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Abstract— We propose a saturating integrator based con-
troller for infinite dimensional well-posed linear systems, which
prevents the controller state from leaving a desired closed
interval. This set usually represents actuator constraints or
safety requirements. We use Lyapunov theory to prove closed-
loop stability and tracking of a constant reference for a suitable
set of feasible references. The performance of the proposed
controller is showcased through an application: the boundary
control of a string equation with localized viscous damping.

I. INTRODUCTION

A classical result in control theory is the internal model
principle, originally formulated for linear finite-dimensional
systems in [5], [9]. This principle states that, under rea-
sonable assumptions on the plant, the reference tracking
and disturbance rejection problem, i.e., the output regulation
problem, can be solved by including a copy of the exosystem
in the controller. Similar results have been later derived in
[16] for nonlinear finite-dimensional systems, and in [12],
[27], [26], [29] for linear infinite-dimensional systems. As
a particular application of the internal model principle, an
integrator should be included in the controller when the
exogenous signals (reference and disturbances) are constant.

Sufficient conditions for solving the regulator problem
for finite-dimensional linear systems with constant signals
were given in [23]. In particular, it was shown that if the
plant is stable and its DC-gain is positive, then a (positive)
small-gain integral controller robustly solves the regulator
problem [23, Thm. 10]. This result has been extended to
nonlinear systems in [7], where the positivity of the plant
DC-gain is replaced with the monotonicity of the plant
steady-state input-output map [7, Thm. 3.1]. Recently, the
result from [7] has been further generalized in [30]: instead
of demanding the monotonicity of the plant steady-state
input-output map, the reduced dynamics are required to be
infinitesimally contracting. Related results for linear systems
with input nonlinearities are in [11], [18]. The theory from
[23] has been extended to infinite-dimensional linear systems
in [17], [28], [35] and others, while a novel integral controller
for nonlinear infinite-dimensional systems using forwarding
control [22] can be found in [39].

In practical applications, integral controllers can be
severely affected by the windup phenomenon [1], which
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Fig. 1. The closed-loop system. Here Σ is an exponentially stable well-
posed linear system, k is the constant control gain, and

∫
S is the saturating

integrator from (5). The control objective is to drive the tracking error e to
zero for a feasible constant reference r ∈ R (see Sect. II for details).

can drive the closed-loop system unstable or create large
transients. Due to its relevance, many anti-windup techniques
have been proposed in the control literature. When the plant
is linear with a nonlinear actuator, LMI tools can be used to
design an anti-windup compensator [15], [34], [43], which
ensures that closed-loop stability is preserved. In the case
of nonlinear systems, it is usually preferred to include the
saturation constraints in the controller design, without the
need of designing an additional compensator (this approach
is sometimes referred to as one-step anti-windup [34]). The
bounded integral controller (BIC) designed in [14] guar-
antees boundedness of the integrator state trajectories and
input-to-state practical stability when the plant is input-to-
state practically stable. A multi-input multi-output (MIMO)
extension of the BIC was presented in [40]. A saturating inte-
grator was proposed in [21] for stable nonlinear single-input
single-output (SISO) systems. This controller constrains the
integrator state to a desired set (thus preventing windup). The
saturating integrator was generalized for MIMO systems in
[20] using tools from projected dynamical systems [24]. Both
[20] and [21] rely on singular perturbation tools [13, Ch. 11]
to prove closed-loop stability, in the spirit of [7], [30]. A
similar nonlinear integral controller, called hybrid integrator
gain, has been proposed in [6] for SISO linear systems. This
controller exploits projection techniques to keep its input-
output relation constrained in a bounded sector, improving
controller performance and preventing windup.

In this paper, we solve the output tracking problem for an
exponentially stable well-posed linear system and a constant
reference r ∈ R under input constraints, which restrict the
plant input values u(t) ∈ R in a desired interval, namely,
u(t) ∈ U0 = [umin, umax] ⊂ R for all t ≥ 0. Such
constraints arise frequently as a result of actuators with
limited ranges of operation, or may be imposed due to safety
concerns. Our controller is based on a saturating integrator,
see Fig. 1, which has previously been used in the control
of nonlinear finite-dimensional systems in [20], [21], [25].
As our main result we show that the saturating integrator



solves the output tracking problem with exponential rate
of convergence of the tracking error, and achieves global
exponential stability for the closed-loop system. Our proof
is based on Lyapunov stability analysis of the infinite-
dimensional nonlinear closed-loop system in Figure 1.

The paper is organized as follows. In Sec. II we recall
some background on well-posed systems and state the control
objective in precise terms. In Sec. III we prove the well-
posedness of the closed-loop system from Fig. 1. In Sec. IV
we state and we prove our main result. Finally, in Sec. V we
apply our results to the boundary control of a string equation
with localized viscous damping.

II. BACKGROUND AND PROBLEM STATEMENT

All the vector spaces in this paper are real. We denote
by L(X,Y ) the space of linear bounded operators from
the Hilbert space X to the Hilbert space Y , and by ρ(A)
the resolvent set of an operator A. For any interval J and
any Hilbert space U , H1(J ;U) denotes the Sobolev space
of functions in L2(J ;U) that are integrals of functions
in L2(J ;U). We denote by L2

loc([0,∞);U) the space of
functions u : [0,∞)→U whose restriction to [0, τ ] is in
L2([0, τ ];U), for any τ ≥ 0. The space H1

loc((0,∞);U)
consists of integrals of functions in L2

loc([0,∞);U).
We recall some simple facts about well–posed linear

systems, following [31], [38], [41]. Let us denote by U the
input space, by X the state space and by Y the output space
of a well-posed linear system Σ (these are Hilbert spaces).
The input and the output functions are locally L2 functions
with values in U and Y , respectively. For such a function u,
we denote by Pτu its truncation to the interval [0, τ ].

