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ABSTRACT

Nonlinear optics is the study of the interaction between matter and intense laser
light, which can result in frequency conversion and modulation of the interact-
ing laser light. Consequently, nonlinear optical processes have enabled numer-
ous technologies, such as frequency-tunable and pulsed laser sources. However,
efficient nonlinear optical components are bulky and limited in functionality,
making them unsuitable for modern photonic devices with microscopic dimen-
sions. Recent advances in nanoscale fabrication have opened up avenues for
replacing bulky nonlinear crystals with much smaller components. One exam-
ple of these is metamaterials.

Metamaterials are artificial structures consisting of nanoscale building blocks,
such as metal nanoparticles in plasmonic metamaterials. Through careful de-
sign of the individual building blocks, metamaterials can exhibit properties not
often found in natural materials. These properties enable novel methods to
boost and control optical responses of metamaterials. In particular, nonlin-
ear responses of such structures have been heavily investigated due to their
potential for flat nonlinear photonic components.

In this Thesis, novel plasmonic metamaterials for nonlinear optics were de-
signed. The aim was to bring conventional enhancement methods of nonlin-
ear processes, i.e., phase matching and multiply-resonant field-enhancement,
to sub-wavelength metamaterials. Furthermore, the capabilities of nonlinear
materials were broadened by proposing methods for tunable and broadband
frequency conversion processes that are extremely difficult to realize with tra-
ditional materials. The presented findings pave the way towards tunable and
multi-functional nonlinear components for a large variety of flat photonic de-
vices.
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TIIVISTELMÄ

Epälineaarinen optiikka tutkii aineen ja voimakkaan laservalon välistä vuo-
rovaikutusta. Epälineaarisilla optisilla prosesseilla voidaan muokata vuorovai-
kuttavan laservalon ominaisuuksia, kuten sen aallonpituutta. Täten niitä käyte-
tään monissa laserlaitteistoissa, kuten aallonpituudeltaan säädettävissä ja puls-
sitoimisissa lasereissa. Epälineaariset optiset komponentit ovat kuitenkin suu-
rikokoisia ja toiminnalisuuksiltaan rajoittuneita, mikä rajoittaa niiden käyttöä
moderneissa, mikroskooppisen kokoisissa, fotoniikan komponenteissa. Viime
vuosikymmenten kehitys nanomittakaavan valmistustekniikoissa on mahdollis-
tanut uudenlaisten mikroskooppisten komponenttien valmistuksen, joilla tule-
vaisuuden voidaan korvata epälineaarisia kuituja ja kiteitä fotoniikan laitteis-
toissa. Yksi esimerkki näistä komponenteista ovat metamateriaalit.

Metamateriaalit ovat keinotekoisia rakenteita, jotka koostuvat nanoskaalan
kappaleista ja joilla voi olla ominaisuuksia, joita luonnonllisilla materiaaleilla
ei ole. Näiden ominaisuuksien avulla metamateriaalien optisia vasteita voidaan
vahvistaa ja muokata. Erityisesti metamateriaalien epälineaarisia ominaisuuk-
sia on tutkittu laajalti, sillä metamateriaalit ovat varteenotettavia kandidaat-
teja äärimmäisen ohuiksi epälineaarisiksi optisiksi komponenteiksi.

Tässä väitöskirjassa käsitellään plamonisten metamateriaalien kehittämistä
epälineaarisen optiikan tarkoituksiin. Erityisenä tavoitteena oli soveltaa perin-
teisiä epälineaaristen vasteiden vahvistusmenetelmiä, eli vaihesovitusta ja moni-
resonanttivahvistusta metamateriaaleissa. Tämän lisäksi laajensimme epäline-
aaristen metamateriaalinen ominaisuuksia tapauksiin, joissa niiden epälineaari-
set vasteet ovat säädettäviä ja laajakaistaisia, mikä on vaikea toteuttaa perin-
teisillä epälineaarisilla materiaaleilla. Työssä esitettyjä tuloksia voidaan vas-
taisuudessa hyödyntää säädeltävien ja monitoimisien epälineaaristen kompo-
nenttien kehityksessä modernin, mikrofotoniikan komponentteihin.
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x̂, ŷ, ẑ Cartesian-coordinate unit vectors

a Nonlinear parameter of Lorentz model

c Speed of light

c.c. Complex conjugate

c0 Speed of light in vacuum

d Nanoparticle thickness

e Elementary charge

h Separation layer thickness

k Wavenumber

me Mass of an electron

n Refractive index

p Lattice periodicity

t Time

t Transmission coefficient

w Nanoparticle arm width

x, y, z Cartesian coordinates

BC Boundary condition

DFG Difference-frequency generation

DG Diffraction grating

ELA Empty-lattice approximation

FDTD Finite-difference time-domain

FEM Finite element method

IR Infrared

xv



LP Linear polarization

LSPR Localized plasmon metasurface

NIR Near-infrared

NLST Nonlinear scattering theory

NP Nanoparticle

OPO Optical parametric oscillator

OSA Optical spectrum analyzer

PBS Polarizing beam splitter

PML Perfectly matched layer

PMT Photomultiplier tube

QPM Quasi-phase-matching

RA Rayleigh anomaly

SFG Sum-frequency generation

SHG Second-harmonic generation

SLR Surface lattice resonance

THG Third-harmonic generation

UV Ultraviolet

VIS Visible

xvi



ORIGINAL PUBLICATIONS

Publication I Timo Stolt, Jeonghyun Kim, Sébastien Héron, Anna
Vesala, Younghwan Yang, Jungho Mun, Minkyung Kim,
Mikko J. Huttunen, Robert Czaplicki, Martti Kauranen,
Junsuk Rho, and Patrice Genevet. “Backward Phase-
Matched Second-Harmonic Generation from Stacked Meta-
surfaces”. In: Physical Review Letters 126 (2021), p. 033901.
doi: 10.1103/PhysRevLett.126.033901.

Publication II Timo Stolt, Anna Vesala, Heikki Rekola, Petri Karvinen,
Tommi K. Hakala, and Mikko J. Huttunen. “Multiply-
resonant second-harmonic generation using surface lattice
resonances in aluminum metasurfaces”. In: Optics Express
30.3 (2022), pp. 3620–3631. doi: 10.1364/OE.449198.

Publication III Timo Stolt and Mikko J. Huttunen. “Broadband frequency
conversion of ultrashort pulses using high-Q metasurface res-
onators”. In: New Journal of Physics 24.2 (2022), p. 025004.
doi: 10.1088/1367-2630/ac4a14.

Author’s contribution

Publication I The author carried out the experimental work with A. Vesala
and handled the data analysis. The author wrote the ma-
jority of the manuscript, except the description of sample
fabrication which was written by J. Kim. The manuscript
was edited and proofed by all the coauthors.

Publication II The author carried out the experimental work with A. Vesala
and handled the data analysis. The author wrote the major-

xvii

https://doi.org/10.1103/PhysRevLett.126.033901
https://doi.org/10.1364/OE.449198
https://doi.org/10.1088/1367-2630/ac4a14


ity of the manuscript, except the description of sample fab-
rication which was written by H. Rekola. The manuscript
was edited and proofed by all the coauthors.

Publication III The author carried out all the simulations and computa-
tional work, and wrote the majority of the manuscript. M.
J. Huttunen provided the research idea and helped with the
writing of the manuscript.

xviii



1 INTRODUCTION

Photonics studies light–matter interactions and their applications in technology.
Such studies have been a significant part of the human endeavor for millennia.
Based on reflections from metal mirrors, we have modified our appearances,
and lenses in telescopes have helped us to navigate the seas and gaze at the
stars. Additionally, the science of light has been a matter of great interest for
numerous famous scientists such as Isaac Newton and Albert Einstein, who have
laid the very foundations for photonics [1, 2]. To this day, photonics remains an
ever-growing field progressed by researchers such as the recent Nobel Laureates
Donna Strickland and Anne L’Huillier [3, 4].

These days, our entire global society is touched by photonics. Internet is
expanded across oceans and continents via laser pulses in optical fibers [5]. The
information coded in these pulses can be visualized on screens made of light-
emitting diodes or liquid crystals [6–8]. Sometimes, the image on the screen is
unclear, and our eyesight must be aided with glasses or fixed by laser surgery.
Beyond these few everyday examples, numerous fields of science rely on lasers
and other optical technologies. Optical sensing is used to monitor greenhouse
gases, entangled photons show promise for quantum technologies, and powerful
lasers pave the path towards fusion reactors [9–13].

The foundations of many laser technologies lie in nonlinear optics [14]. It
studies the interactions between matter and intense laser light, through which
the optical properties of the interacting material can change [15, 16]. For ex-
ample, nonlinear processes can change the refractive index for the interacting
laser light, enabling large propagation lengths in optical fibers and genera-
tion of ultrashort laser pulses, via formation of solitons and the process of
self-focusing [17]. Alternatively, nonlinear interaction can result in frequency
conversion of laser light through processes such as the second-harmonic gen-
eration (SHG), sum-frequency generation (SFG), difference-frequency genera-
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tion (DFG), and their quantum counter-part of spontaneous parametric down-
conversion [18–21]. These processes can be used to realize a broad variety of
light sources, varying from tunable lasers to photon pair sources [22, 23], and
they allow very accurate probing of nanoscale structures and interfaces [24, 25].

Unfortunately, nonlinear optical processes are, by their very nature, ex-
tremely inefficient. To reach practical efficiency levels, conventional nonlinear
optical technologies rely on phase-matching schemes that enable the coherent
build-up of the nonlinear signal during propagation in a nonlinear material [26,
27]. The most efficient devices also utilize optical resonators that enhance the
nonlinear interaction dramatically [28, 29]. The downside of these techniques
is that they make nonlinear optical components large, energy-intensive, and
limited in functionality. As a result, most nonlinear optical components are
incompatible with modern microphotonic devices and poorly suited for novel
technologies that would benefit from optical nonlinearities.

One promising avenue towards solving the problems listed above is to design
nonlinear optical metamaterials, i.e., artificial structures consisting of subwave-
length building blocks and exhibiting properties not typically found in natural
materials [30]. Majority of the early work on nonlinear metamaterials focused
on plasmonic metasurfaces consisting of metal nanoparticles (NPs) fabricated
on a glass substrate [31]. These structures utilized relatively large surface non-
linear responses of metals, and boosted them even further through the optical
response of individual metal NPs known as localized surface plasmon resonances
(LSPRs). Unfortunately, LSPRs are associated with high ohmic losses, which
results in low damage thresholds. This limits the achievable nonlinear conver-
sion efficiencies, as nonlinear processes scale superlinearly with the pump laser
intensities. Therefore, a lot of the recent work has focused on metamateri-
als where nanostructures are made of materials with low losses and high bulk
nonlinearities, such as lithium niobate and gallium arsenide [32–35].

Another paradigm shift in the field of nonlinear metamaterials has been
to move away from using individual nanoparticle responses, such as LSPRs
and Mie-type resonances, to using collective resonances, such as surface lattice
resonances (SLRs), guided-mode resonances, and bound states in the continuum
[36–39]. These responses are particularly interesting for nonlinear optics, due
to the associated narrow spectral features and strong local-field enhancements
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that dramatically boost nonlinear responses [40–42].

1.1 Aim and Scope of This Work

This Dissertation work is in the field of nonlinear metamaterials. The work aims
to progress the field by designing novel metamaterial components to both im-
prove their current efficiencies and open new functionalities. All presented ap-
proaches rely on resonant phenomena of plasmonic structures, more speficially,
on LSPRs and SLRs. The findings of this work are detailed in Publications
I, II, and III.

In Publication I, the phase-engineering capabilities of plasmonic structures
were utilized to achieve phase matching in stacks of evenly spaced metasurfaces.
Especially, the phase shifts of optical fields induced by LSPRs of individual plas-
monic NPs were utilized. Furthermore, the studied samples were designed for
the non-conventional back-propagating SHG, which demonstrates the flexibility
of our approach for even more complex processes.

In Publication II, multiply-resonant aluminum metasurfaces for SHG were
designed and characterized. This work is the proof-of-principle demonstration
of multiply-resonant operation based solely on SLRs. Additionally, the incident
angle dependence, i.e., spatial dispersion of SLRs was utilized to modify the
multiply-resonant conditions of our samples. This highlights the potential of
SLR-based metasurfaces for tunable photonic components.

In Publication III, a metasurface-based method for frequency conversion
of ultrashort laser pulses was proposed. A temporal focusing scheme, and the
strong local-field enhancements and spatial dispersion of SLRs were utilized
to enable broadband frequency conversion via SFG. Based on the performed
simulations, this approach surpasses the time–bandwidth limit typically associ-
ated with narrowband resonators. Thus, the proposed method is applicable in
addition to nonlinear optics to any optical processes involving ultrashort laser
pulses.
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1.2 Structure of the Thesis

This Thesis consists of 6 chapters that act as a introductory discussion for
the three publications presented at the end. First, we have the introductory
chapter with the more general background to photonics, nonlinear optics, and
metamaterials. In Chapter 2, we discuss the theoretical background of non-
linear optics. We focus on second-order processes of SHG and SFG, and in-
troduce phase matching as the conventional enhancement method of nonlinear
responses. Chapter 3 discusses plasmonic metasurfaces and their intrinsic re-
sponses, namely, LSPRs and SLRs. We also discuss how these resonances can
be used to boost nonlinear optical processes. In Chapter 4, we describe the
computational and experimental methods used in this work. In Chapter 5, we
summarize the results and findings of the three Publications in this Thesis.
The sixth and final chapter before the publications themselves discusses the
conclusions of the work. There, we summarize the work and take an outlook
to possible future directions of this research area.
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2 NONLINEAR OPTICS

Soon after the invention of laser, the field of nonlinear optics was born with the
demonstration of SHG in 1961 [18]. Since then, it has been the cornerstone of
numerous modern photonic technologies, ranging from simple laser pointers to
high-power pulsed lasers and photon-pair sources for emerging quantum tech-
nologies [16, 43]. In this chapter, we introduce the theoretical basis for the non-
linear light–matter interactions. We especially focus on the second-order pro-
cesses that form the foundation of the application examples mentioned above.
We also describe how nonlinear processes are governed by phase-matching con-
siderations. We show how phase matching can be used to build-up otherwise
weak nonlinear signals to a strong-enough level for practical applications.

2.1 Vector Description of Light

Classical physics describes light as a propagating electromagnetic (EM) wave
with electric and magnetic field components. Commonly, these components are
described as combinations of harmonic plane waves with wavelength in vacuum
λ, frequency ν, and velocity in vacuum c0 = λν. The time and space-dependent
electric Ẽ(r, t) and magnetic B̃(r, t) components of such waves can be written
using the following formalism:

Ẽ(r, t) = E0e
i(k·r−ωt) + c.c. , (2.1)

B̃(r, t) = B0e
i(k·r−ωt) + c.c. , (2.2)

where E0 and B0 are the amplitudes of electric and magnetic field components,
respectively, k is the wave vector, r is the position vector, ω = 2πν is the
angular frequency, t is time, i is the imaginary unit, and c.c. denotes the complex
conjugate. The tilde (̃ ) notation on Ẽ(r, t) and B̃(r, t) marks the fact that they
vary rapidly in time. We note here that k · r − ωt describes the phase of the
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EM wave, which is of paramount importance for numerous optical processes,
including nonlinear interactions, as we will especially see when discussing phase
matching.

We start our analysis with k which defines the propagation direction of the
EM wave. It is written in term of its Cartesian components kx, ky, and kz as

k = kxx̂+ kyŷ + kz ẑ , (2.3)

where x̂, ŷ, and ẑ are the unit vectors along the Cartesian coordinates. The
magnitude of k, i.e., the wavenumber k, is connected to the Cartesian compo-
nents and λ by

k = |k| =
√︂
k2x + k2y + k2z =

2π

λ
n , (2.4)

where n is the refractive index of the surrounding medium.
Next, we look into the oscillation direction of the electric and magnetic field

components, starting with the electric field. We can define that the amplitude
vector of the electric field is given by the equation

E0 = E0p̂, (2.5)

where E0 is the scalar amplitude of the electric field and p̂ is the unit vector
that defines the oscillation direction of the electric field, i.e., the polarization
of the EM wave.

In homogeneous media, plane waves do not diverge (∇· Ẽ) = 0). From this
we can get that

∇ · Ẽ = ik · Ẽ = 0 . (2.6)

This means that the electric field of an electromagnetic plane wave is per-
pendicular to the propagation direction (see Fig 2.1). Consequently, p̂ is also
perpendicular to k, and thus, the electric field oscillates on the plane that is
orthogonal to the propagation direction (see Fig. 2.1 a). The most common
type of such polarization is linear polarization (LP), where the electric field
oscillates along a single line on the aforementioned plane (see Fig. 2.1 b). We
note that many other polarization types, such as azimuthal, radial, and circular
polarization exist, and that they are very important for various technologies.
However, in all research done for this Thesis, we used only linearly polarized
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(a) (b)

Figure 2.1 (a) Light can be described as combinations of electromagnetic plane waves, for which,
the electric field component Ẽ and magnetic field component B̃ are orthogonal to the
wave propagation direction, described by wave vector k. (b) For linearly polarized light, Ẽ
oscillates along a single line.

light. Therefore, we assume linearly polarized light in the forthcoming discus-
sion.

From well-known Maxwell’s equations [44], the connection between plane-
wave like B̃(r, t) and Ẽ(r, t) can be derived to be

B̃(r, t) =
k

ω
× Ẽ(r, t) . (2.7)

The equation above illustrates that electric and magnetic field components are
perpendicular to each other and also to the propagation direction. In other
words, this means that planar EM waves are transverse waves (see Fig. 2.1 a).
Furthermore, the magnitudes of the electric and magnetic field components are
connected by the equation

⃓⃓
⃓B̃(r, t)

⃓⃓
⃓ = B0 =

n

c0
E0 . (2.8)

We can now write an equation for the irradiance, i.e., the average power per
unit area carried by the EM wave. Commonly it is given as [45]

I =
⟨︂
c20ϵ0

⃓⃓
⃓Ẽ(r, t)× B̃(r, t)

⃓⃓
⃓
⟩︂
T
=
nc0ϵ0
2

|E0|2 , (2.9)

where ⟨ ⟩T is the temporal average. Equation above connects the power of the
EM wave to E0, allowing us to neglect the magnetic components and focusing
on the electric field components in our following derivations. This selection is
valid for most of cases, as the magnetic interactions typically have negligible
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impact on the overall light–matter interactions.

2.2 Nonlinear Material Response

When light propagates through a material, it induces an electric polariza-
tion field P̃(r, t) inside the material. With the commonly valid assumption
of current-free and non-magnetic material, we can write a general wave equa-
tion for such situation as

∇2Ẽ(r, t) =
1

c20

∂2Ẽ(r, t)

∂t2
+ µ0

∂2P̃(r, t)

∂t2
, (2.10)

where µ0 is the vacuum permeability.
With weak incident light, we can assume that P̃(r, t) is linearly dependent on

the interacting electric field and given by the following convolution integral [15]

P̃(r, t) = ϵ0

∫︂ ∞

−∞

∫︂ ∞

−∞
χ(1)(r− r′, t− t′) · Ẽ(r− r′, t− t′)dr′dt′ , (2.11)

where χ(1)(r, t) is the linear susceptibility.
Often, the different field components are considered in terms of k and ω,

rather than in terms of r and t. In other words, the electric field is considered
as E(k, ω) and the susceptibility as χ(1)(k, ω), which can be calculated from
the Ẽ(r, t) and χ(1)(r, t) through Fourier transformations. Similarly, we can use
Fourier transforms and the convolution theorem to get the material polarization
as

P(k, ω) = ϵ0χ
(1)(k, ω) ·E(k, ω) . (2.12)

To simplify our following procedure, we make the common assumption that
χ(1) is independent on r and k. Thus, we only consider the quantities t and ω
from now on.

By inserting the P(ω) in to Eq. (2.10), we can solve for the speed of light in
an optical material as

c =
1√
ϵ0µ0

1√︁
1 + χ(1)(ω)

=
c0
n(ω)

, (2.13)

where we have defined n(ω) =
√︁
1 + χ(1)(ω) as the refractive index of the mate-

8



rial. The ω dependence of n is commonly known as refractive index dispersion.
With strong enough incident light, the linear assumption in Eq. (2.11) be-

comes inadequate, and the material polarization has to be considered as a power
series of higher-order components:

P̃(t) =ϵ0

(︃∫︂ ∞

−∞
χ(1)(t− t′) · Ẽ(t− t′)dt′

+

∫︂ ∞

−∞
χ(2)(t− t1; t− t2) : Ẽ(t1)Ẽ(t2)dt1dt2

+

∫︂ ∞

−∞
χ(3)(t− t1; t− t2; t− t3)

... Ẽ(t1)Ẽ(t2)Ẽ(t2)dt1dt2dt3 + · · ·
)︃
,

(2.14)

where χ(2) and χ(3) are the second- and third-order susceptibilities, respectively.
By performing Fourier transformations to the equation above, we can write

P(ω) as the sum of different frequency components as

P(ω) = P(1)(ω) +P(2)(ω) +P(3)(ω) + · · · (2.15)

In the equation above, P(1)(ω) is given by Eq. (2.12), while

P(2)(ω) = ϵ0χ
(2)(ω = ω1 + ω2) : E(ω1)E(ω2) (2.16)

is the second-order nonlinear polarization component, and

P(3)(ω) = ϵ0χ
(3)(ω = ω1 + ω2 + ω3)

...E(ω1)E(ω2)E(ω3) (2.17)

is the third-order nonlinear polarization component. We note that the frequen-
cies ωi can also have negative signs for nonlinear processes such as DFG.

