bounding boxes

is (x, y, w, h), where x and y are the coordinates for the center point of the bounding box

and w and h are the width and height of the box. In Formula (2.4) the first term gets the

error between the center coordinates of the bounding boxes [48, 58]. The second term

gets the error of the width and height difference of the bounding boxes

λcoord

S2∑︂
i=0

B∑︂
j=0

Iobjij

[︁
(xi − x̂i)

2 + (yi − ŷi)
2]︁

+λcoord

S2∑︂
i=0

B∑︂
j=0

Iobjij

[︄(︂√
wi −

√︁
ŵi

)︂2

+

(︃√︁
hi −

√︂
ĥi

)︃2
]︄
. (2.4)

In YOLO the image is divided into a grid, where each small part of the image is called

a cell. S2 represents the cells that the image has been divided into and B has all the

predicted bounding boxes. The value of Iobjij is 1 when there is an ground truth object in

the cell i and the jth bounding box has the largest confidence value in the cell i and thus

is "responsible" for that prediction. [48, 58]

The Classification loss is simpler, as can be seen from Formula (2.5)

S2∑︂
i=0

Iobji

∑︂
c∈classes

(pi(c)− p̂i(c))
2, (2.5)

where p̂i(c) is the probability of having class c in cell i. The value of Iobji is always 1 if

there is an object in cell i, if not, then it is 0. So the more confident the detector is about

the classes in the cells, the smaller the loss. [48, 58]

Lastly we have the Confidence (sometimes Objectness) loss, which has 2 terms. The first

one checks the confidence loss of bounding boxes that are inside a cell/grid that has a

ground truth object inside of them. In Formula (2.6), Ĉi is the confidence(or objectness)

value of bounding box j being in cell i. To combat the model making wrong predictions

in cells that don’t have ground truth object in them, in the second term the value of Inoobjij

is 1, when there are no objects in the cell i, thus the term increases loss if there are

predictions in that cell [48, 58]
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S2∑︂
i=0

B∑︂
j=0

Iobjij

(︂
Ci − Ĉi

)︂2

+λnoobj

S2∑︂
i=0

B∑︂
j=0

Inoobjij

(︂
Ci − Ĉi

)︂2

. (2.6)

The sum of all of these losses is the total loss function, which is used to train the detector

[58]. These formulas are just one example of a loss function, even the loss functions of

the latest YOLO versions differ partially from this original one [57, 3].

2.1.4 Two-stage detectors

In object detection Two-stage detectors(sometimes Region proposal-based detectors)

have this name, because they divide the object detection pipeline into 2 parts, which

are region proposals for localizing objects and then classification, that is based on the

proposed regions. Typically two-stage detectors are seen as noticeably slower but possi-

bly more precise compared to single-stage detectors [10]. This means that technologies

that need real-time object detection, like self-driving cars, are not generally the place for

using two-stage detectors.

The R-CNN family of object detectors are the most well known examples of two-stage

detectors and their influence can be seen in the inner workings of state of the art two-

stage detectors of today. R-CNN is short for Region-Based Convolutional Neural Network

[10].

R-CNN

The original paper for R-CNN was released in 2014, by Ross Girshick et al. [15]. At it’s

proposal date, R-CNN provided state of the art results and pioneered in neural network

based methods for object detection.

The region proposal part of the method is done with an algorithm called selective search,

which has nothing to do with neural networks and is just a classical image segmentation

algorithm [64]. The job of selective search is to find regions from the image that have

an object inside them. After extracting these regions of interest, the next step in the

R-CNN method is to extract features with a standard pretrained CNN and then classify

the objects with an Support Vector Machine(SVM) classifier. The images that are fed to

the CNN need to be of a fixed size, so the RoIs are warped to enable this. Along with

the object classification, the region proposal coordinates are refined with bounding box

regression to get a better representation of the objects with the bounding boxes. [15, 10,
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50]

So there are three different modules/classifiers to train: CNN feature extractor, SVM clas-

sifier and bounding box regressors. Figure 2.4 shows an overview of the R-CNN archi-

tecture.

Figure 2.4. R-CNN architecture. From [15].

This many modules makes training non-trivial and R-CNN can not be really called an

end-to-end method, since it is mainly a combination of existing components that all need

to be trained, except for the selective search algorithm [60].

Fast R-CNN

In 2015 Girshick improved on his method and called it Fast R-CNN [14]. In Fast R-CNN

the order of the first stages is changed so that the feature extraction is done first to the

whole image with the CNN, and after that the regions of interest are extracted from the

feature maps using a new component called RoI pooling layer [10, 60, 50]. This way the

CNN needs to be ran only once and not for every region separately. The SVMs for every

class are also replaced by an softmax layer at the end of the network [10, 60].

These changes make Fast R-CNN easier to train since now everything expect selective

search happens in the same network. The accuracy and speed are improved over the

original R-CNN, but the need for selective search still keeps Fast R-CNN far from real-

time object detection [10, 60].

Faster R-CNN

The main change in the next iteration of R-CNN is to change the selective search algo-

rithm to a Region Proposal Network (RPN), which means the deep learning network is

finally fully end-to-end. This version is called Faster R-CNN, and it was proposed in 2016

by Ren et al. [59].

Like selective search, the RPN takes the last feature map as an input and generates

the regions of interest from there. In addition to a fully convolutional layer, the RPN has

a binary classifier for determining if the region has an object or not (objectness score),
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and a bounding box regressor for pinpointing the region. Outside of the RPN, Faster R-

CNN has basically the same architecture as Fast R-CNN. Figure 2.5 visualises the Faster

R-CNN detection pipeline. [48]

Figure 2.5. Faster R-CNN: First, feature extraction takes place, followed by extracting
region proposals using the RPN, then RoI pooling for each region proposal, and finally,
classification and bounding box regression occur at the end. From [59].

Anchor boxes were also introduced in this paper, which is significant since anchor boxes

are used in many modern object detection methods, like SSD and YOLO [50, 41, 58].

RPN divides the image into constant size sections using a sliding window technique [10].

In the center of these windows is the anchor, and from that point RPN generates 9 differ-

ently shaped anchor boxes, that have different aspect ratios and scales for every anchor

location in the image [10, 59]. The anchor boxes are then used for the objectness scor-

ing and bounding box regression. Faster R-CNN is a huge improvement speed-wise

compared to R-CNN and Fast R-CNN. The FPS difference can be as much as 200%

compared to the original R-CNN [50, 10, 48].

2.1.5 Single-stage detectors

Single-stage detectors have this name, because they mold the localization problem and

the classification problem in such a way, that the results can be acquired in a single pass

of a network. This simpler structure makes for faster inference times, but may lead to
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slight drops in precision. [10, 50]

Single-stage detectors, SSD and YOLO, were proposed a little after the R-CNN family of

detectors, and quickly became popular, thanks to their big FPS improvement and simi-

lar precision results. These faster detection times make real-time object detection with

acceptable precision possible.

SSD

The Single Shot Detector(SSD) was proposed in 2016, by Wei Liu et al. It achieved

comparable precision results and outperformed Faster R-CNN in terms of FPS [41, 10].

The first part in the SSD network architecture is a pretrained base network for extracting

the feature maps from the image. In the second part there are 6 convolutional layers

that decrease in size. The idea is that the largest convolutional layers have the smallest

anchor boxes in relation to the image, so they are able to detect the smallest objects in

the image. On the other hand the smallest convolutional layers have the largest anchor

boxes, so large objects are also detected. This way detections of objects of all sizes are

acquired. All of these detections are sent to the finals phase: NMS, which tries to leave

only one bounding box detection for every object. [10]

Unlike YOLO or Faster R-CNN, SSD does not predict the objectness value for a given

bounding box, instead it predicts the class probability straight away [50]. This means that

there is always a pre-determined amount of detections that reach the NMS stage, which

filters out the redundant detections.

YOLO

YOLO, short for You Only Look Once, is a family of object detectors, like R-CNN. The

original YOLO paper was published by Redmon et al. in 2016 [58]. It is a competitor for

the SSD, since they both are single-stage detectors and much faster than Faster R-CNN.

