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BACKGROUND: Hereditary factors, including single genetic variants and family history, can be used for targeting colorectal cancer
(CRC) screening, but limited data exist on the impact of polygenic risk scores (PRS) on risk-based CRC screening.
METHODS: Using longitudinal health and genomics data on 453,733 Finnish individuals including 8801 CRC cases, we estimated
the impact of a genome-wide CRC PRS on CRC screening initiation age through population-calibrated incidence estimation over the
life course in men and women.
RESULTS: Compared to the cumulative incidence of CRC at age 60 in Finland (the current age for starting screening in Finland), a
comparable cumulative incidence was reached 5 and 11 years earlier in persons with high PRS (80–99% and >99%, respectively),
while those with a low PRS (< 20%) reached comparable incidence 7 years later. The PRS was associated with increased risk of post-
colonoscopy CRC after negative colonoscopy (hazard ratio 1.76 per PRS SD, 95% CI 1.54–2.01). Moreover, the PRS predicted
colorectal adenoma incidence and improved incident CRC risk prediction over non-genetic risk factors.
CONCLUSIONS: Our findings demonstrate that a CRC PRS can be used for risk stratification of CRC, with further research needed to
optimally integrate the PRS into risk-based screening.

British Journal of Cancer (2024) 130:651–659; https://doi.org/10.1038/s41416-023-02536-z

BACKGROUND
Colorectal cancer (CRC) is the third most diagnosed cancer and
the second leading cause of cancer mortality worldwide [1],
making it an appealing focus for population-wide screening
efforts [2, 3]. Early and timely colonoscopy screening is particularly
beneficial for individuals at elevated risk due to family history of
the disease [4] or with the presence of high- or moderate-impact
pathogenic variants in CRC susceptibility genes [5–7], such as
those affecting DNA mismatch repair (MLH1, MSH2, MSH6, PMS2)
in Lynch syndrome.
In addition to inherited predisposition captured by family

history or clinical multigene panel testing for inherited cancer
syndromes, recent advances in genome-wide association studies
[8–11] have identified hundreds of common-variant associations
for CRC, demonstrating a strong and polygenic pattern of
inheritance. While initial analyses suggest that combining these
common genome-wide genetic effects into a polygenic risk score
(PRS) identifies individuals at elevated disease risk [12–17],
accurate population-calibrated estimates of lifetime risks are
needed for incorporation of PRS into risk-based screening.
Furthermore, data on the impact of CRC PRSs on key drivers

and characteristics of the disease, such as precursor adenomas
[16, 18], sex- and site-specific disparities [19–22], and risk of
subsequent CRC after negative findings in colonoscopy (post-
colonoscopy CRC) [23, 24], are still scarce. Here, we built a
genome-wide PRS for CRC and performed careful calibration
leveraging nationwide cancer registry data for population-specific
cumulative incidence estimates, to quantify optimal PRS-informed
CRC screening ages in the Finnish population. Using the FinnGen
study [25] comprising 453,733 Finnish individuals, we (1)
evaluated the performance of the PRS in the context of
population-level screening for CRC, (2) assessed the impact of
the PRS on post-colonoscopy CRC and (3) tested how the PRS
impacts clinical characteristics and clinical risk prediction of CRC.

METHODS
Study population
FinnGen Data Freeze 11 with 453,733 Finnish individuals comprises
prospective epidemiological and disease-based cohorts and hospital
biobank samples (Supplementary Table 1). The data were linked by
national personal identification numbers to national registries, including
the Finnish Cancer Registry (available from 1953 onwards, coverage for
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CRC exceeding 97% [26, 27]), and national hospital discharge (inpatient
visits 1969–, outpatient visits 1998–) and death (1964–) registries. FinnGen
Data Freeze 11 used in this study comprised 8801 cases of CRC, with 3.4
million person-years of follow-up time available since study recruitment.