A well-posed linear system Σ consists of four families of
bounded linear operators Σ = (Στ )τ≥0 = (T,Φ,Ψ,F) such
that [

x(τ)
Pτy

]
=

[
Tτ Φτ

Ψτ Fτ

]
·
[
x(0)
Pτu

]
. (1)

Here x : [0,∞)→X is the state trajectory of Σ correspond-
ing to the initial state x(0) and the input function u, and y
is the corresponding output function.

The above families of operators must satisfy functional
equations expressing the causality and the time-invariance of
Σ (these functional equations are parts of the definition of a
well-posed system), see for instance [41]. In particular, the
family (Tτ )τ≥0 is a strongly continuous operator semigroup
on X and its generator A is called the semigroup generator
of Σ. We introduce X1 = D(A) with the norm

∥x∥1 = ∥(βI −A)x∥, β ∈ ρ(A).

X−1 is the completion of X with respect to the norm
∥x∥−1 = ∥(βI − A)−1x∥. These spaces are independent
of the choice of β. A has a unique extension that is bounded
from X to X−1, and we denote this extension by the same
symbol A. The semigroup T can be extended to an operator
semigroup on X−1, denoted by the same symbol, whose
generator is the extension of A mentioned earlier. There
exists a unique operator B ∈ L(U,X−1), called the control
operator of Σ, such that for all t ≥ 0,

Φtu =

∫ t

0

Tt−σBu(σ)dσ ∀u ∈ L2([0,∞);U).

The above integration is done in X−1. There exists a unique
observation operator C ∈ L(X1, Y ) so that for every τ ≥ 0,

(Ψτx0)(t) = CTtx0 ∀x0 ∈ D(A), t ∈ [0, τ ].

The well-posedness of Σ implies that B is an admissible con-
trol operator for T, and that C is an admissible observation
operator [37, Ch. 4], [41].

The operator C has an extension C̄ to the space

Z = D(A) + (βI −A)−1BU. (2)

This is a Hilbert space with the norm

∥z∥2Z = inf

{
∥x∥21 + ∥v∥2

∣∣∣∣ x ∈ X1, v ∈ U,
z = x+ (βI −A)−1Bv

}
,

and C̄ ∈ L(Z, Y ). The extension C̄ may be not unique. For
each such extension C̄, there exists D ∈ L(U, Y ) such that
the transfer function G of Σ is given by

G(s) = C̄(sI −A)−1B+D ∀s ∈ C, Res > ω0(T), (3)

where ω0(T) denotes the growth bound of T. The following
proposition is contained in [33, Thm. 3.1].

Proposition 2.1: Assume that u ∈ H1
loc((0,∞);U) and

x0 ∈ X are such that Ax0+Bu(0) ∈ X . The state trajectory
x and the output function y of Σ are defined as in (1). Then

x ∈ C1([0,∞);X), Ax+Bu ∈ C([0,∞);X),

y ∈ H1
loc((0,∞);Y ),

and for every t ≥ 0 we have that

dx(t)

dt
= Ax(t) +Bu(t), y(t) = C̄x(t) +Du(t). (4)

Throughout the paper we consider a SISO well-posed
linear system Σ = (T,Φ,Ψ,F) described by (4), with
A : D(A) ⊂ X → X generating the strongly continuous
semigroup T on the Hilbert space X , and with B ∈
L(R, X−1), C̄ ∈ L(Z,R) an extension of C ∈ L(X1,R),
and D ∈ R. We assume that for practical reasons (such
as actuators limitations) the input u must be constrained in
U0 = [umin, umax] ⊂ R with umin < umax.

Our goal is to design a control law so that the output y of
the system Σ converges to a desired constant reference r ∈ R
as t → ∞. For this purpose, we introduce the saturating
integrator from [21, Sec. II], defined by u̇ = S (u,w), where

S (u,w) =


max{w, 0} if u ≤ umin,

w if u ∈ (umin, umax),

min{w, 0} if u ≥ umax.

(5)

We use the controller (see Fig. 1)

u̇ = S (u, k(r − y)), (6)

with k > 0. The closed-loop system consisting of (4) and
(6), shown in Fig. 1, is given by

ẋ = Ax+Bu, x(0) = x0 ∈ X, (7a)
y = C̄x+Du, (7b)
u̇ = S (u, k(r − y)), u(0) = u0 ∈ R. (7c)



Note that if (xe, ue) is an equilibrium state of (7), denoting
ye = C̄xe +Due, then S (ue, k(r − ye)) = 0. In addition,
if ue is in the interior of U0, then this implies ye = r.

The control objective is to globally exponentially stabi-
lize (7) and to solve the constrained tracking problem for all
r in an interval J ⊂ R (to be defined) of feasible constant
references. A solved constrained tracking problem means that
for all r ∈ J , limt→∞ y(t) = r, while guaranteeing that if
u0 ∈ U0, then u(t) ∈ U0 for all t ≥ 0.

We remark that in our main result (in Sect. IV) we allow
also u0 ∈ R \ U0. However, in this case, the control input
u(t) may or may not enter U0 in finite time, depending on
r. More details on this are given in Remark 4.5.