YOLO treats object detection as a single regression problem, which means it is able to

predict the bounding boxes and class probabilities of an image in a single pass through

the neural network. Figure 2.6 visualises the detection pipeline. In YOLO, the input im-

age is split into a grid of cells SxS. Each cell predicts a defined number of bounding

boxes and for every prediction, YOLO carries the bounding box coordinates and the ob-

jectness/confidence score. The class probability predictions are calculated for each cell.

Finally, again in the end NMS gets rid off the worse predictions. [58]

The first three versions of the YOLO family are considered the originals, since they were

all published by Redmon et al. [58, 56, 57]. The first YOLO version makes a no-

table amount of localization errors and has a low recall value, when compared to region
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Figure 2.6. YOLO detection pipeline. From [58].

proposal-based methods like Fast R-CNN [58].

YOLOv2(2016) tries to improve on those two aspects in multiple ways, one of which is

to use the anchor boxes, which are introduced in Faster R-CNN. The anchor boxes are

chosen by doing k-means clustering to the dataset [56]. This leads to over 10 times more

bounding box detections and helps with localization and recall [56].

For YOLOv3(2018), one of the bigger changes is taking the anchor-boxes further by mak-

ing object detections in three different scales, and at every scale, a cell has three different

anchors [57]. So in total a cell has 9 anchors to predict with in one pass of the network.

This multi-scale detection is again for detecting smaller and larger objects, like in SSD.

All the first three YOLO methods use an open-source neural network framework devel-

oped in C by Redmon, which is called Darknet [58]. YOLOv2 uses a 19 layer CNN back-

bone for the base feature extracting called Darknet-19 and YOLOv3 uses a much deeper

Darknet-53, which uses 53 layers and significantly increases the capacity of the model,

but is slightly slower [56, 57].

Many new YOLO versions have been published over the years. YOLOv4(2020) still uses

the Darknet framework and introduces a multitude of data augmentation methods and

training strategies [3]. A company called Ultralytics has released YOLOv5(2020) and

YOLOv8(2023), which are built on PyTorch framework instead of Darknet. Ultralytics

provides a versatile and easy to use open-source repository for using those methods [27].

YOLOX(2021) is the first anchor-free version of YOLO after the first one, which might be

the future for YOLO methods, as the currently latest version YOLOv8 also does not use

anchor boxes [13, 28].
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2.2 Oriented object detection

The localization part of object detection generally uses horizontally aligned bounding

boxes(HBBs) to represent the location of the object in the image. Common represen-

tation for these HBBs is (x, y, w, h), where x and y are coordinates for the center point of

the bounding box and w and h represent the width and height of the bounding box. Using

horizontal boxes can become problematic, when the borders of the bounding box do not

tightly fit the orientation of the object, leading to a situation, where a significant part of the

area inside the bounding box does not represent the object. To solve this problem, most

oriented object detection methods add a parameter for the bounding box representation:

(x, y, w, h, θ), where θ denotes the angle that the bounding box deviates from the axis.

These can also be called oriented bounding box detection methods. Figure 2.7 demon-

strates how oriented bounding boxes(OBBs) can be a better representation for oriented

objects in the defined bird’s eye view case.

Figure 2.7. Oriented bounding box marked with green. Horizontal bounding boxes
marked with red.

2.2.1 Applications

The two most researched applications for oriented object detection are aerial image and

natural-scene text detection. In aerial imagery, this approach is crucial for identifying

objects like ships and vehicles, which can be oriented at different angles due to the per-

spective of the image. Similarly, in natural-scene text detection, accurately recognizing

and understanding text that appears at various orientations is important for effective opti-

cal character recognition(OCR) and text extraction.

Aerial images or in other words: Remote sensing images(RSIs) offer a different challenge

compared to natural-scene object detection. This is largely the consequence of three

factors, that are also demonstrated in Figure 2.8:
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• Arbitrarily oriented objects: Ships, planes and other objects can be in various ori-

entations. Detectors need to be able to localize the objects without overlapping

them.

• Huge aspect ratio and scale differences: Objects like bridges and football fields are

significantly larger than smaller objects like cars and trucks, which means that the

detector needs to detect different size objects and a huge scale of aspect ratios.

• Dense objects. Objects like vehicles and boats are often very densely packed in

RSIs. They can also be just a few pixels in size. Distinguishing these objects from

each other can often be difficult for detectors.

Figure 2.8. RSI examples from the HRSC2016 and DOTA datasets. (a) The arbitarily
oriented objects can be better represented with OBBs (bottom) compared to the HBBs
(top). (b) RSIs can have a complex background, so objects are difficult to detect (c) The
scale of different objects can vary significantly. (d) Many objects, like ships, can have big
aspect ratios. From [22].

RSI-based object detection is the most researched application in the domain of oriented

object detection in recent years, partly due to it’s many potential use cases, like urban

management [61], precision agriculture [55, 62] and emergency rescue [51]. Research

has also seen a rise since the Large-scale Dataset for Object Detection in Aerial Im-

ages(DOTA) was introduced in 2017 [72]. It had much more images, classes and in-

stances compared to others similar datasets. Futhermore DOTA has more recently had

some updates, and it now has 4 times the amount of aerial images compared to the origi-

nal release (11268 images) [8]. For these reasons DOTA is generally the main benchmark

in all aerial image object detection papers.

Understanding text from natural scenes is usually divided into two parts in computer vi-

sion: text detection and text recognition. The detection part is about localizing the texts

from the image, so it is the more relevant part for this thesis. Natural-scene text detec-

tion is another, nowadays less researched, application for oriented object detection. Like

RSIs, natural scene images can have big or small texts with big differences in aspect

ratios and arbitrary orientations, which is why HBB-based methods are not always good

enough for detection, and the use of OBBs or quadrilaterals is a more accurate way of

representing the texts in these images [47, 35, 36, 42, 92]. Figure 2.9 shows an example
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from the R2CNN paper, which is a scene text detection method, of the inadequacy of

using HBBs for localization in natural-scene text detection.

Figure 2.9. Oriented bounding box on the left. Horizontal bounding box on the right.
From [26].

Compared to traditional optical character recognition methods, the lighting conditions,

fonts and perspectives in natural-scene text detection are generally uncontrollable, mak-

ing it a difficult detection problem [35, 26]. Detecting the rotation of a text in an image

creates the possibility to rotate the text-OBB so that the letters are upright, which can

make recognizing the letters easier. Applications for natural-scene text detection include:

License plate recognition [19], road sign recognition [16], photo translation [1]. The most

popular datasets for natural-scene text detection are the ICDAR [29] and COCO-text [66]

datasets.

2.2.2 Key attributes

Oriented object detection methods can be divided into four different categories based on

their most defining features:

• Anchor-based methods use the aforementioned anchor-boxes to localize the re-

gions of interest from the image. In the oriented object detection case, either normal

HBBs are used for the anchors as references and OBBs are generated from those

usually with bounding box regression [26, 83, 81], or a lot more different anchor-

boxes are designed and used to cover all the possible object orientations that are

potentially present in the image [47, 89].

The first solution has many drawbacks like the problem of possible huge differences

between the horizontal anchor box and the oriented ground truth box that is the

regression target, which leads to decreased robustness [4]. The second solution

tries to add oriented anchor-boxes, which leads to increased computation times

when proposing regions, slowing the whole detection process down.

Despite the drawbacks, most oriented object detectors currently still are anchor-
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based methods [4, 22, 17].

• Anchor-free methods have gained popularity in object detection research in re-

cent years, because they aim to get rid of the drawbacks and restrictions that

the anchor-boxes bring. These anchor-free object detection methods are mostly

keypoint-based [30, 91, 9, 63, 86], which means they aim to detect keypoints like

corners, extreme points or the center of an object and then regress the bounding

boxes and labels from them. For example the CornerNet (2018), detects the top-left

corner and the bottom-right corner [30].

While some of these anchor-free methods have been adapted to work with ori-

ented bounding boxes [71, 73, 31], the keypoint-based methods are often based on

single-stage frameworks and currently their performance is relatively limited [87].

• Angle-based methods use the common 5 parameter (x, y, w, h, θ) representation

for the oriented bounding boxes. Most state-of-the-art oriented object detectors are

angle-based and thus use this representation [7, 18, 26, 74, 83, 17, 47, 81, 77,

89], but the θ angle parameter introduces an issue called: boundary discontinuity

problem, which has to do with the periodicity of angles and negatively affects the

localization accuracy of the detector [79, 84, 77].

