

Manojprabhakar Parthasarathy

COMPARISON OF SERVICES IN AMAZON WEB
SERVICES FOR BIG DATA PROCESSING

Master of Science Thesis
Faculty of Information Technology and Communication Sciences

Examiner: Prof. Konstantinos Stefanidis
Examiner: Dr. Zheying Zhang

February 2024

i

Manojprabhakar Parthasarathy: Comparison of Services in Amazon Web Services for Big Data
Processing
Master of Science Thesis
Tampere University
Data Engineering and Machine Learning
February 2024

 Big Data processing involves processing large volume of multi-dimensional data. The
data can be either structured or unstructured data, depending on the complexity of data and
data transformations, users need to make sure that their infrastructure is computationally
sufficient to manage the data transformation required for the organization or business. Big data
is growing exponentially, small scale businesses may not afford to setup an infrastructure needed
to process data, as it involves spending money upfront to setup infrastructure before the
business starts to make money, moreover it is getting bigger issue for large scale businesses, as
the technology hardware setup in these on-premises data centres the businesses go out of
computational capacity, and these businesses needs to renew the infrastructure every 2-4 years
depending on their computational complexity. To manage this problem, any business can take
advantage of cloud service providers, three such leading cloud services providers are Google
Cloud Platform, Amazon Web Services and Azure.

 Services provided by the cloud providers and their cost are a principal factor when
choosing a cloud provider. This study compares AWS services for big data processing: EKS, EMR,
EMR on EC2, EMR on EKS, EMR Serverless for big data processing in terms of parameters such as
Time to Provision Infrastructure, Execution Time, Cost of Execution and Maintainability of
Infrastructure. The study compares these services by executing applications in these services e.g.
A Stock Analysis application was designed 2 ways: An Apache Spark application and a Presto
Query application, at first the applications were validated to verify that they produce the same
results. Presto query is used in Amazon Athena and the Spark application in rest of the services.
During the execution of the application, data related to different parameters such as Time to
provision infrastructure, time for execution and complexity of creating this infrastructure using
shell scripts were collected.

 The results indicated that there is a cost of creating and maintaining the infrastructure
and serverless infrastructure could provide advantages to the user. When comparing serverless
application such as Amazon Athena and Amazon EMR Serverless, Athena seems to be cheaper
and faster. With user created and maintained infrastructure EMR on EC2 is the most efficient and
cheapest service on this stock analysis dataset (here the user account is limited to maximum of
64 vCPU), the study also concludes that serverless infrastructures are easier to maintain.

Keywords: Big Data, Data Processing, AWS Services, EKS, EMR, Data Engineering

The originality of this thesis has been checked using Turnitin Originality Check service.

ABSTRACT

ii

Finishing my thesis is the last part of my MSc. Studies, I would like to thank each and

everyone who have encouraged and motivated to complete this, without them this

would not have been possible.

First and foremost, I would like to thank my Supervisor and Examiners Prof. Konstantinos

Stefanidis and Dr. Zheying Zhang for mentoring and giving me iterative feedback to

complete the thesis. The recurrent meetings with both the supervisors have been very

helpful and the feedback provided helped me speed up the thesis process and helped

me progress. I would also like to thank my Manager Anshuman from Infosys who

motivated and supported me to come to Finland.

I would like to say sincere thanks my girlfriend Sheida for being there for me throughout

the journey, she has been a cheerleader, motivating and supporting me whenever I felt

down or sick. Her support from the beginning to the end is what I am profoundly grateful

for.

Finally, I would like to thank my parents Mr. Parthasarathy and Mrs. Maheswari

Parthasarathy for motivating and supporting me to come to Finland to my master’s

studies, I would not be the person I am today without their support.

Espoo, 21st February 2024

Manojprabhakar Parthasarathy

PREFACE

iii

1. INTRODUCTION ... 1

1.1 Big Data Processing ... 2

1.2 AWS Services Overview ... 4

1.3 Research Questions ... 7

2. METHODOLOGY .. 9

2.1 Research Methodology ... 9

2.2 Research Process ... 11

2.3 Road Map .. 12

3. AWS SERVICES ARCHITECTURES ... 14

3.1 Concepts Overview ... 14

3.2 Amazon Elastic Kubernetes Services Setup ... 21

3.3 Amazon EMR on EC2 ... 25

3.4 Amazon EMR on EKS ... 28

3.5 Amazon EMR Serverless .. 30

3.6 Amazon Athena ... 31

4. EXPERIMENT AND EVALUATION ... 33

4.1 Dataset and Application .. 33

4.2 Prerequisites ... 38

4.3 Costs Models ... 39

4.4 Experimentation .. 42

CONTENTS

iv

4.5 Evaluation .. 46

5. RELATED WORK ... 56

5.1 Cloud Providers Comparisons ... 56

5.2 Big Data on AWS Services ... 57

6. CONCLUSION AND FUTURE WORK ... 60

REFERENCES ... 62

v

Figure 1.1 MapReduce Programming Model. ... 3

Figure 2.1 Research Process. ... 11

Figure 2.2 Road Map. .. 13

Figure 3.1 Traditional Software vs Virtual Machines vs Containers, Adapted from [16].16

Figure 3.2 Kubernetes Architecture (adapted from [44]). .. 18

Figure 3.3 Hadoop Architecture (adapted from [5]). .. 20

Figure 3.4 Apache Spark Architecture (adapted from [6]). ... 21

Figure 3.5 EKS Workflow. .. 24

Figure 3.6 EMR on EC2 Job Workflow. .. 27

Figure 3.7 EMR on EKS Job Workflow.. 29

Figure 3.8 Amazon EMR Serverless Workflow. ... 31

Figure 3.9 Amazon Athena Workflow. ... 32

Figure 4.1 Candle Stick representation of stocks price during the trading day. 35

Figure 4.2 Application Deployment Process. .. 44

Figure 4.3 Comparison of Time to Provision Infrastructure. ... 47

Figure 4.4 Comparison of Execution time in seconds. .. 49

Figure 4.5 Comparison of Execution Cost. .. 51

Figure 4.6 Infrastructure Lifecycle. .. 52

Figure 4.7 Upscaled cost of services for one hour vs Number of jobs each service can

run in one hour. ... 54

Figure 4.8 Comparison of Infrastructure Maintenance. ... 55

LIST OF FIGURES

vi

Table 4.1 Sample Records of TSLA from dataset (Tesla Inc.). .. 34

Table 4.2 Cost Models. .. 40

Table 4.3 EKS Costs. ... 40

Table 4.4 EMR on EKS Costs. ... 41

Table 4.5 EMR on EC2 Costs. ... 41

Table 4.6 EMR Serverless Costs. .. 42

Table 4.7 Athena Costs. ... 42

Table 4.8 Configuration Definitions. .. 43

Table 4.9 Comparison Parameters. ... 45

Table 4.10 Configuration Parameters. ... 45

Table 4.11 Comparison of Execution Time. ... 48

Table 4.12 EKS Cost Estimation. .. 49

Table 4.13 EMR on EKS Cost Estimation. ... 50

Table 4.14 EMR on EC2 Cost Estimation.. 50

Table 4.15 EMR Serverless Cost Estimation. ... 50

Table 4.16 Athena Cost Estimation. .. 50

Table 4.17 Execution Time for one workflow in seconds. ... 52

Table 4.18 Number of jobs that can be run in one hour in each service. 52

Table 4.19 Upscaled cost of services for an hour. ... 53

Table 4.20 Infrastructure Maintainability Efforts. ... 54

LIST OF TABLES

vii

AWS - Amazon Web Services

GCP - Google Cloud Platform

CPU - Central Processing Unit

vCPU - Virtual CPU

SQL - Server Query Language

ML - Machine Learning

AI - Artificial Intelligence

JVM - Java Virtual Machine

EC2 - Amazon Elastic Compute Cloud

EKS - Amazon Elastic Kubernetes Service

EMR - Amazon Elastic MapReduce Service

ECR - Amazon Elastic Container Registry

IAM - Amazon Identity and Access Management

S3 - Amazon Simple Storage Service

ECR - Amazon Elastic Container Registry

OIDC - Open ID Connect

ETL - Extract, Transform and Load

LIST OF SYMBOLS AND ABBREVIATIONS

1

In the 21st century, data is growing exponentially, all electronic devices are monitoring

and recording interactions, and transmitting, storing these raw data. We have petabytes

of data that is to be processed, these raw data need to be cleaned, formed a structure

and transformations are to be applied so that useful information can be leveraged from

these data, e.g. large banks tracks user’s web or mobile activity in the loans section of

their web or mobile application to know the loan interest of the user, and based on the

user’s activity, offers are sent to the users to make new contracts for businesses.

While large businesses can afford to setup their own data centres to clean, process, and

transform these data, small businesses cannot afford to setup their own data centres.

Moreover, it is becoming difficult for large businesses to maintain the data centres and

renew the hardware in an interval due to rapid growth in technology. This is where Cloud

Service comes as an advantage. Cloud Providers such as Amazon, Google and Microsoft

offer computational services so that organization can pay to use their servers for

applications such as Data Processing and Machine Learning. There are numerous

services on cloud for processing data, adapting to the latest technology gives advantages

to organization for best security and cost savings.

AWS (Amazon Web Services) is one of the leading cloud service providers and it provides

various services for data processing. Parameters such as Time to provision infrastructure,

the cost and execution time of the services, maintainability of the infrastructure are

major factors in choosing a service for big data processing.

The following abbreviations are used repeatedly in this chapter:

1. S3 - Amazon Simple Storage Service

2. EC2 - Amazon Elastic Compute Cloud

3. EMR - Amazon Elastic MapReduce

4. EKS - Amazon Elastic Kubernetes Service

1. INTRODUCTION

2

5. IAM - Amazon Identity and Access Management

1.1 Big Data Processing

Big Data processing is processing the huge volume of data using various software

methodology to make the whole system of software failure prone and finish execution

in seconds to minutes. The following sub-sections presents an overview about Big Data,

how Big Data is processed, an overview of what is a cluster, and the widely used

programming model for Big Data processing i.e. the MapReduce programming model.

1.1.1 Big Data and Big Data Cluster

“Big data refers to huge, heterogeneous, distributed and often unstructured digital

content that is difficult to process using traditional data management tools and

techniques” [1]. Big data processing is a process to store, extract, clean and transform

these massive amounts of data into meaningful use cases which can involve direct use

such as visualization or indirect use such as Machine Learning and Artificial Intelligence.

These data are classified into structured and unstructured data: structured data are data

that is defined, easier to infer information and use, while unstructured data are data

where you cannot infer any information without processing it.

“5 exabytes (1018 bytes) of data were created by human until 2003. Today this amount

of information is created in two days” [2]. Most of this data is raw data and needs to be

processed by computing machines to make useful data out of it. This data cannot be

processed by a single machine or computer, we need a ‘cluster’ of machines to process

this huge volume of raw data. This processing of huge or ‘big’ data by a cluster of

machines to form structured or useful data for consumers applications and Machine

Learning purposes is known as Big Data Processing.

Big data processing is a software technique to process massive amounts of data. Since

one machine cannot process large amounts of data, big data processing usually involves

processing the data with multiple CPU (Central Processing Unit) or vCPU (virtual CPU) to

extract useful information very quickly. There is lot of platforms and tools which provides

3

applications to process big data. Most of the platform or frameworks that exists today is

built on MapReduce programming model, we will explore more about MapReduce

architectures in subsection 1.1.2.

A cluster is a group of machines that the user setup to split a work into multiple tasks

and execute in parallel on multiple computers and group the results to reduce

computation time and memory. A cluster can be setup on-premises or provided by a

cloud vendor. On-premises cluster is a cluster setup by user with physical machines with

hardware expenses and a cluster is setup using Hadoop distributions using this physical

hardware which belongs to the user, whereas a cloud cluster is a setup using cloud

providers such as Amazon Web Services, Microsoft Azure or Google Cloud Platform. The

computing machines belong to the cloud provider and user pays for resources used. The

cloud providers offer different services to create a cluster.

1.1.2 MapReduce Programming Model

Figure 1.1 MapReduce Programming Model.

MapReduce programming model forms the basis of distributed computing, it is the most

widely used programming model for parallel distributed processing. Figure 1.1. shows

the execution flow of MapReduce programming model, it involves 3 main phases i.e.

4

map, shuffle and reduce phase. During the map phase, the input file is split into multiple

parts and are assigned a (key, value) pairs, the output of the map phase is temporarily

written to the local disk. During the shuffle phase, the keys needed for the reduce

process to compute some outputs are grouped to one worker, so that the worker can

compute and generate output from the split of data. During the reduce phase, the

computation is done according to user instructions and the output files are generated

at the end [3]. Many Big Data tools uses the MapReduce programming model or use the

idea behind it, e.g., Apache Hive, Apache Tez, Apache Spark. One of the tools that is used

for processing in this thesis is Apache Spark and is introduced in detail in sub-section

3.1.4.

