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PREFACE

In his declaration following successfully receiving the radio echo from the moon for
the first time, John H. DeWitt Jr. stated, "If one allows the imagination free rein, many
future possibilities appear." I tried approaching the research directions presented in
this dissertation with this spirit of discovery and innovation. I hope that the humble
efforts I will present in this dissertation may not only provide new directions for
sparse representation and compressed sensing theory but also lead to new directions
in machine learning and signal processing in general.

This dissertation is a compilation of my selected research papers in the field of
sparse representation and compressed sensing theories. The dissertation includes
studies carried out from 2017 to 2024 within the Signal Analysis and Machine Intelli-
gence (SAMI) group at Tampere University, focusing on the core contents of innovative
ideas and research directions I initiated. It excludes the studies that are less relevant
or the works that can be considered as continuations of the findings in this dissertation
and studies I contributed to before 2017.

For their invaluable guidance, constant support, and mentorship throughout my
doctoral journey at Tampere University, I would like to express my deepest gratitude
to my supervisor and my second supervisor, Prof. Moncef Gabbouj and Prof. Serkan
Kiranyaz, respectively. It is also my pleasure to thank the pre-examiners of my
dissertation, Prof. LJubisa Stankovic (University of Montenegro) and Assist. Prof.
Jian Zhang (Peking University), for their valuable contributions. My gratitude extends
to Prof. Gonzalo R. Arce (University of Delaware) for agreeing to serve as the
opponent in my dissertation defense.

Throughout my academic journey and professional development, Prof. Gabbouj’s
profound expertise and valuable feedback have always served as a guide for me. Not
only as a supervisor but also as a mentor and source of inspiration, he has never
hesitated to offer his help and experience in helping me to make important decisions
regarding my career and advancing in my field of expertise. As a concrete example of
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this continuous support, when I was hospitalized before a conference, Prof. Gabbouj’s
concern for my well-being throughout the night and his handling of my conference
and travel-related paperwork clearly demonstrated his supportive and kind nature.
This and many similar events are only a small indication of Gabbouj’s outstanding
qualities not only as an academic guide but also as a respected supervisor who provides
encouragement, help, and understanding in difficult times.

Prof. Kiranyaz’s technical expertise and never-ending passion for research and sci-
ence have always motivated me, even while working full-time at another workplace,
continuing my Ph.D. studies outside working hours, and also taking care of my new-
born daughter. During this process, his kind acceptance to hold meetings about my
dissertation outside working hours, even at midnight, is the clearest indication of his
endless excitement and dedication. This generous attitude shows how valuable and
understanding Prof. Kiranyaz is not only as an academician but also as a human being.
This flexibility and understanding not only improved the quality of my dissertation
work but also gave me inspiration and strength to tackle challenges in my personal and
professional life.

I owe a special debt of gratitude to Bulent Sankur, who supervised my research
at Bogazici University before I started my Ph.D. at Tampere University. He played a
significant role in developing my academic discipline, and even after I began my new
career at Tampere University, he continued to support me and contribute to some of
my dissertation publications as a co-author. Professor Sankur’s selfless commitment
to science and progress is reflected in this approach, which always puts students’
needs first. He has been recognized as one of the leading scientists in Turkey in the
field of signal processing for his contributions to the training of the next generation
of scientists in this discipline. Prof. Sankur’s support and guidance throughout my
academic journey have been and will be indispensable for me both in my academic
development and in my professional career.

I would like to express my special thanks to my friends Mete Ahishali, Aysen
Degerli, Ugur Akpinar, Mert Duman, Dr. Erdem Sahin, Dr. Sinem Aslan, who shared
the same excitement and made valuable contributions to my work during this period.
Each of them enriched my work by sharing their knowledge and experiences with me
during my Ph.D. journey. In addition to directly contributing to some studies of this
dissertation, Mete Ahishali deserves special recognition for continuing the follow-up
studies on the methods we developed in the publications presented in this dissertation.
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I am also grateful to Fahad Sohrab, all my other friends in the SAMI group and
former group members for their support throughout this journey. The discussions we
had in the group over the years were incredibly enlightening and pushed me to think
more critically and deeply about my dissertation.

I would like to express my deepest gratitude to my wife, Aytuna Yamaç, my life
partner and greatest friend, who has been with me at every stage of this dissertation
study, my biggest supporter, my source of motivation, and my companion. Without
her presence, it would not have been possible for me to complete this dissertation
successfully. Throughout this academic journey, Aytuna never hesitated to support
me both mentally and physically; she stayed awake with me as I worked late into the
night and even into the morning to meet deadlines. While I was working full time
at another workplace and continuing my Ph.D. studies outside working hours, even
while she was taking care of our newborn daughter, she was not only understanding
about the long hours my studies required, in the evenings and on weekends but also
did not forget to provide motivation and moral support. Aytuna’s dedication played
a vital role in completing my dissertation, and her love, patience, and understanding
have inspired me at every step of this journey.

Finally, I would like to express my sincere gratitude to my father, my mother,
who believed in me at every step of my academic journey since childhood; and my
brother, who helped me understand advanced radar signal processing topics better and
significantly increased my interest in the subject.

Tampere, February 2024

Mehmet YAMAC
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ABSTRACT

This dissertation investigates the analysis of linear systems of equations, particularly
focusing on underdetermined systems where the solution vector is sparse or approxi-
mately sparse. With its roots in Compressive Sensing (CS), this dissertation identifies
several critical challenges in the literature of Sparse Representation theory and intro-
duces a number of novel methodologies. The methods proposed in this dissertation
are applicable to a wide range of application areas.

In this dissertation, a considerable portion of the research focuses on the task of
sparse support estimation, exploring methods to estimate the locations of the non-zero
elements of the sparse vector without the need to fully recover it. This dissertation
demonstrates that learning such a direct mapping from the measurement vector to
the location indices of sparse signals, which is also called as support set, is indeed
possible via a compact neural network even if only a small or moderate-size training
dataset is available. A new classifier is presented as a key application, which integrates
dictionary-based and neural network approaches into an efficient hybrid method. The
classifier proved its effectiveness in data-scarce scenarios, particularly in COVID-19
detection from chest X-RAY images task, which was developed in the early stage of
the pandemic when large training sets were unavailable. Despite such training data
scarcity, the CSEN-based classification approach achieved remarkably good perfor-
mance in COVID-19 detection from X-ray images, achieving over 98% sensitivity and
over 95% specificity on the QaTa-Cov19 dataset.

Specifically focused on the challenge of handling large-scale and multi-dimensional
signals, the dissertation introduces a novel factorization method, the Generalized
Tensorial Sum (GTS-T), to represent the CS matrix with far fewer parameters than
the conventional CS system, formulated by matrix-vector multiplication. This method
enables the training of neural networks for efficient optimization of the CS matrix,
which is especially advantageous for large-scale and multi-dimensional signals. The
proposed GTS-T factorization remarkably reduces the complexity of optimizing such
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large-scale CS matrices by using separable multi-linear learning and showed significant
performance enhancement in signal recovery, especially at low measurement rates
compared to commonly used factorization approaches such as block-wise learning.

This dissertation also investigates methods that perform signal processing directly
on the measurement vector rather than first requiring the recovery of the sparse vector.
It first investigates two different methods of direct classification of CS measurements,
one of which is for multi-linear compressive learning where CS matrix is learned in
the form of GTS-1, and the other is for more vectorized compressive learning where
CS system is in conventional matrix-vector multiplication form. Second, by reforming
the direct data hiding over CS measurement technology, the dissertation provides
both single-level and multi-level CS-based encryption for compressive and secure
sensing based monitoring. The proposed methodology is specifically important for
privacy-preserving surveillance systems, with its effectiveness in applying increased
security to the sensitive part of the signals at a low cost. The experimental validations
showed the effectiveness of the proposed approach in robustly hiding sensitive data
during joint compression and encryption at a very low cost in the sensory part while
maintaining high-quality signal recovery in the receiver. This scheme successfully
balanced privacy protection with image fidelity, demonstrating its potential for use
in real-world surveillance scenarios with face anonymization on top of compressive
encryption.

The dissertation further presents a method for domain transition strategy based on
sparse representation and personalized dictionary learning. The method is demon-
strated for a specific case study of zero-shot ECG anomaly detection, providing evi-
dence of its effectiveness in efficiently transferring samples representing both normal
and abnormal beats from the source to the target directly in the signal domain. The pro-
posed zero-shot classification approach achieved a remarkable accuracy of 98.2% and
an F1-Score of 92.8% on the MIT-BIH ECG dataset, significantly outperforming the
existing approaches and demonstrating its usefulness for personalized, energy-efficient
ECG monitoring.
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1 INTRODUCTION

Over the past few decades, Sparse Representation and Compressive Sensing have
received significant attention from the signal processing and machine learning com-
munities. Despite significant progress in recent years, there remain a number of
unexplored areas and unresolved challenges that require further research. This disser-
tation addresses some of these complicated challenges in a manner that contributes
to the field by introducing innovative methods and potentially practical applications.
This dissertation takes a closer look into linear system of equations

y = Dx, (1.1)

where y ∈ R𝑚 is the measurement vector, and D is an 𝑚 × 𝑛 matrix. We focus
specifically on cases where x is a sparse or approximately sparse vector.

Throughout this dissertation, our primary interest lies in scenarios where the system
in Eq. (1.1) is an underdetermined linear system, i.e., 𝑚 < 𝑛, except in Chapter 6,
where we explore the case 𝑚 > 𝑛. The Fundamental Theorem of Linear Algebra
[1] tells us that perfect recovery of x from y is generally not achievable, especially
for the case where 𝑚 < 𝑛. The recent approaches in compressive sensing and sparse
representation theory, however, prove to us that by using the prior knowledge of x being
sparse, such recovery is feasible and indeed guaranteed for special cases regarding D.

In the literature on compressive sensing and sparse representation, there are pri-
marily two research directions. The first involves designing the matrix D to ensure a
stable embedding of x in y in order to maximize information preservation. The second
direction focuses on developing algorithms to recover x given a fixed D. Traditional
CS theory literature has extensively explored the recovery guarantees and algorithms
under the assumption that x is sparse. In subsequent advances, additional prior in-
formation about the sparse coefficients, such as structural sparsity, was incorporated
to improve the performance of the recovery process. The advent of neural network
technology has further enhanced the performance of these algorithms.
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However, the sparse recovery methods from y in Eq. (1.1) are typically iterative
and computationally expensive. In a typical CS monitoring system, an edge device
(transmitter) performs computationally inexpensive linear sampling while the receiver
handles the more demanding recovery process. This leads to several challenges that
are partly addressed by literature or still unexplored:

(i) Can signal processing tasks be performed directly on y, without first needing to
recover x?

This question can be related to any signal processing task over compressively sensed
signals, tasks that were traditionally performed on signals obtained via traditional ac-
quisition methods, such as quantization, watermarking, and recognition. Even though
recent attention has been paid to this direction [2], it remains a less focused area com-
pared to well-studied sparse signal recovery methods. Particularly, we are interested in
methods of direct data hiding and privacy preservation applied directly to y, without
first needing to recover x, which are less explored in CS literature. One of the main
focuses of this dissertation is to fill this gap in the literature by introducing a type of ef-
ficient embedding technique that can jointly provide encryption, privacy-preservation,
compression, and data hiding while compressively sensing the signal. In addition,
this dissertation enhances the field of compressive learning (direct inference on mea-
surements without first needing to recovery x), a branch of direct signal processing
over CS measurement literature. We propose two novel learning methodologies for
classifying the signal x directly from its compressive sensing representation y, thus
avoiding first needing to recover sparse signals.

When considering sparse recovery, we refer to identifying the non-zero elements
of x with their locations, magnitudes, and signs. However, many applications require
only partial information about x. Specifically, estimating the locations of the non-zero
elements, known as the sparse support set, is sufficient in many practical scenarios.
Traditional approaches estimate support set by first recovering x and then applying
ordinary thresholding. This leads to the next question:

(ii) How can we coarsely estimate the sparse signal support set without recovering
x, and how can this estimation be beneficial in various applications?

Another challenge this dissertation addresses is the feasibility of handling large-
scale signals, especially regarding the matrix D. While the Kronecker CS technique
offers a factorization approach for conventional CS matrices, this often compromises
the quality of recovery compared to the one achieved with non-factorized matrices for
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a fixed measurement rate. Therefore:
(iii) How can we factorize D to represent it with fewer parameters without signifi-

cantly sacrificing performance in signal recovery and other signal processing tasks?

Figure 1.1 Diagrammatic representation of the interconnections among the works presented in the
dissertation.

Literature findings within compressive sensing theory about sparse recovery from
linear systems, as represented in Eq. (1.1), are highly useful for a variety of tasks.
These include representing the signal y as a linear combination of a subset of vectors
from D. It can be used for a variety of purposes, including representation-based
classification, anomaly detection, and more. Additionally, the literature discusses op-
timizing D for specific tasks by enforcing sparse representation of the target signal in
D, a process known as dictionary learning. Once a dictionary is learned and estab-
lished, it is generally assumed that the new test samples can be sparsely represented
in D. However, in some cases, especially when the training set is highly specific to a
particular measurement device or the measured item, this assumption may not hold.
A notable example is the ECG signal morphology, which is unique to each individual.
We can conceptualize personalized dictionary learning as the process of learning the
subspaces in which a specific data type lives for any sensory system or dataset using
its own samples. In such scenarios, signals from new devices may not be adequately
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represented by the dictionary D, even if they are of the same type. In the case of ECG
anomaly detection, for example, if we learn a dictionary from the healthy signals of
user 𝑝, it may not accurately represent the signals of a new user who recently reg-
istered with the monitoring system, regardless of whether the new user’s test signals
are healthy. Mathematically, this situation results in the system in Eq. (1.1) to be
highly inconsistent, potentially making the analysis of x unreliable. This leads to the
challenge:

(iv) Can we design a transformation, 𝑇 (·), for the measurement y, that enables
stable analysis of x from 𝑇 (y) = Dx, even when direct analysis based on y = Dx is
not robust?

1.1 Motivation and Objectives

This dissertation addresses these questions and provides practical application sce-
narios. For instance, [P9] is about addressing the challenge (iv), where we explore
zero-shot ECG anomaly detection. In this system, the assumption is that only a limited
number of healthy samples for new users are available, while the abnormal (arrhyth-
mic) ECG signals are unknown. We estimate a transformation 𝑇 (·) acting as a domain
transition [3] between users, which can transform existing users’ healthy signal into
the healthy signal subspace of the new user. Upon learning this transformation, it can
be applied to both healthy and abnormal beat signals of the existing users in order to
make them appear as if they originated from the new user. The majority of studies
in transfer learning and domain adaptation focus on transforming high-level features
rather than input signals, regardless of whether they are based on sparse represen-
tation or not [4]. A noticeable exception to this trend is the use of methods based
on Generative Adversarial Networks (GANs), such as the signal-to-signal translation
process [5]. An example of this can be found in a study using Cycle-GAN, where the
direct translation of input signals from one domain to another is referred to as ’domain
transition’ [3]. As stated above, in this dissertation, we have developed a technique
for domain transition using sparse representation, specifically designed for zero-shot
ECG anomaly detection.

Regarding the challenge (iii), in [P8], we introduce a new factorization method,
Generalized Tensorial Sum (GTS-T), which parametrizes D as the sum of matrices
resulting from Kronecker multiplication. This approach allows for efficient optimiza-
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tion of the CS matrix together with the neural network-based recovery algorithm, both
of which are jointly learned. For a special case, T=1, we demonstrate that direct
inference from y can be optimized through a neural network, addressing (i) as well
in [P7]. Regarding challenge (i), another significant contribution of this dissertation,
presented in [P6], is the concept of utilizing extracted features from both the spatial
and sparse domains. This approach significantly enhances classification performance
for the task of direct recognition of compressively sensed signals.

Regarding challenge (i), in addition to the above-mentioned studies on direct in-
ference over compressively sensed signals, compressive and secure sensing strategies
are also investigated in [P4] and [P5]. In [P4], we discuss our proposed method for
multi-level CS-based encryption, which incorporates direct data hiding within the CS
measurements. This approach enables multi-level encryption, providing enhanced
privacy protection. Specifically, we employ double cryptography for highly sensitive
parts of the signal, while using single-level encryption for less sensitive portions, both
are CS-based. Furthermore, in [P5], we propose an advanced recovery technique for
this direct data-hiding approach. This technique is not only applicable to the system
outlined in [P4] but also improves the accuracy and robustness of the signal recovery
for any other applications that also require reconstruction-free direct data hiding over
CS measurements.

To tackle challenge (ii), we develop a non-iterative neural network-based framework
for sparse support estimation in [P1] and [P2]. This framework has broad applications,
including dictionary-based classification and anomaly detection. In addition, the
method can enhance the performance of the conventional CS algorithms when coarse
support estimation is used as a priori information for the sparse signal recovery.
Furthermore, in scenarios where data collection poses significant challenges, such as in
radar monitoring applications, the integration of certain handcrafted prior assumptions
can still significantly improve recovery performance. When combined with the idea
of focusing on support estimation rather than full recovery, prior assumptions about
sparse signal support can be particularly effective for localization problems in radar
monitoring. This approach, which we categorize as a structural sparsity assumption
for support recovery, is also discussed in [P3].

As a result, we can re-arrange the more generic research questions mentioned above
into more specific objectives and corresponding key research questions (RQs) that are
targeted in this dissertation in the following manner:
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RQ-1: How can we extract information about x, particularly the locations of its non-
zero elements, without fully recovering x? How can this coarse estimation of
the support set be utilized in practical applications?

a) For the case where we have access to enough training data, can we learn
compact NNs for direct mapping from y to the support set of x?

b) In the case where we do not have access to enough data, how can we
use our prior assumptions to have structural sparsity models, and how
can we improve the support estimation performance of optimization-based
approaches?

RQ-2: How can we design a factorization D to make CS feasible for large-scale signals,
including efficient recovery of x?

RQ-3: How can we perform resource-efficient signal processing directly on the mea-
surement vector y without the need to recover x?

a) How can we ensure privacy-preserving observations of y?

b) How can we more efficiently classify x without recovering it, directly from
y?

RQ-4: How can we design a transform 𝑇 (·) for y to enable stable analysis of x from
𝑇 (y) = Dx, even when direct analysis from y = Dx is infeasible?

1.2 Main Contributions

In this dissertation, we investigated, for the first time in the literature, whether sparse
support estimation can be achieved using neural networks. As a result of our research,
we have observed that learning such a mapping with compact neural networks is feasi-
ble, and this approach can have numerous applications. Dictionary-based classification
methods, for example, use features extracted from the training set as atoms in the dic-
tionary matrix. Consequently, when estimating the contributions of each column as
a representation vector (ideally sparse) in the representation of the test signal on the
pre-organized dictionary, this information is very beneficial in determining the class
of the test signal. Although this method is commonly used, finding the corresponding
representation vector becomes more difficult as the training set grows. Our method,
in contrast, offers a more effective classifier by using only a part of the training data
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in the dictionary and the rest in the training of a compact support estimator network
rather than expanding the dictionary size by using the whole training dataset in it.
As the location of the non-zeros is the most critical information to determine the
class among such dictionary-based techniques, the proposed technique leads to a very
effective compact classifier. Such a classifier not only yields more accurate results
but also reduces computational load compared to competing methods in many clas-
sification problems. We also discovered that using this support estimator network’s
outputs as prior information injected into the classical sparse signal recovery methods
significantly enhances both convergence speed and recovery accuracy.

We also worked on optimization-based methods for support estimation and expe-
rienced that collecting training data remains a challenging task in certain scenarios.
A typical example is the task of acquiring images through walls using radar technol-
ogy. In such instances, we demonstrated that defining and addressing the optimization
problem as a structural sparsity model is notably more effective by using some intuitive
priori assumptions rather than solving the conventional optimization problem based
on an ordinary sparse model.

A challenge not yet fully addressed in the literature is that the CS system, which
is traditionally defined in the classical vector-matrix multiplication form, is not very
easy to implement, especially for large-scale signals such as high-resolution images.
Specifically, optimizing the CS matrix via a neural network module as a part of a
deep network that jointly optimizes the CS matrix and the mapping responsible for
the reconstruction of the signal from its measurements would be highly costly. The
prevalent recent solution for this challenge is to divide images into smaller blocks and
apply the CS matrix to each block independently. As an alternative, we propose a
factorization method based on multiple uses of Tucker Decomposition to factorize a
CS matrix. By using this factorization technique, neural networks were able to learn
even large-scale CS matrices effectively.

We demonstrated that learning the compressive sensing matrix via the proposed
factorization based on Tucker Decomposition is effective for both signal recovery
and direct classification of measurements. We also showed that there is still room
for improvement in the reconstruction-free classification of compressively sensed
signals, even for CS systems using either conventional or learned CS matrices in their
traditional, unfactorized form. For conventional ordinary CS systems, we introduce
an alternative feature extraction and classification scheme to the literature works.
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Experimentally, we have shown a good improvement in classification performance
using the proposed method.

As another example of direct signal processing on CS measurements, we studied
the method of data hiding over CS measurements. By reforming this concept, we
introduced a multi-level CS-based encryption technique. Our experimental results
have demonstrated the effectiveness of this method in helping to address the challenges
of privacy preservation in CS monitoring systems.

Finally, we introduce a novel domain transition technique via sparse representation
and personalized dictionary learning. This method involves estimating such domain
transitions from one subspace to another that are represented by corresponding per-
sonalized dictionaries for independent identities. As an example of this method, we
present a zero-shot ECG anomaly detection case study that illustrates its ability to
transform both healthy as well as anomalous samples from the source (ECG signal
subspace belonging to an existing user that has healthy and abnormal ECG signals,
already labeled) to the target domain (ECG signal subspace of a new user with only a
limited number of healthy samples and no anomalies) directly at the input level without
the need for any feature extraction first. Such a domain transition enables us to train
neural networks directly in the target domain by transforming abundant healthy and
abnormal ECG signals in order to make them appear as if they originated from the
target domain.

1.3 Dissertation Structure

The dissertation is organized into seven chapters as follows: Chapter 2 provides pre-
liminaries on Sparse Representation Theory, including a detailed discussion of key
topics from literature, such as commonly used recovery algorithms and conventional
compressive sensing theoretical guarantees on sparse signal recovery. The concepts,
explained in more detail, form the basis for our theoretical and experimental results in
subsequent chapters. Chapter 3 addresses RQ-1, focusing on sparse support estimation
from the measurement vector y. It investigates two main directions: a non-iterative
neural network-based approach and a method that exploits a specific structural sparsity
model and an optimization theory-based algorithm to achieve enhanced accuracy com-
pared to the conventional sparsity model and its corresponding recovery algorithm.
Chapter 4, addressing RQ-2, introduces a novel factorization method, the Generalized
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Tensorial Sum (GTS-T). This method factorizes D as a sum of matrices derived from
Kronecker multiplication, thus allowing efficient neural network-based optimization
of the CS matrix. Chapter 5, considering RQ-3, presents our proposed methodolo-
gies for direct inference from the measurement vector y. This includes, first, an idea
of utilizing features from both spatial and sparse domains to enhance signal classi-
fication. Secondly, a technique that optimizes neural network-based inference using
tensorial factorization of CS matrix, i.e., GTS-1, which is jointly learned with the deep
module responsible for feature extraction and classification. Additionally, the chapter
investigates compressive and secure sensing strategies via direct data hiding over CS
measurements. Chapter 6, addresses RQ-4 and explores zero-shot ECG anomaly de-
tection. The chapter assumes the availability of only a limited number of healthy signal
samples from new users, with no abnormal ECG signals. It focuses on estimating a
transformation 𝑇 (·) that acts as a domain adaptation between users. Finally, Chapter
7 concludes the dissertation, summarizes the key findings and contributions of the
research, and suggests topics for future research.
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2 SPARSE REPRESENTATION

In this chapter, we will briefly explore the theories of sparse representation and com-
pressive sensing (CS). Initially, we will introduce the general concepts of sparse rep-
resentation and its specialized subfield, the CS theory. Following this, we will discuss
the essential characteristics that CS matrices and dictionary matrices should possess,
taking a closer look at the relevant classical theories. Among these, the concepts of
the Restricted Isometry Property (RIP) and the coherence will be examined in greater
detail. This is because, based on the classical RIP-based guarantee conditions, we aim
to derive the guarantee conditions for the reversible multi-level CS-based encryption
method in Chapter 5.1. Additionally, the coherence index will serve as a crucial tool for
the experimental design that motivates us to develop the proposed GTS factorization
of CS matrices in Chapter 4.

Following the properties of CS matrices, we will provide a summary of the most
commonly used optimization-based recovery algorithms under the topic of proximal
algorithms. These classical CS recovery methods will be used throughout the disserta-
tion in many places, either in their original form or in an improved version, particularly
as competing methods to those we have proposed in this dissertation. Afterward, we
will summarize the latest neural network-based methods. In subsequent chapters, these
methods will be directly compared with those developed in this dissertation.

2.1 Preliminaries

The ℓ𝑝-norm of a vector x ∈ R𝑛 is defined throughout this dissertation as ∥x∥ 𝑝 =(︂∑︁𝑛
𝑗=1

|︁|︁𝑥 𝑗 |︁|︁𝑝)︂1/𝑝 for 𝑝 ≥ 1. In addition, the number of the non-zero coefficients is
denoted by the ℓ0-norm, i.e., ∥x∥0 = lim𝑝→0

∑︁𝑛
𝑖=1 |𝑥𝑖 |

𝑝 = #{ 𝑗 : 𝑥 𝑗 ≠ 0}.
In a proper basis (or dictionary), Φ ∈ R𝑑×𝑛, if a signal of interest, s ∈ R𝑑 , can

be represented by at most 𝑘 number of non-zero coefficients, then this signal or its
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representation vector, x ∈ R𝑛, is called to be strictly 𝑘-sparse, i.e.,

∥x∥0 ≤ 𝑘, (2.1)

where s = Φx. On the other hand, the majority of the signals we find in real-world
applications exhibit a power-law decay in Φ when the coefficients of x are sorted by
magnitude i.e.,

|︁|︁x1|︁|︁ ≥ |︁|︁x2|︁|︁ ≥ ... ≥ |︁|︁x𝑛−1|︁|︁ ≥ |x𝑛 |, where x 𝑗 is the 𝑗 𝑡ℎ largest coefficient
of x in magnitude. In this point, let us define the support set, Λ ⊂ {1, 2, 3, ..., 𝑛}, of
a sparse signal as the set of indices of the location of the non-zero coefficients in the
signal Λ := {𝑖 : 𝑥𝑖 ≠ 0}. Let also Λ (𝑘) be the set of indices of 𝑘 largest coefficients in
magnitude, then x is called to be approximately 𝑘-sparse or compressible in Φ, if∥︁∥︁s − ΦxΛ(𝑘 )∥︁∥︁2 ≤ 𝜚, (2.2)

where 𝜚 is a small constant.

(a) (b) (c)

Figure 2.1 A well-known example of compressible signals is the wavelet domain representation of an
image. (a) The original image. (b) The wavelet coefficients of the image. Pixels with small
coefficients are in blue color. c) When sorted in descending order, the magnitudes of the
coefficients exhibit a rapid decay.

Given a dictionaryΦ ∈ R𝑑×𝑛 of collection of the discrete-time waveforms of length
𝑛 which are commonly called as atoms, we assume that the signal of interest s can be
represented as the linear combination of these atoms,

s = Φx, (2.3)

where x ∈ R𝑛 is the vector of representation coefficients of s in Φ.
For example, in the classical case where 𝑑 = 𝑛, it is possible to have a matrix Φ that
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consists of 𝑛 linearly independent atoms, where Φ is called complete dictionary (or
basis) such as Fourier [6] and DCT [7]. As a consequence of linear independence of
columns and rows of the dictionary Φ, each signal representation in Φ will be unique,
i.e., x = Φ−1s. It is possible, however, that one can enrich the representation by
adding more atoms, in which case we will have Φ ∈ R𝑑×𝑛 with 𝑛 > 𝑑, which is called
over-complete dictionary (or frame ). Therefore, representation in Eq. (2.3) cannot be
unique in this case. We need to make one more assumption to satisfy the uniqueness
requirement. Traditionally, this assumption could be searching for a solution having
the minimum energy (which is defined by ℓ2-norm) among all solutions satisfying Eq.
(2.3) i.e.,

min
x
∥x∥22 subject to Φx = s. (2.4)

The solution of the optimization problem defined in Eq. (2.4) will be unique, and also
known as minimum norm solution (the method also called as method of frames),

x̂ = Φ+y = Φ𝑇
(︂
ΦΦ𝑇

)︂−1
y, (2.5)

where Φ+ = Φ𝑇
(︁
ΦΦ𝑇

)︁−1 is known as Moore-Penrose pseudo-inverse or canonical
dual frame. Alternatively, one may desire a more efficient representation in which
a signal is represented by only a linear combination of a relatively small number of
atoms,

min
x
∥x∥0 subject to Φx = s, (2.6)

which is called sparse signal representation of s [8]. The concept of sparse repre-
sentation is encountered in a wide range of disciplines. An overview of a specific
application area, compressive sensing, is provided in the sequel. Compressive sensing
relies heavily on sparse representation. With the efforts done in this field, the math-
ematical framework of sparse representation defined in Eq. (2.6) is now mature. For
clarity, as of now, we have only given the definition of sparse representation, which
is Eq. (2.6). The question of whether the representation is unique or not was not
discussed. For example, how can we estimate the sparse representation vector as close
to that of the ground truth as possible within a feasible time and budget? Despite the
fact that the following section describes uniqueness, stability, and recovery methods
in compressive sensing theory, the conclusions apply to general cases in which we can
represent data in the form of Eq. (2.6).
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2.2 Compressive Sensing

Data or signal representation in compressive sensing can be regarded as a special
case of the sparse representation in Eq. (2.3). Since its inception in 2006, [9]–[11],
compressive sensing theory has had a significant impact on signal processing. Ac-
cording to CS theory, a sparse signal can be recovered using fewer measurements than
is required by traditional Shannon-Nyquist data acquisition methods. In conventional
CS theory, the measurements are taken linearly in the discrete form via inner products
(Interested readers can also see recent literature [12] for the extension of the theory to
the infinite-dimensional CS schemes i.e., Hilbert space formulation). Mathematically
speaking, let a CS scheme acquire 𝑚 number of measurements of finite-dimensional
signal (s ∈ R𝑑 a vector living in Euclidean space),

y = As, (2.7)

where A ∈ R𝑚×𝑑 is called the measurement matrix with 𝑚 << 𝑑, which represents
such linear signal acquisition system.

There are two groups of effort in designing such a linear measurement system:
(i) Developing a measurement matrix, A, that preserves the information of s while
transforming it into a lower dimensional space, as in (2.7). (ii) Development of an
algorithm that recovers s from y within a reasonable amount of time while minimizing
reconstruction errors. The sequel will provide a brief overview of CS literature,
emphasizing existing measurement designs to maximize information preservation.
CS reconstruction algorithms will be then discussed in terms of computational cost,
minimum measurements needed to guarantee recovery, stability, and advantages and
disadvantages.

Based on elementary linear algebra, it can be stated that Eq. (2.7) is an underdeter-
mined linear system of equations whose solution set has infinitely many elements for
given A and y. The only way to reach a unique solution is to make at least one more
assumption. Following the same approach we used in the previous section, we can
start by selecting the solution with the minimum energy from this set of solutions,

min
s
∥s∥22 subject to As = y. (2.8)

From Eq. (2.5), assuming A is full row rank, then the solution of Eq. (2.8) is unique,
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i.e., ŝ = A𝑇
(︁
AA𝑇

)︁−1
y. The minimum energy of the reconstruction error that can be

achieved with this technique is defined as ∥s − ŝ∥2 = s𝑇
(︂
I −A𝑇

(︁
AA𝑇

)︁−1
A

)︂
s. As

we know I ≠ A𝑇
(︁
AA𝑇

)︁−1
A since 𝑚 < 𝑑, we can conclude that the exact recovery of

s is not possible.
In CS theory, the solution is sought in the subspace defined by a dictionary Φ ∈

R𝑑×𝑛, where s has sparse representation x. Mathematically speaking, Eq. (2.7) can
be re-formulated,

y = As = AΦx = Dx (2.9)

where D = AΦ ∈ R𝑚×𝑛 is equivalent dictionary.
Let x be the strictly 𝑘-sparse signal representation of s. The question then becomes,

"Can x be exactly recovered from y?" The answer is yes; perfect recovery is possible
if the equivalent dictionary satisfies certain conditions. If the representation in Eq.
(2.9) is unique, provided that x is 𝑘-sparse, then this unique solution can be recovered
exactly via

min
x
∥x∥0 subject to Dx = y. (2.10)

In other words, x can be found using ℓ0-minimization if it is the only 𝑘-sparse
solution of Eq. (2.9). To put it another way, whereas exact signal recovery was not
possible in the original domain (except the signals that are sparse in canonical base)
where the signal is dense (nonsparse), it is possible to do it in a sparsifying domain.
Having the sparse recovery x̂, one can easily turn back to original domain, i.e., ŝ = Dx̂.

As a result, the only remaining question is which conditions must be met by D so
that Eq. (2.9) becomes the unique representation of any 𝑘-sparse x. In order to satisfy
the uniqueness, D should not map any two distinct 𝑘-sparse signals x′ and x′′ to the
exact same point, i.e., Dx′ ≠ Dx′′. This statement implies that the null space of D
should not include any 2𝑘-sparse signal x′′′, i.e., x′′′ ∉ Null (D). Put in other words,
if Dx′ = Dx′′, which means D(x′ − x′′) = 0, then no method can distinguish x′ and
x′′. And, by definition x′′′ = x′ − x′′ becomes 2𝑘-sparse signal.

This condition first appeared in [13] with a concept called the spark of a matrix,
Spark(D), which is defined as the minimum number of linearly dependent atoms that
the matrix D can have. The requirement x′′′ ∉ Null (D) implies that D should satisfies
Spark(D) > 2𝑘 . Therefore, the minimum number of measurements to take can also
be determined as 𝑚 ≥ 2𝑘 because Spark (D) ∈ [2, 𝑚 + 1].
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Summary 1

Uniqueness of the 𝑘-sparse solution of ℓ0-minimization problem defined in
Eq. (2.10) is guaranteed given equivalent dictionary D has 𝑚 > 2𝑘 number
of linearly independent rows. In plain English, no algorithm can guarantee the
exact recovery of any 𝑘-sparse signal from the measurement vector y if the
number of measurements does not exceed 2𝑘 .

Nevertheless, the problem in Eq. (2.10) is not convex and is known to be NP-hard.
The most common approach involves relaxing the ℓ0-norm to the closest convex norm,
the ℓ1-norm. Specifically, the sparse signal can be recovered by solving the following
minimization problem:

min
x
∥x∥1 subject to Dx = y. (2.11)

Without further ado, let us address the question of why the ℓ1-minimization solution is
sparse. Afterwards, we can consider the conditions that must exist for this solution to
be exactly equal to the solution of ℓ0-minimization. Sparsity is indeed promoted by any
ℓ𝑝-norm minimization for 𝑝 ≤ 1 (However, the ℓ𝑝-norms for 𝑝 < 1 are quasinorms,
and therefore the corresponding optimization problems become non-convex. There
exist studies considering such sparse data representations, i.e., ℓ𝑝-norm minimization
solvers for 0 < 𝑝 < 1 [14].). Let us examine a simple example of a linear system
equation that can be graphically solved. The measurement in this toy example is
y = Dx = 𝑥1 + 2𝑥2 = 10. The system plot is shown in Figure 2.2, and the intersection
of the ℓ𝑝-ball and the solution set’s line represents the graph’s solution. We can
see that the ℓ2-ball supports a nonsparse (dense) solution in Figure 2.2a, with the
intersection occurring at point (2, 4). As seen in Figures 2.2b and 2.2c, the ℓ1-norm
and ℓ0.5-norm on the other hand, encourage a sparse solution where the intersection
emerges at point (5, 0). Note that this visualization just demonstrates how ℓ1-norm
promotes sparsity and says nothing about whether y = Dx is met by an exact solution
for every 𝑘 = 1-sparse x with D =

[︂
1 2

]︂
(in fact, it does not, as we will see next).

Until now, our first conclusion was that any 𝑘-sparse signal can be uniquely rep-
resented by a sparse representation, so these signals can be recovered perfectly with
a ℓ0-norm minimization procedure, however, this solution cannot be achieved in a
polynomial time. Afterward, we relax the problem to the ℓ1-norm minimization opti-
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(a) (b) (c)

Figure 2.2 Illustration of the graphing solution of a linear system of equations (a) The solution of ℓ2-
minimization is nonsparse. (b) ℓ1-norm minimization tends to produce sparse solution. c)
ℓ0.5-norm also promotes sparsity.

mization problem, also known as Basis Pursuit (BP) [15]. In addition, we discussed
that ℓ1-norm minimization tends to result in sparse solutions as well. It is now time
to explore whether the sparse solution given by ℓ0-norm minimization can also be
achieved by BP (therefore, ℓ1-norm minimization solution becomes exact as well). In
order to ensure the equivalence of the solutions of ℓ0-norm and ℓ1-norm minimization
problems, a notation called Null Space Property (NSP) [16], [17] can be used:

Definition 2.1 (Null Space Property [17]) A matrix D ∈ R𝑚×𝑛 fulfils the Null Space
Property (NSP) of order 𝑘 is, if

∥vΛ∥1 ≤ ∥vΛ𝑐 ∥1 (2.12)

is met for all v ∈ Null (D), where Λ is the set of 𝑘 indices.

If a matrix D ∈ R𝑚×𝑛 satisfies the NSP of order 𝑘 , then any 𝑘-sparse vector can be
exactly recovered from Eq. (2.9) by solving Eq. (2.11). This theorem and its formal
proof can be found in [17]. On the other hand, we can give the following worst-case
scenario to give an intuition behind the theorem. Let us select two possible solution of
Da = y; one is our desired 𝑘-sparse vector x and the other is any vector z. Therefore,
we will haveDz = Dx. We desire any ℓ1-norm minimization solver to choose x instead
of z, which is only possible if ∥x∥1 < ∥z∥1 for any z satisfying D(x−z) = 0. Consider,
we are in worst case scenario where zΛ = 0, Λ is set of non-zero indices of x and 0 is
zero vector of length-𝑘 . In that case, we need ∥x∥1 = ∥xΛ∥1 < ∥zΛ𝑐 ∥1 = ∥−zΛ𝑐 ∥1.
This implies ∥hΛ∥1 < ∥hΛ𝑐 ∥1 because hΛ = xΛ, hΛ𝑐 = −zΛ𝑐 for this special case
where h = x − z ∈ Null (D) from the starting assumption (i.e., D(x − z) = 0).
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To put the overall discussion simply, we stated that Null (D) should not possess any
2𝑘-sparse sparse vector in order to satisfies the uniqueness of the solution of ℓ0-norm
minimization problem. Now, the Null Space Property further dictates that Null (D)
should not contain overly compressible vectors [18] to guarantee to have uniqueness of
the solution of ℓ1-norm minimization problem (which also implies the exact solution
or the equivalence of ℓ0-norm and ℓ1-norm minimization problems).

NSP not only guarantees the equivalence of ℓ0-norm and ℓ1-norm minimization
problems, but also serves as a convenient tool for assessing the recovery performance
when x is not strictly 𝑘-sparse but rather compressible [16]. However, when we deal
with approximately sparse signals and the measurements vector that are also impacted
by additive noise, then a stronger property, Restricted Isometry Property (RIP) [19],
[20] is used (There are studies that attempt to give a stability condition based on a
concept called robust null space property, which first appeared in [21]. Nevertheless,
this property does not purely depend on the null space of D [22].).

Definition 2.2 (Restricted Isometry Property) The restricted isometry property of
order 𝑘 is fulfilled by a matrix D ∈ R𝑚×𝑛 if

(1 − 𝛿𝑘 (D)) ∥x∥22 ≤ ∥Dx∥22 ≤ (1 + 𝛿𝑘 (D)) ∥x∥22 (2.13)

for all 𝑘-sparse signal, x with the smallest possible scalar 𝛿𝑘 (D), which is called
Restricted Isometry Constant (RIC).

It is important to emphasize that the RIP is a stronger property than the NSP, in a
way that any matrix that satisfies the RIP is guaranteed to satisfy the NSP as well
[18]. As we will discuss in more detail, giving theoretical guarantees for some
specific types of measurement matrices to have RIP is much easier than showing NSP
guarantees. Furthermore, RIP may be used to show guarantee conditions in more
general circumstances, where the measurement may be corrupted by additive noise,
i.e., y = Dx + e, where e is additive noise; and the sparse signal, x, may not be strictly
sparse, but rather compressible. In order to handle such a situation, the following
relaxation on optimization problem (2.11) (BP) can be done,

min
x
∥x∥1 subject to ∥y −Dx∥2 ≤ 𝜀, (2.14)

where 𝜀 is small constant. The optimization problem defined in (2.14) is also known
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Figure 2.3 The principle behind the RIP property is that the distance 𝑑 (., .) (e.g., 𝑑 (a, b) =

∥a − b∥22) between any arbitrary 𝑘-sparse signal pairs should be preserved after dimen-
sion reduction with D, in order to ensure robust recovery. This graph is intended to illus-
trate the intuition only, and not to serve as a formal definition.

as Basis Pursuit Denoising (BPDN) [8]. Considering this, it is important to point
out that another important contribution of the traditional CS literature is its effort to
provide stability conditions for sparse recovery algorithms like BPDN in erroneous
measurement cases. From a mathematical standpoint, a stable solution ˆ︁x should
obey ∥x −ˆ︁x∥ 𝑝 ≤ 𝜅 ∥𝑒∥ 𝑝 with a smaller as possible constant 𝜅, the ℓ𝑝-norm is most
commonly selected as the ℓ2-norm, and e represents additive perturbations.

Studies in the CS field have carefully analyzed guarantee conditions for the equiv-
alence of ℓ0-norm and ℓ1-norm minimization problems (in noise-free case for BP) and
the stability conditions of BPDN in relation to RIC of the measurement matrix. The au-
thors of [19] demonstrate that the ℓ0-ℓ1 equivalence is achieved when 𝛿2𝑘 (D) ≤

√
2−1.

According to study [20], for any perturbed measurement, y = Dx + e with bounded
energy noise, ∥e∥2 ≤ 𝜀, the solution of (2.14) obeys

∥x −ˆ︁x∥2 ≤ 𝐶𝜀, (2.15)

where the constant 𝐶 varies with the RIC 𝛿2𝑘 (D) <
√
2 − 1. When considering

the recovery guarantee of a 𝑘-sparse signal, it has been observed that 2𝑘-order RIC,
𝛿2𝑘 (D), is necessary instead of 𝛿𝑘 (D). In order to explain this concept intuitively, we
should note that the null space analysis enforces Spark(D) > 2𝑘 . This ensures that
two different 𝑘-sparse signal x′ and x′′ will not be mapped to the same location. Now,
RIP provides a stronger assurance that the distance between x′ and x′′ after mapping
with aD should be maintained as follows: (1 − 𝛿2𝑘 (D)) ∥x′ − x′′∥22 ≤ ∥Dx′ −Dx′′∥22.

47



Figure 2.3 visualizes this concept: The distance between any arbitrary 𝑘-sparse pairs
should be preserved after mapping by D. To put it another way, we want to ensure that
any submatrix consisting of a set of any arbitrary selection of 𝑘 columns of the matrix
D has a high condition number (i.e., as close as possible to 1).

The following theorem, which first appeared in [23], gives a sense of how many
measurements are required for a matrix to have RIP of order 2k:

Theorem 2.3 ([18, Ch. 1]) For an 𝑚 × 𝑛 matrix D that satisfies the RIP of order 2𝑘
with 0 < 𝛿2𝑘 (D) ≤ 0.5, the following inequality should hold

𝑚 ≥ O (𝑘. log (𝑛/𝑘)) . (2.16)

Summary 2

As summarized in Summary 2.2, the exact recovery of any 𝑘-sparse signal
could be achieved with 𝑚 > 2𝑘 measurements if the ℓ0-minimization problem,
defined in Eq. (2.10), was solvable. However, since this is an NP-hard problem,
we relax it to an ℓ1-minimization problem. The Restricted Isometry Property
provides the conditions for the exact recovery of 𝑘-sparse signal by solving
the ℓ1-minimization problem. Theorem 2.3 states that a sufficient number of
measurements, 𝑚 ≥ O

(︁
𝑘 log

(︁
𝑛
𝑘

)︁ )︁
, is required to guarantee exact recovery.

To put it another way, the increase in the required number of measurements
when we moved from ℓ0-minimization to ℓ1-minimization is the trade-off for a
tractable solution.

2.2.1 Measurement Matrices that satisfy RIP

The measurement matricesA, which preserve information after dimensional reduction
in the sparsity domain Φ, can be regarded as good measurement matrices. In other
words, we need to check if the equivalent dictionary D = AΦ satisfies the RIP rather
than A.

While there are deterministic measurement matrix designs that satisfy RIP, these
matrices generally require a large number of measurements to satisfy RIP [24]. Mean-
while, random matrices are well known to fulfill the RIP with high probability with
almost an optimal number of measurements,𝑚 ≥ O (𝑘. log (𝑛/𝑘)). An example would
be a Gaussian random matrix whose elements, D𝑖, 𝑗 are i.i.d. (independent identically
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distributed) and drawn from N
(︁
0, 1

𝑚

)︁
. It is therefore reasonable to assume that if the

measurement matrix A is Gaussian with elements A𝑖, 𝑗 ∼ N
(︁
0, 1

𝑚

)︁
then the equivalent

dictionary will be Gaussian with elements D𝑖, 𝑗 ∼ N
(︁
0, 1

𝑚

)︁
(assuming that sparsifying

matrix, Φ, is an orthonormal basis). This property is known to be universality of
the random matrices. In fact, all sub-Gaussian matrices (A matrix M is called sub-
Gaussian if there exists a constant 𝑐 that fulfills E

(︁
𝑒𝑀𝑖, 𝑗 𝑡

)︁
≤ 𝑒𝑐2𝑡2/2,∀𝑡 ∈ R.) possess

these properties as the following lemma and theorem demonstrate:

Lemma 2.4 ([25]) For any fixed vector x ∈ R𝑛, it is possible to select a probability
distribution 𝔇 which would enable the construction of an 𝑚 ×𝑁 matrix D with entries
obtained from 𝔇 that holds

E
(︂
∥Dx∥22

)︂
= ∥x∥22 (2.17)

and

Pr
(︂
(1 − 𝛾) ∥x∥22 ≤ ∥Dx∥22 ≤ (1 + 𝛾) ∥x∥22

)︂
≤ 1 − 2𝑒 (−𝑚𝐶 (𝛾) ) , (2.18)

where 𝐶 (𝛾) is a positive constant that depends on 𝔇 and 𝛾.

The inequality defined in Lemma 2.4 is also known as concentration of measure
inequality for random matrices. It says, after dimensional reduction, the energy (in
squared norm) is concentrated around its expected value, while the deviation from it
exponentially decays with respect to 𝑚 and 𝐶 (𝛾). As a result, a small 𝐶 (𝛾) is a good
indicator of how well a matrix will preserve information after dimension reduction
(i.e., we want to retain the distance between any two distinct points after dimensional
reduction). As an example, aforementioned Gaussian matrix with elements with
elements

D𝑖, 𝑗 ∼ N
(︃
0,

1

𝑚

)︃
, (2.19)

yields𝐶 (𝛾) = 𝛾2

4 −
𝛾3

4 . In literature [26]–[28], considerable efforts have been expended
to determine 𝐶 (𝛾) for different distributions; for instance the authors of [26] has
demonstrated that the same result, 𝐶 (𝛾) =

𝛾2

4 −
𝛾3

4 holds true for the following
distributions as well:

D𝑖, 𝑗 =


+1√
𝑚

with probability 1/2,
−1√
𝑚

with probability 1/2,
(2.20)
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D𝑖, 𝑗 =
√
3 ×


+1√
𝑚

with probability 1/6,

0 with probability 2/3,
−1√
𝑚

with probability 1/6.

(2.21)

One can note that the concentration of measure inequality is not only valid for sparse
signals, but it is also valid for any fixed 𝑛-length signal. On the other hand, we want
to select dimensional reduction matrices that guarantee to preserve the information
after compression for all signals that live in a space of interest. Fortunately, such a
guarantee can be given if our space of interest is reduced from R𝑛 to the set of all
𝑘-sparse signals in R𝑛:

Theorem 2.5 ([25]) Provided that the measurement matrix D ∈ R𝑚×𝑛 fulfills the
inequality expressed in Eq. (2.17) and (2.18) with 𝛾 =

𝛿𝑘 (D)
4 and if

𝑚 ≥ O (𝑘. log (𝑛/𝑘)) , (2.22)

then D possess the Restricted Isometry Property of order k with a probability of at
least 1 − 2𝑒−O(𝑚) .

2.2.1.1 Strategy of proving RIP via Johnson-Lindenstrauss Lemma

The proof of the Theorem 2.5 can be accomplished using the same strategies used in the
modern proofs of the Johnson-Lindestrauss Lemma [29]. This Lemma states a dimen-
sional reduction mapping from R𝑛 to R𝑚 can be found, which preserves the distance
between arbitrary any two points selected from a set S ⊂ R𝑛. Johnson–Lindenstrauss
is a valuable formulation that aids in providing a low-dimensional representation of
the data. Compression is significant in various applications such as machine learning,
manifold learning, and compressive sensing. Reducing the dimensionality can notably
increase the speed of most algorithms employed in machine learning.

In the sequel, we will briefly summarize the general strategy to prove the Theorem
2.5 rather than complete proof which can be found in [25]. The strategy can be listed
as follows:

1. The heart of the proof is the concentration of measure inequality for random
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matrices provided in Lemma 2.4. For a fixed point pair, x′, x′′ selected from set
of interest S;

(a) it can be demonstrated that after the dimensional reduction, the energy of
the distance vector x′−x′′ tends to concentrate in the vicinity of its expected
value, i.e., if the elements of the matrix D are i.i.d. with var

(︁
D𝑖, 𝑗

)︁
= 1

𝑚
,

(b) the strategy of using Chernoff Bound for the upper and lower tail can
be applied in order to find a bound for the probability of failure, i.e.,
Pr

(︂
∥Dx∥22 ≤ (1 − 𝛾) ∥x∥22

)︂
+ Pr

(︂
∥Dx∥22 ≥ (1 + 𝛾) ∥x∥22

)︂
≤ P𝑒, where P𝑒

is the probability of error bound (e.g. P𝑒 = 2𝑒 (−𝑚𝐶 (𝛾) ) for sub-Gaussian
matrices).

2. Having the bound of the probability of deviation from the center, P𝑒, the prob-
ability of success bound can be defined using the union bound,

Pr
(︂
(1 − 𝛾) ∥x∥22 ≤ ∥Dx∥22 ≤ (1 + 𝛾) ∥x∥22

)︂
≤ 1 − |S| P𝑒, (2.23)

where |S| is the cardinality of the set of interest. Because the concentration
inequality was for a fixed vector (e.g., the distance vector), we desire to have a
guarantee condition of information-preserving embedding for all points in our
set of interest. As mentioned earlier if we restrict our interest to the set of all 𝑛
dimensional 𝑘-sparse signals, then such an embedding can be guaranteed with
high probability. In order to find a bound for the number of points in the set,
|S|, the following two steps can be applied:

(a) Fix support setΛ𝑘 and discretize the subset of 𝑘-sparse signal’s space,SΛ𝑘

whose number of non-zero elements are indexed by Λ𝑘 . The following
definition and lemma describe covering number theory, a commonly used
tool for such discretization.

Definition 2.6 (Covering numbers, Nets [30, Ch. 4]) For a metric space
M equipped with a distance metric 𝑑 (.), a subset 𝑁𝜀 ⊆ M is called an
𝜀-net ofM if every point x ∈ M can be approximated by a point v ∈ 𝑁𝜀

1, i.e.,
∀x ∈ M ∃v ∈ 𝑁𝑒 𝑑 (x, v) ≤ 𝜀. (2.24)

1In plain English, v ∈ 𝑁𝑒 is the center of ball with radii of 𝜀 and the setM is covered by these balls.
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The smallest possible cardinality of 𝑁𝑒 is called as covering number and
denoted by 𝑁 (M, 𝑑, 𝜀).

