
Editorial 

Semantic artificial intelligence for smart manufacturing automation 

Smart manufacturing is arriving [1]. It promises a future of highly responsive manufacturing 

operations with advanced sensing, reasoning, and decision-making capabilities towards mass 

personalization [2]. Statistical AI, e.g., machine learning technologies, has shown great 

potential in making manufacturing smart [3]. However, Statistical AI’s approximative, 

agnostic, and context- and task-specific nature has limited its implementation in real-world 

manufacturing contexts, which demand guaranteed product quality, robust system 

performance, and ubiquitous transparency. Semantic AI – the combination of Statistical AI 

and Symbolic AI technologies, could be the answer to the in-depth adoption of AI 

technologies in industry. Semantic AI enables interpretable manufacturing decisions with 

augmented intelligence via integrating the merits of statistical learning and semantic 

reasoning. This timely special issue contains ten articles demonstrating state-of-the-art 

achievements on Semantic AI, focusing on a variety of technologies, i.e., knowledge graph, 

semantic web, knowledge discovery, meta-heuristic algorithms, reinforcement learning, and 

deep learning, with novel applications in machining process automation, assembly 

troubleshooting, system simulation, production scheduling, 4D printing and robot 

automation.  

In the paper titled “An automatic method for constructing machining process knowledge base from 

knowledge graph”, Guo et al. developed an automatic knowledge construction framework and 

integrated algorithms for extracting, representing and fusing machining knowledge from 

textual sources in the field of machining. Apart from their developed algorithms, they also 

provided a feasible approach to structuralizing, cleaning and processing unstructured 

machining knowledge cues. 

In a slightly different application scenario – assembly root cause analysis and troubleshooting, 

Ning et al., in “Knowledge discovery using an enhanced latent Dirichlet allocation-based clustering 

method for solving on-site assembly problems”, developed a knowledge discovery approach to 

mining assembly problems, causes and solutions from historical troubleshooting records. 

Their general methods of topic modeling, clustering and pattern association provided insights 

on mining empirical rules from a textual corpus. 

In the paper titled “Transformation of semantic knowledge into simulation-based decision support”, 

Jurasky et al. coined an ontological approach to developing a digital replica for simulation. 

This enables fast and profound model-based decisions, particularly beneficial in a dynamic 

and uncertain environment. Their work consists of three components: (1) the Simulation 

Ontology, a semantic model for the basic building blocks and interrelationships of a 

simulation, (2) Mapping Rules that support the transfer of knowledge from an 

existing domain ontology into instances of the Simulation Ontology and thereby present a 

novel approach for model conceptualization, as well as (3) a Parser, which automatically 

generates an executable simulation model from the instantiated Simulation Ontology. Their 

framework was validated in an order fulfillment simulation application. 

In the paper titled “Semantic coupling of path planning and a primitive action of a task plan for the 

simulation of manipulation tasks in a virtual 3D environment”, Zhao et al. proposed an ontology-

based approach that uses semantic task-level information to generate paths for a primitive 
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action of a task plan. Results demonstrated better path planning control via task-related 

information, leading to lower computational time and more relevant trajectories for primitive 

actions. 

In the paper titled “A semantic-level component-based scheduling method for customized 

manufacturing”, Li and Tang developed a semantic-enriched information model to obtain 

shopfloor status via semantic reasoning, together with a computation model to abstract the 

stochastic scheduling process of production. They then integrated the semantic model with 

the computation model for dynamically assigning production tasks to manufacturing 

resources. 

When knowledge is difficult to be obtained from existing data sources, implicit knowledge 

could be derived from exploring the solution space in a dynamic system. Heuristic and meta-

heuristic methods are prominent examples of such methods. In “Network-based dynamic 

dispatching rule generation mechanism for real-time production scheduling problems with dynamic job 

arrivals”, Zhuang et al. developed a network-based dynamic task dispatching rule generation 

mechanism to achieve real-time production scheduling in smart factories, when heterogenous 

manufacturing jobs arrive dynamically. 

Advanced meta-heuristic algorithms can also be used for co-optimizing production schedules 

in distributed factories. In the paper titled “Production scheduling for blocking flowshop in 

distributed environment using effective heuristics and iterated greedy algorithm”, Chen et al. 

presented a list of meta-heuristic algorithms and an iterated greedy algorithm for solving the 

blocking flowshop problem in a distributed production network. 

Reinforcement learning is another algorithm for learning knowledge from environment 

interaction. Focusing on high-mix-low-volume dynamic production, Zhou et al. in “Multi-

agent reinforcement learning for online scheduling in smart factories” developed a distributed 

multi-agent learning scheme for scheduling production jobs between heterogeneous 

manufacturing units. The authors developed an AI scheduler with neural networks for each 

manufacturing unit. These AI schedulers make scheduling policies independently and can 

collaborate to handle unexpected events such as urgent work orders and machine failures.  

In a relatively new application domain – 4D printing, Ji et al., in “Optimal shape morphing control 

of 4D printed shape memory polymer based on reinforcement learning”, developed a reinforcement 

learning-based closed-loop control scheme for Shape Memory Polymer actuation. Precise and 

prompt shape morphing is achieved compared with a PI controller. The training efforts of 

reinforcement learning are further reduced by simplifying the optimal control policy using 

the structural property of the prior trained results.  

The last article – “Error compensation of industrial robot based on deep belief network and error 

similarity”, established a mapping model between a robot’s theoretical pose coordinates and 

its actual pos errors, based on deep belief networks and error similarity. This model is then 

used for pose error prediction. The proposed scheme can enhance a deep belief network’s 

learning capability and interpretability by adding the extracted error similarity information 

between samples.  

Finally, the Guest Editors of the issue would like to thank the editorial staff of Robotics and 

Computer-Integrated Manufacturing for their support throughout the development of this 
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theme issue. They would also like to thank the authors of the issue for their insightful 

contributions. 
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