1.2 AWS Services Overview

This following section will give a brief overview of the AWS services used in this study.

The architectures of these services or how they are used are discussed in more details

in Chapter 3.

1.2.1 Core Services

Core services of AWS are services that are used by multiple services e.g. S3 [50] is a

standard storage service in AWS, AWS EC2 [47] is standard computing machine used in

services such as EKS [17], EMR on EC2 [48], and AWS IAM [49] manages Identity for AWS.

These services are classified as ‘Core Services’ in this study.

Amazon Simple Storage Service

Amazon Simple Storage Service or Amazon S3 [50] is an object store offered by AWS.

Amazon offers different features for S3 service e.g., User can configure the storage based

on how they want to access data, enable bucket versioning to track the historical data,

introduce lifecycle such as clean-up data after an interval, replicate data to different AWS

region (A region is a geographical location where Amazon host the services) to different

locations so that users worldwide can access the data with reduced latency, control

access by limiting the data that is to visible for users and storage classes. A storage class

[51] is a configuration based on how frequently user will access the data, e.g. Some

5

organizations need to archive the data for a certain period due to legal purposes, and

this data will not be accessed frequently so user can reduce cost by using S3 Glacier

(Instant/Flexible/Deep) Retrieval based on how frequently the archive is accessed.

Object in S3 is stored in buckets [8], a bucket is a container of object stored in S3. objects

can be accessed in command line tools just like a file system that is prefixed with s3 i.e.

‘s3://bucket_name/file_name’. There is a cost in storing data in s3, according to the S3

pricing documentation [9] there is a cost of $0.0023 per GB for the first 50 TB of data in

the Europe (Stockholm) region.

Amazon Elastic Compute Cloud

Amazon Elastic Compute Cloud or EC2 [47] provides computing capacity provider on

AWS Cloud, Amazon offers a variety of different EC2 machines with different

configurations and user can choose the hardware configuration based on their needs,

the instances are priced according to the compute capacity [36]. There are different

purchase options for EC2 instances – On-Demand, Savings Plans, Reserved Instances,

Spot Instances, Dedicated Instances, Dedicated Hosts. User can choose one of the above

plans depending on the scenario that they have, e.g. user can choose Spot Instances for

jobs with low priority and does not expect immediate results and this might save some

money for the user.

Amazon Identify and Access Management

Amazon Identity and Access Management or IAM [49] is a service to control the accesses

for users and groups with the AWS Cloud. If an organization has a team with different

roles for e.g., Developer, Testers, Business Owners, then AWS Cloud Admin can control

what services the developer has access to, and what services and data the Business

owner has access to. Cloud Admins can also create groups and set permissions for the

group, for e.g., admin can create a group named ‘developers’, assign permissions for the

group and when a new user joins the development team, admin can add this new user

to this group which makes user access management simple.

IAM has policies and roles [52] which we will use in the chapter of Chapter 3 in each

service, IAM is a way to control user and roles permission accesses. Policies are a set of

permissions in a JSON (JavaScript Object Notation) format, let’s assume that user want

6

to run a job with a role to read from S3, transform the data and write to S3, then user

would need to first create a policy having access to read and write permission to S3, and

then user must create a role, and attach the above created policy. Then this above

created role can read and write from/to S3.

Amazon Elastic Container Registry

Amazon Elastic Container Registry or ECR [53] is a managed registry from Amazon, for

storing container images such as Docker, Open Container Initiative (OCI) Images. In this

thesis, ECR is used to store the Apache Spark docker images for the purpose of creating

container images in EKS cluster’s containers.

1.2.2 Amazon EKS Overview

Amazon Elastic Kubernetes Service or EKS [17] is a managed Kubernetes service from

Amazon. The underlying computing capacity is provided by EC2, in EKS these are called

nodes, there is different ways to manage these nodes i.e. as Managed Node Groups, Self-

Managed Node Groups and using AWS Fargate profiles [54]. Containers and Kubernetes

are explained in detail in the concepts overview sub-section 3.1.1 and 3.1.2 respectively.

The workflow architecture of EKS cluster is also provided in detail in sub-section 3.2.

1.2.3 Amazon EMR on EC2 Overview

Amazon Elastic MapReduce or EMR [48] service is a scalable platform to run big data

applications on AWS. EMR is based on Apache Hadoop, an architecture that is most

widely used for Big Data processing. Apache Hadoop architecture is widely explained in

sub-section 3.1.3. EMR supports many big data-based applications which includes

Apache Hadoop, Apache Spark, Apache Hive, Presto. One way to setup EMR is by EMR

on EC2 service, it is a service where the underlying computations are provided by EC2

instances (Master, Core and Task Nodes). There is limitation in EC2 instances that can be

used in EMR, and supported instances are listed are constantly updated in the AWS guide

[37]. The workflow architecture in more details is provided in detail in sub-section 3.3.

7

1.2.4 Amazon EMR on EKS Overview

In the previous sub-section, EMR on EC2 was discussed, another way to use EMR is EMR

on EKS [55], it is a virtual EMR cluster created on top of EKS cluster. The prerequisite for

EMR on EKS, is to have one provisioned EKS cluster and then the user can create a virtual

EMR cluster, and the EKS cluster will be used for computations. We will discuss more

about setting up EMR on EC2 and its architecture in sub-section 3.4.

1.2.5 Amazon EMR Serverless Overview

Amazon EMR Serverless [56] is serverless EMR managed by Amazon. With this user does

not have to provision infrastructure, user must configure the memory and CPU needed

for the user. More details on the workflow are provided in sub-section 3.5.

1.2.6 Amazon Athena Overview

Amazon Athena [42] is Serverless query engine managed by Amazon. User can run presto

compatible query in Athena to get results. Athena supports transforming and persisting

the data to S3, user can run simple SELECT, INSERT query, or run CREATE table query

which creates an external table with user specified format. The workflow architectures

and cost models are provided in sub-section 3.6.

1.3 Research Questions

Cloud and cloud services is a huge research field which focuses on comparisons of

different cloud service providers and research on different technological support and

comparison of these technologies on different cloud vendors, the research questions

that this study focuses on are:

1. What are the different services available on AWS which supports Big Data

processing?

2. What underlying core services are being used by these AWS Services and how do

they work?

8

3. How to setup AWS Services, what are the core services used and how do they

interact or connect with the services described in this study?

4. How will the services be fairly compared?

We have seen earlier that this study is focused mainly on comparison of services for Big

Data processing in AWS. The task covered in this study includes:

1. Setup different infrastructures on AWS for Big Data processing (EKS, EMR on EC2,

EMR on EKS, EMR Serverless and Amazon Athena).

2. Compare these services for different parameters such as

a. Execution Time

b. Cost of Execution

c. Time to provision Infrastructure.

d. Efforts needed to maintain this infrastructure.

3. Run Big Data ETL applications and collect data needed to compare the services,

estimate the parameters, and provide justifications.

.

9

This following chapter gives a detailed explanation about research methodology that

was followed in the thesis, the research process and the detailed Road Map that was

followed in this study.

The following abbreviations are repeatedly used in this chapter:

1. S3 - Amazon Simple Storage Service

2. EC2 - Amazon Elastic Compute Cloud

3. EMR - Amazon Elastic MapReduce

4. EKS - Amazon Elastic Kubernetes Service

5. IAM - Amazon Identity and Access Management

6. CLI - Command Line Tool

2.1 Research Methodology

The main work of this study is focused on comparison of services on AWS for big data

processing. For each service in AWS, the parameters such as time to provision

infrastructure, time for execution, cost of service and how easy it is to create and

maintain this infrastructure was determined. The methodology involved in this work was

classified into:

1. Quantitative methods: Execution time, Cost of execution, Time to provision

infrastructure.

2. Qualitative methods: Creating and maintaining infrastructure.

2. METHODOLOGY

10

2.1.1 Quantitative Methods

The study is focused on comparison of services on AWS for Big Data processing: EKS,

EMR on EKS, EMR on EC2, EMR Serverless and Athena. The goal is to record or estimate

the parameters such as Execution time, cost of execution, time to provision

infrastructure. To do this, an application was designed to run on each service to capture

the above defined parameters. A Stock Analysis ETL Apache Spark application and a

Presto query with same transformation, was built to transform and make useful

information from OHLC (Open, High, Low, Close) dataset. An automated script to

provision infrastructure was created and executed to create infrastructure. A

configuration parameter (vCPU, Memory) was defined and the stock analysis application,

was executed on 5 different services mentioned above. The parameters such as time to

provision infrastructure, time for execution for each service was collected and for each

service, cost was calculated using the results collected earlier. The calculator from AWS

[9] was used to theoretically verify the cost of the services with the results.

2.1.2 Qualitative Methods

In cloud computing, some services are easy to create and maintain while some services

are not. Managing an infrastructure comes with a cost, organizations also consider

services that are easy to manage, instead of hiring someone to maintain the

infrastructure, organization can also use serverless infrastructure to save cost. To

estimate the parameter of how easy it is to create and manage the infrastructure on

AWS, a qualitative method was used. e.g., some services are managed and maintained

by AWS such as Amazon EMR Serverless, Amazon Athena and some services were

maintained by user such as Amazon EKS and Amazon EMR on EC2 (Elastic Computer

Cloud). Based on infrastructure scripts and knowledge working with this study, ratings

of 1-5 was assigned to each service.

11

2.2 Research Process

The research process followed is explained in the Figure 2.1. The process was divided

into 3 phases: Planning, Implementation and Analysis phase. All steps in each phase are

explained below.

2.2.1 Planning Phase

During the planning phase, related studies or work on Amazon cost comparisons and

execution time of services was analysed. Then, the dataset was collected from Kaggle

and was pre-processed (cleaning, reformatting, repartitioning) was done. An application

was built with transformation related to stock dataset to get useful information from

the sourced dataset. During the planning step, learnings on AWS for big data analytics

was carried out.

Figure 2.1 Research Process.

12

2.2.2 Implementation Phase

After the planning phase, in the next steps, the application was modified to different

infrastructure requirements, and it was executed in different infrastructure created in

AWS. The implementation phase also has the data collection part where various data

regarding the parameters such as: time to create infrastructure on cloud, hardware

configuration and execution time related to that configuration of infrastructure were

collected.

2.2.3 Analysis Phase

During the analysis phase, the data collected during the implementation phase was

analysed using the parameters that was defined, the implementation was reiterated if

required to confirm the quantitative values that was collected in iteration 1.

2.3 Road Map

In this subsection, we will describe the road map that was followed in this study. In the

previous sub-section, we described the process that is followed, here the road map gives

the clear pictures and goals needed according to the timeline that is to be followed.

Figure 2.2 shows the road map that is followed during this study. The Road map is split

into phases such as: Knowledge Gathering phase where relevant knowledge about AWS

such as authentication services, storage services, computing services were studied.

Then, the knowledge about how these services interact and communicate with each

other were studied and understood with small implementations. AWS Infrastructures for

Big Data can be created using the UI or using the CLI, creating services using CLI will need

a little bit more understanding, so it’s easier to follow the guides [38] using the UI rather

than the CLI tools. Once we have an understanding about the component involved, then

AWS CLI tool [20] was used to create the services.

13

Figure 2.2 Road Map.

The next step of this timeline is the ‘Exploring and Experimenting in AWS’ step, where

needed steps required to create infrastructure are experimented. Some of the

infrastructure such as EKS and EMR on EC2 needs set of steps and the steps are to be

performed sequentially, these steps are later described in detail in Chapter 3. Once the

required steps then these steps are put together in a Shell script to create infrastructure

when needed and additionally steps to clean-up the infrastructure created earlier was

gathered, created as a Shell script so that we destroy infrastructure whenever it is not in

use.

During the Experimentation, various data were collected to estimate various parameters

such as execution time, time for infrastructure created and efforts needed to create and

destroy infrastructure were noted for further analysis. The results were then tabulated

and made graphs to infer and understand the results.

14

In this following chapter, we will take a deep dive into the AWS Services and architectures

involved in this study. To understand the services provided by AWS, we need to

understand the underlying software technique that the service use, for this purpose, we

will look at the concepts that the underlying infrastructures use and how this underlying

service is used to process Big Data.

The following abbreviations were repeatedly used in the following chapter:

1. CPU - Central Processing Unit

2. CLI - Amazon Command Line Interface

3. EKS - Amazon Elastic Kubernetes Service

4. EMR - Amazon Elastic MapReduce Service

5. EC2 - Amazon Elastic Compute Cloud

6. S3 - Amazon Simple Storage Service

7. ECR - Amazon Elastic Container Registry

8. API - Application Programming Interface

9. kubectl - Kubernetes Command Line Tool

10. eksctl - EKS Command Line Tool

11. ETL - Extract, Transform and Load

3.1 Concepts Overview

To understand how the different services are work on Amazon, we need to understand

the underlying technology. This section will provide an understanding of these

applications or platforms that are used in the upcoming sections.