Polygenic risk scores
We built a genome-wide PRS for CRC using the software PRS-CS [28] (PRS-
CS-auto, with 1000 Genomes Project [29] European sample, N = 503, as
the external linkage disequilibrium reference panel) using HapMap3
variants. The PRS-CS algorithm utilises a Bayesian regression framework for
posterior inference of SNP effect sizes, and we chose PRS-CS over
alternative genome-wide PRS development approaches as it enables
precise multivariate modelling of linkage disequilibrium in polygenic
prediction alongside computational advantages. We used the full summary
statistics from a large European ancestry CRC genome-wide association
study [9] with 78,473 CRC cases and 107,143 controls. The CRC PRS variant
count was 1,088,133. A small number of CRC cases (N= 147) and CRC-free
individuals in FinnGen (N= 8296) were included in the discovery genome-
wide association study. As we are unable to identify these exact individuals
in FinnGen, we performed a sensitivity analysis by exclusion based on
genotyping array information, which did not impact our PRS effect size
(Supplementary Table 2).
For comparison to our PRS-CS score, we calculated a previously

published 205 single-nucleotide polymorphism score [9] (PRS205, with
183 variants available and polymorphic in FinnGen), which the PRS-CS
score outperformed (Supplementary Table 3). Our PRSs showed acceptable
goodness-of-fit, which we assessed using R package survMisc (Supple-
mentary Fig. 1). To test a PRS independent of Lynch syndrome variants, we
performed a supplementary analysis excluding 60,656 single-nucleotide
polymorphisms within ±2megabases of MLH1, MSH2, MSH6 and PMS2
from the full discovery genome-wide association study summary statistics
before applying PRS-CS (Supplementary Table 3).

Outcomes and risk factor definitions
We ascertained disease cases using national registries. CRC cases were
identified through the Finnish Cancer Registry with International Classifica-
tion of Diseases for Oncology, 3rd Edition (ICD-O-3) codes C18–C20 and from
the death registry with ICD-10 codes C18–C20, or ICD-9 codes of 153, 1540
and 154, or ICD-8 codes of 153, 1540 and 1541. Ascertainment for colorectal
adenomas, including those presenting with high-grade dysplasia, was based
on ICD and ICD-O-3 codes. For site-specific analyses, we defined proximal
colon as constituting the caecum, ascending colon, hepatic flexure, and
transverse colon, and the distal colon as constituting the splenic flexure,
descending colon and rectosigmoid junction. We used ICD-O-3 morphology
codes in the Finnish Cancer Registry data to identify CRCs which were
histologically either adenocarcinoma or any other histological subtype. We
also separately analysed CRC cases by spread at presentation (a Finnish
Cancer Registry classification for localised vs non-localised cancer) and early-
onset (age < 50) and late-onset (age ≥ 50) CRC cases.
For post-colonoscopy CRC ascertainment, we identified clinically average-

risk (details in Supplementary Information) individuals who had undergone
colonoscopy for any indication and were at least 40 years of age at the date
of the index examination and who did not have previously diagnosed CRC
or a diagnosis of colorectal adenoma within three months before or after the
date of the index colonoscopy in electronic health records. These individuals
were followed in the Finnish Cancer Registry and death registry data for the
occurrence of post-colonoscopy CRC diagnosed 6 months to 10 years after
the index colonoscopy. Detailed endpoint and risk factor definitions are
described in Supplementary Information and Supplementary Data 1.

Statistical analysis
We used adjusted Cox proportional hazards models to estimate HRs and
95% CIs for the PRSs, with age as the baseline timescale in the models
except for the post-colonoscopy CRC and incident disease analyses, as
described below. The proportional hazards assumption was met when
tested with scaled Schoenfeld residuals and log-log inspection. In CRC and
colorectal adenoma lifetime risk analysis, we used Cox proportional
hazards models to estimate sex-specific HRs and 95% CIs with age at
disease onset as the timescale, estimating the impact of PRS on CRC
separately among men and women. The following PRS categories were
primarily applied: <20%, 20–80% (reference), 80–99% or >99% (in CRC),
<1%, 1–20%, 20–80% (reference), 80–99% or >99% (in adenoma analysis),
and the Cox regression models were adjusted for the first 10 genetic