In mathematical analyses, we are mostly interested in bounded sets, i.e.,
𝑁 (M, 𝑑, 𝜀). In our analysis, we need to use the Euclidean norm as the
distance metric, i.e., 𝑑 (.) = ∥.∥2. In addition, without loss of generality,
we can restrict our metric space to a unit Euclidean sphere, i.e.,M = 𝑆𝑛−1:

Lemma 2.7 ([30, Ch. 4]) The covering number of unit Euclidean sphere
𝑆𝑛−1 equipped with 𝑑 (.) = ∥.∥2 will be

𝑁 (𝑆𝑛−1, ∥.∥2 , 𝜀) ≤
(︃
3

𝜀

)︃𝑛
, (2.25)

for 0 < 𝜀 < 1.

For a specific chosen of radii as 𝜀 =

√
𝛿𝑘 (D)
4 during the discretization of

SΛ𝑘
we need concentration inequality (2.18) to hold with 𝛾 =

𝛿𝑘 (D)
4 2 in

order for inequality (2.13) to fulfill for all x ∈ SΛ𝑘
[25].

Using the covering number theory with 𝜀 =

√
𝛿𝑘 (D)
4 , the minimum cardi-

nality of such a subset can be given as

|︁|︁SΛ𝑘

|︁|︁ ≤ (︄
12√︁
𝛿𝑘 (D)

)︄ 𝑘
(2.26)

(b) For now, we determine a bound for the number of points only for 𝑘-sparse
signals with a fixed support set Λ𝑘 . However, for all 𝑘-sparse signals in
R𝑛, there are

(︁𝑛
𝑘

)︁
such combinations of different support sets. Therefore,

using the Sterling’s approximation
(︁𝑛
𝑘

)︁
≤ 𝑛𝑘

𝑘! ≤
(︂
exp(𝑛)

𝑘

)︂ 𝑘
, we obtain

|S| ≤
(︃
exp(𝑛)
𝑘

)︃ 𝑘 (︄
12√︁
𝛿𝑘 (D)

)︄ 𝑘
(2.27)

3. Having the cardinality of the set of interest, we can apply union bound as stated
in Eq. (2.23). Then can find the probability of D satisfying the RIP of order 𝑘

2The increase in distortion factor from 𝛾 =
𝛿𝑘 (D)

4 to 𝛿𝑘 (D) (RIC) is the cost we pay due to the

discretization with the ball of radii 𝜀 =

√
𝛿𝑘 (D)
4 .
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with probability.

≥ 1 − 2
(︃
exp(𝑛)
𝑘

)︃ 𝑘 (︄
12√︁
𝛿𝑘 (D)

)︄ 𝑘
𝑒
−𝐶

(︂
𝛿𝑘 (D)

4

)︂
𝑚 (2.28)

= 1 − 2 exp
{︄(︄
−𝐶

(︃
𝛿𝑘 (D)

4

)︃
𝑚 + 𝑘

(︄
log

(︂ 𝑛
𝑘

)︂
+ log

(︄
12√︁
𝛿𝑘 (D)

)︄
+ 1

)︄)︄}︄
, (2.29)

where𝐶 (𝛾) is a constant depending onD e.g.,𝐶 (𝛾) = 𝛾2

4 −
𝛾3

4 forDwithD𝑖, 𝑗 ∼
N

(︁
0, 1

𝑚

)︁
and the matrices defined in Eq. (2.20) and (2.21). In order for the error

probability (i.e., P𝑒 = 2 exp

{︃(︃
−𝐶

(︂
𝛿𝑘 (D)

4

)︂
𝑚 + 𝑘

(︃
log

(︁
𝑛
𝑘

)︁
+ log

(︃
12√
𝛿𝑘 (D)

)︃
+ 1

)︃)︃}︃
) to decay exponentially, we need to have𝑚 ≥ O (𝑘. log (𝑛/𝑘)), which completes
the proof.

Summary 3

Sub-Gaussian measurement matrices, D ∈ R𝑚×𝑛, which are discussed in Theo-
rem 2.5, satisfy the Restricted Isometry Property (RIP) of order 𝑘 provided that
𝑚 ≥ O

(︁
𝑘 log

(︁
𝑛
𝑘

)︁ )︁
. In this context, random matrices can be considered optimal

up to a certain extent in terms of the required number of measurements. This
is because the lower bound of the necessary measurements for exact recovery,
which requires checking the RIP of order 2𝑘 and given in Theorem 2.3, can be
achieved with an order.

It is important to note that despite the fact that we only consider whether the equivalent
dictionaryD holds RIP or not, the analysis remains valid when the measurement matrix
A is a sub-Gaussian basis and the sparsifying dictionary Φ is any orthonormal basis.
If we choose our net of points in the 𝑘-dimensional subspace spanned by sets of 𝑘
columns of Φ, we can make the same analysis as we did above and reach the same
conclusion [25]. As a result, universality holds for all sub-Gaussian measurement
matrices, not just Gaussian ones.
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Figure 2.4 Covering of unit Euclidean sphere. For 𝑛 = 2 and 𝜀 = 0.5, the sphere can be covered by
minimum 7 balls.

Summary 4

Sub-Gaussian measurement matrices are universal in the sense that when the
sparsifying dictionary Φ is an orthonormal basis, guarantee conditions estab-
lished for A are valid for the entire CS system represented by the equivalent
dictionary D = AΦ.

2.2.1.2 Stability of ℓ1-minimization under Gaussian Noise

The following lemma will be used in several places throughout this dissertation in
order to provide stability conditions for BPDN when the measurement matrix is a
Gaussian random matrix (so that the equivalent dictionary is also Gaussian), and
when the measurements are perturbed with additive white Gaussian noise (AWGN)
during various experiments and in the theoretical analysis of the encryption scheme
presented in Chapter 5.1.

Lemma 2.8 (Refined from [18, p. 32].) For the measurement system, where D ∈
R𝑚×𝑁 fulfills the RIP of order 2𝑘 with 𝛿2𝑘 (D) and measurements are obtained under
i.i.d. Gaussian noise with elements drawn fromN

(︂
0, 1

𝜎2

)︂
, the solution of BPDN with

54



𝜀 = (1 + 𝛾)
√
𝑚𝜎 obeys

∥x − x̂∥2 ≤ 4

√︁
1 + 𝛿2𝑘 (D)

1 − (1 +
√
2)𝛿2𝑘 (D)

(1 + 𝛾)
√
𝑚𝜎 (2.30)

with probability greater than 1 − exp
(︁
−3𝑚

4 𝛾
2
)︁

where 0 < 𝛾 < 1.

2.2.2 Different variants of ℓ1-norm minimization

Until now, we have discussed the ℓ1-norm minimization problems given by Eq. (2.11)
and Eq. (2.14). They can be represented in the form:

min
x
∥x∥1 subject to x ∈ ℧(y) (2.31)

where

℧(y) =

{x : Dx = y} for BP as in Eq. (2.11)

{x : ∥Dx − y∥2 ≤ 𝜖} for BPDN as in Eq. (2.14)

Other forms of the data fidelity term ℧(.) are also possible: For instance, the problem
in Eq. (2.31) is called Dantzig Selector [31] if

℧(y) =
{︁
x :

∥︁∥︁D𝑇 (y −Dx)
∥︁∥︁
∞ ≤ 𝜆

}︁
. (2.32)

The stable recovery of the Dantzig Selector has also been well studied in the
literature [18], [32]. Another related formulation is:

min
x

(︃
1

2
∥Dx − y∥22 + 𝜆 ∥x∥1

)︃
, (2.33)

known as the Lasso [33] formulation. Lasso is well known for producing stable
solutions in noisy scenarios and exact solutions when noise-free and strictly sparse
case [34].

2.2.3 Coherence

While Spark, NSP, and RIP are essential tools for a CS measurement system to ensure
accurate and robust recovery of 𝑘-sparse signals, verifying that a measurement matrix
possesses these properties is an NP-hard problem. This verification necessitates the
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examination of all
(︁𝑛
𝑘

)︁
submatrices.

The coherence index, a measure that represents the maximum normalized in-
ner product between any pair of normalized columns in the measurement matrix,
is frequently used as a metric to evaluate the quality of the measurement matrix.
Mathematically speaking, the coherence of a matrix D is defined as

𝜇 (D) = max
1≤𝑖≤ 𝑗≤𝑁

(︄ |︁|︁< di, dj >
|︁|︁

∥di∥
∥︁∥︁dj∥︁∥︁

)︄
, (2.34)

where di and dj are the columns of D and ⟨di, dj⟩ denotes the inner product between
columns.

The exact and robust recovery condition guarantees have been well-studied by the
literature. For example, it was shown in [35] that for exact recovery of 𝑘-sparse signals
(in noise-free case) the condition (2𝑘 −1)𝜇 (D) < 1 should hold. Then, in [36], it was
proved that this condition also satisfies the robust recovery in noisy cases. The efforts
still continue to give a more optimistic bound based on the coherence index [37], [38].

Corollary 2.9 ([39]) The coherence of the 𝑚 × 𝑛 Gaussian matrix with elements with
elements D𝑖, 𝑗 ∼ N

(︁
0, 1

𝑚

)︁
can be given as follows

𝜇 (D) ≈ 2

√︂
log 𝑁

𝑚
. (2.35)

In the following sections, we will provide a succinct overview of the primary
approach used to demonstrate the proof of Corollary 2.9. For a more comprehensive
proof for a range of Sub-Gaussian measurement matrices, readers are directed to [39].
The strategy is outlined as follows:

1. For each element, 𝑀𝑖, 𝑗 of the matrix, M = D𝑇D, derive the Bernstein-type
tail inequality:

The moment generating function of a Gaussian random variable 𝑥 ∼ N(0, 𝜎2) is
given by E

(︁
𝑒𝜆𝑥

)︁
= 𝑒

𝜆2𝜎2

2 . Drawing upon the discussions in [18, Ch. 5] and [30,
P. 33], the moment generating function (MGF) for the sub-exponential variable
𝑧 = 𝑥𝑖𝑥 𝑗 , where 𝑥𝑖 , 𝑥 𝑗 ∼ N(0, 𝜎2), can be upper-bounded as E

(︁
𝑒𝜆𝑥

)︁
≤ 𝑒𝐶𝜆2𝜎4

2 .
Here, 𝐶 is a positive constant, and this bound holds provided |𝜆 | ≤ 𝜅, with 𝜅
being a small positive constant. Given the random variable 𝑆𝑚 =

∑︁𝑚
𝑖=1 𝑧𝑖 where

each 𝑧𝑖 = 𝑥𝑖𝑥 𝑗 and 𝑥𝑖 , 𝑥 𝑗 ∼ N(0, 𝜎2), we can derive a tail bound using the
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exponential Markov inequality and the properties of the MGF that is defined
above. Since the 𝑧𝑖 are independent, the MGF of their sum is the product of their
individual MGFs, E

(︁
𝑒𝜆𝑆𝑚

)︁
=

∏︁𝑚
𝑖=1 E

(︁
𝑒𝜆𝑧𝑖

)︁
≤

(︂
𝑒

𝐶𝜆2𝜎4

2

)︂𝑚
= 𝑒

𝐶𝜆2𝜎4𝑚
2 . Now,

we can use exponential Markov inequality,

𝑃(𝑆𝑚 ≥ 𝑡) = 𝑃(𝑒𝜆𝑆𝑚 ≥ 𝑒𝜆𝑡 ) ≤
E

(︁
𝑒𝜆𝑆𝑚

)︁
𝑒𝜆𝑡

≤ 𝑒
𝐶𝜆2𝜎2𝑚

2

𝑒𝜆𝑡

By optimizing 𝑓 (𝜆) = 1
2𝐶𝜆

2𝜎4𝑚 − 𝜆𝑡 under the constraint 0 < |𝜆 | ≤ 𝜅, we
obtain 𝜆 = min

(︂
𝑡

𝐶𝜎4𝑚
, 𝜅

)︂
. Using this optimal value of 𝜆, one can derive:

𝑃(𝑆𝑚 ≥ 𝑡) ≤ exp

(︃
−min

(︃
𝑡2

2𝐶𝜎4𝑚
,
𝜅𝑡

2

)︃)︃
(2.36)

2. Apply the Union Bound in order to ensure that the tail bound given in Eq.
(2.36) holds for every element in the matrix M = D𝑇D:

If we apply the Union Bound to every non-diagonal element inM = D𝑇D (which
consists of approximately 𝑁2 elements) for a specific measurement matrix D

with elements 𝐷𝑖, 𝑗 ∼ N(0, 1
𝑚
), and for a given 𝛼, we obtain:

𝑃( |𝑆𝑚 | ≥ 𝛼) ≤ 2 ∗ 𝑁2 ∗ exp
(︄
−min

(︄
𝛼2

2𝐶 1
𝑚2𝑚

,
𝜅𝑡

2

)︄)︄
= 2 exp

(︃
2 log (𝑁) −min

(︃
𝛼2𝑚

2𝐶
,
𝜅𝑡

2

)︃)︃
.

(2.37)

Following a similar analysis as in [40], one can deduce that for the probability
of exceeding 𝛼 to converge to zero as 𝑚 becomes large, the condition 𝛼2𝑚

2𝐶 >

2 log(𝑁) must be satisfied. This implies that for 𝛼 > 2
√︃

log 𝑁

𝑚
, the probability

converges to zero with increasing values of 𝑚 and 𝑁 .

2.2.4 Structural Sparsity

We intend to provide a short overview of the CS literature in the review section
of this dissertation by discussing the theoretical foundations of classical CS. Thus
far, this scheme has assumed that the only prior knowledge is the sparsity of the
signals. Classical sparsity only considers the level of sparsity without any specific
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knowledge about the statistics of the non-zero elements. However, any additional
information about the sparse signal can be used to develop advanced sparse signal
recovery schemes, which fall outside the scope of this brief review. In structural
sparsity models [41]–[43], additional assumptions regarding the non-zero coefficients,
𝑥, of the signal 𝑠 can be made. A common assumption centers on the group structure
inherent in the coefficients. This structure suggests that the non-zero elements are often
closely located to each other and can be represented using the mixed norm minimization
problems [44], [45]. For instance, the indices of the location of non-zero wavelet
coefficients in an image typically display this group sparsity effect [46]. Moreover,
these coefficients exhibit multiscale characteristics and tree-like configurations [47].
For those interested in structural sparsity preserving regularizers, we recommend
relevant surveys [48].

2.3 Recovery Algorithms

In order to reconstruct sparse signals based on available measurements, several preva-
lent methods have been developed. Some of these include: (i) Convex Relaxation
methods, often referred to as the aforementioned ℓ1 minimization techniques such as
BP defined in Eq. (2.11) and BPDN as defined in Eq. (2.14) (ii) Greedy Approaches
like Matching Pursuit (MP) [49], Orthogonal Matching Pursuit (OMP) [50], and Com-
pressive Sampling Matched Pursuit (CoSaMP) [51]. (iii) Bayesian Framework [52].
(iv) Non-convex optimization methods [14].

As we mentioned in our discussion of convex relation techniques, for exact sparse
and noise-free cases, one can use the BP formulation defined in Eq. (2.11). If this is the
case, BP can be solved using interior-point methods by recasting it as a linear program
(LP) [8]. If the sparse signal is noisy or not exactly sparse, then the BPDN optimization
problem can be solved by formulating it as a second-order cone program (SCOP) [53].
However, both LP and SCOP are computationally expensive and are not feasible
for large signals. Therefore, we will mostly use proximal algorithms, which will be
discussed in more detail in the sequel. Aside from these traditional iterative techniques,
the latest approaches include neural network-based machine learning solutions. Many
of the literature works will also be discussed after the section on proximal algorithms.
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2.3.1 Proximal Theory

The objective of a generic optimization problem can be mathematically stated as
follows:

min
x∈S
F (x)

This formulation aims to minimize the objective function F (x) by searching for the
optimal value of x within the set S.

The classical gradient descent algorithm is a common method of solving optimiza-
tion problems. This algorithm is particularly effective when the objective function is
both convex and differentiable (smooth). In such cases, the algorithm can be used
to seek the optimal solution x∗ by iteratively approaching it to satisfy the condition
∇F (x∗) = 0. Iterations of the classical gradient descent algorithm can be expressed
as follows:

x 𝑗+1 = x 𝑗 − 𝛾 𝑗∇F (x 𝑗) (2.38)

where x 𝑗 is the current estimation of the optimal solution and 𝛾 𝑗 is the step-size. A key
feature of the classical gradient descent algorithm is that it is designed specifically for
differentiable functions since calculating gradients is crucial to the optimization steps.
There are, however, many optimization problems encountered in this dissertation that
involve minimizing convex but non-differentiable functions. Hence, our interest lies
in proximal theory, which provides approximations for the gradient step in Equation
(2.38). Known as proximal maps, these approximations enable us to handle a wide
variety of non-differentiable functions effectively. Following is a summary of proximal
algorithms to serve as a basis for deriving our proximal algorithms presented in Section
3.2 and in Section 5.1.2, especially for the ADMM part of [P3] and [P5]. ADMM-based
weighted L1 minimization is also used in P[1]. Additionally, proximal algorithms
ISTA, AMP and ADMM will appear in various forms as competing algorithms in
[P1], [P2], [P3], [P8], [P9]. It should be noted that many other manuscripts also
discuss the following proximal algorithms preliminaries, including but not limited to
[54]–[58].

Convex Set: A set 𝑆 ∈ E, where E is a finite-dimensional Euclidean space equipped
with an inner product ⟨., .⟩ and Euclidean norm ∥.∥2, is considered convex if ∀x, y ∈ 𝑆
and any 𝛾 ∈ [0, 1], where [x, y] = {𝛼x + (1 − 𝛼)y | 0 ≤ 𝛼 ≤ 1} is the line segment
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between the points x and y, the following condition holds:

𝛾x + (1 − 𝛾)y ∈ 𝑆.

Figure 2.5 (a) A convex set. (b) A non-convex set.

Convex Functions: An extended real function 𝑓 (x) (An extended real function 𝑓 ,
denoted as 𝑓 : E→ R∪{+∞}, ) is called convex if it satisfies the following conditions:

1. The domain of the function, denoted as 𝑑𝑜𝑚 𝑓 , is a convex set.

2. For all x, y ∈ E and any 𝛾 ∈ [0, 1], it satisfies the inequality:

𝑓 (𝛾x + (1 − 𝛾)y) ≤ 𝛾 𝑓 (x) + (1 − 𝛾) 𝑓 (y).

Figure 2.6 (a) A convex function. (b) A non-convex function.

First Order Condition An extended real function 𝑓 (x) is called convex if it
satisfies the following conditions:

1. The domain of the function, denoted as 𝑑𝑜𝑚 𝑓 (Domain of 𝑓 , 𝑑𝑜𝑚 𝑓 =

{x ∈ E : 𝑓 (x) < +∞}. ), is a convex set.

2. For all x, y ∈ E, it satisfies the inequality:

𝑓 (y) ≥ 𝑓 (x) + ∇ 𝑓 (x)𝑇 (y − x) (2.39)
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Figure 2.7 Illustrative representation on the interpretation of first order condition: 𝑓 (x)+∇ 𝑓 (x)𝑇 (y−
x) is always the global underestimator of 𝑓 .

As it is illustrated in Figure 2.7, the expression 𝑓 (x) + ∇ 𝑓 (x)𝑇 (y − x) has several
important interpretations:

• It acts as the first-order Taylor approximation of 𝑓 near the point x.

• It reflects a global underestimator of 𝑓 .

• It represents an affine function defined by the slope ∇ 𝑓 (x)𝑇 .

Subgradient A subgradient of a real proper (a function 𝑓 (.) is considered proper if
𝑑𝑜𝑚 𝑓 ≠ ∅ ) convex function 𝑓 at a point x is the vector g ∈ E which satisfies:

𝑓 (y) ≥ 𝑓 (x) + g𝑇 (y − x), ∀y ∈ E. (2.40)

Note that when we compare Eq. (2.40) and Eq. (2.39), then we can define the gradient
as a special case of subgradient: If the proper convex function 𝑓 is differentiable at
the point x ∈ E, then g is unique, and it is the gradient of 𝑓 , denoted as g = ∇ 𝑓 (x).

Figure 2.8 (a) Gradient. (b) Sub-gradient. Each slope of red line goes through x, 𝑓 (x).
is a sub-gradient
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Subdifferential At the point x ∈ E, the subdifferential of the proper convex function
𝑓 can be defined as

𝜕 𝑓 (x) = {g ∈ E : 𝑓 (y) − 𝑓 (x) ≥ ⟨g, y − x⟩, ∀y ∈ E}

At a point x, a subdifferential 𝜕 𝑓 (x) of a function 𝑓 is either empty or a closed convex
set. An important property of the subdifferential, which we will use throughout the
dissertation, is Fermat Rule [54, Theorem 16.2]: A point x∗ is a minimizer of the
function 𝑓 iff 0 ∈ 𝜕 𝑓 (x∗) at x∗. Proof: If g = 0 at point x∗, then

𝑓 (y) ≥ 𝑓 (x∗), ∀y ∈ E.

.

Example 1: Subdifferential of the ℓ1-norm Let 𝑓 (x) = |x|, then the subdiffer-
ential 𝜕 𝑓 (x) is defined as:

𝜕 𝑓 (x) =


−1 if x < 0

[−1, 1] if x = 0

1 if x > 0

(2.41)

Figure 2.9 (a) 𝑓 (x) = |x|. (b) Visualization of set 𝜕 𝑓 (x). Note that in this case, the set 𝜕 𝑓 (x) has
infinitely many points as it includes the line segment [−1, 1] of infinitely many points.

Example 2: Subdifferential of the ℓ2-norm Let 𝑓 : R𝑛 → R, 𝑓 (x) = ∥x∥2,
then
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𝜕 𝑓 (x) =


x
∥x∥2 if x ≠ 0

{z : ∥z∥2 ≤ 1} if x = 0

Proximal Operators As mentioned at the beginning of this section, proximal maps
constitute the core of proximal algorithms, which are widely used to solve a vari-
ety of optimization problems that include non-differentiable functions such as ℓ1-
minimization problems. Having the preliminaries stated above, we are now ready
to define the proximal operator (proximal mapping) and derive some well-known
proximal-based sparse recovery techniques.

Proximity Operator of a function 𝑓 at a point z with a parameter 𝛾 > 0 can be
defined as

prox𝛾 𝑓 (z) = argmin
x

{︃
𝑓 (x) + 1

2𝛾
∥x − z∥2

}︃
. (2.42)

The algorithm that involves the proximal operations (proximal mappings) is quite
handy since it works for non-smooth (non-differentiable) functions.

Proximity Operator of ℓ1-norm Let the absolute value function be defined as
𝑓 : R→ R where 𝑓 (𝑥) = |𝑥 |. The proximity operator that solves the problem is:

prox𝛾 𝑓 (z) = argmin
x

{︃
𝛾 |x| + 1

2
∥x − z∥2

}︃
(2.43)

and is given by:

prox𝛾 |. | (z) = sign(z) ( |z| − 𝛾)+ =


z + 𝛾 if z ≤ −𝛾

0 if − 𝛾 ≤ z ≤ 𝛾

z − 𝛾 if z ≥ 𝛾

(2.44)

In order to prove Eq. (2.44), we need to solve Eq. (2.43) via subdifferential
calculus: Let 𝐹 (x) = 𝛾 |x| + 1

2 ∥x − z∥22, from the above-mentioned Fermat rule, we
know that x∗ is a minimizer of 𝐹 (x) if 0 ∈ 𝜕𝐹 (x∗) i.e.,
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Figure 2.10 Visual illustration of soft-thresholding

0 ∈ x∗ − z + 𝛾𝜕 𝑓 (x∗), (2.45)

where 𝑓 (x) = |x|. Let us consider the three specific scenarios to comprehend the
behavior of the proximity operator: Consider the first case where x∗ < 0, from Eq.
(2.41) we know that 𝜕 𝑓 (x∗) = −1 which is nothing but a singleton therefore Eq. (2.45)
becomes

0 = x∗ − z − 𝛾.

This implies
x∗ = z + 𝛾 for x∗ < 0.

Therefore we get,
prox𝛾 𝑓 (z) = z + 𝛾 if z < −𝛾.

For the case where x∗ < 0 we have from Eq. (2.41) we have 𝜕 𝑓 (x∗) = −1. Similar
derivation will result in

prox𝛾 𝑓 (z) = z − 𝛾 if z > +𝛾. (2.46)

And for the last case where x∗ = 0, now the subdifferential is not a singleton but a set,
i.e., 𝜕 𝑓 (x∗) = [−1, 1]. By inserting this into Eq. (2.45), we get

0 ∈ −z + 𝛾 [−1, 1],

which implies z ∈ [−𝛾, 𝛾] for x∗ = 0. Therefore,
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prox𝛾 𝑓 (z) = 0 if − 𝛾 ≤ z ≤ 𝛾,

which completes the proof of Eq. (2.44).

Proximal Gradient Methods (Forward-Backward Type Algorithms) Let us con-
sider the case where we have the following generic optimization problem:

min { 𝑓1(x) + 𝑓2(x) : x ∈ E} , (2.47)

where 𝑓1 : E→ (−∞, +∞) is a continuously differentiable function. On the other hand,
𝑓2 : E→ [−∞, +∞] is a proper, closed, convex function that is subdifferentiable over
its domain. Such problems frequently arise in the sparsity-promoting optimization
problems discussed throughout the chapter. For example, the Lasso formulation,
as defined in Eq. (2.33), is a widely-used ℓ1-minimization approach. A deeper
examination of the possible solutions for this optimization problem will be conducted
later, focusing on iterative shrinkage thresholding algorithms and related ones. But
before we proceed, let us briefly discuss the derivation of the generic proximal gradient
algorithm for the optimization problem given in Eq. (2.47):

Consider the optimization problem as defined in Eq. (2.47). If x∗ serves as a
local minimum for this problem, then it also serves as a stationary point for the same
optimization problem. Applying aforementioned Fermat’s rule, we obtain:

0 ∈ ∇ 𝑓1(x∗) + 𝜕 𝑓2(x∗). (2.48)

Given a fixed 𝛾 > 0, we can derive the following equivalent expressions:

0 ∈ 𝛾∇ 𝑓1(x∗) + 𝛾𝜕 𝑓2(x∗). (2.49)

Now, if we add the vector x∗ to both left and right sets using Minkowski sum we obtain

x∗ ∈ 𝛾∇ 𝑓1(x∗) + x∗ + 𝛾𝜕 𝑓2(x∗). (2.50)

Similarly, if we subtract 𝛾∇ 𝑓1(x∗) vector from both sets via Minkowski difference, we
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obtain

(𝐼 − 𝛾∇ 𝑓1) (x∗) ∈ (𝐼 + 𝛾𝜕 𝑓2) (x∗). (2.51)

Then, using the uniqueness 3 of the minimizer x∗, we conclude

x∗ = (𝐼 + 𝛾𝜕 𝑓2)−1 (𝐼 − 𝛾∇ 𝑓1) (x∗). (2.52)

Indeed, the resolvent 4 of the subdifferential is proximal operation by definition,
i.e.,

x∗ = (𝐼 + 𝛾𝜕 𝑓2)−1 (𝐼 − 𝛾∇ 𝑓1) (x∗) = 𝑝𝑟𝑜𝑥𝛾 𝑓2 (𝐼 − 𝛾∇ 𝑓1) (x∗). (2.53)

In order to prove that the resolvent of the subdifferential is the proximal operation,
assume

x ∈ (𝐼 + 𝛾𝜕 𝑓 )−1 (z),

which implies

z ∈ (𝐼 + 𝛾𝜕 𝑓 ) (x),

3

4A relation, denoted as 𝑅(), is often referred to as a "point-to-set map". It is also known as a
"set-valued map" or "multifunction". This concept is essentially a generalization of operators. While
standard operators, such as linear transformations, map a vector to another vector from its domain to
codomain, a set-valued map (or relation) maps a vector in its domain to a set of vectors in its codomain.
A resolvent of a relation 𝑅(.) operation can be defined as the inverse mapping of the relation (𝐼 + 𝛾𝑅) (.),
where 𝐼 (.) is identity relation 𝐼 = {(x, x) | x ∈ R𝑛} [59].
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and can be expressed as

0 ∈ 1

𝛾
(x − z) + 𝜕 𝑓 (x),

leading to

0 ∈ 𝜕x
(︃
𝑓 (x) + 1

2𝛾
∥z − x∥22

)︃
. (2.54)

The solution set of Eq. (2.54) is the minimizer set of 𝐹 (x) = 𝑓 (x) + 1
2𝛾 ∥z − x∥

2
2. As

𝐹 (x) is strictly convex, it has a unique minimizer.

Forward-Backward Algorithm Let x∗ be a minimizer of 𝑓 (x) = 𝑓1(x) + 𝑓2(x),
where 𝑓1 is smooth and 𝑓2(x) is a non-smooth convex function. We have shown that

x∗ = (𝐼 + 𝛾𝜕 𝑓2)−1 (𝐼 − 𝛾∇ 𝑓1) (x∗),

where 𝛾 > 0. This gives us the possibility of an iterative method, i.e.,

x 𝑗+1 = prox𝛾 𝑗 𝑓2

(︁
x 𝑗 − 𝛾 𝑗∇ 𝑓1(x 𝑗)

)︁
, (2.55)

where x 𝑗 is the estimation of x at 𝑗 𝑡ℎ iteration.

Iterative Shrinkage Thresholding (ISTA) ISTA [60] is a well-known solver for
the ℓ1-minimization problem, particularly in the form of the Lasso as given in Eq.
(2.33). The algorithm can be described by the following iterative steps:

r 𝑗 = y −Dˆ︁x 𝑗 , (2.56)ˆ︁x 𝑗+1 = prox𝜆∥ .∥1 (ˆ︁x 𝑗 + 𝛽D𝑇r 𝑗). (2.57)

where 𝛽 ∈ 1
∥D∥22

is the stepsize. The function prox𝜆∥ .∥1 (𝑧𝑖) represents the soft
thresholding operation, which is defined as prox𝜆 |. | (𝑧𝑖) in Eq. (2.44). The update
equations is nothing but the Forward-Backward step defined in Eq. (2.55) for Lasso
formulation Eq. (2.33) with a specific step size where the quadratic term 1

2 ∥Dx − y∥22
is differentiable with gradient ∇ 𝑓1(x) = −DT(y −Dx).
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Fast ISTA (FISTA) Numerous variants of the original ISTA algorithm have been
proposed in the literature. The Fast Iterative Soft Thresholding Algorithm (FISTA) is
one of the best-known algorithms among these: The step update in FISTA is performed
by

r 𝑗 = y −Dˆ︁x 𝑗 , (2.58)ˆ︁x 𝑗+1 = prox𝜆∥ .∥1 (ˆ︁x 𝑗 + 𝛽D𝑇r 𝑗 + 𝑗 − 2
𝑗 + 1 (ˆ︁x 𝑗 −ˆ︁x 𝑗−1)), (2.59)

where 𝛽 ∈ 1
∥D∥22

.

Approximate Message Passing (AMP) For the special case whereD is Gaussian
matrix, the more recently proposed modification called approximate message passing
(AMP) [61] algorithm can provide better reconstruction accuracy or/and faster con-
vergence with the following modification in step update:

r 𝑗 = y −Dˆ︁x 𝑗 + 𝛼 𝑗r 𝑗−1, (2.60)ˆ︁x 𝑗+1 = prox𝜆 𝑗 ∥ .∥1 (ˆ︁x 𝑗 + 𝛽D𝑇r 𝑗), (2.61)

where 𝛼 𝑗 = 1
𝑚

∥︁∥︁ˆ︁x 𝑗
∥︁∥︁
0

and 𝜆 𝑗 = 𝜈√
𝑚

∥︁∥︁r 𝑗∥︁∥︁
2

with a tuning parameter 𝜈. In the AMP
algorithm, the Onsager correction term 𝛼 𝑗r 𝑗−1 guarantees that the input of the soft-
thresholding has Gaussian error compared to the original signal with a variance of
1
𝑚

∥︁∥︁r 𝑗∥︁∥︁2
2
.

Alternating Direction Method of Multipliers (ADMM) The Alternating Direction
Method of Multipliers (ADMM) is a method used to solve optimization problems of
the form:

min{ 𝑓1(x) + 𝑓2(x) : x ∈ E}, (2.62)

where both functions, 𝑓1 and 𝑓2, can be non-smooth.
The ADMM algorithm can be described by the following iterative updates:

x 𝑗+1 ← 𝑝𝑟𝑜𝑥𝛾 𝑓1

(︁
z 𝑗 + u 𝑗

)︁
, (2.63)

z 𝑗+1 ← 𝑝𝑟𝑜𝑥𝛾 𝑓2

(︂
x 𝑗+1 − u 𝑗

)︂
, (2.64)

u 𝑗+1 = u 𝑗 + z 𝑗+1 − x 𝑗+1. (2.65)
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From Dual Ascent to Methods of Multipliers The consensus form of the opti-
mization problem can be represented as:

min 𝑓1(x) + 𝑓2(z)

subject to z = x.
(2.66)

A simple and early approach to solve Problem (2.66) is to add a quadratic penalty
function which is known as the quadratic penalty method [62], [63] whose first ap-
pearance [64] dates back to 1943 i.e.,

min 𝑓1(x) + 𝑓2(z) +
𝜇

2
∥z − x∥22 (2.67)

In this method, the variables (z, x) can be solved in an alternating manner and the
penalty parameter 𝜇 is increased to make the solutions of sub-optimization problems
closer to the one of original optimization problem (2.66). Despite the success stories
in convex [65] and even in non-convex cases [66] when 𝜇‘s become very larger, such
sub-optimization problems tend to be more ill-conditioned and it is reported that
such iterative algorithms may cause numerical solutions to stop before converging the
feasible solution [62].

An alternative formulation to the problem could be the Lagrangian form of the
original problem:

𝐿 (x, z, 𝛼) = 𝑓1(x) + 𝑓2(z) + 𝛼 (z − x) . (2.68)

where 𝛼 is the Lagrange multiplier or dual variable. The dual function is defined as:

𝑔(𝛼) = inf
(x,z)

𝐿 (x, z, 𝛼) = − 𝑓 ∗1 (𝛼) − 𝑓 ∗2 (−𝛼), (2.69)

where 𝑓 ∗(.) is the convex conjugate of 𝑓 (.). The dual problem aims to maximize
𝑔(𝛼). To recover the primal optimal x∗ and z∗, one can use:

(x∗, z∗) = argmin
(x,z)

𝐿 (x, z, 𝛼∗). (2.70)

where, 𝛼∗ is the dual optimal point. The dual ascent method involves the following
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updates:

Primal update: (x 𝑗+1, z 𝑗+1) = argmin
(x,z)

𝐿 (x, z, 𝛼 𝑗), (2.71)

Dual Update: 𝛼 𝑗+1 = 𝛼 𝑗 + 𝜌 𝑗∇𝛼𝑔(𝛼) = 𝛼 𝑗 + 𝜌 𝑗
(︂
z 𝑗+1 − x 𝑗+1

)︂
. (2.72)

Here, the dual variable updates come from the specific choice of gradient step as 𝜇 in
gradient ascent steps, because ∇𝛽𝑔(.) = (z 𝑗+1 − x 𝑗+1) under the assumption of fixed
and unique minimizers (z 𝑗+1, x 𝑗+1) of the primal update problem. This could be only
possible if 𝑓1 and 𝑓2 are strictly convex. On the other hand, if we bring the quadratic
penalty term back and use it together with the Lagrangian term, we can guarantee the
uniqueness of the output of the gradient ascent step [67]. The augmented Lagrangian
in its scaled form is:

𝐿𝜇 (x, z, 𝛼) = 𝑓1(x) + 𝑓2(z) + 𝛼 (z − x) +
𝜇

2
∥x − z∥22 . (2.73)

In the method of multiplier method (MM) [68], dual and primal optimum points
for Eq. (2.73) are found in an iterative manner i.e.,

(x, z) 𝑗+1 ← argmin
(x,z)

𝐿 (𝛼 𝑗

1, ..., 𝛼
𝑗

𝑃−2, x, ..., z𝑃−1) (2.74)

𝛼 𝑗+1 ← 𝛼 𝑗 + 𝜇(z 𝑗+1 − x 𝑗+1). (2.75)

Alternating Direction Method of Multipliers MM does not require to make the
𝜇 to be increased to very large values to guarantee convergence. However, the primal
optimal variable update steps require joint optimization of primal variables, which
is not trivial. Alternatively, the alternating direction method of multiplier (ADMM)
[67], [69] is a Gauss-Seidel type method that can deal with the primal update step
separately with respect to primal variables and can still guarantee convergence. The
update steps in ADMM are performed as follows:

x 𝑗+1 ← argmin
x
𝐿 (𝛼 𝑗 , x, z 𝑗), (2.76)

z 𝑗+1 ← argmin
z
𝐿 (𝛼 𝑗 , x 𝑗+1, z), (2.77)

𝛼 𝑗+1 ← 𝛼 𝑗 + 𝜇(z 𝑗+1 − x 𝑗+1). (2.78)

70



Eq. (2.73) can be recast as:

𝐿𝜇 (x, z, 𝛼) = 𝑓1(x) + 𝑓2(z) +
𝜇

2

∥︁∥︁∥︁∥︁z − (︃
x − 𝛼

𝜇

)︃∥︁∥︁∥︁∥︁2
2

. (2.79)

The method of multipliers involves the following updates:

x 𝑗+1 ← argmin
x

{︄
𝑓1(x) +

𝜇

2

∥︁∥︁∥︁∥︁x − (︃
z 𝑗 + 𝛼

𝑗

𝜇

)︃∥︁∥︁∥︁∥︁2
2

}︄
, (2.80)

z 𝑗+1 ← argmin
z

{︄
𝑓2(z) +

𝜇

2

∥︁∥︁∥︁∥︁z − (︃
x 𝑗+1 − 𝛼

𝑗

𝜇

)︃∥︁∥︁∥︁∥︁2
2

}︄
, (2.81)

𝛼 𝑗+1 = 𝛼 𝑗 + 𝜌 𝑗
(︂
z 𝑗+1 − x 𝑗+1

)︂
. (2.82)

2.3.2 Neural Network Based Solutions

It is important to note that, in addition to the aforementioned traditional approaches,
neural network (NN) based solutions have recently become very popular in this domain
as well. This first category of algorithms can be categorized as sparse recovery NN
algorithms, i.e., x̂← P (y), whereP is a learned NN-based mapping from compressed
domain signal to sparse coefficient vector. The purpose of these techniques is to
further enhance the effectiveness of existing convex relaxations by reducing the number
of iterations and enhancing reconstruction accuracy. In these types of algorithms,
which are also called unrolled deep models, the denoiser matrices such as D𝑇 , or(︁
D𝑇D + 𝜆I

)︁−1
D𝑇 are learned as well as hyperparameters such as 𝜆. For instance,

Learned-ISTA (LISTA) [70], and Learned AMP (LAMP) [71], which is the deep
version of AMP are deep unrolling versions of ISTA and AMP, respectively.

The second category of NN-based compressed sensing (CS) solutions makes the
signal recovery in the spatial domain rather than the sparsifying domain, i.e., ŝ ←
P (y). Among them, a group of algorithms keep traditional sensing matrices, e.g.,
random Gaussian matrices, and only learn the recovery part [72]–[74]. One of the
best-known examples of this type of work is the stacked denoising autoencoder (SDA)
[72], the non-iterative reconstruction of compressively sensed images using CNN
(ReconNet) [73], as well as the learned version of the iterative shrinkage thresholding
algorithm for CS imaging (ISTA-Net) [74]. SDA networks use fully connected layers
while others use convolutional layers.
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Another group of algorithms within this category focuses on jointly optimizing
the CS matrix and the recovery part. Convolutional compressive sensing networks
(CSNET) [75] and scalable convolutional compressive sensing networks (SCSNET)
[76] are recent examples of state-of-the-art networks in this category. In these algo-
rithms, compressive sensing is applied to blocks of the image independently while
convolutional layers are applied to the entire image in the recovery part.
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3 SPARSE SUPPORT ESTIMATION AND ITS

APPLICATIONS

Regarding sparse signal recovery, the focus is typically on identifying the nonzero
components of x, including their positions, magnitudes, and signs. However, it is
essential to note that many applications only need a part of this information about x.
For instance, in many application scenarios, simply determining the positions of these
nonzero elements is sufficient. This is a process known as sparse support set estimation
or support estimation (SE) for short. To give an example, in a classifier method based on
sparse representation, the atoms that constitute the dictionary are placed in such a way
that the features of samples belonging to the same class become adjacent to one another
[77], [78]. In such a design, when a new test sample has arrived, its representation
within this dictionary is estimated. If we ensure that the signal is represented with
the least amount of atoms while finding this representation, the most critical factor
in determining the class is to find out which atoms contribute to the representation.
As another example, in a CS-based radar imaging process [79], the primary purpose
is to determine the location of the target rather than determining the actual signal
magnitudes when the reflected signal is represented by sparse approximation.

Suppose that we obtain a measurement, y, from a corrupted measurement system,
y = Dx + z, where z is the noise vector representing the additive perturbation, and the
equivalent dictionary D is given. We can mathematically define a support estimator,
E(.), as follows ˆ︁Λ = E (y,D) (3.1)

where ˆ︁Λ is the estimated set of indices corresponding to the non-zero elements’
locations. Consider an ideal scenario where we have zero noise in the system, and x

is an exact 𝑘-sparse signal. The exact sparse signal recovery and exact sparse support
estimation problems are equivalent in this particular case. If we recall the discussion
after Eq. (2.10) in Chapter 2, we can easily observe this. Furthermore, although exact
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Figure 3.1 The Conventional Strategy for a Practical Support Estimator [P1].

sparse signal recovery is not possible when noise appears, exact support estimation
can still be performed [80]. In this regard, the support estimation problem may seem
more manageable than the signal recovery problem.

The traditional SE strategies consist of reconstructing x first and then estimating the
support set based on standard thresholding techniques. Such an approach is illustrated
in Figure 3.1 . Nevertheless, if the final goal is to estimate the support set, the process of
recovering the sparse signal with its magnitude and sign may be unnecessary and costly.
This is why we investigated the possibility of direct mapping from the measurement,
y, to support set, Λ. In the first part of the chapter, we will discuss whether it is
possible to train a neural network that maps directly from y to the support set. The
Convolutional Support Estimator Networks (CSENs), which are proposed in [P1] and
[P2], serve as supervised support estimators, providing low-cost but accurate support
estimation with their compact architectures. Such a direct mapping technique has a
variety of applications, such as a new type of dictionary-based classifier (i.e., hybrid
usage of a pre-defined dictionary and a compact SE network) or improved sparse signal
recovery algorithms equipped with priori information provided by NN-based support
estimators.

The second part of the chapter discusses a particular scenario where learning such
a mapping is very challenging due to a lack of sufficient training data for these highly
specialized tasks. These situations may occur, especially in CS systems where spe-
cialized CS matrices are required due to their hardware constraints, such as CS-based
radar imaging [P3]. In such cases where data collection is difficult, producing synthetic
data and training an NN on it could be considered. However, for Ground Penetrat-
ing Radar (GPR) applications where high target-surface interaction occurs, such as
through-the-wall radar imaging, producing realistic synthetic data is challenging due
to difficulties in electromagnetic modeling, and current simulation tools suffer from
very long simulation times [81]. In these specific scenarios, one possible solution for
the support estimation problem is to use the conventional way, in which the sparse
signal recovery is performed, as depicted in Figure 3.1 . However, for the above
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Figure 3.2 Proposed NN-based Design for Highly Efficient Support Estimator [P1].

reasons, SE performance of the algorithms that use this conventional strategy may
remain short, especially in challenging situations where using a low measurement rate
is very beneficial. As an example, in a rescue operation, it is crucial to sample and
process GPR data rapidly in order to detect structures close to the surface, such as
buried survivors or utilities under rubble. Instead of using the ordinary sparse signal
model, where we do not have any other assumption other than x being sparse, we will
propose a structural sparse model, introduced in [P3], for a particular task regarding
CS-radar imaging. This model sacrifices signal magnitude and sign estimation accu-
racy for increased support estimation accuracy. For this reason, even though the sparse
signal is recovered by solving this special optimization problem, the estimated sparse
signal, ˆ︁x, serves as an estimation of the support and, therefore, can be considered
a special form of Eq. (3.1). It will be shown that such a structural sparsity model
and its corresponding recovery algorithm provide more accurate target localization in
through-the-wall CS radar imaging problems.

3.1 Convolutional Sparse Support Estimator Networks (CSENs)

Given a pre-defined dictionary, D, when a new query measurement, y, arrives, we
have proposed to use an NN-based support estimator in [P1] instead of the traditional
SE algorithms mentioned in Figure 3.1 . Such a machine learning algorithm aims to
estimate the support set directly from the measurement vector. The proposed strategy
is illustrated in Figure 3.2 .

An ideal support estimator should produce the following binary mask, b ∈ {0, 1}𝑛,
when it receives a new query measurement, y, as input:

𝑏𝑖 = 1 if 𝑖 ∈ Λ (3.2)

which marks the ground-truth signal support i.e., Λ = {𝑖 ∈ {1, 2, .., 𝑛} : 𝑏𝑖 = 1}.
The proposed NN-based support estimators, CSENs, serve as a mapping, P (y,D),

attempting to approximate such ideal binary mask by producing a probability-like
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Figure 3.3 Convolutional Support Estimator Network-1 (CSEN1) [P1].

Figure 3.4 Convolutional Support Estimator Network-2 (CSEN2) [P1].

measure as the output vector, p. In other words, each element, 𝑝𝑖 ∈ [0, 1], of this
vector is considered a measure of how probable this index is in the support set. Having
such a probability-like vector, simple thresholding could be applied in order to obtain
the final estimator of the support set if needed, i.e., ˆ︁Λ = {𝑖 ∈ {1, 2, .., 𝑛} : 𝑝𝑖 > 𝜏},
where 𝜏 is a predefined threshold.

Two different architectures are proposed, each being a fully convolutional type
of neural network. Therefore, instead of using y as input, they take a proxy sparse
signal, x̃ = By (where B = D𝑇 or B =

(︁
D𝑇D + 𝜆I

)︁−1
D𝑇 ) as input and produce the

probability-like measure vector p from x̃. The architectures of the proposed networks,
CSEN1 and CSEN2, are visualized in Figure 3.3 and Figure 3.4, respectively. In the
proposed CSENs, 2-D convolution layers are used, as depicted in the figures. To this
end, the proxy signal x̃ is reshaped to have a 2D representation before being used as
an input signal to CSENs.

The first architecture, CSEN1, consists of three convolution layers with 48 and 24
hidden neurons. The second one, CSEN2, is obtained by slightly modifying CSEN1.
In CSEN2, compared to CSEN2, a downsampling and an upsampling layers are placed
between the 48-neuron convolutional layer and the 24-neuron one. Max-pooling is
used for downsampling, and a 24-neuron transpose convolution layer is used for
upsampling. In both CSEN configurations, the kernel size for each layer is set to 3×3.
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Proof-of-the concept: An Experiment on Support Estimation From CS Measure-
ments This proof-of-concept experiment will consider a general problem of sparse
support estimation from compressively sensed signals. For this purpose, the hand-
written digits dataset, MNIST, whose each sample is an image of 28 × 28 pixels, was
used. In each image, the pixel intensity of the handwritten character is close to 1,
while the black background pixel values are 0. Therefore, each vectorized image,
x𝑖 ∈ R𝑛=784, can be considered as a 𝑘𝑖-sparse signal in the canonical domain, i.e.,
Φ = I. A sensing system, where each of these signals is compressively sampled with
Gaussian CS matrix, A ∈ R𝑚×𝑛, is simulated via

yi = Axi + z𝑖 = Dxi + z𝑖 , (3.3)

where D = A and z𝑖 ∈ R𝑚 is an additive white Gaussian noise. Briefly, we define the
problem as estimating the support set directly from the measurement vector, yi defined
in Eq. (3.3), via a support estimator network, PSE, i.e., ˆ︁Λ← PSE (y), where PSE is a
learned NN-based mapping from compressed domain signal to sparse support set.

Since the proposed CSENs are the first of their kind as support estimator networks in
the literature, it is not possible to compare them directly with a competing algorithm.
For this reason, the SOTA NN-based sparse signal recovery algorithms (i.e., x̂ ←
P (y), where P is a learned NN-based mapping from CS signal, y to sparse coefficient
vector, x.) described in Section 2.3.2, LISTA, and LAMP were trained under the same
conditions as proposed CSEN networks to be support estimators.

Table 3.1 Comparative Analysis of Algorithmic Performance in Support Recovery from Noise-Free
Measurements.

MR 0.25 0.1 0.05 0.25 0.1 0.05 0.25 0.1 0.05 0.25 0.1 0.05
F1 Measure Precision Recall CE

CSEN 0.91 0.85 0.80 0.90 0.84 0.77 0.92 0.87 0.84 0.03 0.06 0.08
CSEN2 0.94 0.89 0.84 0.93 0.88 0.82 0.94 0.90 0.87 0.02 0.04 0.06

ReconNet 0.90 0.85 0.79 0.89 0.82 0.76 0.90 0.87 0.83 0.05 0.06 0.09
LAMP (2) 0.92 0.89 0.82 0.94 0.90 0.82 0.89 0.87 0.83 0.05 0.05 0.08
LAMP (3) 0.93 0.89 0.82 0.95 0.90 0.82 0.91 0.88 0.82 0.03 0.05 0.08
LAMP (4) 0.93 0.90 0.83 0.95 0.92 0.82 0.92 0.89 0.83 0.03 0.04 0.08
LISTA (2) 0.93 0.89 0.82 0.96 0.90 0.82 0.90 0.87 0.82 0.03 0.05 0.07
LISTA (3) 0.93 0.89 0.82 0.95 0.90 0.82 0.90 0.87 0.82 0.03 0.05 0.07
LISTA (4) 0.93 0.89 0.82 0.95 0.90 0.82 0.90 0.87 0.83 0.03 0.05 0.07

Furthermore, as also discussed in Section 2.3.2, even if it was not proposed as

77



Table 3.2 Comparative Evaluation of Algorithmic Efficacy in Support Recovery with 10 dB Measure-
ment Noise.

MR 0.25 0.1 0.05 0.25 0.1 0.05 0.25 0.1 0.05 0.25 0.1 0.05
F1 Measure Precision Recall CE

CSEN 0.89 0.82 0.77 0.89 0.82 0.75 0.89 0.82 0.79 0.04 0.07 0.09
CSEN2 0.92 0.86 0.80 0.92 0.86 0.80 0.92 0.86 0.82 0.03 0.06 0.08

ReconNet 0.89 0.83 0.78 0.89 0.81 0.74 0.89 0.85 0.81 0.04 0.07 0.09
LAMP (2) 0.87 0.85 0.79 0.90 0.86 0.78 0.84 0.83 0.80 0.08 0.08 0.10
LAMP (3) 0.87 0.84 0.77 0.91 0.87 0.78 0.84 0.81 0.77 0.06 0.08 0.12
LAMP (4) 0.86 0.85 0.77 0.87 0.87 0.78 0.85 0.82 0.77 0.08 0.07 0.12
LISTA (2) 0.72 0.82 0.79 0.58 0.77 0.76 0.93 0.88 0.82 0.18 0.08 0.10
LISTA (3) 0.68 0.83 0.79 0.54 0.78 0.76 0.94 0.87 0.82 0.22 0.08 0.10
LISTA (4) 0.68 0.82 0.78 0.53 0.77 0.75 0.94 0.88 0.82 0.22 0.08 0.10

Figure 3.5 F1 Measure graphs of the performance of competing algorithms at various noise levels at
MR = 0.25 [P1].

a sparse signal recovery algorithm, rather the CS signal recovery algorithm in the
input domain directly (𝑖.𝑒., ŝ ← P (y)), ReconNet, was also trained to be a support
estimator. This network is also fully convolution type like the proposed CSENs. We
repeated the experiment under different noise levels and with different Measurement
Rates (MRs). Performance comparisons of the competing algorithms are given in
Table 3.1, Table 3.2, and Figure 3.5. When we examined Table 3.1, it was observed
that there was no performance increase when we increased the block numbers of both
LISTA and LAMP from 2 to 4. For this reason, deeper models were not trained
anymore. As can be seen from the tables and Figure 3.5, for many different MR and
under different noise conditions, the proposed CSENS, either achieved the highest SE
performance or achieved the performance level comparable to their closest competitor.
MSE is used as the loss function in that particular experiment; more details about the
experiments can be found in [P1].
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Figure 6 CSEN-C is trained end-to-end

3.1.1 Convolutional Sparse Support Estimator Network Based Classification
(CSEN-C)

There is no doubt that one of the most successful applications of sparse representa-
tion theory is that of dictionary-based classification, also known as representation-
based classification technologies. Among these methods, the first of its kind, sparse-
representation-based classification (SRC) [77], [78] and collaborative representation-
based classification (CRC) [82] are the most widely used ones. Among these, SRC
has been specially adapted to many applications including but not limited to face
recognition [77], [78], human action recognition [83], and hyperspectral image seg-
mentation [84]. The method, SRC, can be summarized as follows: (i) Normalize
each atom in D and the query vector y to have a unit ℓ2-norm. (ii) Find the co-
efficient vector x̂ via a sparse recovery algorithm such as the ℓ1-norm minimiza-
tion: x̂ = argminx ∥x∥1 s.t ∥y − Dx∥2. (iii) For each class 𝑖, compute the residual
ei = ∥y − Dix̂i∥2, where x̂i is the vector consists of coefficients of x̂ correspond-
ing class 𝑖. (iv) Determine the class of y by finding the minimum of the residuals
ei. However, despite its success in a wide range of applications, in step (ii), SRC
requires a sparse recovery method such as solving ℓ1-minimization problem, which
is an iterative and relatively costly operation, as it is discussed many times in the
dissertation. The following CRC method introduced a simplification in this step by
attempting to find the coefficient vector via ordinary regularized least squares, i.e.,
x̂ =

(︁
D𝑇D + 𝜆I𝑛×𝑛

)︁−1
D𝑇y.