3. AWS SERVICES ARCHITECTURES

15

3.1.1 Containers, Container Runtime and Docker Images

Containers are standardized with libraries and configurations that is needed for the

application e.g. In our case, we need an Apache Spark runtime environment to run Spark

application and these needed libraries and environment variables can be configured with

docker images. VM (Virtual Machine) is an emulation or virtualization of a computer

system. “Both containers and VM’s are virtualization tools. To put it simply, containers

virtualize at the operating system level, whereas hypervisor-based solutions virtualize at

the hardware level” [14].

To understand more about containers, it is important to understand the difference

between traditional software deployments vs virtual machines vs containers. Figure 3.1

explains how an application is deployed in a traditional software vs virtual machines vs

container. In traditional software, applications are made and deployed considering the

operating system, the required libraries and configuration is installed/configured on top

of the operating system where the application is running. In case of virtual machines, a

hypervisor is software that allocates CPU and memory to individual virtual machines and

used to run multiple Virtual Machines on a single hardware, the libraries and

configurations needed to run the application are installed in each virtual machine. In

case of containers, each containers environment is created by pre-configured

deployment software with instructions to setup the container, the container runtime is

responsible for creating the containers, it pulls the reusable docker image which holds

all the libraries and configuration required to run the application, this is an advantage of

containers, that all the container software and files structures are identical because the

configuration is defined in a docker image and the same docker image is used to setup

each container.

Docker provides tools to work with containers. “Imagine being able to package an

application along with all of its dependencies easily and then run it smoothly in disparate

development, test and production environments. That is the goal of the open-source

Docker project” [14]. A docker image is a reusable file that contains instructions to setup

a container. When a container is created by container runtime, docker images acts as a

starting point to setup the container. A docker image should have every library and

configuration that is needed to run the application inside the container. Let’s say that we

16

want to run a python application then the docker image should have the python

distributable and instructions to setup python runtime so that python files can be

executed in the container. Docker images makes sure that the container software across

all the containers is identical since all the containers for this application are setup from

one docker file. In this scope of this thesis, a java distributable with spark will be setup

with environment variables such as JAVA_HOME, SPARK_HOME so that we can run spark

application in the container.

Figure 3.1 Traditional Software vs Virtual Machines vs Containers, Adapted from [16].

Containers helps orchestrate application deployments with significant advantage over

traditional software and virtual machines, some of the advantages of containers are

increased ease to create containers using container images, continuous deployment and

integration, environment consistency across containers and environments since all the

containers are created from same container image, portability to configure any OS

distribution, Resource isolation and utilization.

“A container runtime is a software that runs the containers and manages the container

images on a deployment node” [15]. The container runtime is responsible for pulling

docker images from registry, creating and managing containers, monitoring, and

isolating resources for the container. Usually, container runtime works along with

container orchestrator, and the work of container orchestrator is to manage cluster of

17

containers. In the case of this study, containerd will be used as a container runtime, and

this is the default container runtime for Kubernetes.

3.1.2 Kubernetes

In sub-section 3.1.1, containers were introduced and the advantages of using containers

were discussed. In this subsection, a platform that automates and manages containers

– Kubernetes is introduced. Kubernetes forms the base of AWS EKS.

Kubernetes is an open-source platform for managing containers [16], it helps with

making sure that there is no downtime for the application in case of system failures.

Some of the advantages of kubernetes are Self-healing – restarting the container that

fails, killing container that does not respond, Batch executions, Horizontal scaling –

scaling application with simple commands, Service discovery and load balancing – if the

load is high then kubernetes auto scales by adding containers so that the heavy load is

distributed, Automated rollouts and rollbacks, etc.

Figure 3.2 explains the kubernetes architecture and each of the component of the

architecture are explained below:

1. UI and kubectl: Interactions to the cluster is from User Interface and CLI tool

kubectl, user can create and manage resources using UI or kubectl CLI tool. More

information about kubectl is explained in Section 3.2.4.

2. Node: A node is a physical or virtual machine depending on where the cluster is

hosted.

3. Control Plane: The control plane manages the worker nodes and pods in the

cluster, to provide fault tolerance in the production cluster, control plane runs

across multiple nodes in the cluster.

4. API Server: is a gateway that validates and configures data for the API objects

which includes pods, services, service accounts and others. The API server lets

user configures resources on the cluster using kubectl.

18

Figure 3.2 Kubernetes Architecture (adapted from [44]).

5. Control Manager: A control manager in kubernetes is a control loop that

monitors the shared state of the cluster and moves the cluster from current state

to the desired state.

6. Scheduler: Part of the control plane which assigns pods to nodes.

7. etcd: stores all the cluster information such as configurations, resource

configuration, current state, desired state and runtime data.

8. pod: smallest deployable unit of computing in a kubernetes cluster, pod is a

group of one or more containers with shared services and network.

9. kubelet: primary node agent that runs in each node, The work of the kubelet is

to ensure that the pods are running and healthy according to PodSpec. A

PodSpec is a YAML (Yet Another Markup Language) or JSON (JavaScript Object

Notation) file which describes a pod.

10. kube-proxy: runs on each node, reflects on services that can do TCP, UDP and

SCTP forwarding across backends.

19

11. CRI: Container Runtime Interface is a plugin, which is installed in each node, so

that kubelet can launch pods in the container.

3.1.3 Apache Hadoop and Architecture

Apache Hadoop is one of the widely used software platform for Big Data processing, it is

essential to know how Hadoop works because later in this chapter we will look at AWS

EMR which is based on Apache Hadoop. Hadoop is an open-source software for

distributed data processing. It is scalable, reliable with many features to handle failures

[4]. Figure 3.3 shows the Hadoops architecture, it consists of Master nodes and slave

nodes, each having their own functionalities to handle.

Hadoop uses HDFS (Hadoop Distributed File System) which uses master node otherwise

called as the NameNode, the master node manages the filesystem namespace and

regulates access to files [5]. HDFS exposes a file system which follows the pattern of

“hdfs://namenode/file_path/” and exposes this file paths and provides the Hadoop CLI

to manage files in the filesystem. Although user manages and use the HDFS like a regular

filesystem, Hadoop internally manages the files as blocks and create replicas, the replicas

are stored across DataNodes, they provide redundancy in terms of failures or corrupted

files. Data replication is a huge advantage of Hadoop, and the data is replicated multiple

times according to users (depending on configuration that user determines how

significant is the data), it is also important to keep in mind that the more replicas that is

configured, the more space it occupies in the cluster.

Hadoop supports many Big Data applications that can be installed in the cluster that

supports parallel or distributed computing, some of the applications are MapReduce,

Spark, Presto, Hive (uses MapReduce or Spark or Tez underlying engine). In case of Spark,

the master node acts as the driver to drive the application and slave nodes works as

executor to perform the instructions from master node.

20

Figure 3.3 Hadoop Architecture (adapted from [5]).

3.1.4 Apache Spark

Apache Spark is one of the frameworks for Big Data Processing. Big data is usually

processed by cluster of machines, the definition of cluster is explained in Section 1.1.

Figure 3.4 shows the architecture of how Apache Spark works. A Spark program is

submitted in the main worker or otherwise called as the Driver node, the driver node

has the driver program running and is responsible for the application, the driver node is

coordinated with Spark Context and this context remains valid throughout the lifecycle

of the Spark application. Spark works together with a cluster manager, and the role of

cluster manager is to allocate resources such as executors (workers). Spark can work

with many cluster managers such as YARN (Yet Another Resource Negotiator), Apache

Mesos or Kubernetes.

21

Figure 3.4 Apache Spark Architecture (adapted from [6]).

Spark driver program has its own processes and is responsible for scheduling tasks in the

executor processes (as shown in Figure 3.4), listen and accept to incoming connections

from executors throughout the lifecycle of the Spark application. The worker nodes are

requested by driver program according to the configurations set by users, the worker

nodes then create one or multiple tasks to perform operations. During the lifecycle of

application, the worker nodes communicate with each other and with driver program to

coordinate and work on the program instructions.

In this thesis work, Spark is used as a primary tool to perform ETL for Amazon Athena. In

AWS EKS, Spark works together with Kubernetes as the cluster manager, in AWS EMR

Spark works with YARN as the cluster manager.

3.2 Amazon Elastic Kubernetes Services Setup

“Amazon Elastic Kubernetes Service (Amazon EKS) is a managed Kubernetes service to

run Kubernetes in the AWS cloud and on-premises data centres” [17]. “Kubernetes also

known as k8s, is an open-source system for automating deployment, scaling and

22

management of containerized applications” [18]. An explanation and difference

between how traditional software is deployed and how container is deployed is

explained in sub-section 3.1.1.

In this section, the setup of the EKS cluster, the workflow diagram of how a Spark

application is submitted on EKS cluster is explained, Fig 3.5 shows the workflow

architecture of the EKS cluster, setup of the cluster and the main parts of this

architecture are the configurations, application, IAM Role and Kubernetes are explained

in the following sub-sections.

3.2.1 Setup Cluster

EKS cluster needs EC2 instances for compute capacity, Amazon provides Amazon EKS

managed node groups that makes easier to manage nodes in the cluster [19]. With

managed node groups, it is easier to manage the EC2 instances and auto scale the cluster

to required compute capacity whenever more compute capacity is needed. We can also

create a custom EC2 launch template so that the node that is created is according to our

needs for e.g., operating system, EBS (Elastic Block Store), etc. Access to the EKS cluster

is provided in one of the following ways: using aws-auth, using a kube-config file, Default

kubernetes roles or OIDC(Open ID Connect) provider.

There are several steps that is needed to create and interact with the EKS cluster, the

steps are as follows:

1. IAM Roles and Policies

The first step is to create the required policies, we discussed briefly about roles and

policies in the AWS Service Overview sub-section 1.2. According to the job that we are

going to perform (ETL), we need access to the respective service i.e. EKS, access to read

and write to a S3 bucket, permission to read ECR docker image and create container,

permission for an EKS pod can assume this role.

2. Create Basic Cluster without Nodes

The next step is to create a cluster without any nodes, we can use the AWS CLI to do this,

with required configurations. Creating an EKS cluster also needs a cluster policy, list of

subnets, security group. Amazon already has a predefined cluster policy in the aws

23

account named ‘AmazonEKSClusterPolicy’, we do not have any additional permission

that this sample policy, and we can reuse the default security group and subnets for this

thesis. AWS CLI provides a cli argument ‘create-cluster’ and we can use this to create the

cluster [38].

3. Create Node Groups

Now that the cluster is ready, we could infer that there are no computational machines

inside the cluster. For creating the node group, we need the following: A node role having

policy with reading ECR images, EC2 permission policies, configuration on what EC2

instance to use and how many EC2 instance is required (min, max, desired). Once all this

are available then we can create node groups to have computing capacity in the cluster

using the UI or using kubectl.

4. Update Kube Config

The cluster has computing capacity now after node groups spin up, it is needed to update

the kube configurations to our local machine where we are going to interact with the

EKS cluster, AWS CLI provides the update-kubeconfig cli command to update the kube

configurations, after this we can list the nodes in the cluster by executing ‘kubectl get

nodes’ or get the pods in the cluster by executing ‘kubectl get pods’.

5. Generate Spark Docker image to run Spark Application

For the containers to run Apache Spark software, we need to create docker image and

upload to AWS ECR. When we download Apache Spark [39], spark also provides us with

Dockerfile to create docker image. If we execute the dockerfile using the docker CLI tool,

then the docker image is created, then this must be uploaded to AWS ECR.

6. Associate OIDC provider for cluster

In EKS, pods are the computing elements performing the executions, so these pods need

to assume role to access S3 to get input data, we can do this by creating a service

accounting and annotating a AWS IAM role to the service account, the IAM role should

have the Open ID connect URL (OIDC) so that the respective annotated service account

can assume this role [40].

24

7. Create Kubernetes Role, Cluster Role and Service Account

Kubernetes has resources such as nodes, pods, service accounts, configmaps, etc, these

resources need also permissions to be set so that they can interact with each other, these

can be achieved by having a RBAC (Role Based Access Control) to control the permissions

within the kubernetes cluster [41],

3.2.2 Workflow Architecture

Fig 3.5 Shows the workflow architecture for Apache Spark application to execute in EKS.

The main components of the workflow are explained below.

Figure 3.5 EKS Workflow.

25

Application and Configuration

Section 4.1 gives a detailed description of transformations and the application that will

be used. Spark application is used in EKS, along with spark configurations such as number

of executors, number of cores for driver and executor, arguments for the spark

application such as input data path in S3, output data path in S3, and the role that the

EKS pod needs to use to perform the execution.