III. EXISTENCE OF CLOSED-LOOP TRAJECTORIES

For a given u0 ∈ R, we define the input to output map
Su0
τ of (6) corresponding to the fixed initial state u0 such that

u = Su0
τ w for a polynomial w ∈ P [0, τ ] if u is the solution

of (6) on [0, τ ] with the initial condition u(0) = u0. (The
operator Su0

τ is well-defined for a polynomial w, as explained
in [21, Sec. II].) The following lemma shows that Su0

τ extends
to a globally Lipschitz mapping Su0

τ : L2[0, τ ] → H1(0, τ).
Lemma 3.1: Let u0 ∈ R and τ > 0. The mapping Su0

τ has
a unique continuous extension Su0

τ : L2[0, τ ] → H1(0, τ).
Moreover, for all w1, w2 ∈ L2[0, τ ] we have

∥Su0
τ (w2)− Su0

τ (w1)∥L2[0,τ ] ≤ τ∥w2 − w1∥L2[0,τ ] (8)

∥Su0
τ (w2)− Su0

τ (w1)∥C[0,τ ] ≤
√
τ∥w2 − w1∥L2[0,τ ]. (9)

For any w ∈ L2[0, τ ], on u0 and Su0
τ (w) ∈ C[0, τ ] depends

continuously on u0 and u = Su0
τ (w) satisfies (a.e. on [0, τ ])

u̇ = S (u,w), u(0) = u0. (10)
Proof: Let u0 ∈ R and τ > 0. Let w1 and w2 be

polynomials and define u1 = Su0
τ (w1) and u2 = Su0

τ (w2).
Similarly as in [42, Sec. 1], straightforward estimates show

d

dt
|u2(t)− u1(t)| ≤ |w2(t)− w1(t)|

for almost every t ∈ [0, τ ]. Note in particular that u1 and u2

are piecewise polynomials, and thus u1(t) = u2(t) can hold
only for t in a set consisting of a finite number of points
and a finite number of subintervals of [0, τ ]. Integrating this
inequality and using u1(0) = u2(0) leads to

|u2(t)− u1(t)| ≤ |u2(0)− u1(0)|+
∫ t

0

|w2(s)− w1(s)|ds

≤
√
t∥w2 − w1∥L2[0,τ ].

Thus (8) and (9) hold for polynomials, and since the set of
polynomials is dense in L2[0, τ ], Su0

τ has a unique continuous
extension Su0

τ : L2[0, τ ] → L2[0, τ ] satisfying (8) and (9).
To show that Su0

τ maps into H1(0, τ), let w ∈ L2[0, τ ],
define u = Su0

τ (w) and let (wn)n be a sequence of polynomi-
als such that wn → w in L2[0, τ ]. Denoting un = Su0

τ (wn)
we have |u̇n(t)| = |S (un(t), wn(t))| ≤ |wn(t)| for a.e.
t ∈ [0, τ ]. Thus (un)n is a bounded sequence in H1(0, τ)
and has a subsequence which converges weakly in H1(0, τ).
This limit is u due to uniqueness, and thus u ∈ H1(0, τ).

Finally, for a polynomial w the continuity R ∋ u0 7→
Su0
τ (w) ∈ C[0, τ ] and (Su0

τ (w))(0) = u0 follow from the
above pointwise estimate |u2(t)− u1(t)| ≤ |u2(0)− u1(0)|,
and the density of polynomials implies these properties also
for w ∈ L2[0, τ ]. We omit the nontrivial proof of (10).

Let us denote by Ψτ : X 7→ L2[0, τ ] the state to output
map of Σ on [0, τ ], and by Fτ : L2[0, τ ] 7→ L2[0, τ ] the input
to output map of Σ on [0, τ ], as in (1). Since Σ is well-posed,
these operators are bounded.

Proposition 3.2: Assume that Σ is well-posed and let k >
0. Then for any constant reference r ∈ R and initial state
(x0, u0) ∈ X × R there exists a generalized closed-loop
state trajectory of the closed-loop system (7), by which we
mean a function (x, u) ∈ C([0,∞);X × R) such that u ∈
H1

loc(0,∞) and for every τ ≥ 0 we have

x(t) = Ttx0 +Φtu, t ≥ 0 (11a)
Pτu = Su0

τ (k(r −Ψτx0 − Fτu)). (11b)

Moreover, for any t ≥ 0, the state (x(t), u(t)) of the closed-
loop system depends continuously on (x0, u0) and on r.

If (x0, u0) ∈ X × R are such that Ax0 +Bu0 ∈ X , then
for any r ∈ R the closed-loop state trajectory (x, u) satisfies
x ∈ C1([0,∞);X) and Ax+Bu ∈ C([0,∞);X), and (7a)–
(7b) hold pointwise on [0,∞). Lemma 3.1 implies that (7c)
holds pointwise a.e. on [0,∞).

Remark 3.3: It is clear from (10) and (11a) that if (x, u) is
a generalized closed-loop state trajectory of (7), correspond-
ing to an initial state (x0, u0), then

x(0) = x0 and u(0) = u0 .

Proof: Let the initial state (x0, u0) ∈ X × R and the
reference r ∈ R be arbitrary. We rewrite (11b) in terms of
the error e = r − y truncated to [0, τ ], as follows:

Pτe = r −Ψτx0 − FτSu0
τ (kPτe) . (12)

This is a fixed point equation in L2[0, τ ] for the operator

T (ν) = r −Ψτx0 − FτSu0
τ (kν) .