principal components of ancestry, genotyping batch and subcohort. These
default groupings were selected to demonstrate the impact of high versus
low PRS on absolute risk of CRC and reaching of CRC lifetime risk incidence
corresponding to screening onset at age 60 in Finland. Follow-up ended at
the age of first record of CRC (in CRC analysis) or colorectal adenoma (in
adenoma analysis), age at death, or age at the censoring date 2 November
2022 or at age 80, whichever came first. In post-colonoscopy CRC analysis,
we used Cox model with standardised PRS (both with categories <10%,
10–90%, >90% and on the continuous scale), adjusted for the first ten
genetic principal components of ancestry, genotyping batch, subcohort,
and age at the index colonoscopy. We could not utilise the default
groupings in post-colonoscopy CRC analysis due to a smaller sample size.
To compute the lifetime risk of CRC (the probability of developing CRC

from birth up to the age of 80 while accounting for the competing risk of
death from other causes than CRC), we utilised sex-specific estimates of
age-specific (for 5-year age groups) incidence, prevalence, and mortality
for Finland included in the Global Burden of Disease (GBD) 2019 data [30],
following a risk calibration approach detailed in Jermy et al. [31]. In line
with a recently published study on lifetime risk of CRC in patients with
Lynch syndrome [32], we assessed lifetime risk of CRC by age 80.
Survival curves were estimated using a lifetime risk approach as detailed

above or Kaplan–Meier survival curves using R package survminer. All
statistical tests were two-sided and a P value of less than 0.05 was
considered to indicate statistical significance. All statistical analyses were
performed using R (version 4.2.3).

RESULTS
Demographic and PRS characteristics
First, we developed a genome-wide PRS for CRC using the PRS-CS
algorithm [28] and weights from a large European genome-wide
association study [9]. The PRS was constructed by summing the
weights of single-nucleotide polymorphisms while accounting for
linkage disequilibrium. PRS performance was evaluated within the
FinnGen study (N= 453,733; 56.1% women), with the full data
containing 8801 CRC cases and 28,200 colorectal adenoma cases.
Baseline characteristics of the study participants are shown in
Supplementary Table 4.
Individuals with a high PRS were at elevated lifetime risk for CRC

by age 80, during which 3245 women and 4380 men were
diagnosed with CRC. The adjusted hazard ratio (HR) per standard
deviation (SD) increment in the PRS was 1.64 (95% confidence
interval [CI] 1.60–1.68, P < 1.00 × 10−300) for CRC. Compared to
those with an average PRS (20–80th percentiles) of the PRS
distribution, those in the highest 80–99th and >99th percentiles of
the distribution had sex-specific adjusted HRs of 1.93 (1.79–2.08,
P= 1.18 × 10−62) and 3.62 (2.98–4.40, P= 7.84 × 10−38) in women
and 2.01 (1.88–2.14, P= 1.63 × 10−96) and 3.87 (3.28–4.57,
P= 4.13 × 10−58) in men, respectively. Conversely, those in the
lowest 20% had HR estimates of 0.63 (0.56–0.70, P= 7.56 × 10−16)
in women and 0.51 (0.45–0.56, P= 1.61 × 10−36) in men. Effect
sizes for proximal and distal colon and rectal cancer are shown in
Supplementary Data 2. Overall, the HR estimates showed a pattern
of larger effect sizes for men as compared to women and for distal
CRC as compared to cancers of the proximal colon.

PRS and lifetime risks of CRC and adenomas
We calculated sex- and population-specific estimates of cumula-
tive incidence by PRS groups (PRS < 20%, 20–80%, 80–99% and
>99%) in the Finnish population. To achieve this, we used the
adjusted HR estimates for CRC and calibrated the baseline risk
using Finnish population-based data drawn from the nationwide
Finnish Cancer Registry, accounting for age- and sex-specific
effects.
Figure 1 shows the sex-specific lifetime risks of CRC according