Job Execution

Once the user submits the applications with spark-submit to the kubernetes API server,

then Spark will request the number of machines specified in the configurations (1 driver

+ configured executors), the driver process then sends instructions to executors with

tasks and executes the application. In the job, the Spark driver pod will authenticate as

the role setup in previous section, extracts the data from S3, performs the

transformations specified and saves the data in S3.

3.3 Amazon EMR on EC2

Amazon EMR on EC2 is a cluster created on top of Amazon EC2 i.e. the user setup a

cluster on top of the EC2 machines. The cluster can have master nodes and many core

and many task nodes.

3.3.1 Setup Cluster

EMR clusters are made up of EC2 instances, the architecture of an EMR cluster is like

Hadoop architecture as explained in Section 3.1.3. A Hadoop cluster consist of master

and slave nodes whereas in EMR, the nodes are classified into Primary or Master node,

Core Node and Task Nodes.

A primary node or master node does the same functions as Apache Hadoop cluster, it

does the work of running the main components of the cluster such as Resource Manager

YARN, the namenode service, and Job History Server like Apache Hadoop to monitor the

status of the submitted jobs. A Core node in EMR is like slave nodes in Hadoop, they

work like executors performing the tasks required by the namenodes, and the namenode

distributes the work to core nodes. Core nodes host also the data daemons allowing to

26

facilitate HDFS (Hadoop Distributed File System). Overall, core nodes host the data

daemons for storage, runs MapReduce jobs and acts as executors for Apache Spark

applications. A task node is an optional node instances to the cluster, user can setup

tasks nodes if the computation requires higher memory but does not need to have any

data storage, task nodes are specifically only for computations, they do not run any data

daemon nor they store any data.

The creation of EMR on EC2 cluster is straightforward with configurations, so the user

first decides the following parameters.

1. Number of Master, Core, Task (Optional) Nodes

Users can have more than one masters based on their usage and loads and avoid the risk

of potential single point failure. Tasks nodes are optional.

2. Applications

User needs to specify the needed applications e.g., Apache Spark, Apache Hadoop, Hive,

Presto etc.

3. Instance Type

The type of EC2 instances that is needed for each node, users can setup different

instance types for master, core and tasks nodes depending on their use cases.

4. Subnet

As usual, every AWS resource needs a network interface to identify, interact, we need to

specify the subnet id, where we want to host the EMR cluster.

5. Auto Termination Policy

This is optional but it makes it safe for user to save some cost i.e. user can terminate the

cluster after 20 minutes of inactivity.

Once the user has all the information, user can use either the AWS User Interface or AWS

CLI to create the cluster using the command “aws emr create-cluster”.

27

3.3.2 Job Workflow Architecture

Fig 3.6 Shows the workflow architecture of EMR on EC2 jobs, it is very similar to EKS job

that we saw above, but except Spark is going to use the EMR cluster to perform the ETL

job. Spark driver authenticates using roles here, and access S3 to extract the data,

creates instructions to transform the data and instructions to save the transformed data

to S3.

Figure 3.6 EMR on EC2 Job Workflow.

28

3.4 Amazon EMR on EKS

Amazon EMR on EKS is a EMR Service to create a virtual EMR cluster on top of an already

running EKS cluster, so the prerequisite for creating a virtual EMR cluster is that we

should have already provisioned an EKS cluster, and the cluster should be running.

3.4.1 Setup Cluster

Cluster nodes for EMR on EKS cluster are provided by the EKS cluster, all the nodes under

the cluster can be used for computations.

To setup a EMR on EKS virtual cluster, there are some configurations that needs to be

created before, the configurations are the following:

1. Kube Namespace

Create a kube namespace to separate the applications/pods inside the EKS cluster and

EMR on EKS virtual cluster e.g. a namespace named ‘spark’ can be created for this

purpose.

2. IAM Identity Mapping

Create IAM identity mapping service to the cluster for the namespace created above

with a service name.

3. Associate OIDC Provider

This is same as the step in EKS, if it wasn’t done in the EKS cluster creation step, then we

should do this here.

4. Update Role Trust Policy

For the role that we are going to use to run a job, we should set the trust policy so that

EMR on EKS can assume this role.

After all the above step is done, then we can create the EMR on EKS cluster by using AWS

CLI “aws emr-containers create-virtual-cluster” command.

29

3.4.2 Job Workflow Architecture

Figure 3.7 EMR on EKS Job Workflow.

Fig 3.7 represents the job workflow for EMR on EKS cluster. In the previous section, there

was highlight about the application configurations and workflow execution. EMR on EKS

is like EKS, here there will be an additional virtual cluster that is created on top of EKS,

the advantage of having an application like this is that if there is a EKS cluster used for

another purpose then we can leverage the computations in EMR on EKS and the

advantages of EMR.

30

3.5 Amazon EMR Serverless

Amazon EMR Serverless is a fully managed serverless EMR service, where user does not

have to worry about provisioning infrastructure for running jobs. At the point of writing

this thesis, Amazon EMR Serverless supports only Apache Spark and Apache Hive

applications.

3.5.1 Setup Cluster

User can setup EMR Serverless infrastructure by creating an EMR Serverless application

and there are some parameters that can be set to control the number of vCPU and

memory used. Configurations such as initial capacity and maximum capacity can be set.

Initial capacity specifies how much computational server user needs and maximum

capacity is set to prevent some applications from scaling more than that is needed, which

will cost additional charges.

The nodes are provided within the infrastructure for an application, the application

should say how much computational capacity is needed. Even though that if the user has

configured the initial capacity, Amazon only charges for the capacity that is used by the

application.

3.5.2 Workflow Architecture

Fig 3.8 represents the Amazon EMR Serverless workflow architecture, User submits the

Spark or Hive application with configurations such as number of drivers, number of

executors, computing capacity such as memory and cores for driver and executor. The

rest of the workflow is very similar to how Spark jobs works with Amazon EMR on EC2,

Spark application will read the input data from S3, transforms the data and saves the

transformed data to S3. The advantage of EMR Serverless is that there is no need for

user to configure and maintain the infrastructure, the user at any time needed, will

provision and run jobs in the cluster without needing to maintain one. There is a cost to

Serverless applications, we will see more in detail in the Experimentation chapter

(Chapter 4).

31

Figure 3.8 Amazon EMR Serverless Workflow.

3.6 Amazon Athena

Amazon Athena is a serverless distributed analytics framework from Amazon, it is used

to analyse or transform data from Amazon S3 or other sources. Athena is a serverless

infrastructure which means Amazon takes care of creating, maintaining and scaling the

infrastructure if our dataset grows to a huge number [57]. Athena is built on open-source

Trino and Presto engine [42]. Presto is very fast and reliable SQL query engine [43] and

unlike MapReduce, presto performs in memory operations avoiding the intermediate

saving to disk/memory phase, making it work faster.

Unlike SQL, Presto has some special syntaxes, e.g. max is not allowed in Presto without

group by, but it provides an alternative called ‘greater’, and ‘struct’ keyword are not

32

allowed in Presto; instead, it supports Row which is like struct. So, user must convert the

traditional SQL syntaxes to Presto compatible query.

Figure 3.9 Amazon Athena Workflow.

The workflow of Amazon Athena is represented above, and it is very simple, In the case

of this thesis, we have our input data in S3, Athena performs ETL to extract the input

data, transform and save it back to S3.

33

In the previous chapter, we have discussed about the architectures of various services

provided by Amazon. This chapter will explain about the experimentation which includes

the explanation of the dataset and application that is used, the different cost models

offered by services and how the cost segments look, configuration parameters for fair

comparison of services and evaluation of the parameters defined earlier.

The following abbreviations are repeatedly used in this chapter:

1. CLI - Amazon Command Line Interface

2. EKS - Amazon Elastic Kubernetes Service

3. EMR - Amazon Elastic MapReduce Service

4. EC2 - Amazon Elastic Compute Cloud

5. S3 - Amazon Simple Storage Service

6. ECR - Amazon Elastic Container Registry

7. kubectl - Kubernetes Command Line Tool

8. eksctl - EKS Command Line Tool

9. ETL - Extract, Transform and Load

4.1 Dataset and Application

In this section, we will explore the dataset used in this thesis. The following subsections

will give a detailed description of the dataset, how the dataset is pre-processed by

cleaning, formatting and partitioning and details of the useful transformations that can

be performed using this data.

4.1.1 Dataset Description and Pre-processing

The dataset used in this thesis was from Kaggle, an online community of data scientists

and machine learning practitioners, contains records of a stocks trading price in a day

4. EXPERIMENT AND EVALUATION

34

during the period of 1996 to 2020. The dataset had directories with name of the stocks,

and each directory had one CSV (Comma Separated Value) files having data for many

trading days inside. A ticker is a symbol to represent an stock or equity, and Each folder

(with ticker as name) has the following column in the CSV:

• Date - Trading Date

• Open - Price of the stock when the market opened.

• High - The highest price of the stock in the trading day

• Low - The lowest price of the stock in the trading day

• Close - Price at the time of market close

• Adj Close - Closing price of the stock after adjustments (Dividends, Splits,

etc.)

• Volume - Total number of shares bought or sold during the trading day.

The following Figure 4.1 represents a candle stick pattern (A pattern used to display price

information within a time interval) to display the above information within a trading

period (A trading period can be any time interval e.g. 5 minutes, 10minutes ... 1 day or 1

week). In a candle stick pattern, a green candle means that the stock price has opened

low and closed higher representing a positive increase in price and a red candle means

that a stock price has opened higher and closed lower, representing the price has slid

down during the trading period.

Table 4.1 Sample Records of TSLA from dataset (Tesla Inc.).

Date Open High Low Close Adj Close Volume

29/06/2010 19 25 17.54 23.89 23.89 18766300

30/06/2010 25.79 30.42 23.3 23.83 23.83 17187100

01/07/2010 25 25.92 20.27 21.96 21.96 8218800

Table 4.1 shows the sample records from the Kaggle dataset for ticker TSLA (Tesla Inc.).

The records are kept as multiple CSV files, and each stocks record is kept in a directory.

The total amount of files present are 104124 stocks.

Although the above dataset contains trading day records of 104124 directories, not all

the directory contains valid data for transformations. The data in the directory was of

35

two types, 1. Valid data containing 7 columns in CSV and 2. Invalid data with ‘404 Not

Found’ having only one column. There is a need to pre-process the data to avoid failures

during read. In the next step, the data for each stock was read by Apache Spark and

stocks containing less than 7 columns were removed from the dataset. At the end, the

total count of records that the dataset has was 211759563 records and a total of unique

65722 stocks with total size on disk of 8.4 GB (Gigabytes).

Figure 4.1 Candle Stick representation of stocks price during the trading day.

The file format of the data from source (Kaggle) was CSV. When it comes to big data, CSV

is not optimal format for any kind of transformation because reading a CSV file is

computationally expensive. “Parquet and ORC (Optimized Row Columnar) format are

received the highest score in ranking the alternatives” [10]. Parquet also is compressible

file format and is faster to read. Considering, the above, the dataset for this research was

reformatted to parquet file format for compression and faster read time.

Data partitioning is a crucial step to improve the job performance. In simple terms,

partitioning is simply splitting the data into smaller chunks based on transformation that

that are going to perform. When parallel processing is performed across a big data

dataset (MapReduce), the dataset is split into multiple parts and are fed into executors,

these executors get a split of data, and it is important to partition the data considering

this fact of splitting, because if we have a logical plan to split the data based on the

transformations that are going to performed, then each executor can only rely on the

data supplied to it and does not need to refer the data outside of the executor, e.g. if the

transformation performed are mainly across dates, then the partition key would be the

36

date column so that when the data is split, it is split into dates and each executor will

have the data needed within the data split. Data partitioning has significant performance

on the dataset transformation.

In the next step, cleaned parquet data from previous step is read, added a ‘year’ column

and repartition with ‘year’ column, this is mainly important because most of the

transformation is within the year (yield, average volume, price min in year, price max in

year, volatility, etc.), this way the executors can refer the data supplied from the data

split).

4.1.2 Data Transformations

Data transformation are functions applied to a data or a set of data to make useful data

out of it. “Data transformations are the application of a mathematical modification to

the values of a variable” [11]. In Data transformation, functions are applied to a source

data to make useful target data.

In the stock analysis dataset that represents Open, High, Low, Close, the following

transformation can be applied to get useful information out of it. The following sub-

sections gives explanation and useful information that an investor can use to calculate

Risk and Return.

Annual Return

Investor invests on a security or asset based on many criteria and one of the criteria

could be the stock’s annual return. A period is a timeframe where an investor calculates

a return for, e.g. investor calculates annual return using price at the beginning and end

of the year. The calculation of return for a given period is given by the below formula.