Lemma 3.1 implies that T is a strict contraction for τ > 0
small enough. Indeed, for any ν1, ν2 ∈ L2[0, τ ],

∥T (ν1)− T (ν2)∥ ≤ ∥Fτ∥ · ∥Su0
τ (kν1)− Su0

τ (kν2)∥

≤ τk∥Fτ∥ · ∥ν1 − ν2∥ .

For any τ ∈ [0, 1] and any u ∈ L2[0, 1], Fτu is obtained
from F1u by a projection (truncation to [0, τ ]), so that
clearly ∥Fτ∥ ≤ ∥F1∥. Thus, for sufficiently small τ > 0,
we have τk∥Fτ∥ < 1. With this choice of τ > 0, T
is a strict contraction on L2[0, τ ], and therefore it has a
unique fixed point Pτe ∈ L2[0, τ ] which satisfies (12),
see for instance [2, Thm. 3.1]. Moreover, Pτe depends
continuously on (x0, u0, r), according to [2, Thm. 3.8]. We
define Pτu = Su0

τ (kPτe), then according to Lemma 3.1 we
have Pτu ∈ H1(0, τ).

If we define x(t) = Ttx0+ΦtPτu for t ∈ [0, τ ], then x ∈
C([0, τ ];X) and (x, u) satisfies (11) on [0, τ ]. Repeating the
analysis on [nτ, (n+1)τ ] starting with the initial conditions



(x(nτ), u(nτ)) for n ∈ N and combining the resulting state
trajectories leads to a closed-loop state trajectory (x, u) ∈
C([0,∞);X × U) satisfying (11) and u ∈ H1

loc(0,∞).
Assume now that (x0, u0) ∈ X ×R satisfy Ax0 +Bu0 ∈

X . Since u ∈ H1
loc(0,∞) and u(0) = u0, we have from

Proposition 2.1 that x has the properties claimed.

IV. THE MAIN RESULT

The following assumption states the required stability
properties for the infinite-dimensional system (4).

Assumption 4.1: We assume that there exists a quadratic
and coercive Lyapunov function W0 : X → [0,∞) associ-
ated to the abstract Cauchy problem ẋ = Ax. That is, we
assume there exists η > 0 such that

d

dt
W0(x(t)) ≤ −ηW0(x(t)), t > 0,

for all solutions x of ẋ = Ax, t ≥ 0, with x(0) ∈ D(A).
Remark 4.2: Assumption 4.1 implies that the semigroup

T is exponentially stable. The assumption is in particular
satisfied if T is exponentially stable and there exists an
admissible observation operator C0 for T such that (A,C0)
is exactly observable (in infinite time).

Here is a short proof of the above statement: If T is
exponentially stable and (A,C0) is exactly observable, then
by [37, Sec. 5.1] the Lyapunov equation A∗P0 + P0A =
−C∗

0C0 has a unique self-adjoint and positive solution
P0 > 0, which is also strictly positive (or coercive) in
the sense that P0 ≥ ε0I for some ε0 > 0 (which means
that ⟨P0x, x⟩ ≥ ε0∥x∥2 for all x ∈ X). Moreover, from
exponentially stability, there exists a solution P1 ≥ 0 of
the Lyapunov equation A∗P1 + P1A = −I . The operator
P2 = P0+P1 is strictly positive since P2 ≥ ε0I , and defining
W0(x) = ⟨x, P2x⟩ we can see that W0 is coercive and for
any x0 ∈ D(A), the state trajectory x(t) = Ttx0 satisfies

Ẇ0(x) = 2⟨P2Ax, x⟩ = −∥x∥2 − ∥C0x∥2 ≤ −∥x∥2

≤ −ηW0(x) , due to the boundedness of P2 .

We make the following additional assumption that the
“DC-gain” of the system (the value of the transfer function
at zero) is positive.

Assumption 4.3: The transfer function G of Σ as in (3)
satisfies G(0) > 0.

Our results can be extended easily to the case G(0) < 0,
if we redefine the input u(t) of our system as −u(t).

We define ur = G(0)−1r, which is the steady-state input
of the system (1) corresponding to the output y = r. We
also define Ξ = −A−1B ∈ L(R, X) and xr = Ξur =
−A−1Bur ∈ Z (from (2)). Then Axr + Bur = 0 and
S (ur, r− (C̄xr +Dur)) = S (ur, r−G(0)ur) = 0, which
implies that (xr, ur) is an equilibrium point of the system
(7). (This is true also if ur /∈ U0.)

Theorem 4.4: Suppose that Assumptions 4.1 and 4.3 hold.
There exists k∗ > 0 such that for all 0 < k < k∗ and for all
r ∈ R satisfying G(0)−1r ∈ U0 the point (xr, ur) ∈ X×U0

is a globally exponentially stable equilibrium of the closed-
loop system (7). Moreover, for every k ∈ (0, k∗) there exists

α > 0 such that ∫ ∞

0

eαt|r − y(t)|2dt < ∞

for all initial states (x0, u0) ∈ X × R and r ∈ R satisfying
G(0)−1r ∈ U0. Finally, if Ax0+Bu0 ∈ X then, in addition,
we have that eαt|r − y(t)| → 0 as t → ∞.

Remark 4.5: Note that if u0 /∈ U0 and G(0)−1r ∈ intU0,
then u(t) will reach (and remain in) U0 after some finite
time. However, if u0 /∈ U0 and G(0)−1r is on the boundary
of U0, then this may not be the case. Clearly, if u0 ∈ U0,
then u(t) ∈ U0 for all t ≥ 0, independently of r ∈ R.