to the PRS groups. At age 60, when biennial CRC screening with
faecal immunochemical testing currently starts in Finland [33, 34],
the population cumulative incidences were estimated at 0.83% in
women and 0.95% in men (Supplementary Fig. 2). The individuals
with an average PRS (20–80th percentile) reached this level at age
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60.8 (men) and 61.2 (women). As compared to individuals with an
average PRS, individuals with a high PRS in the 80–99th percentile
reached the same cumulative risks 6.2 (men) and 7.0 (women)
years earlier, and up to 11.5 (men) and 12.3 (women) years earlier
among those with a PRS in the 99th percentile. Conversely, those
with a low PRS (below the 20th percentile) reached the same
cumulative incidence 6.9 (men) and 5.5 (women) years later.
Similar patterns were observed at other common CRC screening
initiation thresholds, such as 45, 50 and 55 years of age, which are
recommended for average-risk individuals in screening guidelines
both within the United States [35] and the European Union [36]
(Table 1). The lifetime risks of CRC by age 80 were higher among
men compared to women, with the largest differences emerging
after age 60. With average PRS (20–80th percentile), the lifetime
risks were estimated at 4.3% (95% CI 3.7–4.9%) in men and 3.3%
(2.9–3.8%) in women. In comparison, the lifetime risk for men with
a PRS of 80–99th and >99th percentiles were estimated at 8.4%
(7.2–9.7%) and 15.5% (12.6–18.5%), respectively, and for men
below the 20th percentile of the PRS, at 2.2% (95% CI 1.9–2.6%).
Among women, the corresponding risks were 6.3% (95% CI
5.4–7.2%), 11.5% (9.2–14.3%), respectively, in the 80–99th and
>99th percentiles, and 2.1% (1.8–2.5%) below the 20th percentile
of the PRS. The cumulative incidences by PRS deciles are in
Supplementary Fig. 3.
In addition to CRC, we observed a similar cumulative incidence

pattern for colorectal adenomas with the CRC PRS (Fig. 2a), with
12,920 and 13,068 cases by age 80 in women and men,
respectively. The lifetime adenoma risks ranged from 6.0% (95%
CI 4.8–7.2%) in the lowest PRS percentile to 28.2% (25.9–30.3%) in
the highest percentile, compared to individuals with an average
PRS (20–80th percentiles) with the lifetime risk of 13.7% (95% CI
13.5–13.9%). The cumulative incidences among individuals who
had undergone colonoscopy are shown in Supplementary Fig. 4.
The covariate-adjusted PRS effect sizes for colorectal adenomas
are in Supplementary Data 2.

PRS and risk of post-colonoscopy CRC
For post-colonoscopy CRC analysis, we identified 48,638 clinically
average-risk individuals (60.3% women) who underwent colono-
scopy for any indication at 40 years of age or older and were
followed through cancer and death registry data after a negative

colonoscopy for a median of 80.6 months (interquartile range
[IQR] 39.6–120.0), during which 214 individuals were diagnosed
with post-colonoscopy CRC. The mean age at index colonoscopy
was 62.5 (IQR 53.4–71.3). The median interval between the index
colonoscopy and diagnosis of post-colonoscopy CRC was
54.7 months (IQR 36.9–83.5 months). The adjusted continuous
HR per one SD change in the PRS was 1.76 for post-colonoscopy
CRC (95% CI 1.54–2.01, P= 2.36 × 10–16). Those with a high PRS
above the 90th percentile compared to those with an average or
low PRS (10–90th percentile and below the 10th percentile of the
distribution) were at elevated risk of post-colonoscopy CRC
(Fig. 2b). The adjusted HRs for post-colonoscopy CRC for the high
and low PRS groups as compared to the average PRS group were
2.23 (95% CI 1.61–3.09, P= 1.51 × 10–6) and 0.23 (95% CI
0.095–0.56, P= 0.0012), respectively. Distributions of PRS and
age at index colonoscopy by post-colonoscopy CRC status are
shown in Supplementary Fig. 5.

PRS, clinical characteristics and clinical risk prediction
Lastly, we assessed the impact of the PRS on clinical characteristics
of CRC, and its relative performance in clinical risk prediction of
CRC. The PRS had a higher adjusted odds ratio (OR) per SD for
cancers of the distal colorectum compared to cancers of the
proximal colon in both sexes (Fig. 3). In contrast to invasive cancer,
preinvasive colorectal adenomas did not show a similar disparity
in distal versus proximal anatomical site. Overall, among men and
women combined, the OR per SD in the PRS for CRC was 1.62
(95% CI, 1.59–1.65), and 1.57 (95% CI, 1.53–1.62) for colon cancer
and 1.70 (95% CI, 1.64–1.76) for rectal cancer. The effect size in
women was lower than in men for overall CRC (interaction term
P= 0.0014) and colon cancer (P= 0.013), but with no difference in
rectal cancer (P= 0.10). The PRS effect size was higher for
colorectal adenocarcinoma, the most common histological type of
CRC, as compared to other histological CRC subtypes. We
observed no significant differences between early-onset (age
<50) and late-onset (age ≥50) CRC (effect sizes estimated using
different cut-offs in Supplementary Table 5) or between local or
distant spread at presentation (data available for only 60.8% of
CRC cases) with the PRS.
Among individuals with positive first-degree family history (FH)