𝑅𝑒𝑡𝑢𝑟𝑛 =
𝑃𝑒𝑛𝑑 − 𝑃𝑠𝑡𝑎𝑟𝑡 + 𝐷

𝑃𝑠𝑡𝑎𝑟𝑡

Where 𝑃𝑠𝑡𝑎𝑟𝑡 – Price at the beginning of the period, 𝑃𝑒𝑛𝑑 is the price at the end of the

period and 𝐷 is Any dividends paid to the shareholders during the period.

37

 Returns for a week, 3 months, 6 months, 1 year and 5 years can be calculated,

these are useful information that can give different investors (short term investors, long

term investors or day traders) a perspective of return values.

High and low price

This is simply to calculate the highest price and lowest price during a time interval. This

is useful for an investor to determine the stock which has the lowest standard deviation,

which means that the stock is very stable with the price which could mean that investors

are highly confident in this stock that it will reach more price. The calculations are simply

𝑃𝑚𝑎𝑥 and 𝑃𝑚𝑖𝑛 during the given time interval.

Total Volume

“Volume is the amount of an asset or security that changes hands over some period,

often over the course of a trading day” [12]. An insider (An investor who is non-public

or works in that company) activity or significant news of a stock, can significantly

increase the volume of the stock. The opposite is also true, where a significant volume

could imply that there is some important activity that has happened or news that is yet

to be released. So, an increase in total volume is an important factor for investors. The

calculation of total volume of a stock is simply the sum of volume over a period.

𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒 = ∑ 𝑉𝑡
𝑛
𝑡=0

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑉𝑜𝑙𝑢𝑚𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒

𝑛

Where 𝑉𝑡 is the volume on time t and n is the number of time interval.

Volatility

“Volatility often refers to the amount of uncertainty or risk related to the size of changes

in a security's value” [13]. Volatility provides investor how much the prices change over

time, giving investor an understanding about the risk that is going to be involved in

trading the stock. A higher volatility means the stock is higher risk because it can come

down or go up so frequently or termed as highly volatile stocks. Volatility over a given

period is given by the below formula.

𝐴𝑛𝑛𝑢𝑎𝑙 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 𝜎𝑎𝑛𝑛𝑢𝑎𝑙 = 𝜎𝑑𝑎𝑖𝑙𝑦 √𝑃

38

Where 𝜎𝑑𝑎𝑖𝑙𝑦 is the standard deviation of price in a day and P sis the number of trading

days in a year.

All the above transformations can be calculated for different time periods (Week, 1

Month, 3 Month, 6 Months, 1 year and 5 year) of the stock analysis that has dataset for

the period of 20 years.

1.5.3 ETL Application

One of the objectives of the thesis is to build an application with above transformations

and run the application in different services. So, with above transformations in mind,

there were 2 below applications/query is built: An Apache Spark ETL application and

Presto ETL Query. The Spark application reads from Amazon S3, transforms the data and

saves the transformed data to S3. Another Application is Presto ETL query, which also

performs similar ETL, extracting from S3, transforming in Athena and saving to S3. To

verify that the transformations are working as expected, the results from both the

application were compared and verified.

4.2 Prerequisites

The following section introduces the tools required to create and manage AWS Services

used in this study.

4.2.1 AWS CLI and User Access Key

“The AWS Command Line Interface (AWS CLI) is a unified tool to manage your AWS

services” [20]. The tool provides commands to create, interact and manage with AWS

Services e.g. the reference page from AWS[21] shows ways to create, list and terminate

an ec2 instances. Each service has command line help associated to help users such as

developers to interact with the services programmatically.

When a new AWS account is created, the main account is the root user which has details

to everything including credit cards details. During interactions with AWS, the API

(Application Programming Interfaces) are authenticated with access key from AWS that

is generated, so using AWS as root user is strictly not recommended because it is riskier.

39

So, a user with strictly needed access needs to be created, in our case: access to S3, EC2,

EKS, EMR and Athena. Additionally, MFA (Multi Factor Authentication) could be enabled

for additional sign in protection. Root user can create this additional user and generate

access key to interact with AWS using AWS CLI [22].

4.2.2 EKSCTL and KUBECTL

Eksctl is a tool for creating and managing Amazon EKS cluster [23]. Creating EKS cluster

comes with a lot of steps and this tool makes it easier to create and manage the EKS

cluster. User can configure the cluster with different configurations that is needed using

YAML files. This is an optional tool which makes it easier to create and manage cluster,

but an EKS cluster can also be created with AWS CLI. More details about these steps are

discussed in the architecture section of Amazon EKS.

Kubectl is a tool to manage any Kubernetes cluster [24]. Using kubectl, users can view,

modify or delete resources running in a Kubernetes cluster e.g. users can view the

running nodes in a cluster with ‘kubectl get nodes’ command or get pods (A pod is a

collection of one or more containers) to get the running pods in the cluster.

4.3 Costs Models

In this section, we will look at the cost models and cost of the services that is used in this

thesis, the cost model will help us understand how the services are priced and helps us

understand how these services can be compared in terms of cost.

4.3.1 Different Types of Cost Models

Table 4.2 shows the segregation of cost models that is used in this Thesis. There are 2

types of cost models for the services that is used and to be compared in this thesis. Pay

for compute cost model is a model to pay for the cost of computational hardware used

per hour or for the time that is used. Pay for Data scan cost model is where you pay for

data scanned, analysed, written in S3 or any services. The cost models of each service

are discussed in the below sections.

40

Table 4.2 Cost Models.

Pay For Compute Pay For Data Scan

Amazon EKS Amazon Athena

Amazon EMR on EC2

Amazon EMR on EKS

Amazon EMR Serverless

4.3.2 Amazon EKS Cost Model

Table 4.3 EKS Costs.

Segments Cost

Kubernetes Cluster cost $0.10/hour

EC2 Cost Depends on the ec2 configured i.e. number of ec2

x cost of ec2/hour. e.g. 1x m5.xlarge = $0.192/hour

Data Transfer Cost $0.01/GB

In Amazon EKS, you pay for the compute capacity that is used. Table 4.3 shows the 3

segments to pay cost to. There is a standard $0.10/hour for the Kubernetes cluster and

standard $0.01/GB of data transfer cost within the region (In this case, EU Stockholm).

The cost of EC2 depends on the number of ec2 and the cost of the EC2 instance.

𝐸𝐾𝑆 𝐶𝑜𝑠𝑡𝑠 = 𝐾𝑢𝑏𝑒𝑟𝑛𝑒𝑡𝑒𝑠 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑜𝑠𝑡 + 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐸𝐶2 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒

+ 𝐷𝑎𝑡𝑎 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑐𝑜𝑠𝑡

4.3.3 Amazon EMR on EKS Cost Model

Table 4.4 shows the cost segment for EMR on EKS, since we are creating a virtual cluster

on EKS on top, we are paying additional cost to having an EMR virtual uplift cluster cost

in addition to maintaining an EKS cluster.

41

Table 4.4 EMR on EKS Costs.

Segments Cost

Kubernetes Cluster

cost

$0.10/hour

EC2 Cost Depends on the ec2 configured i.e. number of ec2 x

cost of ec2/hour. e.g. 1x m5.xlarge = $0.192/hour

Data Transfer Cost $0.01/GB

EMR uplift cost $0.01012/vCPU and $0.00111125/GB

𝐸𝑀𝑅 𝑜𝑛 𝐸𝐾𝑆 𝐶𝑜𝑠𝑡𝑠

= 𝐸𝑀𝑅 𝑢𝑝𝑙𝑖𝑓𝑡 𝑐𝑜𝑠𝑡 + 𝐾𝑢𝑏𝑒𝑟𝑛𝑒𝑡𝑒𝑠 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑜𝑠𝑡

+ 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐸𝐶2 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 + 𝐷𝑎𝑡𝑎 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑐𝑜𝑠𝑡

4.3.4 Amazon EMR on EC2 Cost Model

Table 4.5 shows the EMR on EC2 pricing model, we need to pay for the EMR cost for

cluster nodes (master, core and task), and cost of the EC2 instances. Additionally, there

is also standard data transfer cost.

Table 4.5 EMR on EC2 Costs.

Segments Cost

EMR Charges Depends on the ec2 configured i.e. number of ec2 x cost

of ec2/hour. e.g. 1x m5.xlarge = $0.048/hour

EC2 charges
Depends on the ec2 configured i.e. number of ec2 x cost

of ec2/hour. e.g. 1x m5.xlarge = $0.192/hour

Data Transfer Cost $0.01/GB

𝐸𝐾𝑆 𝑜𝑛 𝐸𝐶2 𝑐𝑜𝑠𝑡𝑠 = 𝐸𝑀𝑅 𝑐𝑜𝑠𝑡 + 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐸𝐶2 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 + 𝐷𝑎𝑡𝑎 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑐𝑜𝑠𝑡

42

4.3.5 Amazon EMR Serverless Cost Model

Table 4.6 EMR Serverless Costs.

Segments Cost

vCPU hour $0.05785/hour

Memory per GB per hour $0.00637/hour

Data Transfer Cost $0.01/GB

In EMR Serverless, the cost model is that we pay for that we pay for the computing

capacity in terms of vCPU and memory GB hours used as shown in Table 4.6.

𝐸𝐾𝑆 𝑆𝑒𝑟𝑣𝑒𝑟𝑙𝑒𝑠𝑠 𝑐𝑜𝑠𝑡

= 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑣𝐶𝑃𝑈 + 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑀𝑒𝑚𝑜𝑟𝑦 𝑢𝑠𝑒𝑑 + 𝐷𝑎𝑡𝑎 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑐𝑜𝑠𝑡

4.3.6 Amazon Athena Cost Model

Table 4.7 Athena Costs.

Segments Cost

Data Scan $5.00 per TB of data

scanned Data Transfer Cost $0.01/GB

𝐴𝑡ℎ𝑒𝑛𝑎 𝐶𝑜𝑠𝑡𝑠 = 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐷𝑎𝑡𝑎 𝑆𝑐𝑎𝑛𝑛𝑒𝑑

The cost model of Amazon Athena is different from the cost models we have seen earlier

in sub-sections 4.3.1 to 4.3.6. In Amazon Athena, user pays for the data scans rather

than the computation capacity that is used, this is due to Amazon being responsible for

creating and maintaining Athena’s serverless infrastructure. As like other services, there

is a standard data transfer cost of $0.01/GB of data transferred within the AWS Region.

4.4 Experimentation

In this section, we will look at the experimental setup of the services, and a detailed

overview of the calculating some of the parameters such as execution time, cost of

execution, time to provision infrastructure and maintainability of the infrastructure will

be discussed.

43

Table 4.8 shows the configuration definitions that will be used throughout the

experimentation and evaluation chapter. This is to simply be defined not to repeat the

configuration parameters and to enhance readability of the table. In this study it is also

to be noted that my user account in AWS is limited to maximum of running 64vCPU in

parallel.

Table 4.8 Configuration Definitions.

Config Compute Description

C1 5x m5.xlarge or equivalent vCPU and memory

C2 8x m5.xlarge or equivalent vCPU and memory

C3 5x m5.2xlarge or equivalent vCPU and memory

C4 8x m5.2xlarge or equivalent vCPU and memory

4.4.1 Automated Provision & Cleanup Infrastructure

Cloud could turn out to be very expensive if not carefully handled. So, to be careful with

the setup and to automate infrastructure provisioning, this process needs to be

automated.

44

Figure 4.2 Application Deployment Process.

Figure 4.2 shows the application deployment process that is followed in this thesis. For

each of the services, automated creation of infrastructure scripts was made, and

application was executed in this infrastructure, once the application is finished, the

clean-up script will be called to clean up the infrastructure. This will help prevent costs

for services that are created, and we forgot to destroy those services.

4.4.2 Comparison Parameters and Configuration

Main objective of this thesis is comparing AWS services for big data processing, the

parameters that will be compared in the scopes are Execution Time, Cost of Execution,

Time to Provision Infrastructure and Infrastructure Maintainability and cost.

Some services cannot be directly compared in terms of some parameters e.g. Since the

cost model of Amazon Athena is different and is a huge infrastructure managed by

Amazon and the cost model is based on Data scanned rather than compute capacity

used, it cannot be compared with execution time of other 4 services (because Since

Amazon maintains a huge production level infrastructure for Amazon Athena). Table 4.9

provides an overview of comparison parameters used, and the services that will be used

to compare that parameter.

45

Table 4.9 Comparison Parameters.

Parameter Services Compared

Execution Time EKS, EMR on EKS, EMR on EC2, EMR Serverless

Cost of Execution EKS, EMR on EKS, EMR on EC2, EMR Serverless, Athena

Time to Provision Infra EKS, EMR on EKS, EMR on EC2, EMR Serverless, Athena

Maintainability EKS, EMR on EKS, EMR on EC2, EMR Serverless, Athena

Table 4.10 Configuration Parameters.