Machine learning literature has witnessed an enormous increase in the number of
classes, samples, and sample sizes handled by machine learning algorithms in recent
years. As a result, despite significant simplification with CRC, even the least square
solution may become very costly (even direct usage of the methodology unmanageable
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(a) Yale-B (b) CelebA

Figure 3.7 Performance comparison of competing face recognition algorithms in two databases. [P1]

in practice). This is why, in this dissertation, we proposed a new type of representation-
based classifier family, CSEN-C. To develop CSEN-C, instead of using entire training
samples in the dictionary, a random sub-set is selected to construct the dictionary, and
the rest of the training dataset is used to train the above-mentioned NN-based support
estimator-supported classifier. Then, we adopt and train the CSEN-C in the following
manner:

End-to-end training of CSEN-C: As a vanilla approach, the aforementioned sup-
port estimator, CSEN, could be trained first with a proper lost function such as ℓ1
or a more structural version of it such as a loss that encourages group sparsity [P1].
Then, more layers could be added to the network and fine-tuned to have the final class.
Instead, we modified CSEN to have a more compact network: An average pooling
layer is added at the end of the CSEN network, and then we finish the architecture with
a softmax to have class probabilities. The cross-entropy loss function is used. The
overall CSEN-C architecture is visualized in Figure 6. In the figure, we particularly
place measurement matrix, A, because a feature extraction matrix could be applied to
the query samples, such as PCA.

Now, we summarized the performance of the proposed technique in two different
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Table 3.3 Comparative Classification Performance of CSEN and Other Methods for COVID-19 Detec-
tion.

Metric Category k-NN SVM MLP CRC ReconNet CSEN1 CSEN2
Accuracy Bacterial 0.777 0.780 0.763 0.820 0.765 0.793 0.794

Viral 0.801 0.787 0.765 0.827 0.785 0.805 0.803
Normal 0.903 0.934 0.933 0.928 0.918 0.926 0.927
COVID-19 0.950 0.945 0.949 0.955 0.936 0.955 0.959

TN Bacterial 3166 3219 3114 3063 3180 3177 3173
Viral 4123 3965 3923 4385 4005 4109 4091
Normal 4253 4444 4442 4380 4364 4388 4396
COVID-19 5525 5489 5522 5554 5435 5548 5572

TP Bacterial 1720 1687 1680 2091 1629 1810 1818
Viral 909 979 884 816 928 954 959
Normal 1420 1427 1421 1456 1407 1431 1428
COVID-19 446 452 444 447 448 455 455

FP Bacterial 360 307 412 463 346 349 353
Viral 678 836 878 416 796 692 710
Normal 454 263 265 327 343 319 311
COVID-19 299 335 302 270 389 276 252

FN Bacterial 1040 1073 1080 669 1131 950 942
Viral 576 506 601 669 557 531 526
Normal 159 152 158 123 172 148 151
COVID-19 16 10 18 15 14 7 7

Sensitivity Bacterial 0.623 0.611 0.609 0.758 0.590 0.656 0.659
Viral 0.612 0.660 0.595 0.550 0.625 0.642 0.646
Normal 0.899 0.904 0.900 0.922 0.891 0.906 0.904
COVID-19 0.965 0.978 0.961 0.968 0.970 0.985 0.985

Specificity Bacterial 0.898 0.913 0.883 0.869 0.902 0.901 0.900
Viral 0.859 0.826 0.817 0.913 0.834 0.856 0.852
Normal 0.904 0.944 0.944 0.931 0.927 0.932 0.934
COVID-19 0.949 0.943 0.948 0.954 0.933 0.953 0.957

F1-score Bacterial 0.711 0.710 0.693 0.787 0.688 0.736 0.737
Viral 0.592 0.593 0.545 0.601 0.578 0.609 0.608
Normal 0.823 0.873 0.870 0.866 0.845 0.860 0.861
COVID-19 0.740 0.724 0.735 0.758 0.690 0.763 0.778

multi-class classification problems, face recognition and chest X-ray image classifica-
tion (with an emphasis on COVID-19 detection). Both of them are particularly good
examples of data scarcity problems in their own way. Considering the face recognition
problem, one major challenge in the practical usage of such a system is to recognize the
identities that have a limited number of face samples. The majority of works focus on
achieving a generalizable neural network in order to produce discriminative features.
And, having the pre-trained deep networks, they use less complicated conventional
classifiers such as KNN to recognize the identity from the features that pre-trained net-
works produce. The literature representation-based classifiers SRC and CRC, which
are equipped with either row images or high-level features from the deep models, are
also very popular methods. The proposed CSEN-C presents a new alternative to the
representation-based classifiers with its compact configuration.

In Figure 3.7, we summarized the performance comparison of competing algo-
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rithms for two different datasets, Yale-B [85] and CelebA [86]. The competing al-
gorithms are listed as conventional classifiers, KNN, MLP, SVM, and representation-
based classifiers, SRC and CRC. Furthermore, we tried most of the SOTA sparse
signal recovery algorithms to have different versions of SRC. These are also listed
as, ADMM [67], Dalm [87], OMP [87], Homotopy [88], GPSR [89], L1LS [90],
ℓ1-magic [91], and Palm [87]. All the algorithms use exactly the same features, which
are extracted from pre-trained deep network library [92], then passed through the PCA
matrix, A. For the sake of brevity, we skip all the details about the experimental setup
and hyper-parameters, which can be found in [P1]. An important observation from
the results is that the proposed algorithm gives high or very comparable performance
scores in all settings. When we particularly compare with the SRC technique, we can
say that the performance of SRC highly depends on the algorithm chosen and set-up.

When it comes to chest X-ray classification, the data imbalance and scarcity problem
were the major difficulties to be handled, especially in the beginning of the pandemic.
In [P2], we give a very detailed analysis of how to handle data scarcity problems
with the proposed CSEN-C. Particularly, we developed a CSEN-C algorithm that
classifies X-Ray images into 4 categories: (i) Viral, (ii) Bacterial, (iii) Covid-19
based pneumonia or control group, (iv) normal. The performance comparison of the
competing algorithms is given in Table 3.3. As can be seen in the Table, the proposed
algorithm surpasses the competing ones in Covid-19 recognition. The details of
the experimental setup are given in [P2]. In [P2], we also address the analysis of
computational complexity vs performance of representation-based classifiers, CRC,
SRC, and CSEN-C. Particularly when using a subset of the training set or the entire
training set in the dictionary.

3.1.2 Convolutional Sparse Support Estimator Network Based Compressively
Sensed Signal Reconstruction

In literature [93], [94], side information about the support set is used to improve
the sparse recovery performance of compressive sensing systems via weighted ℓ1-
minimization,

min
x

{︁
∥Dx − y∥22 + 𝜆 ∥w ⊙ x∥1

}︁
(3.4)

where ⊙ the element-wise multiplication (Hadamard Product), w is the cost function
with elements 𝑤𝑖 = 1

𝑝𝑖+𝜖 and 𝑝 is the measure defining the probability of each
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coefficient’s being non-zero. However, most of the works [94] either do not specify
how to have such information or design hand-crafted functions to estimate such priors
for specific application scenarios [93]. One of the major application areas of the NN-
based support estimator proposed in this dissertation is that the output of the estimation
networks can serve as prior information, 𝑝. Such a 𝑝 can be produced by a CSEN, on
the fly and particular to the given input sample, y. The idea is visualized in Figure
3.8a. Such an algorithm not only improves the recovery accuracy but also reduces
the number of iterations for conventional sparse recovery algorithms to converge. We
compared the conventional sparse recovery algorithm with the proposed CSEN-aided
sparse recovery in Figure 3.8b. For comparison, we use phase transition graphs. We
can see the border of the exact sparse recovery region for each algorithm by looking at
such graphs (or vice versa, where the algorithm starts failing). We followed the exact
procedure and definition of phase transition given in [95]. In [P1], a more detailed
analysis of the experiment is given. In [P1] also, CSEN-aided sparse recovery is applied
on natural images in the gradient domain (i.e., using Total Variation minimization)

(a) Proposed CSEN-aided Sparse Signal Recovery
(b) Comparison of competing algorithms with phase

transition graphs in MNIST dataset

Figure 3.8 Proposed CS-Aided Sparse Signal Recovery. [P1]

3.2 Structural Sparse Support Estimation via Proximal Operation
Based Algorithms

The aforementioned support estimation methods based on neural networks are useful
in many situations, provided that there is access to a small, moderate, or large training
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database. In the sequel, we will develop a structural sparsity model and corresponding
optimization problem for a specific application called the "through-the-wall radar
imaging (TWRI)" system. The proposed sparsity model imposes more accurate SE
by sacrificing the actual magnitude of the signal, which is not critical information for
localization and detection.

Through the wall Target Detection/Monitoring from Compressively Sensed Sig-
nals via Structural Sparsity Stepped-frequency systems (SFS) [96] apply stepped-
frequency steps to transmit short electromagnetic waveforms, and then measure the
magnitude and phase difference between the reflected signal and the transmitted signal.
We can define this method as frequency domain sampling over a wide bandwidth. As
a result of its reduced noise exposure at discrete stepped frequencies, it offers benefits
such as ultra-bandwidth illumination, lower transmission power, and higher SNR. Nev-
ertheless, such sampling is costly and time-consuming, since only one frequency bin
at a time is sampled, and many frequency bins must be sampled at a location. Studies
have explored simultaneous transmissions of multiple frequencies, but the most com-
mon method involves transmitting a subset of stepped frequencies and reconstructing
the signal using CS theory [97].

In recent literature, random frequency radar imaging has received significant at-
tention with various studies [79], [97]–[99] exploring different assumptions about the
sparsity of the scene that is being imaged. According to some of these studies, the
targets in a discretized scene allocate fewer grids than the total number of grids, which
is a simple unstructured sparsity assumption in the canonical domain. It has been
assumed in some studies that vectorized radar images are sparse in a proper dictio-
nary, such as one derived from GPR images. Nevertheless, these methods may not be
suitable for some scenes that show structural sparsity patterns, such as block-sparse
models. In contrast to previous works, this study proposes estimating the target lo-
cations by assuming the group structure and the continuity of non-zero support sets
across consecutive scans.

Proposed Compressive GPR System Building on the above-mentioned stepped-
frequency radar technology, we will develop a TWRI system via CS and structural
sparsity. Using this system, stationary objects can be detected within close proximity
even when they are obscured by walls. A system of this type is illustrated in Figure
3.9, from which it is clear that possible application areas include emergencies such as

1It is an AI-generated representative image generated with DALLE-3 [100].
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Figure 3.9 Illustration of the proposed through-the-wall target detection and localization1.

earthquakes and fires where timing is extremely critical.

Wall

Target

Position k A-Scan Signal at
Position k

(a) (b)
Figure 3.10 Pictorial illustration of TWRI data acquisition: (a) A-scan data is acquired in a constant

spatial displacement along the x-axis. (b) The B-scan is created from the collection of
A-scans.

When a signal 𝑠(𝑡) is modulated using a series of carrier frequencies defined as
𝑓𝑛 = 𝑓0 + 𝑛Δ 𝑓 , where 𝑛 = 0, ..., 𝑁 − 1 the reflected signal (demodulated), can be
approximated as

𝑟 (𝑛, 𝑡) ≈ 𝜅.𝑠
(︃
𝑡 − 2𝑅/𝑐
𝑇𝑑

)︃
𝑒

(︂
− 𝑗 4𝜋 ( 𝑓0+𝑛Δ 𝑓 )𝑅

𝑐

)︂
, (3.5)

where Δ 𝑓 represents the frequency interval, 𝜅 is a constant for the attenuation effect,
𝑐 is the speed of light, 𝑠(𝑡) denotes the base modulated signal that is transmitted,
𝑅 signifies the range, and 𝑇𝑑 is the pulse duration. Taking the inverse fast Fourier
transform (IFFT) of the discretized 𝑟 (:, 𝑡) with respect to 𝑛 should result in an impulse-
like response [99]. This impulse-like response can be considered as a sparse signal
in the depth domain, which in turn provides us with the range profile. It is called an
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79. A-Scan 81. A-Scan 83. A-Scan

Wall 

Object 

Figure 3.11 A-Scan signals are obtained by taking IFFT of 𝑛 = 201 uniformly sampled frequencies
between 0.1 GHz-15 GHz at positions 79, 81 and 83 [P3].

A-Scan when referring to a range profile for a fixed location. A pictorial representation
explaining an A-Scan is given in Figure 3.10a. A series of one-dimensional signals
along the x-axis, A-Scans, is gathered to create a two-dimensional image, called a
B-Scan, which displays the scene’s visual characteristics. The aforementioned A-Scan
and B-Scan are illustrated in Figure 3.10b.

For the stepped frequency TWRI scenario, a reasonable choice for the measurement
matrix involves randomly selecting rows of Fourier basis. Let FΩ be the CS matrix of
m number of randomly selected rows from the Fourier matrix indexed by set Ω. This
essentially means measuring 𝑚 random frequency responses at a specific location 𝑙
yielding the measurement y𝑙 = FΩ𝑙

x𝑙, where x ∈ R𝑛 and y ∈ R𝑚. This corresponds
to one A-Scan. For the B-Scan, the TWRI device is slid from position 𝑙 to 𝑙 + 1 to
obtain the subsequent 𝑚 measurements, given by y𝑙+1 = FΩ𝑙+1x𝑙+1, and this process
continues along the x-axis trajectory. In this configuration, each 1-D vector, x𝑙, which
represents depth information, is assumed to be sparse. In this setup, CS speeds up the
measurement acquisition time because𝑚 << 𝑛. In an ideal scenario where x𝑙 is exactly
sparse, it could be exactly reconstructed as discussed in Chapter 2. However, real-
world time domain A-Scans, as shown in Figure 3.11 (obtained from 𝑛measurements),
exhibit noisy yet sparse peaks at object positions. Despite not being strictly sparse,
small coefficients can be zeroed out to make the object positions visible.

Structural sparsity with mixed norms We define the ℓ𝑝,𝑞-norm of a matrix
Z ∈ R𝑛×𝑇 as

∥Z∥ 𝑝,𝑞 =
⎛⎜⎝

𝑛∑︁
𝑖=1

(︄
𝑇∑︁
𝑡=1

|︁|︁𝑍𝑖,𝑡 |︁|︁𝑝)︄ 𝑞

𝑝 ⎞⎟⎠
1
𝑞

, (3.6)
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(a) (b) (c)

Figure 3.12 (a) Sparse Approximation of X: min𝜆1
∑︁𝑇

𝑑=1 ∥yd − Fdxd∥22 + 𝜆2 ∥X∥0, (b) Group
Sparse Approximation of X, (c) Group Sparsity + Smoothness Approximation of X:
min𝜆1

∑︁𝑇
𝑑=1 ∥yd − Fdxd∥22 + 𝜆2 ∥X∥2,0 + 𝜆3

∑︁𝑛−1
𝑖=1

∑︁𝑚
𝑘=1

|︁|︁𝑋𝑘,𝑖+1 − 𝑋𝑘,𝑖

|︁|︁
where 𝑝, 𝑞 ≥ 1. For 𝑝 = 2 and 𝑞 = 1, this norm represents the sum of ℓ2-norms
(energy) of the columns: ∥Z∥2,1 =

∑︁𝑇
𝑖=1

∥︁∥︁z 𝑗∥︁∥︁2. Conversely, for 𝑝 = 1 and 𝑞 = 2, it
denotes the sum of ℓ2-norms (energy) of the rows: ∥Z∥1,2 =

∑︁𝑛
𝑖=1

∥︁∥︁∥︁z𝑟𝑗∥︁∥︁∥︁2, where z𝑟
𝑗

denotes the 𝑗-th row of Z. This norm often serves as a convex approximation to ∥Z∥0,2,
which counts the number of non-zero rows. Specifically, ∥Z∥0,2 =

∑︁
𝑘 𝐼

(︂∥︁∥︁Z𝑘,:

∥︁∥︁
2

)︂
counts the non-zero rows. Similarly, ∥Z∥2,0 returns the number of non-zero columns.

The Proposed Support Set Recovery When we check the real measurements that
compose the B-Scan in Figure 3.11, a key observation can be made that consecutive A-
Scan signals are quite similar to each other. Notably, they have the same sparse support
sets as expected. In addition, the strength or magnitude of these non-zero elements
changes gradually and smoothly with time. In the proposed radar imaging, we aim
to find an approximation of a matrix X, which holds a series of consecutive A-Scan
signals within a specific sliding window, i.e., 𝑇 number of A-Scans. We recover the
sparse matrix, by imposing some required characteristics via an optimization approach:

ˆ︁X = argmin
𝑋

𝑇∑︁
𝑑=1

∥yd − Fdxd∥22 + Γ (X) , (3.7)

where Γ(.) is used to incorporate specific characteristics into the model. As mentioned
above, these characteristics include having a shared location of non-zero elements
(i.e., support sets) across the A-Scans and ensuring that the signal, which indicates the
object’s position along the x-axis, remains relatively constant as the object should have
a length if it is close enough to the radar system. How to characterize this structural
sparsity of the matrix X is explained step-by-step by a visualization shown in Figure
3.12. First, the concept of group sparsity is introduced to improve the representation of
the matrixX. This matrix contains representative images under both sparsity and group
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Figure 3.13 Grouping of each row in current sliding window (𝐿 = 4, 𝑇 = 8). (a) Overlapping group-
ing. (b) Non-overlapping grouping

sparsity assumptions. In these images, colored squares indicate non-zero elements.
The difference between sparse approximation, min𝜆1

∑︁𝑇
𝑑=1 ∥yd − Fdxd∥22 + 𝜆2 ∥X∥0,

and group sparse approximation, X: min𝜆1
∑︁𝑇

𝑑=1 ∥yd − Fdxd∥22 + 𝜆2 ∥X∥2,0, is clear
when comparing Figure 3.12-(a), Figure 3.12-(b).

Furthermore, the rows of the state matrix X are assumed to be piece-wise constant,
which means that there is an inherent smoothness in the group sparsity approximation.
The expected improvement is visualized in Figure 3.12-(c). This smoothness is also
imposed to ensure that the approximation is more accurate and representative enough
to see the shape of the object (sparse support set for X). This can be guaranteed by
the optimization problem

min𝜆1

𝑇∑︁
𝑑=1

∥yd − Fdxd∥22 + 𝜆2 ∥X∥2,0 + 𝜆3
𝑛−1∑︁
𝑖=1

𝑚∑︁
𝑘=1

|︁|︁𝑋𝑘,𝑖+1 − 𝑋𝑘,𝑖

|︁|︁ . (3.8)

The optimization problem in Eq. (3.9) is obviously not convex, but can be easily
relaxed:

min𝜆1

𝑇∑︁
𝑑=1

∥yd − Fdxd∥22 + 𝜆2 ∥X∥2,1 + 𝜆3
𝑁−1∑︁
𝑖=1

𝑚∑︁
𝑘=1

|︁|︁𝑋𝑘,𝑖+1 − 𝑋𝑘,𝑖

|︁|︁ . (3.9)

Nevertheless, sparsifying entire rows requires zeroing out many rows while keeping
some entirely intact. This may cause undesired artifacts throughout the non-zero rows
especially when 𝑇 >> 𝐷, where 𝐷 is possible object length along the x-axis. This
is why, we applied group row sparsity (or social sparsity [45]) that imposes adjacent
𝐿-length A-Scans compose groups along the x-axis where 𝐿 << 𝑇 . This division
can be done in two ways: (i) When each group is distinct and does not share any
columns with its neighboring groups, then the adjacent groups are non-overlapping,
i.e., X

𝑖,𝑘
= X𝑖

1+(𝑘−1)𝐿:𝑘𝐿 , where X
𝑖,𝑘

denotes the 𝑘 𝑡ℎ group of the 𝑖𝑡ℎ row. (ii)
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Figure 3.14 The design of real-world measurement system [P3]

Likewise, if the adjacent groups are overlapping then the group will be formulated
as X

𝑖,𝑘
= X𝑖

𝑘:(𝐿+𝑘 ) . Consider the two illustrations in Figure 3.13, the first illustrates
overlapping grouping, and the second depicts non-overlapping grouping. In this
manner, the optimization problem in Eq. (3.9) can be updated as

ˆ︁X = argmin
X

(︄
𝜆1

2

𝑇∑︁
𝑑=1

∥y𝑑 − F𝑑x𝑑 ∥22 + 𝜆2 ∥X∥2,0;𝐿 + 𝜆3 ∥X∥Tv,1

)︄
, (3.10)

where ∥X∥2,0;𝐿 =
∑︁𝑛

𝑖=1

∑︁
𝑘 𝐼

(︂∥︁∥︁∥︁X𝑖,𝑘
∥︁∥︁∥︁
2

)︂
counts the number of non-zero groups in rows,

and ∥X∥𝑇𝑣,1 =
∑︁𝑁−1

𝑖=1

∑︁𝑚
𝑘=1

|︁|︁X𝑘,𝑖+1 −X𝑘,𝑖

|︁|︁ refers to total variation along row vectors.
Now, we can relax the optimization problem,

ˆ︁X = argmin
X

(︄
𝜆1

2

𝑇∑︁
𝑑=1

∥y𝑑 − F𝑑x𝑑 ∥22 + 𝜆2 ∥X∥2,1;𝐿 + 𝜆3 ∥X∥Tv,1

)︄
. (3.11)

In [P3], we derived an ADMM-based algorithm via using the technique that was
explained in Section 2.3.1 in order to solve Eq. 3.11.

Experimental Setup Figure 3.14 illustrates the specific arrangement and condi-
tions under which the measurement was conducted. The Anritsu Network Analyzer
was used for this experiment. Broadband frequencies in the range of 100 MHz to 15
GHz were sampled uniformly in 201 steps (each corresponding 2 cm). A metal object
with a width of 44 cm (i.e., 22 steps along the x-axis) was used as the target.

Our experimental analysis compared three distinct techniques for reconstructing
B-Scan images. A full uniform scan was initially used as a reference image, where the
Inverse Fast Fourier Transform (IFFT) was applied to 𝑛 = 201 uniformly sampled fre-
quencies in the 0.1 GHz to 15 GHz signal band. Then a standard random subsampling
method is applied, which is then followed by IFFT that was applied to a randomly
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(a) (b)

(c) (d)

Figure 3.15 Comparison of B-Scan image reconstruction techniques: (a) Non-CS B-scan with IFFT
applied to uniformly sampled frequencies. (b) B-scan estimation with IFFT applied to a
randomly chosen subset of frequencies. (c) B-scan estimation with ℓ1 minimization. (d)
B-scan estimation using the proposed reconstruction method [P3].

chosen subset, 𝑚 = 0.2 × 𝑛, by zero-filling to non-sampled FFT coefficients. This
corresponds to the traditional ℓ2-norm minimization (i.e., the Least Squares solution).
Then, conventional ℓ1 minimization is applied which is compared to the proposed
solution. As can be seen in Figure 3.15, our proposed method provides superior image
quality. As can be seen in the figure, the recovered image shape appears to be in
roughly the correct location, and its length appears to align with the expected 22 steps
along the x-axis.
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4 LEARNED COMPRESSIVE SENSING MATRICES

AND DEEP LEARNING FOR SIGNAL RECOVERY

In Chapter 2, we outlined the broad range of NN-based compressed sensing (CS)
solutions, classifying them based on their approach to signal acquisition and recovery.
In particular, we emphasized two primary categories: those that recover signals for
the traditional compressive sampling system i.e., sub-Gaussian sampling, such as the
stacked denoising autoencoder (SDA), ReconNet, and ISTA-Net, and those that jointly
optimize both the CS matrix and the recovery process, such as CSNET and SCSNET.
While the former group retains traditional sensing matrices and focuses on learning
the recovery part only, the latter emphasizes a unified approach, optimizing both the
sensing and recovery components. In the sequel, we present the proposed approach
that uses a neural network for learning compressive sensing and recovering.

4.1 An easy to learn compressive sensing operation
The previous chapter discussed the traditional compressed sensing (CS) framework and
its foundational principles. Even though this conventional approach is mathematically
elegant and robust, it may not be feasible for large-scale and multi-dimensional signal
acquisition, particularly in imaging systems, when vector-matrix multiplication is used
as a CS system. Consider a scenario in which the desired signal is a grayscale image
of 512 × 512, denoted as S. For example, if we are designing a sub-Gaussian CS
system for 𝑚

𝑁
= 0.36, the CS scheme that samples the vectorized image would have

dimensions 94372 × 262144 and the measurement matrix would be 94372 × 262144.
Storing such large matrices alone requires over 80GB of memory space, which is

not feasible. The above-mentioned unified neural network solutions, such as CSNet
and SCSNET, attempt to apply the CS matrix to image blocks rather than the entire
image. However, this method can lead to the introduction of blocking artifacts.
Instead, inspired by the Kronecker CS scheme we will introduce our Generalized
Tensor Summation CS operation, in which CS matrices are factorized as the sum of

91



Kronecker CS matrices. As a result, the proposed approach makes the learning of the
CS matrix possible without resorting to a block-by-block sensing strategy.

4.1.1 Separable Compressive Sensing (Kronecker CS)

Consider an input image S ∈ R
√
𝑛×
√
𝑛 that we aim to sense using CS theory. In a

traditional CS setup, this image can be vectorized to form s ∈ R𝑛×1, which is then
sampled using the CS matrix A ∈ R𝑚×𝑛. If the CS matrix can be separated into left
and right matrices (similar to how a 2-D DCT matrix can be separated into two 1-D
DCT matrices), then the separable CS imaging method can be applied. This method
allows the CS sampling operator to be separable along both axes, i.e.,

Y = A1SA
′
2, (4.1)

where A1 ∈ R
√
𝑚×
√
𝑛 and A2 ∈ R

√
𝑚×
√
𝑛 are the left and right measurement matrices,

respectively. Indeed, the separable CS formulation in Eq. (4.1) can also be turned into
traditional matrix-vector multiplication form, i.e., y = vec(Y) = (A1 ⊗ A2) vec(S) =
As, where⊗ denotes the Kronecker product. With the separable CS system, the number
of required parameters to represent the CS matrix, A can be reduced to 2 ×

√
𝑚 ×
√
𝑛

from 𝑚 × 𝑛. In addition, when we compare the number of required flops to perform
such a CS operation, the number of flops can be reduced from 2×𝑚×𝑛 to 4×

√
𝑚×𝑛.

We have discussed above the separable CS for 2-D signals. When it comes to
multi-dimensional and separable compressed sensing (CS), consider a 𝐽-dimensional
signal S ∈ R𝑛1×𝑛2×...×𝑛𝐽 , where 𝑛 =

∏︁𝐽
𝑗=1 𝑛 𝑗 . The acquisition of S can be done via

separable sensing, i.e.,

Y = S ×1 A1 ×2 A2 . . . ×𝐽 AJ, (4.2)

where S×𝑖Ai denotes the 𝑖-mode product of the tensor S and the matrix Ai ∈ R𝑚𝑖×𝑛𝑖 ,
and Y ∈ R𝑚1×𝑚2×...×𝑚𝐽 is the CS tensor, with total 𝑚 =

∏︁𝐽
𝑗=1 𝑚 𝑗 coefficients. If the

sparsifying basis is also separable, the equation can be re-formulated as follows:

Y = X ×1 D1 ×2 D2 . . . ×𝐽 DJ, (4.3)

with Di defined as AiΦi, and X ∈ R𝑛1×𝑛2×...×𝑛𝐽 representing the sparse coefficient
tensor. As we discussed previously, the separable CS operation can be written in the
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form of matrix-vector multiplication as in conventional CS:

y = (D1 ⊗ D2 ⊗ . . . ⊗ DJ) x, (4.4)

where y is the vectorized form of Y and x is the vectorized form of X.
4.1.2 Factorizing CS matrix as sum of Kronecker CS matrices

Even if it is possible to reduce the memory and computation requirements, the separable
CS system may require a larger minimum number of measurements to achieve similar
recovery performance compared to the conventional CS system where the CS matrix
is unstructured. In Chapter 2, we discussed several properties that a proper CS matrix
should have. Such as RIP provides strong guarantee conditions for a CS matrix. We
conclude that random matrices satisfy RIP with high probabilities. Nevertheless, for a
given measurement matrix, estimating the restricted isometry constants is an NP-hard
problem. In Section 2.2.3, we discussed a measurable metric, the coherence of a
matrix, which can easily calculate in a feasible time.

In the sequel, we will use the coherence metric to measure the goodness of the CS
matrices. We experimentally show that when we factorize a new CS matrix which
is the summation of the CS matrices that are factorized by the Kronecker product of
left and right CS matrices ("Kronecker CS matrices" by short), the goodness of the
CS matrices can be improved. As a result of this, the sparse recovery performance
is improved. Before going further ado, let us give the mathematical definition of
tensorial sum factorization:

Y =

𝑇∑︁
𝑡=1

S ×1 A(t)1 ×2 A
(t)
2 . . . ×𝐽−1 A(t)J−1 ×𝐽 A

(t)
J
, (4.5)

where, 𝑇 is the number of different separable CS tensors A(t)
i

represents the 𝑖𝑡ℎ

dimension CS matrix for the 𝑡𝑡ℎ operation. Therefore, we can define a factorized CS
matrix, P as follows

P =

𝑇∑︁
𝑡=1

(︂
A(t)1 ⊗ A(t)2 ⊗ . . . ⊗ A(t)

J

)︂
, (4.6)

when we write the vectorized version of measurements, i.e., y = Ps. Figure
4.1 shows the comparison between the goodness of a non-separable Gaussian matrix,
A ∈ R𝑚×𝑛, with elements drawn fromN(0, 1

𝑚
), with a separable CS matrixPwith left

93



(a) (b)

Figure 4.1 Using 250 repetitions, we evaluated the average mutual coherence of the compressive
sensing matrix across various measurement rates and determined the probability of exact
signal reconstruction. For these tests, a perfectly sparse signal was artificially generated
with a dimensionality of 𝑁 = 1024 and a sparsity level of 𝑘 = 80.

and right CS matrices, A(𝑡 )1 ∈ R
√
𝑚×
√
𝑛 and A(t)2 ∈ R

√
𝑚×
√
𝑛 whose elements are drawn

fromN(0, 1√
𝑚
). For the sake of simplicity, we assume the signal is sparse in canonical

basis, i.e., x = s (As discussed in detail in Section 2.2.1 and summarized in Summary
2.2.1.1, the analysis does not change if the signal is sparse in a proper basis, Φ ). As
𝑇 increases, the mutual coherence of the matrix P decreases until a lower boundary
is reached. This figure also presents the probability of exact signal reconstruction
from measurements y = Px for different values of 𝑇 , in comparison to reconstructions
from y = Ax. The sparse signal length is set to 1024, and the Orthogonal Matching
Pursuit (OMP) algorithm [50], is used for sparse signal recovery from CSMs. It is still
possible to obtain similar recovery performance after a certain number of summations,
𝑇 , even though the lower boundary of mutual coherence of the factorized CS matrix P

cannot reach the mutual coherence of the non-factorized full Gaussian CS matrix A.
Over 250 independent simulations, the probability of exact recovery is achieved, and
mutual coherence metrics are averaged. As a side note is that the theoretical bound of
mutual coherence of A in the figure is calculated by the Corollary 2.9 is a loose upper
bound [101], and in practice lower coherence is achievable as seen in the figure.

4.2 Generalized Tensor Summation CS Network (GTSNET)
In the literature, a popular approach is having a structured CS matrix, as in [102]
where the CS matrix is formed as a multiplication of a random permutation matrix, an
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Figure 4.2 The proposed GTSNet [P8].

orthonormal basis, and a subsequent subsampling matrix in order to have a more man-
ageable CS matrix compared to conventional sub-Gaussian matrices. Furthermore, in
some CS-based encryption techniques [103], [104], the CS matrix is obtained by mul-
tiplying the sparsifying basis by the conventional sub-Gaussian matrix, i.e., A = A∗Φ′,
where Φ′ is the transpose of the aforementioned proper sparsifying domain matrix,
and A∗ is the conventional sub-Gaussian matrix. In this way, direct comparison in
the sparsifying domain can be achieved. For separable sparse bases, such as DCT,
this system can be incorporated into the tensorial and sum-of-tensorial CS schemes
we propose, where A(𝑡 )

𝑖
= A(𝑡 )∗

𝑖
Φ(𝑡 )

′

𝑖
, and Φ(𝑡 )

′

𝑖
is the 𝑖𝑡ℎ-coordinate matrix of the

separable transformation basis.
We propose NN based approach, GTSNet, in [P8] that jointly optimizes the CS

matrix and corresponding recovery part. During training, only A(𝑡 )∗
𝑖

matrices are
optimized and Φ(𝑡 )

′

𝑖
are fixed to DCT transformation. In this system, compared to

the non-factorized CS matrix, the number of trainable parameters is reduced from∏︁𝐽
𝑗=1 𝑚 𝑗𝑛 𝑗 to 𝑇

∑︁𝐽
𝑗=1 𝑚 𝑗𝑛 𝑗 .

The iterative signal recovery algorithms, which are explained in Section 2.3.1, for
compressively sensed signals include taking either the transpose (if the CS matrix is
real) or the conjugate transpose (in the case of a Hilbert Space). The adjoint of the
CS matrix could provide an initial step, or coarse estimation, in general. Indeed, most
recent deep learning-based recovery works also used this idea and coarse estimation
of the signal is obtained by adjoint operators. We also propose a coarse estimator
block where the proxy signal˜︁s is reconstructed from measurements y using a learnable
operation B. This operator is also learnable instead of using P′. The adjoint operation
can be applied directly to the tensorized measurements, thereby avoiding the need for
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Figure 4.3 The performance comparison of competing networks for gray-scale image dataset, Set11

a vector-matrix multiplication:

˜︁S =

𝑇∑︁
𝑡=1

Y ×1
(︂
Φ(t)1 B(t)1

∗)︂
×2 . . . ×𝐽

(︂
Φ(t)
J

B(t)
J

∗)︂
, (4.7)

where B(t)
i

∗
denotes the learnable adjoint matrix for the 𝑖𝑡ℎ dimension of the 𝑡𝑡ℎ

term, and Φ(t)
i

is the fixed inverse transformation operation. The tensor factorization
approach allows the adjoint operation to be trainable, eliminating the need to directly
learn a non-factorized matrix B.

The final refinement block consisting of CNN layers takes the proxy signal, ˜︁S as
input and produces the final estimation of the signal, ˆ︁S. We modified the Residual
Dense Network (RDN) [105] as the refinement block. The overall network structure
is illustrated in Figure 4.2.

4.2.1 Results
As competing algorithms, the following neural network-based solutions, mostly devel-
oped for grayscale images, are listed: SDA, ReconNet, ISTA-Net, CSNET, SCSNET,
Memory Augmented Cascading Network (MAC-Net) [106], Dual-Path Attention Net-
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Figure 4.4 The performance comparison of competing networks for RGB datasets

work for Compressed Sensing (DPA-Net) [107], OPINE-NET [108], AMP-Net+ [109],
and COAST [110]. The performance comparison in PSNR for Set11 dataset [73] can
be seen in Figure 4.3. As it can be seen from Figure 4.3 that the proposed GT-
SNets demonstrate superior performance over existing SoTa NN-based solutions at
low measurement rates (MR < 0.1), while maintaining comparable performance at
higher measurement rates, thus demonstrating its robustness and suitability across a
wide range of MR values.

Among the listed algorithms, only CSNet+ provides both grayscale and RGB
image CS schemes. Therefore, when evaluating performance on RGB datasets, our
analysis particularly focuses on the comparison between GTSNET and the RGB variant
of CSNet+. Indeed, the block-by-block compressive sensing scheme, implemented
through stride convolution in order to learn the CS matrix and recovery block jointly,
was initially introduced in the CSNet framework. Until our proposed GTSNet, this
learned sampling strategy has been a fundamental component of most subsequent
neural network architectures listed above.

Using benchmark RGB image datasets such as Set5 [111], Set11, Manga109 [112],
and Urban100 [113], the performance scores are reported in PSNR for different MRs.
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Figure 4.5 Example visual comparison of competing algorithms in RGB datasets [P8].

The results, presented in Figure 4.4, show a notable improvement in performance
when moving from GTSNET-1 to GTSNET-𝑇 (𝑇 > 1): GTSNET-1 displays perfor-
mance comparable to CSNET+, but the more complex configurations of GTSNET
significantly outperform CSNET+. Clearly, this increase in quality can be observed
in the visual comparison of the recovered images, as illustrated in Figure 4.5. It is
apparent that images reconstructed by CSNET+ may exhibit blocking artifacts, which
are completely eliminated in images sampled and recovered by GTSNET-𝑇 networks.

As part of this dissertation summary section, we have briefly summarized the
concepts of GTSNets and presented key findings. For a more comprehensive under-
standing, including detailed visual and quantitative results, extensive ablation studies,
in-depth discussions on GTSNet hyper-parameters, training strategies, and a compara-
tive analysis with model-based sparse reconstruction methods, we encourage interested
readers to see [P8].
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5 SIGNAL PROCESSING OVER COMPRESSIVELY

SENSED MEASUREMENTS

With the advent of technology such as the Internet of Things (IoT), the amount of data
produced by sensing systems has grown exponentially. In light of this rapid growth, the
requirements associated with capturing signals at increasing sampling rates, storing
these large datasets efficiently, and processing them have become more challenging.
Applications such as video surveillance, the gathering of information from unmanned
vehicles, or the monitoring of patients in real-time further aggravate the challenges
associated with these applications. There is a clear need for solutions that can reduce
communication overheads and facilitate the implementation of these applications in
real-time, given the potential resource constraints.

When it comes to conventional signal processing pipelines, particularly when it
comes to performing specific inference tasks, several steps often introduce redun-
dancy in the process. First of all, sensor devices usually acquire data according to
the Nyquist/Shannon sampling theory. This means that a band-limited analog signal
is sampled at a rate at least twice its bandwidth. Second, once the signal has been
acquired, it is compressed, usually using transform-based techniques such as JPEG or
MPEG, especially if the signal exhibits sparsity or can be compressed in a specific
domain. It is crucial to compress data before storing or transmitting it. Redundancy,
however, becomes apparent at the receiver, where the compressed signal is first de-
compressed before being subjected to further signal processing operations tailored for
specific tasks, such as classification or detection in computer vision. Furthermore,
as the volume and dimensionality of digital samples continue to increase as a result
of technological advancements, dimensionality reduction techniques are becoming
increasingly important before inference. Methods such as PCA [114] or random pro-
jection [26] are employed even before any meaningful inference is drawn from the
decompressed data [115]. One can question whether this multi-step process, which
involves sampling at high rates, compressing, decompressing, and then compressing
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Figure 5.1 CS Monitoring System: Compressively sensed measurements are directly transmitted
from sensors to a receiver, instead of performing CS recovery at the sensory device (edge
device)

again before inference, is necessary if the ultimate goal is to perform inference tasks
already on compressed signals.

This scenario leads us to compressive sensing (CS) as a possible solution. CS
theory integrates sensing and compression into a single step, as opposed to the tradi-
tional approach of sampling followed by compression. In standard Nyquist/Shannon
data acquisition systems, signal reconstruction is achieved using sinc interpolation, a
straightforward linear process that can be computed efficiently. CS further simplifies
data acquisition by jointly sampling and compressing data, also via linear projection.
However, the recovery of signals from Compressively Sensed Measurements (CSMs)
requires the use of more sophisticated optimization-driven iterative algorithms. These
algorithms can be more resource-intensive compared to the traditional linear signal
reconstruction. This situation may lead us to transfer the reconstruction load from
the transmitter side to the receiver side in a possible CS transmitter (sensor)/receiver
system such as a CS-based wide-band monitoring system [2], [116].

In such a CS-based monitoring scheme, as depicted in Figure 5.1, there may be
a preference for performing direct inference on compressively sensed measurements,
such as classification or detection, without reconstructing the original signal first. This
preference derives from the above-mentioned practical considerations. Additionally,
certain signal processing tasks can become mandatory over measurements, such as
quantization or data hiding. Both topics are well investigated for Nyquist-based
sensing systems. Among them there is also considerable recent literature work on the
quantization of CSMs [117], [118]. On the other hand, data hiding directly over CSMs
has been relatively less studied [119].

Furthermore, data privacy has become a critical concern in recent years. This
is why, in the following section of the dissertation, we will present our CS-based

100



privacy-preserving scheme where joint encryption, multi-level privacy preservation,
and compression are done via low-cost linear operation in the sensor part. The
technique relies on the concept of "direct data hiding over CSMs" mentioned above.
Secondly, a more robust data hiding over CSMs method will be proposed. Lastly, we
will present two methods for direct signal classification over CSMs.

5.1 Data Hiding Over Compressively Sensed Measurements

5.1.1 Multi-level reversible data anonymization via compressive sensing and data
hiding

As 5G and IoT technologies advance, smart surveillance applications are expected to
transform continuous data monitoring and collection [120]. From intelligent building
systems [121] to health monitoring systems [122], these applications raise major
privacy concerns, particularly given the large amount of personal data they handle.
This privacy concern has already been highlighted in the European General Data
Protection Regulation (GDPR) [123].

It is important to note that privacy preservation can vary depending on the appli-
cation scenario, even the very definition of privacy can be different depending on the
context [124]. Typically, documents (signals) and datasets contain sensitive (private)
and non-sensitive (public) components. It is necessary to encrypt sensitive parts with-
out affecting the quality of non-sensitive parts. While strong cryptographic methods
such as AES [125] and RSA [126] offer high security, they can be computationally
expensive and are not always necessary for applications such as video [127], image
and health monitoring [128].

Throughout the dissertation, compressive sensing theory was discussed as an effi-
cient alternative to traditional methods for acquiring data. Additionally, we discussed
in Chapter 2 that the theoretically optimal sensing matrices are chosen as random
matrices or pseudo-random matrices. This randomness provides CS systems with the
ability to provide privacy and cryptographic protection over measurements to some
extent.

In the following section, we will utilize the cryptographic property of compres-
sive sensing to encrypt the entire signal while jointly obscuring the sensitive parts.
Therefore, we can propose a multi-level encryption system, in which unauthorized
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users cannot recover anything but can only observe noise-like measurements, semi-
authorized users can recover non-sensitive parts, and fully authorized users can recover
the entire signal. Using the recently proposed direct data hiding over CSM technology
[119], [129], we can implement this encryption at a low cost by linear compression
and linear embedding. Among the primary advantages of this method are its cost-
effectiveness and reversible anonymization for selected users. The experimental part
will focus on image data; however, the approach is flexible and can be applied to other
types of data, such as videos or bio-signals. A more detailed analysis of the proposed
system can be found in [P4].

Proposed Two-tiered Encryption This method combines compressive sensing, CS-
based encryption, and direct data hiding over CSMs techniques. Let the CS-encryption
system be y = As, where A 𝑚 × 𝑛 is random or pseudorandom CS measurement
matrix and s ∈ R𝑛 is the signal of interested to be encrypted. In addition to providing
cryptographic security while compressing/sensing, such an approach provides an exact
or stable recovery of the compressed signals thanks to the mathematical framework
discussed in Section 2.2. This system, however, encrypts the entire signal with only
one key, which is the measurement matrix A, and does not satisfy a second level of
encryption. Furthermore, although Shannon perfect security [130] can be achieved
in one-time usage with some constraints [131], the system is resilient against some
types of attacks in multi-usage cases [P4]. Recently, a method [132] was proposed for
obscuring sensitive portions of the signal by partially corrupting some columns of the
measurement matrix. However, it is not trivial to convey the information about such
partial corruption in each case. We will be discussing a more complete multi-level
linear encryption scheme in the sequel, in which CS encryption matrix columns can be
subjected to different partial degradation in each usage to obfuscate the more sensitive
part, and the information about such partial degradation can then be encrypted and
hidden through simple linear embedding.

Embedding Operator, E (.)

1. Obfuscation of the Sensitive Part within CS-Encryption:

Let Λ𝑝 be the set of indices of the elements belonging to the sensitive portion of
the signal of interest. The sensitive part of the signal, denoted as sΛp , is obfus-
cated using a masking pattern ∆Λp , i.e., ΔΛ𝑝

sΛp , where ∆Λp is a multiplicative
obfuscation operator, which is a diagonal matrix consisting of random numbers.
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Figure 5.2 Obfuscation during CS: When CS is applied using the system in Eq. (5.2), the decoder
path, with knowledge of the measurement matrix A but without knowledge of the masking
operator M, cannot recover the sensitive part. However, it can recover the rest using
classical CS recovery methods.

The entire signal, which includes the non-sensitive part, sΛc
p

and the masked
sensitive part, is then compressively sampled. The resulting intermediate code
yd is represented as:

yd = AΛc
p
sΛc

p
+AΛp∆ΛpsΛp . (5.1)

In fact, such intermediate codes are possible directly during compressive sam-
pling, since instead of obfuscating the sensitive part of the signal, the measure-
ment matrix column is degraded. The new degraded measurement matrix can
then be applied to the signal of interest in the CS scheme,

yd = (A +M)s, (5.2)

where the matrix M serves as the masking matrix. It is primarily composed of
zeros, except for its columns represented by Λ𝑝. Specifically, M can be defined
as:

M =


AΛp∆Λp −AΛp for columns in Λ𝑝

0 otherwise

This operator masks the sensitive part of the signal during compressive sensing.
Figure 5.2 illustrates such joint obfuscating and compressive sampling.

2. Data Hiding with Reversibility:

The obfuscation matrix ∆Λp and its location information are converted to a
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binary code, which is then secretly embedded on top of the compressively
sensed (encrypted) signal yd. This embedding ensures reversibility, allowing
for the exact recovery of the watermark sequence. The watermark is represented
as 𝛽

(︁
∆Λp

)︁
→ w′ ∈ {−𝑎, +𝑎}𝑇 ′ , where 𝛽

(︁
∆Λp

)︁
is the fully reversible bit

converter. Since 𝑇 ′ can change in every usage, as the sensitive portion of the
watermark varies from usage to usage, we can fix a maximum embedding bit
capacity, and then extend the watermark code by filling in the 𝑇 −𝑇 ′ zeros at its
end,

𝛽
(︁
∆Λp

)︁
→ w ∈ {−𝑎, +𝑎, 0}𝑇 . (5.3)

The watermark is then linearly embedded into the CS-encrypted signal, resulting
in the cipher-text:

yw = yd + Bw = (A +M)s + Bw (5.4)

where B ∈ R𝑚×𝑇 is the watermark embedding matrix and an embedding power
constraint ∥Bw∥ ≤ 𝑃𝐸 is imposed to limit the degradation of the recovered
non-sensitive part of the image for semi-authorized users.

Described below are the embedding techniques that are used in the proposed two-
tiered encryption method. This method ensures that only fully authorized users
can recover the entire signal, while semi-authorized users can only retrieve the
non-sensitive portions. The overall method is illustrated in Figure 5.3. Without
going further ado, assuming s to be sparse in a proper basis Φ, then Eq. (5.4)
can be re-formulated as follows

yw = yd + Bw = (A +M)s + Bw = Dx + Bw + n, (5.5)

where As = AΦx = Dx, and the jointly masked and spread portion of the
signal is expressed as additive perturbation term, i.e., n = Ms = MΛpsΛp =(︁
AΛp∆Λp −AΛp

)︁
sΛp .

Decoders

1. Decoder for semi-authorized user, D1 (.) A partially authorized individual
(referred to as User A) possessing only the key A can utilize the ℓ1-decoding
method described in Algorithm 1 to recover the signal with obfuscation of
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Figure 5.3 CS monitoring with multi-level reversible data anonymization [P4].

sensitive part as illustrated in Figure 5.2.

Algorithm 1 Type A Decoding Algorithm [P4], D1 (.)
Input: yw, A, Φ
Hyper-parameters: 𝜖
1. Estimate ˆ︁x:˜︁x = argminx ∥x∥1 subject to ∥yw −Dx∥2 ≤ 𝜀
2. ŝ = Φx̂
Return: ŝ

2. Decoder for full-authorized user, D2 (.)

A fully authorized User B, called a Type-B receiver, is equipped with both
the CS-encryption key A and the watermark encryption key B. The purpose
of the Type-B decoder is to accurately reconstruct the entire signal, including
both sensitive and non-sensitive components. A three-stage recovery strategy is
introduced, inspired by the method presented in [119]:

(a) An initial approximation of the sparse signal is obtained by first eliminating
the watermark by a left annihilator matrix F, i.e., ˜︁y = F(Dx + Bw + n) =
FDx + n′ and then using ℓ1-minimization given in Eq. (2.14).

(b) With a preliminary estimate of x , ˜︁x, the least squares estimation can be
performed for the watermark from the over-determined system of linear
equations y𝑤 −Dx = Bw. Then, thresholding is applied to obtain the final
estimate of the watermark.
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(c) In the concluding phase, the masking matrix M is derived using the deci-
phered watermark. A refined estimate is then acquired using the combined
A +M as the CS-encryption matrix via ℓ1-minimization.

The overall algorithm is presented in Algorithm 2.

Algorithm 2 Type B Decoding Algorithm [P4] , D2 (.)
1: Input: yw, A, B, Φ
2: Hyper-parameters: 𝜖 , 𝑎, 𝜂 (thresholding parameter)
3: 1. Apply F to yw : ˜︁y = Fyw
4: 2. Estimate ˜︁x : ˜︁x = argminx ∥x∥1 s.t. ∥˜︁y − FDx∥2 ≤ 𝜀
5: 3. Estimate w′′ : w′′ = (BTB)−1BT(yw −D˜︁x)
6: 4a. Thresholding w′′: ˜︁w = w′′ ⊙ 1|𝑤′′𝑖 |>𝜂

7: 4b. Forming ˆ︁w, where ˆ︁𝑤𝑖 = 𝑎 × sgn(˜︁𝑤𝑖)
8: 5. Obtain ˆ︁M from ˆ︁w:

(a) ˆ︁w 𝛽−1
→ ˆ︁∆Λp

(b) ˆ︁M =

(︂
AΛp

ˆ︁∆Λp −AΛp

)︂
9: 6. ˆ︁x = argminx ∥x∥1 s.t.

∥︁∥︁∥︁(yw − Bˆ︁w) − (A + ˆ︁M)Φx∥︁∥︁∥︁
2
≤ 𝜀

10: 7. ˆ︁s = Φˆ︁x
11: Return: ˆ︁s

The following theorem provides a worst-case analysis of Algorithm 2 watermark
recovery probability:

Theorem 5.1 ( [P4]) Given the Gaussian CS-encryption matrix as described in Eq.
(2.19), and assuming the watermark-encoding matrixB possesses orthonormal columns,
the conditions 𝛿2𝑘 (H) <

√
2 − 1 and 𝛿2𝑘 (FH) <

√
2 − 1 hold. Additionally, let the

annihilator matrix F be such that its rows are orthogonal and the magnitude of the 𝑖th

row, denoted by
∥︁∥︁𝐹𝑖,:∥︁∥︁22 = 𝑚

𝑝
1. For a specific marked ciphertext, yw, and a chosen

value of 𝜀 = (1 + 𝛾)
√
𝑚𝜎𝑛, the watermark bits, 𝑤𝑖 , can be accurately retrieved in

Algorithm 2. The probability of correct recovery, Pr(𝑤𝑖 = 𝑤 �̂�), is at least(︄
1 − 2 exp

(︄
−𝑎′2𝑚

8
{︁
𝐶2(1 + 𝛾)2

}︁ ∥︁∥︁sp∥︁∥︁2
)︄)︄
×

(︃
1 − exp

(︃
−3𝑝

4
𝛾2

)︃)︃
, (5.6)

1
∥︁∥︁𝐹𝑖,:∥︁∥︁2 = 𝑚

𝑝 should be ∥𝐹𝑖, :∥22 = 𝑚
𝑝 in [P4]
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with 𝐶 = 4

√
1+𝛿2𝑘 (FH)

1−(1+
√
2) 𝛿2𝑘 (FH)

and 𝑎′ = 𝑎 − 𝜂. Here, 𝑎, 𝜀, and 𝜂 are hyper-parameters
utilized in Algorithm 2.