Equations (2.16) and (2.17) describe how second-order and third-order non-
linear responses correspond to three-wave-mixing and four-wave-mixing pro-
cesses, respectively. In such processes, multiple EM waves participate in the
light–matter interaction in a nonlinear manner, allowing unique modifications
of interacting optical fields. For example, both second- and third-order inter-
actions can result in changes in the refractive index of the nonlinear material
that the incident laser light experiences. In this Thesis, however, we focus
on second-order effects that are more commonly used in frequency conversion
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processes.

2.3 Second-order Nonlinear Responses

As mentioned in the previous section, second-order nonlinear optical processes
involve three interacting waves. We shall now consider a situation, where the
incident electric field has two frequency components, and is therefore given by

E = E1e
−iω1t +E2e

−iω2t + c.c. (2.18)

The second-order polarization is then given by

P(2) = ϵ0χ
(2)E2, (2.19)

and also as a sum of its frequency components:

P(2) =
∑︂

n

P(ωn)e
−iωnt . (2.20)

Here, the various second-order polarization components can be written as [16]

P(2)(2ω1) = ϵ0χ
(2)(2ω1;ω1, ω1) : E

2
1 , (2.21)

P(2)(2ω2) = ϵ0χ
(2)(2ω2;ω2, ω2) : E

2
2 , (2.22)

P(2)(ω1 + ω2) = 2ϵ0χ
(2)(ω1 + ω2;ω1, ω2) : E1E2 , (2.23)

P(2)(ω1 − ω2) = 2ϵ0χ
(2)(ω1 − ω2;ω1,−ω2) : E1E

∗
2 , (2.24)

P(2)(0) = 2ϵ0

(︂
χ(2)(0;ω1,−ω1) : E1E

∗
1 + χ(2)(0;ω2,−ω2) : E2E

∗
2

)︂
. (2.25)

The complex conjugates are connected to the frequency components with neg-
ative frequencies by E∗(ω) = E(−ω). Therefore, we do not write down the
negative frequency counterparts of Eqs. (2.21)–(2.24), as they are the complex
conjugates of the shown frequency components.

P(2)(0) corresponds to optical rectification, a process where a static electric
field is created into the medium. The other four polarization components in
Eqs. (2.21)–(2.24) correspond to the physical processes where new frequency
components are created. P(2)(2ω1) and P(2)(2ω2) correspond to SHG, P(2)(ω1+
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ω2) to SFG, and P(2)(ω1 − ω2) to DFG. Even though DFG is commonly used
in many laser devices, such as optical parametric oscillators (OPOs), we focus
here on SHG, and its non-degenerate version SFG.

2.3.1 Second-harmonic Generation

SHG is a nonlinear optical process during which energy from two waves oscil-
lating at frequency ω is partially converted to a signal wave oscillating at a
doubled frequency 2ω (see Fig. 2.2 a). Its polarization components are given
by

Pi(2ω) = ϵ0
∑︂

jk

χ
(2)
ijk(2ω;ω, ω)Ej(ω)Ek(ω) , (2.26)

where indices i, j, and k correspond to the Cartesian components. Very often
the two incident fields for the process of SHG are from the same light source
and are in the same polarization state, i.e., j = k. In such a case, Eq. (2.26)
simplifies into

Pi(2ω) = ϵ0χ
(2)
ijj(2ω;ω, ω)E

2
j (ω). (2.27)

(a) (b)

Figure 2.2 (a) During second-harmonic generation (SHG), two pump photons with frequency ω are
annihilated and a signal photon with the doubled frequency 2ω is generated. (b) Sum-
frequency generation (SFG) is the non-degenerate version of SHG, where the two incident
photons have different frequencies ω1 and ω2, and the generated signal photon has the
summed frequency ω3.

The simplicity of SHG associated with Pi(2ω) in Eq. (2.27) explains why it
was SHG that was the first realized frequency conversion process [18]. It also
demonstrates why SHG is most convenient for converting infrared (IR) laser
light into the visible (VIS) region [16, 46]. Furthermore, the irradiance of the
SHG field is proportional to the square of the absolute value of Pi(2ω) (which
holds for any process where polarization acts as a source of radiation):

Ii(2ω) ∝ |Pi(2ω)|2 ∝
⃓⃓
⃓χ(2)

ijj(2ω;ω, ω)
⃓⃓
⃓I2(ω). (2.28)
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The equation above tells us also that the emitted SH power depends quadrati-
cally on the power of the pump beam. This illustrates the fact that nonlinear
processes scale with higher powers of the incident power, resulting in stronger
nonlinear optical responses when pulsed laser light with large peak intensity
is used. In addition, the quadratic power dependence is a key characteristic
of SHG, and it is thus commonly used to confirm that the detected signal is
indeed of second-order origin [47–50].

2.3.2 Sum-frequency Generation

SFG is the non-degenerate version of SHG, where the two incident fields oscil-
late at different frequencies ω1 and ω2 and the signal field oscillates at the sum
frequency ω3 = ω1 + ω2 (see Fig. 2.2 b). It corresponds to P(ω3), given by Eq.
(2.23), for which the Cartesian components are given by

Pi(ω3 = ω1 + ω2) = ϵ0
∑︂

jk

∑︂

(1,2)

χ
(2)
ijk(ω3;ω1, ω2)Ej(ω1)Ek(ω2) . (2.29)

Consequently, the SFG irradiance becomes

Ii(ω3) ∝ |Pi(ω3)|2 ∝
⃓⃓
⃓χ(2)

ijk(ω3;ω1, ω2)
⃓⃓
⃓I(ω1)I(ω2). (2.30)

Similar to SHG, SFG is also used for up-conversion of IR and VIS region laser
light [16]. Especially, SFG is used to realize wavelength-tunable laser sources,
by having a tunable IR laser and a wavelength-fixed IR laser as inputs. Ad-
ditionally, subsequent SFG and SHG processes can be used to frequency-triple
laser light [46, 51, 52]. This process is also known as cascaded third-harmonic
generation (THG), and it can be used to convert IR laser light into the ultra-
violet (UV) region.

2.4 Second-order Susceptibility

We now look into the properties of the second-order susceptibilities. For sim-
plicity, we consider the SFG susceptibility χ(2)(ω3;ω1, ω2) in a lossless medium.
With this approach, we define the typical symmetry and birefringence aspects
for nonlinear materials, and provide order-of-magnitude estimations for non-
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linear susceptibilities. We note that the following considerations are valid for
other second-order, and furthermore, all even-order nonlinear optical processes.

2.4.1 Second-order Responses in Centrosymmetric Materials

Second-order processes, as any even-order nonlinear processes, are highly im-
pacted by the structural symmetry of the nonlinear material. To illustrate this
impact, we consider the general case of SHG in a centrosymmetric material,
given by

P(2ω) = ϵ0χ
(2)(2ω;ω, ω)E2(ω) . (2.31)

The spatial inversion r → −r changes the signs of both E(ω) and P(2)(2ω). By
investigating the nonlinear polarization, we find that

−P(2ω) = ϵ0χ
(2)(2ω;ω, ω)(−E)2(ω) = ϵ0χ

(2)(2ω;ω, ω)E2(ω) = P(2ω) ,

(2.32)
which is true only if χ(2)(2ω;ω, ω) = 0, indicating that centrosymmetric materi-
als do not exhibit second-order nonlinear responses. Therefore, the conventional
second-order nonlinear materials, such as lithium niobate (LiNbO3) and beta
barium borate (β-BaB2O4, BBO), have crystal structures with broken inversion
symmetry.

2.4.2 Miller’s Rule

One approach to describe optical properties of materials is to use the Lorentz
atom model [53]. It describes the linear susceptibility as

χ(1)(ω) =
N(e2/me)

ϵ0D(ω)
, (2.33)

where N is the atomic number density of the material, while e and me are the
charge and mass of an electron. The denominator function D(ω) is given by

D(ω) = ω2
0 − ω2 − 2iωγ, (2.34)

where ω0 is the resonance frequency of the material and γ is the damping
constant of the resonance.
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With the equations above we can make an order-of-magnitude estimations
for χ(1) in typical lossless optical materials. We assume that N ∼ 1/d3, where
d ≈ 3Å is the separation between atoms in the material. Second, we assume
non-resonant conditions, i.e., ω0 ≫ ω, where D(ω) ≈ ω2

0 and making χ(1)(ω)

positive and real-valued. By using typical solid matter values e = 1× 10−19C,
me = 9.1× 10−31 kg, and ω0 ≈ 1× 1016 rad/s, we get that

χ(1)(ω) =
e2

ϵ0meω2
0d

3
≈ 1.2 . (2.35)

This results in a refractive index value of n(ω) =
√︁
1 + χ(1)(ω) ≈ 1.5, which is

in accordance with the measured refractive indices for typical optical glasses.
The Lorentz model can be generalized to describe also the nonlinear suscep-

tibilities. Particularly, the second-order susceptibility is given by

χ(2)(ω3;ω1, ω2) =
N(e3/m2

e)a

ϵ0D(ω1)D(ω2)D(ω3)
, (2.36)

where a is a nonlinear parameter for the Lorentz model [16]. Comparing Eqs.
(2.33) and (2.36) allows us to rewrite the second-order susceptibility in terms
of linear susceptibilities as

χ(2)(ω3;ω1, ω2) =
ϵ20mea

N2e3
χ(1)(ω3)χ

(1)(ω1)χ
(1)(ω2). (2.37)

From the equation above we can define Miller’s delta [54]

∆ =
ϵ20ma

N2e3
=

χ(2)(ω3;ω1, ω2)

χ(1)(ω3)χ(1)(ω1)χ(1)(ω2)
, (2.38)

which is nearly constant for most solids.
We can use the Miller’s rule in Eq. (2.38) to estimate the magnitude of the

second-order susceptibility. Similar to the order-of-magnitude estimations of
χ(1)(ω), we again assume an off-resonant conditions in a typical optical material
and that a ∼ ω2

0
d . Now, we get that

χ(2)(ω3;ω1, ω2) =
e3

ϵ0m2
eω

4
0d

4
≈ 6.9 pm/V, (2.39)
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which agrees well with measured susceptibility values for common nonlinear
crystals [16].

The first conclusion from the discussion above, is that in lossless nonlinear
materials, second-order nonlinearities are extremely weak. This can be seen
from the ratio between the linear and second-order polarization magnitudes
given by

P (2)

P (1)
=
χ(2)

χ(1)
E ≈ 5.8× 10−12m/VE (2.40)

For P (2) to have as strong contribution as the linear polarization, the incident
electric field should have an amplitude of E ≈ 1.7 × 1011V/m corresponding
to I ≈ 6PW/cm2. Such irradiance levels can be achieved only with extremely
powerful pulsed lasers, and would be destructive for majority of common optical
materials. Furthermore, in such extreme conditions, the material responses
could not be described with the perturbative power series in Eq. (2.14).

The second conclusion from Miller’s rule is that highly refractive materials
have larger χ(2). This is due to the fact, that materials get more refractive
near resonant conditions (ω → ω0), where D(ω) decreases and χ(1)(ω) in-
creases. Naturally, χ(2) reaches its maximum value under resonant conditions
(ω = ω0), which is commonly exploited to enhance nonlinearities in nanoscale
materials [31, 55]. Although material resonances increase χ(2), they also induce
considerable losses limiting the overall nonlinear responses. Therefore, conven-
tional nonlinear optical devices are based on highly transparent materials and
compensate for the weak nonlinearities with phase-matching techniques (see
below) and optical resonators.

2.4.3 Birefringence and Second-order Susceptibilities

Similar to nonlinear susceptibilities, also the linear susceptibility χ(1)(ω) is a
tensor. Particularly, it is a second-rank tensor, for which the tensor components
χ
(1)
ij (ω) connect E(ω) to P(1)(ω). Accordingly, the linear material polarization

components can be written as

P
(1)
i (ω) = ϵ0

∑︂

j

χ
(1)
ij (ω)Ej(ω). (2.41)
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Now, the refractive index of the material along the ith component of P(1)(ω),
with the incident field along the direction j, can be solved as

ni(ω) =

√︂
1 + χ

(1)
ij (ω). (2.42)

In the case of non-magnetic materials, χ(1)(ω) can be diagonalized, i.e., χ(1)
ij = 0

for i ≠ j. For example, this property is associated with uniaxial materials, for
which the refractive index becomes

ni(ω) =

√︂
1 + χ

(1)
ii (ω). (2.43)

From the equations above, we can see that for an anisotropic material, the
refractive index depends on the polarization of incident light. This property is
commonly known as birefringence.

Anisotropy has impact also on the nonlinear properties of the material. First
off all, the fact whether χ(2)

ijk is zero or not depends on both material symmetry
properties (arising from its crystalline structure) and the polarization of the
interacting fields [16]. Consequently, second-order processes are commonly di-
vided into three types in terms of polarization states: type 0, type I, and type
II (see Fig. 2.3). In type 0, all three interacting fields have the same polar-
ization. For such processes, the relevant susceptibility component is χ(2)

iii . In
type I, two incident fields have the same polarization which is orthogonal to the
polarization of the nonlinear signal field. Consequently, the relevant suscepti-
bility component for type I processes is χ(2)

ijj . Finally, the type II processes have
the two incident fields associated with orthogonal polarizations with respect to
each other, while the signal field polarization is aligned with one of the incident
field polarizations. The relevant susceptibility components for type II processes
therefore are χ(2)

iji and χ(2)
iij .

Birefringence also affects the magnitude of the nonzero tensor components
through Miller’s rule. For example, uniaxial crystals have Miller’s delta written
as

∆ijk =
χ
(2)
ijk(ω3;ω1, ω2)

χ
(1)
ii (ω3)χ

(1)
jj (ω1)χ

(1)
kk (ω2)

. (2.44)

From the equation above, it is now obvious that the nonlinear response of the
material depends on both dispersion and birefringence, i.e., the frequency- and
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Figure 2.3 Three types of second-order processes in terms of polarization states of the three interact-
ing waves. In type 0 processes, all interacting waves have the same polarization. In type I
processes, the two fundamental waves have the same polarization which is orthogonal to
the signal polarization. In type II processes, the two fundamental waves are orthogonally
polarized.

polarization-dependence of the refractive indices at the interacting frequencies.

2.4.4 Second-order Susceptibility of Interfaces

In addition to anisotropic crystal structures, inversion symmetry breaks also
at interfaces between two optically different materials [56]. Therefore, SHG
and SFG are often used to investigate surface properties [24, 25, 57, 58]. To
illustrate this point further, we consider interfaces on the xy-plane, for which
the nonlinear processes are associated with surface susceptibilities χ(2)

surf . We
focus here on two types of interfaces. The first type is an isotropic interface
(C∞v symmetry class). The second type is an interface with the yz-plane as
its only mirror plane, i.e., an interface belonging to the C1v symmetry class.

For an isotropic interface, the inversion symmetry is broken only along the
z-axis, i.e., the surface normal. For such interfaces, the nonzero tensor com-
ponents of χ(2)

surf are χ(2)
xxz = χ

(2)
xzx = χ

(2)
yyz = χ

(2)
yzy, χ

(2)
zxx = χ

(2)
zyy, and χ

(2)
zzz. For

a non-zero second-order response, it is thus required that at least one of the
interacting fields has components along the z-axis. This results in the fact that
isotropic interfaces do not have responses with normally incident pump and sig-
nal fields, but with non-zero pump or signal propagation angles, the response
becomes nonzero.

For anisotropic interfaces, the inversion symmetry is broken along to the
mirror planes. For such plane, second-order processes do not anymore require
nonzero incidence angles. For the C1v symmetry class interfaces, the yz-plane
is the mirror plane, and the nonzero tensor components for pump and signal
field propagating along the z-axis are χ(2)

yyy, χ
(2)
yxx, and χ(2)

xxy = χ
(2)
xyx. We list all
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the nonzero tensor components for an isotropic and a C1v interface in Table 2.1.

Symmetry class Mirror plane Independent nonzero elements

Isotropic (C∞v)
xxz = xzx = yzy = yyz,
zxx = zyy, zzz

C1v yz-plane
yyy, yxx, xxy = xyx, yyz =
yzy, xxz = xzx, zyy, zxx,
yzz, zyz = zzy, zzz

Table 2.1 Independent nonzero χ(2)
surf components for an isotropic interface and an interface belong-

ing to the C1v symmetry class [56]. Both interfaces are along the xy-plane.

2.5 Nonlinear Scattering Theory

So far, we have considered how material properties (χ(2)), and incident power
levels (see Eqs. (2.30) and (2.28)) impact the nonlinear responses. This consid-
eration however lacks in the wave-mixing aspect. To fully consider the interac-
tion between incident and generated fields, we can utilize nonlinear scattering
theory (NLST). Instead of an uniform bulk material, NLST considers an optical
medium as a collection of point-like scatterers, each located at position r (see
Fig. 2.4).

The starting point of NLST is the calculation of the local electric field
Eloc(ω, r) induced by an incident electric field Einc(ω, r). These two are con-
nected by the local-field corrections L(ω, r) [59]:

Eloc(ω, r) = L(ω, r)Einc(ω, r) . (2.45)

We note that L(ω, r) is a tensor quantity, and thus, the Eloc(ω, r) is not neces-
sarily aligned with Einc(ω, r).

In accordance with the discussion in Section 2.2, Eloc(ω, r) induces local
material polarization Ploc(ω, r), which can act as a source of radiation. To
estimate the strength of this emission in the far-field domain, we need to use
Lorentz reciprocity. It connects far-field emission Efar(ω) from a single scatterer
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(1) (2) (3)

(4)

Figure 2.4 The four calculation steps in NLST: (1) The calculation of the local nonlinear polarization
P2

loc(2ω, r) induced by the pump fieldEinc(ω) on an individual subwavelength scatterer.
(2) The calculation of the local field at the signal wavelength E∗

loc(2ω, r) induced by a
vacuum field from the detector E∗

inc(2ω) on the same scatterer. (3) The calculation of
far-field emission from the scatterer, which is proportional to E∗

loc(2ω, r) · P
(2)
loc(2ω, r).

(4) The calculation of the total response from a larger nonlinear material with the mode-
overlap integral

∫︁
V
E∗

loc(2ω, r) ·P
(2)
loc(2ω, r)dV .

to the local material polarization as [60]

Efar(ω) ∝ E∗
loc(ω, r) ·Ploc(ω, r) , (2.46)

where E∗
loc(ω, r) corresponds to the local field induced by a vacuum field prop-

agating from the detector E∗
inc(ω). Furthermore, the calculated Efar(ω) gives

the magnitude for the far-field-domain electric field component that is aligned
with E∗

inc(ω).
The total far-field response of the studied material is then the superposition

of all the scattered fields, which can be calculated with the following mode-
overlap integral over the total volume V of the optical material:

Efar,tot(ω) ∝
∫︂

V
E∗

loc(ω, r) ·Ploc(ω, r) dV . (2.47)

For nonlinear processes, Eq. (2.47) becomes an overlap integral between local
field profiles at the interacting wavelengths. For SFG, it can be written as

Efar,tot(ω3) ∝
∫︂

V
E∗

loc(ω3, r) ·
(︂
χ(2)(ω3;ω1, ω2) : Eloc(ω1, r)Eloc(ω2, r)

)︂
dV ,

(2.48)
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and for SHG as

Efar,tot(2ω) ∝
∫︂

V
E∗

loc(2ω, r) ·
(︂
χ(2)(2ω;ω, ω) : E2

loc(ω, r)
)︂
dV . (2.49)

From the equations above we can draw a few fundamental conclusions. First,
they highlight even further that nonlinear processes can be made more efficient
by increasing the incident laser powers (step (1) in Fig. 2.4). Therefore, many
nonlinear technologies rely on ultrashort laser pulses with extreme peak power
levels. Second, nonlinear responses are also affected by the properties of the
field oscillating at the signal frequency (step (2) in Fig. 2.4). Thus, a com-
mon enhancement technique is to increase irradiance levels at the interacting
wavelengths by coupling pump and signal fields into an optical resonator or
other resonant system. Third, Eq. (2.46) indicates that strong nonlinear re-
sponses require good alignment between E∗

loc(ω3, r) and P
(2)
loc(ω3, r) (step (3)

in Fig. 2.4). In other words, E∗
inc(ω3) arriving from the detection direction

should induce the same dipole moments that P
(2)
loc(ω3, r) is associated with.

Fourth, the mode-overlap integral in Eqs. (2.48) and (2.49) illustrate the fact
that nonlinear processes are highly dependent on the interference between the
nonlinear signals generated in the different parts of a nonlinear material (step
(4) in Fig. 2.4). Constructive interference can result in build-up of the non-
linear response, while destructive inference will shut it down. In conventional
nonlinear devices, the constructive interference and signal build-up is ensured
with a technique called phase matching, which we describe in more detail next.