Config Driver config*

& driver config*

executor config* Total CPU and Memory

C1 1x (4 cores and 16GB) 4x 4 cores and 16GB 20 vCPU & 80 GB

C2 1x (4 cores and 16GB) 7x 4 cores and 16GB 32 vCPU & 128 GB

C3 1x (8 cores and 32GB) 4x 8 cores and 32GB 40 vCPU & 160 GB

C4 1x (8 cores and 32GB) 7x 8 cores and 32GB 64 vCPU & 256 GB

* config = number of cores and memory

C1,C2,C3,C4 are defined previously configuration parameters

We have many configurations that can be altered to compare how the services react

when different computational hardware’s are setup under, for example, Table 4.10

shows the different memory settings that are configured to compare the services, these

services are specifically services where Apache Spark can run, so Athena cannot be

configured with different settings as of time writing the thesis.

4.4.3 Calculating Execution Time

Some of the services provides an easy way to measure the execution time of the job, i.e.

EMR Serverless, EMR on EKS, EMR on EC2 UI provides the time taken to finish the job. In

EKS Service, we can measure the time taken using the CLI tool called ‘time’, it will

calculate the time from the start of the command to finish of the command. Using the

above said UI and the ‘time’ CLI command execution time of the services are calculated.

46

4.4.4 Calculating Cost Highlights

In Section 4.3, we saw about the different cost models of these services, and a formula

for calculating cost of services. It is important to note that in each service, there is a

standard cost of $0.01/GB of data transfer cost. We have a total data of 8GB, this data is

very less and, when we are talking about comparison of services, in each of these

services, this cost is included, so if we remove this cost from services then we could still

compare the services cost without it. So, for the scope of this thesis, the Data Transfer

cost is not included for comparison.

4.4.5 Estimating Maintainability

There is cost/skill to maintain infrastructure, Let’s say that if an organization decides to

move to cloud with EMR on EC2 as a service, the organization must assign someone to

maintain the infrastructure, look at the bugs, looks at the long running tasks, clear up

some tasks etc. This is what is measured in estimating maintainability, it is a qualitative

measure of how complex the infrastructure is, how much understanding of technology

is involved in the infrastructure. We introduced the rating 1 to 5, 1 being the least work

to maintain the infrastructure, 5 being the most work to maintain infrastructure. This

will be used to measure the cost of maintenance.

4.5 Evaluation

In this section, we will look at the evaluation or results of running different jobs in the

infrastructure, study their graph and provide an explanation and justification of the

graph.

4.5.1 Comparison – Time for Creating Infra

In this section, we will calculate time for creating infrastructure, the time to create

infrastructure is simply the time taken from the moment the create infrastructure script

is called till the infrastructure is ready. Figure 4.3 shows the time to create infrastructure

results of the services.

47

* In EMR Serverless, cluster is created in seconds, but jobs take 30-40s on average to

allocate resources

Figure 4.3 Comparison of Time to Provision Infrastructure.

Some services such as EMR Serverless and Athena are serverless services, which means

Amazon is responsible for creating and maintaining the infrastructure. In EMR Serverless,

the provision time is calculated as 40 seconds even though the cluster is created within

seconds, this is because even though the cluster is created, when a spark job is submitted

to EMR Serverless, it takes approximately 30-40 seconds for the job to move from

Pending to Running state.

In Figure 4.3, we can see that the serverless services are faster to create since Amazon

has some dedicated resources running and auto-scales in the region so that users are

encouraged to use their services managed fully by Amazon. EMR on EC2 took about 185s

or 3m 55s which is the second after the serverless services, and EKS and EMR on EKS are

the most time expensive services to create infrastructure, EKS and EMR on EKS took

about 9m 9s and 15s respectively, this is due to the fact that first a Kubernetes cluster

has to be created, then Kubernetes resources such as API server, kube-proxy, kubelet

and scheduler needs to be created, and then on top of that EC2 compute machines

540 547

185

40 10

EKS EMR ON EKS EMR ON EC2 EMR SERVERLESS* ATHENA

Time To Provision Infra (seconds)

Time To Provision Infra (seconds)

48

needs to be created. It Is also estimated that the time to destroy infrastructure takes

almost the same time as time to provision infrastructure.

4.5.2 Comparison – Execution Time

In this section, the calculated execution time of the services are compared and

discussed. Table 4.10 defined earlier is used in this sub-section for config parameters.

Figure 4.4. shows the comparison of execution time of the services, in this sub-section,

Amazon Athena is not used to compare, this is mainly because Athena is a large

infrastructure configured and fully managed by Amazon which makes them faster and

are not compared to the configuration parameters we defined for configuration, so

simply to avoid confusion to readers, Athena is not part of this comparison.

Table 4.11 Comparison of Execution Time.

Compute EKS EMR on EKS EMR on EC2 EMR Serverless

C1 6m 5s 7m 13s 6m 10s 4m 58s

C2 4m 40s 5m 10s 4m 1s 3m 54s

C3 4m 6s 4m 13s 3m 38s 3m 54s

C4 3m 14s 3m40s 2m 22s 3m 12s

From the above Table 4.11, we could see that C4 is faster than C3, and C3 is faster than

C2 and so on, with all the services. EMR on EC2 tends to be the fastest service in C4, this

is because in EMR on EC2, the machines are preconfigured, software’s are pre-installed

to run these services, i.e. it follows the traditional software application run cases, where

in user installs all the necessary software to the computing machines, so the driver and

executor is ready to run the application, whereas if we compare the case of EKS, the EKS

pods are destroyed as soon as the application is over, so when an new application is

created, there is also the ‘ContainerCreating’ phase, where a docker image is configured

to the container, this also consumes much time in Kubernetes. We could also see from

the results that, as the number of cores and memory is increased, the execution time is

reduced, the reduction is very significant in EMR on EC2 services (tends to do much

better with increased vCPU and memory).

49

Figure 4.4 Comparison of Execution time in seconds.

4.5.3 Comparison – Cost of execution

In this section, we will look at comparing the calculated cost of execution. Cost of

execution is simply the time taken between when the job is submitted to the cluster and

the time that the job is completed. We will reuse computational parameters defined in

Table 4.10. The next few following tables shows the cost of execution for the 5 services

that is in the scope of this thesis: EKS, EMR on EKS, EMR on EC2, EMR Serverless, Athena

in Table 4.12, 4.13, 4.14, 4.15 and 4.16 respectively.

In the tables below, we calculated cost for each of the services and presented. From the

above information, it is obvious that Athena has the least of the cost due to the data

scan with size of 10.25 GB, Athena could get expensive if you read a larger data and only

perform a transformation that is not complex, or if you use a subset of the read data for

transformation.

Table 4.12 EKS Cost Estimation.

Compute Cluster Cost Compute Cost Total Cost

C1 0.1 0.0973 0.1973

C2 0.1 0.1194 0.2194

C3 0.1 0.1312 0.2312

C4 0.1 0.1655 0.2655

0

50

100

150

200

250

300

350

400

450

500

C1 C2 C3 C4

Execution Time (seconds)

EKS EMR on EKS EMR on EC2 EMR Serverless

50

Table 4.13 EMR on EKS Cost Estimation.

Compute Cluster Cost Compute Cost EMR Uplift Total Cost

C1 0.1 0.1155 0.035 0.2505

C2 0.1 0.1322 0.0402 0.2724

C3 0.1 0.1349 0.04095 0.27585

C4 0.1 0.1877 0.05688 0.34458

Table 4.14 EMR on EC2 Cost Estimation.

Compute EMR Cluster Cost Compute

Cost

Total Cost

C1 0.0247 0.09867 0.12337

C2 0.0256 0.10283 0.12843

C3 0.0291 0.1163 0.1454

C4 0.0302 0.1212 0.1514

Table 4.15 EMR Serverless Cost Estimation.

Compute vCPU Cost Memory GB Total Cost

C1 0.0716 0.0315 0.1031

C2 0.0643 0.0283 0.0926

C3 0.0811 0.0357 0.1168

C4 0.0912 0.0402 0.1314

Table 4.16 Athena Cost Estimation.

Data Scanned Cost

10.25 GB 0.0513

Figure 4.5 shows the execution cost of services executed under different configurations

as show in Table 4.10. One important factor to note in EKS is that the kubernetes cluster

is billed per hour, since our job is finishing in minutes, this one-hour minimum charge is

still applicable. This is why EKS could appear expensive in this scope of this thesis while

in a production level cluster, this should not be the case. As explained in the execution

cost sub-section 4.3.3, EKS services spend almost 40s-1minute in ‘ContainerCreating’

51

phase, we could see that the execution time impacts the cost directly, the lower the

execution time, then the lower the cost.

* Athena does not have modifiable configurations for compute

Figure 4.5 Comparison of Execution Cost.

4.5.4 Upscaled Infrastructure Comparison

The above cost comparison has a drawback, in EKS service, the cluster is priced for an

hour at minimum, so even though our jobs run for only 4-7 minutes, the cluster is priced

for 1 hour i.e. $0.10 per hour. To compare the fair cost of the services, we need to adjust

the cost in such a way that it is a fair comparison. In this following section, we will

calculate the cost of the services upscaled to one hour i.e if the job takes 4-6 minutes,

we will calculate the cost for the services for one hour and the number of times the job

can run on these services from provision to destruction. The deployment model used in

Fig 4.3 and time to provision/destroy infrastructure will be used in this process. There

are 2 parameters that can be compared directly when we upscale the infrastructure. 1.

Total cost of infrastructure and 2. Number of jobs runs for one hour in each

infrastructure.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

EKS EMR on EKS EMR on EC2 EMR Serverless Athena*

Execution Cost in $

C1 C2 C3 C4

52

We will use the parameters for configuration defined as C4 in this section to calculate

total cost and number of jobs runs for one hour in each infrastructure. We will also re-

use the cost formulas defined in sub-sections 4.3.2, 4.3.3, 4.3.4 and 4.3.5 for calculating

costs.

Figure 4.6 Infrastructure Lifecycle.

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑗𝑜𝑏 𝑟𝑢𝑛𝑠 𝑓𝑜𝑟 𝑜𝑛𝑒 ℎ𝑜𝑢𝑟

=
(3600 − 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛 𝑖𝑛𝑓𝑟𝑎 − 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑑𝑒𝑠𝑡𝑟𝑜𝑦 𝑖𝑛𝑓𝑟𝑎)

𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑏𝑦 𝑡ℎ𝑒 𝑗𝑜𝑏 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

Where Time to provision infra and time to destroy infra are in seconds.

The above formula for calculating number of jobs runs uses the data from above sub-

sections such as time to provision infrastructure and execution time for the job in

configuration C4. Using these results from the above services.

Table 4.17 Execution Time for one workflow in seconds.

Service Provision Time Execution Time Adjusted Time

EKS 540 194 214

EMR on EKS 547 220 240

EMR on EC2 180 142 162

EMR Serverless 40 192 212

Where adjusted time = Time for execution + 20s for buffer time in-between jobs

Table 4.18 Number of jobs that can be run in one hour in each service.

 EKS EMR on EKS EMR on EC2 EMR Serverless

Number of jobs runs
in one hour
in

13 11 20 16

53

Table 4.18 show the number of jobs runs that can be performed in each of the services

mentioned in one hour. We could see that in EMR on EC2, since the execution time is

less, we could run as much as 20 jobs in one hour.

Table 4.19 Upscaled cost of services for an hour.

Cost Segments EKS EMR on EKS EMR on EC2 EMR Serverless

Cluster Cost 0.1 0.1 - -

Compute Cost 3,072 3.072 3.072 -

Any Uplift Cost - 0.9321 0.768 -

vCPU Cost - - - 1.46

Memory Cost - - - 0.6432

Total Cost $3.172 $4.10 $3.84 $2.10

Table 4.19 shows the cost of services for one hour runtime of services. At first glance,

although it could be seen that EMR on EC2 provides a different result than the one

discussed in the previous section. In the previous section, we have seen that EMR on EC2

was the cheapest user provisioned service, but after upscaling it is estimated to be

expensive than EKS. That is not true, the costs should be inferred alone, Figure 4.7

provides more information about this, EMR on EC2 although looks expensive, it has

executed almost half more jobs than EMR on EKS service, and 7 and 4 more executions

that EKS and EMR Serverless services respectively. It could also be seen here that EMR

Serverless is the cheapest service again. There is a cost to maintain infrastructure e.g.

provisioning, installing software’s or creating containers, by using serverless services,

these costs could be avoided, the cost of creating and maintaining the service falls into

the responsibility of the service provider, in this case to Amazon.

54

Figure 4.7 Upscaled cost of services for one hour vs Number of jobs each service can run
in one hour.

4.5.5 Comparison – Effort to Maintain Infrastructure

In this section, we will calculate qualitatively what is the cost/effort in maintaining the

services. Hardware and software are prone to failures, Maintainability is simply the

measure of how much knowledge of technology, what happens to a computing machine

when it hangs or prone to errors and who is going to restart the service etc.