A summary of the proof can be found in [P4], while the detailed proof follows.
Proof

The proof of the theorem can be divided into eight main steps:

1. Proof for Lemma 1 in [P4]: if s𝑝 ∈ R |Λ𝑝 | denotes the perturbation in the
sensitive segment of the signal, expressed as sp = ΔΛ𝑝

sΛ𝑝
−sΛ𝑝

, and ifA is an
𝑚 × 𝑁 CS-encryption matrix with elements 𝐴𝑖, 𝑗 that are i.i.d. following the
distributionN(0, 1

𝑚
), then the elements of the noise vector n defined in Eq.

(5.5) will also be Gaussian and i.i.d., characterized by 𝑛𝑖 ∼ N
(︂
0,
∥sp ∥22
𝑚

)︂
.

Let˜︁sp ∈ R𝑁×1 be the augmented version of the perturbation vector s𝑝 ∈ R |Λ𝑝 |×1

with all zeros except for the perturbed part indexed by Λ𝑝 i.e., ˜︁s𝑝Λ𝑝
= s𝑝.

Therefore, it is easy to see that AΛps𝑝 = A˜︁sp and
∥︁∥︁sp∥︁∥︁22 = ∥︁∥︁˜︁sp∥︁∥︁22.

The problem of embedding an arbitrary signal in a lower-dimensional space is
a well-studied problem in the literature, especially concerning the identification
of optimal linear embedding matrices. These matrices’ properties are often de-
termined using the Johnson-Lindenstrauss [29] formulation in the data mining
literature and the design of the compressive sensing matrix that satisfies the Re-
stricted Isometry Property [19] in the signal processing literature as we already
discussed these strategies in Section 2.2.1.1. As mentioned in Section 2.2.1.1
the Gaussian matrix A ∈ R𝑚×𝑛 (𝑛 ≫ 𝑚), with elements 𝐴𝑖, 𝑗 drawn from an i.i.d
according to N(0, 1

𝑚
), is a well-studied example of random linear embedding

matrices due to the 2-stability of the Gaussian Distribution. Let 𝐴𝑖 be the 𝑖𝑡ℎ

row of A. Following the discussions in [26], even if A does not have orthogonal
rows, the elements of vector As̃p, denoted as n𝑖 = ⟨𝐴𝑖 , s̃p⟩, will be independent
Gaussian random variables for any arbitrary vector s̃p. Achlioptas [26] used
observations on the property of i.i.d Gaussian random projection, as given in
[27], [28], to reach this conclusion. this is due to the fact that as the signal
dimension 𝑛 increases, the rows of A rapidly approach orthogonality. Thus,
the primary task is to determine this Gaussian distribution’s sufficient statistics,
namely the mean, 𝜇𝑛𝑖 , and variance, 𝜎2

𝑛𝑖
.

The variance 𝜎2
𝑛𝑖

of n𝑖 can be computed as:
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E
(︂
𝑛2𝑖

)︂
= E

(︂⟨︁
𝐴𝑖,Λ𝑝

, sp
⟩︁2)︂

= E
(︂⟨︁
𝐴𝑖,:,˜︁sp⟩︁2)︂ (5.7)

= E

(︄
𝑛∑︁
𝑗=1

𝐴2
𝑖, 𝑗˜︁𝑠2𝑝 𝑗

)︄
+ E

(︄
𝑛∑︁

𝑘=1

𝑛∑︁
𝑙=1,𝑙≠𝑘

2˜︁𝑠𝑝𝑘˜︁𝑠𝑝𝑙 𝐴𝑖,𝑘𝐴𝑖,𝑙)︄ =

𝑛∑︁
𝑗=1

˜︁𝑠2𝑝 𝑗
E

(︂
𝐴2
𝑖, 𝑗

)︂
(5.8)

=
∑︁
𝑗∈Λ𝑝

𝑠2𝑝 𝑗
E

(︂
𝐴2
𝑖, 𝑗

)︂
=

1

𝑚

∑︁
𝑗∈Λ𝑝

𝑠2𝑝 𝑗
=

∥︁∥︁sp∥︁∥︁22
𝑚

, (5.9)

where the term E
(︂∑︁𝑛

𝑘=1

∑︁𝑛
𝑙=1,𝑙≠𝑘 ˜︁𝑠𝑝𝑘˜︁𝑠𝑝𝑙 𝐴𝑖,𝑘𝐴𝑖,𝑙)︂ = 0 arises from that the ele-

ments 𝐴𝑖, 𝑗 are independent. Following these calculations, it is straightforward
to see that n has zero mean.

2. Effective Noise on Dimensionally Reduced Measurement, Fyw:

Considering Eq. (23) in [P4],

˜︁y = Fyw = F (Dx + Bw + n) = FDx + n′, (5.10)

where n′ = Fn, it becomes obvious that this is another CS-setup. Thus, the
estimation of x can be achieved using a sparse reconstruction algorithm such
as ℓ1-minimization, as presented in (2.14). The theoretical reconstruction per-
formance is determined by the restricted isometry constant of matrix FD and
the noise term n′. Given that the left annihilator matrix F is constructed with
orthogonal rows with

∥︁∥︁𝐹𝑖,:∥︁∥︁22 = 𝑚
𝑝

, and the vector n (from Lemma 1) consists of
i.i.d. Gaussian elements, the noise on the measurement defined in (5.10), Fn,
also has i.i.d. Gaussian elements. A similar calculation to (5.9) provides

n′𝑖 ∼ N(0,
𝑚

𝑝
𝜎2
𝑛 ), (5.11)

where 𝜎2
𝑛 is determined by (5.9).

3. Restricted Isometry Property of FD: To ensure that ℓ1-minimization-based
methods successfully reconstruct the 𝑘-sparse signal x, FD must satisfy the RIP
such that 𝛿2𝑘 (FD) <

√
2−1. It is worth noting that D𝑖, 𝑗 ∼ N(0, 1

𝑚
). According

to Theorem 2.5, such a Gaussian random matrix adheres to the RIP of order 𝑘
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with a probability of at least 1 − 2 exp (−𝑂 (𝑚)) provided 𝑚 ≥ 𝑂
(︁
𝑘 log

(︁
𝑛
𝑘

)︁ )︁
.

By employing arguments analogous to those in the previous section, matrix FD

has i.i.d. Gaussian elements, with FD𝑖, 𝑗 ∼ N(0, 1𝑝 ) (as referenced in Lemma
3 of [119]). Thus, FD also satisfies the RIP of order 𝑘 with a probability of at
least 1 − 2 exp (−𝑂 (𝑝)) when 𝑝 ≥ 𝑂

(︁
𝑘 log

(︁
𝑛
𝑘

)︁ )︁
.

Observation: Assuming sufficiently large values for 𝑝 and 𝑚, the dimensional
reduction from y to Fy does not lead to a significant loss in terms of the
reconstruction error. However, as anticipated, there is a slight increase in the
power of the effective noise. As the watermark embedding capacity grows, and
consequently the value of 𝑚

𝑝
𝜎2
𝑛 increases, we expect a rise in the effective noise

power.

4. Worst-Case Analysis on Pre-Estimation ˜︁x (Applying an Existing Theorem
from CS Literature for Bounded Noise Case):

Assume that we have Fyw = FDx + n′, where x is a 𝑘-sparse vector and n′ is a
noise pattern satisfying ∥n′∥2 ≤ 𝜖 . According to Theorem [19], the solution ˜︁x
to the optimization problem

˜︁x = argmin ∥x∥1 subject to ∥˜︁y − FDx∥2 ≤ 𝜀, (5.12)

ensures that

∥x −˜︁x∥2 ≤ 4

√︁
1 + 𝛿2𝑘 (FD)

1 − (1 +
√
2)𝛿2𝑘 (FD)

𝜖, (5.13)

provided 𝛿2𝑘 (FD) ≤
√
2 − 1.

5. Chernoff Bound on Effective Gaussian Noise: Since the noise vector, n′, is
not energy-bounded but is an i.i.d. Gaussian random vector, we can determine
an 𝜖 using the Chernoff inequality.

Using Lemma 1 in [119], it is obvious that the energy of a Gaussian vector
satisfies

Pr
(︁
∥n′∥2 ≥ (1 + 𝛾)

√
𝑝𝜎n′

)︁
≤ 𝑒−

3𝑝
4 𝛾2

, (5.14)

for any 0 ≤ 𝛾 ≤ 1. In our case, we found in Eq. (5.11) that 𝜎n′ =
√
𝑚√
𝑝
𝜎𝑛.

Substituting this in Eq. (5.14), we get

Pr
(︃
∥n′∥2 ≥ (1 + 𝛾)

√
𝑝

√
𝑚
√
𝑝
𝜎𝑛

)︃
≤ 𝑒−

3𝑝
4 𝛾2

. (5.15)
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6. Worst-Case Analysis on Pre-Estimation ˜︁x (for Effective i.i.d. Gaussian):
By selecting a specific 𝜀 = (1 + 𝛾) (for the ℓ1-minimization problem defined in
Eq. (2.14)), the solution x̃ to optimization problem,

˜︁x = argmin
x
∥x∥1 s.t. ∥˜︁y − FDx∥2 ≤ 𝜀,

ensures
∥x −˜︁x∥2 ≤ 𝐶𝜀, (5.16)

with a probability greater than or equal to 1 − exp
(︂
−3𝑝

4 𝛾
2
)︂
, where

𝐶 = 4

√︁
1 + 𝛿2𝑘 (FD)

1 − (1 +
√
2)𝛿2𝑘 (FD)

. (5.17)

7. Effective Noise on the Estimation ofw: Now, let us define the error uncertainty,
z, for the over-determined system given by yw −D˜︁x = Bw + z. By substituting˜︁x from Eq. (5.5), we get

yw = Bw +D(x −˜︁x) +D˜︁x + n, (5.18)

which can be rearranged as

yw −D˜︁x = Bw +D(x −˜︁x) + n = Bw + z′, (5.19)

where z′ = D(x −˜︁x) + n. Given that ∥x −˜︁x∥2 ≤ 𝐶𝜀 and D𝑖, 𝑗 ∼ N(0, 1
𝑚
), it

follows that D(x −˜︁x) is a Gaussian random vector, with each element having
a variance 𝜎2 ≤ 𝐶2𝜀2

𝑚
= 𝐶2(1 + 𝛾)2𝜎2

𝑛 . However, the independence between
D(x −˜︁x) and n cannot be guaranteed. Therefore, the elements of z′ are also
zero-mean Gaussian vectors with a variance given by

𝜎2
𝑧′ ≤ max

{︁
4𝐶2(1 + 𝛾)2𝜎2

𝑛 , 4𝜎
2
𝑛

}︁
. (5.20)

Assuming 𝐶2(1 + 𝛾)2 ≥ 1, we can conclude that 𝜎2
𝑧′ ≤ 4𝐶2(1 + 𝛾)2𝜎2

𝑛 .

8. Recovery Probability of the Watermark Bit 𝑤𝑖: Given that the matrix B con-
sists of orthonormal vectors, the pre-estimationw′′ usingw′′ = (BTB)−1BT(yw−
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D˜︁x) satisfies
w − w′′ = B𝑇z′ = z′′, (5.21)

where 𝑧′′
𝑖
∼ N(0, 𝜎2

𝑧′). Finally, using Eq. (2.17) in [133, Chapter 2], the error
probability for each watermark bit can be expressed as

Pr(𝑤𝑖 ≠ 𝑤 �̂� |{∥x − x̃∥2 ≤ 𝐶𝜖}) = Pr
(︁
|𝑧′𝑖 | ≥ 𝑎′

)︁
≤ 2 exp

(︄
−𝑎′2𝑚

8𝐶2(1 + 𝛾)2
∥︁∥︁s𝑝∥︁∥︁2

)︄
, (5.22)

where 𝑎′ = 𝑎 − 𝜂 with 𝑎 and 𝜂 being user-defined parameters used in Algorithm
2.

Figure 5.4 Example frames recovered for semi-authorized (User A) and fully authorized (User B)
users at measurement rates of 0.6 and 0.7 [P4].

Experimental Results We present a summary of the experimental analysis of the
effectiveness of the proposed CS-monitoring scheme in this section. In [P4], the
detailed analysis is presented.

The study tested the proposed method using the YouTube Faces Database [134],
with a selection of 5,000 frames from 100 identities. For the evaluation of recov-
ery performances of decoders D1(.) and D2(.), 3,000 frames were utilized, while
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a distinct set of 2,000 frames served as the training set for evaluating the privacy
preservation performance. The method employed a subset of the noiselet basis as
measurement matrix and we utilized the "Coiflet 2" wavelet as the sparsifying matrix,
with WaveLab850 [135] as the wavelet toolbox. The encoding matrix B’s columns
were derived from a random subset of the𝑚×𝑚 DCT basis and subsequently shuffled.
Consequently, the rows of the annihilator matrix, F were selected from the remaining
columns and then shuffled. We adopted Gradient Projection for Sparse Reconstruc-
tion (GPSR) [89] as ℓ1-minimization solver. In this experimental part, although more
complex masking strategies can be found in [P4], we only report binary masking here
for simplicity: The target sensitive area (for instance, a facial region) that needs to be
covered is identified by Λ𝑝. In the obscuring matrix, all elements are zeros, except for
the diagonals, which are sampled from a Bernoulli distribution with probability 𝑝1:

Pr
(︂ (︁
∆Λp

)︁
𝑖,𝑖

= ±1
)︂
= 𝑝1 (5.23)

In Table 5.1, the recovery performances are presented for different compression
rates and for an embedding value of ∥Bw∥∥yd ∥ = 0.085. Visually, from Figure 5.4, and
quantitatively, from the PSNR values, it can be observed that User A’s reconstructions
make faces unrecognizable, while other less sensitive regions exhibit good quality. In
contrast, User B achieves satisfactory reconstructions for the whole signal.

As a next step, we would like to test the effectiveness of second-level data encryp-
tion. In the proposed CS monitoring scheme, one possibility is that an adversary may
have the stolen key A and also have access to the training dataset. In that scenario,
the malicious user can try to train a machine learning model to decode some infor-
mation from a masked sensitive region of the signal. To evaluate de-identification
resilience against such attacks, we created a database of 2000 original frames (20 per
identity). Following this, we conduct face recognition on regions reconstructed using
User A’s key A and User B keys e.g., both keys. Table 5.2 reports the face recognition
accuracies. User A’s performance is nearly 1%, which is close to random guessing,
while User B’s accuracies are satisfactory, reaching approximately 75% for high MRs,
comparable to recognition rates on original uncompressed images.
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Table 5.1 Reconstruction accuracy in PSNR over sensitive and non-sensitive regions for ∥Bw∥∥yd ∥ =

0.085.

Sensitive
Region

Non-sensitive
Region

Whole
Frame

MR User A User B User A User B User A User B
0.3 11.90 16.61 26.37 27.31 21.67 24.24
0.4 11.65 20.23 28.61 30.91 22.20 27.36
0.5 11.48 24.63 30.51 34.59 22.50 30.92
0.6 11.36 29.79 32.06 38.17 22.66 34.92
0.7 11.28 35.0 33.29 41.30 22.75 38.83
0.8 11.22 39.37 34.25 43.69 22.80 42.02

Table 5.2 Face recognition rates at ∥Bw∥∥yd ∥ = 0.085. Using the original frames, 77.37% recognition
accuracy is achieved.

MR 0.3 0.4 0.5 0.6 0.7 0.8

User A 0.0167 0.0183 0.0197 0.019 0.0187 0.0183
User B 0.0813 0.2353 0.4347 0.6107 0.7037 0.7353

5.1.2 Robust data hiding scheme for compressively sensed signals

In the previous section, we used linear embedding to hide extra information either
directly within CSMs or during compressive sampling operation, i.e., y = Ax + Bw.
In the decoding part, Algorithm 2 modifies the Algorithm 1 in [119]. This algorithm
sequentially recovers the sparse signal x and the 𝑇-bit binary hidden message w.
The purpose of this section is to present a method for estimating sparse signals and
embedded data jointly. This method summarizes the methodology described in [P5].

Our approach involves jointly estimating the embedded data and resolving the
sparse signal using the following optimization problem formulation:
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Figure 5.5 Heat-maps of Prob(w ≠ ŵ) over 𝑚
𝑁

and 𝑀
𝑚

. (a) Algorithm in [119]. (b) The proposed
method excluding the term ∥Fy − FAx∥22. (c) Proposed method [P5].

(x∗,w∗) = arg min
(x,w)

{︄
𝜆1

2
∥y − (Ax + Bw)∥22 + 𝜆3 ∥x∥1

+ 𝜆2
2
∥Fy − FAx∥22 + 𝑖{−𝑎,+𝑎}𝑇 (w)

}︄
, (5.24)

where the indicator function 𝑖𝑆 : E→ {0,∞} of a set 𝑆 is defined as

𝑖𝑆 (x) =

0 if x ∈ 𝑆

∞ if x ∉ 𝑆

In Eq. (5.24), we introduce a secondary fidelity term, ∥Fy − FAx∥22, in order to
strengthen the stability of the solution in addition to the fidelity term ∥y − (Ax + Bw)∥22.
The optimization problem Eq. (5.24) is non-convex one due to the last term 𝑖{−𝑎,+𝑎}𝑇 (w)
which is responsible from projecting the estimation of w onto set {−𝑎, +𝑎}𝑇 . Despite
the non-convexity, the ADMM-based solution can solve the problem stably. Using the
arguments in Section 2.3.1, we derived the ADMM-based algorithm in [P5]. For the
sake of brevity, we refer to [P5] for detailed derivations.

Experimental Results The CS matrix and left annihilating matrix were generated
as defined in Theorem 5.1. The length of the synthetically generated sparse signal and
the number of non-zero coefficients are set, 𝑁 = 512 and 𝑘 = 𝑚

5 respectively. The
embedded-data-to-document ratio is fixed to −6 dB, i.e., ∥w∥2 =

∥Ax∥2
4 . The results of

each experiment are averaged over 250 repetitions. We compare the performance of the
proposed algorithm with the SoTa one proposed in [119]. Additionally, we conducted
an ablation study to compare the performance with and without the data fidelity term
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∥Fy − FAx∥22. Figures 5.5 shows that the proposed algorithm outperforms the existing
solution in [119], and joint optimization with the newly data fidelity term ∥Fy − FAx∥22
gives the highest performance. Measurements are subjected to Gaussian noise with
24 dB SNR. More results at different noise levels are available in [P5].

5.2 Reconstruction Free Signal Recognition over Compressively
Sensed Measurements

As mentioned in the introductory part of this section, two types of signal monitoring
techniques equipped with distinct sampling strategies are already well-studied in the
literature: traditional sensing, and compressive sensing (CS) with signal recovery
done in the receiver part. In addition to these direct inferences on CS measurements,
is a less studied research area. During this dissertation, we proposed two different
techniques of direct inference on CSMs, which are reported in [P6] and [P7]. In
traditional sensing, signals are uniformly sampled according to the Nyquist/Shannon
theory and then compressed, transmitted, and stored. In the receiver, the signal is
decompressed, reconstructed, and then used to make inferences such as classification
or detection. With the second method, a CS-based monitoring scheme, sensing,
and compression are combined in the initial stages, but the receiver must perform a
complex, nonlinear, and iterative signal recovery procedure before any inference can
be made. Alternatively, a third less studied method is performing direct inference on
compressively sensed and possibly transmitted measurements, either at the transmitter
or receiver. Alternatively, the third and less studied method involves performing direct
inference on compressively sensed and possibly transmitted measurements, either at
the transmitter or the receiver. In this method, the resource-intensive signal recovery
step is completely bypassed, allowing the compressed measurements to be utilized
directly for tasks such as classification and detection. In systems where rapid or
real-time inference is critical, this approach promises greater efficiency and faster
processing by eliminating the need for signal reconstruction. Figure 5.6 illustrates
these three signal monitoring strategies.
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Figure 5.6 From sampling to recognition, representative pipeline of a signal’s journey in three different
monitoring schemes

5.2.1 Compressively sensed image recognition

The problem of direct inference on compressively sensed measurements was discussed
for the first time in [2]. It was then shown, in [136], that with sparse random projections,
the accuracy of the SVM classifier is maintained. Additionally, works such as [137],
[138] have provided theoretical guarantees for the achievable accuracy of different
compressive sensing measurement setups, including sparse and non-sparse cases. As
a result of the theory that the inner product of two signals is relatively preserved
for compressively sampled signals when the sampling matrix contains random values
picked from some specific probability distributions [29], the authors of [139] presented
the concept of the smashed filters. Later, the smashed filter concept was applied to
the surveillance systems based on compressive imaging, including compressive face
recognition [140], and action recognition based on compressed video [141]. In the
smashed filter technique [141], compressed (smashed) filters are implemented: A
set of correlation filters is generated from the original (uncompressed) images in the
training set. Then, during the testing phase, the technique involves correlating the
compressively sensed test images with the projected versions of these filters, which
have been previously projected to the compressed domain using the CS matrix.

All the above works consider compressive sensing measurement vectors as direct
inputs to their algorithms for inference problems. On the other vein, the alternative
approach is to increase the size of the measurement vector to that of the original image
using a simple linear projection by bypassing the costly nonlinear reconstruction
process. With this simple back-projection, proximal signals are generated, and this
coarse signal estimation is then used as the input of the inference algorithms directly.
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Figure 5.7 Previous solutions to the Compressive Learning problem

The mentioned proxy signal can be simply obtained by multiplying the measurement
vector with the transpose of the measurement matrix, i.e., ˜︁s = ATy. In a first-of-its-
kind study [142], the authors used the Gaussian matrix as the measurement operation
and then applied its transposition to obtain a proxy vector. This proxy vector is then
reshaped to the 2-D domain to produce a proxy image that will be used as input to a
CNN classifier, ˜︁S = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(˜︁s).

In later work [143], the measurement matrix, the back-projection matrix, and the
subsequent CNN layers are all learned by a deeper neural network in an end-to-end
manner. Figure 5.7 summarizes these three alternative literature solutions: The upper
graph illustrates the aforementioned smashed filter approach followed by an SVM
classifier. In the middle one, the proxy image from the measurement, y, is obtained
via A. Then, a CNN-based classifier is applied to the proxy image. In this case, A is
the aforementioned sub-Gaussian CS matrix. In the last graph, both the CS matrix,
A, and its backprojection matrix, ˜︁AT, are learned via a neural network. In that case,
the CNN-based classifier block is applied on top of these two dense layers, enabling
end-to-end learning during training.
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Proposed Approach Let Pmethod : R𝑚×1 → C be a mapping from the compres-
sively sensed signal space of size 𝑚 × 1 to a class in the set of classes C, where
C = {1, 2, . . . , 𝐶} and the method is an element of the set {smashed,CNN,CL}, repre-
senting the method used for the mapping. The above-mentioned methods are smashed
filter-based classifier [139], CNN-based classifier [142] which works over the proxy
signal, and compressive learning [143] where the proxy signal is also generated by
learned CS matrix and its learned adjoint. For the smashed filter case, classification
is performed directly on the compressed domain, i.e., Psmashed(y) → 𝑐y ∈ C, where
𝑐y ∈ C is a categorical variable, i.e., class of y. When it comes to classification
through the proxy signals, the mapping will be

PCNN,or CL(˜︁S) = D(˜︁S) ◦ F
where ˜︁S is the proxy signal, either a random matrix product or learned matrices
product having the same dimensionality as the original signal,D is feature processing
block, and F is the final classifier mapping from feature space to class variable. In
both algorithms, D and F are a block of CNN layers and a block of dense layers,
respectively.

Unlike the methods mentioned in the literature that classify directly in the com-
pressed domain or through proxy signals in the signal domain, we propose a classifier
that utilizes features extracted in the signal space and in a sparsifying domain., i.e.,
through ˜︁S, and a sparse coefficient matrix ˜︁X of ˜︁S ( ˜︁X does not necessarily have the
same dimensionality as S):

PProposed = Fusion(D1(˜︁S),D2(˜︁X)) ◦ F
where D1(.) is the feature extraction block for generating and processing features in
the signal domain, D2(.) extracts features from sparse coefficients, Fusion(.) fuses
these features, and F is the final classifier mapping.

In this study, we employed Multiscale Binary-DCT (MB-DCT) features, as de-
scribed in [144], which are extracted from the proxy signal. In this framework, ˜︁X can
be conceptualized as the concatenation of block-wise DCT transformations of ˜︁S. The
operations performed by D2(.) can be summarized as follows: (i) Mean quantization
is performed within each block. (ii) The conventional Bag of Words (BoW) procedure
is then applied to generate a representative vector for the image.
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Figure 5.8 Proposed classifier over the proxy signal [P6].

In our proposed pipeline, as D1(.), the CNN-based feature extractor used in both
[142] and [143] was adopted. Fusion(.) operation is standard vector concatenation
combining flattened (vectorized) CNN features and BoW features. We selected two
different classifiers for the F operation: KNN and 1-D CNN classifier. The results of
both classifiers are reported. The overall classification pipeline is illustrated in Figure
5.8.

Results We first need to clarify the terminology used in this study before proceeding
to the comparative analysis. When it comes to sensing strategies, RS and LS are the
abbreviations for the aforementioned sensing strategies, random and learned sampling,
respectively. RS involves the use of random matrices for signal acquisition and its
transpose to obtain the proxy signal. On the other hand, LS stands for learned, which
refers to the application of learned matrices for the same purpose. Therefore, we
reported the comparison results for these two alternative cases.

MNIST dataset was used for performance reporting. In this study, as competing
SoTa algorithms, Smashed Filter [141], RS_CNN [142], and LS_CNN [143] were
used. Among them, we revisited and re-implemented the most relevant ones, RS_CNN
and LS_CNN. Our implementations of RS_CNN and LS_CNN produced results
that were very similar to those reported in the original articles. The performance
comparison is reported in Table 5.3 and Table 5.4. In particular, our binary descriptor
approach, RS_MB-DCT, even when it is used alone without fusing it with CNN
features as described above, demonstrated superior performance over the Smashed
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Filter method, especially when it comes to images sensed by random sampling. On
the other hand, the proposed scheme with two variants, RS_(CNN|MB-DCT) and
LS_(CNN|MB-DCT), outperform the literature SoTa algorithms in both scenarios,
random sensing and learned sensing, respectively. For the sake of simplicity, we only
report the performance of the proposed algorithm equipped with a KNN classifier. The
performance of the version with 1-D CNN classifier, all the necessary hyperparameters
in the experimental setup, and more ablation study can be found in [P6].

Table 5.3 (a) KNN Classifier Test Errors with Random Sensing (RS) methods. RS denotes Random
Sensing. The symbol [†] indicates our re-implementation of [142], while [∗] represents our
proposed classifier with corresponding features.

MR Smashed Filter[141] 𝑅𝑆CNN[142] 𝑅𝑆
†
CNN 𝑅𝑆∗MBDCT 𝑅𝑆∗(CNN|MBDCT)

0.25 27.42% 1.63% 1.73% 7.26% 2.17%
0.10 43.55% 2.99% 2.98% 9.46% 3.02%
0.05 53.21% 5.18% 4.78% 14.28% 4.44%
0.01 63.03% 41.06% 45.8% 41.33% 24.78%

Table 5.4 (b) KNN Classifier Test Errors with Learned Sensing (LS) methods. LS denotes Learned
Sensing. The symbol [†] indicates our re-implementation of [143], while [∗] represents our
proposed classifier with corresponding features.

MR 𝐿𝑆CNN[143] 𝐿𝑆
†
CNN 𝐿𝑆∗MBDCT 𝐿𝑆∗(CNN|MBDCT)

0.25 1.56% 1.95% 5.84% 1.58%
0.10 1.91% 1.88% 5.90% 1.58%
0.05 2.86% 2.12% 5.80% 1.59%
0.01 6.46% 5.52% 19.88% 3.87%

5.2.2 Multilinear compressive learning

In the previous section, we discussed how the use of a learned compressive sensing (CS)
matrix and its corresponding adjoint matrix significantly enhances the performance of
the direct classification of compressively sensed measurements task. For simplicity, let
us refer to this joint CS-adjoint matrix learning approach as Vectorized Compressive
Learning (VCL). In VCL, both the CS operation and back-propagation are essentially
matrix-vector multiplications. However, as highlighted in Chapter 4, learning such
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large CS matrices and their adjoints can be challenging, particularly for large-scale
signals. This section will demonstrate how the factorization technique proposed in
Chapter 4 can be adapted to facilitate the joint learning of CS and its adjoint matrices.

In [P8], we specifically aimed to make the sub-matrices in the separable CS setup
learnable. Instead of reconstruction from the proxy, the CNN-based direct inference
block was replaced and jointly optimized together with CS and adjoint sub-matrices to
maximize the classification performance. In this work, we applied CNN-based feature
extraction and classification block to the proxy in the signal domain,˜︁S. Mathematically,
we adopt the compressive sensing operation and back-projection operations as they
are in GTSNet with 𝑇 = 1 and Φ = I, which are expressed as follows:

Y = S ×1 A1 ×2 A2 . . . ×𝐽 AJ, (5.25)

and where Ai is the 𝑖𝑡ℎ-learnable CS sub-matrix and learnable adjoint operator is
defined as: ˜︁S = Y ×1 B1 ×2 . . . ×𝐽 BJ, (5.26)

where Bi denotes the 𝑖𝑡ℎ-learnable adjoint sub-matrix. Learning of CS matrix and
back-projection (adjoint matrix) constitutes the first two blocks of the network, then
a classifier network blocks, PMCL(.), takes the proxy as input and produces the final
class estimation as,

PMCL(˜︁S) = D(˜︁S) ◦ F
where D(.) and F (.) are feature processing and final classifier blocks. The rep-
resentation illustration of the proposed MCL factorization is shown in Figure 5.9.

Results In our experiments, we used the CIFAR-10, CIFAR-100, and CelebA-32
datasets. Among them, CIFAR-10 and CIFAR-100 are 10 and 1000 classes 32 × 32

rgb images from CIFAR dataset [145] and the CelebA-32 dataset was specifically
created by resizing the facial images from the CelebA dataset [86] to 32 × 32 × 3.
For initializing the parameters of the CS sub-matrices and their adjoint counterparts,
we applied the Higher-Order Singular Value Decomposition (HOSVD) method [146].
Specifically, the 𝑖𝑡ℎ CS sub-matrix, A𝑖 , was initialized with the left singular vectors
corresponding to the 𝑚𝑖 largest singular values for mode 𝑖. Similarly, the 𝑖𝑡ℎ adjoint
sub-matrix, B𝑖 , was initialized with the right singular vectors in a similar manner.

121



Figure 5.9 Illustrative representation of the proposed multi-linear compressive learning

Figure 5.10 Performance comparison of competing algorithms across different measurement rates
(MRs).

The proposed Multilayer Compression Learning (MCL) approach, was compared
with aforementioned VCL method, 𝐿𝑆†CNN [142] in the literature. For a fair compari-
son, VCL and MCL were trained over same datasets with an identical training setup.
Figure 5.10 displays the test accuracy results of these competing algorithms across
various measurement rates and datasets. Notably, despite the reduced computational
complexity and fewer number of learnable parameters of MCL, it provides significant
improvements in classification performance compared to VCL. For the CNN classifier
component, we utilized the network architecture described in [147]. A more com-
prehensive analysis, including experimental results and ablation studies (such as the
impact of different CNN classifiers, random versus HOSVD initialization, etc.), is
available in [P8].
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6 DOMAIN TRANSITION THROUGH PERSONALIZED

DICTIONARY LEARNING

As we have discussed throughout this dissertation, the field of compressive sensing and
sparse representation has made substantial progress in understanding how to recover
sparse signals from linear systems, as illustrated by equation y = Dx. There has been
a wide variety of applications that have been enabled by this theoretical framework. A
good example of its application is representation-based classification or/and anomaly
detection tasks, as discussed in Chapter 4.

Representation-based classification methods can benefit from the theory of com-
pressive sensing and sparse representation. The efficiency of these methods has been
demonstrated even with small size training datasets, in contrast to the extensive data
requirements often associated with deep learning approaches. In representation-based
classification methods, the first step is constructing a dictionary by using the entire
training set in the following manner: Feature vectors or input signals themselves are
placed as columns of the dictionary matrix, where the samples of the same class are
placed together in the same location.

The effectiveness of representation-based classification depends on the creation of
a well-constructed dictionary. When a new test sample, denoted as y, is introduced, its
representation is found within the dictionary, ideally fulfilling equation y = Dx with
minimal representation error. A significant aspect of this approach is the optimization
of matrix D for specific applications, a technique known as dictionary learning. This
involves learning D during training in order to enable new test samples to be (e.g.,
sparsely) represented within it. However, a challenge arises when the training datasetD
is highly specific to a particular measurement device or data type. In such scenarios,
the assumption that new samples can be effectively represented by the pre-learned
dictionary may not always be valid. Such a domain gap problem can be mathematically
summarized as follows: Let y1 and y2 originate from different datasets or sensory
systems, system-I and system-II, respectively. Let the dictionary, D, be learned by
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using the dataset from only system-I. In the real world, we rarely end up with an
ideal dictionary matrix that could represent any test signal perfectly. However, a
well-constructed dictionary should enable the representation of any test signal in the
target class with minimal possible error. Mathematically, even if we cannot find a
representation coefficient, x1, which satisfies y1 = Dx1, we should be able to find a x1
that satisfies,

y1 ≈ Dx1. (6.1)

On the other hand, despite y1 and y2 belonging to the same class, since the signals are
from different systems, the representation of y2 using D may be highly inconsistent,
i.e.,

y2 ≉ Dx2. (6.2)

This inconsistency can cause inaccuracies in deduction tasks such as classification,
detection, or analysis, emphasizing the importance of domain adaption or transfer
learning for dictionary-based inference schemes.

6.1 Domain Transition for Sparse Representation

In real-world scenarios, domain differences between training data and actual real-
world signals can lead to a significant performance degradation of machine learning
algorithm performance [5], [148]. This problem can often occur because the training
data is highly dependent on the specific signal acquisition device and the measurement
conditions. The domain gap problem becomes even more challenging in healthcare
applications, where the characteristics of biomedical signals can vary significantly
from person to person. ECG (electrocardiogram) morphology is a good example of
this phenomenon since every individual’s cardiovascular system is unique [149].

In general, we aim to investigate whether a transformation 𝑇 (·) is possible such
that 𝑦2 can be represented well enough in the dictionary D, after that transformation,
i.e.,

𝑇 (y2) ≈ Dx2, (6.3)

where x2 is the representation vector, ideally sparse. This transformation aims to ap-
proximate 𝑦2 after transformation in the dictionary, even if when a direct representation
in the dictionary was in the form of Eq. (6.2).

Most domain adaptation and transfer learning studies focus on the transformation of
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higher-level features rather than the actual input signals, regardless of their approach
based on sparse representation or another type of domain adaptation and transfer
learning method [4]. The use of GAN-based methods based, such as signal-to-signal
translations [5] is an exception to this trend. The concept of ’domain transition’ as a
sub-topic of domain adaptation is introduced in a recent study employing Cycle-GAN,
which discusses the direct transformation of input signals across different domains
[3] instead of transforming high-level features. In this way, network training can
be performed directly in the target domain using transformed signals from source
domains. In this chapter, we introduce a novel approach for domain transition, an
alternative to the aforementioned GAN-based works, based on sparse representation,
which is designed specifically to address the challenges of zero-shot ECG anomaly
detection.

Over the past few years, domain-adaptive dictionary learning [150], [151] and
other types of sparsity-based transfer learning [152] techniques have gained increasing
popularity. However, as discussed above, most earlier studies focus on transforming
or modifying high-level features from the target domain to the source domain rather
than on domain transition. While some studies employ sparse representation for
image transition, including coupled dictionary learning strategies [153], these studies
usually require signal pairs labeled in both the source and target domains to learn
coupled dictionaries. An example of this is the recent super-resolution problem,
which involves learning coupled dictionaries from low-resolution to high-resolution
image pairs [153].

6.2 Case study: A Personalized Zero-Shot ECG Arrhythmia
Monitoring System

Consider the scenario in which a healthy individual would like to enroll in a biomedical
monitoring system that continuously monitors his/her health. In order to configure the
device and algorithms, for the sake of convenience of the user, we may only be able
to collect a limited number of samples from this new user, all of which are normal
(healthy) ECG samples. A vanilla solution to such a problem is to train machine
learning algorithms using datasets that have already been collected from registered
users who have both normal and abnormal ECG signals. Due to the previously
mentioned domain gap problem, however, the effectiveness of these algorithms is
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often limited.
While this domain gap issue is a common problem with all machine learning

algorithms, representation-based classification can provide an elegant way to track
such a problem geometrically by interpreting it as follows: Let user 𝑝 be the new user
with only normal ECG beats recorded. We can still learn a dictionary that represents
the normal signal subspace of that user, which is as compact as possible, by

min
X𝑝 , D𝑝

∥S𝑝 −D𝑝X𝑝 ∥22 + 𝜆 ∥X𝑝 ∥1 , (6.4)

where S𝑝 (As the measurement of the signal is considered in the spatial domain itself,
we will use s𝑝 instead of y𝑝 for the rest of the chapter. ) is an 𝑚 × 𝑇 matrix of a
collection of𝑇 number of normal ECG beats of the user 𝑝,D𝑝 ∈ R𝑚×𝑛 is the dictionary
to be learned, and X𝑝 ∈ R𝑛×𝑇 are the sparse coefficients responsible for representing
the ECG beats onto D𝑝, and also for the compactness of D𝑝. By compactness, we
mean that D𝑝 has the minimum dimensionality but is still able to represent normal
signals in the training dataset on that dimension with the smallest possible error.

We observe that a relatively small number of atoms (e.g., 𝑛 = 20) in comparison to
the size of the heart beat signal (such as 𝑚 = 128) is sufficient to represent the normal
signal (beat) space effectively. Such an observation is also done in akin study [154].
In such scenarios, where we have (𝑚 > 𝑛), the left null space of Dp ∈ R𝑚×𝑛 emerges.
Let us find the left annihilator matrix, Fp ∈ R𝑚−𝑛×𝑚, of Dp. Any test signal, s𝑝, can
be decomposed into two components, representing projections onto the column space
and the left null space of a matrix Dp. This decomposition can be expressed by

sp = Dpx + Fp𝑇Fpsp, (6.5)

when the rows of Fp are orthonormalized. By analyzing the energies of the projected
signalsDpx andFp𝑇Fpsp, onto the column space and left null space ofDp respectively,
we can have a reasonable estimation of whether the signal is anomalous. In [P9],
we propose a computationally efficient classifier that makes this decision by only
evaluating the energy of the following null space projection, which we call it Null
Space Projection Error (NPE),

˜︁e = Fpsp = Fp (Dpxp + e) = Fpe. (6.6)
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The result of this approach is a compact classifier based on threshold evaluation of
the NPE. Computing the NPE is nothing but a matrix-vector multiplication, and the
computational requirement of such an operation can be calculated as 2 · 𝑛 · (𝑛 − 𝑚)
in FLOPs. In related literature work [154], the first step involving to estimate x

using a sparse recovery algorithm, and then substituting the estimation ˆ︁x to obtain the
representation error, e = s𝑝−D𝑝ˆ︁x. Then, thresholding is applied to this error, which is
termed Sparse Approximation Error (SAE). However, finding the sparse coefficient
x is computationally much more demanding, i.e., it requires ≈ 2 · 𝑛 · 𝑘 · (𝑘 + 1.5) + 2 ·
𝑘 · 𝑚 · (𝑛 + 1) + (2 · 𝑚 + 1) · 𝑛 FLOPs, and in [P9], we demonstrate that thresholding
based on NPE and SAE can result in similar anomaly detection performance.

Different from [154], our goal in this chapter is to train a personalized deep neural
network for a newly registered user, denoted as 𝑝, by utilizing the labeled samples
from previously registered users. This strategy aims to develop an advanced classifier
that surpasses the accuracy of the cost-effective classifiers mentioned above. As an
example, consider the labeled data of an existing user, 𝑙. Assume that this user
has a significant number of normal and abnormal ECG beats. However, even if we
take normal ECG samples and attempt to represent them in D𝑝, they will appear
anomalous in terms of their representation in D𝑝 due to the domain gap problem.
Mathematically speaking, the representation of a normal sample s𝑙 within D𝑝 will be
severely inconsistent, i.e., s𝑙 ≉ D𝑝x with any possible x. In the sequel, we will be
looking for the possibility of learning a suitable transform, 𝑇 (), which is to be called
domain transition from user 𝑙 to user 𝑝, to make normal signals of the user 𝑙 to be
represented within D𝑝, i.e.,

𝑇

(︂
s𝑙
)︂
≈ D𝑝x. (6.7)

Having such domain transition, it can be applied to both normal and abnormal samples
belonging to the user 𝑙 to employ them in the synthetic training set for user 𝑝. Such
a scenario is illustrated in Figure 6.1. In Figure 6.1a, the magenta dots represent
the newly collected samples from user 𝑝, which are not many, and all of them are
labeled as normal ECG beats . Meanwhile, Figure 6.1b illustrates the dataset of user 𝑙,
which contains abundant normal signals and enough abnormal samples as yellow dots.
When a proper transformation, 𝑇 (.) is estimated which could map the normal signals
of user 𝑙 to the close enough vicinity of the subspace defined by column space of D𝑝,
such domain transition can be applied to the entire labeled dataset belonging to user 𝑙,
which is graphically visualized in Figure 6.1c. Then, Figure 6.1d demonstrates how
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one can combine both transformed data and the user 𝑝’s own data to train a machine
learning algorithm directly on the target domain which is determined by the column
space and the left null space of D𝑝.

(a) (b)

(c) (d)

Figure 6.1 Illustration of the proposed domain transition: (a) New user 𝑝 with limited normal samples
and without any anomaly. (b) Existing user 𝑙 with more abundant normal and abnormal
data; however, ECG morphology is distinct from that of user 𝑝. (c) Transformation of user
𝑙 ’s data to align with user 𝑝’s healthy signal subspace. (d) Combined dataset of user 𝑝
and transformed data from user 𝑙 for personalized model training for user 𝑝.

6.2.1 Related Works on Zero-Shot ECG classification

For personalized and zero-shot ECG anomaly detection problems, the authors of [155]
proposed a method that focuses on transforming normal heartbeats into potential
abnormal heartbeat signals through a learned linear transformation. The proposed
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Figure 6.2 The concept of ABS system proposed in [155]: applying a linear degradation model esti-
mated from the existing user 𝑙, to the average of normal ECG beats of a newly registered
user 𝑝 enables the generation of synthesized abnormal beats for user 𝑝 [P9].

technique involves collecting normal ECG beats of a new user and then artificially
creating abnormal signals by applying a set of linear time-invariant (LTI) degradation
systems to the signal obtained by averaging the collected normal signals. This system
attempts to approximately model how heart diseases morphologically impair normal
ECG beats. Mathematically, an abnormal signal slA is considered as a linearly corrupted
version of a latent normal ECG signal slN, i.e., slN ⊛ hl = slA, where hl ∈ R𝑀 is the 𝑀-
length filter representing the LTI system of a possible distortion and ⊛ is the standard
convolution operation. The authors create a filter bank by averaging normal beats
of the users and coupling them to the observed abnormal beats. Then, by using the
Least-Squares filtering, possible filters are estimated and collected in the filter bank. A
personalized training set is created for a new user 𝑝 by generating synthetic abnormal
beats using these filters. The proposed Abnormal Beat Synthesis (ABS) system is
illustrated in Figure 6.2. While this approach is innovative in synthesizing possible
abnormal ECG data for zero-shot classification tasks, it differs from our methodology,
which aims to domain transition from one user to another.

6.2.2 Proposed Domain transition based Network Training in Target Subspace for
Personalized Zero-Shot Anomaly Detection

As discussed above, the authors of [155] proposed a linear transformation that produces
abnormal signals from normal signals of the same user. The assumption of linearity in
that study seems to have been met in practice because experimental results show that
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Figure 6.3 The proposed domain transition modelled as a linear transformation from user 𝑙 ’s ECG
heartbeat domain to that of the user 𝑝 [P9]

the network trained with such generated anomalies provides high accuracy in zero-shot
ECG classification problems. Considering these findings, we investigated whether the
transformation we suggested for domain transition in Eq. (6.7), 𝑇 (.), can also be
modeled with a linear transformation. However, unlike ABS, we did not impose a
constraint on 𝑇 (.) to be an LTI system. In that way, whether the ECG heartbeat signal
sl
i
of user 𝑙 is abnormal or not, its linear transformation, represented as ˆ︁sl

i
= Ql→ps

l
i
,

aims to align the transformed beat ˆ︁sl
i

morphologically with the real ECG beats of
user 𝑝. It is critical to note that this linear transform defined with the Morphology
Transformation Matrix (MTM), Ql→p ∈ R𝑚×𝑚, is designed for the specific transition
from user 𝑙’s ECG heartbeat domain to that of user 𝑝. The transformation process is
depicted in Figure 6.3.

To learn the MTM, Ql→p, for the source-target pair, user 𝑙 and user 𝑝 respectively,
we propose to solve the following optimization problem,

ˆ︁Ql→p, X̂
l
= argmin

Ql→p,Xl

∥Ql→pS
l −DpXl∥22 + 𝜆∥Xl∥1 + 𝛾∥Sl −Ql→pS

l∥22 (6.8)

where 𝜆 and 𝛾 are trade-off parameters, Sl is the matrix of collection of healthy signals
belonging to user 𝑙. The last term 𝛾∥Sl − Ql→pS

l∥22, is responsible for preventing
trivial solutions, and overfitting over the column space of D𝑝.

The optimization problem in Eq. (6.8) is solved iteratively by fixing either ˆ︁Ql→p

or Xl. In each iteration, the ECG signals belonging to user 𝑙, which are normalized
and collected in matrix Sl are transformed with the current solution of ˆ︁Ql→p resulting
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ˆ︁Sl ← Ql→pS
l. Then, the sparse coefficient matrix, Xl is estimated via,

ˆ︁Xl ← argmin
Xl

∥︁∥︁∥︁ˆ︁Sl −DpXl
∥︁∥︁∥︁2
2
+ 𝜆

∥︁∥︁Xl
∥︁∥︁
1
. (6.9)

The ℓ1-minimization problem defined in Eq. (6.9) is solved using ADMM algorithm
explained in Section 2.3.1. Having the current estimate of Xl, we can update the MTM
matrix via,

ˆ︁Ql→p = argmin
Ql→p

∥Ql→pS
l −DpXl∥22 + 𝛾∥Sl −Ql→pS

l∥22. (6.10)

Although the optimization problem defined in Eq. (6.10) has closed form solution,
we update ˆ︁Ql→p using gradient steps to encourage smoothness in the solution. The
overall steps are given in Algorithm 3.

Algorithm 3 Proposed MTM Finding Algorithm [P9]
1: procedure Domain_Transition(Dp, Sl, 𝛾, 𝜂, epochs)
2: Ql→p ← I𝑁×𝑁
3: for 𝑖 ← 1 to epochs do
4: ˆ︁Sl ← Ql→pS

l ⊲ Domain Transition

5: ˆ︁sli ← ˆ︁sli∥︁∥︁ˆ︁sl
i

∥︁∥︁
2

⊲ Normalization

6: Xl ← argmin
Xl

∥︁∥︁∥︁ˆ︁Sl −DpXl
∥︁∥︁∥︁2
2
+ 𝜆

∥︁∥︁Xl
∥︁∥︁
1

7:
∇Ql→p ←

(︁
(1 + 𝛾)Ql→p − 𝛾I𝑁×𝑁

)︁
SlSl

𝑇

−DpXlSl
𝑇

8: Ql→p ← Ql→p − 𝜂∇Ql→p

9: end for
10: return Ql→p

11: end procedure

6.2.3 Experimental Results

Experimental Setup In our study, we used the MIT-BIH arrhythmia database, which
consists of two-channel ECG records from 48 patients, each approximately half an
hour long with annotated heartbeats [156], [157]. Focusing on two common beat
representations which are single beat and beat-trio, both centered around the R-peak,
we resized each beat to 128 samples, i.e., 𝑚 = 128.
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Following the guidelines of the Association for the Advancement of Medical In-
strumentation (AAMI) [158], as also used in competing algorithms such as [155],
heartbeats were classified as either normal (N) or abnormal (V, S, F, Q). From the
original 48 patient records, we selected 34, excluding those with pacemakers or sig-
nificant beat variations. In order to train the classifier, only normal heartbeats were
included from each user’s first five minutes, whereas abnormal beats of the same
duration and the remaining of each recording were used for testing.

Training 1-D Classifier with Synthetically Generated Data As a first step toward
training a personalized neural network (NN) for a specific user 𝑝, we rely on only the
normal beats from the first five minutes of the user’s recording to estimate D𝑝. In the
following steps, 33 different MTMs are estimated based on the healthy labelled beats
in recordings of other users. Using the corresponding MTM, each user’s normal and
abnormal signals are transformed. Thus, the user’s own normal heartbeats from the
first five minutes of the recording are combined with the transformed signals from the
other 33 users to produce the user’s personalized training dataset.

As a result of this augmented training dataset, a neural network is trained separately
and independently for each user 𝑝. For each user, this process is repeated, resulting in
34 unique personalized networks. A fixed 1-D CNN structure is used for each network,
as shown in Figure 6.4. To ensure a fair comparison with the most closely related
work detailed in Section 6.2.2, the same network architecture which is used in [155],
was utilized then they were trained with three different data augmentation methods:
(i) Our proposed domain transition method (Domain transition), (ii) ABS-based data
synthesis for each user (ABS), and (iii) a combination of all existing users’ datasets
with corresponding one of user 𝑝’s, first five minutes of healthy samples, without any
modifications (Baseline Method).

Network Configuration and Training Parameters There are five layers in the
network. The first three layers are 1-D CNNs, while the last two layers are dense layers.
The kernel size of the convolution layer is set to 7, the number of layers is 32, 16,
16, 32, and the final output layer has two neurons. Following each convolution layer,
max-pooling is used with a stride of 3 and a hyperbolic tangent activation function is
applied. A ReLU activation function is used for the dense layer. Log-softmax is used
for the output layer.

For the sake of brevity, we refer to [P9] for the details on training setups.
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Figure 6.4 An illustration of the 1-D CNN that was used throughout the experiment. Here, 𝐾 and 𝑁
are filter size and number of neurons, respectively, in each layer [P9].

Ensemble Classification A method that combines the previously described NPE-
based cost-efficient classifier with the trained CNN can be used to further increase
performance.

To begin with, the personalized augmented training set described above can be
used to determine the threshold for the NPE-based classifier. The NPE values for
both healthy and anomalous signals are calculated in this synthetic dataset, and the
threshold is determined using the Maximum Likelihood Estimation (MLE) method.
The assumed probability distributions used in MLE are selected as exponential, and
Gaussian, for NPE values calculated from healthy and abnormal beats, respectively.

In the output layer of the trained CNN, log-softmax was removed and softmax was
substituted. In the testing phase, the value of the one with a value greater than 2 neurons
was used to determine the confidence value of the network. Whenever the confidence
value was less than a certain threshold C, the decision of the NPE-based classifier was
accepted as the final decision rather than that of the CNN. In the validation set, we
select C as the confidence level that maximizes F1-Score.

Competing Algorithms and Results In Table 6.1, a detailed comparison of various
competing algorithms are given, by emphasizing the performance of personalized
zero-shot methods, marked with ⋄∗. These include ABS [155], SAE [154], GAN-
based ECG generation [162], and our proposed variants. Additionally, the table
features SOTA CNN-based [159]–[161] and GAN-based [163] algorithms. CNN-
based methods are trained either person-specifically or globally, while the GAN-based
method addresses data imbalance issues. We mean by global training is that the works
do not put any constraint on the usage of the dataset for both training and testing.
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Table 6.1 Comparison of competing ECG classification methods, including the SOTA globally trained
algorithms, which do not restrict the use of an individual’s own abnormal data, the person-
alized training-based classifiers, and zero-shot classifiers.
⋄ Personalized classifiers.
∗ Zero-shot classifiers.