To prove Theorem 4.4 we need the following lemma.
Lemma 4.6: Suppose Assumption 4.3 holds and let ur ∈

U0 = [umin, umax] and u, y ∈ R. Then the function S
satisfies |S (u, y)| ≤ |y| and

(u− ur)S (u,G(0)(ur − u)− y)

≤ −G(0)(u− ur)
2 + |u− ur||y|.

Proof: The estimate |S (u, y)| ≤ |y| follows imme-
diately from the definition S in (5). If u ∈ (umin, umax),
then S (u,G(0)(ur −u)− y) = G(0)(ur −u)− y, and this
implies the second estimate. Assume now that u ≤ umin.
Then ur ∈ [umin, umax] implies that ur − u ≥ 0, and thus

(u− ur)S (u,G(0)(ur − u)− y)

= (u− ur)max{G(0)(ur − u)− y, 0}
= min{−G(0)(u− ur)

2 + (ur − u)y, 0}

=

{
0 if y ≥ G(0)(ur − u)

−G(0)(u− ur)
2 + (ur − u)y otherwise

≤ −G(0)(u− ur)
2 + |u− ur||y|,

since 0 ≤ −G(0)(u − ur)
2 + (ur − u)y and (ur − u)y =

|u−ur||y| whenever y ≥ G(0)(ur−u) ≥ 0. The case where
u ≥ umax can be analysed analogously to confirm that the
desired estimate also holds in this case.

Proof of Theorem 4.4. Assumption 4.1 implies that there
exists a bounded and self-adjoint operator P0 ∈ L(X) which
is also strictly positive, i.e., P0 ≥ ε0I for some ε0 > 0,
such that 2⟨P0z,Az⟩ ≤ −∥z∥2 for all z ∈ D(A). Since the
semigroup Tt generated by A is exponentially stable and C ∈
L(X1,R) is assumed to be admissible, C is also infinite-time
admissible [37, Sec. 4.6]. By [37, Thm. 5.1.1] there exists
a non-negative operator P1 ∈ L(X) such that 2⟨P1z,Az⟩ =
−(Cz)2 for all z ∈ D(A). Thus if we define P = P0+P1 ∈
L(X), then P is self-adjoint, strictly positive, and

2⟨Pz,Az⟩ ≤ −∥z∥2 − (Cz)2, ∀z ∈ D(A).

In order to prove that state trajectories (x, u) of the closed-
loop system (7) converge to (xr, ur) with ur = G(0)−1r
and xr = Ξur, we define the quadratic Lyapunov function
candidate ν : X × R → R by

ν(x, u) := ⟨P (x− Ξu), x− Ξu⟩+ 1

2
(u− ur)

2.

We consider initial conditions x0 ∈ X and u0 ∈ R of
the closed-loop system (7) satisfying Ax0 + Bu0 ∈ X .



Under this assumption, Proposition 3.2 implies that the cor-
responding closed-loop solution satisfies x ∈ C1([0,∞);X)
and u ∈ H1

loc(0,∞), and Ax(t) + Bu(t) ∈ X for t ≥ 0.
Moreover, x(t) ∈ Z (from (2)) and the closed-loop equations
(7) are satisfied pointwise for almost every t ≥ 0.

We denote z(t) = x(t) − Ξu(t) for t ≥ 0 for brevity.
Since Ξ = −A−1B, for all t ≥ 0 the values z(t) ∈ Z satisfy
Az(t) = Ax(t) − AΞu(t) = Ax(t) + Bu(t) ∈ X , which
implies that z(t) ∈ D(A) for all t ≥ 0. In particular, we
also have C̄z(t) = Cz(t) for t ≥ 0 and y = C̄x + Du =
Cz+(C̄Ξ+D)u = Cz+G(0)u. Recalling that r = G(0)ur,
we have r−y = G(0)(ur−u)−Cz and thus for a.e. t ≥ 0,

ż = ẋ− Ξu̇ = Ax+Bu− ΞS (u, k(r − y))

= Az − kΞS (u,G(0)(ur − u)− Cz).

Because of this, we have from Lemma 4.6 that

d

dt
⟨Pz, z⟩ = 2⟨Pz, ż⟩

≤ 2⟨Pz,Az⟩ − 2k⟨Pz,ΞS (u,G(0)(ur − u)− Cz⟩)
≤ −∥z∥2 − (Cz)2

+ 2k∥z∥∥P∥∥Ξ∥|S (u,G(0)(ur − u)− Cz|)
≤ −∥z∥2 − (Cz)2 + 2k∥z∥∥P∥∥Ξ∥(G(0)|u− ur|+ |Cz|).

On the other hand, Lemma 4.6 also implies that

1

2

d

dt
(u− ur)

2 = (u− ur)u̇ = (u− ur)S (u, k(r − y))

= k(u− ur)S (u,G(0)(ur − u)− Cz)

≤ −kG(0)(u− ur)
2 + k|u− ur||Cz|.