• Angle-free methods generally use the 8 parameter (x1, y1, x2, y2, x3, y3, x4,

y4) representation for the OBBs, so it has x and y coordinates for every corner

of the bounding box. Current angle-free detectors perform quadrilateral regression

directly, to find the bounding box [90, 78]. This is a less complex way compared

to the angle-based representation, and the boundary discontinuity problem is not a

problem anymore, since there is no parameter for the angle.

Unfortunately the detection performance of angle-free methods is currently infe-

rior compared to angle- and anchor-based methods [90], but a lot of research is

currently being done on angle-free methods [76, 53, 90, 22, 31, 88].

2.2.3 Boundary discontinuity problem

Angle-based oriented object detection methods introduce a boundary discontinuity prob-

lem [79, 84, 77]. This problem occurs as we try to regress the angle value of the fifth

parameter and it is caused by the periodicity of angles. A slightly simplified example: The

apparent angle difference of an OBB that is tilted 5◦ and another that is tilted 175◦ is just

10◦. So they look similar, but the integer value that we have to regress has a difference

of 170. This means that the discontinuity of values at the 180◦-0◦ boundary will affect

negatively to the training, because those OBBs that have a rotation degree value around

the boundary, will either have a really large or really small ground truth value, which will

meddle with the training process and limit performance.
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To give a more practical and realistic idea of the boundary discontinuity problem, we can

take for an example the situation in Figure 2.10, where the (x, y, w, h, θ) representation

is in use, and where w and h represent the shorter and the longer edge of the bounding

box respectively. In this case, the angle of the OBB is calculated between the horizontal

x-axis and the shorter edge. If there is a slight change in the edge length of an almost

square bounding box, the longer and shorter edge can swap places, thus moving the

angle θ value by 90◦. Because the aim is to regress the angle value to an integer value,

this θ value change of 90 degrees between similar bounding boxes will again confuse the

training process.[90]

Figure 2.10. Boundary discontinuity problem of angle prediction. Red and yellow bound-
ing boxes are similar, but they have very different angles, due to the fact that their longer
and shorter edges are not on the same side. Adapted from [90].

A small error in angle prediction can cause the IoU between the ground truth and the

predicted OBB to be significantly smaller, which is why many different approached have

been developed to handle this problem. SCRDet tries to alleviate the problem by applying

a constant IoU factor to the smooth L1 loss function that is defined in Fast R-CNN, which

negates the sudden rise in loss in the boundary situation [83]. Yang et al. created circular

smooth labels(CSL) to transform the regression task of the angle into a classification

task, which then consequently removes the whole problem that comes with regressing the

angle [77, 78]. The CSL approach has seen use in other papers [54, 69, 79]. Angle-free

methods like Gliding Vertex and RSDet use the eight-parameter quadrilateral regression
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to get rid of angular periodicity [76, 53]. There are also some other creative ways to get

rid of the angles, and they are gathering more attention from researchers recently [90,

22, 31, 88].

2.2.4 Oriented bounding box definitions

Angle-based oriented object detection requires OBBs for training the network. In order

for the network to learn the angle parameter in training, and to push out the correct angle

while detecting, an OBB definition must be agreed upon. There are three popular OBB

definitons: The OpenCV definition(oc), the 90◦ Long Edge definition(le90) and the 135◦

Long Edge definition(le135) [93, 78].

The OpenCV definition comes from OpenCV’s minAreaRect function, which finds the min-

imum area rotated rectangle for a 2D point set and returns the (x, y, w, h, θ) parameters

[52]. OpenCV changed the definition in OpenCV version 4.5.1, so now there exists an

old oc and a new oc [93]. Both oc’s θ parameter is the angle between the horizontal

x-axis and the width side of the rectangle. The old oc gives θ values between -90◦ and

0◦, This angle range of a quarter of a circle is made possible, by interchanging the nam-

ing of the width and height sides of the rectangle with each other, when going over the

-90◦ limit. This allows the angle parameter to return to again start from 0◦, because the

angle between the horizontal x-axis and the width side of the rectangle is now different.

In a possibly more intuitive way, while the horizontal x-axis is to the right and the vertical

y-axis is down, the width side, from where the angle is calculated, is the side between

the highest point of the rectangle and the point to the right from it. This can be seen from

Figure 2.11 a. In the case where there are two highest points, then the rightmost of them

is chosen and the width side is the rightmost vertical side, resulting in a -90◦ angle. Now

the new oc switches the range to go from 0◦ to the positive 90◦, which just means that,

as the y-axis is down, now the width side is between the lowest point and the point to

the right from it. And again if there are two lowest points, then the rightmost of them is

chosen, and thus the rightmost vertical side is the width. The difference on how to ac-

quire similarly rotated bounding box between the old an the new OpenCV definition can

be seen from Figure 2.11.

The Long Edge definitions, as the name suggests, calculate the angle between the

longest side of the bounding box and the horizontal x-axis. The longest side is also

assigned as the width of the OBB similarly to the OpenCV definition. Both Long Edge

Definitions use a 180◦ range for the angle to present all the possible orientations of the

bounding box. The le90 definition uses a range from -90◦ to 90◦ and the le135 definition

uses a range from -45◦ to 135◦ [93]. The difference between the definitions ca be seen in

Figure 2.12. In Figure 2.12 b. the 120◦ angle is used to demonstrate, that the le90 defini-

tion can not use that, but a -60◦ angle instead. The -30◦ representation on the contrary is
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Figure 2.11. Two examples of the old and new OpenCV OBB definitions. Adapted from
[93]

the same for both definitions.

As to what is the meaningful difference between these two definitions performance-wise

could not be found in the literature, but one could assume that is has to do with the fact

that the le90 angle-boundary is at the -90◦ position, which is the horizontal position for

the bounding box, which is a very popular orientation for an object in an image. And for

this reason one could argue that the le135 angle-boundaries are better, because not as

many objects will affect or get effected by the boundary discontinuity problem.

2.2.5 Loss function

Training angle-based detectors often involves specialized loss functions that penalize er-

rors in angle prediction or bounding box orientation. Skew IoU appears to be one of the

first loss functions to take the orientation of the bounding boxes into account [47, 83, 81].

The intersection area is calculated with the use of triangulation, which means that the

intersection area is divided into triangular areas by using the overlapping vertices, and

then the areas are summed together [47].

In addition to the ability to take orientation into account, the advantage of Skew IoU com-

pared to a general loss function is that as the aspect ratio rises, the change in angle has

a larger effect on the loss value. The problem with Skew IoU computation is that it is not
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Figure 2.12. Two exmples of the 90◦ and 135◦ Long Edge OBB definitions. Adapted from
[93]

differentiable, which would be needed to perform gradient descent. An approximate Skew

IoU loss can still be used to gain some of the benefits. [81]

Four newer losses appear repeatedly in the recent literature:

• Gaussian Wasserstein distance(GWD) loss uses the Wasserstein metric to calcu-

late the distance and takes inspiration from SkewIoU [82, 70].

• Kullback-Leibler Divergence(KLD) loss uses the KLD as the distance [80].

• Kalman Filter IoU(KFIoU) loss uses Kalman Filtering and mimics SkewIoU [85].

• Probabilistic IoU(ProbIoU) loss uses the Bhattacharyya distance [43].

ProbIoU, GWD, KLD and KFIoU are all similarity measures based on Gaussian bounding

boxes and they offer a more efficient loss function for oriented bounding boxes. They

convert the OBBs to a 2D Gaussian distribution and measure the loss as the distance

metric between the 2D Gaussian distributions. [70, 34]

The combination of ProbIoU and Distribution Focal Loss(DFL) for the angle prediction

seems to be slightly popular, as it is in use in two newer OBB detection methods [70,

28]. DFL can create a distribution of angles or bounding box offsets [32]. It is a solution

to a supposed difficulty in determining the orientation of an OBB, while converting to a

Gaussian bounding box, when the OBB is roughly square [70].
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3. METHODS

In this chapter all the used methods are introduced. The oriented object detection meth-

ods were chosen from freely available online repositories. This way, many different meth-

ods could be tested, without doing the whole implementation of each research paper from

start to finish. Four of the methods used are from the MMRotate [93] open-source toolbox

for oriented object detection, one is from PaddleDetection [2] object detection toolkit and

one is from a single independent GitHub user [24].