Method Accuracy Specificity Precision Recall F1-Score
CNN
Kiranyaz et al. [159] ⋄ 0.959 0.971 0.842 0.888 0.864
Zhai et al. [160] ⋄ 0.968 0.976 0.879 0.920 0.899
Li et al. [161] 0.920 0.918 0.628 0.933 0.751
GAN
Zhou et al. [162] ⋄∗ 0.979 0.989 0.908 0.897 0.902
Shaker et al. Two-stage [163] 0.986 0.988 0.886 0.964 0.924
Shaker et al. End-to-end [163] 0.987 0.990 0.901 0.959 0.929
SR-based ⋄∗
SAE-based 0.947 0.968 0.779 0.794 0.786
NPE-based (ours) 0.947 0.968 0.779 0.794 0.786
CNN ⋄∗
ABS [155] 0.977 0.995 0.956 0.825 0.886
Baseline (ours) 0.965 0.987 0.899 0.809 0.852
Domain transition (ours) 0.978 0.987 0.911 0.907 0.909
Ensemble (ours) 0.982 0.988 0.919 0.937 0.928

In other words, they assume that we have access to abnormal signals belonging to
everyone.

A baseline method is one that utilizes the global dataset while removing the ab-
normal data of the person of interest in order to train a person-specific network in
a personalized manner. In other words, the same network is trained with the same
training dataset used in our experiments, but this time without the proposed domain
transition. As it is expected, due to the variation in heartbeat morphology across users,
such a vanilla approach has limited performance, as can be seen in Table 6.1. On the
other hand, our proposed domain transition significantly improves the performance
of the network. For fair comparison, the same CNN network is trained using differ-
ent data augmentation methods for zero-shot learning, such as ABS [155], and the
proposed domain transition method.

Finally, as shown in Table 6.1, our ensemble classifier significantly outperforms
other techniques, achieving the highest accuracy, recall, and F1-Score. It improves
recall by over 11% and F1-Score by over 4% compared to akin data generator ABS
[155].

In [P9], there is a more detailed discussion of hyperparameters, ablation studies,
and a practical idea related to energy-efficient ECG monitoring that results from the
proposed innovations in this chapter.
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7 CONCLUSION AND FUTURE WORKS

The field of compressive sensing and sparse representation has seen significant
progress, but there are several unexplored territories and unresolved complexities
to be addressed. The purpose of this dissertation is to address some of these com-
plicated challenges in a way that contributes to the field with innovative methods and
practical applications. Most of the effort is made to bring a different perspective to
the complexities of efficiently managing large-scale signals in CS and other sparse
representation-based applications, optimizing the processing efficiency and applica-
bility in real-world scenarios.

In Chapter 3, we investigated the novel methods of obtaining some information,
possibly sufficient enough for the corresponding application, about x from y without
the need to fully recover it. In particular, efficient estimation of the locations of its
non-zero coefficients and its practical applications. In the first section of this chapter,
for the first time in the literature, we investigate the possibility of direct mapping from
the measurement to the signal’s support set by learning compact neural networks. For
this purpose, convolutional sparse support estimator networks, CSENs, are developed
in [P1] and [P2]. The work provides a generic tool that could be applied to com-
pressive sensing and any other applications based on sparse representation. The first
major application area is any system that utilizes current representation-based classi-
fication technologies, such as sparse representation-based classifiers and collaborative
representation-based classifiers. Although the representation-based classifier is still
an active research area for the reasons mentioned above, as the number of classes or
samples in the training set increases, the dictionary size becomes unmanageable. Our
proposed support estimator network introduces to the literature a strategy of using a
sub-set of the overall training set in the dictionary, and the remaining is for the training
of the proposed support estimator network. In that way, we target both decreasing the
computational and memory burden and increasing the performance at the same time.

In proof of concept work [P1], the proposed idea was evaluated for various classi-
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fication tasks, including face recognition, and proved to be a very stable and energy-
efficient solution, providing the best or comparable classification performance under
all different scenarios. Then, in [P2], the proposed algorithm is tested in a real-life
challenge, COVID-19 recognition from X-Ray images, under data scarcity constraints.
In such a sudden pandemic, developing a machine learning solution, especially a deep
learning-based solution, is a very challenging process. We have already witnessed
some of the challenges during the COVID-19 breakout. Firstly, a very limited amount
of data could be collected, especially in the early stages of the pandemic. Second,
since these datasets were collected from many different devices and environments,
there was a large domain gap within the training data samples. The proposed CSEN-
based classifier was applied and compared to competing SOTA representation-based
classifiers. The proposed solution was less costly and provided the best classification
and detection performance among competing algorithms. The second central applica-
tion area for sparse support estimator networks is to utilize the output of these networks
as prior information about the sparse signal rather than using them as support estima-
tion obtained by thresholding such outputs. Such prior knowledge can significantly
improve the performance of conventional sparse signal recovery algorithms. In the
article [P1], we showed that this can be done for two types of signals, the first of which
is structurally sparse in the spatial domain, and the second one is natural images that
are sparse in the gradient domain.

The second part of Chapter 3 discussed scenarios where using the previously
mentioned NN-based support estimation is not feasible due to data access challenges in
applications requiring specific hardware. We aimed to answer how support estimation
performance can be achieved through prior assumptions and their integration into
an optimization-based solution. In [P3], focusing on a specific case study, detection
and localization of near-surface objects in CS-based through-the-wall radar imaging,
we demonstrated that some prior information via structural sparsity modeling, which
sacrifices accurate recovery of sparse coefficient magnitudes (which is not critical
information for the application) for more accurate support estimation, significantly
enhances performance.

In Chapter 4, we investigated the innovative ways of factorizing D to make CS
more feasible for large-scale signals. We presented the NN-based solution GTSNet
[P8], which jointly optimizes the CS matrix and the corresponding signal recovery
module. In order to overcome the difficulties of handling large-scale signals, a new
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factorization method, GTS-T, is presented that factorizesD as the sum of matrices, each
produced by a Kronecker multiplication. Thanks to the separability of tensors, this
factorization reduces the complexity and number of parameters significantly. Tensor
learning improves performance and eases blocking artifacts when compared to the
dominant strategy, block-wise CS, for NN-based CS imaging optimization.

Chapter 5 is devoted to investigating innovative ideas for resource-efficient signal
processing applications that are performed directly on the measurement vector y

without the need to recover x. The first part of the chapter examines data hiding,
privacy-preserving, and encryption while compressive sensing on sensory systems
that are source-limited (e.g., edge devices). We introduced a multilevel encryption
system, proposed in [P4], that uses cryptographic aspects of compression sensing
to enable signal encryption that more comprehensively hides sensitive parts. This
tiered approach ensures that unauthorized users cannot decrypt the signal and see
only noise-like data, semi-authorized users access non-sensitive content, and fully
authorized users decrypt the entire signal. Leveraging recent innovations in direct
data hiding over CSMs technology [119], [129], our method offers an economical
yet efficient solution via linear compression and embedding to achieve this goal. In
the second part of the chapter, a more robust recovery for the direct data hiding over
CSMs task is also discussed. This work, introduced in [P5], can be categorized in
the current version as single-level CS-based encryption equipped with data hiding and
brings improvement to current SOTA counterparts [119], [129].

The second part of Chapter 5 presents our novel solutions for more efficient and
accurate classifying of x without recovering it directly from y. We first introduced,
in [P6], an ensemble-based classifier that surpasses the existing SOTA algorithms.
The work proposed the idea of using the features from the proxy images, both in
the sparsifying and spatial domain, to achieve better performance. Then, in [P7],
a multilinear compressive learning strategy is introduced. The proposed network
jointly optimizes the CS matrix and corresponding inference block. The proposed
factorization of the CS matrix and its adjoint matrix are both in the form of a Tucker
decomposition, which could be seen as a GTS factorization proposed in Chapter 4
with 𝑇 = 1. This multilinear compressive learning scheme outperforms the SOTA
compressive learning designs, including our previous work [P6], in which both CS
and adjoint operations are in the form of matrix-vector multiplication.

Chapter 6 introduces a technique for domain transition using sparse representation
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and personalized dictionary learning, as detailed in [P9]. The method is specifically
designed for zero-shot ECG anomaly detection tasks. The proposed strategy surpassed
the existing approaches with a significant gap in the zero-shot ECG classification task.

In summary, first of all, in our work, we pioneered two different subjects that
provide generic solutions to be applied in a variety of applications: (i) neural network-
based sparse support estimation and (ii) an efficient factorization of the dictionary (or
measurement) matrix. These generic solutions serve the simultaneous objectives of
computational efficiency and performance. However, they also have some limitations.

A GTS-T factorization of the measurement matrix is used in the proposed GTSNet
to facilitate training, and it has been shown to provide highly improved recovery
performance after learning both the CS matrix and recovery part jointly. GTSNet
is suitable for a wide variety of computer science systems, including those that we
use (e.g., sub-Gaussian [164], separable [165]), and structural CS matrices which
are constructed by factorization via multiple matrix multiplications including the
sparsifying bases [103], [104], [131]. However, certain CS systems require specialized
CS matrixes due to their hardware constraints (CS MRI [166], [167], CS Radar [79],
[P4]).). For example, CS MRI [168] is one of the most promising practical applications
of compressive sensing theory.

In [P1], it is proposed that the output of the support estimator networks, CSENs,
can be used as prior information about x in sparse signal recovery. Although it is
experimentally shown in [P1] that the performance of conventional sparse signal re-
covery algorithms, in our experimental designs, we utilized sub-Gaussian and random
sub-sampling matrices as CS matrices in this proof-of-concept work. Future work
includes using such a support estimator-aided CS system in more challenging and
practical CS designs. Indeed, our newest results [169] also show that the proposed
support estimator network-based learned CS technology significantly increases recov-
ery performance in such a CS MR imaging system. The future work also includes
investigating the adaptation of CSEN-based classification to other applications. Our
latest results even show that such support estimator-based inference can be extended
from classification to regression tasks such as depth estimation [170].

As GTS-T factorization is a very generic solution for dictionary or CS matrix
learning, it also deserves further investigation in future works in different applications,
including multi-dimensional dictionary learning and even using it for any machine
learning tasks that require a linear operation. In [P7], both sub-CS matrices and
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their corresponding adjoints matrices are initialized with HOSVD decomposition.
Given this context, the GTS-1 factorization is a suitable choice for this initialization.
However, we aim to extend this for future work to GTS-T factorization with 𝑇 > 1,
which may necessitate a more sophisticated factorization approach than HOSVD.

In future works, we also plan to extend the domain transition idea proposed in [P9]
for multi-class classification tasks where we want to generate specific anomaly types.
Furthermore, we will search for possible adaptations for different types of applications
where domain transition is needed.
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Convolutional Sparse Support Estimator Network
(CSEN): From Energy-Efficient Support

Estimation to Learning-Aided
Compressive Sensing

Mehmet Yamaç , Mete Ahishali , Serkan Kiranyaz , Senior Member, IEEE,

and Moncef Gabbouj , Fellow, IEEE

Abstract— Support estimation (SE) of a sparse signal refers to
finding the location indices of the nonzero elements in a sparse
representation. Most of the traditional approaches dealing with
SE problems are iterative algorithms based on greedy methods
or optimization techniques. Indeed, a vast majority of them use
sparse signal recovery (SR) techniques to obtain support sets
instead of directly mapping the nonzero locations from denser
measurements (e.g., compressively sensed measurements). This
study proposes a novel approach for learning such a mapping
from a training set. To accomplish this objective, the convolu-
tional sparse support estimator networks (CSENs), each with a
compact configuration, are designed. The proposed CSEN can
be a crucial tool for the following scenarios: 1) real-time and
low-cost SE can be applied in any mobile and low-power edge
device for anomaly localization, simultaneous face recognition,
and so on and 2) CSEN’s output can directly be used as
“prior information,” which improves the performance of sparse
SR algorithms. The results over the benchmark datasets show
that state-of-the-art performance levels can be achieved by the
proposed approach with a significantly reduced computational
complexity.

Index Terms— Learned compressive sensing (CS), sparse signal
representation, support recovery.

I. INTRODUCTION

SPARSE representation or sparse coding (SC) denotes
representing a signal as a linear combination of only a

small subset of a predefined set of waveforms. Compressive
sensing (CS) [1], [2] can be seen as a special form of SC,
while a signal, s ∈ Rd that has a sparse representation,
x ∈ Rn in a dictionary or basis � ∈ Rd×n , can be acquired
in a compressed manner using a linear dimensional reduc-
tional matrix, A ∈ Rm×d . Therefore, this signal can also be

Manuscript received 2 April 2020; revised 23 October 2020 and
16 April 2021; accepted 25 June 2021. Date of publication 14 July 2021; date
of current version 5 January 2023. This work was supported in part by the
NSF CVDI Program under Project AMALIA funded by the Business Finland
and Mad@Work and Stroke-Data projects funded by Haltian and Business
Finland. (Corresponding author: Mehmet Yamaç.)

Mehmet Yamaç, Mete Ahishali, and Moncef Gabbouj are with the Faculty
of Information Technology and Communication Sciences, Tampere University,
33720 Tampere, Finland (e-mail: mehmet.yamac@tuni.fi).

Serkan Kiranyaz is with the Department of Electrical Engineering, Qatar
University, Doha, Qatar.

This article has supplementary material provided by the authors and
color versions of one or more figures available at https://doi.org/10.1109/
TNNLS.2021.3093818.

Digital Object Identifier 10.1109/TNNLS.2021.3093818

represented in a sparse manner in the dictionary, D ∈ Rm×n

(which can be called equivalent dictionary [3], where m � n,
and typically assumed to be full-row rank), which is the matrix
multiplication of the measurement matrix, A, and predefined
dictionary, �, i.e., D = A�. In the SC literature, signal
synthesis refers to producing a signal, y = Dx ∈ Rm , using a
sparse code, x ∈ Rn and a prespecified dictionary, D. On the
other hand, the signal analysis deals with finding the sparse
codes, x from the given measurements, y, with respect to the
dictionary D [4]. Sparse support estimation (SE) [5]–[7] refers
to finding the location indices of nonzero elements in SCs. In
other words, it is the localization of the smallest subset of
the atoms, which are the basis waveforms in the dictionary,
whose linear combination represents the given signal well
enough. On the other hand, sparse signal recovery (SR) refers
to finding the values of these nonzero elements of SCs. SE and
SR are intimately linked in such a way that the SE of a sparse
signal is first performed; then, an SR will be trivial using the
ordinary least-squares optimization. In fact, this is the main
principle of most greedy algorithms [8], [9]

The literature that purely targets SE is relatively short com-
pared to extensive studies on sparse SR [10]. Many existing
works, first, apply a coarse SR using existing SR methods,
and then, SE can be easily performed if SE is the main
objective. Indeed, there are many applications where com-
puting the support set is more important than computing the
magnitudes of SCs. For instance, in an SR-based classification
(SRC) [11], such as face recognition [12], the training samples
are stacked in the dictionary in such a way that a subset
of the columns consists of the samples of a specific class.
As another example, in cognitive radio systems, only a small
ratio of all spectrum is occupied for a given time interval.
Therefore, finding the occupied spectrum (i.e., the support
set) is the primary concern [13], [14]. Similarly, in a ground-
penetrating radar imaging system, finding the location of the
target is more important than predicting the actual signal
magnitudes [15].

In this study, a novel convolutional sparse support estimator
networks (CSENs) is proposed with two primary objectives,
as shown in Fig. 1. First, this approach enables learning-
based noniterative SE with minimal computational complexity.
To accomplish this, we use two compact convolutional neural

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1. Proposed CSEN with two potential applications. (a) (bottom-left) sparse SE. (b) (top-middle) Learned-aided CS-sparse signal reconstruction with
CSEN versus (top-right) traditional recovery methods. 1) OMP [8] and 2) �1-minimization.

network (CNN) configurations, both of which are designed
without the dense layers [16]. The proposed CSENs are trained
to optimize the SEs. To the best of our knowledge, this
is the first study that proposes a learning-based approach
for noniterative SE. Hence, in order to perform comparative
evaluations, we train the following state-of-the-art CS signal
reconstruction deep neural networks as the support estima-
tors: 1) ReconNet [17] that originally works on the spatial
domain; 2) the learned AMP (LAMP) [18] that is the deep
version of AMP [19], which is the state-of-the-art optimization
scheme working on the sparse domain; and 3) learned ISTA
(LISTA) [20] is the deep learning version of well-known SR
algorithm, iterative soft-thresholding algorithm (ISTA) [21],
which is the first attempt to unfold an optimization-based SR
algorithm in a neural network manner. An extensive set of
experiments over four benchmark datasets has demonstrated
that the proposed CSEN approach outperforms deep coun-
terparts, especially dealing with a structural sparse signal.
In the first experimental setup, we simulate a CS system
making data acquisition from the MNIST dataset in different
measurement rates (MRs). Moreover, the proposed SE system
is shown to improve the SE performance compared to its deep
counterparts, especially in low MRs and imperfect sparsity
(in the case of CS of approximate sparse signal or noisy
environment). Furthermore, CSEN is tested on a well-known
support recovery problem, where face recognition is performed
based on sparse codes [11]. We use two benchmark datasets,
Yale-B [22] and CelebA [23], in our experiments. Compar-
ative evaluations performed against the two state-of-the-art
dictionary-based (representation-based) face recognition meth-
ods in the literature, SR-based face recognition [11], and col-
laborative learning [24] have demonstrated that the proposed
CSEN approach outperformed both methods. Furthermore,
we develop a CSEN-based Coronavirus disease (COVID-19)
recognition system from X-Ray images [25]. In this problem,
CSEN shows its superiority over other representation-based
classifiers and traditional approaches on classification tasks
when the training size is small/moderate.

As for the second objective, we focus on an alternative
usage of CSENs. Instead of using them as support estimators,
which naturally requires the hard-thresholding of the network
outputs, these outputs can be directly used as prior information
about the sparse signals. It is a well-known fact that having
prior information about the nonzero locations, such as the

probability map, p(x) (or simply p), on the support set,
could improve the conventional SR algorithms [26]. However,
in many cases, it is not clear how to obtain such prior
information in advance. The most common usage of such
a system appears in dynamical sparse recovery [27], where
previous SEs can be used as priors for the next estimation.
In this study, we have demonstrated that CSEN outputs can
be a better alternative for the prior information of the nonzero
locations. Therefore, CSEN is now used as a learning-aided
CS reconstruction scheme, where the prior information comes
directly from the CSEN outputs. A wide range of experiments
shows that this approach has great potential to improve the SR
performance of traditional approaches for sparse SR problems.
As mentioned above, we used CS imaging simulation, but
this time signal reconstruction error is compared with state-
of-the-art conventional SR approaches. Fig. 1 illustrates a
representative graph of two different applications of CSENs:
1) performing SE from CS measurement vector, y and 2) the
output of CSEN is used as the side information, p, which gives
the estimated probability of being nonzero for each index.
In this simple illustration, we assume that the hand-writing
signal “2” is sparse in the spatial domain such that � = I;
therefore, D = AI = A, and B is a denoiser matrix such as DT ,
or (DT D+ λI)−1DT , where λ is the regularization parameter.
Moreover, we also show the possibility of using the learning-
aided CS reconstruction scheme when the signal is not sparse
in the spatial domain but in a proper domain. In this respect,
the sparsity of natural images in the gradient domain is used
to have a CSEN-aided total variation minimization system.

The rest of this article is organized as follows. In Section II,
we start by giving mathematical notation that is used in this
article. A brief overview of sparse representation and CS
theory, with an emphasis on state-of-the-art sparse SR and SE
techniques, will be given in Section III. In the same section,
we also introduce case studies of SE that are chosen for this
work. Then, we discuss the limitations of existing support
estimator techniques. In Section IV, we will present the pro-
posed learned-based SE scheme and the two compact CSEN
models. Experimental evaluations of the study will also be
given at the end of this section, which we can divide into five
main categories according to the case studies: 1) basic SE per-
formance evaluation on the MNIST dataset that is performed
to compare CSENs with the aforementioned state-of-art deep
networks; 2) SE-based face recognition performance evolution
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of proposed SE with an emphasis on how CSEN-based SE
has the ability to improve the classical representation-based
approaches; 3) a CSEN-based COVID-19 recognition system;
4) performance comparison of classical compressing sensing
reconstruction techniques and proposed learned-aided SR in
terms of both speed and reconstruction accuracy in the MNIST
dataset; and 5) CSEN-aided total variation system for recovery
of compressively sensed natural images. Having theoretical
and experimental analysis, in Section VI, we will present a
more detailed discussion on how the proposed scheme differs
from the state-of-the-art SR and SE techniques, pros and
cons, and possible usage scenarios with an emphasis on the
flexibility of proposed CSEN in different scenarios. Finally,
the conclusions are drawn in Section VII.

II. NOTATIONS

In this work, we define the �p-norm of any vector x ∈ Rn

as �x��n
p
= (

∑n
i=1 |xi |p)1/p for p ≥ 1. The �0-norm of the

vector x ∈ Rn is given as �x��n
0
= lim p→0

∑n
i=1 |xi |p = #{ j :

x j �= 0}, and the �∞ is defined as �x��n∞ = maxi=1,...,n(|xi |).
A signal s can be defined as a strictly k-sparse signal if it can
be represented with less than k + 1 nonzero coefficients in a
proper basis �, i.e., �x�0 ≤ k, where s = � x. We also define a
sparse support set or simply support set, � ⊂ {1, 2, 3, . . . , n},
as the set of indices that represent the nonzero coefficients,
i.e., � := {i : xi �= 0}. The complement of support set, �, with
respect to {1, 2, 3, . . . , n} is given as �c = {1, 2, 3, . . . , n}\�.
In this manner, x� ∈ R|�| is a vector consisting of nonzero
elements of x ∈ Rn , where |�| refers to the number of the
nonzero coefficients. Similarly, M� ∈ Rm×|�| denotes a matrix
that consists of the columns of a matrix M ∈ Rm×n indexed
by support �.

III. RELATED WORK

The CS theory claims that a signal s can be sensed using
far fewer linear measurements m than Nyquist-/Shannon-based
traditional methods’ use, d , i.e.,

y = As = A�x = Dx (1)

where A ∈ Rm×d is the measurement matrix and D ∈ Rm×n

is called the equivalent dictionary. It can be demonstrated that
sparse representation

min
x
�x�0 s.t. Dx = y (2)

is unique if m ≥ 2k [28] and �x�0 ≤ k. In brief, the uniqueness
of the sparse representation in (2) shows that any k-sparse
signal pair can still be distinguished in the equivalent dic-
tionary, D. However, the problem in (2) is that this is a
nonconvex problem and known to be NP-hard. The most
common approach is the relaxation of the �0-norm to the
closest convex norm, which is �1-norm

min
x
�x�1 s.t. x ∈ �(y) (3)

where �(y) = {x : Dx = y}, which is known as basis
pursuit [29]. The surprising result of the CS theory is that,
even if the exact recovery of the signal, s, was not possible

by using the minimum norm solution, a tractable solution is
possible using (3), when D satisfies some properties, such as
restricted isometry property [30] and m > k(log(n/k)).

However, the signal of interest, x, is not perfectly k-sparse
but approximately sparse in most of the cases. In addition,
CS measurements, most probably, are corrupted by an additive
noise during data acquisition, quantization, and so on. As a
result, we handle y = Dx + z, where z is the additive noise.
In this case, the constraint can be relaxed by setting �(y) =
{x : �Dx−y�2 ≤ �}, which is known as basis pursuit denoising
(BPDN) [29] or the Dantzig selector [31], if we set �(y) =
{x : �DT (y−Dx)�∞ ≤ λ}. In the noisy case, even exact recov-
ery of sparse signal is not possible, stable recovery is well stud-
ied in the literature for BPDN [32] and the Dantzig selector
[33], [34]. We mean by stable recovery is that a stable solution
x̂ obeys �x − x̂� ≤ κ�z�, where the κ is small constant.
Another related formulation is

min
x

{�Dx − y�2
2 + λ�x�1

}
(4)

which is known as Lasso [35] formulation, which is also
known to produce stable solution in noisy case and exact
solution in noise free case [36].

A. Generic Sparse Support Estimation

In many application scenarios, detecting the indices of
the nonzero coefficients’ location, �, is more important than
computing these coefficients. To list a few, in a sparse anomaly
(either from CS [37] or uniform sampled measurements)
detection problem [38], where a group of users initiates a
flooding attack to a communication network (specifically for
a VoIP network), detecting the malicious user group (a subset
of all users) is more critical. Among others, CS-based active
user detection in the downlink of a CDMA system [39]
and for the uplink of an NOMA [40], [41] system can be
counted. Such systems are believed to play an important role
in 5G communication technology. As discussed in Section I,
other examples may be listed as sparse representation-based
classifications [11], [12] and radar imaging [15], [42].

Mathematically speaking, for the linear measurement model
given in (1) and with additive noise, y = Dx + z, we define
the following support estimator E(., .):

�̂ = E(y, D) (5)

where �̂ is the estimated support. For the noise-free case,
x is exactly k-sparse, and the exact � recovery performance
of an algorithm coincides with the sparse SR performance.
This an expected outcome since the unique representation is
satisfied when m > 2k. In the noisy case, even if the exact
SR is not possible, it is still possible to recover the support
set exactly. In the literature, several studies have proposed
to provide information-theoretical (i.e., the optimal decoder,
E’s performance) guarantee conditions for exact [5], [10],
[43], [44] and partial SE [7], [10], [45]. However, in most of
the practical applications, a tractable SR method is applied
first to find an estimation x̂ of the sparse signal x; then,
a componentwise thresholding is applied to x̂ to compute the
estimated support, as illustrated in Fig. 2.
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Fig. 2. Most common model for a practical support estimator.

A common approach is to follow an iterative sparse SR
method from the CS literature. For instance, it is proven in [46]
that, if mini∈� |xi | > 8σ(2 ∗ log(n))1/2, then one can recover
the support set exactly using Lasso with λ = 2(2 ∗ log(n))1/2,
where σ 2 is variance of the measurement noise. This theorem
is valid in the case that the equivalent dictionary satisfies the
mutual coherence property defined in [46]. One may clearly
deduce from their results that accurate SE is possible via
Lasso if the nonzero coefficients’ magnitudes are above a
certain level determined by the noise. Similarly, the conditions
of exact support recovery under noise using OMP are given
in [47], and partial support recovery performance bounds of
AMP are in [48]. Along with these SR algorithms in the
CS literature, which are iterative methods, traditional linear
decoders, such as maximum correlation (MC) [49], x̂MC =
DT y, and LMSEE [48], x̂LMMSE = (DT D+σ 2

z In×n)
−1DT y, are

also used in many applications. The theoretical performance
bounds of these methods are also given in [48].

B. Case Study of SE: Representation-Based Classification

Consider an image from a particular class is queried. It can
be expected from the estimated SCs, x̂, to have signifi-
cant (nonzero) entries that are located in a specific location so
that the corresponding columns in the dictionary matrix, D, are
the samples from the actual class of the image. This problem
is also known as the representation-based classification, which
is a typical example where the support set location is the main
information that we are seeking.

In [11], �1-minimization is used to obtain such a sparse code
to determine the identity of face images. However, in reality,
such an ideal decomposition is not accomplished in general
because face images show a high correlation among different
classes. This is why, instead of using the estimated sparse
codes, x̂ obtained by an SR technique, such as (4), the authors
propose a four steps solution.

1) Normalization: Normalize all the atoms in D and y to
have unit �2-norm.

2) SR: x̂ = arg minx �x�1 s.t. �y − Dx�2.
3) Residual Finding: ei = �y − Dix̂i�2, where x̂i is the

estimated coefficients corresponding the class i .
4) Class Determination: Class(y) = arg min(ei).
This technique and its similar variants have been reported

to perform well not only in face recognition but many other
classification problems [50], [51]. Later, Zhang et al. [24]
propose to change the second step, from �1-minimization to the
classical �2-minimization; x̂ = arg minx{�y− Dx�2

2 + λ�x�2
2},

which has a closed-form solution, x̂ = (DT D+ λIn×n)
−1DT y.

This collaborative representation-based classification (CRC)
was reported to achieve a comparable classification perfor-
mance for different classification problems. For face recog-
nition problems, in particular, the authors reported that high
classification accuracies were obtained especially for high
MRs.

C. Sparse Signal Reconstruction With Side Information
of Support Set

Consider the case where SE is not the main concern but SR
is. In case side information is available about the support set,
an improvement to �1-minimization can be achieved in sparse
SR as follows:

min
x

{�Dx − y�22 + λ�w � x�1

}
(6)

where � is elementwise multiplication operator and w is the
predefined cost that imposes the prior information about each
element’s values. In the concept of modified CS [52] and
CS with prior information literature, the cost function, w,
generally appears in the form of wi = (1/(pi + �)), where
� > 0 is a predefined constant and pi is the i th element of
the vector p, which is a type of a measure, such as prior
likelihood [26] of the support set, which could represent the
probability of the (i)th element being nonzero.

D. Limitations of Existing Support Estimators

Both SE and SR algorithms guarantee to perform well
if the equivalent dictionary D satisfies certain properties,
such as mutual incoherence [53]. However, in many practical
scenarios, D fails to satisfy these properties, e.g., in the face
recognition problem, the atoms of D, vectorized faces, are
highly correlated. The second limitation of traditional sparse
recovery algorithms is that they are iterative methods and
computationally costly. Therefore, the support estimators rely-
ing on these sparse recovery algorithms may not be feasible,
especially in real-time applications. The third limitation of
state-of-the-art SR techniques, such as �1-minimization, is that
there is a lower limit for MR (see phase transition [54]); below
this limit, the SR algorithms start to fail completely. This limit
generally depends on the wellness of D (defined by properties
such as mutual incoherence [53]). Therefore, SE techniques
that build upon an SR algorithm tend to fail if D does not
satisfy the required properties, e.g., if the atoms of D are highly
correlated.

On the other hand, when it comes to SR techniques lever-
aging SE as prior information, despite the fact that a good
improvement can be achieved using such prior information,
most of the works assume that the information is available in
advance; however, they do not mention how to obtain such a p.

IV. CONVOLUTIONAL SPARSE SUPPORT ESTIMATOR

NETWORK

Recent advance in deep neural networks [18], [20] enables
a noniterative solution for the sparse SR. It is often reported
that they produce a solution x̂, which is closer to x than
the ones obtained by an iterative approach. They can still
work under those MRs where classical CS recovery algorithms
fail. Nevertheless, their complex configuration with millions
of parameters causes certain computational complexity issues,
such as speed and memory problems, especially when they are
used in edge devices with limited power, speed, and memory.

If one may wish to find only support � instead of the
sign and amplitude of x, a traditional machine learning
approach would be sufficient. In this study, we propose a
support estimator, E(.), which can be performed by a compact
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Fig. 3. Proposed model for an efficient support estimator.

CSEN network. Another crucial objective is to have the ability
to learn from a minimal training set with a limited number of
labeled data. A typical application where this approach can
benefit from is face recognition via sparse representations,
where only a few samples of each identity are available.

Let us define a binary mask α ∈ {0, 1}n, as follows:
αi =

{
1 if i ∈ � (7a)

0 else. (7b)

Consequently, the problem of finding an estimation α̂ of this
binary mask will be equivalent to producing an SE �̂, i.e., �̂ =
{i ∈ {1, 2, . . . , n} : α̂i = 1}.

To accomplish this objective, first, the CSEN network with
input and output, P(y, D) : Rn → [0, 1]n, produces a vector p
that gives the information about the probability of each index
to be in support set such that pi ∈ [0, 1]. Then, the final
support estimator, E(y, D), will produce an SE such that �̂ =
{i ∈ {1, 2, . . . , n} : pi > τ }, by thresholding p with τ , where
τ is a fixed threshold.

As shown in Fig. 3, the proposed SE approach is differ-
ent from the conventional SR-based methods, which directly
thresholds x̂ for SE. Moreover, the input–output pair is differ-
ent. The proposed CSEN learns over (y train, v train) to compute
p, while the conventional SR methods work with (y train, x train)
to first make the sparse signal estimation and then compute
SE by thresholding it. As evident in Fig. 1, the application of
direct SR may cause noisy estimation of the support codes,
while the proposed CSEN has the advantage of learning the
pattern of the support codes and, therefore, can predict their
most-likely location with proper training.

In this study, the proposed CSEN models consist of only
convolutional layers in the type of fully convolutional net-
works [16] that are trained by optimizing the SEs. Since the
SE problem involves one-to-one mapping, other network types,
such as multilayer perceptrons (MLPs), can also be used as
in [18]. However, this brings two limitations compared to
CSENs: high computational complexity and overfitting due
to the limited training data and number of parameters in the
network. In Section V, it will be shown that such an approach
yields a poor generalization and is not robust to noise.

When a CSEN is trained, it learns the following transfor-
mation: α̂← P(x̃), where α̂ is the estimation of binary mask
representing the estimated support for the signal x, and the
proxy x̃ = By with B = DT, or (DT D + λI)−1DT , i.e., the
MC and LMMSE formula in [48]; hence, x, x̃ ∈ RN . First,
the proxy x̃ is reshaped to 2-D plane (e.g., the original size
of the image or predefined search grid). Correspondingly,
the proxy X̃ (the matrix version of x̃) is convolved with w1,
the set of weight kernels connecting the input layer to the next
layer with N1 filters to form the input of the next layer with
the summation of weight biases b1 as follows:

f1 =
{

S1
(
ReLu

(
bi

1 + wi
1 ∗ X̃

))}N

i=1 (8)

where S1(.) is the down-sampling or identity operator, wi
1 is

the i th kernel weight, and bi
1 is its corresponding bias term and

ReLu(x) = max(0, x). In more general form, the kth feature
map of layer l can be expressed as

fk
l = Sl

(
ReLu

(
bk

l +
Nl−1∑

i

wik
l ∗ f i

l−1

))
(9)

where wi
1 is the i th kernel weight of the lth layer, bi

l is its
corresponding bias term, Nl is the number of filter in this
layer, and Sl(.) is either the down- or up-sampling or identity
operator depending on the CSEN structure. The trainable
parameters of the network would be

�CSEN =
{{

wi
1, bi

1

}N1

i=1,
{
wi

2, bi
2

}N2

i=1, . . . ,
{
wi

L , bi
L

}NL

i=1

}

for a L layer CSEN.

In the proposed approach, the mean square error (mse) is
computed between its binary mask, α, and CSEN’s actual
output, P
(x)p, as follows:

E(x) =
∑

p

(
P
(x)p − αp

)2
(10)

where v p is the pth pixel of α. The CSEN network is
trained using samples in the train data, Dtrain = {(x̃(1),α(1)),
(x̃(2),α(2)), . . . , (x̃(s),α(s))}. Please note that, even if we use
mse as the loss function in the original CSEN design,
depending on the application, any other regularization function
(e.g., �1-norm and mixed norm) can be added to this cost
function. As an example, we present a strategy to approximate
the loss function, which is group �1-norm in addition to mse.

V. RESULTS

In order to evaluate the effect of different network configura-
tions, in this study, we use two different CSEN configurations
and perform a comprehensive analysis of each of them.
Generally, each convolutional layer has a dimension reduction
capability with pooling functions. However, the first proposed
network architecture consists of only convolutional layers
with ReLu activation functions to preserve the sparse signal
(e.g., image) dimensions at the output layer. In this con-
figuration (CSEN1), we propose to use three convolutional
layers with 48 and 24 hidden neurons and 3 × 3 filter
size, as given in Fig. 4. CSEN2 is a slight modification of
CSEN1 configuration, as shown in Fig. 5, by using up- and
down-sampling layers. Although this modification increases
the number of parameters, in return, it yields substantial
performance improvement over MNIST. While the SE per-
formance analysis over MNIST has done using CSEN1 and
CSEN2, only CSEN1 results are reported since CSEN2 pro-
duces similar recognition rates (∼0.001 difference) for face
recognition. In any case, both network configurations are
compact compared to the deep CNNs that have been proposed
recently. For example, the study in [17] proposes ReconNet for
SR, which consists of six convolutional layers with 32 neurons
or more in each layer.

Since there is no competing method for SE that is similar
to the proposed method, we use the ReconNet [17] in this
study on the SE problem by directly giving x̃ as the input
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Fig. 4. Type-I CSEN (CSEN1).

Fig. 5. Type-II CSEN (CSEN2).

and removing the denoiser block at the end for comparative
evaluations. Finally, we apply thresholding over the output
of ReconNet to generate SE i.e., �̂R = {i ∈ {1, 2, . . . , n} :
PR(x̃) > τ }, where PR(.) is ReconNet with fully convolu-
tional layers. ReconNet is originally a CS recovery algorithm
working directly on spatial domain, i.e., ŝ ← P(y) instead
of solving them in the sparsifying dictionary, i.e., ŝ = �x̂
where x̂ ← P(y). Therefore, ReconNet serves as a deep
CSEN approach against which the performance of the two
compact CSENs will be compared. Moreover, we also train
the state-of-the-art deep SR solution, LAMP, and, first of its
kind, LISTA networks, in order to use them over the SE
problem. For the LAMP method, it is possible to predefine the
number of layers in advance. For a fair comparison, we have
tested the unfolded networks, LISTA and LAMP, for three
different setups: two-, three-, and four-layer designs using
their provided implementation. Next, in the experiments of
face recognition based on SR, we consider both speed and
recognition accuracy of the algorithms as it is performed only
for the �1-minimization toolbox in [55]. Thus, in order to per-
form comparative evaluations, the proposed CSEN approach is
evaluated against most of the conventional state-of-the-art SR
techniques along with ReconNet. Finally, CSEN2 is applied
as a preprocessing step for the CS-recovery to obtain w in the
cost function, as illustrated in Fig. 1.

The experiments in this study have been carried out on
a workstation that has four Nvidia TITAN-X GPU cards
and Intel Xeon CPU E5-2637 v4 at 3.50 GHz with 128-GB
memory. Tensorflow library [56] is used with Python. ADAM
optimizer [57] is utilized during the training with the proposed
default values of the learning parameters: learning rate: lr =
0.001 and moment updates: β1 = 0.9 and β2 = 0.999 with
only 100 and 30 backpropagation iterations for MNIST and
face recognition experiments, respectively.

A. Experiment I: Support Estimation From CS Measurements

The following metrics are used to report the performance
of the proposed and competing methods:

F1 Measure (F1-Score) = 2× Precision× Recall

Precision+ Recall
(11)

Specificity = TN

TN+ FP
(12)

Sensitivity = TP

TP+ FN
(13)

where true negatives (TNs), false negative (FN), true posi-
tive (TP), and false positive (FP) are calculated between the
predicted binary mask α̂ and its corresponding ground truth
α for each sample in test set. Then, the final reported perfor-
mance metrics are the averaged ones using the macroaverage
method.

For the experiments in this section, the MNIST dataset is
used. This dataset contains 70 000 samples (50k/10k/10k as the
sizes of the train/validation/test sets) of the handwritten digits
(0–9). Each image in the dataset is a 28 × 28 pixel resolution
with intensity values ranging from 0 (black, background) to
1 (white, foreground). Since the background covers more area
than the foreground, each image can be considered as a sparse
signal. Mathematically speaking, we may assume that the i th
vectorized sample, xi ∈ Rn=784, can be considered as the ki -
sparse signal. The sparsity rates of each sample are calculated
as ρi = (ki/n), and its histogram is given in Fig. 6. We have
designed an experimental setup where these sparse signals
(sparse in canonical basis) xi ’s are compressively sensed

yi = Axi = Dxi (14)

where D = A ∈ Rm×n since � = I. We calculate the MR as
MR = (m/n). Therefore, the problem is SE from each CS
measurement, i.e., finding �̂i from each yi in the test dataset.
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Fig. 6. Histogram of ρi ’s obtained from the 10k samples (test set). The
vectorized gray-scale images, xi , in the MNIST dataset are already sparse in
the spatial domain (in canonical basis, i.e.,  = I ) with �xi� ≤ ki .

Fig. 7. F1 measure graph of CSEN and LAMP configurations in different
noise levels at MR = 0.25.

For this dataset, the MR is varied from 0.05 to 0.25 in order
to investigate the effect of MR on the SE performance. The
measurement matrix is then chosen as the “Gaussian,” and the
elements Ai, j of the matrix are i.i.d. drawn from N (0, (1/m)).
It is worth mentioning that the approximate message pass-
ing (AMP) algorithm is a well-optimized method for the
Gaussian measurement matrix, and LAMP is a learned version
of this algorithm. Therefore, they are reported to be state of
the art if the measurement matrix is Gaussian, but they do not
even guarantee the converge for other types of measurement
matrices. On the other hand, the comparative performance
evaluations against LAMP, LISTA, and deep CS-SR methods
are presented in Tables I and II, and the results clearly indicate
that the proposed method achieves the best SE performance in
terms of F1 measure for MR = 0.25 and 0.05 and comparable
for MR = 0.1. The results presented in Table I indicate that,
despite its deep and complex configuration, compact CSENs
achieve superior performance levels compared to ReconNet.
For both LISTA and LAMP, both increasing the layer size
from 2 to 4 does not improve their SE performances as it can
be observed in Table I. Hence, their numbers of layers are not
further increased.

Furthermore, comparative evaluations are performed when
the measurements are exposed to noise in the test set, i.e., yi =
Dxi + zi , where zi is an additive white Gaussian noise.
The results presented in Fig. 7 show that SE performances
of the LAMP and LISTA method are adversely affected by
increased measurement noise. Their performance gets even
worse when the number of layers is increased [i.e., see results

TABLE I

SUPPORT RECOVERY PERFORMANCE OF ALGORITHMS
FROM THE NOISE-FREE MEASUREMENTS

TABLE II

SUPPORT RECOVERY PERFORMANCE OF ALGORITHMS

UNDER 10-dB MEASUREMENT NOISE

for LAMP (2) to LAMP (4) or LISTA (2) to LISTA (4)].
CSEN2, on the other hand, achieves the highest F1 measure
for all noise levels.

B. Convolutional Support Estimation-Based
Classification (CSEN-C)

As explained in Section III-B, the dictionary-based
(representation-based) classification could be seen as an SE
problem. Therefore, CSEN presents an alternative and better
approach to both CRC and SRC solutions. In this manner,
the proposed CSEN approach is evaluated against both CRC
and the state-of-the-art SRC techniques recently proposed.
The algorithms are chosen by considering both their speed
and performance on the SR problem since the speed-accuracy
performance of SRC directly depends on the performance of
the sparse SR algorithm [55], and there is no unique winner
to achieve the top performance level for all databases. The
proposed method is, of course, not limited to face recognition
but can be applied in any other representation-based classi-
fication problem. In Section V-C, we will also consider a
new and challenging classification task, Coronavirus disease
(COVID-19) recognition from X-Ray Images.

End-to-End Learning of CSEN-Based Classifiers:
In dictionary-based classification designs, the samples
of a specific class are stacked in the dictionary as atoms with
predefined indices, e.g., the atoms belonging to a particular
class can be located in a concatenated manner. Consequently,
in sparse representation-based classification, instead of
using �1-minimization in (4), group �1-minimization can be
introduced as follows:

min
x

{
�Dx − y�2

2 + λ

c∑

i=1

�xGi�2

}
(15)
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where xGi is the group of coefficients corresponds to class i .
Hence, the mse cost function in (10) can be modified
accordingly

E(x) =
∑

p

(P
(x)p − αp)
2 + λ

c∑

i=1

�P
(x)Gi�2. (16)

This modified cost function can be used to achieve a better
estimation of the support set. Having this improved estimation,
the query class can be obtained. However, having such an
intermediate step is also redundant for a classification problem.
In this study, we slightly modify the network to make it an end-
to-end learning system: to approximate the new cost function
defined in (16), a simple average pooling can be applied
after the last layer of CSEN, which is then followed by the
SoftMax function to produce class probabilities. Therefore,
the modified cost function with the cross-entropy loss at the
output would be E(x) = −∑C

i ti log(P
(x)), where ti and
P
(x) are the real and predicted values by CSEN, respectively,
for class i ∈ C . In this way, the modified network can directly
yield the predicted class labels as the output. The pipeline
of the proposed end-to-end learning is drawn in Fig. S1 in
the Supplementary Material. One may question whether the
proposed compact network designs (CSEN1 and CSEN2) are
the optimal ones. We also replaced CSEN compact networks
with the deeper fully convolutional one, ReconNet, as an
alternative network design and report also its performance as
a competing method.

1) Multiclass Classification Problem: Face Recognition via
CSEN-C (Experiment II): In the face recognition experiments,
we have used Yale-B [22] and CelebA [23] databases. In the
Yale-B dataset, there are 2414 face images with 38 identities;
and a subset of CelebA is chosen with 5600 images and
200 identities. The face recognition experiments are repeated
five times with samples randomly selected to build the dictio-
nary, train, and test sets with 32, 16, and 16 and 8, 12, and
8 samples each for Yale-B and CelebA, respectively, for CSEN
schemes, and 25% of training data is separated as validation.
To have a fair comparison, for CRC and SRC methods,
the training set is also included in the dictionary, which
are 48 and 20 samples per identity for Yale-B and CelebA,
respectively. The selected subset of the CelebA dataset is also
different between each repeated run. For the Yale-B database,
we use vectorized images in the dictionary. Earlier studies
reported that both SRC and CRC techniques achieve a high
recognition accuracy of 97%–98%, especially for high MR
rate scenarios (m/d > 0.25 for A ∈ Rm×d). On the other
hand, for the CelebA dataset, both CRC and SRC solutions
tend to fail when we use raw atoms in the dictionary without
extracting descriptive features. This is why, in this study,
we propose to use a more representative dictionary. Instead
of using raw images, the atoms consist of more descriptive
features extracted by a neural network-based face feature
extractor in the library [58]. The proposed method is compared
against CRC and SRC techniques with the following seven
state-of-the-art SR solver: ADMM [59], Dalm [55], OMP [55],
Homotopy [60], GPSR [61], L1LS [62], �1-magic [63], and
Palm [55].

Fig. 8. Recognition accuracy versus process time comparison of algorithms
in the Yale-B database.

Fig. 9. Recognition accuracy versus process time comparison of algorithms
in the CelebA database.

Overall, when we perform experiments in two facial image
databases, Yale-B and CelebA for different MRs, the CSEN-
based classification proves to be very stable; and in all MRs,
it gives the highest or comparable recognition accuracy to the
highest ones for all experiments, as presented in Figs. 8 and 9.
Furthermore, it is significantly superior in terms of computa-
tional speed compared with SRC solutions.

To be able to use the same CSEN designs introduced in
Section IV, we reorder the positions of the atoms, i.e., in
the representative sparse codes corresponding nonzero coef-
ficients remain next to each other in the 2-D plane. A simpli-
fied illustration of the comparison of conventional dictionary
design and the proposed design for sparse representation-based
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Fig. 10. Graphical representation of proposed dictionary design versus
conventional design for face recognition problem.

TABLE III

FOR CSEN-BASED RECOGNITION, THE UTILIZED FACE RECOGNITION
BENCHMARK DATASETS ARE GIVEN WITH THEIR CORRESPONDING

MASK SIZE AND NUMBER OF SAMPLES IN DICTIONARY,
TRAINING, AND TESTING PER CLASS

classification is shown in Fig. 10. Defined sparse code sizes
and their representations in the 2-D grid for Yale-B and
CelebA datasets are also given in Table III.

C. Binary Classification Problem: COVID-19 Recognition
From X-Ray Images via CSEN-C (Experiment III)

The recent fast spread pandemic caused by Coronavirus
disease (COVID-19) has affected millions worldwide. X-ray
imaging is an easily affordable and accessible tool, which
provides faster results, compared to other tests that are used
in COVID-19 detection. It is well known that deep neural
network models achieve state-of-the-art performance results in
recognition and detection tasks. However, they require a large
number of training samples to achieve a good generalization
capability. On the other hand, representation-based classifiers
are known to obtain reasonable classification performances
with scarce data. In our previous work [25], we showed that
CSEN-based classification is effective in recognizing COVID-
19 among other classes when the classification problem is
multiclass, i.e., COVID-19, bacterial pneumonia, viral pneu-
monia, and normal (healthy) classes. In the sequel, we will
investigate the performance of CSEN-based classification in
a binary classification task, that is, COVID-19 differentiation
from other classes (control group). In such a sudden outbreak,
such as COVID-19, preventing the spread should be a major
concern. For this reason, we focus on minimizing FNs (while
keeping the FPs as low as possible.

We used a benchmark dataset, Qata-Cov19 [25], of Chest
X-Ray images from COVID-19 patients containing 462 sam-
ples. The control group (non-COVID class, a Kaggle
dataset [64]) consists of 5824 X-Ray images that are 2760,
1485, and 1579 samples from Bacterial pneumonia, viral
pneumonia, and normal class, respectively. We used fivefold
cross-validation for evaluation, that is, for each fold, a different
(20%) portion of the dataset was used as the test set, while
the remaining (%80) of the data was used for training. In this

TABLE IV

COVID-19 RECOGNITION PERFORMANCES OF THE ALGORITHMS

way, all classifiers were evaluated over the entire dataset.
Specifically, over 6286 total samples, for each fold, 5029 of
them are selected for training, and 1257 (1164 samples from
the control group and 63 samples from the COVID-19 class)
are used as the test set. Data balancing was applied only to the
training set, while the test set remained the same. The training
set is augmented to have 9320 samples (4660 samples from
the control group and 4660 samples from the COVID-19 class)
via data balancing. The average performance over the fivefold
was reported as the overall performance of each algorithm. The
same experiment, with the same partitions, was conducted for
all competing algorithms for a fair comparison.

In order to extract discriminative features from raw chest
X-ray images, a pretrained model CheXNet [65], which
was trained for other types of pneumonia detection from
X-Ray images, is used. Using the pretrained CheXNet model,
we extracted 1024-long vectors right after the last average
pooling layer. After data normalization (zero mean and unit
variance), we obtained a feature vector s ∈ Rd=1024. Then,
the PCA matrix A is applied to the features, i.e., y = As.
As competing algorithms to CSEN-based designs, CSEN1,
CSEN2, and ReconNet, we selected the traditional classifiers
KNN, MLP, and SVM, as well as the representation-based
classifiers CRC and SRC. For SRC, we only reported the
best-performed sparse recovery technique for this classification
task, which is DALM. For the competing representation-based
classifiers, CRC and SRC, the whole training data are used in
the dictionary. On the other hand, for CSEN-based classifiers
and ReconNet one, out of total training samples, 3200 samples
(1600 samples for each class) are used in the dictionary, and
the rest were used to train CSENs. For this smaller dictionary,
the sparse code size in the 2-D plane is set as 80 × 40.

As it can be observed from Table IV, SRC performance
drastically drops for the binary classification task. It is an
expected result because the ideal representation coefficient, x,
is not sparse enough (e.g., the sparsity ratio (k/n) = 0.5).
Although the CSEN-based classifier is also sparsity-driven
and favors sparser representation (e.g., multiclass) problems,
it still shows superior performance over other representation-
based classifiers, which are CRC and SRC. When we compare
with other traditional classifiers, the proposed scheme out-
performs the second-best performing one, SVM, with respect
to the missclassification rate of COVID-19, sensitivity, and
F2-Score. These performance metrics can be considered major
indicators because we want to achieve the highest sensitivity
possible for the minimization of the FNs with a tolerable false
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Fig. 11. Top: proposed CS reconstruction. Bottom: traditional
�1-minimization-based CS-recovery.

alarm rate. On the other hand, if one wants to compare the
performance in terms of F1-Score instead of F2-Score, CSEN-
based classification still achieves a comparable performance
with SVM. F-2 Score is calculated as follows: F2-Score = 5×
(Precision × Recall)/(4 × Precision + Recall). One may
question whether or not the compact CSEN configuration
is the optimal one. When we replace the proposed compact
network configurations with a deeper well-known network,
ReconNet, in the CSEN-based design, no significant perfor-
mance improvement is observed. In fact, the results are even
worse compared to CSEN2 configurations.

D. Learning-Aided Compressive Sensing

1) Experiment IV: Sparse in Spatial Domain: As the
experimental setup, we randomly choose sparse signals, x,
in the MNIST database and use the Gaussian measurement
matrix, A, to simulate the CS, i.e., y = Ax. Then, we recover
the sparse signal from y by using the aforementioned state-of-
the-art SR tools and the proposed weighted �1-minimization
[see (6)], where the weights w are obtained using CSEN output
such that w = (1/(p+ �)). Fig. 11 shows an illustration
of how the proposed CS reconstruction scheme differs from
the traditional CS recovery setup. Using the output of CSEN
as prior information not only provides more accurate SR
but also faster convergence of iterative sparse SR such as
�1-minimization.