From Table 4.20, we estimated that the Serverless services to be 1 (least needed

maintenance), this is due to serverless services UI provides some useful ways to deal

with the applications submitted to it, for e.g. in EMR Serverless, you could stop the job

at any time, view logs or view the configurations submitted to the job through UI.

Table 4.20 Infrastructure Maintainability Efforts.

Compute Rating (1-5) Comments

Athena 1 Serverless

EMR Serverless 1 Serverless

EKS 3 Kubernetes Arch. Knowledge

EMR on EKS 3 Kubernetes Arch. Knowledge

EMR on EC2 3 Hadoop Arch. Knowledge

0

5

10

15

20

25

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

EKS EMR on EKS EMR on EC2 EMR Serverless

Cost Number of Job Runs in 1 hour

55

Figure 4.8 Comparison of Infrastructure Maintenance.

Figure 4.8 shows the effort needed to maintain infrastructure by an individual or

organization. Let’s assume that an organization hires an operator to maintain a services,

then the compensation for the Operator in this case totally depends on the knowledge

and skills he possesses, so maintainability is an important factor for production

maintenance. The operator might not need any skills to get logs or kill an application

running on EMR Serverless, whereas the Operator might need Kubernetes architectural

knowledge to kill jobs or view logs in EKS or EMR on EKS. This is why we estimated that

Athena and EMR Serverless to be a Rating 1, and Services such as EKS, EMR on EKS and

EMR on EC2 as 3. There are no very complex services, based on the experience on this

thesis, both Hadoop and Kubernetes are complex services that needs the same level of

time dedicated to understanding and work with them.

0

0,5

1

1,5

2

2,5

3

3,5

Athena EMR Serverless EKS EMR on EKS EMR on EC2

Effort needed on Maintainance of Infrastructure

Maintainability (low is better)

56

Cloud and cloud services comparison is widespread topic and literature can be studied

by the related work in the following areas:

1. Cloud comparisons in General

2. Big Data on AWS Services

First and foremost, investigation related to studies comparing the cloud providers in

General to study the literature in this area were made, and then studies comparing cloud

and on-premises data centres were analysed, and the literature gets narrower and

closely related to the current thesis at the end where studies related to AWS Services for

Big Data are analysed and presented.

5.1 Cloud Providers Comparisons

As discussed earlier, some of the leading cloud service providers [25] are: Amazon Web

Services[26], Google Cloud Platform [27] and Microsoft Azure [28] Some of the related

works are focused on comparison on cloud service providers. Studies focused on entire

cloud services offering compares parameters like Data Storage, compute, and cost

[29][30]. Heilig et al. [31] presents a cost perspective of managing big data architectures

in cloud, the study introduces a state-of-the-art generic reference architecture

explaining phases how big data is generated and presented. The study introduces 5

phases of big data processing: Data Generation, Data Ingestion, Data Storage, Data

Analytics and Presentation, the study shows the technical implementation above-

described generic reference architecture in the three leading cloud service providers

described above and provides the cost perspective across various technology such as

Data Warehousing, Machine Learning and Data storage. Saraswat et al. [29] presents a

study comparing the features of the cloud providers for parameters such as

Infrastructure collections of hardware and software, computing services, network

5. RELATED WORK

57

technologies, storage services. The study presents the advantages of choosing one of the

leading cloud providers e.g., AWS has more global reach, has a lot of data centres and

has lot of services, Azure could be used when customers migrate to cloud for the first

time and GCP focuses more on container-based model etc.

Li et al. [29] proposes a framework ‘CloudCmp’ to help customer to select a cloud service

provider, by helping potential customers by estimating performance and cost without

having to deploy them in the cloud. The framework from this study has a set of

benchmarking tools and uses these benchmarking results to compare the services

offered and cost to select the cloud provider for customer. To estimate the performance

and the cost, the framework has three steps: service benchmarking where the aim is to

generate cloud provider service performance and the respective costs, application

workload collection where the aim is to obtain the workload representative of the

application and performance prediction where the framework predicts the performance

and cost of the service to the customer. The framework compares the characteristics of

the cloud providers such as computing, storage, network and costs.

Big data cluster can be setup on-premises or in cloud, The study to compare the

performance in cloud and non-cloud is presented by Chang et al. [45], the study

proposes a model called Organizational Sustainability Modelling (OSM) to ensure fair

comparison of cloud and non-cloud environments. The study proposes 2 case studies

and record the execution times on both cloud and non-cloud environments, and the

study concludes that the execution time in cloud is lower in cloud and efficiency is higher

in the cloud.

5.2 Big Data on AWS Services

Giménez-Alventosa et al. [32] introduces a framework for MApReduce on LAmbda

(MARLA) to support serverless MapReduce on top of AWS Lambda with AWS S3 as a

storage backend, the study does a thorough assessment of to check the suitability of

AWS Lambda as platform for highly computational jobs. AWS Lambda is a serverless

computing service where users can use for File Processing, Stream Processing, Web

application, IoT and mobile backends [46]. Users can write lambda functions in different

58

languages including Python, Node.js, Java. MARLA is a lightweight framework to execute

Python based MapReduce jobs on AWS, the study describes more about the MARLA

framework features such as Architecture, failure handling and an assessment of benefits

and limitations of AWS Lambda. The study then compares the performance of AWS

Lambda in terms of CPU, Simultaneous network usages, Isolated network usages and

provides mitigation strategies. “The result of the study indicates that is convenient for

general purpose computing that fit within the constraint of the service (15 min of

maximum execution time, 3008 MB of RAM and 512 MB of disk space)” [32].

“Usually when it comes to estimating the cost of usage of cloud platform; the three

parameters come into consideration; compute, storage, and data transfer” [33]. Maurya,

S et al. (2021) proposes a problem statement that when it comes to comparing cost

between estimated and actual cost, there is a deviation, the study proposes a formula

[32] for parameterizing AWS costing:

𝑇ℎ𝑒𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡𝑖𝑛𝑡ℎ𝑒𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑜𝑓𝑡ℎ𝑎𝑡𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 𝑠𝑢𝑚𝑜𝑓(𝑊𝑖 ∗ ∗ 𝐶𝑗 ∗ 𝑀𝑛𝑖 ∗ 𝑃𝑖)

Where 𝑊𝑖 is the service type, 𝐶𝑗 is the cost of the service, 𝑀𝑛𝑖 is the number of times a

service can occur, n is the number of service occurrence, i is the type of service and 𝑃𝑖 is

probability of any service to occur n number of times.

The study has designed a control table cost based on permutation and combination and

introduced a constant K, which can vary based on team’s previous knowledge from past

projects on the service, and the value of K will be less than 1 if the team has lot of

learnings about the service and K value will be more if there is no prior knowledge on

the service or software. The adjusted formulas as per the study [32] is given below.

𝑇ℎ𝑒𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡𝑖𝑛𝑡ℎ𝑒𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑜𝑓𝑡ℎ𝑎𝑡𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 𝐾 ∗ 𝑠𝑢𝑚𝑜𝑓(𝑊𝑖 ∗ ∗ 𝐶𝑗 ∗ 𝑀𝑛𝑖 ∗ 𝑃𝑖)

The thesis [35] work by Johansson, J. (2021) provides an investigation of scalability and

evaluation of execution time for the configured resource hardware using Amazon EKS,

the study designs an application called CFAT (Combined Functionality Analysis Tool), a

combined analysis of different transformations such as Large trades, Trade prices and

Relationship Graph. On experimentation, data was collected individually for each

analysis such as large trades, trades prices, relationship graph and the combined CFAT

application. The study focuses on measuring the execution time by varying the number

59

of vCPU’s (virtual Central Processing Units). In this study, a trading data analysis with 3

use cases was implemented and execution time and scalability of the application is

evaluated across the use cases and compared with serverless solutions such as Amazon

Athena and Amazon Neptune. The result of the study suggests that having a combined

CFAT application use cases improve execution time and efficiency of the system. The

implemented use case of the application has lesser execution time than Amazon

Neptune but did not surpass the execution time of Amazon Athena [35].

In the previous sections, we went through literatures comparing the overall cloud

services [29][30][31], and literatures comparing the performance between cloud and on-

premise application, and a closely related literature to this study, where the study

compares the execution time and scalability of a CFAT application [35] executed in EKS

compared with AWS Neptune and AWS Athena. This study is different from what we

have seen in literature previously, as the scope of this study is to compare the Big Data

services in AWS for their performance parameters such as execution time, cost, provision

time and maintainability. These comparisons of services were not seen in other

literatures, and this study aims to compare the different architectures of services offered

by Amazon for Big Data processing, by comparing the services for parameters such as

Time to Provision Infrastructure, Execution Time, Cost of Execution, Efforts needed to

maintain the infrastructure.

60

The main objective of the thesis is to compare Big Data services on AWS in terms of

parameters such as Time to provision Infrastructure, Execution Time, Cost of Services,

Maintainability across these services. The thesis has presented the services, giving us an

overview of the services, the different cost models, a detailed overview of architectures

of the services, the application that is to be run on the services, and analysed the

parameters that are defined earlier.

To achieve the goal of fair comparison of services, the study introduced configuration

parameters such as C1, C2, C3, C4 as defined in Table 3.10, where predefined

configurations were enforced in parameter comparison such as Execution Time and Cost

of Execution. By setting a defined parameter, we limit the maximum compute capacity

to the configuration parameters defined, there by executing the workflow on a standard

configuration of Memory and vCPU for comparisons. This answers the research question

of the study about the services being compared fairly.

The study has setup infrastructures in different services, it is important to note that the

user account in Amazon is limited to running 64vCPU maximum. Transformations to

make useful information from stock analysis dataset were formulated, and 2 applications

were developed: An Apache Spark application to run on services such as Amazon EKS,

EMR on EKS, EMR on EC2 and EMR Serverless, and a Presto query to run on Amazon

Athena. These applications were later run on the infrastructure and data was collected.

The transformation involved in this study is complex enough for the Spark application to

run for almost 3 minutes in 64 vCPU and 256 Gigabytes of memory. The findings indicate

that Amazon Athena is the fastest and cheapest for serverless infrastructure, and Athena

could process transformations within 35s for dataset size of 11GB.

The study found that serverless infrastructures such as Amazon EMR Serverless and

Amazon Athena could be so easy to use and are cheaper to maintain because we only

6. CONCLUSION AND FUTURE WORK

61

pay for the time that we use the infrastructure, and not for the idle time or creation of

the infrastructure. In comparison of running Spark application running ETL, EMR

Serverless could give some advantage to user because it does not require any creation

and maintenance. When comparing user provisioned and maintained infrastructure, it

is found that EMR on EC2 is very efficient and fast and has the lowest execution time and

cost for an execution, however it is estimated that the if there is more idle time in the

infrastructure, then the efficiency is less, and EKS could be cheaper than EMR on EC2

service. The study also found out that container services such as EKS and EMR on EKS

spends almost 40 seconds to 1 minute in creating the containers with docker images

which leads to more execution time and eventually more cost of execution, whereas in

EMR on EC2, the application software’s follow the traditional deployment model, and

they provide support for number of applications that involves Big Data, it is found that

the having an pre-installed software has less execution time in the scope of this dataset

and transformation.

There was a limitation on the user account to have a maximum of 64vCPU, the future

scope of the thesis could be to look for this comparison beyond this limitation, i.e. in a

production level application or dataset where more parallel vCPU could run. It would be

interesting to see the results when the job takes more than 30 minutes to an hour in a

highly configured computational machines in cloud. Another way to look at this

comparison is to compare similar services across cloud vendors, e.g., AWS, GCP and

Azure, all three leading cloud service providers provides a Kubernetes service: they are

called Elastic Kubernetes Service (EKS), Google Kubernetes Engine (GKE), and Azure

Kubernetes Service (AKS) in AWS, GCP and Azure respectively. The underlying technology

for all the Kubernetes service is anyway Kubernetes, so user does not need to know any

complex technology to work with different Cloud providers. Likewise, all the three cloud

providers also provide Hadoop services, and they could be compared for execution time

and cost, so that the users can take advantage of the cloud providers.

62

[1] Sakpal, Ms. (2024). Big Data: Analysis. International Journal of Advanced

Research in Science, Communication and Technology. 515-520.

http://doi.org/10.48175/IJARSCT-15074

[2] Sagıroğlu, Ş., & Sinanç, D. (2013). Big data: A review. International Conference on

Collaboration Technologies and Systems

(CTS). https://doi.org/10.1109/cts.2013.6567202

[3] Dean, J. M., & Ghemawat, S. (2018). MapReduce: Simplified data processing on

large cluster. International Journal of Research and Engineering, 5(5), 399–403.

https://doi.org/10.21276/ijre.2018.5.5.4-

[4] Apache Hadoop. (n.d.). The Apache Software Foundation, accessed 03 January

2024, https://hadoop.apache.org/

[5] HDFS Architecture Guide. (n.d.). The Apache Software Foundation, accessed 03

January 2024, https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html.