MMRotate is part of the open-source computer vision project called OpenMMLab. MM-

Rotate features a large number of supported methods for oriented object detection, but to

be able to compare methods between platforms and evaluate using the same code, the

detectors were converted to TensorRT format using MMDeploy, which is a model deploy-

ment toolset of OpenMMLab. MMDeploy only supports converting six MMRotate models,

of which four are featured in this thesis and the remaining two: Oriented R-CNN and

Rotated Faster R-CNN gave out errors when trying to convert them to TensorRT format

using MMDeploy, so they are left out of this thesis. [93]

The PaddleDetection object detection toolkit is based on the PaddlePaddle open-source

deep learning platform, which is developed by Baidu. Additionally to basic object detec-

tion, PaddleDetection offers methods for instance segmentation, multi-object tracking and

keypoint detection. It has over 30 object detection methods, but only three of them are

designed for oriented object detection, and the one that has achieved the highest mAP

is featured in this thesis. This detector model was also converted firstly to ONNX format

and then to TensorRT. [2]

The GitHub project called yolov5_obb by Kaixuan Hu is based on the YOLOv5 code by

the Ultralytics team [24]. Ultralytics is responsible for releasing v5 and v8 YOLO ver-

sions and their open-source implementations and pretrained models on GitHub [27]. The

yolov5_obb project also combines code from the CSL paper implementation and the Ori-

ented R-CNN paper implementation, which is modified from MMDetection [78, 74]. Model

conversion to TensorRT is supported.
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3.1 Rotated RetinaNet

In 2017, the Facebook AI Research team, featuring Ross Girshick, known for the de-

velopment of the popular R-CNN method, published a paper proposing a method called

RetinaNet [38]. RetinaNet is composed of three main parts: A ResNet-101 or ResNet-50

backbone neural network, a Feature Pyramid Network(FPN) as the neck of the method

and lastly a loss function, called Focal Loss, which is the new novel thing proposed in the

paper [37, 20, 38]. RetinaNet is also a single-stage detector, making it the first single-

stage detector to beat out all the then-current two-stage detectors on COCO test-dev

dataset, while still maintaining better inference times [38]. Rotated RetinaNet is MMRo-

tate’s implementation of RetinaNet that is modified to be able to use oriented bounding

boxes [93].

The Focal Loss function tries to address the class imbalance problem, which is caused by

a large number of easy negatives compared to the amount of hard positives, when training

a detector. Easy negatives are RoIs, which the detector easily predicts to not have any

objects inside with a high probability, so the confidence score would be something like 0.9.

In training, the cross-entropy loss value for confidence of 0.9 is around 0.1, which is close

to zero, but it still increases the loss by a tiny bit. The problem becomes apparent when

there are so many easy negatives, that the loss is largely affected by the easy negatives,

which don’t contribute useful learning for the network and can lead to degenerate models

[38]. This problem is of course more apparent in single-stage detectors, because they can

use thousands of RoIs, because for every grid there is a set of anchor boxes. two-stage

detectors propose less regions, and they have a higher chance of having an object inside

of them.

The Focal Loss adds a factor to the Cross Entropy loss, which greatly lowers the loss

value for predictions that have a high confidence, like easy negatives and positives. This

way hard and misclassified examples get more attention [38]. The added factor is (1 −
pt)

γ , where pt is prediction confidence and γ is the focusing parameter. Having γ ≥ 1

lowers the loss value on predictions that have a high confidence. When γ = 0, the Focal

Loss is the same as Cross Entropy loss. The original paper found γ = 2 to be the optimal

value for the focusing parameter [38]. Figure 3.1 shows the effect on loss with different

values of γ.

The MMRotate Rotated RetinaNet implementation has the most common combination of

the key attributes for a oriented object detector, as it is an anchor-based and an angle-

based detector. It uses the less deep 50 layer version of ResNet, which should be a good

choice since the TPL dataset is very small. The backbone is pretrained with ImageNet-1K

dataset [6]. The Feature Pyramid Network is used as the neck.
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Figure 3.1. The formulas for Cross Entropy (CE) and Focal Loss (FL), and a plot illus-
trating the decrease in Focal Loss, when using larger values for the focusing parameter
γ. Well-classified examples are the easy positives/negatives which have high prediction
confidence and don’t contribute much to learning. From [38].

3.2 RoI Transformer

Wuhan University’s CAPTAIN team has made many contributions to oriented object de-

tection, methods like ReDet [18] and S2A-Net [17], and also the popular DOTA dataset

[72, 8]. In 2018 they published the RoI Transformer, which has two main parts: A Rotated

RoI learner that is able to transform the horizontal RoIs into rotated RoIs (RRoI), and a

Rotated Position Sensitive RoI Align (RPS-RoI-Align) module for extracting the features,

which are rotation-invariant, from the RoIs [7]. The RoI Transformer aims to fix the prob-

lems that usually appear when using oriented anchor boxes, which happen either when

too many different scale, angle and aspect ratio anchors are used, leading to increased

computational complexity, or when too few anchors are used, leading to low recall values

on images having complicated rotated objects [7].

Figure 3.2 shows the RoI Transformer module in the object detection pipeline, other than

that the rest of the implementation in the RoI Transformer paper is mostly based on Faster

R-CNN using a Region Proposal Network, and thus is considered both anchor-based and

a two-stage detector. More specifically the research paper’s implementation also takes

inspiration and uses the head from Light-Head R-CNN [33] and the neck from FPN [37].

The RRoI Learner takes the predicted horizontal RoI and, using regression, predicts the

offset for the RRoI [7]. After the RRoI Learner, RRoI warping takes the feature maps and

outputs geometrically robust features, which basically means that all the objects are in the

same orientation, which allows for rotation invariant features to be extracted next [7]. The

angle-based RoI Transformer module can be added to other existing methods by adding
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Figure 3.2. The RoI Transformer module recieves the horizontal RoI, from which the RRoI
Learner regresses the offsets by using a fully connected layer and outputs the RRoI. From
[7].

the RoI Learner and replacing the usual horizontal RoI warping part of the pipeline with

RRoI warping to provide the Rotated RoIs and achieve better oriented object detection

performance.

The MMRotate implementation for RoI Transformer again uses ResNet-50 as a backbone

network instead of ResNet-101, which was used in the original paper. The FPN is con-

figured in MMRotate, but there is no mention of Light-Head R-CNN. That may just be a

naming convention difference since, there is a head called RoITransRoIHead, which is

only used by RoI Transform and ReDet [18] configurations in MMRotate. RPN head is

also in use.

3.3 Gliding Vertex

Gliding Vertex is another object detection method by the CAPTAIN team [76]. Released in

2019, the Gliding Vertex does not use angle regression, making it an angle-free method

solving the boundary discontinuity problem, instead it regresses a quadrilateral by gliding

the vertices of each side of the predicted horizontal RoI [76]. So the offset between the

corners of the horizontal RoI and the corners of the wanted quadrilateral is the target

of the regression. The horizontal RoIs are generated by the Faster R-CNN based RPN,

making Gliding Vertex a two-stage and an anchor-based detector.

Oriented object detection methods using OBBs or quadrilateral bounding boxes (QBB)

can suffer from the bounding box ambiguity problem [49]. This happens when a oriented

object can be represented using multiple bounding boxes that look the same, but have

different values for different parameters. Especially the QBBs can have this problem, if

every corner point is regressed, then the unordered points have P 4
4 = 24 permutations

to represent the same bounding box [49]. The representation ambiguity problem leads
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to worse network training, since the ground truth bounding box is always the only repre-

sentation that the prediction is compared to, making the loss value high, if the predicted

representation is not the ground truth one.

Figure 3.3. Gliding Vertex bounding box representation illustrated. The black HBB is the
initial RoI, from where the si values are regressed to rotate the bounding box and end up
with the blue OBB. From [76].