Combining the estimates, denoting α1 = 2∥P∥∥Ξ∥ ≥ 0 and
α2 = 2G(0)∥P∥∥Ξ∥ ≥ 0, and using Young’s inequality we
get for any fixed ε > 0 and for a.e. t ≥ 0 that

dν

dt
=

d

dt
⟨Pz, z⟩+ 1

2

d

dt
(u− ur)

2

≤ −∥z∥2 − (Cz)2 + kα1∥z∥|Cz|+ kα2∥z∥|u− ur|
− kG(0)(u− ur)

2 + k|u− ur||Cz|

≤ −∥z∥2 − (Cz)2 +
kα2

1

2
∥z∥2 + k

2
(Cz)2 +

kε

2
(u− ur)

2

+
kα2

2

2ε
∥z∥2 − kG(0)(u− ur)

2 +
kε

2
(u− ur)

2 +
k

2ε
(Cz)2

= −
[
1− k(α2

1ε+ α2
2)

2ε

]
∥z∥2 −

[
1− k(1 + ε)

2ε

]
(Cz)2

− k (G(0)− ε) (u− ur)
2.

Choosing ε = G(0)/2 ∈ (0,G(0)) and

k∗ = min

{
2ε

α2
1ε+ α2

2

,
2ε

1 + ε

}
= min

{
1

2∥P∥2∥Ξ∥2(1 + 2G(0))
,

2G(0)

2 +G(0)

}
,

the above estimate shows that that for every fixed k ∈ (0, k∗)
there exists a constant c > 0 such that

dν

dt
≤ −c

[
∥x− Ξu∥2 + (u− ur)

2
]
.

Since there exists b0 > 0 such that ν(x, u) ≥ b0∥x−Ξu∥2+
b0(u−ur)

2, the estimate ∥x−Ξur∥ ≤ ∥x−Ξu∥+∥Ξ∥|u−ur|
and a standard argument using Gronwall’s Lemma shows that
there exists a constant β > 0 such that for all t ≥ 0 we have

∥x(t)− Ξur∥2 + (u(t)− ur)
2

≤ e−βt
(
∥x0 − Ξur∥2 + (u0 − ur)

2
)
.

Proposition 3.2 shows that the state trajectory (x(t), u(t))
depends continuously on (x0, u0) and, as shown in [33,
Sec. 3], the space { (x0, u0) ∈ Z × R | Ax0 + Bu0 ∈ X }
is dense in X × R. These two properties imply that the
above estimate also holds for all generalised closed-loop
state trajectories (x, u) corresponding to initial states x0 ∈ X
and u0 ∈ R. Because of this, (xr, ur) with xr = Ξur is a
globally exponentially stable equilibrium point of the closed-
loop system (7).

It remains to prove the convergence of the outputs y to the
reference r. Consider initial states x0 ∈ X and u0 ∈ R of
the closed-loop system. Due to global exponential stability of
the closed-loop system, there exists β1 > 0 (independent of
x0 and u0) such that eβ1·(u− ur) ∈ L2[0,∞) (where eβ· is
the function h(t) = eβt with β ∈ R and t ≥ 0). Since xr =
Ξur ∈ Z satisfies Axr +Bur = A(−A−1Bur) +Bur = 0
and C̄xr + Dur = C̄(−A−1Bur) + Dur = G(0)ur = r,
we have that the constant functions xr and r are the state
trajectory and output, respectively, of the well-posed system
Σ corresponding to the initial state xr ∈ Z and input ur. If
we define x̃ = x−xr and ũ = u−ur, then linearity implies
that x̃ and y−r are the generalized state trajectory and output
of Σ corresponding to the initial state x̃(0) = x0 − xr and
input u− ur. Denote by ω0(T) < 0 the growth bound of T.
Let α > 0 be such that 0 < α < min{β1,−ω0(T)}. Since
eα·(u − ur) ∈ L2[0,∞), we have eα·(y − r) ∈ L2[0,∞)
by [32, Thm. 2.5.4(ii–iii)], and this implies the first claim
concerning the output. Finally, if x0 ∈ X and u0 ∈ R are
such that Ax0 +Bu0 ∈ X , then also Ax̃(0) +Bũ(0) ∈ X .
Moreover, ˙̃u = u̇ = S (u, k(r − y)) together with the
estimate |S (u, k(r − y))| ≤ k|y − r| in Lemma 4.6 imply
that eα· ˙̃u ∈ L2[0,∞). Thus eα·ũ = eα·(u−ur) ∈ H1(0,∞)
and we have from [32, Thm. 4.6.11(i)] that eα·(y − r) ∈
H1(0,∞). Barbalat’s Lemma [8, Thm. 5] then implies
eαt(y(t)− r) → 0 as t → ∞. ■

V. BOUNDARY CONTROL OF A DAMPED STRING

In this section we use the proposed saturating integrator for
boundary control of a string equation with viscous damping.

Statement of the control problem. Consider a string
equation with viscous damping on the space interval [0, 1].
A force u is applied to the left end of the string, and the
right end is fixed. Then the transverse deflection w satisfies

∂2

∂t2w(ξ, t) = ∂2

∂ξ2w(ξ, t)− α(ξ) ∂
∂tw(ξ, t),

∂
∂ξw(0, t) = u(t), w(1, t) = 0,

w(ξ, 0) = f(ξ), ∂
∂tw(ξ, 0) = g(ξ),

(13)



where ξ ∈ [0, 1], with α ∈ C[0, 1], α(ξ) ≥ 0, α(ξ) > 0 at
some points. We take the solution space

Z = Z1 ×H1
R(0, 1),

where
Z1 = H2(0, 1) ∩H1

R(0, 1),

H1
R(0, 1) =

{
ϕ ∈ H1(0, 1) | ϕ(1) = 0

}
.