2.6 Phase matching

Conventional nonlinear materials are transparent in the VIS and near-infrared
(NIR) regions, where the majority of optical processes occur. As Miller’s rule
illustrates, transparency means also that nonlinear susceptibilities are only of
the order of ∼1 pm/V. This intrinsic weakness can be overcome with phase-
matching techniques that allow the nonlinear signal to build up during prop-
agation in a nonlinear material. Next, we follow the procedure from Boyd’s
Nonlinear Optics [16] to show the basic concepts of phase matching.
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2.6.1 Wavevector Mismatch

To start our derivation of phase-matching conditions, we consider three plane
waves at two incident frequencies (ω1 and ω2) and a summed frequency (ω3 =

ω1 + ω2) that propagate along the z-axis. Their electric field amplitudes can
be written in the form of

E(ωj , z) = Aj(z)e
ikjz, (2.50)

where Aj(z) is the spatial amplitude term associated with frequency ωj , and
kj = nj

2π
λj

.
The evolution of Aj(z) while propagating through the nonlinear optical ma-

terial can be described as:

dAj(z)

dz
= i

kj
2n2jϵ0

PNL(ωj , z)e
−ikjz . (2.51)

For SFG, the electric field components are E(ω1, z) = A1(z)e
ik1z, E(ω2, z) =

A2(z)e
ik2z, and E(ω3, z) = A3(z)e

ik3z. The corresponding nonlinear polar-
ization at the signal frequency is PNL(ω3) = ϵ0χ

(2)A1(z)A2(z)e
i(k1+k2)z. To

consider the growth of A3(z), we put these terms into Eq. (2.51) and get that

dA3(z)

dz
= i

k3χ
(2)

n23
A1(z)A2(z)e

i∆kz . (2.52)

Here, we have defined wavevector mismatch ∆k = k1 + k2 − k3.
Next, we consider the evolution of the SFG field after propagating through

a second-order nonlinear crystal of length Lc. We assume also that the pump
amplitudes remain constant, i.e., A1(z) = A1 and A2(z) = A2. We start by
integrating Eq. (2.52) from z = 0 to z = Lc, which yields

A3(Lc) = i
k3χ

(2)A1A2

n23

(︃
ei∆kLc − 1

i∆k

)︃
. (2.53)

By inserting A3(Lc) into Eq. (2.9), we get the SFG irradiance I3(Lc) in terms
of pump irradiances I1 and I2, crystal length Lc, and the wavevector mismatch
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∆k:

I3(Lc) =
2k23

⃓⃓
χ(2)

⃓⃓2
I1I2

ϵ0c0n1n2n23
L2
csinc

2(∆kLc/2) . (2.54)

From Eq. (2.54) we can draw the following conclusions. First, the SF in-
tensity scales linearly with the pump irradiances, emphasizing the importance
of high-intensity pump lasers for nonlinear optics. Second, in perfect phase-
matching conditions, i.e., ∆k = 0, I3 scales quadratically with the propagation
distance (see Fig. 2.5). This is due to the fact that the sinc-term has its max-
imum value at zero. If ∆k ≠ 0, the generated signal does not build up during
propagation, but rather oscillates periodically between a low value and zero
(see Fig. 2.5) [61]. This oscillation occurs in periods of coherence length given
by Lcoh = 2/∆k.

0 1 2 3 4 5 6 7
z/Lcoh

-2

0

2

4

6

8

10

S
F

G
 F

ie
ld

 A
m

pl
it

ud
e 

(a
.u

.)

k = 0
k 0

QPM

Figure 2.5 Evolution of SFG field amplitude over propagation distance in a nonlinear material. If the
process is perfectly phase matched (blue line), i.e., ∆k = 0, the field amplitude scales
linearly with the propagation length. If ∆k ̸= 0 (red line), the signal does not build
up, but rather keeps oscillating between two relatively small values. If ∆k = 0 cannot
be achieved, it can be circumvented by using quasi-phase-matching (QPM). With QPM
(yellow line), the field amplitude increases quasi-linearly with the propagation.

2.6.2 Perfect Phase-matching Conditions

Unfortunately, perfect phase-matching conditions are hard to achieve in natural
materials. This effect can be easily shown by looking more into ∆k in terms of
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interacting wavelengths and refractive indices. For SFG,

∆kSFG = k1 + k2 − k3 =
2πn1
λ1

+
2πn2
λ2

− 2πn3
λ3

. (2.55)

and for SHG,

∆kSHG = 2k1 − k3 = 2
2πn1
λ1

− 2πn3
λ1/2

=
4π

λ1
(n1 − n3) . (2.56)

As we mentioned above, perfect phase matching requires that ∆k = 0. For
forward SHG, this would mean that n1 = n3, which is hard to fulfill in dispersive
materials where refractive indices change with frequencies. The same can be
concluded for SFG, for which the phase-matching condition turns out to be

n3 − n2 = (n1 − n2)
λ3
λ1
. (2.57)

Yet again, dispersion raises problems, as n3 > n2 > n1 for typical optical
materials. Consequently, the two sides of Eq. (2.57) have opposite signs.

Perhaps the most common way to achieve perfect phase matching is to use
type I or type II processes and utilize birefringence of nonlinear materials [26,
62]. When the interacting fields have different polarizations, they can experi-
ence refractive indices for which phase-matching conditions are fulfilled, over-
coming the dispersion-caused problems. Since birefringence is highly dependent
on the crystal orientation and temperature, both tilt and temperature of the
nonlinear material are often used to tune, control, and stabilize phase-matching
conditions [46, 63]

2.6.3 Quasi-phase-matching

Another common method to overcome nonzero ∆k is known as quasi-phase-
matching (QPM) [27, 64–66]. In QPM materials, the nonlinear crystal is pe-
riodically poled, i.e., one of the crystal axes is periodically inverted. Conse-
quently, the sign of the relevant χ(2) tensor is periodically changed along the
propagation direction. This periodic inversion of the χ(2) sign can be used to
compensate the nonzero ∆k. With fulfilled QPM, the signal amplitude will
build up quasi-linearly during propagation, with some oscillatory features (see
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Fig. 2.5). Next, we will explain the QPM mechanism in more detail.
As a simple example, we consider the situation where the sign of χ(2) is

changed twice within a poling period Λ. Then, χ(2)(z) can be expressed as[16]

χ(2)(z) = χ(2)Gmeikmz , (2.58)

where km = 2πm/Λ and Gm = (2/mπ) sin(mπ/2).
By substituting χ(2)(z) into Eq. (2.53), we see that the wavevector mismatch

now becomes
∆kQ = k1 + k2 − k3 + km . (2.59)

As Gm, and consequently χ(2)(z), decrease with increasing m, it is wise to
achieve QPM for the first-order interaction with m = −1. The wavevector
mismatch then becomes

∆kQ = k1 + k2 − k3 − 2π/Λ , (2.60)

which becomes zero, i.e., QPM is achieved when

Λ = 2π/(k1 + k2 − k3) = 2Lcoh . (2.61)

Similar to birefringent phase mathching, QPM can be modified by, e.g., tilt-
ing the nonlinear crystal, which changes Λ. Unlike birefringent phase matching,
however, QPM can be used also for type 0 processes, allowing efficient use of
materials, such as lithium niobate, for which a χ

(2)
iii tensor component is the

largest one. QPM also allows phase matching more sophisticated processes,
such as broadband and adiabatic frequency conversion [67, 68], and backward
nonlinear processes [69–72], which we discuss next.

2.6.4 Backward Second-order Processes

So far, we have discussed forward nonlinear processes, where all interacting
beams propagate along the same direction. Sometimes however, it is more ben-
eficial to use so called backward processes, where the signal beam propagates to
opposite to the direction of the pump beams. Such processes can be used, e.g.,
for cascaded third-order processes [73]. Cascaded THG, e.g., results from SFG
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between pump and SH signal beams. Interestingly, cascaded THG becomes
more efficient with backward SHG, as then both the pump and SH fields have
their maximum amplitude at the input interface of the nonlinear crystal.

In backward processes, the sign of the signal wavenumbers changes, and the
wavevector mismatch for backward SHG becomes

∆kSHG,bw = 2k1 + k2 , (2.62)

and for backward SFG

∆kSFG,bw = k1 + k2 + k3 . (2.63)

From Eqs. (2.62) and (2.63), we can again derive the phase-matching condi-
tions. For backward SHG, the condition becomes n1 = −n3, and 1

λ1
(n2−n1) =

1
λ3
(n3 + n2) for backward SFG. Both conditions are practically impossible to

fulfill in transparent materials were refractive indices are all positive and rel-
atively close to each other. Therefore, traditional nonlinear materials must
rely on QPM for achieving efficient backward processes, through the additional
momentum term km.
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3 METAMATERIALS AND NONLINEAR OPTICS

Metamaterials are artificial structures consisting of subwavelength building
blocks, typically metal or dielectric NPs, on a glass substrate [74]. With in-
telligent selection of the building block properties, such as their size, shape,
and mutual orientation, the bulk metamaterial can be set to exhibit optical
properties not often found in nature. For example, negative refractive index,
subwavelength field-confinement, and nanoscale phase control of optical fields
have been demostrated in metamaterials [75–80]. These unique properties en-
able a plethora of novel flat free-space components, such as metasurface lenses,
polarizers, antireflectors, and holograms [81–88].

In this Chapter, we discuss the physical phenomena relevant for our research
on metasurfaces. We start with the description of the individual NP responses,
namely LSPRs. Then, we introduce the theory behind SLRs, which arise from
interparticle coupling in periodic NP arrays. We finish the theoretical discus-
sion of this Thesis with the description of nonlinear properties of plasmonic
metasurfaces using the NLST.

3.1 Localized Surface Plasmon Resonances

The electromagnetic properties of metals are governed by the collective oscilla-
tions of their conduction electrons, also known as plasmons [89]. In the case of
metallic NPs, plasmons are confined to the vicinity of the interfaces between the
metal structure and the surrounding dielectric material, and are thus usually
referred to as localized surface plasmons (LSPs) [90] (see Fig. 3.1 a). Under
resonant conditions, incident light will be coupled to the LSP modes of the
NPs. As a result, electric dipoles are formed, giving rise to strong electric fields
at vicinity of the NP (see Fig. 3.1 b). This resonant behavior is known as local-
ized surface plasmon resonance (LSPR), which can be seen as relatively broad
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spectral features near the resonance wavelength λ0 in, e.g., the transmission
spectrum of a plasmonic structure (see Fig. 3.1 c).

y

|E|

z
x

min max(b)(a)

+ –

(c)

Figure 3.1 Schematic illustration of localized surface plasmon resonance (LSPR). (a) When light in-
teracts with a metallic NPs, it induces plasmons on the NP surfaces. (b) LSPR occurs,
when incident light is in resonance with the surface plasmons and is confined onto the NP
surface. As a result, the electric field near the NP is increased dramatically. (c) LSPRs are
visible in transmission spectra (black) as resonance dips at the resonant wavelength λ0.
NPs also induce a phase shift (red) to the light field interacting with the NPs. Near λ0, the
phase shift becomes very wavelength-dependent.

The spectral location of LSPR is tightly connected to the dimension along
which plasmon oscillations occur, also known as the plasmon length [91]. It de-
pends on mumerous factors, including refractive index of the material surround-
ing the NPs, and the material choice of the NPs themselves. Most importantly,
the plasmon length is related to the NP shape and size. The most obvious con-
clusion from this is that larger NPs have longer resonance wavelengths. The
plasmon length can also vary along different directions of the NP shape in, e.g.,
triangular, rectangular, or ellipsoidal NPs. In other words, this happens with
anisotropic NP shapes. As plasmon oscillations follow the polarization of the
incident light, the plasmon length and λ0 become polarization dependent.

One example of aninsotropic NP shapes is the V-shape (see Fig. 3.2), where
two NP arms are opened symmetrically with respect to the NP symmetry axis
(y-axis). When incident light is y-polarized, the plasmon oscillations occur sym-
metrically with respect to y-axis and along the two NP arms. For x-polarized
light, plasmon oscillations occur along the whole length of the combined two
arms. Consequently, the LSPR for x-polarized light occurs at significantly
longer wavelength than the LSPR for y-polarized light. This polarization-
dependence is also highly tunable through, e.g., modifying the angle between
the two NP arms.
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Figure 3.2 In V-shaped NPs, plasmon oscillation directions associated with x- and y-polarized light
differ considerably. Consequently, LSPRs in such NPs are polarization dependent, with
different resonance wavelengths λx and λy , for x- and y-polarized light, respectively.

In addition to resonant coupling and local field enhancements, plasmonic
NPs also scatter incident light, which induces phase shifts δ into the interacting
light field. The magnitude of δ is highly wavelength-dependent, especially near
λ0 (see Fig. 3.1 c). In a simplified singly-resonant system, δ = π if λ ≪ λ0,
δ = π/2 if λ = λ0, and δ = 0 if λ ≫ λ0. As λ0 is highly dependent on the NP
shape and size, the NP geometry provides a flexible method for varying δ. This
enables nanoscale phase-control, which has been used in, e.g., holography and
beam steering [92–94]. In this Thesis, we utilized the wavelength-dependence of
δ to achieve phase matching for SHG from stacked metasurfces in Publication
I.

3.2 Surface Lattice Resonances

The most typical type of plasmonic metasurface is a NP grating, where the NPs
are arranged in a periodic lattice, such as square, rectangular, or honeycomb
lattice [95]. In such cases, the NP array also acts as a diffraction grating,
and light scattered by the NPs can be coupled to the diffraction modes of the
grating. When the coupling happens along the metasurface plane, the NPs
induce propagating surface waves that intensify local-field hotspots on the NP
surfaces (see Fig. 3.3 a). This phenomenon is known as SLR, which occurs near
the Rayleigh anomaly (RA) wavelength of the lattice, at which the diffracted
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Figure 3.3 (a) When plasmonic NPs are arranged in a periodic array, their light-induced dipoles can
couple constructively, resulting in a propagating surface wave. Incident light can couple
into these surface modes, giving rise to a collective response known as surface lattice
resonance (SLR). (b) SLRs have much higher quality factors (Q-factors) than the individual
nanoparticle responses, such as localized surface plasmon resonances (LSPRs), have.
(c)-(d) High-Q SLRs result in much stronger local-field enhancements than low-Q LSPRs.

wave propagates along the diffraction grating [96]. For one dimensional grating
and normally incident illumination, the RA wavelength is given as

λRA = np, (3.1)

where p is the grating periodicity.
Similar to other collective responses, such as guided mode resonances and

bound states in the continuum [38, 97], SLRs are very selective in terms of
incident polarization states, incidence angle, lattice periodicity, and the sur-
rounding refractive index profile [98–104]. Therefore, SLRs show high potential
for, e.g., sensing and lensing [105–107]. This sensitivity of SLRs can be seen as
spectral features that are much narrower than the ones associated with LSPRs
(see Fig. 3.3 b). Such differences are often expressed in terms of quality factors
(Q-factors), calculated by

Q =
λ0
∆λ

, (3.2)
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where ∆λ is the full-width of half-maximum (FWHM) of a spectral resonance
feature. Typical LSPRs have Q ≤ 10 while SLRs often have Q of several
hundreds [108], with the plasmonic SLR world record being Q ≈ 2400 [109].

High Q-factors and narrow linewidths indicate long lifetimes for SLR states.
Consequently, field amplitudes at the local-field hotspots near the NP inter-
faces build up stronger than in the case of LSPRs. Due to this strong local-
field enhancement, SLRs have been utilized for example in photovoltaics and
lasing [110, 111].

3.3 Polarization Dependence and Spatial Dispersion of Surface
Lattice Resonances

The RA wavelengths in plasmonic metasurfaces can be estimated with the
so called empty-lattice approximation (ELA), which simply considers the lat-
tice geometry and wave vectors of incident and diffracted waves. It does not
consider individual NP properties, which can shift, broaden, and weaken the
occurring SLRs. To consider and optimize individual NP properties for the
occurring SLRs, computational models such as discrete-dipole approximation
or lattice-sum approach could be used [112–114]. However, the more rigorous
and sophisticated tools need a lattice configuration as a starting point. For this
purpose, ELA is a powerful and fast tool. Here, we utilize ELA to calculate
RA wavelengths in rectangular NP lattices, which we used in Publications II
and III.

Let us consider a rectangular NP array with periodicities px and py along
the metasurface x- and y-coordinates, respectively (see Fig. 3.4 a). For such an
array, the RA wavelengths are given by [115]

λi,j = −A+
√︁
A2 −B, (3.3)

where i and j are diffraction orders along x- and y- coordinates, respectively.
The terms A and B are given by

A =
sin θ

(i/px)2 + (j/py)2

(︃
i sinϕ

px
+
j cosϕ

py

)︃
(3.4)
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Figure 3.4 (a) Formation of surface lattice resonances on a rectangular array depends on numerous
factors: incident angle θ, azimuthal angle ϕ, refractive index n, and lattice constants px
and py . In-plane parallel SLRs form along the axis which is orthogonal to polarization of
incident light. For x-polarized light (red waves), SLR wavelength λx depends on θy and
py , and for y-polarized light, it depends on θx and px. Diagonal SLRs (blue waves) occur
for both polarizations at the same wavelength λd. (b) With px ≠ py , the formation of
parallel SLRs becomes polarization-dependent as λx ≠ λy . (c) SLR are also spatially
dispersive, i.e., angle-dependent. With θ = 0◦ (solid line), SLRs corresponding to positive
(+i) and negative (−i) diffraction orders occur at the same wavelength λ±i. With θ ̸= 0◦

(dashed line), λ+i and λ−i shift to opposite directions from λ±i.

and

B =
sin2 θ − n2

(i/px)2 + (j/py)2
. (3.5)

In the equations above, n is the refractive index of the surrounding material, θ
is the incident angle, and ϕ is the azimuthal angle, which in our consideration
is the angle between the E-field of the incident light and the x-axis.

In this Thesis, we only consider in-plane SLRs that occur when the polar-
ization of the incident light and the induced dipoles in the nanoparticles are
parallel to the metasurface. This occurs for transverse electric light, i.e., for
light whose polarization is orthogonal to the incident plane. Such SLRs can
form only in directions that are not parallel to the incident polarization. The
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most obvious direction is perpendicular to the polarization, i.e., along the inci-
dent plane. We name them parallel SLRs, referring to the fact that SLR waves
form along the incident plane.

Here, our main focus is on the first-order SLRs for either x- or y-polarized
light. Especially, we utilize SLRs corresponding to diffraction orders (±1, 0),
(0,±1), and (±1,±1). The diffraction order (0,±1) corresponds to x-polarized
parallel SLR, for which ϕ = 0◦, and the incident plane is along the y-axis. Con-
sequently, the parallel SLR for x-polarized light occurs near the corresponding
RA wavelength

λx = λ0,±1 = py(n∓ sin θy) , (3.6)

where θy is the incident angle along the yz-plane.
Similar logic can be applied for y-polarized parallel SLR, which corresponds

to (0,±1). Now, ϕ = 90◦, and the RA wavelength associated with y-polarized
SLR becomes dependent on θx along the xz-plane:

λy = λ±1,0 = px(n∓ sin θx) . (3.7)

SLRs can form also along the diagonal of the metasurface, corresponding to
the diffraction order (±1,±1). We name them as diagonal SLRs, which occur
similarly for both x- and y-polarized light. At normal incidence, the resonance
wavelength for diagonal SLRs is given by

λd = λ±1,±1 = n
pxpy
pd

, (3.8)

where pd =
√︂
p2x + p2y is the periodicity along the metasurface diagonal. We

note that λd is dependent on both θx and θy.
Equations (3.6) and (3.7) illustrate how by changing px and py, the SLRs

in simple rectangular lattices can be made polarization dependent (see Fig. 3.4
b). Equations (3.6) and (3.7) also indicate how SLRs are angle-dependent, i.e.,
spatially dispersive (see Fig. 3.4 c). At normal incidence, the parallel SLRs
corresponding to positive and negative diffraction orders occur at the same
wavelength. When the incidence angle is changed, these two diffraction orders
shift to opposite directions, and the resonance peak splits into two peaks. It is
also notable that orthogonal SLRs can be tuned independently from each other:
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the x-polarized SLR depends only on θy and py, while y-polarized SLR depends
only on θx and px. Overall, the polarization-dependence and dispersion of
SLRs enable post-fabrication tunability that is not available with non-dispersive
resonances, such as LSPRs. This tunability can be used in realizing [116] and
modifying multiply-resonant metasurfaces, as we did in Publication II.

3.4 Nonlinear Responses of Plasmonic Metamaterials

The NLST introduced in Section 2.5 can be also used to estimate nonlinear
responses of metasurfaces [117]. This is commonly done in three steps (see
Fig. 3.5). First, the nonlinear polarization is estimated inside the metamaterial
building block. Then, local-field profiles at the signal wavelength are evaluated.
And finally, the mode overlap between the two is calculated. With metama-
terials, the resonance enhancements for the local-field profiles are at the main
focus, rather than pump power levels and phase-matching considerations.

In plasmonic metamaterials, hardly any EM field is inside the NPs and
the nonlinear response arises largely from the fields near the metal–dielectric
interfaces. Therefore, we do not use volume susceptibilities but rather sur-
face susceptibilities χ(2)

surf to calculate nonlinear responses. Using χ(2)
surf , we can

rewrite NLST Eqs. (2.48) and (2.49) for plasmonic nanoparticles. For SFG,
the far-field emission is calculated as

Efar,tot(k3, ω3) ∝
∫︂

S
E∗

loc(k3, ω3, r)·
(︂
χ
(2)
surf(r) : Eloc(k1, ω1, r)Eloc(k2, ω2, r)

)︂
dS ,

(3.9)
and for SHG as

Efar,tot(k2, 2ω) ∝
∫︂

S
E∗

loc(k2, 2ω, r) ·
(︂
χ
(2)
surf(r) : E

2
loc(k1, ω, r)

)︂
dS . (3.10)

Here, we calculate the mode-overlap integral only over the NP interface and
not the entire volume, indicated with S. In the Eloc(k, ω, r) terms, k and ω are
the wave vector and angular frequency of the incident light field, and r is the
position vector on the NP interface.

The equations above also indicate that the SFG and SHG responses can
be dramatically boosted with local-field-enhancing resonances, such as LSPRs.
Especially, they highlight the potential of collective high-Q resonances, such as
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Figure 3.5 In the case of plasmonic NPs, the nonlinear responses arise mostly from the NP surface.
Therefore, the calculation steps in NSLT, i.e., the calculation of local nonlinear polarization
(left), local fields at the signal wavelength (middle), and the mode-overlap between the two
(right) are performed over the NP surface S.

SLRs and guided mode resonances [118, 119]. Furthermore, they indicate also
the usefulness of multiply-resonant structures that exhibit resonances at each
of the interacting wavelengths [120–122].