Furthermore, we draw the estimated phase transition of
the algorithms in Fig. 12 using an experimental setup whose
procedure is explained in [19]. Briefly summarizing the pro-
cedure, a grid of (MR, ρ) is generated for each algorithm,
with 20 independent realizations of the problem: according
to their sparsity ratios, ρ, randomly chosen sparse signals x,
among 10000 MNIST test images, are compressively sensed
with the independent realization of measurement matrices.
Then, they are recovered using the competing algorithms,
and each realization is considered a success for the specific
algorithm if ((�x − x̂�2)/�x�) ≤ tol, where tol is a predefined
parameter; we choose tol = 10−1 in our experiments. For a
specific algorithm, we draw the phase transition in the border
where a 50% success rate is achieved. The procedure is similar
to [19], with the exception that they repeated the experiment
only once, while we repeat it 100 times for each method,
except L1LS due to its infeasibly high computational cost
(it took almost two weeks with an ordinary computer). With
an accurate SR algorithm, we expect the transition border to
be close to the left-top corner in the phase transition graph
because it is a good indicator that the algorithm performs well

Fig. 12. Phase transition of the algorithms.

in low MRs and with a high sparsity ratio, ρ. From Fig. 12,
one can easily deduce that the proposed CS-reconstruction
approach clearly outperforms all competing state-of-the-art SR
reconstruction methods. Moreover, the two examples where
signals are compressively sensed with M R = 0.25 and their
estimated versions by different SR methods are shown in
Fig. 13. It is clear that the proposed approach recovers the
sparse signal with the best quality, while the other state-of-
the-art SR techniques perform poorly.

2) Experiment V: Sparse in a Proper Domain (Total Varia-
tion for Natural Images): In Section V-D1, we assumed that
MNIST handwriting signals are sparse in the spatial domain,
i.e., � = I. Nevertheless, it is not the case for most of
the real-world signals. For instance, natural images are not
sparse in canonical basis but sparse in a convenient sparsifying
basis, such as DCT and wavelet. In this section, we will
use the gradient domain as sparsifying basis, i.e., � = ∇.
Mathematically speaking, let we have an image S ∈ Rn1×n2

to be compressively sensed with the measurement matrix
A ∈ Rm×n via y = As ∈ Rm , where s ∈ Rn is vectorized
image, and n = n1 × n2. The image can be sparsely repre-
sented in ∇ with sparse code pair (Xh, Xv), which are nothing
but gradients on the horizontal axis (x-axis) and the vertical
axis (y-axis), respectively, i.e., ∇hS = Xh and ∇vS = Xv.
Therefore, one can recover the image from y by solving the
following total variation minimization problem:

min
S

λ�∇S�TV + �y − Avec(S)�2
2 (17)

where we use the following anisotropic total variation
definition:
�∇S�TV = �∇hS�1 + �∇vS�1 (18)

=
∑

i, j

∣∣Si+1, j − Si, j

∣∣+
∑

i, j

∣∣Si, j+1 − Si, j

∣∣. (19)

TV minimization-based solutions are mostly used in CS
reconstruction problems and other inverse imaging systems
to better preserve the edges and the boundaries compared
to other sparsifying domains, such as DCT. In order to
solve the optimization problem in (17), we use one of the
state-of-the-art TV minimization solver, TV Minimization
by Augmented Lagrangian and Alternating Direction Algo-
rithms (TVAL3) [66]. Similar to Section V-D1, a CSEN
can take the proxy of sparse code as input and produces
a probability like measure that give a likelihood about the
support of the sparse signal. In this TV-based problem, CSEN
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Fig. 13. Examples from MNIST that is compressively sensed and then reconstructed at MR = 0.25.

Fig. 14. Examples of the tested natural images. CSEN learns the p maps from the proxy images in both axes. Then, the p maps are used in solving the
weighted total minimization problem. Traditional TVAL3 solutions have performance of 35.06 (dB) and 22.75 (dB) in PSNR, while CSEN-aided one achieves
36.97 (dB) and 23.68 (dB) in PSNR for butterfly and cameraman images, respectively.

takes two-channel input (X̃h =�∇hS, X̃v =�∇vS) and produces
a two-channel p-map, (ph, pv). Example proxy images and
CSEN outputs can be seen in Fig. 14. The proxies are
obtained by having AT y first and then applying ∇ in both
axes after reshaping AT y to the original image dimension,
n1 × n2. Hereafter, similar to Section V-D1, learning-aided
CS recovery can be fulfilled by solving the following weighted
TV minimization problem:

min
S

λ�W�∇S�TV + �y − Avec(S)�2
2 (20)

where

�W �∇S�TV = �Wh �∇hS�1 + �Wv �∇vS�1 (21)

and Wh and Wv are calculated by using the outputs of CSENs
ph and pv, respectively i.e., Wh = (1/(ph + �)) and Wv =
(1/(pv + �)).

In order to solve (20), the same solver can be utilized
with the one that is used to solve (17) by only changing
the soft-thresholding to the weighted soft-thresholding in the
algorithm. In this manner, we use TVAL3 for both problems
with the following parameter setup: μ = 213, β = 26,
μ0 = 22, 2−2, tol = 10−6, and maxit = 300.

In order to estimate p-maps, CSEN1 network was trained.
The training dataset is prepared in the following manner:
89272 image patches of size 256 × 256 were randomly
cropped from the DIV2K image dataset [67]. During data
generation, data augmentation was applied to original DIV2K
images with eight different rotations and three different scal-
ing factors. The generated image patches are normalized to
have values in [0, 1]-scale. We applied gradient operation
to each patch; then, ground-truth support sets were obtained
by defining a small threshold to the gradients, i.e., �GT =
{i, j ∈ {1, 2, . . . , n1} × {1, 2, . . . , n2} : |∇Si, j | > τ1}. We set

τ1 = 0.04 and n1 = n2 = 256. Input images were first applied
to CS, y = Avec(S); then, proxies are obtained from CS
images. Finally, the absolutes of the proxies are given as input
and CSEN1 were trained to learn mapping to binary mask v
[defined in (7a) and (7b)]. During training, the batch size was
chosen as 8, and CSEN was trained with 100 epoch. The
learning rate was set to be 0.001 for the first 50 epochs,
and then, it was scheduled to be 0.0001 and 0.00001 for the
following 30 and 20 epochs, respectively. To calculate the cost
matrices, W, � is set to be 0.2.

Since applying the Gaussian random measurement matrix,
A, to large-scale signals of size n = × 256 is computa-
tionally infeasible, we applied structural measurement matrix.
The rows of the measurement matrix can be chosen from a
subset of the randomly permuted rows of a basis for which
a computationally fast implementation is feasible. We used
the Walsh Hadamard transform whose fast implementation is
available in the TVAL3 toolbox. By using such a structural A,
the computational complexity of matrix multiplications, e.g.,
As and AT y, can be reduced to O(n log n) from O(m × n)
compared to using fully random matrices.

In the experimental setup, we tested the possibility to have
an improvement in CR recovery with such a learned-aided
weighted total variation minimization. The test is conducted
on the Set5 [68] image dataset and Barbara and Cameraman
images. All the images were resized to be 256 × 256 size.
Along with the PSNR performance metric, the relative error
performance metric that was used in the TVAL3 study was also
used during the test. The performance metric relative error is
calculated as Relative Error = (�S− Ŝ�F/�S�F ), where Ŝ is
the estimated image and �.�F is the Frobenius norm. Table V
shows the performance comparison of traditional TV mini-
mization and CSEN-aided one. On average, the learning-aided
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TABLE V

CS RECOVERY PERFORMANCE OF TV-BASED ALGORITHMS (MR = 0.6)

Fig. 15. Performance metrics on the SET 5 image dataset for conventional
total variations minimization versus CSEN-aided one. Both techniques use a
TVAL3 solver to solve the problem. The results also show when the CSEN
trained with 50 epochs and 100 epochs and MR = 0.6.

scheme increases the recovery performance in the Set5 dataset
compared to the conventional one and for Barbara and Cam-
eraman Images. To further investigate whether this perfor-
mance improvement is gained due to arbitrary changes in
the threshold values caused by the usage of weighted soft
thresholding instead of using soft thresholding, we repeated the
same CS recovery tests by using the CSEN1 weights learned
with the different number of epochs from 1 to 100. Fig. 15
shows the behavior of the recovery performance of the CSEN-
aided solver and the conventional one. The results illustrate
that, when CSEN is trained more, the recovery performance
of the algorithm increases until convergences. This behavior
proves that CSEN output, (ph, pv), carries information (more
activation on nonzero values, e.g., edges and boundaries) to
be used in model-based recovery algorithm, TV minimization
in that specific case, and the quality of this output determines
the image recovery quality.

All in all, this proof-of-the-concept study illustrates that the
proposed learned-aided CS recovery scheme has the potential
to help model-based solutions for CS imaging systems and
worth further investigation.

VI. DISCUSSION

A. Sparse Modeling Versus Structural Sparse Modeling

The first generation CS-recovery or sparse representation
methods only use the information that the signal, which we
encounter in real life, is sparse in a proper domain or dic-
tionary. These models do not utilize any further assumptions
about the sparse signal, x, in SR or SE. Therefore, they only
impose sparsity to the signal to have support set with elements
in arbitrary location, i.e., min �x�0 s.t. Dx = y. However, most
sparse signals that we face in practical applications exhibit
a kind of structure. In second-generation sparse representation
models, researchers realized that, in addition to arbitrary spar-
sity, any prior information about the sparse code can be used
in modeling more advanced recovery schemes [69], [70]. For
instance, the indices of the nonzero wavelet coefficients of an

image mostly exhibit grouping effect [71]. This kind of group
sparsity pattern can be imposed by designing the optimization
problem involving mixed norm minimization problems [72]
instead of simple �1-norm. On the other hand, more complex
sparsity structures require a more complex model design.

This work proposes an alternative solution to the hand-
crafted model-based sparse SR approaches, to be able to learn
the pattern inside sparse code (or structural sparse signals),
x by a machine learning technique. This proof of the concept
work in which the performance is tested over three real
datasets, MNIST, Yale, and CelebA, validates the possibility
of such learning and deserves further investigation in different
sparse representation problems.

B. Unrolling Deep Models Versus CSEN

The most common approaches to reconstruct sparse
signals, x, from the given measurements, y, with a fixed
dictionary D can be listed as follows.

1) Convex Relaxation (or �1 Minimization) Such as Basis
Pursuit [29]: minx �x� s.t. y = Dx or BPDN [29]:
minx �x� s.t. �y−Dx� ≤ �, where � is a small constant.

2) Greedy algorithms such as matching pursuit (MP) [73],
orthogonal MP (OMP) [8], and compressive sampling
matched pursuit (CoSaMP) [9].

3) Bayesian framework [74].

These conventional algorithms dealing with sparse inverse
problems work in an iterative manner; for instance, most
convex relaxation techniques, such as BPDN, minimize
the data fidelity term (e.g., �2-norm) and sparsifying term
(e.g., �1-norm) in an alternating manner in each iteration.
Therefore, these schemes suffer from computational complex-
ity and not suitable for real-time applications.

Along with the traditional approaches listed above, deep
learning methods used in this domain have recently become
very popular: x̂ ← P(y), where P is a learned mapping
from m-dimensional compressed domain to n-dimensional
sparse domain. These techniques are built on the idea that
the performance of existing convex relaxation can further be
improved by reducing the number of iterations and enhancing
the reconstruction accuracy. The key idea is that both the
possible denoiser matrices, B (responsible for dealing with
data fidelity term), such as DT , or (DT D + λI)−1DT , where
λ is the regularization parameter, and the thresholding values
(responsible from sparsifying) can be learned from the training
data using a deep network generally with dense layers. For
instance, the first example of this type is LISTA [20], which
is built upon ISTA [21]. These categories of methods, also
called unrolled deep models, design networks in an iterative
manner, which are powerful tools for sparse SR.

However, in many practical applications, we may either
no need to estimate the sparse signal itself or not have a
large amount of training data for deep unrolling networks.
In that manner, CSEN provides a third approach, by directly
estimating the support set via a compact design, which
requires less computational power, memory, and training set.
It exhibits very good performance, especially in the problems
that include sparse representation with sparse codes having
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TABLE VI

1-D VERSUS 2-D CSENS IN THE CELEBA DATASET

structural patterns. The other advantage of the compact design
with convolutional layers is that it is more stable against noise
compared to unrolled deep models that include dense layers.

C. Proxy Signal Versus Measurement Vector as
Input to CSEN

The proposed SE scheme utilizes proxy x̃ = By as input to
convolutional layers. Making inference directly on proxy using
the ML approach has been recently reported by several studies.
For example, the study in [75] and [76] proposed to perform
reconstruction-free image classification on the proxy, and the
study in [77] performed signal reconstruction using proxy as
an input to a deep fully convolutional network. Furthermore,
proxy x̃ can be learned by fully connected dense layers as
presented in [75]. However, this brings additional complexity,
and training the network may cause overfitting with a limited
number of training data. As in [75], they had to adapt by first
training the fully connected layers or try to freeze the other
layers during the training.

On the other hand, choosing the denoiser matrix, B,
is another design problem. For example, Değerli et al. [75]
and Lohit et al. [76] use B = DT as denoiser to obtain proxy.
We reported the results in this article for denoiser matrix,
B = (DT D + λI)−1DT , because it gives slightly more stable
performance over B.

D. 1-D Versus 2-D Representation of the Proxy Signal

In order to use the same CSEN networks, we reshaped the
1-D sparse codes into 2-D for representation-based classifi-
cation tasks. Nevertheless, a 1-D CNN network structure can
also be used. To test this claim, we created 1-D CNN versions
of CSEN 1 and CSEN2 networks (the same number of hidden
layers, nodes, and kernel sizes). In the CelebA dataset, they
were tested, and as it can be seen in Table VI, 1-D versions
can also achieve very similar classification performance.

E. Equal Size Dictionary Versus Equal Size Training Samples

In a representation-based classification scheme when dic-
tionary size getting bigger (when the number of training
samples is increased), the computational complexity of the
method drastically increases. For instance, for the COVID-19
dataset, dictionary size reaches 512 × 9320; in that case, even
CRC computational time drastically increases. Fortunately,
the computational time of CSEN does not increase that much
because only a subset of the training set is used in the
dictionary i.e., 512 × 3200 and the rest to train CSEN.
This phenomenon can be seen in Table VII. On the other hand,
the recognition performance does not necessarily improve with
increased dictionary size; on the contrary, it may even start
deteriorating when the dictionary size reaches an impracticable
level. SRC is computationally heavier when the dictionary
size increases, the computational complexity becomes cumber-
some, and the recognition performance does not necessarily

TABLE VII

COMPUTATION TIMES (S) OF EACH METHOD OVER
1257 TEST IMAGES IN THE COVID-19 DATASET

increase. Furthermore, SRC can completely fail when the
representation is not sparse enough, e.g., binary classification
(see Table IV). On the other hand, the proposed SE-based
classifiers perform very stable for both multiclass or binary
classification problems and varying sizes of training datasets.

In the representation-based classification experimental
results, the dictionary sizes are always higher than the dic-
tionary size in the CSEN-based scheme, as mentioned above.
The other fair comparison is using the same dictionaries for all
competing methods. For COVID-19 recognition experiments,
as computational times are reported in Table VII, the number
of parameters of the networks is given in Table S4 in the
Supplementary Material. The CRC algorithm’s performance
when the dictionary is the same as the one used in the
CSEN-C approach is reported in Table S5 in the Supplemen-
tary Material. For face recognition, task performance versus
computational time is reported in Figs. S2 and S3 in the Sup-
plementary Material. CSEN-C has clear advantages compared
to other dictionary-based classifiers by reducing computation
complexity and increasing classification accuracy.

VII. CONCLUSION

Sparse support estimators that work based on traditional
sparse SR techniques suffer from computational complexity
and noise. Moreover, they tend to fail at low MRs completely.
The proposed CSENs can be considered as reconstruction-
free and noniterative support estimators. Of course, despite
their high computational complexity, recent state-of-the-art
deep signal reconstruction algorithms may be a cure to sparse
recovery methods. However, they are still redundant if SR is
not the main concern. In addition, such deep networks often
require a large amount of training data that are not available
in many practical applications. To address these drawbacks
and limitations, in this study, we introduce novel learning-
based support estimators that have compact network designs.
The highlights of the proposed system are as follows: 1) signal
reconstruction-free SE where sparse estimation can be done in
a feed-forward manner, noniteratively at a low cost; 2) compact
network designs enabling efficient learning even from a small-
size training set; and 3) the proposed solution is generic; it
could be used in any SE task, such as SE-based classification.
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1. INTRODUCTION

For convenience, we show the list of frequently used variables, and abbreviations in Table S2 and
Table S1, respectively.

Table S1. Frequently used acronyms/abbreviations in the article.

SC Sparse Representation or Sparse Coding

CS Compressive Sensing

SR Sparse Signal Recovery

SE Sparse Support Estimation

SRC Sparse Signal Recovery based Classification

CRC Collaborative Representation based Classification

CSEN Convolutional Support Estimator Network

LISTA Learned Iterative Short Thresholding Algorithm

LAMP Learned Approximate Message Passing Algorithm

CSEN-C CSEN based Classification

2. RESULTS

This section includes the details and more experimental results for the Result section of the main
article. For convenience, the organization scheme of the Experimental Section is given in Table S3.

A. End-to-end training of CSEN-C
Figure S1 shows the overall pipeline of the proposed end-to-end training of a convolutions
support estimator-based classifier.



Fig. S1. End to end learning pipeline of CSEN based classifier (CSEN-C).

B. Equal size dictionary vs Equal Size Training Samples
Table S5 shows the recognition performance of CRC on the COVID-19 recognition task when
the same dictionary that is used in CSEN-C. It may be the baseline for the proposed CSEN-C,
as the classification is done using the same proxy. The computational complexity of this light
CRC is reported in the main article. Similar experiments where both SRC and CRC use the
same dictionary with CSEN-C were also conducted for the face recognition problems, and the
performance vs. computational complexity graphs are reported in Figure S2 and Figure S3.

2



Fig. S2. Recognition accuracy vs. process time comparison of Algorithms using equal size
dictionary with the training samples in Yale-B database.

3



Fig. S3. Recognition accuracy vs. process time comparison of Algorithms using equal size
dictionary with the training samples in CelebA database.
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Table S2. Frequently used variables in the article.

Variable Synonyms Properties

s ∈ Rd Signal Sparse in Φ

Φ ∈ Rd×n Sparsifying

matrix (basis or dictionary)

x ∈ Rn

Sparse coefficients

of s,

the sparse code

i.e., ‖x‖0 ≤ k for k-sparse signal

A ∈ Rm×d CS-measurement or

compression matrix
D = AΦ

Λ
Location index set

of the non zero elements
Λ ⊂ {1, ..., n}

y ∈ Rm Measurement vector y = Dx + z

z ∈ Rm Possible additive noise

E (., .) A support Estimator i.e., Λ̂ = E (y, D)

B Denoiser Matrix e.g.,B =
(
DTD + λI

)−1 DT orB = DT

x̃
Proxy of the sparse

coefficient vector
i.e., x̃ = By

X ∈ Rn1×n2
Re-shaped (on 2-D plane)

sparse code
i.e., x = vec (X) ∈ Rn=n1×n2

X ∈ Rn1×n2 Re-shaped proxy i.e., x̃ = vec
(

X̃
)
∈ Rn=n1×n2

S ∈ Rn1×n2
GT image (e.g.

2D signal )

Xh

The gradient of

noisy free image on

the horizontal axis

∇hS = Xh

Xv

The gradient of

noisy free image on

the vertical axis

∇vS = Xv

X̃h The proximal of Xh

X̃v
The proximal of Xv

(ph, pv)
p-map, CSEN output when

2 channel input
(

X̃h, X̃v

)
is given

i.e., (ph, pv) = PΘ

(
X̃h, X̃v

)
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Table S3. The organization of the experiments: List of applications, experiments and used
datasets in the article.

Experiments Datasets

Prof of the

concept

Generic SE

from CS Experiment I

measurements

MNIST

Application I CSEN-C

Multiclass

Classification

Dictionary consists of

raw data (Experiment II-a)
Yale-B

Dictionary consist of

discriminative features (Experiment II-b)
Celeb-A

Binary Classification
Dictionary consist of

discriminative features (Experiment III)
QataCov-19

Application II
CSEN aided SR

from CS measurements

Experiment IV: Signal is sparse in canonical domain,

i.e., Φ = I
MNIST

Experiment V: Signal is sparse in a proper domain,

e.g., Φ = ∇
Set5, Barbara

Cameraman

Table S4. Comparison of the number of trainable parameters in the networks.

Method CSEN1 CSEN2 ReconNet MLP

Parameters 11.089 16.297 22.914 672.706

Table S5. Performance of CRC algorithm when the dictionary is same with the one used in
CSEN approach.

CRC (Light)

Accuracy TN TP FP FN Sensitivity Specificity F1-Score F2-Score

0.9570 5578 438 246 24 0.9481 0.9578 0.7644 0.8649
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Muhammad E. H. Chowdhury , Senior Member, IEEE, and Moncef Gabbouj , Fellow, IEEE

Abstract— Coronavirus disease (COVID-19) has been the main
agenda of the whole world ever since it came into sight. X-ray
imaging is a common and easily accessible tool that has great
potential for COVID-19 diagnosis and prognosis. Deep learning
techniques can generally provide state-of-the-art performance
in many classification tasks when trained properly over large
data sets. However, data scarcity can be a crucial obstacle when
using them for COVID-19 detection. Alternative approaches such
as representation-based classification [collaborative or sparse
representation (SR)] might provide satisfactory performance with
limited size data sets, but they generally fall short in perfor-
mance or speed compared to the neural network (NN)-based
methods. To address this deficiency, convolution support estima-
tion network (CSEN) has recently been proposed as a bridge
between representation-based and NN approaches by providing
a noniterative real-time mapping from query sample to ideally
SR coefficient support, which is critical information for class
decision in representation-based techniques. The main premises
of this study can be summarized as follows: 1) A benchmark
X-ray data set, namely QaTa-Cov19, containing over 6200 X-ray
images is created. The data set covering 462 X-ray images from
COVID-19 patients along with three other classes; bacterial
pneumonia, viral pneumonia, and normal. 2) The proposed
CSEN-based classification scheme equipped with feature extrac-
tion from state-of-the-art deep NN solution for X-ray images,
CheXNet, achieves over 98% sensitivity and over 95% specificity
for COVID-19 recognition directly from raw X-ray images
when the average performance of 5-fold cross validation over
QaTa-Cov19 data set is calculated. 3) Having such an elegant
COVID-19 assistive diagnosis performance, this study further
provides evidence that COVID-19 induces a unique pattern in
X-rays that can be discriminated with high accuracy.

Index Terms— Coronavirus disease (COVID-19) recognition,
representation-based classification, severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) virus, transfer learning.

I. INTRODUCTION

CORONAVIRUS disease 2019 (COVID-19) has been
declared as a pandemic by the World Health Organi-

zation (WHO) a few months after its first appearance. It has
infected more than 70 million people, caused a few million
causalities, and has so far paralyzed mobility all around the
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world. The spreading rate of COVID-19 is so high that the
number of cases is expected to be doubled every three days
if the social distancing is not strictly observed to slow this
accretion [1]. Roughly around half of the COVID-19 positive
patients also exhibit a comorbidity [2], making it difficult
to differentiate COVID-19 from other lung diseases. Auto-
mated and accurate COVID-19 diagnosis is critical for both
saving lives and preventing its rapid spread in the commu-
nity. Currently, reverse transcription-polymerase chain reaction
(RT-PCR) and computed tomography (CT) are the common
diagnostic techniques used today. RT-PCR results are ready at
the earliest 24 h for critical cases and generally take several
days to conclude a decision [3]. CT may be an alternative
at initial presentation; however, it is expensive and not easily
accessible [4]. The most common tool that medical experts use
for both diagnostic and monitoring the course of the disease
is X-ray imaging. Compared to RT-PCR or CT test, having
an X-ray image is an extremely low cost and a fast process,
usually taking only a few seconds. Recently, WHO reported
that even RT-PCR may give false results in COVID-19 cases
due to several reasons such as poor quality specimen from the
patient, inappropriate processing of the specimen, taking the
specimen at an early or late stage of the disease [5]. For this
reason, X-ray imaging has a great potential to be an alternative
technological tool to be used along with the other tests for an
accurate diagnosis.

In this study, we aim to differentiate X-ray images of
COVID-19 patients among other classes; bacterial pneumonia,
viral pneumonia, and normal. For this work, a benchmark
COVID-19 X-ray data set, Qata-Cov19 (Qatar University
and Tampere University COVID-19 Data set) that contains
462 X-ray images from COVID-19 patients was collected. The
images in the data set are different in quality, resolution, and
SNR levels as shown in Fig. 1. QaTa-Cov19 also contains
many X-ray images from the COVID-19 patients who are in
the early stages; therefore, their X-ray images show mild or no-
sign of COVID-19 infestation by the naked eye.1 Some sample
images are shown in Fig. 2(b). Another fact that makes the
diagnosis far more challenging is that interclass similarity can
be very high for many X-ray images as some samples are
shown in Fig. 2(a). Against such high interclass similarities
and intraclass variations, in this study, we aim for a high
robustness level.

In numerous classification tasks, deep learning techniques
have been shown to achieve state-of-the-art performance in

1The statements belong to the medical doctors whose names are listed in
the Acknowledgment section.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1. Sample COVID-19 X-ray images from QaTa-Cov19.

terms of both recognition accuracy and their parallelizable
computing structures which play an important role, especially
in real-time applications. Despite their advantages, in order to
achieve the desired performance level in a deep model, proper
training over a massive training data set is usually needed.
Nevertheless, this is unfortunately unfeasible for this problem
since the available data is still rather limited.

An alternative supervised approach, which requires a limited
number of training samples to achieve satisfactory classifi-
cation accuracy is representation-based classification [6]–[8].
In representation-based classification systems, a dictionary,
the columns of which consist of the training samples that are
stacked in such a way that a subset of them corresponding
to a class, is predefined. A test sample is expected to be a
linear combination of all points from the same class as the test
sample. Therefore, given a predefined dictionary matrix, D and
a test sample y, we expect the solution x̂ from y = Dx, carry
enough information about the class of y. Overall, in this study,
we draw a convolutional support estimation network (CSEN)
[9]-based solution pipeline, which fuses the representation-
based classification scheme into a neural network (NN) body.

The rest of this article is organized as follows. In Section II,
notations and mathematical preliminaries are given with
emphasis on sparse representation (SR) and sparse support
estimation (SE). Then in Section III, a literature review on
deep learning models over X-ray images and representation-
based classification is presented. The proposed CSEN-based
COVID-19 recognition system is introduced in Section IV
along with two recent alternative approaches that are used as
the competing methods. The data collection is also explained
in this section. Experimental setup and the main results are
provided in Section V. Finally, Section VII concludes this
article and suggests topics for future research.

II. PRELIMINARIES AND MATHEMATICAL NOTATIONS

A. Notations

In this study, the �p-norm of a vector x ∈ Rn is defined
as ‖x‖�n

p
= (∑n

i=1|xi |p
)1/p

for p ≥ 1. On the other hand,

Fig. 2. Sample QaTa-Cov19 X-ray images. (a) X-ray images from different
classes. (b) X-ray images from the COVID-19 patients who are in the different
stages.

the �0-norm of the vector x ∈ Rn is defined as ‖x‖�n
0
=

lim p→0
∑n

i=1|xi |p = #{ j : x j �=0} and the �∞-norm is defined
as ‖x‖�n∞ = maxi=1,...,n(|xi |). A signal s is called strictly
k-sparse if ‖x‖0 ≤ k. Sparse support set or simply support
set, � ⊂ {1, 2, 3, . . . , n} of sparse signal x can be defined as
the set of nonzero coefficients’ location, i.e., � := {i : xi �= 0}.

B. Sparse Signal Representation

SR of a signal s ∈ Rd in a predefined set of waveforms,
� ∈ Rd×n , can be defined as representing s as a linear
combination of only a small subset of atoms in the dictionary
�, i.e., s = �x. Defining these sets, which dates back to
Fourier’s pioneering work [10], has been excessively studied in
the literature. In the early approaches, these sets of waveforms
have been selected as a collection of linearly independent and
generally orthogonal waveforms (which are called a complete
dictionary or basis, i.e., d = n) such as Fourier transform,
DCT, and wavelet transform, until the pioneering work of
Mallat [11] on overcomplete dictionaries (n 
 d). In the
last decade, interest in SR research increased tremendously.
Their wide range of applications includes denoising [12],
classification [13], anomaly detection [14], [15], deep learning
[16], and compressive sensing (CS) [17], [18].

With a possible dimensional reduction that can be satisfied
via a compression matrix A ∈ Rm×d (m � d), sample can be
obtained from s

y = As = A�x = Dx (1)

where D ∈ Rm×n can be called the equivalent dictionary.
Because (1) describes an underdetermined system of lin-
ear equations, finding the representation coefficient vector x
requires at least one more constraint to have a unique solution.
Using the prior information about sparsity, the following
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representation:
min

x
‖x‖0 s.t. Dx = y (2)

which is also an SR of x has a unique solution provided that x
is strictly sparse and D satisfies some required properties [19].
For instance, if ‖x‖0 = k, the minimum number of linearly
independent columns of D, spark(D), should be greater than
2k, i.e., spark(D) ≥ 2k in order to not to have Dx′ = Dx′′ for
distinct k-sparse signals, x′ and x′′ [19]. However, the opti-
mization problem in (2) is a NP-hard. Fortunately, the follow-
ing relaxation:

min
x
‖x‖1 s.t. Dx = y (3)

produces exactly the same solution as that of (2) provided that
D obeys some criteria: the equivalence of �0–�1 minimization
problems can be guaranteed when D satisfies a notation
of null space property (NSP) [20], [21] not only for exact
sparse signals but approximately sparse signals. Furthermore,
the query sample y can be corrupted with an additive noise
pattern. In this case, the equality constraint in (3) can be
further relaxed such as in the basis pursuit denoising (BPDN)
[22]: minx‖x‖ s.t. ‖y − Dx‖ ≤ ε, where ε is a small constant
that depends on the noise level. In this case, a stronger property
which is known as restricted isometry property (RIP) [23],
[24] is frequently used which both cover conditions satisfying
exact recovery of BP and stable recovery of BPDN, e.g.,
exact recovery of x from (3) is possible when D has RIP
and m > k(log(n/k)).

We may refer to the sparse SE problem as finding the
indices a set, �, of nonzero elements of x [25], [26]. Indeed,
in many applications, SE can be more important than finding
the magnitude and sign of x as well as �, which refers to the
sparse signal recovery (SSR) via a recovery technique, such
as (3). For example, in a sparse representation-based classi-
fication (SRC) system, a query sample y can be represented
with sparse coefficient vector, x, in the dictionary, D in such
a way that when we recover this representation coefficient
from y = Dx, the solution vector x̂ is expected to have a
significant number of nonzero coefficients coming from the
particular locations corresponding to the class of y.

Readers are referred to [9] for a more detailed literature
review on SE and its applications. In the sequel, we briefly
summarize the building blocks of the proposed approach.

III. BACKGROUND AND PRIOR ART

A. CheXNet

In the proposed approach, we first use the pretrained deep
network, CheXNet, to extract discriminative features from
raw X-ray images. CheXNet was developed for pneumonia
detection from the chest X-ray images [27]. In [27], it was
claimed that CheXNet can perform even better than expert
radiologists in the pneumonia detection problem. This deep
NN design is based on the previously proposed DenseNet [28]
that consists of 121 layers. It is first pretrained over ImageNet
data set [29] and performed transfer learning over 112120
frontal-view chest X-ray images in the ChestX-ray14 data
set [30].

B. Representation-Based Classification

Consider we are given a test sample y, which represents
either the extracted features, s, or their dimensionally reduced
version, i.e., y = As. In developing the dictionary, training
samples are stacked in the dictionary D with particular loca-
tions in such a way that the optimal support for a given query
y should be the set of all points coming from the same class
as y. Therefore, a solution vector, x̂ of y = Dx is supposed to
have enough information, i.e., the sparse support should be the
set of location indices of the training sample from the same
class as y. This strategy is generally known as representation-
based classification. However, a typical solution x̂ of y = Dx
is not necessarily a sparse one especially when its size
grows with more training samples, which results in a highly
underdetermined system of linear equations. Fortunately, if one
estimates the representation coefficient vector with a sparse
recovery design such as �1-minimization as in (3), we can
expect that the important nonzero entries of the solution, x̂,
are grouped in the particular locations that correspond to the
locations of the training samples from the same class as y. This
can be a typical example of scenarios where SE can be more
valuable than the magnitudes and sign recovery as explained
in Section II-B.

For instance, Wright et al. [8] proposed a systematic way of
determining the identity of face images using �1-minimization.
The authors develop a three-step classification technique that
includes: (i) normalization of all the atoms in D and y to have
unit �2-norm; (ii) estimating the representation coefficient vec-
tor via sparse recovery, i.e., x̂ = arg minx‖x‖1 s.t.‖y − Dx‖2;
and (iii) finding the residuals corresponding to each class via
ei = ‖y − Dix̂i‖2, where x̂i is the group of the estimated
coefficients, x̂, that correspond to class i .

This technique, which is known as SRC, and its variants
have been applied to a wide range of applications in the
literature [31], [32], e.g., human action recognition [33], and
hyperspectral image classification [34], to name a few. Despite
the good recognition accuracy performance of SRC systems,
their main drawbacks is the fact that their sparse recovery
algorithms (e.g., �1-minimization) are iterative methods and
computationally costly, rendering them infeasible in real-time
applications. Later, the authors of [6] introduced collaborative
representation-based classification (CRC), which is similar
to SRC except for the use of traditional �2-minimization in
the second step; x̂ = arg minx

{‖y − Dx‖2
2 + λ‖x‖2

2

}
. Thus,

CRC does not require an iterative solution to obtain rep-
resentation coefficient thanks to that �2-minimization has a
closed form solution, x̂ = (

DTD+ λIn×n
)−1

DTy. Although,
the sparsity in x̂ cannot be guaranteed, it has often been
reported to achieve a comparable classification performance,
especially in small-size training data sets.

IV. PROPOSED APPROACH

For a computer-aided COVID-19 recognition system design,
our primary objective is to achieve the highest sensitivity
possible in the diagnosis of COVID-19 induced pneumonia
with an acceptable false-alarm rate (e.g., specificity > 95%).
In particular, the misdiagnosis of a COVID-19 X-ray image
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Fig. 3. Proposed approach for Covid recognition from X-ray images. The proposed convolution support estimator network (CSEN) which can be trained from
a moderate size training set. The pipeline employs the pretrained deep NN for feature extraction. A is the dimensional reduction (PCA) matrix, the coarse
estimation of representation coefficient (sparse in ideal case), x̂ is obtained via the denoiser matrix, B = (

DT D+ λI
)−1DT , where D = A� and � is the

predefined dictionary matrix of training samples (before dimensional reduction).

as a normal case should be minimized whilst a small number
of false negatives (FNs) is tolerable.

Our interest in representation-based classification is that
they perform well in classification tasks even in the cases
where training data is scarce. As mentioned, the two well-
known representation-based classification methodologies are
SRC [7] and CRC [6]. Among them, SRC provides slightly
improved accuracy by solving an SR problem, i.e., producing
a sparse solution x̂ from y = Dx. Then, the location of
the nonzero elements of x̂, which is also known as support
set, provides the class information of the query y. Despite
improved recognition accuracy, SRC solutions are iterative
solutions and can be computationally demanding compared to
CRC. In a recent work [9], a compact NN design that can be
considered as a bridge between NN-based and representation-
based methodologies was proposed. The so-called CSEN uses
a predefined dictionary and learns a direct mapping using
moderate/low size training set, which maps query samples,
y, directly to the support set of representation coefficients, x
(as it should be purely sparse in the ideal case).

In this study, to address the data scarcity limitations
in COVID-19 diagnosis from X-ray images we propose
a CSEN-based approach. Since a relatively larger set of
COVID-19 X-ray images ever compiled is used in this study,
the proposed approach can be evaluated rigorously against
a high level of diversity to obtain a reliable analysis. The
general pipeline of the proposed CSEN-based recognition
scheme is illustrated in Fig. 3. In order to obtain highly
discriminative features, we use the recently proposed CheXNet
[27], which is the fine-tuned version of 121 layer Dense
Convolutional Network (DenseNet-121) [28] by using over
100 000 frontal view X-ray images form 14 classes. Having
the pretrained CheXNet for feature extraction, we develop
two different strategies to obtain the classes of query X-ray
images: 1) using CRC with proper preprocessing; 2) a slightly
modified version of our recently proposed convolution support
estimator (CSEN) models. In the sequel, both techniques will
be explained in detail as well as alternative solutions.

A. Benchmark Data Set: QaTa-Cov19

Accordingly, there are several recent works [35]–[38] that
have been proposed for COVID-19 detection/classification
from X-ray images. However, they use a rather small data set

(the largest containing only a few hundreds of X-ray images),
with only a few COVID-19 samples. This makes it difficult to
generalize their results in practice. To address this deficiency
and provide reliable results, in this study the researchers of
Qatar University and Tampere University have compiled a
bechmark Covid-19 data set, called QaTa-Cov19. Compared
to the earlier benchmark data set created in this domain, such
as COVID Chestxray Data set [39] or COVID-19 DATA SET
[40], QaTa-Cov19 has the following unique benchmarking
properties. First, it is a larger data set, not only in terms
of the number of images (more than 6200 images) but its
versatility, i.e., QaTa-Cov19 contains additional major pneu-
monia categories, such as viral and bacterial, along with the
control (normal) class. Moreover, this is a diverse data set
encapsulating X-ray images from several countries (e.g., Italy,
Spain, China, etc.) produced by different X-ray machines.

COVID-19 chest X-ray images were gathered from
different publicly available but scattered image sources.
However, the major sources of COVID-19 images are
Italian Society of Medical and Interventional Radiol-
ogy (SIRM) COVID-19 Database [40], Radiopaedia [41],
Chest Imaging (Spain) at thread reader [42] and online articles
and news portals [43]. The authors have carried out the task
of collecting and indexing the X-ray images for COVID-
19 positive cases reported in the published and preprint articles
from China, South Korea, USA, Taiwan, Spain, and Italy,
as well as online news-portals (up to 20th April 2020).
Therefore, these X-ray images represent different age groups,
gender, ethnicity, and country. Negative Covid19 cases were
normal, viral, and bacterial pneumonia chest X-ray images and
collected from the Kaggle chest X-ray database. Kaggle chest
X-ray database contains 5863 chest X-ray images of normal,
viral, and bacterial pneumonia with varying resolutions [44].
Out of these 5863 chest X-ray images, 1583 images are normal
images and the remaining are bacterial and viral pneumonia
images. Sample X-ray images from QaTa-Cov19 data set are
shown in Fig. 4.

B. Feature Extraction

With their outstanding performance in image classifica-
tion along with other inference tasks, deep NNs became
a dominant paradigm. However, these techniques usually
necessitate a large number of training samples (e.g., several
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Fig. 4. Samples from the benchmark QU-Chest data set.

hundred-thousand to millions depending on the network
size) to achieve an adequate generalization capability. Albeit,
we can still leverage their power by finding properly pretrained
models for similar problems. To this end, we use a state-of-
the-art pneumonia detection network, CheXNet, whose details
are summarized in Section III-A. With the pretrained model,
we extract 1024-long vectors, right after the last average
pooling layer. After data normalization (zero mean and unit
variance), we obtain a feature vector s ∈ Rd=1024.

A dimensionality reduction PCA is applied to s in order to
get the query sample, y = As ∈ Rm , where A ∈ Rm×d is PCA
matrix (m < d).

C. Proposed CSEN-Based Classification

Considering the limited number of training data in our
COVID-19 data set, a representation-based classification can
be applied hereafter to obtain the class of y using the dictio-
nary � (in the form of D = A�), whose columns are stacked
training samples with class-specific locations.

As discussed earlier, SRC is an SE problem which is
expected to be an easier task than an SSR problem. On the
other hand, even if the exact signal recovery is not possi-
ble in noisy cases or in cases where x̂ is not exactly but
approximately sparse (which is the case almost all the time in
dictionary-based classification problems), it is still possible to
recover the support set exactly [25], [38], [45], [46] or partially
[46]–[48]. However, many works in the literature dealing with
SE problems tend to first apply a sparse recovery technique
on y to first get x̂, then use simple thresholding over x̂ to
obtain a sparse SE, �̂. However, SSR techniques such as
�1-minimization are rather slow and their performance varies
from one SRR tool to another [9]. In our previous work [9],
we proposed an alternative solution for this iterative sparse
recovery approach which aims to learn a direct mapping from
a test sample y to the corresponding support set �̂. Along with

Fig. 5. Illustration of proposed dictionary design versus conventional design
in representation-based classifiers.

the speed and stability compared to conventional SSR-based
techniques and recent deep learning-based SSR solutions,
CSEN has the crucial advantage of having a compact design
that can achieve a good performance level even over scarce
training data.

Mathematically speaking, an ideal CSEN is supposed to
yield a binary mask v ∈ {0, 1}n

vi =1 if i ∈ � (4)

which indicates the true support, i.e., � =
{i ∈ {1, 2, . . . , n} : vi = 1}. In order to approximate this
ideal case, a CSEN network, P(y, D) produces a probability
vector p which returns a measure about the probability of
each index being in � such that pi ∈ [0, 1]. Having the
estimated probability map, estimating the support can easily
be done via �̂ = {i ∈ {1, 2, . . . , n} : pi > τ }, by thresholding
p with τ where τ is a fixed threshold.

A CSEN is composed of fully convolutional layers, and as
input it takes a proxy, x̃, of sparse coefficient vector, which
is a coarse estimation of x, i.e.,

(
DT D+ λI

)−1
DT y or simply

x̃ = DT y. Then, it yields the aforementioned probability like
vector p via fully convolutional layers. Using such a proxy of
x, instead of making inference directly on y has also studied
in a few more recent studies. For instance, in [49] and [50],
the authors proposed reconstruction-free image classification
from compressively sensed images. Alternatively, one may
design a network to learn proxy x̃ by fully connected dense
layers [49]. However, it increases the computational complex-
ity and may result in an even over-fitting problem with scarce
training data [9].

The input vector x̃ is reshaped to have a 2-D plane rep-
resentation in order to use it with 2-D convolutional layers.
This transformation is performed via reordering the indices
of the atoms in such a way that the nonzero elements of the
representation vector x for a specific class come together in
the 2-D plane. A representative illustration of the proposed
dictionary design compared to the traditional one is shown
in Fig. 5.

Hereafter, the proxy x̃ is convolved with the weight kernels,
connecting the input with the next layer with Nl filters to yield
the inputs of the next layer, with the biases b1 as follows:

f1 =
{

S1
(
ReLu

(
bi

1 + wi
1 ∗ x̃

))}N1

i=1 (5)
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Fig. 6. Baseline Approach I: CRC is fed by deep learning-based extracted features that are preprocessed.

Fig. 7. Baseline Approach II: A 5-layer MLP layer is used over the features of CheXNet.

where b1 is the weight bias, S1(.) is either identity or sub-
sampling operator predefined according to network structure
and ReLu(x) = max(0, x). For other layers, i.e., l > 2, the kth
feature map of layer l is defined as

fk
l = Sl

(
ReLu

(
bk

l +
Nl−1∑

i

wik
l ∗ f i

l−1

))
(6)

where Sl(.) is either identity operator or one the operations
from down- and up-sampling and Nl is the number of feature
maps in lth layer. Therefore, the trainable parameters of CSEN
will be: �CSEN =

{{wi
1, bi

1}N1
i=1, {wi

2, bi
2}N2

i=1, . . . , {wi
L , bi

L}NL
i=1

}

for an L layer CSEN design.
In developing the dictionary that is to be used in the

SRC, the training samples are stacked-in by grouping them
according to their classes. Thus, instead of using tradi-
tional �1-minimization formulation as in (3), the following
group �1-minimization formulation may result in increased
classification accuracy:

min
x

{
‖Dx − y‖2

2 + λ

c∑

i=1

‖xGi‖2

}
(7)

where xGi is the group of coefficients from the i th class. In this
manner, one possible cost function for a SE network would
be

E(x) =
∑

p

(P�(x̃)p − v p)
2 + λ

c∑

i=1

‖P�(x̃)Gi‖2 (8)

where P�(x̃)p is network output at location p and v p is the
ground truth binary mask of the sparse code x. Due to its high
computational complexity, we approximate the cost function
in (8) with a simpler average pooling layer after convolutional
layer, which can produce directly the estimated class in
our CSEN design. An illustration of proposed CSEN-based
COVID-19 recognition is shown in Fig. 3.

D. Competing Methods

This section summarizes the competing methods that are
selected among numerous alternatives due to their superior
performance levels obtained in similar problems. For fair
comparative evaluations, all classification methods have the
same input feature vectors fed to the proposed CSENs.

1) Collaborative Representation-Based Classification: As a
possible competing technique to the proposed CSEN-based
technique which is a hybrid method, CRC [6] is a direct and
representation-based classification method that can be applied
to this problem as shown in Fig. 6. It is a noniterative SE
technique, that satisfies faster and comparable classification
performance with SRC while it is more stable compared
to existing iterative sparse recovery tools as it is shown
in [9]. In the first step of CRC, the tradeoff parameter of
the regularized least-square solution is set as λ = 2 ∗ 10−12.
In order to obtain the best possible λ, a grid search was made
in the range [10−15, 10−1] with a log scale.

2) Multilayer Perceptron (MLP) Classification: The pro-
posed COVID-19 recognition pipeline can be modified by
replacing CSEN or CRC part with another classifier. As one
of the most-common classifiers, a 4-hidden layer multilayer
perceptron (MLP) is used for this problem as shown in Fig. 7.
For training, we used back-propagation (BP) with Adam
optimization technique [51]. The network and training hyper-
parameters are as follows: learning rate, α = 10−4, and
moment updates β1 = 0.9, β2 = 0.999, and 50 as the number
of epochs. Fig. 8 illustrates the network configuration in detail.
This network configuration has achieved the best performance
among others (deeper and shallower) where deep configura-
tions have suffered from over-fitting while the shallow ones
exhibit an inferior learning performance.

3) Support Vector Machines (SVMs): For a multiclass
problem, the first objective is to select the SVM topology for
ensemble learning: one-versus-one or one-versus-all. In order
to find the optimal topology and the hyperparameters (e.g., ker-
nel type and its parameters) we first performed a grid-search
with the following variations and setting: kernel function
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Fig. 8. MLP configuration.

TABLE I

CLASSIFICATION PERFORMANCES OF THE PROPOSED CSEN AND
COMPETING METHODS. THE BEST COVID-19 RECOGNITION

RATES ARE HIGHLIGHTED

{linear, radial basis function (RBF)}, box constraint
(C parameter) in the range [1, 103] with a log scale, and
kernel scale (γ for the RBF kernel) in the range [10−4, 10−2]
with a log scale.

4) k-Nearest-Neighbor (k-NN): Finally, we use a traditional
approach, k-nearest neighbor (k-NN) is used with PCA dimen-
sionality reduction. In a similar fashion, the distance metric
and the k-value are optimized by a prior grid-search. The
following distance metrics are evaluated: City-block, Cheby-
shev, correlation, cosine, Euclidean, Hamming, Jaccard, Maha-
lanobis, Minkowski, standardized Euclidean, and Spearman
metrics. The k-value is varied within the range of [1, 4416]
with a log scale.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We have performed our experiments over the
QaTa-Cov19 data set, which consists of normal and
three pneumonia classes: bacterial, viral, and COVID-19.

TABLE II

NUMBER OF IMAGES PER CLASS AND PER-FOLD BEFORE AND
AFTER DATA AUGMENTATION

The proposed approach is evaluated using a stratified fivefold
cross-validation (CV) scheme with a ratio of 80% for training
and 20% for the test (unseen folds) splits, respectively.

Table II shows the number of X-ray images per class in the
QaTa-Cov19 data set. Since the data set is unbalanced, we have
applied data augmentation to the training set in order to bal-
ance the size of each class in the train set. Therefore, the X-ray
images in viral and COVID-19 pneumonia and normal classes
are augmented up to the same number as the bacterial pneu-
monia class in the train set. We use Image Data Generator by
Keras to perform data augmentation by randomly rotating the
X-ray images in a range of 10◦, randomly shifting images both
horizontally and vertically within the interval of [−0.1,+0.1].
In each CV fold, we use a total of 8832 and 1257 images in
the train and test (unseen in the fold) sets, respectively.

The experimental evaluations of SVM, k-NN, and CRC are
performed using MATLAB version 2019a, running on PC with
Intel® i7-8650U CPU and 32 GB system memory. On the
other hand, MLP and CSEN methods are implemented using
Tensorflow library [52] with Python on NVidia® TITAN-X
GPU card. For the CSEN training, ADAM optimizer [51] is
used with the proposed default learning parameters: learning
rate, α = 10−3, and moment updates β1 = 0.9, β2 = 0.999
with only 15 back-propagation epochs. Neither grid-search
nor any other parameter or configuration optimization was
performed for CSEN.

B. Experimental Results

The same network configurations are used for CSEN as
in [9]. Accordingly, we use two compact CSEN designs:
CSEN1 and CSEN2, respectively. The first CSEN network
consists of only two hidden convolutional layers, the first
layer has 48 neurons and the second has 24. ReLu activation
function is used in the hidden layers and the filter size was
3×3. On the other hand, CSEN2 uses max-pooling and has one
additional hidden layer with 24 neurons to perform transposed-
convolution. CSEN1 and CSEN2 are compared against the 6
competing methods under the same experimental setup.

For the dictionary construction in � each CSEN design, 625
images for each class (from the augmented training samples
per fold) are stacked in such way that the representation coeffi-
cient in the 2-D plane, X has 50×50 size as shown in Fig. 5.
The rest of the images in the training set are used to train
each CSEN, i.e., 1583 samples from each class. We use PCA
dimensional reduction matrix, A with the compression ratio,
CR = (m/d) = 0.5. Therefore, we have 512×2500 equivalent
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TABLE III

NUMBER OF NETWORK PARAMETERS OF EACH METHOD

dictionary, D, and 2500×512 denoiser B = (
DT D+ λI

)−1
DT

to obtain a coarse estimation of the representation (sparse in
the ideal case) coefficients, x̃ ∈ Rn=2500. Hereafter, the CSEN
networks are trained to obtain the class information of y from
input x̃ as illustrated in Fig. 3.

Due to the lack of other learning-based SE studies in the
literature, we chose a deeper network compared to CSEN
designs to investigate the role of network depth in this
problem. ReconNet [53] was proposed as a noniterative deep
learning solution to CS problem, i.e., ŝ← P(y) and it is one of
the state of the art in compressively sensed image recognition
task. It consists of six fully convolutional layers and one dense
layer in front of the convolutional ones, which act as the
learned denoiser for the mapping from y ∈ Rm to s̃ ∈ Rd .
Then, the convolutional layers are responsible for producing
the reconstructed signal, ŝ from s̃. Therefore, by replacing this
dense layer with the denoiser matrix B, this network can be
used as a competing method.

Both CSEN and the modified ReconNet use x̃ as an input,
which is produced using an equivalent dictionary D and its
pseudo-inverse matrix B.

In designing the dictionary of the CRC system, all training
samples are stacked in the dictionary, �, i.e., 2208 samples
from each class. The same PCA matrix used in CSEN-based
recognition, A is applied to features, s ∈ Rd=1024. Therefore,
a dictionary D of size 512 × 8832 and the corresponding
denoiser matrix B of size 8832 × 512 are used in the CRC
framework.

Overall, the confusion matrix elements are formed as fol-
lows: true positive (TP): the number of correctly detected
positive class members, true negative (TN): the number of cor-
rectly detected negative class samples, false positive (FP): the
number of misclassified negative class members as positive,
and FN: the number of misclassified positive class samples
as negative (i.e., missed positive cases). Then, the standard
performance evaluation metrics are defined as follows:

Sensitivity = TP

TP+ FN
(9)

where sensitivity (or Recall) is the rate of correctly detected
positive samples in the positive class

Specificity = TN

TN+ FP
(10)

where specificity is the ratio of accurately detected negative
class samples to all negative class

Precision = TP

TP+ FP
(11)

where precision is the rate of correctly classified positive class
samples among all the members classified as a positive sample

Accuracy = TP+ TN

TN+ TP+ FP+ FN
(12)

TABLE IV

COMPUTATION TIMES (SEC) OF EACH METHOD OVER 1257 TEST IMAGES

TABLE V

OVERALL (CUMULATIVE) CONFUSION MATRIX OF THE

PROPOSED RECOGNITION SCHEME

where accuracy is the ratio of correctly classified elements
among all the data

F(β) = (
1+ β2) (Precision+ Sensitivity)(

β2 ∗ Precision
)+ Sensitivity

(13)

where F-score is defined by the weighting parameter β. The
F1-score is calculated with β = 1, which is the harmonic
average of precision and sensitivity.