The norm on H1
R(0, 1) is ∥f∥H1 = ∥f ′∥L2 . We choose the

state x = [wẇ ], so that the state space is

X = H1
R(0, 1)× L2[0, 1]. (14)

The control objective is to regulate the slope ∂
∂ξw(ξ0, t)

at a fixed point ξ0 ∈ [0, 1] to a desired constant r ∈ R, using
the boundary control u(t). Due to physical constraints, the
control input u must satisfy u(t) ∈ U0 = [umin, umax] ⊂ R,
for all t ≥ 0 provided that u0 ∈ U0. If u0 /∈ U0, then the
behavior of u(t) is as described in Remark 4.5.

The operators A, B, C, and the well-posedness of Σ.
We introduce the operator A : D(A) → X by

D(A) = H1 ×H1
R(0, 1),

where H1 =
{
f ∈ Z1

∣∣∣ df
dξ (0) = 0

}
, with

A

[
f
g

]
=

[
g

d2f
dξ2 − α(ξ)g

]
∀
[
f
g

]
∈ D(A). (15)

The operator A generates an exponentially stable semigroup
T on X , as shown in [3, Ex. 1, Sec. 3].

For convenience, we introduce the skew-adjoint generator
Ask of the unitary semigroup Tsk associated to the “un-
damped” version of the string equation (13), i.e., to (13) with
α = 0. This undamped wave equation is discussed in [37,
Sec. 10.2.2]. Clearly D(Ask) = D(A). In many arguments,
we will replace A with Ask, using the fact that A is a
bounded perturbation of Ask.

We introduce A0 : H1 → L2[0, 1], defined by

A0f = − d2f

dξ2
∀ f ∈ H1,

and N : R → H1
R(0, 1), given by

(Nv)(ξ) = (ξ − 1)v ∀ ξ ∈ [0, 1].

The operator A0 has a continuous extension A0 : L2[0, 1] →
H−1, where H−1 is the dual of H1 with respect to the pivot
space L2[0, 1]. According to [37, Prop. 10.2.3], the operator
B : R → X−1 given by

Bv =

[
0

A0Nv

]
∀ v ∈ R, (16)

is an admissible control operator for Tsk. It follows from
[37, Cor. 5.5.1] that B is admissible also for T. It is shown
in [37, Sec. 10.2.2] that the system of equations (13) can be
equivalently represented as ẋ = Ax+Bu.

We choose the operator C : X1 → R as

C

[
f
g

]
=

df

dξ
(ξ0) ∀

[
f
g

]
∈ X1. (17)

Since Z ⊂ H2(0, 1)×H1
R(0, 1), we can define the extension

C̄ ∈ L(Z,R) with the same formula C̄
[
f
g

]
= df

dξ (ξ0) on
Z. Lemma 5.5 shows that this extension corresponds to the
feedthrough operator D = 0.

Lemma 5.1: C is an admissible output operator for T.
Proof: We prove that C is an admissible output operator

for Tsk. Then, it follows from [37, Thm. 5.4.2] that C is
admissible also for T. The operator Ask is diagonalizable,
since it admits a complete orthonormal set of eigenvectors

φk(ξ) =
1(

k + 1
2

)
π

[
cos

((
k + 1

2

)
πξ

)
i
(
k + 1

2

)
π cos

((
k + 1

2

)
πξ

)] ,
for k ∈ Z, corresponding to the eigenvalues iλk = i(k +
1/2)π, see [3, Ex. 1, Sec. 3] for the details. These eigenvalues
have a uniform gap, i.e., |iλk+1−iλk| = π > 0 for all k ∈ Z.
Since

|Cφk| =
∣∣∣∣cos((k +

1

2

)
πξ0

)∣∣∣∣ ≤ 1

for all k ∈ Z, we have from [37, Thm. 5.3.2] that C is
admissible with respect to Tsk.

Lemma 5.2: The triple of operators (A,B,C) from (15),
(16), (17) is well-posed on (R, X,R).

Proof: According to [38, Prop. 4.9, Prop. 4.10], to
prove the well-posedness of (A,B,C), it remains to show
that a transfer function G associated to (A,B,C) is bounded
on l(γ) = {s ∈ C | Re s = γ}, for some γ > ω0(T). As in
the proof of Lemma 5.1, we employ a bounded perturbation
argument: we will prove the well-posedness for (Ask, B, C)
by proving the boundedness of the transfer function s 7→
Gsk(s) = C̄(sI −Ask)

−1B on l(γ) and then the result will
follow also for (A,B,C) due to [4, Thm. 4.2]. (The cited
result in [4] refers to time-varying bounded perturbations,
we are using here a particular case.)

Let s ∈ ρ(Ask) and v ∈ R. Using [37, Rem. 10.1.5], we
can compute z := (sI −Ask)

−1Bv ∈ Z by solving

Lskz = sz, Gz = v, (18)

where Lsk ∈ L(Z,X), G ∈ L(Z,R) are the boundary
control description of (13) with α = 0. We have

Lsk

[
f
g

]
=

[
g

d2f
dξ2

]
, G

[
f
g

]
=

df

dξ
(0) .

The unique solution of (18) has the form z =
[
f
g

]
, where f

is the solution of the boundary value problem{
d2

dξ2 f(ξ) = s2f(ξ), ξ ∈ [0, 1],
d
dξf(0) = v, f(1) = 0 .

(19)

The solution of (19) is the function

f(ξ) =

{
esξ−e−s(ξ−2)

s(e2s+1) v if s ∈ C \ {0},
(ξ − 1)v if s = 0.