3.5 Symmetry Considerations with Nonlinear Nanoparticles

The χ(2)
surf(r) in Eqs. (3.9) and (3.10) can be formed by modifying the surface

susceptibility for an isotropic interface introduced in Section 2.4.4. Here, it is
convenient to define the local tensor components in terms of the NP surface
normal n̂ and tangent t̂. With this approach, the nonzero tensor components
are χ(2)

nnn, χ(2)
ntt, and χ(2)

tnt = χ
(2)
ttn [123]. Since n̂ and t̂ differ for the different sides

and edges of the investigated NP, it is important to define them accurately at
each position r, to get the correct χ(2)

surf(r).
After properly defining χ(2)

surf(r), we can calculate the nonlinear response for
a situation, where the generated signal and incident pump fields are associated
with polarization states i, j, and k, respectively. After performing the calcula-
tion for all possible permutations of field polarization states, we can define the
effective, or in other words macroscopic, susceptibility χ(2)

eff for the investigated
metasurface. More precisely, we can define which of the χ(2)

eff tensor components
are vanishing and which become dominant.

As expected, NLST calculations indicate that a metasurface resembling a
specific symmetry group has the same nonzero χ

(2)
eff tensor components as a
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macroscopic interface belonging to the same symmetry group [124]. For ex-
ample, an array of nanodisks does not have second-order responses at normal
incidence (see Fig. 3.6), although there is a nonzero local nonlinear response at
local-field hotspots near the nanodisk edges (see Fig. 3.1 b). The local responses
at the opposite sides of the nanodisks have opposite signs, and thus, they cancel
each other out for the total far-field response [123]. This cancellation can be
avoided by breaking the normal-incidence conditions for either pump or signal
fields. Overall, this means that an array of nanodisks have the same nonzero
χ
(2)
eff tensor components as the macroscopic and isotropic interface (C∞v class),

which such an array geometrically resembles.

Symmetry
Requirements

Magnitude
Evaluations

vs

Figure 3.6 (Top row) Calculations based on NLST for plasmonic NPs result in the same symmetry
requirements for second-order nonlinear responses as the macroscopic interfaces. For
example, nanodisks resemble an isotropic interface and do not have a second-order re-
sponse at normal incidence, while triangular and V-shaped NPs resemblingC1v symmetry
do. (Bottom left) NLST can be also used to estimate the nonlinear responses arising from,
e.g., structural deformations. (Bottom right) NLST can be also used to optimize the NP
shape for the desired nonlinear process.

The same logic applies to anisotropic NPs, such as V-shaped NPs, triangular
NPs, and split-ring resonators [125–127]. In this Thesis, we especially used V-
shaped NPs arranged in periodic arrays and oriented similarly (see Figs. 3.3
and 3.4). With the NP symmetry axis set along the metasurface y-axis, such
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metasurface resembles a macroscopic interface of the symmetry group C1v, and
therefore, has the same nonzero χ

(2)
eff components. Furthermore, both x- and

y-polarized light induce local-field hotspots at the ends of the NP arms [79].
From the mode overlap point-of-view, the V-shape is therefore a good choice
for the second-order processes with normally incident light, i.e., the processes
associated with the effective susceptibility components χ(2)

yyy, χ
(2)
yxx, and χ(2)

xxy =

χ
(2)
xyx.

As the discussion above indicates, the nonzero χ(2)
eff components can be de-

duced from the geometry of the NPs and their organization into lattices [128].
However, the magnitude of the said tensor components cannot be estimated
from the metasurface geometry alone, and NLST calculations become neces-
sary. Furthermore, χ(2)

eff can be evaluated with NLST not only for NPs with
regular shapes but also for shapes with small fabrication defects and even for
arbitrary shapes [129–131]. Therefore, NLST is a powerful tool for identify-
ing sources of nonlinear response and ultimately optimizing the metasurface
configuration for the desired nonlinear process.
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4 DESIGN AND CHARACTERIZATION OF

NONLINEAR METAMATERIALS

Studying metamaterials, or any other novel optical materials, consist of three
main parts: design, fabrication, and characterization, preferably in this order.
In this chapter, we give general descriptions of the computational and charac-
terization methods used in the publications for this Thesis. Since the author
did not perform any fabrication during the thesis project, we do not discuss fab-
rication methods here. Instead, we encourage the reader to see Publications
I and II for the fabrication details.

4.1 Numerical Simulations for Nonlinear Metamaterials

Most of the optical properties of metasurfaces can be evaluated through nu-
merical methods such as finite-difference time-domain (FDTD) method and
finite element method (FEM) [132–135]. For the simulations of this Thesis, we
used commercial simulation softwares Ansys FDTD Solutions and COMSOL
Multiphysics, which utilize FDTD and FEM, respectively. Both softwares are
similarly straightforward to use for simple simulations, but for more specific
simulations, one software is more suitable than the other. For example, the
scripting option in Ansys makes large parameter sweeps considerably easier to
perform and analyze, when compared against performing them using COM-
SOL. On the other hand, FDTD simulations become very slow with non-zero
incidence angles, while COMSOL handles such simulations in a much faster
manner.

The typical simulation using either of the softwares starts with the build-
ing of the unit cell of the investigated metasurface. The unit cell consist of
five parts (see Fig. 4.1): metamaterial building block (typically a nanoparti-
cle), substrate and superstrate materials (typically glass and/or air), simulation
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Figure 4.1 Typical simulation layout in the Ansys FDTD Solutions software for evaluating optical prop-
erties of a metasurface. The orange outlines show the simulation volume, for which, correct
boundary conditions should be assigned, such as periodic boundary conditions for peri-
odic metasurfaces. Inside the simulation volume, there is the simulated nanoparticle (NP)
with proper meshing around it, a glass substrate, and an air superstrate. The simulation is
performed for plane wave illumination (white). The results are stored in transmission (T),
reflection (R), and near-field monitors.

boundaries with their specific boundary conditions (BCs), a plane-wave source,
and monitors to evaulate metasurface’s transmission, reflection, and local-field
profiles. In COMSOL, the evaluation of local-field profiles does not require ad-
ditional monitors, as the fields are evaluated and stored automatically for the
entire simulation volume.

To run successful and optimal simulations, in terms of simulation time, file
size, and accuracy, it is necessary to optimize the spectral resolution of the
simulation and the meshing of the simulation volume, and also to select BCs
correctly. To reach high enough spectral resolution, for example to accurately
investigate high-Q resonances, the user of COMSOL needs to increase the num-
ber of evaluated frequency points, while the Ansys user should increase the used
simulation time in the simulation settings. During the use of either of the soft-
wares, an increase of the spectral resolution results in increased simulation time
and file size. It is also important to properly mesh the simulation volume for
properly balanced simulation time and accuracy of results. As a rule of thumb,
the meshing should be just fine enough at interfaces and in the nanostructures,
while keeping it as coarse as possible everywhere else. Finally, the correct selec-
tion of BCs is paramount. For periodic metasurfaces in the xy-plane, periodic
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BCs should be used along the x- and y-directions. Using periodic BCs, the cal-
culations make the assumption of infinite copies of metasurface unit cells along
the periodic directions, which is an adequate approximation for large-enough
metasurfaces. In the z-direction, which is typically the injection axis of the in-
cident plane wave, perfectly matched layer (PML) BCs should be used. PMLs
make sure that no unphysical back-reflections of simulated fields take place at
the boundaries of the simulation volume, which could lead to unrealistic results.

After the proper build-up of the simulation design and successfully running
the simulation, the simulated data can be extracted for further analysis in, e.g.,
Matlab. In this Thesis, this data consists of transmission and reflection spectra,
resonance-induced phase shifts, and electric field vectors near the nanostruc-
tures. Next, we describe the analysis of this data in more detail and show how
it can be used to evaluate the nonlinear responses of resonant metamaterials.

4.1.1 Computation of Nonlinear Responses

For Publication III, we estimated the nonlinear responses of the investigated
metasurface using NLST. This requires simulation of the linear near-field re-
sponses at the interacting wavelengths and using them as input for the mode-
overlap calculations. Here, we describe how Ansys FDTD Solutions (or COM-
SOL) and Matlab can be used to complete this task.

As said, the first step of our method is to simulate the linear local-field
responses of the investigated metasurface. For this, the simulation unit cell
should be constructed correctly following the guidelines of the previous Sec-
tion. After completing the simulation, we need to export the needed results
from the simulation software: transmission data, local electric field distribu-
tions near the investigated NPs, and data connecting the spatial coordinates
to the NPs. When simulating with Ansys FDTD Solutions, the connectivity
data set can be selected as the refractive index distribution near the NP. From
this data set, the coordinates of the plasmonic NP can be identified, since the
imaginary component of refractive index is much larger for metals than for di-
electrics that we use as substrate materials. With COMSOL, it is convenient
to export domain indices that directly indicate which coordinates correspond
to the investigated NP.

Next, the exported simulation data is imported to Matlab for the NLST
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Figure 4.2 Illustration of a triangulated surface of a simulated nanoparticle. At each triangulation
point, we can define surface normals (blue arrows) that can be used to form local second-
order susceptibilities.

calculations. The first step is to identify to the NP surface coordinates, either
from the refractive index or domain index data. Then, we triangulate the
NP surface (using, e.g., Delaunay triangulation [136]) and form surface normal
vectors n̂ at each triangulation point (see Fig. 4.2). Then, we use the simulated
electric fields to estimate Eloc(ω,k, r) at the triangulation points. As the last
step before mode-overlap calculations, we use ns to form the local susceptibility
χ
(2)
loc(r) tensors at each triangulation point using coordination transformations

on known metal-dielectric interface susceptibilities χ(2)
surf (see Section 3.4).

After getting χ
(2)
loc(r) and Eloc(ω,k, r), we can input them into the mode

overlap integral, which we have modified into a Riemann sum. For SHG, the
far-field emission at the SH frequency is calculated as

Efar,tot(2ω,k2) ∝
∑︂

i

E∗
loc(2ω,k2, ri) ·

(︂
χ
(2)
loc(ri) : E

2
loc(ω,k1, ri)

)︂
, (4.1)

where ri is the position vector of ith evaluation point. The signal irradiance is
then calculated as

I(2ω) ∝ |Efar,tot(2ω)|2 . (4.2)

We note here that we do not calculate exact values for I(2ω), but rather the
resonance enhancement factors which we get by comparing the on- and off-
resonance results.
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4.2 Transmission Measurements

In this Thesis, we characterize our metamaterials by measuring their transmis-
sion and SHG emission spectra. The transmission spectra reveal the spectral
locations of resonances, such as LSPRs and SLRs, which boost the nonlinear
interaction and induce phase-shifts to the interacting light beams. If the occur-
ring resonances are where they were designed to be, we can then study if the
nonlinear responses are as expected.

The transmission spectra in Publications I and II were measured using a
setup illustrated in Fig 4.3. We used a halogen lamp (SLS201 300-2600 nm,
Thorlabs) as a broadband and collimated light source. As our metasurfaces are
typically anisotropic, we controlled the polarization of the incident light with a
polarizing beamsplitter (PBS), which allowed us to measure transmission spec-
tra for different linear polarization states. The sample itself was placed on a
goniometer, which was connected to a combination of translation and rotation
stages. This enabled accurate control of sample position, orientation, and es-
pecially, angle-depended measurements. After passing through the sample, the
light beam is guided further with a lens pair, which both expand the beam
and image the sample plane on an iris. The iris was set on the focal plane of
our imaging camera, which we used to identify the correct sample. By adjust-
ing the iris aperture size, we made sure that only the light passing through the
wanted sample was guided further. After the iris, we placed a flip mirror, which
guided light either towards the imaging camera or a spectrometer. Before the
spectrometer, the light beam was focused on a multimode fiber connected to
the spectrometer.

For Publications I and II, we used two spectrometers, AvaSpec-ULS-RS-
TEC (Avantes) and NIR128L-1.7 (Control Development), to measure trans-
mission spectra in VIS and NIR regions, respectively. For measuring LSPRs
and relatively broadband SLRs (Q ≤ 100), these spectrometers had adequate
spectral resolutions. For SLRs with significantly higher Q-factors (Q ∼ 1000),
detectors with much higher spectral resolution (∆λres < 1 nm), such as op-
tical spectrum analyzers (OSAs), are needed. However, the iris in our setup
decreases the amount of collected light to a level that cannot be detected by
a typical OSA, when using a halogen lamp. Furthermore, light from the halo-
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Figure 4.3 The setup for measuring transmission spectra in Publications I and II had a halogen lamp
as a broadband light source, a camera for imaging the measured sample, and a spectrom-
eter (SM) as a detector. For angle-dependent measurements, the sample was placed on
a stage composed of rotation and translation stages, and of a goniometer. Additionally,
the setup included a polarizing beam splitter (LP), lenses (L), a flip mirror (FM), and a fiber
coupler (FC).

gen lamp is not coherent enough to excite extremely high-Q resonances [109].
Therefore, it would be wise to substitute the broadband halogen lamp by co-
herent light sources, such as supercontinuum lasers, when investigating SLRs
with Q ≥ 1000 [104].

4.3 Second-harmonic Generation Measurements

The SHG measurements in Publications I and II were conducted with the
setup illustrated in Fig. 4.4. There, we used an optical parametric oscillator
(OPO) pumped with a titanium sapphire (Ti:Sapph) femtosecond (fs) laser
as a wavelength-tunable (1000–1300 nm) laser source. To maintain constant
average power during a wavelength scan of the OPO, we used a combination of
a motorized achromatic halfwave plate (HWP), PBSs, and a photodiode, which
have been previously calibrated for all the used wavelengths. This approach
allows an accurate power control up to 100 mW at each wavelength. We also
wanted to ensure that all the incident laser power comes from the OPO. Thus,
we placed a long pass filter (LPF) and a dichroic mirror (DM) to block all the
remaining Ti:Sapph laser light and its possible harmonics.

In addition to the incident laser power and wavelength, it is also important
to control its polarization and intensity. In our research, this is rather straight-
forward as we used linearly polarized light with normal Gaussian distribution.
To control the polarization, we simply used another achromatic HWP. To en-
sure a clean Gaussian distribution and tight focus, we expanded the laser beam
with two lenses set in a confocal configuration, with a pinhole placed in the
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Figure 4.4 A schematic of the setup used for measuring SHG spectra for Publications I and II. As
a tunable laser source we used an optical parametric oscillator (OPO), pumped with a
titanium sapphire (Ti:sapph) femtosecond laser. We used a typical CMOS camera for
imaging the sample, while the SHG signal was detected with a photomultiplier tube (PMT).
The setup also includes mirrors (M), half-wave plates (HWPs), polarizing beam-splitters
(PBSs), lenses (L), a pinhole (PH), dichroic mirrors (DMs), a long-pass filter (LPF), short-
pass filters (SPFs), and a film polarizer (FP). To measure backpropagating SHG signals,
DM2 can be flipped.

focal plane. Then, we focused the laser beam on the sample using an achro-
matic lens (lens L3 in Fig. 4.4). The focal length of this lens should be selected
carefully depending on the nature of the sample. For samples exhibiting high-Q
resonances, it is better to use a lens with a long focal length, e.g., 500 mm in
Publication II. If the sample exhibits broader resonances, as the samples for
Publication I did, tighter focus should be considered to achieve high pump
intensities.

Similar to the transmission setup, the sample itself was placed on a stage
with goniometric, rotational, and translational components, and it was imaged
with a typical CMOS camera. With this approach, we could make sure that the
sample was in the focus of L3, that it was aligned with the incident polarization,
and that by rotating the sample it would not shift away from the laser beam.

In our measurements, we used a photomultiplier tube (PMT) as a detector of
the SHG signal. Since PMTs are extremely sensitive light detectors, and easily
damageable by stray light, we conducted the measurement in dark conditions.
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Furthermore, we ensure that only SHG signal from the sample would reach the
PMT with the use of short-pass filters (SPFs) and DMs. Here, the DM1 was
set to block any Ti:Sapph laser from the sample and also to guide backward
SHG emission to the reflection arm of the setup. DM2 was then used to select
which one of the SHG signals, the forward or backward, was measured by the
PMT. To characterize the polarization of the emitted SHG signal, we placed a
film polarizer in front of the PMT.

4.3.1 Estimation of the Effective Nonlinear Susceptibility

In Publications I and II, we used PMT model PMA-C 192-M (PicoQuant)
driven by PMS-400A (Becker & Hickel) photon counting card. We calibrated
the components such that one PMT count per second corresponded to an av-
erage SHG power of 5.2× 10−18W [137]. The measured PMT count and SHG
power (P(2ω)) allows us to identify different enhancement mechanisms, such
as phase-matching enhancement in Publication I or resonance enhancement
in Publication II. However, further characterization of the NLO properties
of the investigated metamaterials, especially defining the effective second-order
susceptibility χ(2)

eff requires further processing.
The first step toward quantifying χ(2)

eff is to define the peak irradiance of the
used pump laser beam

Ipeak(ω) =
Ppeak(ω)

Ab
, (4.3)

where Ppeak(ω) and Ab are the peak power and cross-section area of the pump
beam, respectively.

First, we consider Ab which for a typical Gaussian laser beam, is given by
Ab =

π
2 (

d
2)

2, where d is the beam diameter (at 1/e2 of the maximum intensity).
The pump diameter at our OPO output is 2 mm, which is expanded to 10 mm
by the lenses L1 and L2 (see Fig. 4.4). Then, we focus the beam with the lens
L3, with focal length f . Using the typical Gaussian beam optics, we can then
estimate d at the focal plane of the lens as follows [138]:

d =
4λf

πd0
(4.4)

where d0 is the beam diameter at the focusing lens.
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Next, we consider Ppeak(ω) of our fs laser, which is connected to the average
power Pavg(ω) by

Ppeak(ω) ≈
Pavg

1.763τpνrep
, (4.5)

where τp and νrep are the pulse duration and repetition rate of the pulsed
laser, respectively. For our OPO, τp = 200 fs and νrep = 82MHz. The factor
1.763 takes into account the sech-shaped temporal profile. Now, we can rewrite
Eq. (4.3) in terms of Pavg(ω) as

Ipeak(ω) =
Pavg(ω)

1.763τpνrepAb
. (4.6)

In Publication II, we estimated χ(2)
eff with a method detailed in [139] and later

used with metamaterials [126, 140].

Ppeak(2ω) =
2

c0ϵ0Ab

[t
(1)
ms]4[t

(2)
ms]2[t

(2)
sa ]2

n22c
2
2

P2
peak(ω)

(︃
2πLc

λ

)︃2

×
(︃
1

2
χ
(2)
eff

)︃2 sinc2ψ +R1 +R2

1 +R3 +R4
,

(4.7)

where ψ = (2πLc/λ)(n1c1 − n2c2), Lc is the length of the nonlinear material,
λ is the pump wavelength, and n1 and n2 are the refractive indices at the
fundamental and SH frequencies, respectively. The terms c1 and c2 are given
by cm =

√︁
1− (1/nm)2 sin2 θ, where θ is the incident angle. In most of our

measurements, we have θ = 0◦ − 10◦, and thus, we can approximate that
c1 ≈ c2 ≈ 1. In the case of metamaterials and other nanophotonic components
Lc ≪ λ, and consequently, ψ ≈ 0 and sinc2ψ ≈ 1. The terms R1...R4 are
related to multiple reflections, that can be often neglected with metamaterials.

The terms t(1)ms and t
(2)
ms in Eq. (4.7) are the transmission coefficients of the

nonlinear material at the fundamental and SH frequency, respectively. They
are connected to the measured transmittance values by Tω =

⃓⃓
t(1)

⃓⃓2 and T2ω =⃓⃓
t(2)

⃓⃓2. As we only consider the magnitude of the SH signal and neglect the
signal propagation in the substrate, we can simply use the absolute values of
t(1) and t(2) and rewrite the related parts in Eq. (4.7) as [t

(1)
ms]4 = T 2

ω and
[t
(2)
ms]2 = T2ω. The third transmission coefficient t(2)sa describes the substrate–air

transmission.
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Equation (4.7) is written in terms of peak powers and for the Gaussian unit
system. In order to consider average powers, which can be directly measured,
and to convert the formulation into the SI unit system, we need to modify the
quotient Ppeak(ω)/Ab to include a factor of ln 2

√︁
2 ln 2/π/(2νrepτp). Finally, we

can rewrite (4.7):

Pavg(2ω) =
ln 2

4c0ϵ0νrepτp

√︃
2 ln 2

π

T 2
ωT2ω[t

(2)
sa ]2

n22

P2
avg(ω)

Ab

(︃
2πLc

λ

)︃2 (︂
χ
(2)
eff

)︂2
, (4.8)

from where we can solve for the χ(2)
eff .
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5 RESULTS

In this Chapter, we summarize the results of the publications of this Thesis. We
start with Publication I, where we used resonant phase-shifts to achieve phase
matching in stacks of plasmonic metasurfaces. In Publication II, we utilized
SLRs to achieve tunable multiply-resonant enhancement of SHG. Together,
these two publications show how conventional enhancement methods, phase
matching and multiply-resonant enhancement, can be brought to metamaterial
devices. In Publication III, we propose a method to achieve broadband fre-
quency conversion with narrowband SLRs, which surpasses the time–bandwidth
limit of conventional narrowband resonators.