of CRC with average PRS (20–80th percentile), the lifetime risk of
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CRC was estimated at 8.2% (95% CI 6.5–10.0%; Supplementary
Fig. 6). With high PRS (> 80th percentile), the risk in individuals
with positive FH increased to 11.8% (9.0–14.5%), whereas a low
PRS (below the 20th percentile) compensated for the risk incurred
by FH (4.7% [95% CI 2.7–6.7%]), leading to a risk level comparable
to the population. Exclusion of genomic regions containing known
Lynch syndrome-causing genes [37] from the PRS did not impact
the effect size of neither the PRS alone nor the effect size of PRS in
individuals with positive FH (Supplementary Table 3). Further-
more, the CRC PRS did not have strong associations to
extracolonic cancers (Supplementary Table 6), as is often observed
in cases of hereditary CRC syndromes [37–39].
Finally, we tested the PRS in the prediction of 10-year incident

CRC and adenoma risk among individuals aged over 40 years old at
FinnGen study recruitment without prevalent inflammatory bowel
disease or primary sclerosing cholangitis. The available sample sizes
and incident cases available were 80,272 individuals with 721
incident cases for CRC and 78,245 individuals with 1787 incident
cases for colorectal adenoma. The median follow-up time was 10.0
years (interquartile range [IQR] 7.4–10.0) for CRC analysis and 10.0
years (IQR 7.2–10.0) for adenoma analysis. Our PRS improved
discrimination for CRC over a baseline model including age and sex
(increase in C-index of 0.044) more than any single non-genetic risk
factor, including current smoking, FH of CRC, BMI, and personal
history of colorectal adenomas (Fig. 4a). The genome-wide PRS also
showed slightly better discrimination than both the PRS205 and all
the non-genetic risk factors combined, and adding the PRS to the
non-genetic risk factors improved the C-index beyond age, sex, and
all non-genetic risk factors. Similar patterns were also observed for
10-year incident colorectal adenomas (Fig. 4b).

DISCUSSION
We developed a genome-wide PRS for CRC and evaluated its
impact in the context of population-level screening for CRC. We
carefully calibrated the model to respective population risk
allowing estimation how different PRS categories would affect
screening initiation age in existing CRC screening programmes.
Our findings show that the PRS was effective in identifying
individuals at high risk of CRC in general, as well as for identifying

Table 1. Recommended CRC screening initiation age by polygenic
risk score (PRS) category at different age thresholds for men and
women.

Screening initiation age PRS-informed screening initiation
age (95% CI)

Women Men

At age 45 y

PRS > 99% 33.6 (31.5–36.0) 32.9 (31.0–35.0)

PRS 80–99% 38.1 (36.3–40.2) 37.6 (35.5–39.6)

PRS 20–80% 43.0 (41.3–44.8) 43.0 (41.1–45.2)

PRS 0–20% 46.3 (44.5–48.3) 48.5 (46.7–51.1)

At age 50 y

PRS > 99% 41.5 (39.1–43.8) 39.7 (37.6–42.6)

PRS 80–99% 45.9 (44.3–48.1) 45.1 (43.4–47.8)

PRS 20–80% 50.9 (49.4–53.1) 50.8 (49.0–53.1)

PRS 0–20% 55.2 (53.2–57.9) 56.4 (54.4–58.6)

At age 55 y

PRS > 99% 45.4 (43.4–47.9) 44.7 (42.8–47.7)

PRS 80–99% 50.1 (48.6–52.3) 50.1 (48.4–52.6)

PRS 20–80% 56.2 (54.2–58.5) 55.8 (54.1–58.0)