Applying C̄ to z =
[
f
g

]
with v = 1, we get

Gsk(s) = C̄(sI −Ask)
−1B =

esξ0 + e−s(ξ0−2)

e2s + 1
. (20)



Let γ = 1. From a routine computation, we have

|Gsk(s)| ≤
eξ0 + e2−ξ0

e2
√
1 + e−4 − 2e−2

∀ s ∈ l(1).

Therefore, Gsk is bounded on l(1).
Remark 5.3: The differential equation (19) could be ob-

tained directly from (13). Indeed, applying the Laplace
transform to (13), with α(ξ) = 0 for all ξ ∈ [0, 1], and
replacing the second order time-derivative with the scalar
multiplication s2w yields the boundary value problem (19).

The closed-loop system. Lemma 5.2 guarantees that the
system Σ with generating operators (A,B,C) from (15),
(16), (17) is a well-posed SISO linear system. Therefore,
we can solve the control problem described above using the
saturating integrator from (5). The closed-loop system is

ẋ(t) = Ax(t) +Bu(t), u̇(t) = kS (u(t), r − C̄x(t)),
(21)

where k > 0. In the following, we prove that Assumptions
4.1 and 4.3 hold, so that Theorem 4.4 can be used to show
that (21) solves the tracking problem for all feasible r ∈ R.

Lemma 5.4: There exists a Lyapunov function W : X →
[0,∞), associated to ẋ = Ax, satisfying Assumption 4.1.

Proof: Let C0 = [0 α
1
2 ]. Then A = Ask − C∗

0C0

is exponentially stable, as we have already seen when we
have introduced A. The operators A,C∗

0 and C0 determine a
scattering conservative well-posed system of the class “from
thin air” analyzed in [36] (see also [38]). It follows from
[36, Thm. 1.3] that (A,C0) is exactly observable. (In the
notation of [36] we would denote the operator of pointwise
multiplication with α

1
2 by C0.) Thus, using the procedure

shown in Remark 4.2, we can build a Lyapunov function
W0 : X → [0,∞) satisfying Assumption 4.1.

Lemma 5.5: The transfer function G of the string equa-
tion system Σ satisfies G(s) = C̄(sI − A)−1B for all
s ∈ ρ(A), and G(0) > 0.

Proof: Since the semigroup T is exponentially stable,
we have from [44, Lem. 2.10 & Sec. 4] that G(0) =
C̄(−A)−1B+D can be computed by considering a constant
input u ≡ v, and finding an initial state x0 ∈ X of the system
such that corresponding state trajectory is constant, i.e.,
x ≡ x0, and satisfies Ax0 + Bu0 ∈ X . The corresponding
constant output then has the form y ≡ G(0)v. Based on the
choice x = [wẇ ] of the state and the definitions of A and
B, the desired constant state trajectory x ≡ x0 has the form
x =

[
f(·)
0

]
, where f is the solution of{

d2

dξ2 f(ξ) = 0, ξ ∈ [0, 1],
d
dξf(0) = v, f(1) = 0 .

(22)

The unique solution of this equation is f(ξ) = (ξ − 1)v
and f ∈ Z1. Computing the corresponding constant output
y ≡ df

dξ (ξ0) shows that we have that G(0)v = df
dξ (ξ0) = v.

Thus G(0) = 1 > 0 as claimed.
Since it is easy to verify that (−A)−1B = (−Ask)

−1B,
formula (20) implies C̄(−A)−1B = C̄(−Ask)

−1B = 1 =
G(0). This finally implies that D = 0 ∈ R, and thus also
G(s) = C̄(sI −A)−1B for all s ∈ ρ(A).

Thanks to Lemmas 5.2, 5.4, 5.5, all the assumptions of
Theorem 4.4 are satisfied. Thus, the control problem can be
solved for all r ∈ R satisfying G(0)−1r ∈ U using the
closed-loop system (21), with k > 0 sufficiently small.

Remark 5.6: As we saw in the proof of Lemma 5.5, the
DC-gain G(0) coincides with the DC-gain of the undamped
system. Indeed, when computing the transfer function of (13)
at s = 0, the effect of the damping α(·) disappears.

Numerical results. In this numerical example we con-
sider a controlled wave equation as in (13), with damping
α(ξ) = max{0, 40(ξ − 1/8)(7/8 − ξ)}. We want the slope
∂
∂ξw(1/2, t) (i.e., ξ0 = 1/2) to track the reference

r(t) =

{
1.5, 0 ≤ t ≤ 6,
−1, t > 6.

The control input is constrained in U0 = [−1.5, 1.5]. We
choose k = 3 as integrator gain, the initial conditions[

w(ξ, 0)
∂
∂tw(ξ, 0)

]
=

[
cos(4.6πξ)

0

]
and u0 = 2.5 /∈ U0. The simulation is carried out using
Matlab, where the wave equation is approximated using the
first N = 120 eigenmodes of the undamped wave equation.
Figure 2 depicts the controlled output, the tracking error,
and the control input. We can see that once u(t) reaches the
set U , it never leaves it. Figure 3 shows the corresponding
controlled deflection profile w(ξ, t) of the wave.

Fig. 2. The measured output, the tracking error, and the control input.

VI. CONCLUSION

We have extended the constrained integral control theory
from [21] to plants that are well-posed linear and expo-
nentially stable systems. We hope that the way we have
overcome the obstacles encountered will pave the way for
several other generalizations of constrained integral control.
For instance, the next step might be to formulate a MIMO
saturating integrator (as in [20]) for well-posed exponentially
stable systems. Another interesting extension might be to
consider infinite-dimensional nonlinear systems.



Fig. 3. The deflection w(ξ, t) of the controlled wave equation.
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