The classification performance of the proposed CSEN-based
approach and the competing methods is presented in Table I.
As can be easily observed from Table I, the proposed
approaches surpass all competing methods in COVID-
19 recognition performance by achieving 98.5% sensitivity,
and over 95% specificity. As shown in Table III, compared
to MLP and ReconNet, the proposed CSEN designs are
very compact and computationally efficient. This is evident
in Table IV where the computational complexity (measured as
total computation, time over the 1257 test images) is reported.

Finally, Table V presents the overall (cumulative) confusion
matrix of the proposed CSEN-based COVID-19 recognition
approach over the new QaTa-Cov19 data set. The most critical
misclassifications are the false-positives, i.e., the misclassified
COVID-19 X-ray images. The confusion matrix shows that the
proposed approach has misclassified seven COVID-19 images
(out of 462). The 3 out of 7 misclassifications are still in “viral
pneumonia” category, which can be an expected confusion
due to the viral nature of COVID-19. However, the other four
cases are misclassified as “Normal” which is indeed a severe
clinical misdiagnosis. A close look at these false-negatives
in Fig. 9 reveals the fact that they are indeed very similar to
normal images where typical COVID-19 patterns are hardly
visible even by an expert’s naked eye. It is possible that these
images come from patients who were in the very early stages
of COVID-19.

VI. DISCUSSION

A. CRC Versus CSEN

When compared against CRC in particular, CSEN-based
classification has two advantages; computational efficiency
and, a superior COVID-19 recognition performance. The
computational efficiency comes from the fact that a larger
size dictionary matrix (of the size of 512 × 8832) is used
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Fig. 9. FNs of the proposed COVID-19 recognition scheme.

TABLE VI

PERFORMANCE OF CRC ALGORITHM WHEN THE DICTIONARY (SIZE

OF 625 PER CLASS) THAT IS USED IN CSEN IS USED

in CRC and hence, this requires more computations in
terms of matrix-vector multiplications. Furthermore, saving
the trainable parameters (∼16k) and a light dictionary matrix
coefficients (∼1280k) in the test device is more memory
efficient compared to saving coefficients (∼4521k) of larger
size dictionary used in CRC.

For further analysis, we also tested the CRC framework
by using the light dictionary (of size 512 × 2500) used in
CSEN-based recognition. We called it CRC (light), and as
it can be seen in Table VI, the performance of CRC further
reduced, and there was no significant improvement concerning
the computational cost. When it comes to creating deeper
convolutional layers instead of using CSEN designs, such
as the modified ReconNet, the results presented in Table I
shows us that compact CSEN structures are indeed preferable
to achieve superior classification performances compared to
deeper networks.

B. Compact Versus Deep CSENs

Representation-based classifications are known for provid-
ing satisfactory performance when it comes to limited size data
sets. On the other hand, deep artificial NNs usually require
a large training set to achieve a satisfactory generalization
capability.

In a representation-based (dictionary) classification scheme
when the dictionary size getting bigger (increase the number of
training samples), the computational complexity of the method
drastically increases. The proposed CSEN is an alternative
approach to handle both moderate and scarce data sets via
compact as possible NN structures for the dictionary-based
classification.

Since there is no other learning-based SE method except
CSEN in the literature, we chose ReconNet as a possible
competing algorithm for this problem as explained in detail
in Section V. ReconNet has six fully convolution layers.
As an ablation study, we also add more hidden layers to
proposed CSEN models to compare: CSEN3 and CSEN4 mod-
els were obtained by adding one and two hidden layers to
CSEN2, respectively, after the transposed convolutional layer.

TABLE VII

PERFORMANCE OF ALTERNATIVE DEEPER DESIGNS COMPARED

TO COMPACT CSENS

TABLE VIII

NUMBER OF NETWORK PARAMETERS OF COMPETING SE NETWORKS

Additional layers have 24 neurons, ReLu activation functions
and filter size 3 × 3. As we can observe from Tables VII
and VIII, the proposed compact designs, CSEN1 and CSEN2,
both surpass deeper counterparts both in performance and the
required number of parameters.

VII. CONCLUSION

The commonly used methods in COVID-19 diagnosis,
namely RT-PCR and CT have certain limitations and draw-
backs such as long processing times and unacceptably high
misdiagnosis rates. These drawbacks are also shared by most
of the recent works in the literature based on deep learning
due to data scarcity from the COVID-19 cases. Although deep
learning-based recognition techniques are dominant in com-
puter vision where they achieved state-of-the-art performance,
their performance degrades fast due to data scarcity, which is
the reality in this problem at hand. This study aims to address
such limitations by proposing a robust and highly accurate
COVID-19 recognition approach directly from X-ray images.
The proposed approach is based on the CSEN that can be seen
as a bridge between deep learning models and representation-
based methods. CSEN uses both a dictionary and a set of
training samples to learn a direct mapping from the query
samples to the sparse support set of representation coefficients.
With this unique ability and having the advantage of a compact
network, the proposed CSEN-based COVID-19 recognition
systems surpass the competing methods and achieve over 98%
sensitivity and over 95% specificity. Furthermore, they yield
the most computationally efficient scheme in terms of speed
and memory.
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Abstract—We develop a through-the-wall radar imaging
(TWRI) system using stepped-frequency radar for the detection
of stationary objects at close distances. This system uses the
random frequency sampling and a structural sparsity based
reconstruction method. The proposed reconstruction algorithm
employs the block sparse structure and smoothness character-
istics of the illuminated scene. In experiments on real data, we
show that the proposed sparsity-based reconstruction algorithm
outperforms the conventional `1 minimization-based radar imag-
ing results.

Index Terms—Compressive Sensing, Radar Imaging, Struc-
tural Sparsity, Random Frequency Radar Imaging

I. INTRODUCTION

A stepped-frequency system (SFS) [1] works based on
transmission of short electromagnetic waveforms at sequenced
frequency steps, and measurement of the magnitude of the
reflected signal and its phase difference with reference to the
transmitted signal. One can consider the SFS method as a
sampling in the frequency domain over a wide bandwidth.
Modulated short pulses at stepped frequencies achieve ultra-
bandwidth illumination of the medium, which is a crucial
requirement where both low and high frequencies need to
be employed as in the case of ground penetrating radar
(GPR) [2] or TWRI. Other advantages of SFS list as lower
transmission power, higher SNR value since the receiver is
exposed to less noise in the smaller bands at stepped discrete
frequencies [3], and finally use of existing efficient hardware
implementation. Despite these advantages, one shortcoming
is that they suffer from high data acquisition time since the
radar transmitter and receiver has to operate at only a-single-
frequency at-a-time. There have been some studies [4] where
multi-frequencies are transmitted concurrently. However, the
state-of-the-art approach is to transmit a subset of stepped
frequencies and reconstruct the signal using techniques from
Compressive Sensing theory [5]. In this study, we adopt this
approach and use measurements of random subsets of Fourier
coefficients to reconstruct the A-scan data.

There has been a recent interest in the literature in random
frequency radar imaging [5], [6], [9], [10]. These works

assume either a point-like sparse scene where the number
of targets is less than the number of grid points in a 2-
D uniformly discretized space and that the target’s body is
small or the whole vectorized 2-D radar image is sparse
in some domain, but the sparsity is not structured. In [5],
random frequency GPR measurements are considered that
compressively sense the A-scan of a sparse scene and the 1-
D A-scan vectors are then estimated using CS reconstruction
methods. In [6], the same methodology is applied for through-
the-wall imaging, but sparse estimation of A-scan vectors are
further improved by applying delay-and-sum beam-forming.
In [7], [8], CS is also applied in TWRI, but the authors also
assume point-like sparse scene. In a different vein, [9] assumes
that the scene is not necessarily sparse in the canonical base,
but sparse in a specific dictionary, e.g., GPR dictionary. A
SAR version of these works takes place in [10], where the
authors consider the sensed 2D scene image and reconstruct
the SAR image by vectorizing it and assuming sparsity in a
suitable 2-D sparsifying transform included canonical domain.

These schemes, however, are not convenient for scenarios
where the illuminated scene exhibits structural sparsity pattern:
a block-sparse model in x-position axis where each sparse
A-Scan vector shares the same support or at least these
successive scan vectors encounter smooth changes. While in
[5], [6], [9] each A-scan 1-D vector is reconstructed as a sparse
vector and then the B-Scan 2-D radar image is constructed by
concatenating them, we use a different approach and estimate
consecutive A-scan vectors in ensembles over sliding intervals.
We assume that in TWRI scenarios, depth data does not
contain step changes unless a new object starts being seen
by the A-scan. We can thus assume that each A-scan vector
to be sparse and that the locations of their non-zero amplitude
coefficients remain practically the same during the viewing
of an object. Our approach also enables to adaptively change
the measurement matrix while compressively sensing A-scan
signals in every successive position if we apply the recon-
struction algorithm in an on-line manner during sensing. This
is because we reconstruct the 2-D scene in sliding window
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mode and we can detect the energy increase in measurement
if a new object comes to picture. In addition to the random
frequency-based CS radar imaging, a time-domain CS radar
system is also possible [11], and our algorithm would still
be applicable provided the structural sparsity assumption is
satisfied. The time-domain scheme, however, requires more
complex hardware design and is out of the scope of this work.

We organize the rest of this paper as follows. Section II
provides the notation, the mathematical preliminaries and brief
review of CS theory. Section III provides a brief review of
stepped-frequency radar data acquisition method and explains
the compressive stepped frequency data sampling. In Section
IV, we propose our ADMM based radar image reconstruction
approach. Finally, experimental setup and reconstructed radar
images are given and the conclusion is drawn. In this work,
we set up a UWB SF-GPR scenario in the laboratory and use
Anritsu Network analyzer obtain real data through the wall.

II. PRELIMINARIES

To introduce our notation, we define, the `p norm of a

vector x 2 RN as kxkp =
⇣PN

i=1 |xi|p
⌘1/p

for p � 1. For
compressive sensing (CS) [12], we have m of measurements
y 2 Rm of a signal vector S 2 RN , i.e., y =  S where  is
the m⇥N measurement matrix. Assuming that this signal is
k-sparse in a sparsifying basis �, then the general compressive
sensing setup becomes y =  �x = Ax, where A =  �. The
compressively sampled sparse signal can be reconstructed by
solving the following `1 minimization problem;

min
x
kxk1 subject to Ax = y. (1)

For the measurement matrix � one may use randomly
selected m rows of an orthonormal basis, ⇥, which are indexed
with ⌦ 2 {1, 2, 3, ..., N}. With such a measurement matrix
�, then the k-sparse signal can be exactly reconstructed as
solution of (1) (see [13] for Mutual Coherence).

Finally, we define the proximal operator of a function f at
a point z 2 RN with a parameter � > 0 as

prox�f (z) = arg min
u

{f(u) +
1

2�
ku� zk22}. (2)

to be used in Eqs. (11) and (12).

III. COMPRESSIVE GPR SYSTEM

A. Stepped Frequency

Assume that the frequency of nth pulse is given as,

fn = f0 + n�f, n = 0, ..., N � 1 (3)

where �f is frequency interval. The reflected signal is defined
as [14]

r(n, t) ⇡ .s(
t� 2R/c

Td
)e

⇣
�j

4⇡(f0+n�f)R
c

⌘
(4)

where  is a constant representing attenuation effect, c is the
speed of light, s(t) is the base modulated signal transmitted,
R is the range and Td is the pulse duration. Since the phase

Fig. 1: Representation of stepped frequency waveform (a)
transmitted signal (b) received signal after inverse Fourier
transform.

Fig. 2: Scan type of the GPR (a) A-scan (b) B-scan.

of the reflected signal is linearly related to n for a fixed R, we
expect a pulse-like response in the dispersion-free case [10].
The location of this return pulse in time domain gives the
depth information of the object as pictured in Figure 1.

For TWRI, we consider two scan types, the A-scan and the
B-scan. The A-scan data gives the range profile corresponding
to a single pulse of the radar. The radar signal sent by the
transmitting antenna is reflected from the targets and the return
signals are captured by the receiving antenna. The information
about the target is obtained by interpreting the amplitude and
phase value of the received signal.

Along the x-axis scan direction, the A-scan data is collected
in constant spatial displacements to generate a 2-D matrix.
This 2-D matrix allows us to create a 2-D image, called the
B-scan, of the scene. This B-scan pictures the x-z reflectivity
plane of the space behind the wall, where the range (z-axis)
indicates the distance from the target, and the position (x-axis)
defines the horizontal motion of the antenna. The method of
obtaining A-Scan and B-Scan is pictured in Figure 2. It is
possible to obtain a 3D image, called C-scan, including the
vertical position (y-axis).

B. Incoherent Measurements

A natural selection of measurement matrix for the stepped
frequency TWRI case consists in randomly choosing rows
from Fourier basis F⌦. This corresponds simply to measur-
ing randomly m frequency responses at some location l,i.e.,
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79. A-Scan 81. A-Scan 83. A-Scan

Wall 

Object 

Fig. 3: A-Scan signals are obtained by taking IFFT of N =
201 uniformly sampled frequencies between 0.1 GHz-15 GHz
at positions 79, 81 and 83.

yl = F⌦l
xl, x 2 RN , y 2 Rm. For B-scan, one slides

the TWRI device from position l to l + 1 to take the next
m measurements, yl+1 = F⌦l+1

xl+1 and so on along the x
trajectory. In this setup, each 1-D vector, xl representing the
depth information is considered to be sparse, hence amenable
to CS-based reconstruction from (1).

In the ideal case where xl is exactly k-sparse, we know that
it can be exactly reconstructed if we have m � O(k.logN)
[13]. But in reality, we obtain noisy time domain A-Scans
with spiky peaks in the range of object positions as illustrated
in Figure 3. These signals are therefore not exactly sparse,
but compressible in the sense that one may zero-out the small
coefficients to make the object visible and obtain sparse range-
profile.

IV. PROPOSED RECONSTRUCTION

Through-the-wall imaging is a well-established technique to
detect and identify objects behind opaque structures. A case in
point is an urgent rescue operation after an earthquake where
bodies and limbs need to be identified or a terrorist attack
where persons and possibly arms need to be detected behind
concrete walls.

In these cases, radar imaging of a human body cannot be
assumed as a point-like sparse signal. One then expects the
entries in the x-z matrix of the B-scan to possess a block-
sparse structure of some size D. In the B-scan matrix, l refer
to each scan position of the radar as a column. Thus if there
is a reflecting object behind the wall, then the B-scan non-
zero coefficients will start emerging at some position l and
continue the position l + D. Conversely, we do not expect
a change vis-a-vis the background until a new object comes
into picture at some location l for the duration of D A-scan
steps. The non-zero coefficients from position xl till the end
of the reflecting body will continue without much variation
both in (i) magnitude and (ii) indices of non-zero coefficients.
Condition (i) can be satisfied by adding a total variation term to
be minimized i.e.,

PT+⌧�1
l=⌧ kxl+1 � xlk1, where T is sliding

window length and ⌧ is the current position. Assumption (ii)
can be satisfied if we allow the supports of non-zero coeffi-

cients in successive A-scans by minimizing the number of non-
zero rows in the current window, i.e.,

PN
i=1

���xi
⌧ :(⌧+T�1)

���
2
.

The necessity of this term enforcing row sparsity can be seen
in Figure 3 since the non-sparse supports of successive A-
Scans are expected to remain same during object. However,
this row sparsifying may cause an undesirable noise effect in
the solution of the system when T >> D. Because the non-
sparse support in the solution continue to remain same for
a while, i.e, between 1 to T new scan. Therefore, we may
wish to divide this T A-Scan solutions into group of adjacent
columns of length L with L  T . These groups can be formed
in non-overlapping manner, i.e, x

e
i,k = xi

⌧+(k�1)L:(⌧+kL�1), or
over-lapping manner, i.e., x

e
i,k = xi

⌧+(k�1):(⌧+L+k�1), where
x
e

i,k is the k.th group of i.th row. We can formulate a cost
function that satisfies these assumptions as follows:

x̂⌧ :(⌧+T ) = arg min
x⌧:(⌧+T )

(
�1

2

T+⌧X

t=⌧

kyl � Ftxlk22 +

�2

NX

i=1

X

k

��x
e

i,k
��

2
+ �3

T+⌧�1X

t=⌧

kxt+1 � xtk1) (5)

where �1,�2,�3 are regularization parameters. The first term
is simply the data fidelity term, the second is the block
sparsity constraint and the third one constrains the reflection
coefficients from the object to remain the same. If we represent
the concatenation of desired signals from time ⌧ to T + ⌧ in
matrix form, i.e., x⌧ :(⌧+T�1) = X 2 RN⇥T then we can
rewrite equation (5) as

X̂ = arg min
X

(
�1

2

TX

d=1

kyd � Fdxdk22+�2 kXk2,1;L+�3 kXkTv,1)

(6)
where kXk2,1;L =

PN
i=1

P
k

��x
e

i,k
��

2
parameter enforcing

row base group sparsity with window length L , X 2 RN⇥T

is current sliding window matrix and xd is d.th column of this
matrix with corresponding measurement matrix Fd.

We will follow a ADMM based scheme to solve this
problem. A consensus form of (5) can be written as

⇣
X̂, Ẑ1, Ẑ2

⌘
= arg min

X
(
�1

2

TX

d=1

kyd � Fdxdk22+�2 kZ1k2,1;L

+ �3 kZ2kTv,1) subject to Z1 = X, Z2 = X. (7)

The augmented Lagrangian form of (7) can be cast as

L(�1,�2, X, Z1, Z2) = (
�1

2

TX

d=1

kyd � Fdxdk22+�2 kZ1k2,1

+ �3 kZ2kTv,1 + h�1, (Z1 �X)i+ h�2, (Z2 �X)i+
µ1

2
kX � Z1k2F +

µ2

2
kX � Z2k2F ), (8)

where the last two penalty terms with µ1, µ2 > 0 and
�1 2 RN⇥T ,�2 2 RN⇥T are dual variables. In ADMM,
primal and dual variables can be updated in alternating manner.
Dual variable updates can be easily done by applying gradient
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ascent steps [15] as given in Algorithm 1. Therefore, for the
sake of convenience we will derive just primal updates. The
updates of Z1 can be done via

Zk+1
1 = arg min

Z1

{�2 kZ1k2,1 + h�1, (Z1 �X)i

+
µ1

2
kX � Z1k2F } (9)

which is equivalent to

Zk+1
1 = arg min

Z1

(
�2 kZ1k2,1;L +

µ1

2

����Z1 �
✓

Xk+1 � �k
1

µ1

◆����
2

F

)
.

(10)
This is nothing but the proximal operator of windowed `2,1-

norm,

Zk+1
1 = prox

(
�2
µ1

)k.k2,1;L

✓
Xk+1 � �k

1

µ1

◆
. (11)

For non-overlapping groups, one can derive it as follows

(prox�k.k2,1;L
(Z))

^

i,k =

8
<
:

✓
1� �

kZe
i,kk

◆
Z
e

i,k if � <
��Z
e

i,k
��

0 else

by using [16] section 6.5.4, where M
f

i,k is the k.th group of
row i. For over-lapping case, it will be [17]

(prox�k.k2,1
(Z))(j, k) =

8
<
:

✓
1� �

kZe
i,kk

◆
Z(j, k) if � <

��Z
e

i,k
��

0 else

where M(j, k) is the k-th element of j-th row. Similarly, the
update of Z2 will be proximal operator of `TV,1 as follows

Zk+1
2 = prox

(
�3
µ2

)k.kT V,1

✓
Xk+1 � �k

2

µ2

◆
. (12)

On can also find the X update equation by solving
rxL(.) = 0, because the right hand side of the equation is
differentiable. The overall algorithm is given in Algorithm 1,
where we define Md as d-th column of a matrix M .

Algorithm 1 ADMM for Problem
repeat

Primal Updates
xk+1

d  (�1F
T
d Fd + Iµ1 + Iµ2)

�1

(�1F
T
d yd + µ1Z1d

+ µ2Z2d
+ �k

1d
+ �k

2d
)

Zk+1
1  prox

(
�2
µ1

)k.k2,1;L

⇣
Xk+1 � �k

1

µ1

⌘

Zk+1
2  prox

(
�3
µ2

)k.kT V,1

⇣
Xk+1 � �k

2

µ2

⌘

Dual Updates:
�k+1

1  �k
1 + µ1(Z

k+1
1 �Xk+1)

�k+1
2  �k

2 + µ2(Z
k+1
2 �Xk+1)

until Convergence
return X̂

V. EXPERIMENTS
A. Experimental setup

In this study, the stepped frequency scanning was performed
using the Anritsu vector network analyzer and two horn
antennas in the spectral frequency band from 100 MHz to
15 GHz in 201 frequency steps. The receiver and transmitter
antenna pairs were shifted 150 times to combine the B-scan
data with 2 cm step length along a 3 m fixed x-axis. In
the designed scenario, we aimed to detect a target concealed
behind the wall. In accordance with this purpose, a metal body
model was placed behind a wall of approximately 30 cm to
perform the screening. The distance between the antenna pairs
and the metal target is 85 cm. Dimensions of the metal body
model detailed in the figure are in the rough 44x95 cm.

Fig. 8: Measurement scenario concerning with detection of the
target behind the wall.
B. Experimental Results

In Figure 4 (a), we shows the B-Scan obtained using from
IFFT of all N = 201 frequencies. A wall closed the reader and
an object in the middle easily identifiable. Figure 4 (b) shows
IFFT results of m = 0.2⇤N randomly chosen frequencies, we
can call it `2 minimization result. Figure 5 (a) shows the when
we randomly choose m = 0.2 ⇤ N random frequencies and
`1 minimization method where each A-Scan estimate is done
independently. As it is shown in Figure 5 (a) and Figure 6 (a),
in `1 results, object is not identifiable when m = 0.2 but when
we increase it to m = 0.4 it becomes more visible. Both Figure
5-6 (b) shows us then proposed approach when successive A-
Scan estimates support each other, object is visible even for
m = 0.2 ⇤N .

We also extend this experiment to the situation where we
exactly know the wall location, despite an improvement in the
result of `1 minimization method due to increase in sparsity
level we achieve much more improvement in the result of
the proposed method if we consider the location and shape
estimate of the object. We use over-lapping groups in that
experiment with L = 10. As shown in Figure 8, the object
length D = 22 (22) cm in our experimental setup which is
approximately estimated in all experiments.

VI. CONCLUSION

In this work, we define a random frequency through the
all imaging system. Then, we have proposed a new CS
reconstruction algorithm working on sliding window mode for
this system. This reconstruction method enjoys the information
that successive A-Scan signals have similar structures. The
algorithm can also be applied in an on-line manner during
the measurement process, therefore can help to adaptively
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Fig. 4: Estimated B-Scan images. There is a wall through all A-scan and object to be detected in the middle. (a) Non-CS B-scan.
IFFT is applied to get A-scan data to N = 201 uniformly sampled frequency in the signal band between 0.1 GHz-15GHz. (b)
B-scan estimation when IFFT applied to m = 0.2 ⇤N randomly chosen subset of these frequencies.

Fig. 5: (a) B-scan estimation when `1 minimization is applied to randomly chosen m = 0.2 ⇤ N frequencies. (b) B-scan
estimation of proposed Reconstruction.

Fig. 6: (a) B-scan estimation when `1 minimization is applied
to randomly chosen m = 0.4 ⇤ N frequencies. (b) B-scan
estimation of proposed Reconstruction.

Fig. 7: Estimated B-Scan images when the wall location is
known in advance. (a) B-scan estimation when `1 minimiza-
tion is applied to randomly chosen m = 0.2 ⇤N frequencies.
(b) B-scan estimation of proposed Reconstruction.

change the number of measurements taken in a fixed position.
This study can also be extended to the randomized position
choosing such as in SAR imaging or randomized B-Scan
choosing in C-Scan case.
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Multi-Level Reversible Data Anonymization via
Compressive Sensing and Data Hiding
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Abstract— Recent advances in intelligent surveillance systems
have enabled a new era of smart monitoring in a wide range
of applications from health monitoring to homeland security.
However, this boom in data gathering, analyzing and sharing
brings in also significant privacy concerns. We propose a Com-
pressive Sensing (CS) based data encryption that is capable
of both obfuscating selected sensitive parts of documents and
compressively sampling, hence encrypting both sensitive and
non-sensitive parts of the document. The scheme uses a data
hiding technique on CS-encrypted signal to preserve the one-
time use obfuscation matrix. The proposed privacy-preserving
approach offers a low-cost multi-tier encryption system that
provides different levels of reconstruction quality for different
classes of users, e.g., semi-authorized, full-authorized. As a case
study, we develop a secure video surveillance system and analyze
its performance.

Index Terms— Reversible privacy preservation, multi-level
encryption, compressive sensing, video monitoring.

I. INTRODUCTION

MANY emergent smart surveillance applications (i.e.,
buildings, infrastructure, stores, ambient-assisted liv-

ing, public areas) necessitate time-continuous data gathering
and processing. Upcoming 5G and IoT technologies will
enable continuous data collection and processing for per-
sistent monitoring [1]. For example, an intelligent building
system equipped with monitoring sensors such as CO2 meters,
thermometers, cameras or other types of IoT devices will
be instrumental in effectively automating tasks of heating,
ventilation, and conditioning (HVAC) systems, or in improving
the fault and hazard detection performance [2]. Another case
in point is an intelligent network of cameras for continuous
site surveillance or a health monitoring system [3], which
gathers users’ bio-signals along with video/speech data to be
processed remotely. These applications and their variants that
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collect data via sensors or edge devices bear the concern of the
privacy of people and possibly of sites. In fact, the European
General Data Protection Regulation (GDPR) legislation [4] has
specifically addressed these privacy concerns in data collection
and processing.

Currently, there exist a plethora of privacy-preserving tech-
nologies that vary in the data type and in the application
scenario. Even the definition of privacy is up to change
for different application areas and use cases, depending on
whether it is signal processing, a database system, secure
communication, etc., [5]. Under privacy concern, documents
are considered to consist of private, i.e., sensitive parts, those
parts that could potentially expose compromising information
to unauthorized users, and of public, i.e., non-sensitive parts.
Privacy-preserving data processing then aims to encrypt the
private parts of a document without deteriorating its public
parts. Recent comprehensive surveys provide useful guidelines
in privacy-preserving data mining [6], [7], signal process-
ing [8], [9], and privacy metrics [5].

In principle, a naive application of strong cryptography
methods such as AES [10] or RSA [11] would provide a high
degree of security, in addition to privacy. However first, these
encryption methods are relatively costly; but more importantly,
it is neither useful nor necessary to encrypt the whole signal
in real-time multimedia applications such as in video [12],
image, health [13] monitoring systems or other types of IoT
applications. Only the selected parts of the multimedia docu-
ment deemed to carry private information need to be protected;
this then gives rise to a two-tier approach. More generally in
a multi-tiered approach, different parts of the document can
be privacy protected at differential levels, the most strongly
protected parts accessible by the highest authorization level,
and so forth. We can also state the three desiderata of privacy-
protection algorithms: a) The technique should be able to
secure the privacy of selected sensitive portions of the data;
e.g., for face hiding, it should be stronger than any automatic
face recognition algorithm; b) The method should not degrade
the non-sensitive parts of the documents; c) It should be
able to reverse the sensitive part encryption (for authorized
users) in good quality. A concomitant desideratum is that the
computation cost of the data encryption should be reasonably
low.

Although Compressive Sensing (CS) [14] is an alternative
data acquisition strategy to conventional Nyquist/Shannon
based technique, it also provides encryption with a reasonable

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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security level via its randomized sensing mechanism. In con-
sequence, using CS setup alone or with another lightweight
encryption shell applied on top of it has recently been a
popular approach for multimedia applications [15].

In this work, we pursue the approach of compressive sensing
to accomplish both compression and cryptographic security on
the whole data, and data hiding technology [16], [17] to hide
and then recover the masked-out private parts of the document.
The novel method achieves privacy protection by obfuscating
the sensitive parts of the document while the CS-encryption
is applied to the whole document, i.e., the combined public
and private parts. We assume that the document has been pre-
processed and segmented into its sensitive and non-sensitive
parts. We use terms de-identification and anonymization inter-
changeably, in the sense of rendering unintelligible the privacy
bearing segments of a document. Although our method is
applicable to any document type, images, video, audio, etc.,
with appropriate modifications, in the sequel we will consider
images as an application case.

Our scheme provides a two-tiered privacy, in which the
semi-authorized user, i.e., the entity with lower authorization
level can decode and view only the non-sensitive parts of
the image, while the fully-authorized user decodes and sees
the entire image. The semi-authorized one with only key
A (CS-Encryption matrix) is able to recover images whose
sensitive parts remain obfuscated after decoding whereas the
fully authorized person with keys A and B (the latter being
watermark embedding matrix) is able to recover the whole
image. In both cases, the image quality is stipulated to remain
close to the original quality. The significant merits of our
proposed method are first to enable a low-cost, two-level
encryption and second to provide reversible anonymization
for the selected authorized users. Although the experiments
are run only on image data, our method is general enough to
be applied to any data involving privacy concerns, such as to
videos as detailed in Section VI, or to bio-signals. In this work,
we select face de-identification problem [18], [19] as a case
study, within the context of a privacy-preserving image/video
monitoring system.

The privacy protection concern in image/video has been
addressed in a plethora of papers in the last decades. In sum-
mary, the technical solutions can be discussed in three groups:
a) automatic blurring of faces, context-dependent blurring,
e.g., bystanders only; b) blacking out of faces with random pat-
terns, and recently; c) anonymous face substitutions or iterative
regeneration schemes. Our method is in line with the noise
pattern overlay methods in the literature. However, we differ
from these methods in two respects: i) while we are able to
fully remove the obfuscating noise pattern, we provide multi-
tier differential protection; ii) we use compressive sensing for
data reduction and cryptographic security, and watermark the
compressed signal with the data hiding pattern).

A privacy-preserving method to which our method has some
resemblance was recently described in [20]. In the method
of [20], the images are first processed through a parallel group
of trained auto-encoders, each generating its own sufficiently
diversified sparse code. They obfuscate the sparse code by
adding random noise with statistics similar to sparse code

statistics to coefficients to a group of coefficients outside
the sparse code support set. The support set is predefined
or shared via a secret channel to the trusted user. Only the
trusted user possesses the key to recover the support set of
the sparse code coefficients, and thus is able to decode the
sensitive image (the face). Codes from multiple auto-encoders
are used to successively refine the results, i.e., incrementally
improve reconstructed image quality. In contrast, our method
is not face specific, does not need to find sparse codes in the
encoding part, does hence not require a separate secret channel
to share the obfuscation key. In addition, data reduction via
CS-compression is a byproduct of our scheme.

A preliminary version of this work was presented at [21].
This early version had briefly introduced the methodology and
presented some test results on a token dataset (6 faces in a
controlled laboratory environment). In this article, we provide
a theoretical worst-case analysis on the watermark guarantee
conditions (Lemma 1, Theorem 4). We have extended the
paper by incorporating a discussion on the design of alternative
obfuscating matrices [21] as well as on the alternative designs
of the watermark embedding matrix (see Section IV-E). Sim-
ulation experiments are run on a realistic public dataset with a
much bigger size (a subset of YouTube Faces Database [22])
containing 100 classes (videos of 100 identities). We have also
briefly described two extensions of the proposed method: 1.
Its adaptation to video signals, beyond the simple frame-by-
frame privacy processing; 2. A three-tiered privacy protection
in images. In the detailed performance evaluation, we illustrate
the reconstruction accuracy of masked regions as a function
of watermark embedding power and the choice of obfuscat-
ing masks, both being user-defined parameters. Recognition
accuracies with original faces, with de-identified faces, and
with faces reverse de-identified via recovered watermark are
given. The result of a test against an adversary with a strong
computational capability and with access to the full labeled
training set is also reported.

The rest of the paper is organized as follows. The nota-
tion is provided in Section II. We give a brief overview of
compressive sensing and its usage in encryption systems in
Section III. We emphasize the compressive sensing properties
that we have exploited in our proposed scheme. In Section IV,
the proposed two-tier privacy-preserving system is presented
in detail. Section V introduces a case study of the proposed
method in video monitoring and gives the results of the
extensive simulation studies. Finally, conclusions are drawn
in Section VII.

II. NOTATIONS

In this work, the �p norm of a vector x ∈ RN is given

as �x�p =
��N

i=1 |xi |p
�1/p

for p ≥ 1. We also define the

�0-norm of the vector x ∈ RN as �x�0 =
lim p→0

�N
i=1 |xi |p = #{l : xl �= 0}. The exactly (or

strictly) k-sparse signal in some appropriate domain is
the signal, x ∈ RN with �x�0 ≤ k. On the other hand,
the approximately k-sparse signal (or compressible) is a
signal x with �x − x̆�

2
≤ κ , where κ is a small constant and

x̆ is obtained via zero-outing the elements of x except the
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TABLE I

FROM LEFT TO RIGHT: a) SYMBOLS OF THE FREQUENTLY USED VARI-
ABLES IN THE ARTICLE. b) DENOTATIONS OF THESE SYMBOLS. c) THE

CORRESPONDING CRYPTOGRAPHIC TERMINOLOGY, IF APPLICA-
BLE. d) THE CONDITIONS THE VARIABLES MUST SATISFY FOR

THE ENCRYPTION SCHEME TO WORK PROPERLY

ones with k-largest magnitude. For convenience, we show
in Table I the list of frequently used symbols, the terminology
used in paper and their synonymous definitions in the
cryptography literature.

III. PRELIMINARIES AND PRIOR ART

Our interest in compressive sensing is twofold: to compress
the signal if it is already sampled or to sample analog signals
directly at rates below the Nyquist-Shannon bound and to
exploit the inherent cryptographic capability of compressive
sensing.

A. Compressive Sensing

Compressive sensing (CS) theory has significantly impacted
the field of signal processing since its inception in 2005 [14].
According to the CS theory, a signal can be sampled using
far fewer measurements than the traditional Nyquist-Shannon
acquisition rate, provided it is sparse or compressible in some
proper domain. CS-based MRI imaging [23], radar monitor-
ing systems [24], [25], and ECG measurements in a health
monitoring system [13] are some of its success stories. It is
also seen as a potential solution for hardware/software design
in the applications requiring very high sampling frequencies
such as wideband spectrum sensing [26] and ultra-wideband
communication schemes [27]. In fact, CS is expected to

play an important role in the next-generation communications
systems such as 5G [28].

Let us consider the linear mapping of a discrete signal
s ∈ RN as

y = As, (1)

where A ∈ Rm×N is known as the measurement matrix with
m < N . The minimum-energy solution for the underdeter-
mined linear system of equations (1) is given by

min
s
�s�22 subject to As = y. (2)

The solution of (2) is unique and has a closed form solu-
tion, ŝ = AT

�
AAT

�−1
y provided that rank (A) = m ≤

N which makes AAT invertible. The minimum achievable
reconstruction error is

��s− ŝ
��

2 = sT
�

I − AT
�
AAT

�−1
A

�
s,

which shows that exact recovery is not possible since
I �= AT

�
AAT

�−1
A when m < N . The CS theory addresses

signals that are sparse in a proper domain, � ∈ RN×N ,
i.e., s = �x with �x�0 ≤ k. Therefore, (1) can be re-
formulated as follows,

y = As = A�x = Hx, (3)

where H = A�, and even if (3) has infinitely many solution
we can look for the sparsest one,

min
x
�x�0 subject to Hx = y. (4)

Eq. (4) is also known as sparse representation of y in H and
it is unique, provided that the minimum number of linearly
independent columns of H, as defined in [29], is greater than
2k. Thus for spark(H) ≥ 2k, any two distinct k-sparse signals
x�, x�� can be uniquely recovered from their undersampled
measurements y�, y�� if m ≥ 2k. Put differently, one has the
surprising result that, while it is not possible to recover s
exactly using minimum norm decoder as in (2), exact recovery
of the signal is possible in the sparsifying domain.

The nonconvex problem (4) with �0-quasi-norm can be
relaxed to its closest convex form, �1 as

min
x
�x�1 subject to x ∈ ϒ (y) , (5)

where ϒ (y) = {x : Hx = y}, an optimization problem that is
also known as Basis Pursuit [30]. The equivalence of �0-�1
minimization problems is well investigated in the literature in
terms of the properties of H. For instance, the Null Space
Property (NSP) [31] not only satisfies the �0-�1 equivalence
but also comes very handy for the recovery performance
analysis when x is not exactly k-sparse but only compressible.
In the case we deal with approximately sparse signals or/and
with a case where the measurements are contaminated by
additive noise, the problem can be relaxed with ϒ (y) =�
x : �Hx − y�2 ≤ �

	
, where � is a small positive constant.

Problem (5), with this new constraint, is known as Basis
Pursuit Denoising (BPDN) [32]. The stability conditions of
CS signal recovery techniques are also well understood: a
stable solution, x̂, is expected to obey

��x − x̂
��

2 ≤ κ �z� with
a small constant, κ for additive noise z perturbation in the
measurements, y = Hx+ z.

When approximately sparse signals are measured under
noise, a property stronger than NSP gives a stable
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recovery guarantee. This property is called Restricted Isometry
Property (RIP), which is defined as follows:

Definition 1 (Restricted Isometry Property): A matrix
H ∈ Rm×N has RIP with order k, if there exist a smallest
δk(H) that satisfies

(1− δk(H)) �x�22 ≤ �Hx�22 ≤ (1+ δk(H)) �x�22 (6)

for all k-sparse signal, x ∈ RN . The constant, δk(H) is
called the Restricted Isometry Constant (RIC) of order k for
matrix H.

The stability and �0-�1 equivalence conditions w.r.t. RIC of
a measurement matrix are thoroughly studied in the literature.
The authors in [33] show that the �0-�1 equivalence is achieved
when δ2k(H) ≤ √2 − 1. Likewise, the stability of the �1
minimization problem is investigated in Basis Pursuit Denois-
ing [34] and Dantzig Selector [35]. In [34], it is shown that
for ϒ (y) = �

x : �Hx − y�2 ≤ �
	

and �z�2 ≤ �, the solution
of (5) satisfies

��x − x̂
��

2 ≤ C0�, (7)

where C0 depends on δ2k(H) <
√

2 − 1 [33]. Notice that the
recovery guarantee conditions of an arbitrary k-sparse signal
enforce 2k-order RIC, δ2k(H) instead of δk(H). The intuition
behind this is simply that for noise-free measurements, the null
space analysis indicates that spark(H) ≥ 2k in order for H
not to map any two arbitrary but distinct k−sparse signals
x� and x�� to the same point, so that one always has Hx� �=
Hx��. In this sense, RIP gives us a stronger guarantee that after
mapping with a H, the distance between points x�, x�� should
be preserved at least as follows: (1− δ2k(H))

��x� − x��
��2

2 ≤��Hx� −Hx��
��2

2.
The good measurement matrices A that preserve the infor-

mation in the sparse domain �, or alternatively A� = H
are the ones that satisfy the RIP property. Certain random
measurement matrices are known to satisfy this property, one
popular such case being the matrix whose elements Ai, j are
i.i.d. (independent identically distributed) and drawn from a
Gaussian distribution, i.e.,

Ai, j ∼ N



0,
1

m

�
(8)

and for m > k(log(N/k)), and H inherits this property as
well. We recall the following lemma that gives the stability
condition of BPDN for measurements under additive white
Gaussian noise (AWGN) contamination, since it will be handy
in the sequel for the stability analysis of our encryption
scheme.

Corollary 1 (Refined from Corrollary 1.1 of [35, p. 32]):
Let H ∈ Rm×N satisfy the RIP of order 2k with δ2k(H) <√

2 − 1. Assume that measurements are corrupted by i.i.d.
noise with elements zi drawn from N

�
0, 1

σ 2

�
. Then, the error

of the solution of (5) with ϒ (y) = �
x : �Hx − y�2 ≤ �

	
is

upper bounded by

��x − x̂
��

2 ≤ 4

√
1+ δ2k(H)

1− (1+√2)δ2k(H)
(1+ γ )

√
mσ (9)

with probability of at least 1− exp(− 3m
4 γ 2) where 0 < γ < 1

and � = (1+ γ )
√

mσ .

B. Compressive Sensing Based Encryption

Since in the CS setup, a signal is linearly sampled using
random or pseudo-random measurement matrices, there exists
an inherent capability to provide privacy and cryptographic
protection [36], [37]. One advantage of CS-based encryption
is that the linearity and the dimensionality reduction of the
CS scheme result in low-cost operations. This could be a
crucial advantage for data encryption carried out on the edge
devices before data transmission to a cloud or a fusion center.
In fact, it has been reported in several works [38], [39] that
CS-based encryption has a much lower cost as compared to
well-established encryption standards such as AES [10] or
RSA [11].

The idea of formally using CS theory in the encryption sys-
tem was first introduced in [40]. These authors have considered
a sparse signal x as a plain-text input signal and encrypted it
in cipher-text y. A Gaussian measurement matrix, as in (8),
was used in the role of the CS-encryption matrix, i.e., y = Hx.
They consider the Shannon perfect secrecy [41] definition as
a metric of security. CS-based encryption can be viewed as
a particular case of a multiplicative randomization technique,
which is also a well-known privacy-preserving method. Using
the definition of Shannon [41], CS-based encryption litera-
ture generally defines the perfect secrecy in the information-
theoretical sense as follows:

Definition 2 (PerfectEncryption System): A perfect encryp-
tion system satisfies

Pr (x|y) = Pr (x) (10)

for any plain-text x and cipher-text y pair.
The authors of [40] conclude that even if the Shannon

perfect secrecy is not satisfied with the CS-based encryption
scheme since the CS-measurements preserve the energy of
plain-text as H must satisfy the condition, they argue that
CS-based encryption guarantees computational secrecy, i.e., an
attacker with bounded time. In a later work, it is shown that the
CS-based encryption with the Gaussian compression matrix
used only once and re-drawn for each coding instance reveals
only the energy of x [42]. Therefore, a Gaussian CS-encryption
can be said to satisfy perfect secrecy if the cipher-text, y is
normalized to some constant energy [36, Theorem 4]. Efforts
on giving privacy guarantee conditions for both normalized
and unnormalized energy cipher-texts for different measure-
ment matrix schemes continue [43], [44] (using different secu-
rity metrics). Similarly, instead of Shannon perfect secrecy,
Wyner-sense perfect secrecy, or their extended version have
also been used in security analysis for CS-based encryption
schemes [45]. In the meantime, the robustness of the CS-based
encryption against attacks is investigated in [46], [47]. In [46],
the authors consider a brute force and structural attack where
an adversary tries a grid search to estimate the CS-encryption
matrix, A. This attack type can be considered as a known
cipher-text attack under one-time usage (or one-time secret,
OTS). They conclude that the computational complexity of
such an attack makes this type of brute-force attack infeasible.
The known plain-text type attack (KPA) under one time usage
is addressed in [47], where the adversary captures the plaintext
and ciphertext pair, (x, y). Furthermore, the systems that use
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Fig. 1. Proposed Reversible Privacy-Preserving Video Monitoring.

the same CS-encryption matrix many times are well known to
be unsecure against this type of attacks [40], [42].

Due to interest in application scenarios of CS-based encryp-
tion, recently hybrid models that use both CS and conven-
tional cipher systems have become popular. For instance, [48]
applies a homomorphic cryptography function on top of the
CS-encryption in a wireless sensor network system. In that
sense, even in multi-usage of A, the system can be made
resilient against KPA. In another vein, authors in [49] have
proposed a multi-class encryption system where the CS-
encryption matrix is partially corrupted differently for each
user, i.e., A = A + 
A, 
A being the partial perturba-
tion matrix. Their scheme suggests a framework to partially
corrupt the CS-encryption matrix in order to obfuscate the
sensitive region of the signal. However, it is not obvious how
one transmits 
A to the receiving party for reversible de-
identification. One intuitive approach would be sending 
A in
a secure channel, which could be problematic, especially when
the obfuscation pattern changes from usage to usage. Another
solution is to use steganographic methods [16], [17], [50] to
embed 
A directly on CS measurements, that is, by encoding
the obfuscation matrix directly on the cipher-text y. This is the
path we follow and its details are introduced in the following
section.

It is worth mentioning some recent work in the vein of
compression (via sparsification) and encryption strategy. These
methods extract a sparse code, x, of the private signal and
then obfuscate it. In [51]–[53] a ternary representation of
the signal is extracted from its sparse code. Then this code
is ambiguated for the privacy-protected data-sharing applica-
tions, e.g., outsourced media search or person identification
applications. In [54], the authors study the reconstruction
capability of sparse ternary codes given the information loss
during its encoding to a ternary code. A more recent work [20]
ambiguates the sparse code directly by noise addition while
enabling high-quality recovery with successive refinement
user.

IV. PROPOSED TWO-TIERED ENCRYPTION

The proposed method exploits techniques of compressive
sampling, compressive encryption and data hiding [14], [16],

[17], [36], [37], [55]–[57]. The advantage of the CS-based
technique is, on one side, that exact recovery (in strictly sparse
case) or stable recovery (in approximately sparse case) of
the undersampled signal is possible, and on the other side,
cryptographic security can be provided.

As shown in Fig. 1, one tier of the security consists
of the generation of a random corruption mask (one-time
usage) to obfuscate the sensitive parts of the image. This
information is then embedded directly onto the CS-encrypted
signal with a ternary watermark. This data hiding scheme
provides reversibility and one-time usage of the random cor-
ruption mask, which is essential for secure de-identification.
In the two-tiered protection scheme, the semi-authorized user
will be able to recover only the non-sensitive part while
a fully authorized user is allowed to recover the whole
signal.

A. Problem Definition

In the following section, we first start by giving a formal
definition of the two-tiered protection scheme in the spirit
of Shannon secrecy. We will define the desiderata that the
ideal triple consisting of two decoders (type A, B) and an
encoder must satisfy. The problem becomes then formally the
design of the three mappings that guarantee the recovery and
secrecy properties. Following these definitions, we give our
compressive sensing based solution to the problem with a
discussion of the advantages of the proposed system.

The signals of interest, s ∈ RN is composed of a sensitive
part and a non-sensitive part, denoted as an orthogonal sum

s = sn + ss, (11)

where ss is the sensitive part of the signal that can be obtained
by zero-outing the coefficients of s which are not indexed by
the corresponding index set �p , and sn is the remaining non-
sensitive part of the signal whose non-zero coefficients are
indexed by �c

p . In what follows, we state the information-
theoretic desiderata of the encoder and of the two decoders.

Definition 3: Fully Secure and Stable Encoder-Decoders
Triple: E∗ (.), D∗1 (.), D∗2 (.)

1) We define the data coding operator (CS-Encryption) as
E∗ (.) that encrypts both the sensitive and non-sensitive
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parts,

E∗ (s) = y, (12)

which is perfectly secure in that the coded signal, y does
not reveal any information about s, i.e., Pr (s|y) = Pr (s).

2) The first-tier decoder, D∗1 (.) which stably recovers the
non-sensitive part while not disclosing any information
about the sensitive part is characterized as follows

���
�
D∗1

�
E∗ (s)+ e

��
�c

p
− s�c

p

���
2
≤ κ �e�2 (13)

and

Pr
�

s�p |
�
D∗1

�
E∗ (s)+ e

��
�p

�
≈ Pr

�
s�p

�
, (14)

where e is a possible additive perturbation on y, i.e.,
y = E∗ (s)+ e.

3) Finally, the second-tier decoder that stably recovers both
sensitive and non-sensitive parts is defined as

���
D∗2

�
E∗ (s)+ e

��− s
��

2 ≤ κ �e�2 . (15)

The goal now is to find a practical coding operator, E (.) that
jointly encrypts the sensitive and non-sensitive parts, which is
as close as possible to the ideal operator E∗ (.).

B. Embedding Operator, E(.)

1) Obfuscation of the Sensitive Part Within CS-Encryption:
The proposed embedding operator obfuscates the sensitive part
s�p of the signal with the masking pattern 
�p , and then com-
pressively samples the whole, consisting of the combination
of the non-sensitive part sn and the masked sensitive part. The
resulting intermediate code yd is given by:

yd = A�c
p
s�c

p
+ A�p
�p s�p = Asn + A�p
�p s�p , (16)

where s�p and s�c
p

are the extracted sensitive and non-

sensitive parts of s, respectively. Here 
�p ∈ R|�p|×|�p|
is the multiplicative obfuscation operator, i.e., a diagonal
matrix consisting of random numbers and operates only on
the (vectorized) sensitive part of the signal, ss. In other words,
A�p ∈ Rm×|�p| and A�c

p
∈ Rm×(N−|�p|) are the matrices

consisting of the subsets of columns of A that are indexed by
index sets �p and �c

p , respectively. The encoding in yd can
also be formulated as an additive mask:

yd = (A+M) s, (17)

where M ∈ Rm×N is the masking matrix with all zeros except
the columns, M�p ∈ Rm×|�p|. The non-zero columns of the
masking matrix form can be easily calculated from Eq. (16),
i.e., M�p = A�p
�p − A�p .

2) Data Hiding With Reversibility: The obfuscation matrix

�p and its location information (if necessary) are converted
to a binary code to be secretly embedded on top of the
compressively sensed (encrypted) signal yd. The conversion
of this information to a binary code is necessary to achieve
reversibility. Indeed, the exact recovery of the watermark
sequence is possible [16], even in noisy case (In our scheme,
noise corresponds to the masking in the sensitive part) pro-
vided the signal, s, is sparse. In a practical application, errors

in a few bits on the recovered watermark is tolerable. We can
define a procedure that spits out a watermark w� corresponding
to the binary representation of β

�

�p

�
,

β
�

�p

�→ w� ∈ {−a,+a}T � , (18)

where β
�

�p

�
is sufficient information to re-produce 
�p .

An example of such an operator is given in Eqs. (35) -
(36c). We also need an inverse operator of (18) in order to

reproduce 
�p from watermark signal, i.e., w� as ŵ
β−1

→ ˆ
�p .
This operator is defined in Eqs. (25)- (28). Note that the
length of the watermark, T �, can change for each use case.
To accommodate varying length watermarks one can fix a
maximum watermark length, T , and extend the binary code w�
to a ternary one by stuffing with zeros the remaining T − T �
bits, i.e.,

β
�

�p

�→ w ∈ {−a,+a, 0}T . (19)

Data hiding limits [16], [17] determine the maximum stegano-
graphic capacity T one can expect to realize. Finally, a water-
mark embedding matrix (based on the second authorization
key) B ∈ Rm×T , T < m is generated to linearly spread the
watermark w directly onto the CS-encrypted signal, i.e., the
cipher-text

yw = yd + Bw = (A+M)s+ Bw. (20)

An embedding power constraint �Bw� ≤ PE must be imposed
in order to limit the degeneration of the recovered (non-
sensitive) part of the image for semi-authorized users. The
proposed embedding scheme, E (.) is given in Algorithm 1.

Algorithm 1 Proposed Embedding, E (.)

Input: s, A, B;
1. Determine the mask and the obfuscation matrix, 
�p

2. Generate the watermark: β
�

�p

�→ w ∈ {−a,+a, 0}T
3. Joint CS-encryption and sensitive part obfuscation:

yd = A�c
p
s�c

p
+ A�p
�p s�p

4. Watermark Embedding: yw = yd + Bw
Return: yw

C. Design of the Two-Tiered Decoders, D1(.), D2(.)

Users (type A or B) receive the watermarked and encrypted
signal, yw which can be re-cast as

yw = (A+M)s+ Bw = Hx + Bw + n, (21)

where Hx = A�x = As, and x ∈ RN is the sparse representa-
tion of s in �, and the masked part can be expressed as noise
term, i.e., n = Ms = M�p s�p =

�
A�p
�p − A�p

�
s�p . For

the receiver of Type-A (the semi-authorized user A) only the
key A is available. Since this user does not have the watermark
encrypting key, B, (s)he will perceive the cyper-text as

yw = Hx + z, (22)

where z behaves like an additive structural noise, i.e.,
z = Bw+n. In the light of the discussion in Section 1, the �1-
minimization scheme in (5) can be used to recover x with
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ϒ (y) = �
x : �Hx − y�2 ≤ �

	
. Afterwards, using the outcome

of the �1 minimization technique, x̂, one can obtain an estimate
of the signal s with mask, ŝ, straightforwardly via ŝ = �x̂. The
decoding algorithm for semi-authorized users, D1 (.) is given
in Algorithm 2.

Algorithm 2 Type a Decoding Algorithm, D1 (.)