5.1 Phase-matching of Nonlinear Responses from Stacked
Metasurfaces

In Publication I, we demonstrated phase matching for backward SHG from
stacks of plasmonic metasurfaces, separated from each other by distance h (see
Fig. 5.1). An incident pump beam with electric field amplitude of E(ω) in-
duces SHG on a metasurface layer with effective susceptibility χ(2)

ms. Therefore,
there are two beams interacting and propagating through the stacked metama-
terial, pump and signal beams oscillating at the fundamental (ω) and doubled
frequency (2ω), respectively. Both beams undergo phase changes due to prop-
agation (φωi = kωih) and scattering at the metasurfaces (δωi). For backward
SHG, we can now write the phase mismatch as

∆k = 2(φω + δω) + φ2ω + δ2ω . (5.1)

The overall SHG response of the stacked metasurface is the superposition of
each metasurface signal, modified by transmittances at the interacting frequen-
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Figure 5.1 A schematic for backward SHG from N evenly spaced plasmonic metasurfaces, each
separated by distance h from each other. Phase-matching of this process depends on
phase shifts at the interacting frequencies ω and 2ω. Here, φi terms correspond to the
phase accumulation during propagation. δi terms correspond to phase changes induced
by the individual nanoparticle responses, here LSPRs [Publication I].

cies (T (ωi)) and ∆k:

SHG ∝
⃓⃓
⃓⃓
⃓
N∑︂

J=1

T J(ω)T J/2(2ω)eiJ∆kχ(2)
msE

2(ω)

⃓⃓
⃓⃓
⃓

2

. (5.2)

From this equation, we can clearly see that SHG achieves its maximum and
coherent build-up during propagation, when ∆k is an integer of 2π.

For experimental demonstration of our approach, we fabricated five stacked
metamaterials consisting ofN = 1, 2, ..., 5 adjacent gold NP layers (see Fig. 5.2).
Each NP array consisted of V-shaped NPs with arm length L = 190 nm, arm
width w = 100 nm, and thickness d = 20nm, which were arranged in a rectan-
gular array with periodicity of p = 1000 nm. The first NP array was fabricated
on a glass substrate (n = 1.45) and a spacer layer of spin-on glass (n = 1.45)
with h = 225 nm was spin-coated between each layer.

With the NP parameters listed above, the investigated metasurface exhibits
fundamental LSPRs centered at 974 nm and 1206 nm for y- and x-polarized
light, respectively (see Fig 5.3 a). For both input polarizations, the sample
exhibits higher-order LSPRs at shorter wavelengths, but still above the investi-
gated signal wavelengths (500–650 nm). By fitting Lorentzian profiles into the
measured transmission spectra (blue lines in Fig. 5.3 a), we can extract δω and
δ2ω terms (red lines in Fig. 5.3 a). As expected, the φω is π at wavelengths
shorter than the LSPR wavelengths, 0 at longer wavelengths, and goes through
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Figure 5.2 (a) A schematic of fabricated sample consisting of 5 stacked metasurfaces, separated by
h = 225 nm. Each metasurface consisted of V-shaped gold NPs arranged in a square
lattice with periodicity p = 1000 nm. Here, nanoparticle dimensions are L = 190 nm,
w = 100 nm, and d = 20nm. (b) An oblique-angle scanning electron micrograph of an
etched sample consisting of three metasurface layers [Publication I].

an abrupt change near them. The Lorentzian fits also allow us to estimate
χ
(2)
ms. Due to symmetry rules for V-shaped NPs (see Section 3.4), we estimate

the tensors χ(2)
yyy and χ(2)

yxx.
We then inserted the measured and derived values into Eq. (5.2), to esti-

mate the SHG response using a pump wavelength range of 1000–1300 nm. For
the SHG process corresponding to χ(2)

yyy the phase-matching condition was not
fulfilled in this wavelength region, but for the process corresponding to χ(2)

yxx it
was fulfilled at 1135 nm. For this process, the maximum SHG response from a
single layer was at LSPR wavelength of 1206 nm (see Fig 5.3 b). However, the
maximum signal was achieved with 5 layers at the phase-matching wavelength
of 1135 nm, where SHG signal builds up with the increasing number of layers.
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Figure 5.3 (a) Measured transmission (blue) and calculated phase shift (red) for a single NP array.
The sample exhibits LSPRs at 974 nm and 1206 nm for y- (solid) and x-polarized (dashed)
light, respectively. (b) The transmission and phase shifts can be used to semi-analytically
estimate SHG response from stacks of metasurfaces. The calculated SHG signal builds
up with increasing N at the phase-matching wavelength of 1135 nm [Publication I].

51



Next, we measured the SHG response from our samples using the setup
shown in Fig. 4.4. To avoid sample damage, we limited our average input
power to 10 mW. Now, the maximum signal with 5 layers is at 1141 nm, which
is slightly shifted from the predicted phase-matching wavelength (see Fig. 5.4
a). We believe that this difference in estimated and measured phase-matching
wavelengths is due to interparticle coupling between the adjacent NP layers.
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Figure 5.4 (a) Measured SHG emission spectra from the stacked metamaterials. The measured SHG
singal grows with number of layers N at the phase-matching wavelength of 1141 nm. (b)
At their respective phase-matching wavelengths, both the calculated (red spheres) and
measured (blue triangles) signals scale superlinearly as a function of N , indicated by
linear fits with slope k > 1 on the logarithmic scale [Publication I].

A closer analysis of the evolution of the SHG signals reveals that they scale
super-linearly with increasing N (see Fig. 5.4 b). For the calculated response,
SHGcomp ∝ N1.41, and for the measured signal, SHGexp ∝ N1.27. Due to the
transmission losses at the interacting wavelengths, the responses do not scale
quadratically, which would be the case with phase matching in transparent ma-
terials (see Eq. (2.54)). Therefore, for utilizing our approach with much larger
N , it would be advisable to design the phase matching to more transparent
wavelengths.

To summarize, we experimentally demonstrated phase matching of backward
SHG from stacks of plasmonic metasurfaces. We especially utilized the resonant
phase shifts arising from LSPRs of the individual metasurfaces. Our approach
shows promise to increase the efficiencies of nonlinear processes in plasmonic
structures. Furthermore, other resonances could be also used to fulfill phase-
matching conditions. Especially SLRs, which offer more accurate phase control
through narrow linewidths and potential 2π phase jumps near the resonance,
seem promising. Finally, the technique demonstrated here can be applied for
other nonlinear processes. For example, the backward SHG could be even
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further enhanced to achieve cascaded THG for efficient UV laser sources [73].

5.2 Multiply-resonant Enhancement of Nonlinear Responses using
Surface Lattice Resonances

For Publication II, we designed and fabricated a multiply-resonant metasur-
face consisting of V-shaped aluminum NPs on a glass substrate (n = 1.5). The
NP parameters were this time set to L = 100 nm, w = 70nm, and d = 40nm

(see Fig. 5.5 a). To achieve homogeneous surroundings enabling SLRs, the NP
array was covered with an index-matching oil. The choice of the NP material
and size ensured that LSPRs excited using y- and x-polarized light would be
below the investigated SHG signal wavelength range of 500–650 nm and pump
wavelength range of 1000–1300 nm, respectively. This also allowed us to set
lattice periodicities px and py such that we could have the x-polarized paral-
lel SLR at the SHG pump wavelength range and the y-polarized SLR at the
signal wavelength range. In other words, we designed the sample for multiply-
resonant enhancement of the effective susceptibility component χ(2)

yxx. For the
sample we discuss here, px = 398 nm and py = 813 nm. At normal incidence,
the metasurface thus exhibits parallel SLRs (see Eqs. (3.6) and (3.7)) at 1220
nm and 609 nm for x- and y-polarized light, respectively (see Fig. 5.5 b and c).
In accordance to Eq. (3.8), the metasurface also exhibits the diagonal SLR for
both polarizations at 546 nm.

As is seen from the transmission dispersion graphs in Figs. 5.6 a and b, x-
and y-polarized SLRs shift from their normal-incidence values when the sample
is tilted about y- and x-axis, respectively. From the transmission dispersion
graphs, we can also identify the wavelength and incident angle combinations,
for which the multiply-resonant condition λx(θy) = 2λy(θx) is fulfilled. For
normally incident pump (θy = 0◦), the y-polarized SLR is located near the
desired wavelength of 610 nm at three θx angles. The first one is conveniently
at normal incidence, where the parallel y-polarized SLR is located at 609 nm.
Then, at θx = ±11◦, the diagonal SLR has shifted to 610 nm, and the multiply-
resonant condition is again fulfilled.

To confirm the multiply-resonant enhancement on our sample, we measured
its SHG response with the setup described in Fig. 4.4, using incident power
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Figure 5.5 (a) A schematic of a multiply-resonant metasurface consisting of V-shaped aluminum NPs
arranged in a rectangular array embedded in homogeneous glass surrounding (refractive
index n = 1.5). Here, L = 100 nm, w = 70nm, d = 40nm, px = 398 nm, and
py = 813 nm. (b) and (c) measured transmission spectra for x- (red dashed lines) and
y-polarized (blue solid lines) light at normal incidence. The metasurface exhibits parallel
SLRs at 1220 nm and 609 nm for x- and y-polarized light, respectively. The sample also
exhibits diagonal SLR at 546 nm for both input polarizations [Publication II].

level of 75 mW. In this experiment, the sample was placed on a combination
of goniometric and rotational stages, allowing us to accurately control θy and
θx. By setting θy = 0◦ and changing θx, we recorded the SHG dispersion graph
corresponding to the χ(2)

yxx process (see Fig. 5.6 c). In this graph, we can see
how SLRs at both pump and signal wavelengths enhance the SHG response.
Firstly, the x-polarized SLR boosts SHG at 1220 nm at each θx value. Secondly,
the SHG response follows the dispersion of y-polarized SLRs. Thirdly and
most importantly, the SHG response reaches its maximum at multiply-resonant
conditions, i.e., with pump at 1220 nm and θx = [0◦,±11◦].

At the multiply-resonant conditions, the signal is 10-fold enhanced when
compared to the off-resonance level, reaching the power level of 5.8 fW. This
corresponds to conversion efficiency of 7.7 × 10−14 and χ

(2)
yxx = 0.4 pm/V (see

Eq. (4.8)). This considerably low signal level is mostly explained by the rel-
atively weak and low-Q SLRs (extinction ≤ 5% and Q ≈ 60). Indeed with
stronger and higher-quality SLRs, SHG response could be over 1000-fold en-
hanced, as was recently demonstrated by Beer et al [141].
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Figure 5.6 Dispersion graphs of transmission for (a) x- and (b) y-polarized light for the investigated
sample. (c) Dispersion graph of SHG emission with x-polarized pump and y-polarized
signal. (a)–(b) Parallel SLRs for x- (red dots) and y-polarized (green dots) light are shifted
from their normal incidence values by tilting the sample along y-axis (θy) and x-axis (θx).
The diagonal SLR also shifts with the tilt of the sample (blue dots). (c) SHG emission is
boosted by the SLRs at both pump and signal wavelengths. The maximum signal occurs
at multiply-resonant conditions (dashed circles). With incident angle set at θy = 0◦, this
condition is fulfilled for pump wavelength of 1220 nm at three emission angles θx. At θx =
0◦ (green circle), multiply-resonant condition is fulfilled with parallel SLRs. At θ = ±11◦

(blue circles), it is fulfilled with diagonal SLR at the signal wavelength [Publication II].

Despite the low signal levels, our proof-of-principle demonstration illumi-
nates the potential of SLRs and aluminum for nonlinear plasmonics. First of
all, our samples could handle much higher input powers than devices relying on
lossy LSPRs. Futhermore, the utilization of SLR dispersion also enables post-
fabrication tuning of multiply-resonant conditions, which cannot be achieved
with non-dispersive responses, such as LSPRs and Mie-type resonances. Over-
all, our results in Publication II can pave the path toward low-loss and tunable
nonlinear plasmonic devices.
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5.3 Broadband Frequency Conversion using high-Q Surface Lattice
Resonances

As is described by the NLST, nonlinear optical responses can be enhanced dra-
matically with high-Q and narrowband resonances, such as SLRs, guided-mode
resonances, or bound states in the continuum. On the other hand, nonlinear
processes scale with higher powers of the pump intensities, making ultrashort
pulses with high peak intensities most suitable. Unfortunately, ultrashort pulse
duration means automatically broad spectral features, which limits the coupling
efficiency of broadband pulses into narrowband resonators. This common dis-
advantage is known as the time–bandwidth limit [142]. In Publication III,
we propose a metasurface-based method to overcome this limit, by utilizing a
temporal focusing scheme and plasmonic SLRs (see Fig 5.7).

DG1

DG2

f ff f2f 2f

Sample

Figure 5.7 A schematic of the proposed setup for broadband frequency conversion. A diffraction
grating (DG1) splits the incident pulse into spectral components that are then focused on
the sample by a 4f -correlator. Each spectral component arrives at different incidence
angle, allowing each of them to couple efficiently to dispersive SLR modes. Light-matter
interaction between each spectral component is then dramatically enhanced, including
frequency conversion via sum-frequency generation. The generated signal components
can be again combined into a broadband pulse by another 4f -correlator and diffraction
grating (DG2) [Publication III].

The first part of our proposed method is the setup shown in Fig. 5.7, which
follows a temporal focusing scheme [143, 144]. It consists of two diffraction grat-
ings (DGs), two lens pairs in 4f -configurations, and a metasurface exhibiting
dispersive SLRs. First, the incident broadband pump pulse hits the first DG,
splitting into spectral components. Then, each spectral component is guided
toward the sample, each at different incident angle θ. If the spatial dispersion
of the spectral components matches the dispersion of the sample SLRs, each
spectral component can be efficiently coupled into the metasurface. Conse-
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quently, the local fields at each interacting wavelength are enhanced, boosting
SFG between different spectral components (see Eq. (3.9)). This results in the
generation of numerous spectral components at the SF wavelengths. These sig-
nal components can then be combined into a single broadband pulse by another
lens pair and a DG.

The second part our approach is the SLR-exhibiting metasurface. For the
numerical investigations of this work, we designed and simulated the linear and
nonlinear responses of a metasurface illustrated in Fig 5.8 a. It consists of
V-shaped aluminum NPs arranged in a rectangular lattice embedded in homo-
geneous glass surroundings (n = 1.5). Here, the NP and lattice parameters are
set as L = 120 nm, w = 70nm, d = 40nm, px = 660 nm, and py = 400 nm. At
normal incidence, they give rise to LSPR near 570 nm and SLR at 1002 nm for
y-polarized light. This SLR had the linewidhth ∆λSLR ≈ 2 nm corresponding
to Q = 500.
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Figure 5.8 (a) The simulated metasurface consisted of V-shaped aluminum NPs arranged in a rect-
angular array in homogeneous glass surroundings (n = 1.51). Here, L = 120 nm,
w = 70nm, d = 40nm, px = 660 nm, and py = 400 nm. (b) The simulated
transmission spectra for y-polarized light reveal a broader LSPR near 570 nm and a much
narrower SLR at 1002 nm, at normal incidence (blue). By changing the incident angle
θ (green and red), the normal-incidence SLR peak splits into two which shift to opposite
directions. With θ = 9◦, the two SLRs form at 896 nm and 1100 nm [Publication III].

As we showed experimentally in Publication II, SLRs can be tuned by
changing θ. As we see in Fig 5.8 b, nonzero θ splits the SLR peak into two and
shifts them to opposite directions from the resonance wavelength of normally-
incident light. In this work, we considered angles between 0◦ and 9◦. At θ = 9◦,
the two SLRs are located at 896 nm and 1100 nm. However, the SLRs at longer
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wavelengths (>1000 nm) are associated with much higher Q-factors than the
ones at shorter wavelengths (<1000 nm). Therefore, we only considered the
SLRs at the longer wavelengths for our frequency conversion calculations.

Next, we calculated the SFG response of our sample design using NLST (see
Section 4.1). In our calculations, we used broadband pump pulses centered at
1050 nm with linewidth ∆λL = 100 nm. First, we calculated the SFG response
in situations where the entire pulse arrives at the sample at one incident angle.
In such cases, SFG is only efficient for the degenerate process, i.e., SHG with
pump beams at the SLR wavelength that depends on the incident angle (see
Fig 5.9 a).

(b)

500 510 520 530 540 550
Signal wavelength (nm)

0

5

10

15
S

F
G

 (
a.

u.
)

1000 1020 1040 1060 1080 1100
Pump wavelength (nm)(a)

500 510 520 530 540 550
Signal wavelength (nm)

0

0.5

1

S
F

G
 (

a.
u.

)

1000 1020 1040 1060 1080 1100
Pump wavelength (nm)

0°

3°

6°

Figure 5.9 Frequency conversion of a broadband laser pulse with bandwidth of 100 nm via SFG in
an SLR-exhibiting metasurface. (a) Without the proposed scheme (see Fig 5.7), the entire
laser pulse arrives at the metasurface at a single angle of incidence. Consequently, only
the degenerate SFG with both pump photons at the same SLR wavelength is enhanced.
(b) When the proposed setup is used, the incident laser pulse is split into spectral com-
ponents that are each coupled into a dispersive SLR, boosting the light-matter interaction
between the spectral components. Consequently, SFG is enhanced over a broad spectral
range with cumulative response boosting it even further. Overall, this results in broad-
band frequency conversion with signal bandwidth of 40 nm. All signals are normalized to
the maximum SFG signal when all spectral components arrive at normal incidence (blue
line) [Publication III].

Next, we calculated the SFG response for our proposed setup. We assumed
that the pump beam was split into 10 spectral components with 5 nm band-
widths. We also assumed that each pulse arrives at the metasurface simultane-
ously and at θ that matches the SLR dispersion. Consequently, SLRs enhanced
the local fields at each pump wavelength, boosting the SFG between all the
possible combinations. The numerous interactions combined cumulatively into
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significantly stronger signals, when compared to our calculations without the
proposed setup. More importantly, they resulted in a broadband SFG signal
with ∆λSFG = 40nm centered at 525 nm (see Fig 5.9 b).

To summarize, we proposed a method for broadband frequency conversion
based on nonlinear optics, high-Q SLRs, and temporal focusing techniques.
We numerically showed how our approach can far surpass the typical time–
bandwidth limit associated with narrowband resonators. Therefore, our ap-
proach is not limited to nonlinear optical processes. Instead, it can be utilized
for any optical processes involving ultrashort laser pulses.
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6 CONCLUSIONS AND OUTLOOK

In this Dissertation, we investigated nonlinear optical properties of plasmonic
metamaterials, consisting of gold or aluminum nanoparticles (NPs). We uti-
lized their intrinsic responses, especially localized surface plasmon resonances
(LSPRs) and surface lattice resonances (SLRs) to boost and control nonlinear
responses. We especially aimed to progress the field of plasmonics with two ap-
proaches: bringing known enhancement methods to metamaterial components,
and proposing novel functionalities beyond the reach of conventional nonlinear
photonic components. Our findings are detailed in Publications I, II, and
III.

In Publication I, phase matching of backward second-harmonic generation
(SHG) in stacks of evenly spaces metasurfaces was demonstrated. The phase
matching was achieved with the phase-engineering capabilities of plasmonic
NPs. Especially, phase shifts induced by LSPRs of the investigated metama-
terial were utilized. The results show promise for increasing the conversion
efficiencies of plasmonic metamaterials through multilayer structures, or alter-
natively, through multipass configurations [145, 146].

Publication II was a proof-of-principle demonstration of multiply-resonant
enhancement of SHG using solely SLRs. Beyond the first-ever demonstration,
our results also showed the potential of aluminum for nonlinear nanophotonics,
while simultaneously overcoming the low damage threshold usually associated
with plasmonic structures. Most importantly, the presented results demon-
strated a simple method for post-fabrication tuning of the multiply-resonant
condition through the spatial dispersion of SLRs.

In Publication III, a metasurface-based method for frequency conversion
of ultrashort laser pulses via SFG was proposed. Our approach relies on high-
Q SLRs and their dispersion, and on a scheme based on temporal focusing.
The presented numerical results show how the proposed approach can poten-
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tially surpass the time–bandwidth limit typically associated with narrowband
resonators. Therefore, the proposed approach could be utilized not only for
nonlinear optics, but for any processes involving ultrashort laser pulses.

6.1 Outlook

In this Thesis, all of the presented work focused on the processes of SHG and
SFG. However, the demonstrated and proposed techniques could be applied for
numerous other multiwavelength nonlinear processes, such as spontaneous para-
metric down-conversion, difference-frequency generation, and cascaded third-
harmonic generation [34, 147]. Successful demonstration of these processes
could pave the way toward developing nanophotonic components for photon
pair generation, and for the generation of laser light at THz and UV regimes.

The resonant phase control techniques that were used in Publication I to
achieve phase matching could be readily applied for other photonic techniques
as well. For example, one could design a metasurface where the resonant phase
shift would vary along the metasurface. Such structures could be used for steer-
ing, lensing, or structuring the generated nonlinear signal [148–150]. Lensing
and beam-steering functionalities would be beneficial for coupling nonlinear re-
sponses with waveguide structures and other microphotonic structures [151–
153]. Nonlinear generation of structured light could be used in quantum com-
munication and nonlinear holography [154, 155].