PRS 0–20% 61.1 (59.0–63.8) 62.2 (59.8–64.2)

At age 60 y

PRS > 99% 48.9 (47.0–51.2) 49.3 (47.5–52.2)

PRS 80–99% 54.2 (52.6–56.7) 54.6 (53.1–56.9)

PRS 20–80% 61.2 (59.2–63.5) 60.8 (58.9–63.0)

PRS 0–20% 66.7 (64.4–69.3) 67.7 (65.4–70.2)

The age thresholds represent the age when individuals in the PRS bin
reach the same cumulative incidence for the population average at the
selected age. Results for age 60 correspond to Fig. 1, with results shown for
three additional younger screening initiation ages (45, 50 and 55 years).
The 95% confidence intervals represent the 2.5th and 97.5th percentiles
around the point estimates. The population average estimates were
derived using incidences at the screening initiation ages in the Finnish
population among men and women (Supplementary Fig. 2).
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those at risk for colorectal adenomas and post-colonoscopy CRC.
Furthermore, we examined the characteristics of CRCs and related
precursors associated with the PRS and showed that the CRC PRS
improved the prediction of 10-year risk of CRC beyond established
clinical risk factors. Our study highlights the potential of using a
PRS for CRC in population-level screening programmes to identify
individuals at elevated risk of developing CRC and tailor screening
strategies accordingly.
Our results are consistent with previous studies [12–17, 40] which

have assessed CRC PRSs alone or integrated with non-genetic risk
factors. In aggregate, prior analyses suggest that genome-wide PRS
approaches outperform those using only a small set of genome-
wide significant single-nucleotide polymorphisms, that individuals
with a high CRC PRS have overall higher risk and earlier onset of
CRC, and that models integrating PRS with non-genetic risk factors
generally perform better than PRS or non-genetic risk factors alone.
In addition, polygenic risk has been estimated to modify CRC risk
for those ascertained with first-degree family history of CRC [41] or
high- or moderate-impact germline variants associated with CRC
risk [32]. Unlike previous studies, which have often relied on cross-
sectional data or datasets that may not fully represent the
background population, our study utilises a large dataset compris-
ing 8.2% of Finns, with high-coverage nationwide cancer registry
data used for rigorous calibration of our risk models. Our approach
extends initial findings on how risk-based screening with CRC PRSs
could be done for the population, and we conducted analyses with
alternative age thresholds for screening initiation, which adds to the
generalisability of our findings across different healthcare systems
and European ancestry populations.
We observed large differences in lifetime CRC risks for different

PRS strata, with up to 15.5% lifetime risk in men and 11.5% in
women in the highest tail of the PRS, and conversely 2.2% in men
and 2.1% in women in the low tail of the PRS. While our data show
that the majority of individuals with an average PRS could
continue following standard guidelines to begin screening, the
difference in optimal screening age is more than 18 years apart at
the high and low tails of the PRS, marking the potential clinical

impact of incorporating PRS to risk-based screening approaches
for systematic identification of at-risk young adults. Furthermore,
the PRS showed independence from first-degree family history of
the disease and Lynch syndrome variants while effectively
stratifying risk in the presence of family history of the disease.
These data hold particular clinical relevance as the rising incidence
of CRC in adults younger than 50 years during the last decades
[3, 42] has resulted in recent recommendations of earlier
population screening in many high-income countries [2]. Impor-
tantly, the level and timing of observed risk at the population level
among individuals with high PRS is comparable to that of
individuals carrying risk variants in known CRC susceptibility genes
[32, 43, 44] or individuals with positive first-degree family history
of CRC [4], qualifying them for earlier screening under current
screening guidelines [5–7, 42]. Further research is needed to
determine the optimal screening modality, timing, and frequency
for individuals with high PRS both alone and together with
established clinical risk factors.
Surveillance recommendations after colonoscopy for preven-