Gliding Vertex addresses the ambiguity problem by the vertex offset representation and

thus limiting the values the offset values can have. The proposed representation is shown

in Figure 3.3. The bounding box representation is (x, y, w, h, α1, α2, α3, α4), where each

α has it’s own corner and the corresponding side, on which they set the position of the

final bounding box corner. The αi values are normalized to [0,1]. Another advantage of

this representation compared to the angled one is case of the long and slender object,

where a slight error on the angle value plummets the IoU score. But slight changes on

the Gliding Vertex representation won’t have that effect.

Additionally Gliding Vertex introduces an obliquity factor to handle ambiguity with almost

horizontal object orientations. The obliquity factor checks the area ratio between the

predicted OBB and the HBB, if the ratio is close enough to one, then the HBB is chosen

as the predicted area. The obliquity factor r is the fifth extra variable in the methods

output.

The MMRotate implementation uses the ResNet-50 backbone, FPN neck and RPN and

Gliding Vertex heads.
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3.4 RTMDet-R

RTMDet object detector was proposed by Lyu et al. in 2022, with the purpose of com-

peting with YOLO models in object detection, also with oriented object detection in mind

[46]. The two main improvements presented in the paper are achieved by optimizing the

architecture, and the training strategies of the method.

The architechture of RTMDet takes inspiration from typical single-stage detectors. It uses

CSP-blocks as the backbone of the network, which are also used by newer YOLO meth-

ods, like YOLOX and YOLOv4 [13, 3].

The CSP-blocks are from the Cross Stage Partial Network (CSPNet), which was intro-

duced in 2019 by Wang et al. CSP divides the base layer feature map into two parts, of

which the other part goes through the dense layers and then the two parts are merged

together. The aim is help the information flow in the network and to reuse features that are

extracted in earlier stages, which removes redundant computations. This makes the net-

work more lightweight, which increases inference speed, while maintaining or improving

accuracy. CSP can be applied to all kinds of backbone networks to gain these benefits.

[68]

The neck has a PAFPN-block, which is a combination of a FPN and a Path Aggregation

Network(PAN) [46]. The CSP-block is divided into three scales, which the PAFPN takes

and uses both top-down and bottom-up feature propagation to improve feature mapping,

enhancing performance. PAN was released in 2018 by Liu et al. for image segmentation

[40]. PAN uses the multi-scale output of FPN to do bottom-up path augmentation in a

pyramid-like way, to shorten the information path between the lower and higher layers us-

ing skip connections. Additionally PAN uses Adaptive feature pooling, which takes useful

features from all of the PAN layers to make detection proposals. PAN makes detection

more accurate, while maintaining inference speeds [40].

The RTMDet paper does not describe how its anchor-freeness is achieved, but consid-

ering how YOLOX clearly seems to be the main inspiration, it is safe to assume that a

similar technique is used. YOLOX divides the image into a grid, and uses the top left

corner of every grid-cell as an anchor-point [13]. The aim is to find the anchor point that

is closest to the center of the object and then regress the four bounding box parameters

(x, y, w, h) from that anchor point. The image is also divided into three different scaled

grids. In training, in addition to the object center point, a 3x3 area of points are assigned

as positives, which should balance the amount of positive and negative samples.

RTMDet aims to optimize the parameter-accuracy trade-off by balancing the resolution,

depth and width of the backbone and neck. Figure 3.4 shows RTMDet beating the other

YOLO-based detectors in this aspect. The less parameters a method has usually equates

to faster inference times. Modifying the basic CSPDarkNet backbone, RTMDet proposes
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using a large-kernel 5x5 depth-wise convolution layers, which help the method to get a

better global context from the image, and thus increases accuracy [46]. The backbone

is also widened and the number of blocks is reduced to improve inference speed while

maintaining accuracy. The backbone and neck are balanced, by moving computations

from the backbone to the neck, by adding depth to the basic blocks of the neck, thus

making the backbone and neck more similar and increasing the capacity(ability to learn

complex patterns) of the Feature Pyramid [46].

Figure 3.4. Comparison of parameters and accuracy of RTMDet and other state-of-the-
art real-time object detectors on the COCO val2017 dataset. From [46].

RTMDet uses a dynamic soft label assignment strategy in training that is based on the

SimOTA label assignment. The typical way to handle label assignment in training, is to

choose the prediction that has the highest IoU value with the ground truth (and the IoU

value crosses a certain threshold), and then assign it to that ground truth [12]. According

to SimOTA authors, this way of labeling without context can be sub-optimal, because it

ignores the different sizes, shapes and occlusion conditions of different objects [12, 13].

SimOTA is introduced in the YOLOX paper, and it uses the global context of the image to

assign the labels, by calculating the cost between all predictions for each ground truth,

and then assigning the positive anchors that had the lowest cost value by using a dynamic

top-k algorithm [13]. RTMDet changes the cost calculations in multiple ways, but the most

significant one is introducing soft labels to calculating the classification cost. Soft labels

mean that the labels have a probability value from 0 to 1 instead of hard labels like binary
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labels, that can cause a prediction with a wrong bounding box, but a high classification

score to still get a low classification cost score [46].

The paper reports state of the art performance on both the COCO dataset, with the basic

RTMDet method, and on the DOTA dataset, with the modified version of the method,

that is designed for oriented object detection, named RTMDet-R. RTMDet does not offer

anything new for oriented object detection specifically, because when going from basic

RTMDet to RTMDet-R, the only changes are adding the angle parameter as the fifth

parameter, decoding OBBs instead of HBBs and changing the loss function to one that is

suitable for oriented bounding boxes [46].

The MMRotate implementation uses the "CSPNeXt" backbone that is pretrained with the

ImageNet-1K dataset. The RTMDet configs only have the le90 bounding box definition

version available.

3.5 PP-YOLOE-R

Baidu/PaddlePaddle have released their own family of YOLO based detectors, of which

PP-YOLOE-R is the latest one [70]. The first iteration of these PaddlePaddle detec-

tors was published in 2020, and it was called PP-YOLO. PP-YOLO is heavily based on

YOLOv3 and tries to improve on it’s precision using existing tricks, while maintaining si-

miliar amount of parameters [44]. The tricks take some inspiration from YOLOv4 and

include things like removing the grid sensitivity problem, where it is harder to predict the

bounding box center points from boxes that are closer to the edges of grids, and using

a more optimized NMS-function [44, 3]. Unlike YOLOv4, it does not use the CSP-based

backbone, but still manages to outperform YOLOv4 on the COCO dataset [44].

Subsequent PaddlePaddle methods are PP-YOLOv2 (2021) and PP-YOLOE (2022) [25,

75]. PP-YOLOE takes inspiration from the YOLOX method, which unlike the original YOLO

series, is an anchor-free method. The anchor-freeness in PP-YOLOE is achieved by

copying the FCOS method and using every pixel in the image as an potential anchor

point. For every ground truth object in the image, the centering pixels in the feature map

are selected as positive samples in training, this requires an additional hyper-parameter

to determine how large is the central portion of a ground truth bounding box [63, 75]. Then

in the inference process, the detector tries to find center points of objects and regress the

bounding box around it.

Like the newer RTMDet method, PP-YOLOE also loans the dynamic label assignment

style of YOLOX, but more specifically it uses the task alignment learning (TAL), that is

proposed in the paper of an object detection method called TOOD [11]. Like SimOTA,

TAL dynamically assigns positive anchor points for each ground truth, but it does this

separately for labels and bounding boxes and then uses this information to find the best
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of both worlds. This combination of classification and localization tasks allows the finding

of the anchor point that has the most precise bounding box and also the highest clas-

sification score that is possible. Most conventional single-stage detectors have a head

each in parallel for classification and localization, PP-YOLOE again follows TOOD, and

proposed an Efficient Task-aligned Head (ET-head), which improves the interaction be-

tween the classification and localization tasks, preventing misalignment when detecting

densely placed objects [75, 11]. For the backbone and neck, PP-YOLOE combines the

residual connections of ResNet and the dense connections of CSPNet and proposes the

RepResBlock network, which uses CSP-blocks and PAN feature extractor. According to

the PP-YOLOE paper, it slightly beats both YOLOv5 and YOLOX on the COCO test-dev

dataset [75].