Ultimately, the high-Q resonance-based enhancement and resonant phase-
control could be utilized in a single multifunctional metamaterial component.
For example, one could envisage a design where high-Q SLRs at pump wave-
lenghts would boost the nonlinear signal, while a phase-controlling resonance
at the signal wavelength would structure the generated signal. Such devices
could be easily tunable through SLR dispersion or via controlling the refractive
index profile surrounding the metasurface [156]. Such devices would help to
address the main issues of nonlinear plasmonic devices, i.e., their inefficiency
and lack of tunability, while surpassing the capabilities of classical components
through multifunctionality.
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We demonstrate phase-matched second-harmonic generation (SHG) from three-dimensional metama-
terials consisting of stacked metasurfaces. To achieve phase matching, we utilize a novel mechanism based
on phase engineering of the metasurfaces at the interacting wavelengths, facilitating phase-matched SHG in
the unconventional backward direction. Stacking up to five metasurfaces,we obtain a phase-matched SHG
signal, which scales superlinearly with the number of layers. Our results motivate further investigations to
achieve higher conversion efficiencies also with more complex wave fronts.
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Optical metamaterials and metasurfaces are artificial
structures consisting of subwavelength building blocks,
known as meta-atoms, and are associated with optical
properties not found in nature [1]. These properties include
magnetism at optical frequencies, strong optical activity,
negative index of refraction, and epsilon-near-zero behav-
ior [2–4]. In addition, recent work on phase-engineered
metasurfaces has demonstrated the interesting possibilities
to realize flat optical components, such as lenses, holo-
graphic components, and polarizers [5–11].
In addition to the linear optical properties of metamate-

rials, their nonlinear optical responses are also becoming
important. Several technologically relevant photonic
applications rely on the nonlinear responses of materials,
including second-harmonic generation (SHG), photon-pair
generation, all-optical switching, frequency combs, and
supercontinuum generation [12–15]. The challenging part
in these nonlinear applications is the fact that nonlinear
optical processes inmaterials are intrinsicallyweak. Because
of this fact, nonlinear processes in conventional materials,
such as crystals, rely on the concept of phase matching. In
phase-matched materials and without losses, the generated
nonlinear signal scales quadratically on the propagation
length, resulting in practical conversion efficiencies with
sufficiently long materials [see Fig. 1(a)] [16,17].
For homogeneous materials and forward SHG signals,

phase matching can be achieved if the refractive indices at
the fundamental and second-harmonic frequencies are
equal. However, this requirement is a significant limitation

because of refractive-index dispersion, which can be over-
come by the concept of quasi-phase-matching, i.e., by
structuring the material in such a way that the sign of the
nonlinear susceptibility is periodically reversed [18].
In principle, quasi-phase-matching is a very general con-
cept that allows any nonlinear signal to be optimized.
Unfortunately, quasi-phase-matching and other traditional
phase-matching schemes seem unfeasible for miniaturiza-
tion of optical devices. Additionally, these techniques
are restricted in terms of, e.g., polarization and the spatial

FIG. 1. (a) For traditional nonlinear materials, achieving phase
matching and strong nonlinear responses is very restricted in
terms of, e.g., the selected material and the polarization of the
interacting fields. (b) Nonlinear optical processes can be phase
matched with metamaterials that induce arbitrary phase changes
in the interacting fields.
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profiles of the interacting waves. These limitations motivate
the ongoing development of efficient and less restricted
nanoscale devices.
Utilization of metal nanoantennas has recently emerged

as a promising route toward more efficient nonlinear
metamaterials [19,20]. Metal nanoantennas support collec-
tive oscillations of conduction electrons, known as localized
surface plasmons. Under resonant conditions, these oscil-
lations give rise to localized surface plasmon resonances
(LSPRs), which can considerably enhance the local field
near the particles [21]. Because nonlinear processes scale
with high powers of the local field, the plasmon-assisted
field enhancement can result in a dramatic increase in the
otherwise weak nonlinear response. Consequently, numer-
ous investigations have been carried out during the past
decade in order to understand the nonlinear response of
plasmonic nanoantennas [22–26]. So far, work on nonlinear
metamaterials has focused on single planar metasurfaces
limiting the achieved efficiencies. Aviable route to improve
the efficiencies, which was explored numerically before
[27], would be to stack several metasurfaces on top of each
other, giving rise to phase-matching issues. In addition, such
nonlinear metamaterials could provide novel capabilities to
conventional phase-matching techniques relying on the
intrinsic material dispersion. Particularly, the use of meta-
materials could allow one to design phase-matched devices
exhibiting arbitrary transverse phase profiles, therefore
providing interesting possibilities to fabricate nonlinear
metalenses and holography [see Fig. 1(b)] [28,29].
We demonstrate how such nonlinear phase-matched

metamaterials can be fabricated by stacking metasurfaces
into three-dimensional (3D) structures and show how the
approach can considerably improve the performance of
existing nonlinear metasurfaces. Our approach utilizes both
local-field enhancement and phase engineering of LSPRs.
The latter provides more freedom to phase match nonlinear
processes than what is possible using conventional non-
linear materials [see Fig. 1(b)]. We demonstrate both
capabilities by fabricating metamaterial devices consisting
of up to five layers of metasurfaces that are phase matched
to emit SHG in the backward direction. We demonstrate
superlinear dependence of the emitted SHG signals on the
number of stacked metasurfaces, which is only possible via
phase matching.
For conventional materials and SHG, the phase changes

are associated with the propagation of the fundamental and
second-harmonic fields through the material. Phase match-
ing in such materials is connected to wave vector mismatch
Δk, which vanishes for perfectly phase-matched processes.
With Δk, we can define the phase-matching condition,
e.g., for backpropagating SHG as Δk ¼ 2kω þ k2ω ¼ 0,
where kω ¼ nωω=c and k2ω ¼ n2ω2ω=c are the wave
vector amplitudes at the fundamental (ω) and SHG (2ω)
frequencies, respectively [16]. With conventional nonlinear
materials, this condition cannot be fulfilled, but it can be

compensated by fabricating periodic quasi-phase-matched
crystals [16,30,31]. It is also possible to utilize zero-index
materials to realize structures that have relaxed phase-
matching requirements [32].
By using resonant metamaterials, we can extend this

phase-matching condition by taking into account the phase
changes δω and δ2ω that occur in a metamaterial due to
coherent scattering of light from the constituent nanoanten-
nas at the fundamental and SHG frequencies, respectively.
Because these terms are dictated by the optical response of
the nanoantennas, namely, by their LSPRs [7], the extended
phase-matching condition becomes solvable by metamate-
rial design. In order to demonstrate this capability, we
designed and fabricated metamaterial devices where the
backward SHG emission is phase matched [see Fig. 2(a)].
The designed metamaterial devices consisted of a num-

ber N of identical metasurfaces that were separated by
identical spacer layers of thickness h. For such devices, the
total amplitude of the emitted SH field is described by (see
the Supplemental Material [33] for details)

SHG ∝
�
�
�
�

XN

J¼1

TðωÞJTð2ωÞJ=2eiJΔkχð2ÞmsEðωÞ2
�
�
�
�

2

; ð1Þ

where χð2Þms is the relevant component of the SHG suscep-
tibility tensor of a single metasurface, and TðωÞ and
Tð2ωÞ are the transmittances of a single metasurface at
the fundamental and SH frequencies, respectively. For
phase-matched SH emission, the wave vector mismatch
Δk must therefore be an integer of 2π,

Δk ¼ 2ðφω þ δωÞ þ φ2ω þ δ2ω ¼ 2πm; ð2Þ

wherem is an integer and terms φ2ω ¼ k2ωh and φω ¼ kωh
arise from the propagation of the fields. Estimating the

FIG. 2. (a) Backward phase-matched SHG emission from
metamaterials consisting of N stacked layers. The phase-
matching condition is fulfilled by controlling the phase accu-
mulation for both incident light (red arrows) and SHG light (blue
arrows). The terms φω and φ2ω correspond to phase accumulation
due to propagation. The LSPRs of metal nanoantennas enhance
the local fields at (b) fundamental frequency Eω and (c) second-
harmonic (SH) frequency E2ω and also induce the phase changes
associated with LSPRs δω and δ2ω, respectively.
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phase terms δω and δ2ω, which correspond to nanoparticles
scattering phase retardation at ω and 2ω for the particles of
interest, Eq. (2) allows us to solve for the spacer thickness
h. The transmittance, phase, and susceptibility terms of
Eqs. (1) and (2) were estimated from the measured trans-
mission spectra of our devices (see the Supplemental
Material [33] for details).
Our metamaterials consisted of a varying number N

metasurfaces composed of V-shaped gold nanoantennas
with arm lengths of L ¼ 190 nm (L190-N), arm widths of
w ¼ 100 nm, and thicknesses of d ¼ 20 nm. These nano-
structures were arranged into square lattices with a lattice
constant of p ¼ 1000 nm [Fig. 3(a)]. This lattice configu-
ration was chosen because it has been earlier found to emit
SHG strongly [34]. However, we note that the configura-
tion is not yet optimized in terms of overall conversion
efficiency, because the strongest SHG emission from such

arrays may not occur in the normal direction [35]. Note also
that, due to the configuration, other nonlinear diffractive
channels exist, but they do not fulfill the phase-matching
condition. Interesting new possibilities to realize multi-
beam phase-matching processes can be envisioned in the
context of multiplexed nonlinear metasurface stacks.
The above parameters were calculated to give rise to

LSPRs centered near 1060 nm. According to Eq. (2), for
m ¼ 0 the phase-matching condition was fulfilled close to
the LSPR wavelength by choosing the layer thickness of
h ¼ 225 nm. Specifically, the phase-matching condition
for devices L190-N was fulfilled for linear input polari-
zation orthogonal to the symmetry axis of the V particles
(x axis) [Fig. 3(b)]. Because of the symmetry properties of
the samples, the generated SHG emission is polarized along
the symmetry axis (y axis).
The devices were fabricated using standard electron

beam lithography on a cleaned SiO2 substrate through a
sequence of steps repeated N times (see the Supplemental
Material [33] for further details) [36]. Representative
scanning electron micrographs of one realized metamaterial
device (L190-3) are shown in Figs. 3(b) and 3(c).
The SHG responses of the devices were characterized

using a setup described in detail elsewhere [34]. Briefly, a
femtosecond laser oscillator (Chameleon Vision II, Ti:
sapphire, 80 MHz) combined with an optical parametric
oscillator (Chameleon Compact, 1000–1300 nm) was used
as the pump, while the backward-emitted SHG signals were
measured using a power-calibrated photomultiplier tube.
See Supplemental Material [33] for a more detailed
description of the setup. Here, we limited our input mean
power to 10 mW in order to avoid possible sample damage.
The SHG responses of the fabricated metamaterial
devices consisting of varying number of metasurfaces
(N ¼ 1; 2;…; 5) were measured as a function of the pump
wavelength (see Fig. 4).
The predicted SH emission spectra from the devices

[Fig. 4(a)] show a clear increase of the average SHG power
near the phase-matching wavelength of 1135 nm when the
number of metasurfaces N grows. This behavior is also
observed in the measured backward-emitted SHG signals
[Fig. 4(b)]. The strongest SHG signal for the device
composed of five metasurfaces (L190-5) corresponded to
SHG power of 20 fW and occurred at the wavelength of
1141 nm, which is slightly shifted from the predicted
phase-matching wavelength due to experimental imperfec-
tions. A closer analysis of the results reveals that the SHG
response near 1141 nm no longer depends linearly on the
number of metasurfaces N [Fig. 4(b)]. Instead, the SHG
signals follow superlinear dependence on N (SHG∝N1.27),
confirming that the devices were successfully phase
matched [Fig. 4(c)]. Furthermore, the devices were
successfully phase matched in the challenging backward
direction [37]. Because the SHG emission from the device
L190-1 was markedly weaker than the SHG emissions

(c)

(b)

(a)

FIG. 3. (a) Investigated devices were composed of up to N
metasurfaces stacked on top of each other, separated by
h ¼ 225-nm-thick spacer layers. Each of the metasurfaces con-
sisted of a square array of 20-nm-thick V-shaped gold nano-
antennas. (b) Representative scanning electron micrograph of one
fabricated device (L190-3). (c) Oblique scanning electron micro-
graph obtained after successive etching with a focused ion beam,
illustrating the stacked nature of the investigated metamaterial
devices.

PHYSICAL REVIEW LETTERS 126, 033901 (2021)

033901-3



from the rest of devices, that data point was excluded from
the curve fitting. This difference between the L190-1 and
other devices may be a result of interlayer coupling that is
not present in the single layer device.
We note that the fabricated devices exhibited losses that

were estimated by measuring the transmittance of a single
metasurface to be close to 90% (97%) near the pump (SHG)
wavelengths (see the measured transmittance spectra in the
Supplemental Material [33]). By taking into account the
associated reductions in the intensities for subsequent
metasurfaces [see Eq. (1)], one expects around eightfold
SHG enhancement, which is very close to the enhancement
we measure [Fig. 4(c)].

Next we discuss approaches that could be combined with
the demonstrated methodology in order to further improve
the performance of nonlinear metamaterials. First, an
obvious method would be to increase the number of
metasurface stacksN. However, at some point of increasing

N to values much higher than 5, the surface flatness of the
fabricated metasurfaces may start to be affected. As
discussed previously [38–40], the spin-on-glass planariza-
tion introduces surface roughness of the order of only a few
nanometers for five adjacent layers. According to Ref. [41],
some effort would be required to address this problem for
thicker artificial nonlinear crystals (∼20–50 layers and
beyond). Second, the nanoparticle material, shapes, and
dimensions used in this Letter have not yet been optimized
in terms of overall conversion efficiencies. Recent advances
in all-dielectric nonlinear metasurfaces also suggest that
record-high conversion efficiencies could be achieved by
phase matching such structures using this methodology
[42]. Third, looking at Eq. (1) and Fig. 4(c), we see that, in
order to considerably improve the efficiency of future
phase-matched metamaterial devices by further increasing
N, the metasurfaces should be made highly transparent at
the operation wavelengths. Finally, we note that the
conversion efficiency is not the only figure of merit. In
many applications, a more important parameter is the
optical power of the generated light. Here, nonlinear
metasurfaces are a promising technology, because their
fabrication can be scaled up to array sizes that are
compatible with the use of high-power lasers, for example,
by using nanoimprint lithography [43].
In addition to enhancing the overall conversion efficien-

cies of nonlinear metamaterials, this demonstration of
phase-engineered nonlinear metamaterials has several other
fundamental implications. For example, one can envisage
how nonlinear metamaterials could be utilized for adiabatic
frequency conversion, enabling broadband frequency con-
version in nanomaterials [44,45]. Furthermore, this meth-
odology could allow design of more efficient nonlinear
terahertz-emitting metamaterials [46–48]. Finally, the pre-
sented phase-engineering principles apply also for arbitrary
wave fronts. Successful phase matching of nonlinear
processes using complex spatial modes would have appli-
cations in holography and quantum computing [24,28].
To conclude, we have demonstrated how the perfor-

mance of nonlinear metamaterials can be substantially
increased by stacking metasurfaces into three-dimensional
metamaterials. Phase-matching considerations that are
often difficult to fulfill using conventional materials can
be easily solved by controlling the dimensions of the
nanoantennas and the separation between the metasurfaces.
We demonstrated this by phase matching second-harmonic
generation emission from fabricated metamaterials in the
challenging backward direction. We fabricated nonlinear
metamaterial devices consisting of up to five stacked
metasurfaces and demonstrated an order-of-magnitude
increase in the backward-emitted second-harmonic inten-
sities from the devices. Our results open a new paradigm of
phase-engineered three-dimensional nonlinear metamateri-
als that could be used, for example, to realize more efficient
nonlinear metamaterials.

(b)

(c)

(a)

FIG. 4. (a) Predicted and (b) measured SHG emission spectra
from the devices. SHG emission grows with increasing number
of layers N at the phase-matching wavelength of 1135 nm
(1141 nm) for predicted (measured) results. (c) Both the predicted
(red spheres) and experimental (blue triangles) SHG emissions
scale superlinearly as a function of N, resulting in linear fits with
slopes k > 1 on the logarithmic scale.
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Abstract: Nonlinear metamaterials show potential for realizing flat nonlinear optical devices
but are generally lacking in terms of achievable conversion efficiencies. Recent work has
focused on enhancing nonlinear processes by utilizing high quality factor resonances, such
as collective responses known as surface lattice resonances (SLRs) taking place in periodic
metal nanoparticle arrays. Here, we investigate how the dispersive nature of SLRs affects the
nonlinear responses of SLR-supporting metasurfaces. Particularly, we measure second-harmonic
generation from aluminum nanoparticle arrays and demonstrate that by tilting the sample along
two orthogonal directions, the sample can be made multiply-resonant for several pump and
second-harmonic signal wavelength combinations. Characterized metasurfaces are estimated to
exhibit a second-order susceptibility value of 0.40 pm/V, demonstrating aluminum as a potential
material for nonlinear metasurfaces.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Recent developments in miniaturized photonic devices have created a demand for nanoscale
nonlinear optical components, which could be potentially addressed by a novel material class
known as metamaterials [1]. They are artificial structures consisting of subwavelength building
blocks, often referred to as meta-atoms. By carefully selecting the meta-atom properties, the
bulk metamaterial can exhibit properties not found in natural materials, such as nanoscale
phase-engineering capabilities [2,3]. Through these unique properties, metamaterials show
potential for realizing novel flat photonic components, such as metalenses and meta-holograms
[4,5].

In addition to their linear optical properties, also the nonlinear optical properties of metamate-
rials have been investigated [6–9]. For example, plasmonic metamaterials consisting of metal
nanoparticles show potential for enabling efficient nonlinear processes in chip-scale devices
[10,11]. The optical properties of metal nanoparticles are dominated by the collective oscillations
of conduction electrons, known as localized surface plasmons [12]. They exhibit resonant
behavior, known as localized surface plasmon resonances (LSPRs), which results in increased
local fields near the nanoparticle surface. This local-field enhancement boosts light-matter inter-
action, including nonlinear processes that scale with high powers of the driving field. Therefore,
utilizing LSPRs leads to dramatic enhancements of the nonlinear responses of metal nanoparticles
[13–19]. Unfortunately, LSPRs are associated with considerable losses, significantly limiting
their potential for nonlinear optics. However, by arranging metal nanoparticles into periodic
lattices, collective responses referred to as surface lattice resonances (SLRs) emerge. They are
associated with much narrower resonance linewidths and higher quality factors (Q-factors) than
LSPRs [20–23]. This indicates that SLRs are also associated with remarkably stronger local-field

#449198 https://doi.org/10.1364/OE.449198
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enhancements and smaller losses. Consequently, SLRs can be utilized to enhance the nonlinear
responses of metasurfaces [24–26].

Most studies on nonlinear plasmonics have focused on singly-resonant metamaterials exhibiting
a resonance either at the pump or signal wavelengths of the studied nonlinear processes [24,25,27].
However, nonlinear processes scale with the local fields at all interacting wavelengths [12,28].
Thus, for example a process of second-harmonic generation (SHG) can be enhanced by utilizing
multiply-resonant materials, where the resonance enhancement occurs both at the signal and
pump wavelengths [29–34]. Furthermore, recent numerical work suggests that multiply-
resonant operation based on SLRs could dramatically increase nonlinear responses of plasmonic
metasurfaces [35].

Here, we experimentally demonstrate multiply-resonant enhancement of SHG in SLR-exhibiting
metasurfaces consisting of V-shaped aluminum (Al) nanoparticles. We achieve multiply-resonant
operation by tilting the investigated metasurfaces and by utilizing the dispersion of SLRs. The
multiply-resonant conditions are fulfilled at several different wavelengths, demonstrating the
tunability of SLR-enhanced responses. The measured SH signals correspond to nonlinear
susceptibility tensor values of 0.40 pm/V, which is of the same order-of-magnitude as the typical
values for traditional nonlinear materials [28].

2. Theory

2.1. Surface lattice resonances

The optical properties of metals are governed by the collective oscillations of conduction electrons
known as plasmons [12]. At resonant conditions, the strength of light–matter interaction increases,
resulting in dramatic changes of, e.g., reflectivity and absorbance of the bulk metal. In the case
of metal nanoparticles, plasmons are restricted to the particle surface [36]. Therefore, in resonant
conditions, incident light is coupled to the local plasmon modes resulting in increased local fields
near the nanoparticle surface. This phenomenon is known as LSPR, and it is widely used in
many applications of plasmonic metamaterials [37–39]. LSPRs are associated with relatively
broad linewidths and therefore low Q-factors (Q∼ 10), which indicate extremely short resonance
lifetimes but, on the other hand, considerable losses and relatively low local-field enhancements.
The low field enhancement can be compensated by using optically dense plasmonic structures and
intense pulsed laser sources. Unfortunately, the subsequent strong absorption decrease damage
thresholds of the plasmonic structures, significantly limiting the usable input power and thus the
strength of the nonlinear responses of plasmonic metamaterials.

A viable approach to decrease losses and increase the interaction strength in plasmonic
metamaterials is to utilize SLRs. They are propagating surface modes resulting from radiative
coupling of localized surface plasmons in a periodic grating of nanoparticles. They are associated
with remarkably high Q-factors (Q∼ 1000) [23], indicating significantly higher local-field
enhancements than the ones associated with LSPRs. Because SLRs result from diffractive
properties of the metasurface, their spectral locations are related to the Rayleigh anomalies (RAs)
according to [40,41]

λl,m(θ, ϕ) = −Al,m(θ, ϕ) +
√︂

A2
l,m(θ, ϕ) − Bl,m(θ), (1)

where l and m are the diffraction orders along the Cartesian coordinates of the grating, θ is the
incidence angle in the incidence plane, and ϕ is the azimuthal angle that defines the orientation
of the incidence plane with respect to the Cartesian coordinates. For a rectangular metasurface
with lattice constants px and py along the surface Cartesian coordinates (see Fig. 1), the variables
Al,m(θ, ϕ) and Bl,m(θ) are given by

Al,m(θ, ϕ) = sin θ
(l/px)2 + (m/py)2

(︃
l sin ϕ

px
+

m cos ϕ
py

)︃
, (2)
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Bl,m(θ) = sin2 θ − n2

(l/px)2 + (m/py)2
, (3)

where n is the refractive index of the surrounding material.

Fig. 1. Surface lattice resonance (SLR) modes propagate along the metasurface. Their
spectral location depends on numerous factors: incidence angle (θ), azimuthal angle (ϕ),
refractive index (n), and lattice constants px, py, and pd . For y-polarized light (ϕ = 90◦),
parallel SLRs (green waves) depend on θx and px, and for x-polarized light (ϕ = 0◦), the
emerging SLRs depend on and θy and py (red waves). The diagonal SLRs (blue waves)
occur for both polarizations. In this work, we consider metasurfaces consisting of V-shaped
nanoparticles with arm length L, arm width w, and thickness d. These parameters dictate
localized surface plasmon resonances of individual nanoparticles, which also impact the
SLR formation.