tion of CRC incorporate both index colonoscopy findings and
identified risk factors [45], and high genetic risk based on family
history of CRC [46] or inherited cancer syndromes [6] generally
warrant more intensive surveillance than would be allocated to
the general adult population [46]. For those without any
identifiable risk factors or neoplastic findings in colonoscopy, a
10-year follow-up is generally considered sufficient regardless of
colonoscopy indication [45]. Our results show that clinically
average-risk individuals following a negative colonoscopy at the
top decile of the PRS were at over twofold elevated risk for post-
colonoscopy CRC compared to individuals with an average PRS.
This finding, to our knowledge previously unreported in a
prospective setting [47, 48], might warrant intensified surveillance
of individuals with elevated PRS undergoing colonoscopy.
Our study also shows that the PRS could aid in short-term

screening decisions and risk stratification. Assessed by the C-
index, the PRS improved 10-year risk discrimination over age and
sex when combined with non-genetic risk factors, which was not
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achieved by non-genetic risk factors alone, a finding consistent
with recently published data from UK Biobank incorporating PRS
to non-genetic risk factors [12].
The higher frequency of precursor colorectal adenomas in

middle-aged individuals with higher PRS supports previous
findings from case-control analyses that common genetic variants
associated with CRC mediate risk at least partly through increased
predisposition to precursor adenomas [49–51]. We found no
evidence suggestive of differential adenoma location or cancer
spread at presentation by PRS. We also did not replicate a stronger
PRS association for early-onset CRC cases as compared to late-
onset cases previously reported in a case-control study [14],
possibly due to the limited number of early-onset CRC cases in our
cohort. However, our study showed that the PRS had a larger
effect size for distally located CRCs which have a predominance in
early-onset disease as compared to cancers of the proximal colon,
with a higher proportion of proximal cases being late-onset and
post-colonoscopy CRCs [3, 23, 42].
Our large-scale cohort design leverages high-coverage nation-

wide registries linked to a large biobank study with careful
recalibration of lifetime risk estimates. In contrast to many
previous studies, we evaluated the impact of PRS on diverse
clinical characteristics, such as sidedness in CRC and colorectal
adenomas, and by sex. However, we were unable to precisely
assess the PRS impact on precursor adenomas due to
incomplete clinical information, including polyp size, type, or
number, and the potential underrecording of these lesions in
electronic health records. Furthermore, as our colonoscopy
cohort parallels more likely a selected patient population rather
than a representative screening cohort, evaluation of the PRS
through prospective colonoscopy-based screening programmes
are needed to further determine the strength of the association
after screening colonoscopy. Our study was also limited by the
lack of information on quality indicators of colonoscopy based

on registry data. However, Finland has established national
quality-assurance guidelines for colonoscopies [52]. Our findings
on the performance of PRS are generalisable across European
ancestry, but similar evaluations are needed for diverse ethnic
groups, considering the low transferability of PRSs across
ancestries [53].
In conclusion, we developed a genome-wide polygenic risk

score for CRC and demonstrated its effectiveness in identifying
individuals at high risk of CRC, related precursors, and post-
colonoscopy CRC. Our findings support the use of a CRC PRS for
risk stratification in CRC detection and prevention, showing also
benefit when added to non-genetic clinical risk factors. Further
research is needed to determine how to optimally integrate a CRC
PRS into prospective risk-based screening, including evaluation of
cost-effectiveness.

DATA AVAILABILITY
The Finnish biobank data can be accessed through the Fingenious® services (web
link: https://site.fingenious.fi/en/, email: contact@finbb.fi). Linkage disequilibrium
reference panels constructed using the 1000 Genomes Project [29] Phase 3 samples
can be downloaded at https://github.com/getian107/PRScs. The weights for our
genome-wide PRS built with PRS-CS are available at PGS Catalog [54] (pgs-
info@ebi.ac.uk) at https://www.pgscatalog.org/score/PGS003979/. The weights for
the PRS205 are available at https://www.pgscatalog.org/score/PGS003850/.

CODE AVAILABILITY
The full genotyping and imputation protocol for FinnGen is described at https://
doi.org/10.17504/protocols.io.xbgfijw. The PRS-CS pipeline in FinnGen is described at
https://github.com/FINNGEN/CS-PRS-pipeline. All software packages and pro-
grammes used to perform these analyses are freely available, and can be found
within the manuscript and the Supplementary Information. The code used for these
analyses are available from the corresponding author upon reasonable request.
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