PP-YOLOE-R was also published in 2022, and it focuses on changes, that enable PP-

YOLOE to perform oriented object detection, with good performance, and minimal pa-

rameter and computation costs. The four main changes are:

• PP-YOLOE-R uses a new loss for bounding box regression called ProbIoU, which

uses Gaussian distribution representations of the OBBs to compare the similarity

between objects. This loss function was created with oriented object detection in

mind, and it helps with the boundary discontinuity problem. [70, 34]

• TAL is changed into Rotated Task Alignment Learning, by just simply changing IoU

to SkewIoU, when calculating the task alignment metric, that is used to select the

positive samples with [70]. SkewIoU takes into account the rotated nature of the

bounding boxes.

• For predicting the fifth angle parameter, an additional decoupled head is added.

Usually oriented object detectors regress all five parameters in the same head, but

the authors assume that predicting the angle parameter requires different features

to learn. [70]

• When calculating ProbIoU, ellipse-like Gaussian bounding boxes (GBBs) are cre-

ated from the OBBs. This causes a difficulty when trying to figure out the orientation

of the GBB when the OBB is roughly square shaped. This problem is solved by us-

ing Distribution Focal Loss (DFL) to predict the angle. DFL models the angles as

General distributions to provide the angle predictions [32, 70].

In the PaddleDetection implementation there are four different sizes of CSPRepResNet to

choose from as the backbone. The dataset that CSPRepResNet is pretrained with is not

documented anywhere, but it can be assumed to be ImageNet1K, from some comments

in the PaddleDetection GitHub Issues. Only the OpenCV option for oriented bounding

box definition is available.
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3.6 YOLOv5 + Circular Smooth Label

YOLOv5 is a bit unique in a way, because Ultralytics has not released any research paper

for it explaining the architecture and improvements on YOLOv4 in detail. But there is a

documentation with an architecture summary, and the code for it is available, if one wants

to do their own research. YOLOv4 is released on the C based Darknet framework and

YOLOv5 is released on the Python based PyTorch framework [3, 65].

YOLOv5 utlizes the CSP-blocks and uses the CSPDarknet53 as YOLOv4 does [65, 3].

Spatial Pyramid Pooling (SPP) is a technique used in object detection architectures, that

allows the use of variable image input sizes, without cropping or warping the input images

[21]. SPP is a layer that comes after the backbone network’s last layer, at the start of

the neck, and it produces a fixed sized output, no matter the input size [21]. SPP is

used in YOLOv4, but it is replaced in YOLOv5, with a reportedly faster version called

Spatial Pyramid Pooling Fusion (SPPF), where it is also used to output different scale

representations of the input feature maps [65]. After that, the neck features a PAN to

replace FPN in gathering the backbone’s different scale outputs for the prediction phase,

similarly to YOLOv4 [3, 65]. The head part of the network is the same as it has been

since YOLOv3 [57, 3, 65].

YOLOv4 featured and introduced a multitude of data augmentation techniques and train-

ing strategies, which YOLOv5 also uses. When training object detectors, data augmenta-

tion methods are often used to alter the dataset images, in an effort to diversify the train-

ing data and subsequently improving the the final detectors performance. YOLOv5 offers

these augmentations: Mosaic, Copy-Paste, Random Affine Transformations, MixUp, Al-

bumentations library, HSV and random horizontal/vertical flips [65].

Mosaic Augmentation is an newer method, since it was introduced in the YOLOv4 paper.

It takes four images from the dataset and combines them into a single image, without

the images overlapping with each other. This combining aims to help the network to

learn different scales of objects located in different parts of the image [65]. Kaixuan Hu

is the implementer of the OBB using YOLOv5, which is used in this thesis. In his blog,

Hu speculates that Mosaic Augmentation has the greatest effect in the betterment of the

detector and reports over a 7 percentage-point mAP increase, when going from not using

Mosaic Augmentation to using it, training YOLOv5 on the DOTA dataset [23].

YOLOv5 also provides advanced training strategies like AutoAnchor, which calculates

optimal anchor boxes to use based on the ground truth boxes of your dataset [65]. This

removes the need to manually adjust the amount, scale and aspect ratio of anchor boxes

to optimize for a dataset.

Hu combines YOLOv5 with the use of Circular Smooth Labels(CSL), which changes the

angle prediction from a regression problem into a classification problem, by having 180
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different classes, one for each degree [78]. This removes the boundary discontinuity

problem. The visualization of the adjacency of the labels can be seen in Figure 3.5.

Figure 3.5. Representation of Circle Smooth Labeling. From [78].

By encoding the classes in a circular manner, the loss value of predictions -89◦ and 89◦

with regards to ground truth value -90◦ is the same, as it ought to be [78, 23]. The CSL

paper features 4 window functions of which the Gaussian was measured to be the best

[78]. Hu changed the radius value of CSL’s window function from the default 6 to 2 for

increased performance on DOTA [23].

Hu Kaixuan has implemented the required steps to make YOLOv5 use oriented bounding

boxes using code from the official GitHub implementations of CSL, Oriented R-CNN and

DOTA. The bounding box definition is the 90◦ Long Edge definition, as it is also recom-

mended in the CSL paper [78, 23].
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4. DATASET AND EXPERIMENTS

In this chapter the created dataset is presented, along with an outline of its creation

methodology and adequacy for the task. After that the training and evaluation pipelines

are explained, followed by the presentation and analysis of the evaluation results on the

created dataset.

4.1 Created Dataset

To find out the most suitable oriented object detection method for the surveillance point of

view use case, a dataset called Tampere Parking Lot(TPL) was created by aiming a Basler

BIP2-1600c camera towards a parking lot from the third floor window of a building. A total

of 820 images of size 1920x1080 were captured using a 400 second interval between

captures to achieve alternating weather and lighting conditions in the images. Figure 4.1

shows an example of this from TPL with 3 images.

Figure 4.1. Example images from the dataset (with license plates blurred)

In the annotation process, the only class defined was the VEHICLE class, which encom-

passes all possible vehicles that appear in the images: cars, vans and trucks. The ori-

ented bounding boxes for the vehicles were annotated manually using an open source an-

notation tool originally developed by Intel, called Computer Vision Annotation Tool(CVAT).

It can be seen from Figure 4.2 that the overlapping problem of HBBs is not as significant

in this created dataset as it can be in aerial images, like mentioned in Chapter 2, or simply

when the parking spaces are not as axis-aligned to the camera as they are in the TPL

dataset.

Figure 4.2 does not actually have actual OBB rectangles with 90◦ angles on the left side,

because the bounding boxes are manually annotated by hand. In the training pipeline
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for this dataset, the annotations are run through an algorithm that creates minimum area

rectangles from the annotated bounding boxes to create the OBBs that are used to train

the network. These actual final ground-truth annotations can be seen in Figure 4.3, which

also demonstrates that OBBs can also have problems representing objects, because of

the extra background, which is present in the VEHICLE bounding box annotations that

are in the middle of the image.

Figure 4.2. OBB-like polygon annotations on the left and HBB annotations on the right.

Figure 4.3. Actual ground-truth annotations, that are given to networks when train-
ing/evaluating

Figure 4.4 shows an example on how HBBs are not fit for detecting trailers on a truck

parking area, but the OBBs are able to handle it, especially when singling out only the roof

of the trailers. The images also demonstrate how OBBs are not the perfect representation

for the roofs in this defined perspective, but they would be in a true aerial image taken

with a satellite/drone. This is caused by lowering the perspective, which transforms these

objects from rectangular to quadrilateral, as the angles change. So at least in this way,

this defined bird’s eye view can be more complex for orinted bounding box detection

compared to aerial images. One advantage of the defined bird’s eye view is that no aerial

technology, like drones or satellites are needed for gathering data.

The TPL dataset was divided into a training set of 494 images and a test set of 326

images for evaluation. Evaluation was performed using COCO API’s COCOEval class,
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which calculates the precision for ten threshold values from 0.05 to 0.95. After that we

take the average value from those and end up with the final mAP value.

Figure 4.4. OBB annotations on the left are able to single out the trailers while the HBBs
on the right can not.

4.2 Evaluation and results

The objective of the evaluations featured in this chapter is to find the best performing

method on the created TPL dataset. Another goal was to use the same evaluation

pipeline, including framework and pre- and post-processing programming scripts, to offer

fair comparison of the methods in the evaluation metrics of precision (mAP) and speed

(FPS). For all the training and evaluation runs, the used CPU is Intel Core i9-7920X and

the GPU is NVIDIA GeForce RTX 3080.