In this work, we focus on in-plane SLRs that occur when the polarization of the incident light
and the induced dipoles in the nanoparticles are parallel to the metasurface, i.e., when the incident
light is TE polarized [42]. These SLR modes propagate along the metasurface in the directions
that are not parallel with incident polarization. The most obvious option for nanoparticles to
couple is along the direction that is perpendicular to the incident polarization, resulting in surface
modes we name as parallel SLR.

Here, we are interested in first-order parallel SLRs for light polarized along either the x- or
y-axis of the rectangular metasurface. For x-polarized light (ϕ = 0◦), the SLR wavelength
depends on py and the incidence angle θy on the yz-plane (see Fig. 1) as given by

λx(θy) = λ0,±1(θy) = py
(︁
n ∓ sin θy

)︁
. (4)

For y-polarized light (ϕ = 90◦), a similar condition is found to be

λy(θx) = λ±1,0(θx) = px (n ∓ sin θx) , (5)

where θx is the incidence angle along the xz-plane with respect to the metasurface normal.
Plasmon modes in a rectangular lattice can couple also along the diagonal of the lattice unit

cell, resulting in diagonal SLRs (blue waves in Fig. 1). At normal incidence (θx = θy = 0◦), the
diagonal SLRs occur at the same wavelength for both incident polarizations, which for first-order
SLRs is given by

λd = n
pxpy

pd
, (6)

where pd =
√︂

p2
x + p2

y is the diagonal of the metasurface unit cell.
Overall, the spectral location of the SLR depends on the polarization of the interacting wave,

the lattice constants px and py, the refractive index of the surrounding material n, and the incidence
angles θx and θy, providing us multiple parameters to control the occurrence of SLRs.
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2.2. Second-harmonic generation in multiply-resonant structures

The SH responses of metamaterials depend on the local fields Eloc(ω) and Eloc(2ω), oscillating
at the fundamental and SH frequency, respectively [12,28]. Therefore, we can write for far-field
SH emission Enl(2ω) that

Enl(2ω) ∝ χ(2)Eloc(2ω)E2
loc(ω), (7)

where χ(2) is the effective nonlinear susceptibility of the metasurface.
The local electric fields in Eq. (7) can be enhanced by utilizing metasurface responses, such as

LSPRs and SLRs, at the interacting wavelengths. Most works have considered singly-resonant
metasurfaces that exhibit resonances at either the signal or more commonly at the fundamental
wavelength [24,43]. However, the nonlinear responses can be further enhanced by utilizing
multiply-resonant metasurfaces that exhibit resonances at both interacting wavelengths. For
example, Celebrano et al. designed metasurfaces consisting of gold nanoparticles exhibiting
LSPRs to enhance SHG [30]. In this work, we extend the approach to metasurfaces based on
SLRs with clear benefits. As mentioned before, SLRs are very dependent on the polarization state
and propagation direction of the interacting laser fields. Therefore, we design our metasurfaces
for type-I SHG, where both fundamental fields have the same polarization state k, while the
emitted signal field is associated with a different polarization state j. For this process, we can
rewrite Eq. (7) as follows:

Enl(k2, 2ω) ∝ χ(2)jkkEloc,j(k2, 2ω)E2
loc,k(k1,ω), (8)

where k1 and k2 are the wavevectors of fundamental and SH beams, respectively, and χ(2)jkk is the
corresponding effective nonlinear susceptibility tensor component.

3. Methods

3.1. Sample fabrication

For this work, we fabricated Al nanoparticle arrays with a total area of 300 × 300 µm. The
structures were fabricated on a pre-cleaned microscope slide (Schott Nexterion, D263T glass). A
200 nm layer of PMMA-resist (MicroChem, 950k) was spin-coated on top and baked on a hot
plate at 180◦C for 180 s. A 10 nm layer of Al was evaporated on the resist to act as a conductive
layer for electron beam lithography.

The patterning was done using a Raith EBPG 5000+ 100 kV electron beam lithography system.
After patterning the Al layer was removed using a 1% sodium hydroxide solution. The resist
was then developed using a 1:3 mixture of methyl isobutyl ketone and isopropanol (IPA) for 15
s, followed by a 30 s immersion in IPA. The sample was dried with nitrogen and placed in an
electron beam evaporator for depositing 30 nm of Al. Finally, a liftoff process was performed by
soaking the sample in acetone overnight and gently washing the surface with more acetone using
a syringe. This removes the resist and excess metal on top of it, leaving only the nanoparticles on
the glass substrate. The sample was then rinsed with IPA and dried with nitrogen.

Before the measurements, we covered the metasurface with index-matching oil and an anti-
reflection (AR) coated coverslip with the AR wavelength band at 1000–1300 nm. This way, the
nanoparticles were assured to have a homogeneous surrounding, and we avoided any Fabry–Pérot
resonances resulting from multiple reflections from different interfaces present in the fabricated
devices.

3.2. Experiments

In this work, we characterized both linear and nonlinear optical properties of our metasurfaces
using two different experimental setups. Here, only short descriptions are given while further
details are described in Supplement 1.
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In order to characterize the linear optical properties of our samples, especially the properties of
the occurring SLRs, we measured transmission spectra of our samples (see Figs. 2, 3(a)–(b), and
4(a)–(b)) Here, we used a broadband halogen lamp, a linear polarizer, and spectrometers to locate
SLRs. We placed the sample on a goniometer on a rotational stage, which was connected to a
3-axis translational stage. This enabled continuous control over sample position and orientation,
especially with respect to angles θy and θx. By measuring the transmission spectra at different
angles, we extracted the dispersion relation graphs shown in Figs. 3(a)–(b) and 4(a)–(b).

In our nonlinear experiments, we used an optical parametric oscillator (1000–1300 nm) pumped
with a titanium sapphire femtosecond laser (800 nm, repetition rate 82 MHz, pulse duration
200 fs) as a tunable laser source. We set our laser power to 75 mW using a combination of a
linear polarizer, an achromatic half-wave plate and a reference diode. The laser beam was then
weakly focused on the sample using an achromatic lens (f = 500 mm), resulting in estimated
beam diameter (1/e2 of maximum intensity) of 75 µm and peak intensity of 115 MW/cm2 at
the sample plane. Similar to the transmission experiments, we placed the sample on a stage
that allows fine-tuning of sample position and accurate control of θy and θx. In this setup, the
rotation stage was motorized allowing continuous incidence angle scans. The generated SH
signal was collected with a photo-multiplier tube. By repeating angle scans for different pump
wavelengths, we acquired the (λ, θ)-graphs for the SHG emission from studied metasurfaces,
shown in Figs. 3(c) and 4(c).

4. Design and results

Our metasurfaces consisted of V-shaped Al nanoparticles with arm length L = 100 nm, arm
width w = 70 nm, and thickness d = 30 nm (see Fig. 1). The nanoparticles were fabricated on
a glass substrate (refractive index n = 1.51) [See the Sample Fabrication section for details].
The nanoparticles were arranged in rectangular lattices with lattice constants py and px along
and orthogonal to the nanoparticle symmetry axis (y-axis), respectively (see Fig. 1). In such
configuration, the metasurface has the following non-zero second-order susceptibility tensor
components χ(2)yyy, χ

(2)
yxx, and χ(2)xxy = χ

(2)
xyx [44]. Additionally, under illumination of x- or y-polarized

Fig. 2. Measured tranmsission spectra for the studied periodic aluminum metasurfaces
(see Fig. 1). (a)–(b) The two studied samples, S1 and S2, had py = 813 nm, resulting in
first-order SLRs at 1220 nm for x-polarized light (dotted red lines). (c)–(d) S1 (S2) has px =
410 nm (398 nm), resulting in first-order SLR at 626 nm (609 nm) for y-polarized light (blue
solid lines). Furthermore, S1 (S2) exhibit diagonal SLRs at 560 nm (546 nm).



Research Article Vol. 30, No. 3 / 31 Jan 2022 /Optics Express 3625

light, local field hotspots form in the tips of the V-shaped nanoparticles [45]. We note that similar
array configurations have been shown to result in SLRs at different spectral regions [46].

Here, we studied two metasurfaces composed of identical nanoparticles but varying in their
array periodicities. For sample S1, the periodicities were px = 410 nm and py = 813, and for
sample S2, px = 398 nm and py = 813 nm. Since both samples are composed of identical
nanoparticles, they both exhibit LSPRs centered at 475 nm and 550 nm for y- and x-polarized
light, respectively (see Supplement 1 for more information). The samples also have the same
py = 813 nm, and therefore, at normal incidence, they exhibit the first-order SLR for x-polarized
light at λx(0◦) = 1220 nm (see Fig. 2(a)). The two samples differ in px, and therefore, also in
location of parallel SLRs for y-polarized light (λy(θx)) and diagonal SLRs for both polarizations
(λd). At normal incidence, these SLRs occur at λy(0◦) = 626 nm (609 nm) and λd = 560 nm
(546 nm) for the sample S1 (S2).

Our metasurfaces were designed for the multiply-resonant enhancement of SHG corresponding
to χ(2)yxx, i.e., to the process with x-polarized pump and y-polarized SH signal. The multiply-
resonant operation is therefore enabled for SHG processes where the pump is coupled to the
x-polarized SLR and the signal to the y-polarized SLR, either parallel or diagonal. Thus, we
can write the condition for multiply-resonant operation with resonance wavelengths λx(θy) and
λy(θx) to be

λx(θy) = 2λy(θx), (9)

where θy and θx emphasize the fact that we modify the SLR wavelengths by rotating the sample
accordingly. This way, the experiment corresponds to a situation where the sample is illuminated
at an angle θy and the SH signal is collected at an angle θx.

For sample S1, the multiply-resonant condition of Eq. (9) is not fulfilled at normal incidence,
but can be achieved by utilizing the dispersion of the occurring SLRs (see Figs. 3(a) and 3(b)).
Here, we selected θy = 3◦ for which S1 exhibit x-polarized SLRs at 1176 nm and 1250 nm
(red circle in Fig. 3(a)). Then, we utilize the dispersion of y-polarized SLRs to fulfill the
multiply-resonant condition at three different conditions (dashed circles in Fig. 3(b)). For the
pump wavelength of 1176 nm, the multiply-resonant condition is fulfilled at θx = ±5◦, where
parallel SLRs (green dots) and diagonal SLRs (blue dots) overlap at 590 nm. For the pump
wavelength of 1250 nm, the multiply-resonant condition is fulfilled conveniently at θx = 0◦,
where the fundamental y-polarized SLR occurs at 626 nm. These locations of multiply-resonant
operation are marked in Figs. 3(a) and 3(b) with dashed circles.

To demonstrate multiply-resonant operation using the angle–wavelength combinations men-
tioned above, we set θy = 3◦ and measured the SHG (θx, λ) -spectrum corresponding to χ(2)yxx,
i.e., to the SHG process with x-polarized pump and y-polarized signal (see Fig. 3(c)). The SH
emission pattern follows the dispersion of y-polarized SLRs, and the signal reaches its maximum
when multiple SLRs occur at interacting wavelengths (green and blue circles). At these locations,
the SH emission is 8-fold, when compared against the off-resonance signal. The maximum
emission power is 5.7 fW, which corresponds to a conversion efficiency of 7.6 × 10−14. By using
the method presented by Herman et al. [47,48], we estimate a value χ(2)yxx = 0.36 pm/V for the
sample S1 (see Supplement 1 for calculation details).

However, the maximum SH signal is achieved, when diagonal and parallel SLRs overlap at
590 nm. This overlap results in stronger resonance than the separate SLRs. Additionally, the two
SLRs near the pump wavelengths 1176 nm and 1250 nm are considerably weak, when compared
against, e.g., the normal-incidence SLR at 1220 nm. Thus, we cannot confidently confirm that
the strong signals observed with the pump wavelength of 1176 nm results from multiply-resonant
operation or simply from overlapping SLRs at the signal wavelength. To undoubtedly demonstrate
multiply-resonant enhancement, we measured the SH response from the sample S2.

For the sample S2, the multiply-resonant condition in Eq. (9) is fulfilled at normal incidence
(θy = 0◦ and θx = 0◦) for the pump wavelength of 1220 nm (red circle in Fig. 4(a) and green circle
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Fig. 3. The dispersion graphs of transmission for (a) x- and (b) y-polarized incident light.
(c) The dispersion graph of SHG emission for the sample S1, with x-polarized pump and
y-polarized SHG signal. (a)–(b) At normal incidence (θy = θx = 0◦), sample S1 exhibits
first-order parallel SLRs at 1220 nm and 626 nm for x-polarized (red dots) and y-polarized
(green dots) light, respectively. Additionally, diagonal SLRs (blue dots) occur at 560
nm for normal incidence illumination. By tilting the sample, the SLRs shift from their
normal-incidence values. (c) SLRs occurring near the pump and signal wavelengths impact
the SHG associated with χ(2)yxx. By setting θy = 3◦ (dashed circle in a) and tilting sample with
respect to x-axis (θx), the SH emission is enhanced with three different wavelength–angle
combinations (dashed circles in b). At θx = 0◦, the parallel SLRs for x- and y-polarized
light enhance SHG at 1250 nm (green circle). At θx = ±5◦, parallel and diagonal SLRs for
y-polarized light overlap at 590 nm, and parallel SLR for x-polarization occurs at 1176 nm.
Combined, these SLRs enhance SHG near 1180 nm (blue circles).

in (b)). By rotating the sample along the x-axis, i.e., by changing θx, the diagonal SLRs (red
dots) shift from λd = 546 nm. At θx = ±11◦ λd = 610 nm and the multiply-resonant condition is
again fulfilled (blue circles in Fig. 4(b)).

To confirm the multiply-resonant operation, we measured the SHG (θx, λ)-spectrum by setting
θy = 0◦ and scanning over a wavelength range of 1000–1300 nm and an angle range (θx) from
−15◦ to 15◦ (see Fig. 4(c)). From the SH emission pattern it is clear, that the x-polarized SLR
enhances the nonlinear response, as there is significant signal at all values of θx at the pump
wavelength of 1220 nm. Other parts of the SH emission pattern again follows the dispersion
of y-polarized SLRs and reaches its maximum at multiply-resonant conditions, i.e., at 1220
nm when θx = [0◦,±11◦] (marked with green and blue circles). Now, the multiply-resonant
enhancement results in 10-fold enhancement and the maximum emission power of 5.8 fW. The
measured signal therefore corresponds to conversion efficiency 7.7× 10−14 and χ(2)yxx = 0.40 pm/V.

For sample S2, the impact of multiply-resonant operation is more evident. The SH emission
with the pump wavelength of 1220 nm is visibly enhanced at all angles θx, demonstrating the
impact of the SLR at the pump wavelength. More importantly, the signal reaches the maximum
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Fig. 4. The dispersion graphs of transmission for (a) x- and (b) y-polarized incident light
for the sample S2. (c) The dispersion graph of SHG emission for the sample S2, with
x-polarized pump and y-polarized SHG signal. (a)–(b) At normal incidence, sample S2
exhibits first-order parallel SLRs at 1220 nm and 609 nm for x-polarized (red dots) and
y-polarized (green dots) light, respectively. The sample exhibits also diagonal SLRs (blue
dots) at 546 nm. Tilting sample along y-axis (θy) and x-axis (θx) will shift x- and y-polarized
SLRs from their normal incidence values. By setting θy = 0◦, the multiply-resonant condition
for SHG associated with χ(2)yxx (λx = 2λy) is fulfilled when θx = [0◦,±11◦] (dashed circles).
(c) SLRs enhance the second-harmonic emission and the maximum value is achieved at the
multiply-resonant condition. With the incident angle set to θy = 0◦, this occurs at the pump
wavelength 1220 nm with three different emission angles θx. First, at θx = 0◦ (green circle),
the multiply-resonant condition is fulfilled with parallel SLRs. At θx = ±11 (blue circles),
S2 exhibit diagonal SLRs at 610 nm, therefore fulfilling the multiply-resonant condition.

level only, when the multiply-resonant condition is fulfilled with parallel and diagonal SLRs
occurring at 610 nm, marked in Fig. 4(c) with green and blue circles, respectively.

5. Discussion

Our results demonstrate two things. First, only few studies have characterized the nonlinear
properties of Al nanostructures [49,50]. This is due to the fact that Al spontaneously forms oxides
(Al2O3), which impacts the plasmonic properties of the Al nanoparticles [51]. Therefore, many
researchers prefer more stable plasmonic nanostructures, such as gold and silver nanoparticles
[52]. However, our work utilizes the diffractive properties of plasmonic metasurfaces, which are
less sensitive to the changes in LSPRs induced by the oxidation of Al nanoparticles. Furthermore,
the use of gold or silver nanoparticles would have shifted LSPRs to longer wavelengths, i.e., to
the SHG wavelength range of our studies. Thus, we would not have achieved multiply-resonant
operation by utilzing only SLRs if gold or silver nanoparticles were used.
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Second, our results demonstrate the multiply-resonant enhancement of SHG by utilizing only
SLRs. Other works have either utilized only LSPRs or singly-resonant structures that exhibit
SLRs near either the pump or signal wavelengths [41]. Unfortunately, our results demonstrate only
10-fold on-and-off-resonance enhancement and SH signal levels of 5 fW, which are significantly
lower than the corresponding values acquired with singly-resonant SLR-based structures [24,25].
A major reason for this difference is the fact that our samples exhibited relatively weak and
low-Q SLRs (extinction ≤ 5% and Q ≈ 60) at the pump wavelength. Thus, the SLR-induced
field enhancements were also relatively weak. These points originated mostly from the fact that
the nanoparticles themselves were relatively small when compared against the lattice constant
py, which weakened the inter-particle coupling. However, our OPO restricted the investigation
to pump wavelengths of 1000–1300 nm and signal wavelengths of 500–650 nm. Having larger
nanoparticles would have shifted the LSPRs to the desired signal wavelength range, preventing
us from using only SLRs to realize multiply-resonant operation. Furthermore, highly transparent
structures could prove to be useful in future investigations. For example, multiple such structures
could be stacked on top of each other to achieve phase-matched SHG boosting the overall
nonlinear signal [53].

Another factor that might explain the weakness of the measured SHG signals is the possible
poor spatial overlap between local fields induced by different SLR modes. We note that such
mode-overlap calculations have been already performed for very similar periodic metasurfaces
elsewhere [54], where the use of oblique angles of incidence did not dramatically affect the
estimated SHG signals. Therefore, we do not think this reason is the most probable one to
explain the weakness of the SHG signal. Unfortunately, due to our restricted computational
capabilities, we did not have the resources to repeat such calculations for the general 2D situation
we have in this work experimentally investigated. We also note, that due to the non-local nature
of SLRs, the conventional susceptibility formalism may not anymore be adequate if a broad
range of angles of incidence would be used. In such case, it would seem preferable to estimate
the nonlinear responses by performing mode-overlap calculations [54]. Alternatively, it might
be possible to estimate angle-dependent nonlinear responses by using an approach based on
the nonlinear discrete-dipole approximation [55]. Although the latter approach approximates
individual nanoparticles as point-like scatterers, and does not therefore permit mode-overlap
calculations, the approach is computational less intensive than approaches based on full-wave
simulations.

Despite the relatively low signal levels, our results demonstrate how SHG can be modified by
utilizing the dispersion of SLRs. As is shown in Figs. 3 and 4, SLRs near both pump and signal
wavelengths enhance the SH response, which reaches its maximum at the multiply-resonant
conditions. By tilting the sample accordingly, we can change the multiply-resonant wavelength,
i.e., tune the wavelength of the maximum SH response. Such post-fabrication tunability could
prove useful for realizing other nonlinear processes in resonant metasurfaces, such as sum-
frequency generation, difference-frequency generation, and third-harmonic generation [35].
Demonstrating these processes could pave the path towards flat and tunable laser sources with the
operation band ranging from the ultraviolet to the terahertz (THz) region of the electromagnetic
spectrum.

6. Conclusion

In summary, we demonstrate multiply-resonant enhancement of second-harmonic generation
from Al metasurfaces. The achieved signal levels correspond to the nonlinear susceptibility
tensor component value of 0.40 pm/V, which is the same order-of-magnitude as the susceptibility
values of conventional nonlinear optical materials, demonstrating the potential of Al metasurfaces
for nonlinear optics. Here, we achieve the multiply-resonant enhancement by utilizing collective
responses of periodic metal nanoparticle arrays known as surface lattice resonances. Due to
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the dispersion of surface lattice resonances, we can control the multiply-resonant enhancement
by tilting the sample. As a result, we achieve multiply-resonant enhancement with several
different combinations of signal wavelength, incidence angle, and signal emission angle, therefore
demonstrating tunable second-harmonic generation. Our methods show promise for realizing
other nonlinear processes in plasmonic metasurfaces. Such structures could pave the path towards
flat and tunable nonlinear devices.
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Abstract
Frequency conversion of light can be dramatically enhanced using high quality factor (Q-factor)
resonator. Unfortunately, the achievable conversion efficiencies and conversion bandwidths are
fundamentally limited by the time–bandwidth limit of the resonator, restricting their use in
frequency conversion of ultrashort pulses. Here, we propose and numerically demonstrate
sum-frequency generation based frequency conversion using a metasurface-based resonator
configuration that could overcome this limitation. The proposed experimental configuration takes
use of the spatially dispersive responses of periodic metasurfaces supporting collective surface
lattice resonances (SLRs), and can be utilized for broadband frequency conversion of ultrashort
pulses. We investigate a plasmonic metasurface, supporting a high-Q SLR (Q = 500, linewidth of
2 nm) centered near 1000 nm, and demonstrate ∼1000-fold enhancements of nonlinear signals.
Furthermore, we demonstrate broadband frequency conversion with a pump conversion
bandwidth reaching 75 nm, a value that greatly surpasses the linewidth of the studied resonator.
Our work opens new avenues to utilize high-Q metasurfaces for broadband nonlinear frequency
conversion.