[6] Cluster Mode Overview - Spark 3.5.0 Documentation. (n.d.). The Apache Software

Foundation, accessed 05 January 2024,

https://spark.apache.org/docs/latest/cluster-overview.html

[7] Understand node types: primary, core, and task nodes - Amazon EMR. (n.d.).

Amazon Web Services, Inc, accessed 05 January 2024,

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-master-

core-task-nodes.html

[8] Buckets overview - Amazon Simple Storage Service. (n.d.). Amazon Web Services,

Inc, accessed 05 January 2024,

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingBucket.html

[9] AWS Pricing Calculator. (n.d.). Amazon Web Services, Inc, accessed 05 January

2024, https://calculator.aws/#/

REFERENCES

http://doi.org/10.48175/IJARSCT-15074
https://doi.org/10.1109/cts.2013.6567202
https://doi.org/10.21276/ijre.2018.5.5.4
https://hadoop.apache.org/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://spark.apache.org/docs/latest/cluster-overview.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-master-core-task-nodes.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-master-core-task-nodes.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingBucket.html
https://calculator.aws/#/

63

[10] Belov, V., Tatarintsev, A., & Nikulchev, E. (2021). Comparative

characteristics of big data storage formats. Journal of Physics, 1727(1), 012005.

https://doi.org/10.1088/1742-6596/1727/1/012005

[11] Osborne, J. W. (2002). Notes on the use of data transformations. Practical

Assessment, Research and Evaluation, 8(1), 6. https://doi.org/10.7275/4vng-

5608

[12] Hayes, A. (2023, May 7). What is volume of a stock, and why does it matter

to investors? Investopedia, accessed 05 January 2024,

https://www.investopedia.com/terms/v/volume.asp

[13] Hayes, A. (2023, April 1). Volatility: Meaning In Finance and How it Works

with Stocks. Investopedia, accessed 05 January 2024,

https://www.investopedia.com/terms/v/volatility.asp

[14] Merkel, D. (2014). Docker: lightweight Linux containers for consistent

development and deployment. Linux Journal, 2014(239), 2.

https://dl.acm.org/citation.cfm?id=2600239.2600241

[15] Espe, L., Jindal, A., Podolskiy, V., & Gerndt, M. (2020). Performance

Evaluation of Container Runtimes. 10th International Conference on Cloud

Computing and Services Science. https://doi.org/10.5220/0009340402730281

[16] Kubernetes Documentation. (n.d.). The Kubernetes Authors, accessed 05

January 2024, https://kubernetes.io/docs/concepts/overview/

[17] Amazon EKS | Managed Kubernetes Service | Amazon Web Services.

(n.d.). Amazon Web Services, Inc, accessed 05 January 2024,

https://aws.amazon.com/eks/

[18] Production-Grade Container orchestration. (n.d.). The Kubernetes

Authors, accessed 05 January 2024, https://kubernetes.io/

[19] Running Spark on kubernetes - Spark 3.5.0 documentation. (n.d.). The

Apache Software Foundation, accessed 09 January 2024,

https://spark.apache.org/docs/latest/running-on-kubernetes.html

[20] Command Line Interface - AWS CLI - AWS. (n.d.). Amazon Web Services,

Inc, accessed 09 January 2024, https://aws.amazon.com/cli/

https://doi.org/10.1088/1742-6596/1727/1/012005
https://doi.org/10.7275/4vng-5608
https://doi.org/10.7275/4vng-5608
https://www.investopedia.com/terms/v/volume.asp
https://www.investopedia.com/terms/v/volatility.asp
https://dl.acm.org/citation.cfm?id=2600239.2600241
https://doi.org/10.5220/0009340402730281
https://kubernetes.io/docs/concepts/overview/
https://aws.amazon.com/eks/
https://kubernetes.io/
https://spark.apache.org/docs/latest/running-on-kubernetes.html
https://aws.amazon.com/cli/

64

[21] Launch, list, and terminate Amazon EC2 instances - AWS Command Line

Interface. (n.d.). Amazon Web Services, Inc, accessed 09 January 2024,

https://docs.aws.amazon.com/cli/latest/userguide/cli-services-ec2-

instances.html

[22] Configuration and credential file settings - AWS Command Line Interface.

(n.d.). Amazon Web Services, Inc, accessed 09 January 2024,

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html

[23] eksctl - The official CLI for Amazon EKS. Weaveworks, accessed 10 January

2024, https://eksctl.io/

[24] Command line tool (kubectl). (n.d.). The Kubernetes Authors, accessed 10

January 2024, https://kubernetes.io/docs/reference/kubectl/

[25] Abdulelah, A & Youssef, A. (2014). Cloud Service Providers: A Comparative

Study. International Journal of Computer Applications & Information Technology.

5. 2278-7720.

[26] Cloud computing services - Amazon Web Services (AWS). (n.d.). Amazon

Web Services, Inc, accessed 09 January 2024, https://aws.amazon.com/

[27] Cloud Computing Services | Google Cloud. (n.d.). Google Cloud, accessed

27 February 2024, https://cloud.google.com/

[28] Cloud Computing Services - Microsoft Azure. (n.d.). Microsoft, accessed

27 February 2024, https://azure.microsoft.com/

[29] Saraswat, M., & Tripathi, R. (2020). Cloud Computing: Comparison and

Analysis of Cloud Service Providers-AWs, Microsoft and Google. 9th International

Conference System Modeling and Advancement in Research Trends (SMART).

https://doi.org/10.1109/smart50582.2020.9337100

[30] Li, A., Yang, X., Kandula, S., & Zhang, M. (2010). CloudCmp: shopping for

a cloud made easy. Proceedings of the 10th ACM SIGCOMM Conference on

Internet Measurement. http://doi.org/10.1145/1879141.1879143

[31] Heilig, L., & Voß, S. (2016). Managing Cloud-Based Big Data Platforms: A

reference architecture and cost perspective. In Springer eBooks (pp. 29–45).

https://doi.org/10.1007/978-3-319-45498-6_2

https://docs.aws.amazon.com/cli/latest/userguide/cli-services-ec2-instances.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-ec2-instances.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html
https://eksctl.io/
https://kubernetes.io/docs/reference/kubectl/
https://aws.amazon.com/
https://cloud.google.com/
https://azure.microsoft.com/
https://doi.org/10.1109/smart50582.2020.9337100
http://doi.org/10.1145/1879141.1879143
https://doi.org/10.1007/978-3-319-45498-6_2

65

[32] Giménez-Alventosa, V., Moltó, G., & Caballer, M. (2019). A framework and

a performance assessment for serverless MapReduce on AWS Lambda. Future

Generation Computer Systems, 97, 259–274.

https://doi.org/10.1016/j.future.2019.02.057

[33] Maurya, S., Lakhera, G., Srivastava, A. K., & Kumar, M. (2021). Cost

analysis of amazon web services – From an eye of architect and developer.

Materials Today: Proceedings, 46, 10757–10760.

https://doi.org/10.1016/j.matpr.2021.01.669

[34] Villamizar, M., Garcés, O., Ochoa, L. et al. Cost comparison of running web

applications in the cloud using monolithic, microservice, and AWS Lambda

architectures. SOCA 11, 233–247 (2017). https://doi.org/10.1007/s11761-017-

0208-y

[35] Johansson, J. (2021). Evaluation of Cloud Native Solutions for Trading

Activity Analysis [Master Thesis, KTH Royal Institute of Technology]. DiVa Portal,

https://www.diva-

portal.org/smash/record.jsf?pid=diva2%3A1587978&dswid=7175

[36] EC2 On-Demand Instance Pricing – Amazon Web Services. (n.d.). Amazon

Web Services, Inc, accessed 12 January 2024,

https://aws.amazon.com/ec2/pricing/on-demand/

[37] Supported instance types - Amazon EMR. (n.d.). Amazon Web Services,

Inc, accessed 12 January 2024,

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-supported-

instance-types.html

[38] Creating an Amazon EKS cluster - Amazon EKS. (n.d.). Amazon Web

Services, Inc, accessed 12 January 2024,

https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html

[39] Download Apache Spark. (n.d.). The Apache Software Foundation,

accessed 12 January 2024, https://spark.apache.org/downloads.html

[40] Configuring a Kubernetes service account to assume an IAM role - Amazon

EKS. (n.d.). The Kubernetes Authors, accessed 12 January 2024,

https://docs.aws.amazon.com/eks/latest/userguide/associate-service-account-

role.html

https://doi.org/10.1016/j.future.2019.02.057
https://doi.org/10.1016/j.matpr.2021.01.669
https://doi.org/10.1007/s11761-017-0208-y
https://doi.org/10.1007/s11761-017-0208-y
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1587978&dswid=7175
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1587978&dswid=7175
https://aws.amazon.com/ec2/pricing/on-demand/
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-supported-instance-types.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-supported-instance-types.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://spark.apache.org/downloads.html
https://docs.aws.amazon.com/eks/latest/userguide/associate-service-account-role.html
https://docs.aws.amazon.com/eks/latest/userguide/associate-service-account-role.html

66

[41] Using RBAC authorization. (2023, August 24). The Kubernetes Authors,

accessed 12 January 2024, https://kubernetes.io/docs/reference/access-authn-

authz/rbac/

[42] Interactive SQL - Amazon Athena - AWS. (n.d.). Amazon Web Services, Inc,

accessed 14 January 2024, https://aws.amazon.com/athena/

[43] The Presto Foundation. (2023, December 12). Presto: Free, Open-Source

SQL Query Engine for any Data. PrestoDB, accessed 14 January 2024,

https://prestodb.io/

[44] Cluster Architecture. (n.d.) The Kubernetes Authors, accessed 14 January

2024, https://kubernetes.io/docs/concepts/architecture/

[45] Chang, V., & Wills, G. (2016). A model to compare cloud and non-cloud

storage of Big Data. Future Generation Computer Systems, 57, 56–76.

https://doi.org/10.1016/j.future.2015.10.003

[46] What is AWS Lambda? - AWS Lambda. (n.d.). Amazon Web Services, Inc,

accessed 15 January 2024,

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html

[47] What is Amazon EC2 (n.d.). Amazon Web Services, Inc, accessed 02

February 2024, https://aws.amazon.com/pm/ec2

[48] Big Data Platform - Amazon EMR. (n.d.). Amazon Web Services, Inc,

accessed 02 February 2024, https://aws.amazon.com/emr/

[49] Access Management – AWS Identity and Access Management. (n.d.).

Amazon Web Services, Inc, accessed 02 February 2024,

https://aws.amazon.com/iam

[50] Introduction to Amazon S3 (n.d.). Amazon Web Services, Inc, accessed 18

February 2024, https://aws.amazon.com/pm/serv-s3

[51] Object Storage Classes – Amazon S3. (n.d.). Amazon Web Services, Inc,

accessed 20 February 2024, https://aws.amazon.com/s3/storage-classes/

[52] Policies and permissions in IAM - AWS Identity and Access Management.

(n.d.). Amazon Web Services, Inc, accessed 20 February 2024,

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://aws.amazon.com/athena/
https://prestodb.io/
https://kubernetes.io/docs/concepts/architecture/
https://doi.org/10.1016/j.future.2015.10.003
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://aws.amazon.com/pm/ec2
https://aws.amazon.com/emr/
https://aws.amazon.com/iam
https://aws.amazon.com/pm/serv-s3
https://aws.amazon.com/s3/storage-classes/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

67

[53] Container Registry - Amazon Elastic Container Registry (Amazon ECR) -

AWS. (n.d.). Amazon Web Services, Inc, accessed 20 February 2024,

https://aws.amazon.com/ecr/

[54] Amazon EKS nodes - Amazon EKS. (n.d.). Amazon Web Services, Inc,

accessed 20 February 2024,

https://docs.aws.amazon.com/eks/latest/userguide/eks-compute.html

[55] What is Amazon EMR on EKS? - Amazon EMR. (n.d.). Amazon Web

Services, Inc, accessed 20 February 2024,

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-

DevelopmentGuide/emr-eks.html

[56] What is Amazon EMR Serverless? - Amazon EMR. (n.d.). Amazon Web

Services, Inc, accessed 20 February 2024,

https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/emr-

serverless.html

[57] Amazon Athena Features – Serverless Interactive Query Service – Amazon

Web Services. (n.d.). Amazon Web Services, Inc, accessed 27 February 2024,

https://aws.amazon.com/athena/features/

https://aws.amazon.com/ecr/
https://docs.aws.amazon.com/eks/latest/userguide/eks-compute.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/emr-eks.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/emr-eks.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/emr-serverless.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/emr-serverless.html
https://aws.amazon.com/athena/features/