Figure 4.5 shows two example images of the evaluation detection OBBs with YOLOv5+CSL

and the ground-truth values. On the left image, two missed cars can be seen, and on the

right image, an extra false positive detection is present. The detected OBBs can also

have very different angles, compared to the more oriented ground-truth bounding boxes,

which can be explained by the minimal visual difference of the cars between the less

oriented ground-truth boxes and the more oriented ground-truth boxes. This causes the

orientation of the detected OBBs to be somwehere in between.

Training the detectors was done with the default settings of each method. The dataset

images were rescaled and the input size was set to 512x512 for the final evaluations.

Annotations were downloaded from CVAT and converted to the DOTA format, which has

support from all of the methods. The format looks like: "x1, y1, x2, y2, x3, y3, x4, y4,

category, difficult" [8], where "category" in this case is the VEHICLE class. The "difficult"

parameter can be used to seperate the difficulty of annotations from each other by setting

a float number from 0-1, to indicate the rising difficulty of detecting this object. In this case

it was set to 0 in all annotations, and none of the methods use it in their training.

In training, an epoch is a complete pass through all of the training dataset images, after

which the model’s weights are updated and often the current model is evaluated. The

YOLOv5 implementation has a patience parameter for stopping the training and creation
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Figure 4.5. Ground-truth annotations in red and YOLOv5+CSL detections in green

of new epochs, when the evaluations during the training phase have not improved in pre-

cision for a certain number of epochs, resulting in a model that has gone through just

the right amount of passes through the dataset to give out the best possible score. Pad-

dleDetection also has an –eval flag in the training script to calculate the best performing

epoch, while training a set amount of epochs. To guarantee that all methods have the best

possible final evaluation result, a patience script was also created for MMRotate methods.

NMS IoU threshold was set to 0.1 for all methods, to ensure that NMS would not be the

reason for evaluation result differences. For YOLOv5, minimal data augmentations were

set with no use of Mosaic augmentation, 0.1 chance of MixUp augmentation, No hori-

zontal or vertical flips, HSV of (0.015, 0.7, 0.4) and no Copy-Paste augmentation. For

Random Affine Transformations: random scaling between 0.8-2, translation of 0.1 and

rotation of 180 degrees. Otherwise all learning rates and momentums and other param-

eters were left at their default values for all methods. All MMRotate models use horizon-

tal/vertical/diagonal Random flip data augmentation with a 0.75 probability. RTMDet-R

and PP-YOLOE-R also use random rotation with a 0.5 probability.

Initially OpenVINO was planned to be used as the model framework for all the evalu-

ations, until MMRotate/MMDeploy had showed to have no support for it. The problem

in converting the MMRotate ONNX models to OpenVINO was the MMRotate models’

NMS algorithm, which is integrated to the network code and only had TensorRT support.

Another problem with the integrated MMRotate NMS is that there is no apparent way

to disable it from the configurations. In an effort to help the conversion from ONNX to

OpenVINO to work, the MMRotate source code for the Rotated RetinaNet method was

modified by removing the NMS algorithm, which lead to a successfull conversion, but ab-

normally slow inference speeds. This led to the choosing of TensorRT being the model

framework for all evaluations, which also meant that all MMRotate methods would use
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a different NMS implementation for their evaluations, slightly decreasing the validity of

inference speed comparisons as NMS was included in the inference speed calculations.

For some methods MMRotate offers three different bounding box definitions in their con-

figurations: The OpenCV definition(oc), the 135◦ Long Edge definition(le135) and the

90◦ Long Edge definition(le90). All of these were tested with Rotated RetinaNet and RoI

Transformer methods in Table 4.1. along with two HBB options in Rotated RetinaNet,

Multi-scale Random rotation(MS RR) and floating-point 16(fp16) versions. These Ro-

tated RetinaNet detectors were trained with 1024x1024 sized images, all the rest of the

detectors featured in this chapter were trained with 512x512 scaled images to allow for

fair comparison. Using smaller resolution input images makes the detector faster, but

resizing the input images can also make objects harder to detect, worsening the preci-

sion. The HBB versions performed slightly worse compared to the OBB versions, which

is good to see, as there was doubt if the TPL dataset is too simple to benefit from oriented

bounding boxes. The data augmentations of MS RR seemed to have no positive effect

compared to the general le90 configurations in neither speed nor precision. Fp16 uses

less computer memory and to no surprise, is not an improvement compared to the le90

version, except for the minuscule FPS difference with Rotated RetinaNet. But the FPS

differences are basically non-existent, except for surprising drop in both precision and

speed of the RoI Transformer OpenCV version. The reason for the drop is left unknown,

and it might be a problem with the MMRotate implementation of RoI Transformer+oc. The

OBB 90◦ Long Edge performed the best overall and was chosen to be the definition to

be used in all remaining MMRotate evaluations. Gliding Vertex and RTMDet-R also only

has the le90 configuration available, which supports the choice. In PaddleDetection, PP-

YOLOE-R only has the OpenCV definition available, but the YOLOv5 implementation also

uses the 90◦ Long Edge definition.

Some of the used methods have different sized backbone configurations, which affect the

amount of layers in the network. Smaller ones for when FPS is the most important factor,

and large ones for best possible mAP. These methods are RTMDet-R, PP-YOLOE-R and

YOLOv5 and all of them have four or five different configuration choices from smallest

to largest. With the smallest YOLOv5 version YOLOv5s, an mAP of 0.405 and FPS of

112.4 was achieved. This result was set as a reference point for the other methods, and

this is why Table 4.2. which features the evaluation results of RTMDet-R only has small

and medium configurations tested, as YOLOv5s results already outperform RTMDet-R

medium in both mAP and FPS, which suggests that evaluating the large version could not

be better than YOLOv5, as the inference times are guaranteed to rise, when the network

size is increased. Table 4.2. also features the Multi-sampling configuration results, which

interestingly sligthly increased mAP and greatly reduced FPS for the small version of

RTMDet-R, but no such effect can be seen with the medium version.

Table 4.3. features all the PP-YOLOE-R evaluations. From the OpenVINO results, it can
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Table 4.1. Evaluations of Rotated RetinaNet and RoI Transformer on the TPL dataset

Method Bounding box mAP FPS

Rotated RetinaNet

(1024x1024) OpenVINO

HBB le90 0.299 2.19

HBB le135 0.263 2.22

OBB le90 0.318 2.22

OBB le135 0.291 2.19

OBB(MS RR) le90 0.305 2.17

OBB oc 0.318 2.17

OBB(fp16) le90 0.276 2.24

RoI Transformer

(512x512) TensorRT

OBB le90 0.361 41.84

OBB le135 0.292 42.2

OBB(MS RR) le90 0.317 41.2

OBB oc 0.112 18.8

OBB(fp16) le90 0.358 40.3

Table 4.2. RTMDet-R evaluations on the TPL dataset

Method Size mAP FPS

RTMDet-R

TensorRT

s 0.250 103.1

m 0.353 40.3

s (MS) 0.284 55.6

m (MS) 0.339 40.2

be seen that the large version had the highest mAP. The reason why x is less precise

compared to l is most probably because the training dataset is so small and the network

has so much capacity that it is overfitting, meaning that it adjusts too precisely to the train-

ing dataset and as a result, performs worse on unseen data. At first glance it appeared

that the Multi-sampling versions should not have any effect, since the setting only seems

to change the used directory from dataset/dota/ to dataset/dota_ms/, which are not used

anyway, since custom data is being used. But looking at the results, it seemed to have a

slight negative effect on the mAP of every version of the method.

Table 4.4. shows the final best results for every method used. YOLOv5 + CSL takes the

cake and eats it too by having the highest mAP of 0.405 and sharing the highest FPS

of 112.4 with PP-YOLOE-R. RoI Transformer and RTMDet both have around 0.05 less

mAP compared to YOLOv5, making them the 2nd and 3rd most accurate detectors in this

evaluation, respectively. Gliding Vertex and PP-YOLOE-R have around a 0.10 mAP gap

to the best detector, making them the 4th and 5th most accurate detectors, respectively.