Since the construction of the first laser in 1960, lasers have been the most common instruments to
generate intense, coherent, monochromatic, and directional light [1]. When applying specific techniques,
such as Q-switching and mode-locking, lasers can be used to generate ultrashort pulses with extremely high
peak intensities and pulse durations down to a few femtoseconds. A major drawback of ultrashort pulse
lasers is the lack of tunability. Visible and infrared spectral regions are commonly accessed by utilizing
nonlinear frequency conversion resulting from nonlinear processes, such as second-harmonic generation
(SHG), sum-frequency generation (SFG), or difference-frequency generation (DFG) [2]. Unfortunately,
nonlinear processes are, by their nature, extremely inefficient. Conventional nonlinear optical devices
overcome this drawback by utilizing phase-matching techniques and optical resonators [2]. Even though
these techniques solve the efficiency problem, their operation bandwidths are often quite narrow, restricting
their use in frequency conversion of ultrashort pulses with broad spectral features. This trade-off between
conversion efficiency and bandwidth can be solved using adiabatic frequency conversion [3, 4]. However,
such techniques rely on long propagation lengths and complicated phase-matching schemes in the
nonlinear medium, motivating to seek for alternative approaches.

Recent progress in the fabrication of nanostructures has enabled the development of a novel material
class called metamaterials [5]. They are artificial structures consisting of nanoscale building blocks such as
nanoparticles (NPs) and gratings. Interestingly, the optical properties of metamaterials can be engineered by
tuning the properties of the building blocks, such as their size and shape, during the fabrication process. As
a result, metamaterials can exhibit exotic properties, such as negative index of refraction, epsilon-near-zero
behavior at optical frequencies, and nanoscale phase-engineering capabilities [6–9].

Plasmonic metasurfaces consisting of metallic NPs have recently shown the potential for enhancing
nonlinear processes in nanoscale structures [10]. Metal NPs exhibit collective oscillations of the conduction
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electrons giving rise to localized surface plasmon resonances (LSPRs) [11], which result in an increased
local field near the NP, subsequently enhancing the nonlinear response [12–18]. However, LSPRs are
associated with low quality factors (Q-factors, Q < 10) due to the high ohmic losses associated with
plasmon resonances. Fortunately, periodically arranged NPs exhibit surface lattice resonances (SLRs) [19,
20], that are associated with narrow spectral features and thus of much higher Q-factors (Q ≈ 2300) than
LSPRs [21]. Therefore, SLRs can result in dramatic local-field enhancements and consequent enhancement
of nonlinear responses [22–24].

Despite the potential of utilizing SLR-based metasurface resonators for frequency conversion, their
behavior is restricted by the time–bandwidth limit associated with optical resonators [25]. Further
enhancement of the local fields present near the NPs by designing SLRs with Q-factors will simultaneously
limit their use to frequency conversion of spectrally broad laser sources [21]. Therefore, use of high-Q
metasurfaces is seemingly restricted to spectrally narrow laser sources and subsequent nonlinear
applications.

In this work, we propose an experimental configuration to achieve broadband frequency conversion
with a single plasmonic metasurface supporting a high-Q SLR resonator (Q ≈ 500, center wavelength
1002 nm, linewidth of 2 nm). The proposed setup utilizes a temporal-focusing scheme that first separates
an incident broadband laser beam into separate spectral components that interact nonlinearly with the
metasurface. The spatial dispersion of SLRs allows us to couple these different spectral components of the
incident beam, arriving at the metasurface at different incidence angles, optimally with the SLR of the
metasurface. After the nonlinear interaction, the generated signal frequency components are then combined
to form the broadband output beam. Effectively, the use of the proposed scheme results in a broadband
enhancement of SHG and SFG processes. We numerically show resonance-enhanced SFG exhibiting a
pump conversion bandwidth of Δλ ≈ 75 nm (1020–1095 nm), a value greatly exceeding the 2 nm
linewidth of the SLR.

1. Theory

The nonlinear response of a metasurface can be evaluated using nonlinear scattering theory [26, 27]. Using
this approach, the SFG response of a metasurface depends on the mode overlap between local fields at the
fundamental frequencies E(ω1, r) and E(ω2, r), and at the SFG frequency E(ω3, r) [28–30]. Consequently,
the detected far-field SFG emission Edet (ω3 = ω1 + ω2) can be estimated using the Lorentz reciprocity
theorem as [26]

Edet(ω3 = ω1 + ω2) ∝
∫∫∫

V
χ(2)(ω3;ω1,ω2, r) : E(ω1, r)E(ω2, r)E∗(ω3, r) dV , (1)

where integration is performed over metasurface unit cell volume V, and χ(2)(ω3; ω1,ω2, r) is the nonlinear
susceptibility tensor. For SHG, where ω1 = ω2 = ω and ω3 = 2ω, equation (1) is written as

Edet(2ω) ∝
∫∫∫

V
χ(2)(2ω;ω,ω, r) : E2(ω, r)E∗(2ω, r) dV. (2)

The local fields E(ωi, r) consist of the incident laser field Einc(ki,ωi), where ki is the laser field wave vector,
and of the field scattered by the nanoparticles in the metasurface Escat(ωi). In other words,
E(ωi) = Einc(ki,ωi) + Escat(ωi). Consequently, the local fields can be increased either by increasing the
incident laser field amplitude, or by utilizing resonances, such as LSPRs or SLRs, that boost the scattered
fields Escat(ωi) [31].

In this work, we focus on SLRs that occur in periodic arrays of metallic NPs for two different reasons.
First, SLRs can be associated with very high Q-factors and consequently also with considerable local-field
enhancements. Second, the collective nature of SLRs makes them spatially dispersive, which can be utilized
to realize broadband frequency conversion.

Collective SLRs result from radiative coupling between periodically arranged NPs. This coupling is
strong near the Rayleigh anomaly wavelength, which for the first-order diffraction mode is given by [32]:

λ±1 = P (n ∓ sin θ) , (3)

where P is the array periodicity, n is the refractive index of the surrounding material, and θ is the incidence
angle in air, i.e. above the superstate material. Looking at equation (3), we see that the SLRs associated with
diffraction orders ±1 occur at the same wavelength when θ = 0◦. When θ �= 0◦, these two SLRs shift away
from this wavelength, and from each other. This angle-dependence of SLRs provide simple means to tune
the central wavelength of the resonance. We note that use of LSPRs does not provide similar tunability.
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Figure 1. Proposed setup for broadband frequency conversion using high-Q metasurfaces. The incident pulse is separated into
its spectral components using the first diffraction grating (DG1). A 4f-correlator is then used to guide the spectral components
into the metasurface, where the incidence angles θ of the spectral components depend on the frequency ω. At the metasurface,
the pump frequencies are up-converted with the process of sum-frequency generation. After the frequency conversion, the
spectral components of the nonlinear signal are combined using a second 4f-correlator and a subsequent diffraction grating
(DG2).

Despite the potential of utilizing high-Q SLRs for enhancing light–matter interaction taking place in the
metasurface, similar to all optical resonators their behavior is restricted by the time–bandwidth limit. An
increase in the Q-factor of the resonator is necessarily associated with a reduction of the operation
bandwidth. This limit seems to particularly restrict many nonlinear applications utilizing ultrashort laser
pulses with pulse durations τ p of 10–100 fs and linewidths ΔλL of 10–100 nm. Typical high-Q SLRs have
linewidths ΔλSLR ∼ 1 nm, suggesting their use with fs lasers to be inefficient. For example, when using a
laser with τp ≈ 200 fs and ΔλL ≈ 10 nm, only ∼10% of the laser power can be coupled into an SLR mode
with a linewidth ΔλSLR = 1 nm. To overcome this problem, we propose an experimental scheme that
utilizes diffractive optical elements and the angle-dependent responses of SLRs (see figure 1).

The scheme for broadband frequency conversion using the setup shown in figure 1 consists of five steps
and resembles closely a temporal focusing scheme [33, 34]. First, the incident laser pulse is split into its
spectral components by a diffraction grating. The laser beam spot at the diffraction grating is then imaged
using two lenses, acting as a 4f-correlator, onto the sample plane. Thus, the different spectral components of
the input beam arrive to the sample at different angles of incidence θ. With a properly selected diffraction
grating and a set of lenses, the incidence angle of a given frequency component can be made to match with
the resonance wavelength of the tilted SLR (see equation (3)). Therefore, it becomes possible to couple an
incident broadband source more efficiently into a high-Q metasurface and subsequently boost the
broadband SFG response. Finally, using another pair of lenses acting as a 4f-correlator, the SFG signal
component beams are imaged onto a second diffraction grating. With a proper selection of these
components, the spectral components of the SFG signal are combined with the second diffraction grating
completing the broadband conversion process.

2. Results and discussion

In this work, we used finite-difference time-domain (FDTD) method to simulate the optical response of a
metasurface consisting of V-shaped aluminum NPs. In order to ensure homogeneous surroundings required
for SLRs, the NPs were embedded inside homogeneous glass surroundings with refractive index n = 1.51.
The NPs had arm length L = 120 nm, arm width w = 70 nm, and thickness d = 30 nm, resulting in LSPRs
near 570 nm for y-polarized light (see figure 2). In order to have our metasurface exhibit y-polarized SLRs
near 1000 nm, we set px = 660 nm. The other lattice constant was set to a slightly smaller value of
py = 400 nm to increase the NP density without significant impact to the y-polarized SLRs. With these
parameters and under illumination at normal incidence, the investigated metasurface exhibited an SLR at
1002 nm for y-polarized light. Here, linewidth of the SLRs was ΔλSLR ≈ 2 nm corresponding to Q = 500.

Next, we simulated the transmittance of the sample with the incidence angle θ varying from 0◦ to 9◦.
Again, we considered y-polarized light. By changing θ, SLR peak was split into two peaks, which moved
further from 1002 nm as θ increased (see figure 2 (b)). At θ = 9◦, SLRs occurred at 896 nm and 1100 nm.
For the NP geometry considered in this work, the Q-factors and the local-field enhancement factors
associated with the shorter-wavelength SLRs were found to be significantly lower than for those of the
longer-wavelength SLRs. Therefore, in what follows, we chose to focus only on the longer-wavelength SLRs
occurring between 1000–1100 nm.

In order to verify that the local fields are accordingly enhanced in the presence of high-Q SLRs, we also
present the simulated local field distributions (see figure 3). When using y-polarized incident light
oscillating at the SLR peak wavelength, the light–matter interaction results in local-field hot spots near the
corners of the NPs that point along the y-direction. Although the overall structure of the local-field
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Figure 2. (a) The simulated metasurface consisting of V-shaped aluminum NPs arranged on rectangular lattice in homogeneous
glass surroundings (n = 1.51). Here, the NP and lattice parameters are L = 120 nm, w = 70 nm, d = 30 nm, px = 660 nm, and
py = 400 nm. (b) With these parameters and y-polarized incident light, the metasurface exhibits a broad LSPR near 570 nm and
a much narrower SLR at 1002 nm. The simulated transmission spectra shows how the peak wavelengths of the splitted SLR near
1000 nm shift from the normal incidence resonance wavelength (blue line), when the incidence angle changes. With θ = 9◦ (red
line) two SLRs form at 896 nm and 1100 nm. In this work, we chose to utilize only the SLRs occurring at longer wavelengths
(>1000 nm), because their Q-factors are larger than those of the shorter-wavelength SLRs (<1000 nm).

Figure 3. (a) Interaction with y-polarized light induces local-field hot spots on the edges of single particles (SP). (b) When
nanoparticles are arranged in an array and the incident light is set to the SLR wavelength of 1002 nm, the local-field
enhancement becomes dramatically larger than in the SP case. The collective nature of SLRs causes the field to drop
symmetrically along the direction inter-particle coupling (white arrows). (c) At the second-harmonic wavelength of 501 nm, the
local fields are enhanced due to the presence of a LSPR centered at 570 nm. In total, the mode overlap between E(ω, r) and
E(2ω, r) result in enhanced SHG and SFG responses.

distribution associated with a single NP (figure 3(a)) is not markedly affected when the NPs are arranged
periodically giving rise to the high-Q SLR (figure 3(b)), the field amplitudes are. Their intensity
dramatically increases, when we arrange particles into an array and couple light into the SLR mode
(figure 3(b)). Clear local-field hot spots also form, when the wavelength of the incident light is close to the
LSPR wavelength (figure 3(c)).

Next, we used the simulated field profiles (figure 3) to calculate mode-overlap integrals associated with
the nonlinear scattering theory (see equations (1) and (2)). Here, we assumed that the nonlinear response
of the plasmonic NPs is dominated by their surface response. Specifically, we only considered the
susceptibility component perpendicular to the surface of the NP (χ(2)

⊥⊥⊥), and the respective field
components [35]. Furthermore, the incident pump and the generated nonlinear signal fields were assumed
to be polarized along the y-direction. First, we estimated how efficiently narrowband laser pulses
(ΔλL ≈ 1 nm, FWHM) at different wavelengths between 1000–1100 nm can be converted to SHG
wavelengths between 500–550 nm (see figure 4). Laser pulses at different wavelengths were guided on the
metasurface at different incidence angles (0◦–9◦), resulting in enhanced SHG due to occurring SLRs. As
expected by looking at equation (3), different incident wavelengths can be made resonant with the
metasurface simply by changing the angle of incidence. When compared against the off-resonance situation
(5 nm away from the SLR wavelength), the calculated SHG intensities were enhanced by factors in the range
of 500 (8◦ angle of incidence) to 1800 (3◦ angle of incidence). The differences between SHG signals at
different incident angles result from small differences in the pump and second-harmonic field distributions
that affect the overall SHG signal levels due to changes in the mode-overlap calculations. Particularly, the
estimated SHG signals were found to be very sensitive to the changes in the second-harmonic field.

Next, we consider the frequency conversion of a broadband laser pulse centered at a wavelength of
1050 nm having a bandwidth of ΔλL = 100 nm (FWHM). First, we consider the situation where the entire
pulse arrives at the metasurface at one incidence angle (see figure 5(a)). For simplicity, we assume that each
spectral component of the broad laser pulse arrived at the metasurface simultaneously. Thus, the spectral
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Figure 4. Tunable frequency conversion of narrowband laser pulses (ΔλL ≈ 1 nm) via angle-dependent SHG. The SHG signals
are normalized to the non-resonant case (5 nm off the SLR wavelength).

Figure 5. Frequency conversion of a broadband laser source (ΔλL = 100 nm) via SFG in an SLR-supporting metasurface
(ΔλSLR ≈ 2 nm corresponding to Q = 500). (a) SFG responses of studied metasurface without the proposed scheme (see
figure 1). The laser pulse is incident on the metasurface at a single angle of incidence. Thus, the laser pulse arriving either at 0◦

(blue), 3◦ (green), or 6◦ (yellow) will be most efficiently converted only near the corresponding SLR wavelengths 1002 nm,
1032 nm, or 1067 nm, respectively. (b) The overall SFG response of the studied metasurface using the proposed scheme. Through
the SLR-induced enhancement, all spectral components interact efficiently, resulting in a broadband frequency conversion with
signal bandwidth ΔλSFG ≈ 40 nm (pump conversion bandwidth Δλ ≈ 75 nm, 1020–1095 nm). All signals are normalized to the
maximum SFG signal for the case where all spectral components arrive at θ = 0◦ (blue line).

components could interact with each other, resulting in numerous SFG signal wavelengths. However,
efficient SFG occurs only when both pump fields are at the occurring SLR wavelength. Therefore, pumping
at either 0◦, 3◦, or 6◦ results in strongest SFG emission at 500 nm, 516 nm, and 533 nm, respectively. At
these strongest signal wavelengths, the SFG emission is enhanced by a factor of ∼ 1000 when compared to
the non-resonant situation. There are also weaker and broader emission peaks at longer wavelengths, for
example, around 510 nm for illumination at θ = 0◦. These peaks arise from SFG processes where one of the
pump fields is at the SLR wavelength while the other pump field is at an off-resonant wavelength.

Finally, we consider SFG emission for the situation with the proposed temporal focusing scheme (see
figure 5(b)). We assume that the pulse is separated into 10 different spectral components each with a
linewidth of 5 nm and constant and equal field amplitudes. Again, the spectral components arrive at the
metasurface simultaneously, allowing them to interact with each other. This time, each component arrives
at the metasurface at different incidence angles θ allowing each component to couple resonantly with an
optimal SLR mode (see figure 2(b)). The occurring SLRs therefore enhanced the local fields at all the
considered pump wavelengths, resulting in efficient SFG for numerous signal wavelengths. Remarkably, the
numerous interactions combine to produce even stronger signal due to their cumulative nature. For
example, the SFG process with the pump wavelengths λ1 = 1002 nm and λ2 = 1100 nm results in a
nonlinear signal at the wavelength close to one gained with the process where λ1 = λ2 = 1052 nm, resulting
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in stronger combined nonlinear emission near 525 nm. Due to the cumulative nature of the total SFG
signal, the total SFG response is enhanced by an additional factor of 10, when compared to the calculated
SFG spectra performed for individual angles of incidence. More importantly, the total SFG signal has a
conversion bandwidth of ΔλSFG ≈ 40 nm (pump conversion bandwidth Δλ ≈ 75 nm, 1020–1095 nm),
indicating simultaneous resonance-enhanced and broadband frequency conversion of the initial laser pulse
with ΔλL = 100 nm. This conversion bandwidth Δλ is almost 40 times broader than the linewidth
ΔλSLR ≈ 2 nm associated with the normally incident SLR, suggesting a way to surpass the time–bandwidth
limit by optimizing the way light is coupled into SLR-supporting metasurfaces.

We note that the simulated SFG emission spectrum would be narrower if we assumed Gaussian
distribution for the incident broadband pulse. The spectral components at the pulse edges would have
smaller amplitudes, reducing their nonlinear interaction strength and decreasing the SFG near 500 nm and
550 nm. Another factor that could considerably affect the SFG emission spectrum would be any possible
chirp of the incident laser pulse. In that case, the different spectral components would not arrive at the
metasurface simultaneously and could not interact efficiently with each other. The lack of interaction would
limit the nonlinear processes to SHG, resulting in a nonlinear emission spectrum similar to one shown in
figure 4. We note that even with these two limiting factors, the resulting overall nonlinear response would
overcome the time–bandwidth limit associated with narrow resonances, such as SLRs.

The results above illustrate how our method results in broadband frequency conversion of light through
the process of SFG. We believe that the method can be generalized to be applicable also for other nonlinear
processes. For example, utilizing our approach for DFG or third-harmonic generation (THG), a broadband
generation of THz or ultraviolet laser pulses could be achieved. We also note that the proposed method can
be expected to be quite relevant when nonlinear responses of SLR-based metasurfaces with record-high
Q-factors are investigated and utilized for frequency conversion applications [21].

As a whole, this numerical work proposes a novel methodology for broadband frequency conversion of
light using metasurface-based high-Q resonators (Q ≈ 500). Because the time–bandwidth limit restricts the
conversion bandwidth and the achievable efficiency of resonant nonlinear devices, the proposed
methodology could provide new possibilities for metasurface-based broadband frequency conversion of
light.

3. Conclusions

To conclude, we have demonstrated a method for a broadband frequency conversion using a metasurface
supporting high-Q SLRs (Q ≈ 500). In our proposed setup design, different wavelength components are
separated and guided on an SLR-supporting metasurface at different incident angles. Due to the spatial
dispersion of SLRs, the scheme results in resonance-enhanced and broadband SFG response. Thus, our
method is suitable for frequency conversion of both broadband laser pulses and of wavelength-tunable
lasers with narrower spectral features. We have shown how the frequency conversion of an ultrashort laser
pulse with a linewidth of 100 nm can be resonantly enhanced (∼ 1000-fold) when comparing against
non-resonant nonlinear response. Furthermore, a pump conversion bandwidth of Δλ ≈ 75 nm is achieved,
exceeding by almost a factor of 40 the linewidth (2 nm) of the SLR resonator. This result suggests a way to
surpass the time–bandwidth limit associated with resonators by optimizing the way light is coupled into
SLR-supporting metasurfaces. In addition to SFG and SHG, our method could be generalized for other
frequency conversion processes, such as DFG and THG. Overall, our work opens new possibilities to
perform broadband frequency conversion of light by utilizing high-Q metasurface resonators.
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Appendix A. Simulation methods

Linear FDTD simulations. The FDTD simulations were performed using lumerical FDTD solutions
simulation software. We simulated the transmission spectra and local-field distribution for aluminum
nanoparticles in homogeneous surroundings (n = 1.51). To investigate a periodic structure, we used
periodic boundary conditions along the metasurface axes (x- and y-axes). The perfect-matching-layer
(PML) conditions were used at the boundary along the initial propagation direction (z-axis). The PML
profile was optimized for oblique-angle simulations. For simulations with θ �= 0◦, we used the broadband
fixed angle source technique (BFAST).

Nonlinear scattering theory. The nonlinear responses of our metasurface was evaluated using the
presented nonlinear scattering theory and Lorentz reciprocity theorem [26, 27]. For simplicity, only the
surface nonlinearities associated with metallic aluminum were considered. Furthermore, the component
χ⊥⊥⊥ (all field components are perpendicular to the surface of the metal) was assumed to be the only
non-zero susceptibility component describing the nonlinearities of the surfaces of the aluminum
nanoparticles. We are not aware of studies reporting effective surface susceptibility tensor components for
aluminum. Therefore, in this work the strength of the χ⊥⊥⊥ was set to unity, forcing also us to restrict to
relative calculations. The calculations were performed with Matlab. There we used the local-field profiles
simulated with FDTD as input values.
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