The least accurate detector is Rotated RetinaNet with a mAP that is 0.165 points worse
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Table 4.3. PP-YOLOE-R evaluations on the TPL dataset

Method Size mAP FPS

PP-YOLOE-R

OpenVINO

s 0.220 35.0

m 0.277 25.6

l 0.299 17.1

x 0.278 10.0

s (MS) 0.216 35.7

m (MS) 0.255 25.5

l (MS) 0.213 17.4

x (MS) 0.225 10.1

PP-YOLOE-R

TensorRT

m 0.278 147.1

l 0.299 112.4

than YOLOv5.

From the YOLO based methods of RTMDet-R PP-YOLOE-R and YOLOv5 + CSL, the only

anchor-based detector, which is YOLOv5, was the best, which is not surprising, consid-

ering the simplicity of objects in the dataset, making it so that an anchor-based solution

would have no hard time finding objects. Another thing to consider is that both RTMDet-R

and PP-YOLOE-R implementations are part of large object detection toolboxes, so their

implementation may be less optimized and thought out compared to the single implemen-

tation of YOLOv5 + CSL by Kaixuan Hu.

RoI Transformer has an impressive performance coming 2nd best in accuracy, while being

released in 2018, this might also be explainable by the semi-horizontal alignment of the

objects in the TPL dataset, as RoI Transformer firstly generates the HBB proposals from

the images and then transforms them to OBBs afterwards, so the RRoI Learner need not

learn large offsets when rotating the bounding boxes. RetinaNet is the oldest method of

the bunch and except for the Focal Loss, it mostly resembles the basic Faster R-CNN

method. So it is not surprising, that Rotated RetinaNet holds lasts place in terms of

accuracy.

FPS-wise there is a clear division into two groups: MMRotate methods and others. It is

surprising to see that the MMRotate methods do not differ in inference speed almost at

all, considering that they do have very different ways of solving the detection problem.

All of them except RTMDet-R have the ResNet-50 as the backbone, which might mostly

explain the similarity. RTMDet-R is also the one of the four methods that deviates most

from the median FPS of all the MMRotate methods.

Now the most interesting part of the FPS results is the big difference between the MMRo-

tate methods and other methods. One clear possible reason is the different NMS imple-
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Table 4.4. Final best evaluation results for each method on the TPL dataset

Method mAP FPS

Rotated RetinaNet 0.240 44.2

Gliding Vertex 0.307 44.2

RoI Transformer 0.361 41.8

RTMDet-R 0.353 40.3

PP-YOLOE-R 0.299 112.4

YOLOv5 + CSL 0.405 112.4

mentation, which all of the MMRotate detectors have integrated in the head of their mod-

els. The second possible reason is that all MMRotate models could have some shared

computational overhead, which happens in the creation/deployment of all MMRotate mod-

els which is not optimal and slows things down. The third suspect was the fact that the

MMRotate methods have an extra data conversion in the evaluation pipeline, because the

inference output was different compared to other methods. MMRotate methods outputs

the five parameter representation x, y, w, h, θ, which is converted to the eight parameter

bounding box representation, to allow the rest of the pipeline to be exactly identical across

all methods. This conversion time was calculated in the pipeline and the median result

was, that it takes about 0.32 milliseconds. Removing 0.32 ms from a 40 FPS detector

would result in a 40.52 FPS detector, so the output data conversion has very insignificant

impact.
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5. CONCLUSIONS

This thesis explored oriented bounding box detection, with a focus on bird’s eye view

scene imagery, by researching relevant literature and testing out the detection accuracy

and speed of six different oriented object detection methods, of which five were imple-

mented by popular open source computer vision toolbox creators and one was an individ-

ual GitHub user adding oriented bounding box detection to a popular open source object

detection method. The tested methods were:

• Rotated RetinaNet,

• RoI Transformer,

• Gliding Vertex and

• RTMDet-R, from the MMRotate oriented object detection toolbox.

• PP-YOLOE-R, from the PaddleDetection object detection toolbox.

• YOLOv5 + CSL, using the Ultralytics YOLOv5 modified by Kaixuan Hu to use ori-

ented bounding boxes and Circular Smooth Labels.

For the purpose of testing the methods, a dataset with oriented bounding box "VEHICLE"

class annotations was created with images collected from a bird’s eye view camera aimed

at a local parking lot. The selected oriented object detection methods were trained and

evaluated on separate training- and test sets. The methods were evaluated using the

most common accuracy and speed metrics used in oriented object detection.

Which open-source oriented bounding box detection method performs the best on

bird’s eye view images? YOLOv5 + CSL was proven to be the best method on all metrics

out of all the methods, with mAP of 0.405 and FPS of 112.4, making it the fastest and

most accurate method on the created dataset, and thus it can be recommended to be

used in similar use cases, regardless of whether real-time detection is needed or not.

Does the bird’s eye view object detection benefit from using oriented bounding

boxes? Yes, the usefulness of oriented bounding box detection methods over generic

horizontal bounding box detection was tested with Rotated RetinaNet, where using OBBs

instead of HBBs on the created dataset slightly(1.9 percentage-points) increased the ac-

curacy. The three most popular OBB definitions were also tested with Rotated RetinaNet
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Table 5.1. The detectors ranked by accuracy on the created dataset, while presenting
their architectural attributes.

Method Anchor-based Angle-based Single-stage

1. YOLOv5 + CSL X X X

2. RoI Transformer X X

3. RTMDet-R X X

4. Gliding Vertex X

5. PP-YOLOE-R X X

6. Rotated RetinaNet X X X

and RoI Transformer, resulting in the 90◦ Long Edge definition being slightly more accu-

rate compared to the others.

Are there some OBB detection method key attributes that are always better than

the others? Table 5.1 features the evaluated methods in a descending accuracy order,

and their architectural attributes. The table demonstrates that no meaningful correlations

could be found in the accuracy order of the evaluations in regard to if the method were

anchor-based, angle-based or single-stage or not. Thus no general recommendations

can be made based on those properties, although there has not been much enthusiasm

around two-stage detector research in the recent years. The best performing method

YOLOv5+CSL is anchor-based, angle-based and single-stage. All the three different

YOLO-based models were also ranked very differently on the table.

Another observation was, that the MMRotate methods all had a similar inference speed,

which was significantly slower compared to the other methods (around 40 FPS). This

slowness could maybe be caused by some computation overhead coming from the de-

ployment of the MMRotate detection models using MMDeploy. This is a reason to not rec-

ommend MMRotate methods on real-time detection problems, unless a fix for the speed

is found.

The created dataset, as said in chapter 4, did not have that difficult objects for a HBB

detector to detect, as the parking lot was very axis-aligned to the camera, so the vehicles

were mostly horizontally or vertically positioned in the images. The created dataset was

also pretty small, which usually means there is less variability in the data.

For further development a new dataset could be created, with objects/annotations that

would be more rotated, and thus would put more emphasis on the detectors’ ability to

detect oriented bounding boxes. And a larger accuracy difference might be seen between

detectors using HBBs and OBBs in training. The amount of images in the new dataset

should also be larger, while maintaining good diversity, to be able to see which methods

are best able to learn complex patterns and relationships and generalize to unseen data.
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If there is more interest in the use case of fully top down aerial imagery, like satellite

images, then the DOTA-v2.0 dataset, with its 11,268 images, is a great choice to use as

a benchmark [8].

Out of all the used methods in this thesis, the YOLOv5 would of course be the most in-

teresting to research further as it already performed the best out of all of them. With

YOLOv5, Ultralytics offers about 30 hyperparameters, which can be modified and would

allow for a lot of testing [65]. The more interesting parameters would be the different data

augmentation techniques like mosaic augmentation, which was not used at all in this the-

sis. YOLOv5 also provides three larger model sizes: m,l and x, which could presumably

offer better accuracy with less inference speed.

Ultralytics has also released their newest version of YOLO called YOLOv8 in 2023. Com-

pared to YOLOv5, YOLOv8 has some architectural differences, like the fact that it is an

anchor-free detection method. This is done by cutting up the image into grid cells and

predicting the center of an object withing the cell where the object is. Ultralytics also

supports oriented bounding box training/detecting, and DOTA-v1.0 pretrained models for

YOLOv8, which makes testing the method out simpler. [28]
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