Input: yw, A, �;
Hyper-parameters: �
1. Estimate x̂: x̃ = arg minx �x�1 s.t. �yw −Hx�2 ≤ �
2. ŝ = �x̂.
Return: ŝ

The receiver of Type-B, (the fully-authorized user B) will
possess both CS-encryption key, A, and watermark encryption
key, B. Type-B decoder must recover the whole signal sn+ ss
with as low a reconstruction error as possible. A three-stage
recovery scheme is proposed, which is adapted from the
recovery method proposed in [16]: First, a raw estimate of
the sparse signal is obtained by disregarding the watermark
part Bw and using the �1-minimization (5). Second, after
having a preliminary estimation of x, the watermark can be
recovered from the over-determined system of linear equations
by subtracting the estimated x component from yw. In the final
stage, the masking matrix, M, can be produced via the recov-
ered watermark, and an improved estimation is obtained using
the A+M as CS-encryption matrix and �1-minimization. The
details of the proposed scheme are as follows:

First, we produce a left annihilator matrix F ∈ Rp×m of
B ∈ Rm×T so that FB = 0, where p = m−T . Left multiplying
yw with F we obtain,

ỹ = Fyw = F (Hx + Bw + n) = FHx + n�, (23)

where n� = Fn. Eq. (23) is also an underdetermined linear
system of equations and can be solved via �1-minimization as
discussed in Section 1:

x̃ = arg min �x�1 s.t. �ỹ− FHx�2 ≤ �. (24)

After inserting the pre-estimation of x in Hx̃ and subtracting
it from the yw, we get an over-determined system of linear
equations: yw−Hx̃ = Bw. Therefore, a raw estimation of the
watermark can be obtained via

w�� = (BT B)−1BT (yw −Hx̃). (25)

The 0’s in the ternary watermark, w can be extracted using
simple thresholding if the length of active bits T � is unknown
to user B:

w̃ = w��  1|w��i |>η, (26)

where η is the threshold value

1|w��i |>η,i =
�

1, if
w��i

 > η, (27a)

0 else, (27b)

and  denotes the element-wise multiplication operator
between two vectors. In some practical applications such as
person de-identification on video streams (details will be given
in Section V), this step is simplified to w̃ = w��  1T � , where

1T � is T -length vector with the first T � elements 1’s and the
rest is all zeros. The locations of the non-zero elements of 1T �
can be found using the information of �p , inherent in the pre-
estimated signal, �x̃. Alternatively, a pre-allocated set from
watermark, w, can be dedicated to secretly carry information
about T �. Hereafter, the finer estimation of w can be easily
found via

ŵi = a × sgn(w̃i ). (28)

Meanwhile the decoder can obtain the masking matrix, M,

i.e., M̂ =
�

A�p
ˆ
�p − A�p

�
, where ŵ

β−1

→ ˆ
�p . Finally,
the sensitive and non-sensitive parts can be jointly recovered
as:
x̂ = arg min

x
�x�1 s.t.

���(y − Bŵ)− (A+ M̂)�x
���

2
≤ �.

(29)

Algorithm 3 Type B Decoding Algorithm, D2 (.)

Input: yw, A, B, �;
Hyper-parameters: �, a, η
1. Apply F to yw: ỹ = Fyw
2. Estimate x̃: x̃ = arg minx �x�1 s.t. �ỹ − FHx�2 ≤ �
3. Estimate w��: w�� = (BTB)−1BT(yw −Hx̃)
4a. Thresholding w��: w̃ = w��  1|w��i |>η

4b. Forming ŵ, where ŵi = a ∗ sgn(w̃i )

5. Obtain M̂ from ŵ: i) ŵ
β−1

→ ˆ
�p ii) M̂ =�
A�p

ˆ
�p − A�p

�

6. x̂ = arg minx �x�1 s.t.
���(yw − Bŵ)− (A+ M̂)�x

���
2
≤

�
7. ŝ = �x̂.
Return: ŝ

D. Impact of Random Matrices on CS Encryption
Performance

Generations of the CS-encryption matrix A and of the
watermark embedding matrix B play an important role for
the security and recovery robustness of the encryption scheme
E (.) ,D1 (.) ,D2 (.). The choice of random Gaussian matrices
as in (8) for A is convenient because they are known to be uni-
versally optimum in the sense that they satisfy both robustness
and security conditions regardless of the sparsifying basis �.
These matrices have been well investigated in the literature in
terms of both recovery performance as in Corollary 1 and
in terms of security metrics as discussed in Section III-B.
In the sequel, we will consider A as in (8) and B consisting
of orthonormal columns. For this scenario, we make a RIP
based theoretical guarantee condition in watermark recovery
for D2 (.). The following lemma will be useful for the stability
analysis of the decoder type-B:

Lemma 1: Consider that the embedding, E (.), given by
Algorithm 1 produces an encrypted signal yw from s with keys
A and B, i.e., E (s) = yw = Hx + Bw + n. Let sp ∈ R|�p|×1

denote the perturbation on the sensitive part of the signal
such that sp = 
�p s�p − s�p . Let also A be an m × N
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CS-encryption matrix with elements Ai, j drawn i.i.d. accord-
ing to N (0, 1

m ). Therefore the noise pattern n in (21) is also
a Gaussian random vector which has i.i.d. elements

ni ∼ N (0,

��sp
��2

2

m
). (30)

Proof: Let Ai,�p be the the i th row of A�p . Then
the elements of the vector, A�p sp ∈ Rm×1 will be ni =�
Ai,�p , sp

�
independent Gaussian random variables with zero

means, where �v1, v2� refers to inner product of vectors v1, v2.

Therefore, it remains to prove that E(n2
i ) = �sp�2

2
m , which can

be straightforwardly obtained (using i.i.d. property)

E
�

n2
i

�
= E

��
Ai,�p , sp

�2� = E

⎛
⎝ �

j∈�p

A2
i, j s2

p j

⎞
⎠

=
�

j∈�p

s2
p j

E
�

A2
i, j

�
= 1

m

�

j∈�p

s2
p j
=

��sp
��2

2

m
. (31)

Having Lemma (1), and using Corollary 1 from the litera-
ture, we are ready to state the following theorem for watermark
recovery probability of D2 (.):

Theorem 4: Consider the Gaussian CS-encryption matrix
defined in Eq. (8). Let the watermark-encoding matrix B have
orthonormal columns. δ2k(H) <

√
2−1 and δ2k(FH) <

√
2−1

are given. Let also the annihilator matrix F have orthogonal
rows such that

��Fi,:
��

2 = m
p , where Fi,: denotes the i t h row

of F. For a marked ciphertext, yw, for a particular setting of
� = (1 + γ )

√
mσn, Eq. (28) to be used in Algorithm 3 can

recover wi , the watermark bits, correctly Pr(wi = ŵi ) with
probability at least
�

1− 2 exp

�
−a�2 m

8
�
C2(1+ γ )2

	 ��sp
��2

��

×



1− exp



−3 p

4
γ 2

��
, (32)

where C = 4
√

1+δ2k(FH)

1−(1+√2)δ2k(FH)
and a� = a − η, where a, � and

η are hyper-parameters used in Algorithm 3.
The proof of the theorem is given in Appendix VII.

Theorem 4 establishes a bound on the watermark recovery
probability as a function of the energy of perturbation on
the sensitive part, RIC of the matrix FH and watermark
embedding strength a. This type of analysis based on RIP
for the CS reconstruction algorithm as in Corollary 1 is
known as theoretical guarantee conditions in worst-case sce-
nario [58]. In general, for most of the practical applica-
tions, the algorithms perform much better than the perfor-
mance bounds given by this kind of RIP based analysis.
Nevertheless, it gives us an indication on how to design
the related matrices for the encoder (such as A, B, H)
and how to choose hyperparameters for the decoders. For
example, choosing both F and H as Gaussian matrices may
not be the right decision since the product of two random
Gaussian matrices is a random matrix with coefficients drawn
from a heavy-tailed distribution [59], which yields a δ2k (FH)
bigger than the Gaussian case.

E. Choice of the Encryption Matrix

Although random measurement matrices are optimal in
the universal sense, they become computationally unwieldy
for realistic signal and measurement dimensions, N and m,
respectively. Recall that the iterative signal reconstruction
algorithms require transposition and multiplication of the
measurement matrix several times. To ease this computational
burden, one can choose the rows of the measurement (CS-
encryption) matrix randomly as a subset of an orthonormal and
fast implementable transform base such as Fourier, DCT, or
Hadamard. In other words, one can choose m rows randomly
out of the N the rows of an orthonormal transform, �.
These rows are indexed by � ∈ {1, 2, 3, . . . , N}, i.e., with
cardinality |�| = m. Thanks to these types of structural
CS matrices, the computational cost of As can be reduced
significantly, i.e., down to O(N log N) flops from O(m × N)
flops for general random CS matrices. For a good choice of
the measurement matrix, A = �� in terms of a sparsifying
basis � the rows of H must be as flat (dense with nonzero
elements) as possible. This can be satisfied when the rows of
the measurement matrix A are not sparse in the sparsifying
basis �. This requirement can be quantified via the “mutual
coherence” functional, i.e, μ(H) = maxi, j

Hi, j
. The per-

formance limits of the �1-decoding schemes such as (BPDN)
case are given in terms of the functional μ(H). If one chooses
randomly m rows of an orthonormal basis, �, indexed by
� ∈ {1, 2, 3, . . . , N} to build a measurement matrix A, then a
k-sparse signal can be exactly reconstructed as a solution of the
�1-decoding (BP) in (5), satisfying m ≥ O(μ2(�)×k×log N),
with an overwhelming probability [60].

We have chosen the Noiselet basis and the 2-D Wavelet
basis to create a CS-encryption matrix and a sparsifying
matrix, respectively. First, since these two transforms are
known to be maximally incoherent with each other, and sec-
ond because they have fast implementations. The indices of
the chosen rows are randomly drawn and then permuted to
increase the security level.

F. Design of the Annihilator Matrix F and Its Corresponding
Watermark Embedding Matrix B

The watermark embedding matrix B, which must be the
right null space matrix of F, can also be chosen from a fast
transform. For example, one can constitute the columns of
B by choosing randomly a subset of the rows of DCT basis
matrix, then, the rows of F can be made up of the remaining
rows of this DCT matrix.

Theorem 4 implies that the choice of matrices F and H influ-
ences the performance of the Algorithm 3. To investigate the
impact of the choice of F on FH, we compare the performance
of the �1 minimization on the recovery of sparse signal x from
y = FHx, for three different settings: (i) First, with the random
Gaussian measurement matrix FH as in Lemma 1, Theorem 4.
(ii) Second, for the case where F is made up of a subset of the
rows of DCT, A is similarly made of a subset of Noiselet basis,
sparsifying matrix � is chosen as Haar basis. Figure 2a shows
the average mutual coherence values of FH under different
setups. Figure 2b shows the exact recovery probabilities at



1022 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Fig. 2. Average mutual coherence of the matrix FH = FA� for different
realizations of A and calculated probability of exact recovery over 250 trials.
An exactly sparse signal is synthetically produced for N = 256 and k = 30.

Fig. 3. Q-Q plots of the elements of the measurement matrices in reduced
dimension, FH. Vertical: sample data quantiles; horizontal: standard normal
quantiles. a) FH = Noiselet×Wavelet b) FH = DCT×Noiselet×Wavelet
c) FH = DCT× Bernoulli × Noiselet ×Wavelet.

different measurement rates for the three different choices
of F. These results prove that even if the random measurement
matrix is universally optimum in the sense that it guarantees
the exact recovery for any sparsifying basis in the worst
case scenario, in practice structured matrices obtained from
orthonormal transforms can perform even better. We make
use of the mutual coherence functional; the formula below is
slightly different from that given in the previous subsection,

though related to it: μ (H) = max1≤i≤ j≤N

� |<hi,hj>|
�hi��hj�

�
where

hi is the i th column of matrix H.
(iii) Alternatively, based on the arguments in [61], a ran-

domization matrix can be applied to F, i.e., F� = FR, where
R is m×m matrix of all zeros, except the diagonal terms that
are drawn from the Bernoulli distribution. In [61], it is proven
that the matrix FRH with any orthonormal basis pair, F, H
and randomization matrix R with diagonal Bernoulli elements,
approaches a Gaussian matrix. This is, in fact, illustrated
in Figure 3 as quantile-quantile plots. Although, this does not
result in any performance increase vis-à-vis mutual coherence
and recovery performance as shown in Figure 2, this scheme
will enhance the security level with only negligible additional
computation in the recovery part. In Figure 3, the vertical
axis denotes the level at which the empirical distribution
falls below a Q level (e.g., 50%), while the horizontal axis
indicates the quantiles for the standard Gaussian distribution.
In all cases, the similarity between the distribution of the
FH sensing matrices and that of a Gaussian sensing matrix
is obvious. Distribution of sensing matrices approaching that
of a Gaussian is a desirable characteristic both for data hiding
and CS-encryption purposes.

G. Design of the Obfuscation Matrix

The region of interest (e.g., a face) to be obfuscated is
delineated by �p . Obfuscation matrix is constituted with all
zero entries except for the diagonal elements that are drawn

from a Bernoulli distribution with probability p1, i.e.,

Pr
��


�p

�
i,i
= ±1

�
= p1 (33)

The corresponding masking matrix M will be

Mi, j =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if j ∈ �p and
�

�p

�
i,i
= 1

(34a)

−2 ∗ Ai, j , if j ∈ �p and
�

�p

�
i,i
= −1

(34b)

0, j /∈ �p. (34c)

Thus, the watermark generating procedure, will be

β
�

�p

�→ �
w� w��

�
, (35)

where T �� bits w� are allocated for the location information
of the sensitive part, i.e., the starting and ending points of
rectangular region of interest including faces in the image and

w��i =

⎧
⎪⎨
⎪⎩

a, if i ≤ �p
 and

�

�p

�
i,i
= 1 (36a)

−a, if i ≤ �p
 and

�

�p

�
i,i
= −1 (36b)

0 i >
�p

. (36c)

Alternatively, having the intermediate estimation of image
s̃ = �x̃, the obfuscated region can be easily deduced and
extracted, without the need of data hiding the location infor-
mation in w�.

H. More Secure Obfuscation With a Key for
a Gaussian Vector

A semi-authorized user with only key-A may try to make
a brute-force attack, by trying out all possible binary com-
binations of

�

�p

�
i,i

’s to un-hide the obfuscated region.
Even though the computational complexity of this attack is
impractically high, i.e., 2|�p|, to make the privacy protection
stronger one can make use a third key, g. This can be realized
using a predefined vector g ∈ RN , that is known only to fully-
authorized user (type B), which is used to generate another
obfuscation matrix as

�

�p

�
i,i
=

� �
g�p

�
i

with probability p1, (37a)

− �
g�p

�
i

with probability 1− p1, (37b)

where g j ∼ N
�
μg, σ 2

g

�
.

V. A CASE STUDY: REVERSIBLE PRIVACY-PRESERVING

VIDEO MONITORING

As a use case of the proposed two-tier image encryption
algorithm, we investigate a video surveillance application
where sensitive segments are to be concealed from semi-
authorized users and revealed only to fully-authorized users.
The sensitive parts of the image are the faces of people in the
scene.

For face de-identification performance, we use two criteria:
i) the Structural SIMilarity (SSIM) index [62] to measure the
quality of the decoded and reconstructed image parts [63];
ii) face recognition accuracy via a machine learning algorithm
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Fig. 4. Sample recovered frames for the semi-authorized (User A) and
authorized (User B) (measurement rates 0.6, 0.7).

as an indicator of privacy protection [64], [65]. For the semi-
authorized user (with only key A), we aim to have both min-
imum classification accuracy in the concealed parts and also
minimum degradation in the reconstructed non-sensitive parts.
For the fully-authorized user, we want to achieve the highest
classification accuracy and highest reconstruction accuracy
when both A and B keys are used for decoding.

We also test an attack scenario where the malicious user
(e.g., a semi-authorized one or an attacker who has stolen the
CS-encryption key, A) has access to the labels of face images
in the training set, so that (s)he can train a classifier to make
inferences from de-identified images. The experimental results
(Section V-C and Table VI) show that our one-time usage
of random obfuscation matrix prevents an adversarial from
making an inference (identify the faces) even if the labels of
the training set are captured.

A. Experimental Setup

The experimental evaluation is conducted on the YouTube
Faces Database [22] to demonstrate the viability of the pro-
posed method in such applications as video surveillance, intel-
ligent access control, and in general, analytics for intelligent
buildings. Accordingly, we have randomly chosen 5000 frames
from YouTube Faces Database corresponding to 100 identities
(50 frames per identity). Recovery performances are reported
using 3000 frames while non-overlapping 2000 frames are
collected to build the training set for privacy preserva-
tion performance evaluations. The Matlab implementation of
the experiments and additional demos can be downloaded
from https://github.com/mehmetyamac/CS-Privacy-Protection.
We use a randomly chosen subset of the rows of noiselet
basis as the measurement matrix. The implementation of
the real-valued “dragon” noiselet is borrowed from [66].
As the sparsifying matrix, we choose wavelet “Coiflet 2”
and use WaveLab850 [67] wavelet toolbox.1 The columns
of the encoding matrix B were chosen from the random
subset of the columns of m × m DCT basis, and then were

1The original packet requires the input images to be square with dyadic
sides, the Matlab modification in http://gtwavelet.bme.gatech.edu/ can be used
to perform wavelet transformation with rectangular images with dyadic sides.

TABLE II

LIST OF THE USER DEFINED PARAMETERS

shuffled. Therefore, the rows of the annihilator matrix, F has
been picked from the remaining columns and shuffled (i.e.,
H = Noiselet×Wavelet and F = DCT). Moreover, Gradient
Projection for Sparse Reconstruction (GPSR) [68] was used
for �1-minimization.

The various parameters taking place in the experiments are
listed in Table II. For different watermark embedding power-
to-signal ratio, �Bw�

�yd� , and compression (measurement) rates,
the performance of the decoders is reported in Section V-B.

B. Recovery Performance of D∗1(.) and D∗2(.)

Choice of the watermark amplitude, a or alternatively the
watermark embedding power is the determining factor in the
watermark recovery performance (recall Theorem 4). In other
words, the embedding power-to-signal ratio, �Bw�

�yd� , forms the
trade-off between the type A non-sensitive image recovery
quality and type B sensitive image recovery quality. On the
one hand, a should not be too small since the erroneous
estimation of the watermark bits affects the recovery of w
and ˆ
�p , hence the quality of the reconstructed sensitive
part. On the other hand, increasing a could impede the
decompression performance compromising the overall,ss + sns
signal recovery, because the embedded watermark Bw acts as
an additive noise in the decoder (Eq. (22)). This trade-off,
recovery quality of sensitive regions (type B) and non-sensitive
region for type A user, is observed in Figure 5. We have found
empirically that good values of a are in the [0.085, 0.15] range,
based on peak signal-to-noise ratios (PSNRs) and quality of
recovered images.

In Table III, we show the recovery performance of type A
and type B decoders for the concealed region, for the non-
concealed region, and for the whole frame. Recovery qualities
are reported for different compression rates (CS measurement
rates: MR = m/N) and for two chosen values of �Bw�

�yd� ,
namely, 0.15 and 0.085. Based on the visual assessment of the
sample frames in Figure 4 and on the reported PSNR values
in Table III, we can say that User A’s reconstructed faces are
unrecognizable, whereas their outside regions have adequate
quality, albeit around 5 dB lower in PSNRs as compared
to those of User B, especially at low MRs. For User B,
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TABLE III

PSNR VALUES OVER SENSITIVE AND NON-SENSITIVE REGIONS OF THE FRAMES FOR DIFFERENT MEASUREMENT RATES (MR) WITH A BINARY

MASK AND A BINARY MASKED GAUSSIAN FOR MASKING, AND FOR EMBEDDING STRENGTH
�Bw�
�yd� = 0.085 (TABLES a AND b); �Bw�

�yd� = 0.15
(TABLES c AND d), RESPECTIVELY

TABLE IV

STRUCTURAL SIMILARITY INDEX (SSIM) OVER ANONYMIZED REGIONS FOR DIFFERENT MEASUREMENT RATES (MR) USING BINARY

MASK AND BINARY MASKED GAUSSIAN FOR MASKING FOR EMBEDDING STRENGTH
�Bw�
�yd� = 0.085 IN (a) AND 0.15 IN (b)

Fig. 5. Peak signal-to-noise ratios (PSNRs, dB) over recovered non-sensitive
part (red curve), and sensitive part (blue curve) with the keys, respectively,
of User A and User B. Measurement rate is fixed at 0.6.

the reconstruction quality of both the concealed regions and
the whole frame are satisfactory; there is only small detail
losses in the privacy-sensitive parts.

In Table IV, SSIM values for the concealed region of
reconstructed images are reported. It can be seen that faces
in recovered images with using only Key A result in very
low SSIM scores, making the unrecognizable, while their
SSIM scores are very high for user type B, especially at MRs
above 0.5.

C. Performance in Privacy Preservation

Privacy-preserving performance of the proposed method is
evaluated by demonstrating its robustness against the state-
of-art face recognition attacks. To this end, we employed
a pre-trained Convolutional Neural Network (CNN) pro-
vided by the dlib library [69] to extract the facial features.
Then, face recognition is performed as follows: We extract
128-dimensional embedded (CNN) face recognition features
and build a database consisting of labeled faces for the query;
then, perform a nearest-neighbor search and select the first
nearest identity as the classification output. The experimental
results are evaluated for two types of attacks.

1) Attack Type I: Known Plain-Text (Original Faces),
Known Labels: In this scenario, a malicious user with the
stolen Key A (or a malevolent type A user) may capture
the training set with its labels to train a classifier to deci-
pher the anonymized faces. The experiment designed to test
the de-identification robustness against this type of attack
is as follows: We construct a query database consisting
of 2000 original clear frames (20 frames per identity). Then,
we perform face recognition in the face regions that have
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TABLE V

FACE RECOGNITION RATES OF USER A AND USER B, THE SEMI-AUTHORIZED AND AUTHORIZED USERS, RESPECTIVELY, FOR DIFFERENT MEASURE-
MENT RATES (MR) USING A BINARY MASK AND A BINARY MASKED GAUSSIAN FOR MASKING, AT

�Bw�
�yd� = 0.085 (TABLES a AND b), AND AT

�Bw�
�yd� = 0.15 (TABLES c AND d), RESPECTIVELY. THE RECOGNITION ACCURACY ON ORIGINAL FRAMES IS 77.37%

TABLE VI

FACE RECOGNITION RATES OF THE SEMI-AUTHORIZED USER WHEN THE

CORRUPTED IMAGES FROM USER A ARE ADDED INTO SEARCH SPACE

FOR NEAREST-NEIGHBOR. THE ACCURACIES ARE REPORTED FOR
DIFFERENT MEASUREMENT RATES (MR) WITH

�Bw�
�yd� = 0.085,

AND 0.15 USING A BINARY MASK AND A BINARY MASKED
GAUSSIAN FOR THE MASKING

been reconstructed with User A Key A and with the two User
B keys. The recognition accuracies are reported in Table V.
The performance of User A is about 1%, which is like
a random guessing score while accuracies for User B are
very satisfactory, i.e., around 75% for high MRs. This is
comparable to the recognition rate achieved when the same
face recognition software is tested on the original images.

2) Attack Type II: Known Plain-Text (Original Faces),
Known Anonymized and Their Labels: The ability of the pro-
posed method to withstand a more challenging case, the parrot
attack [70], where the user with Key A has captured both
labeled clear images and their anonymized counterparts in
the training set, is tested in the following experiment: The
aforementioned query with NN-search is constructed in a way
that each identity has 20 clean and 10 anonymized images
with true labels. Face recognition algorithm is run over face
regions in recovered images of type A. The results in Table VI
reveal that the reconstructed faces for User A do not leak any
useful information that can be exploited in a parrot attack
since a different randomized corruption matrix was employed
for each frame, i.e., the occurrence of the face with the same
identity.

VI. DISCUSSION

A. Privacy Protection in Video

We have so far tacitly assumed that privacy protection
in video were to be realized in a frame-by-frame privacy

processing mode. Thus, the sensitive part in each frame, e.g.,
face region was to be separately obfuscated and each such
frame CS-encrypted via the B, i.e., yw = (A + M)s + Bw
formulation. A simple extension to a multi-frame video case
would be to vectorize groups of frames, and straightforwardly
adapt the above methodology, where now s�p and 
�p denote
the sensitive parts and masking patterns striding over the
frames in the group. A more principled way to extend the
scheme to multi-frame video must leverage a tensor based
CS-encryption scheme [71]. The video is considered as a
3-D signal, S ∈ Rn1×n2×n3 , which is a sequence of n3
consecutive n1×n2 images. Then, the CS-encryption matrices,
A1 ∈ Rm1×n1 , A2 ∈ Rm2×n2 , A3 ∈ Rm3×n3 , can be applied
over to S in order to obtain an encrypted and compressed
tensor, i.e., Y = S×1 A1×2 A2×3 A3, where S×i Ai is the i-
mode product of tensor S and matrix Ai. Let Ss be the sensitive
part of the video that is obtained by zero-outing the coefficients
of S and Sn is non-sensitive part of it. Similar to our matrix-
vector notation, jointly CS-encrypted and anonymized tensor
can be obtained via Yd = (Sn + P ◦ Ss)×1 A1 ×2 A2 ×3 A3
where P is the degradation tensor and ◦ is element-wise
(Hadamard) product of two tensors. Then, the marked vector,
yw can be easily obtained i.e., yw = vec(Yd) + Bw. In the
decoder part, a recovery algorithm with D1 (.) and D2 (.)
similar to those in Algorithm 2 and Algorithm 3 can be used
with replacing �1 based sparse vector recovery to a sparse
tensor estimation method.

B. Multi-Tier Privacy Protection

It is possible to extend the proposed scheme to more
than two-tiers by replicating the scheme outlined in
Subsection IV-C and Figure 1. Recall that the obfuscation
mask encoded as w and embedded via an appropriate water-
marking matrix B resulted in the expression yw = (A+M)s
+ Bw. Consider, for example, a three-tier scenario, where ss1

and ss2 are identified as sensitive parts, the higher indexed
components having, for example, a higher privacy concern.
The respective obfuscation matrices, M1 and M2 are encoded
by their corresponding watermarks w1 and w2. These water-
mark signals can be spread over yd, for example, as yw =
(A+M1+M2)s+B1w1+B2w2 or yw = (A+M1+M2)s+
[B1 B2] [w1;w2]. If desired, the resulting signal yw can be
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finally subjected to another layer of light-weight encryption.
The decoding of the three-tier scheme follows steps similar to
Section IV-C and Algorithm 3.

In this work, we have considered privacy protection in
images and video as an application case. However, the pro-
posed signal acquisition, privacy-protection and encryption
scheme can be applied to any multimedia data that can be
differentiated into sensitive (private) and non-sensitive (public)
parts. A case in point could be the monitoring data of a
wireless sensor network [72]. In such a distributed sensing
mechanism, one may want to hide data in the sensor readings
that would lead to traffic analysis and flow tracing. Another
example would be a CS-based telehealth system [13] where
health personnel with different authorization would have dif-
ferential access to parts of medical data and biosignals.

Furthermore, using CS-encryption together with other light-
weight encryption techniques is a common practice in the
literature. For instance, in [72], the authors used Pailier
cryptosystem over y = As, to strengthen the security. Similar
approaches can be applied over yw provided that invertibility
of the applied encryption method.

VII. CONCLUSION

We have presented a two-tiered (potentially, multi-tiered)
privacy-preserving scheme based on compressive sensing the-
ory. The scheme accommodates two levels of users: A public
user A (with only Key A), who can recover only the non-
sensitive portions of the document, and private B, i.e., the
fully-authorized user who (with keys A and B) who can
recover the whole document. This prioritization is enabled via
a data hiding technique such that the full user in possession
of (Key B) can undo the obfuscation from within the CS-
enciphered signal.

The watermark capacity of the system allows one-time
usage of the obfuscation matrix, which in turn provides a
higher level of security against any attacker, e.g., a curious
semi-authorized user. In conclusion, the proposed approach
satisfies all the criteria of privacy-protecting encoding, as item-
ized in the introduction section. Security can be corroborated
by extra randomization as in Eq. (37a)-(37b). Extensive tests
on a face anonymization use case revealed that the system is
robust against cipher breaking attacks (i.e., face recognition)
and that the image recovery quality is adequate for measure-
ment rates m/N above 0.5. The experiments yielded guidelines
for the selection of system parameters like compression rate
and watermark embedding strength.

The proposed scheme with its experimentally proven merits
of reversible anonymization provides a promising alterna-
tive of privacy-protecting encryption. An application scenario
would be a video surveillance system where the collected
real-time data must be transmitted and uploaded in a security
monitoring center.

APPENDIX

PROOF OF THEOREM 4
Using Equation 9 in Lemma 1 of [16] and the fact that

n�i ∼ N (0, m
p σ 2

n ), where n� = Fn we get

Pr(�Fn�2 ≥ (1+ γ )

√
m√
p

√
pσn) ≤ e−

3p
4 γ 2

. (A.1)

Therefore, when we set � = (1+γ )
√

mσn in Algorithm 3 and
use the inequality that x̃ in (24) satisfies

�x − x̃�2 ≤ C� (A.2)

with probability at least 1− exp(− 3p
4 γ 2), where

C = 4

√
1+ δ2k(FH)

1− (1+√2)δ2k(FH)
(A.3)

Now, we define the error causing uncertainty, z on over-
determined system, yw − Hx̃ = Bw + z. When we insert the
x̃ in Equation (21), we get

yw = Bw +H(x−Qx)+HQx + n, (A.4)

which can be re-cast as

yw −Hx̃ = Bw +H(x− x̃)+ n = Bw + z�, (A.5)

where z� = H(x − x̃) + n. Given �x − x̃�2 ≤ C� and
Hi, j ∼ N (0, 1

m ). Via a similar mathematical derivation given
in Lemma 1, we can claim that H(x− x̃) is a Gaussian random
vector where each element has a variance σ 2 ≤ C2�2

m =
C2(1+γ )2 mσ 2

n
m = C2(1 + γ )2σ 2

n . Therefore, elements of z�
is also a Gaussian vector with elements having variance
σ 2

z� ≤ 4
�
C2(1+ γ )2

	
σ 2

n . Knowing that the matrix B has
orthonormal vectors, the pre-estimation w�� from (25) satisfies

w − w�� = BT z� = z��, (A.6)

with zi
�� ∼ N

�
0, σ 2

z�
�

. Finally, using Equation 2.17 in [73,
Chapter 2], the probability of making an error in watermark
bits can be easily found as

Pr(wi �= ŵi |{�x − x̃�2 ≤ C�}) = Pr
�(zi

� ≥ a�
�

≤ 2 exp

�
−a�2

2σ 2
z�

�
= 2 exp

�
−a�2 m

8
�
C2(1+ γ )2

	 ��sp
��2

�
, (A.7)

where a� = a− η with a and η are user defined parameters to
be used in Algorithm 3.
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Abstract—We consider the problem of linear data hiding
or watermark embedding directly onto compressively sensed
measurements (CSMs). In our encoding and decoding scheme, we
seek exact recovery of concealed data and a small reconstruction
error for a sparse signal under the additive noise model. We
propose an efficient Alternating Direction of Methods of Multi-
plier (ADMM) based decoding algorithm and we show through
experimental results that proposed decoding scheme is more
robust against additive noise compared to competing algorithms
in the literature.

Index Terms—Compressive Sensing, Data Hiding, Watermark-
ing, Image Encryption, Privacy Preserving

I. INTRODUCTION

Compressive sensing [1] (CS) theory has emerged as a
remedy for applications where data acquisition is costly, e.g.,
expensive sensor are required or when the resulting sampled
data volume is impractically large. CS theory states a signal
can be represented with far fewer samples compared to the
Nyquist rate if in a proper domain it is sparse or at least com-
pressible. There are already success stories of CS such in MRI
imaging [2] where as a consequence the signal acquisition
time has been significantly reduced, or in a health monitoring
system where compressive sampling of streaming ECG signals
increases the battery life span [3]. In addition, single-pixel
cameras have been developed [4] using compressive image
sensing for mobile phones [5].

Data hiding and watermarking technologies have witnessed
tremendous developments in the last two decades, becoming
thus a mainstream technology. A good illustrative case is a
health monitoring system where patient biomedical data is
transmitted to a health center. In this case, data hiding and
watermarking enable [6] embedding of meta-data such as
Electronic Health Records or patient’s identity for identifica-
tion and authentication purposes. The overwhelming majority
of these attempts, however, use embedding medium signals
sampled according to the Nyquist-Shannon theorem and can
not be applied to CS acquisition systems such as [2], [3], [4],
[5].

Although CS is conceived as a data acquisition method, a
CS framework is also capable of inherently providing con-
fidentiality with a reasonable level of security. Furthermore,

this capability comes at practically no additional cost and
data encryption [7] can be added right into the sampling
process. Compressive sensing enables encryption via random
or pseudo-random sampling matrices.

There have been few attempts in the literature [8] to embed
metadata directly onto a compressively sensed signal. The
benefits of data hiding in compressively sampled signals are
as follows: First, the compressive samples can be used as a
carrier for subliminal information, and such a scheme can
perform data hiding at a low cost by implementing linear
encoding and spreading the hidden message directly during
sensing. Second, encryption is enabled for the sensed samples
and the additional embedding makes it harder for malicious
user to hack the signals. In this case, the hacker must obtain
both the encryption matrix (i.e., sensing matrix), and the data
hiding or encoding matrix.

In this work, we propose a new decoding strategy for the
data embedding in which the meta data is spread directly
onto CSMs (compressively sensed measurements). This new
method builds upon our previous method for data hiding in
CSMs [8]. The novelty of the work is that it addresses the
extraction of the watermark/hidden data and recovery of the
carrier message as a sparse signal reconstruction problem. To
this effect, we use proximal calculus and ADMM: Alternating
Direction Method of Multipliers based decoding method. We
show that this novel signal recovery and hidden data extraction
method is more robust to additive noise, Gaussian or non-
Gaussian, compared to the scheme in [8].

The rest of the paper is organized as follows. Section
II provides the notation and the mathematical preliminaries.
In Section III, we briefly review the CS framework. Then,
in Section IV, we explain the proposed scheme and give
the details of the ADMM-based decoding algorithm. Finally,
the performance of the proposed algorithm is analyzed and
conclusions are drawn.
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II. PRELIMINARIES

We define the `p norm of any vector x ∈ RN as ‖x‖`Np =
(∑N

i=1 |xi|
p
)1/p

for p ≥ 1. The `0-norm of the vector x ∈
RN is given as ‖x‖`N0 = limp→0

∑N
i=1 |xi|

p
= #{j : xj 6=

0}. The indicator function, ic : RN → {0,∞}, of a convex
set C is also defined as

iC(x) =

{
0 if x ∈ C
∞ if x 6∈ C.

A signal S is said to be strictly k-sparse if the number
of non-zero coefficients is less than a constant k when we
represent this signal in a proper basis (or dictionary), Φ, i.e.,

‖x‖`N0 ≤ k, (1)

where S = Φx ∈ RN . Indeed, most signals we encounter
in real-world applications exhibit a power law decay in
some apropriate Φ. Consider the coefficients of x sorted in
descending order in magnitude, i.e.,

∣∣x1
∣∣ ≥

∣∣x2
∣∣ ≥ ... ≥∣∣xN−1

∣∣ ≥
∣∣xN

∣∣, where xi is the i.th largest coefficient of
x (in magnitude). Let ∧(k) be the set of indices corresponding
to the k largest coefficients. Then, the signal of interest S is
said to be approximately k-sparse if

‖S − Φx∧(k)‖N`2 ≤ κ, (2)

where κ is a small constant.
The Restricted Isometry Constant (RIC) of order k of a

m×N matrix A is defined as the smallest constant, δk(A) ∈
(0, 1) satisfying

(1− δk(A)) ‖x‖`N2 ≤ ‖Ax‖`m2 ≤ (1 + δk(A)) ‖x‖`N2 (3)

for all k-sparse x ∈ RN .
Since we use in this work an ADMM-based decoding

scheme, a brief reminder on proximal method is in order.
ADMM [9] is a special type of a proximal algorithm [10].
Proximal operator or proximal mapping [11] of a function f
at a point z with a parameter γ > 0 is defined as

proxγf (z) = arg min
u
{f(u) +

1

2γ
‖u− z‖2`N2 }. (4)

A proximal operator can be considered as a gradient descent
step for the smooth approximation of f . This method proves
to be very useful in optimization problems involving non-
differentiable functions. It can be interpreted as a generaliza-
tion of the projection operator [12]. For instance, when f is
the indicator function, iC , the proximal operator will simply
be the projection operation onto C, i.e.,

Πc(z) = arg min
x∈C
‖x− z‖`N2 .

III. COMPRESSIVE SENSING REVIEW

In compressive sensing we have m measurements of an N -
dimensional signal S ∈ RN, i.e.,

y = ΨS, (5)

where Ψ is the m × N (typically, m << N ) linear mea-
surement matrix. Assuming that this signal is compressible
(approximately k-sparse) in a proper sparsifying basis Φ, we
can re-arrange the equation as

y = ΨS = ΨΦx∧(k) + ΨΦxΛc = Ax∧(k) + n0, (6)

where ΨΦ and the complement of set ∧(k), defined as
Λc = {1, 2, 3, ..., N} \ ∧(k), represents the indices of the
non-compressible small magnitude part of x, and n0 is the
corresponding additive distortion due to the discarded mea-
surements (it vanishes in strictly sparse case). In addition
CSMs can be corrupted by channel errors during transmission,
also modeled as additive noise, or by quantization errors. Then,
the reconstruction algorithm must handle

y = Ax+ n, (7)

where n is a general additive noise and x is a sparse signal
(hereafter, we use the notation of x instead of x∧(k) for
convenience). Even in the noise-free case when n vanishes,
Equation (7) is an underdetermined system of linear equations
and has infinitely many solutions. In this case, one may find
the sparsest solution from infinitely many by solving

x̂ = arg min
x
‖x‖`N0 + i{Ax=y}(x). (8)

The problem formulated in (8) is not convex, and hence one
can relax and convexify it so that, e.g., the well-known Basis
Pursuit problem can be applied:

x̂ = arg min
x
‖x‖`N1 + i{Ax=y}(x). (9)

It is proven that the solution of (9) is unique given that A
has certain properties (e.g., null space property) [13].

In the noisy case, (9) can be expressed in terms of the
following Basis Pursuit Denoising problem [14],

x̂ = arg min
x
‖x‖`N0 s.t ‖y −Ax‖`m2 ≤ ε (10)

The stability of the solution of (10) is well studied in the
literature. For instance, given that ‖n‖`2 ≤ ε, if matrix A

possesses RIC with δ2k <
√

2−1, equation (10) approximates
x with

‖x− x̂‖`N2 ≤ C0ε, (11)

where C0 depends on δ2k(A) [15]. As an example of the
measurement matrix, A with i.i.d. elements Ai,j drawn ac-
cording to N

(
0, 1

m

)
, m > k(log(N/k)) guarantees with

high probability exact signal reconstruction when the noise
n vanishes [15].
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IV. DATA HIDING

Let x ∈ RN be a k-sparse signal and w ∈ {a,−a}M be
an M -length binary hidden message (e.g., watermark) that
we wish to linearly embed into CSMs of S. Recall that
compressive sensing algorithms relocate the computational
burden from the sampling side (e.g., transmitting end) to
the reconstruction side (receiving end) by performing linear
sampling and non-linear reconstruction. On the other hand, the
M -long binary hidden message can be linearly spread directly
onto CSMs via the encoding matrix B ∈ Rm×M ,M < m, re-
sulting in the marked signal y = Ax+Bw, where A ∈ Rm×N
is the measurement matrix.

Finally, the marked signal carrying the hidden data can be
modified by an additive noise or as a consequence of some
attack, yielding:

y = Ax+Bw + n. (12)

A. Previous Decoding Scheme

In [8], the authors proposed a joint reconstruction and re-
covery algorithm as in Algorithm 1. Here F ∈ Rp×m is the left
annihilator matrix of B, i.e., FB = 0 with p = m−M . Briefly
in this iterative method, we first try to remove the watermark
via the annihilator matrix F , reconstruct the original signal x
sparsely, deflate accordingly the received signal y, and then
proceed to extract the binary watermark w via thresholding.

Algorithm 1 Algorithm 1 in [8]

Input: y, A, B;
Determine: ε
1. Apply F to y : ỹ = Fy
2. Estimate x̃ : x̃ = arg minx ‖x‖`N1 s.t. ‖ỹ − FAx‖`p2 ≤
ε
3. Estimate w̃ : w̃ = (BTB)−1BT(y −Ax̃)
4. Threshold w̃ : ŵi = a ∗ sgn(w̃i)
5. x̂ = arg minx ‖x‖`N1 s.t. ‖(y −Bŵ)−Ax‖`m2 ≤ ε
Return: x̂, ŵ

It is stated in [8] that the data embedding capacity depends
on the restricted isometry constant of FA and the signal to
noise ratio (SNR).

B. Proposed Robust Decoding Scheme

1) Problem Formulation: In this work, we formulate the
joint estimation of embedded data and sparse signal recovery
as an optimization problem:

(x∗, w∗) = arg min
(x,w)
{λ1

2
‖y − (Ax+Bw)‖2`m2 + λ3 ‖x‖`N1

+
λ2

2
‖Fy − FAx‖2`p2 + i{−a,+a}M (w)}. (13)

In (13), a second fidelity term, ‖Fy − FAx‖2`p2 is added to
increase the solution stability, as it was done in Algorithm
1 along with the first term ‖y − (Ax+Bw)‖2`m2 . While the
second term increases the stability, the first term is instru-
mental for the ADMM formulation, and this can be seen

as a feed-back mechanism. Finally, the last term represents
the projection on a non-convex set and corresponds to the
thresholding operation to extract the hidden binary message.
The optimization problem (13) becomes a non-convex one
due to last term, since wi is an integer. We can solve this
problem using the following ADMM strategy. In the following
subsection, we first explain the primal-dual conversion of (13)
and then proceed with the ADMM solution for (13).

2) From dual ascent to ADMM: The equivalent consensus
form can be written as

(x∗, w∗, z∗1 , z
∗
2) = arg min

(x,w,z1,z2)
{λ1

2
‖y − (Ax+Bw)‖2`m2

+ λ3 ‖z2‖`N1 +
λ2

2
‖Fy − FAx‖2`p2 + i{−a,+a}M (z1)}

subject to w = z1, x = z2. (14)

The Augmented Lagrangian form for this problem in (14) can
be cast as

L(µ1,µ2)(β1, β2, x, w, z1, z2) =
λ1

2
‖y − (Ax+Bw)‖2`m2

+ λ3 ‖z2‖`N1 +
λ2

2
‖Fy − FAx‖2`p2 + i{−a,+a}M (z1)

+ 〈β1, (z1 − w)〉+ 〈β2, (z2 − x)〉+
µ1

2
‖w − z1‖2`M2

+
µ2

2
‖x− z2‖2`N2 , (15)

where β1 ∈ RM , β2 ∈ RN are called Lagrange multipliers or
dual variables, and the last two terms are penalty terms with
parameters, µ1, µ2 > 0, respectively. The corresponding dual
function can be written as

g(µ1,µ2)(β1, β2) = inf
(x,w,z1,z2)

L(µ1,µ2)(β1, β2, x, w, z1, z2). (16)

Instead of the primal problem in (13), we can approximate the
optima of the primal function (with some duality gap due to
the non-convex term) by maximizing the dual function which
is

(β∗1 , β
∗
2) = arg max

β1,β2

{
g(µ1,µ2)(β1, β2)

}
. (17)

Then, we can approximate the primal optimal points by
solving following problem:

(x∗, w∗, z∗1 , z
∗
2) = arg min

(x,w,z1,z2)
L(µ1,µ2)(β

∗
1 , β
∗
2 , x, w, z1, z2).

(18)
In maximizing Problem (17), the primal values are updated
jointly. This is called augmented Lagrangian method or
method of multipliers [16], which has the following iterative
form for our problem,

(x,w, z1, z2)
k+1 ← arg min

(x,w,z1,z2)
L(µ1,µ2)(β

k
1 , β

k
2 , .., z1, z2)

βk+1
1 ← βk1 + µ1(zk+1

1 − wk+1)

βk+1
2 ← βk2 + µ2(zk+1

2 − xk+1),

where the last two terms come from the gradient ascent step
for the dual function and the specific choice of the ascent step
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µ1, µ2 (these dual variable updates can be done independently
since ∇(β1,β2)g(µ1,µ2)(β1, β2) are separable in β1 and β2).

The joint optimization stated in Eq. (18) can be solved
conveniently for the x,w, z1, z2 variables using ADMM [17]
(see the recent review [9] for details.) We can derive an
algorithm in which the primal and dual variables are updated
independently in an alternating manner. The general structure
of ADMM algorithm for Problem (13) is given in Algorithm
2.

3) Primal Variable Updates: Let us start from the update
of z2,

zk+1
2 = arg min

z2
{λ2 ‖z2‖`N1 +

〈
βk2 , (z2 − xk+1)

〉

+
µ2

2

∥∥xk+1 − z2

∥∥2

`N2
} (19)

which is actually equivalent to

zk+1
2 =arg min

z2

{
λ2 ‖z2‖`N1 +

µ2

2

∥∥∥∥z2 −
(
xk+1 − βk2

µ2

)∥∥∥∥
2

`N2

}
.

(20)
By the definition in (4), one can easily see that it is nothing
but the the proximity operator of f(x) = ‖x‖`N1 with the
parameter (λ2

µ2
)

zk+1
2 = prox

(
λ2
µ2 )`N1

(
xk+1 − βk2

µ2

)
. (21)

Using the separable sum property for proximal maps [11],
one can obtain the proximal operator of f(x) = ‖x‖`N1 with
parameter γ at vector z as follows,

proxγf (zi) =





zi + γ if zi ≤ −γ
0 if −γ ≤ zi ≤ +γ

zi − γ if zi ≥ γ
where zi is the i-th element of the vector z. This operation
is actually the well-known soft thresholding. Similarly, the z1

update can be performed by solving

zk+1
1 = arg min

z1

{
iC (z1) +

µ1

2

∥∥∥∥z1 −
(
wk+1 − βk1

µ1

)∥∥∥∥
2

`M2

}

(22)

Algorithm 2 ADMM for Problem
repeat

Primal Updates
xk+1 ← arg minx L(µ1,µ2)(β

k
1 , β

k
2 , x, w

k, zk1 , z
k
2 )

wk+1 ← arg minx L(µ1,µ2)(β
k
1 , β

k
2 , x

k+1, w, zk1 , z
k
2 )

zk+1
1 ← arg minx L(µ1,µ2)(β

k
1 , β

k
2 , x

k+1, wk+1, z1, z
k
2 )

zk+1
2 ← arg minx L(µ1,µ2)(β

k
1 , β

k
2 , x

k+1, wk+1, zk+1
1 , z2)

Dual Updates:
βk+1

1 ← βk1 + µ1(zk+1
1 − wk+1)

βk+1
2 ← βk2 + µ2(zk+1

2 − xk+1)
until Convergence
return x̂, ŵ

and we can easily see that it is the following operator

zk+1
1 = proj{{−a,+a}M}

(
wk+1 − βk1

µ1

)
(23)

where we can approximate the projection onto the set C =
{−a,+a}M as the simple thresholding operator

proj{{−a,+a}M} (zi) ≈ a ∗ sgn (zi) (24)

for the i-th element of a vector z. We can see that the operation
is a relax-and-round heuristic for integer valued non-convex
optimization problem (22) by relaxing the set {−a,+a} to
(−a,+a), solving the corresponding convex problem and
rounding the solution to the nearest integer −a or a [18].

Update of the primal variable x can be done by solving

xk+1 = arg min
x
{λ1

2

∥∥y − (Ax+Bwk)
∥∥2

`m2
+
〈
β2, (x− zk2 )

〉

+
λ2

2
‖Fy − FAx‖2`p2 +

µ2

2

∥∥x− zk2
∥∥2

`N2
}. (25)

Since the right hand side is differentiable, the update equa-
tion can be cast as solving the linear equation ∇xL(.) = 0,
which reduces to

xk+1 = (λ1A
TA+ λ2A

TFTFA+ Iµ2)−1

(λ1A
T (y −Bwk) + λ2(ATFTFy) + βk2 + µ2z

k
2 ) (26)

Similarly, the update of primal variable w can be achieved by
solving

wk+1 = (arg min
w

λ1

2

∥∥y − (Axk+1 +Bw)
∥∥2

`m2

+
〈
βk1 , (z

k
1 − w)

〉
+
µ1

2

∥∥w − zk1
∥∥2

`M2
) (27)

which yields

wk+1 = (λ1B
TB + µ1I)−1

[
λ1B

T (y −Axk+1) + βk1 + µ1z
k
1

]
(28)

by solving ∇wL(.) = 0. In addition to these variables,
robustness parameters (µ1, µ2) can also be updated,

(µk+1
1 , µk+1

2 )←
(
ρ1µ

k
1 , ρ2µ

k
2

)
. (29)

V. SIMULATION RESULTS

We generate a k = m
5 -sparse N = 512 length synthetic

signal. A and F are chosen as explained in Section IV. The

M -long watermark, w, is generated with ‖w‖`M2 =
‖Ax‖`m2

4
so that the embedded-data-to document ratio is −6 dB and
the marked measurements are contaminated with AWGN with
different signal-to-noise ratios (SNR). We define the SNR as

20 log10

(
‖Ax+Bw‖`m2
‖n‖`m2

)
. Each experiment is conducted 250

times and the average performance results are reported. Similar
experiments are also conducted with different sparsity level
and SNR, but for the sake of brevity we report only the cases
for 32 dB and 24 dB in Figure 1 and Figure 2, respectively.
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Fig. 1: Heat-maps of exact watermark error probability, Prob(w 6= ŵ) over measurement rate m/N and embedding rate M/m
under AWGN at 32 db SNR. (a) Algorithm 1. (b) The proposed method without the term ‖Fy − FAx‖2`p2 . (c) The proposed
method.

Fig. 2: Heat-maps of Prob(w 6= ŵ) over m/N and M/m under AWGN at 24 dB SNR. (a) Algorithm 1. (b) The proposed
method without the term ‖Fy − FAx‖2`p2 . (c) The proposed method.

Similar performance was observed in the experiments not re-
ported here. We compare the performance results of Algorithm
1, the proposed Algorithm with and without the data fidelity
term ‖Fy − FAx‖2`p2 for different embedding rates, M

m and
the different measurement rates m

N . From Figure 1-(b), (c)
and Figure 2-(b), (c), it can be clearly seen that modeling
the problem as joint optimization problem in (13) which
includes an extra data fidelity term ‖Fy − FAx‖2`p2 , which
is in dimensionality reduced measurement domain clearly
surpasses the performance of modeling without it. It is also
apparent from the Figure 1-(a), (c) and Figure 2-(a), (c) that the
performance of final ADMM based solution to (13) exceeds
the previous state of art [8].

In our experiments we set λ1 = λ2 = 1, λ3 = 1 × 10−2,
µ1 = 3.3× 10−6, µ2 = 8× 10−3, ρ1 = 1, ρ2 = 1.035.
`1-magic [19] solver (it was observed that different solvers,

such as CVX, resulted in a similar performance) is used to
conduct Algorithm Algorithm 1 with ε ≈

√
mσ2

n.

VI. CONCLUSION

In this work we have proposed a new iterative decoding
strategy for joint watermark extraction and signal recovery
in compressively sampled signals. The new approach boosts
the watermark capacity of the compressively sampled signals
and improves also its noise robustness. We plan to extend
this framework to embed meta-data onto CSMs to structurally
sparse signals such as group sparse ones.
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Abstract—Compressive Sensing (CS) theory asserts that sparse
signal reconstruction is possible from a small number of linear
measurements. Although CS enables low-cost linear sampling, it
requires non-linear and costly reconstruction. Recent literature
works show that compressive image classification is possible
in CS domain without reconstruction of the signal. In this
work, we introduce a DCT base method that extracts binary
discriminative features directly from CS measurements. These CS
measurements can be obtained by using (i) a random or a pseudo-
random measurement matrix, or (ii) a measurement matrix
whose elements are learned from the training data to optimize
the given classification task. We further introduce feature fusion
by concatenating Bag of Words (BoW) representation of our
binary features with one of the two state-of-the-art CNN-based
feature vectors. We show that our fused feature outperforms the
state-of-the-art in both cases.

Index Terms—Compressive Sensing, Compressive Learning,
Inference on Measurement Domain, Learned Measurement Ma-
trix, Compressive Classification, DCT-based Binary Descriptor.

I. INTRODUCTION

The first step in any signal processing task is the acquisition
of signals. The classical pathway for band-limited signals is
to instantaneously sample the signal at the Nyquist-Shannon
rate, then compress the signal to remove redundancies and/or
irrelevancies, typically using a transform-based compression
technique for efficient storage and transmission. The com-
pressed signal must be decompressed before executing any
further signal processing operation such as classification, de-
tection, inference. etc.

The new sampling paradigm, Compressive Sensing (CS)
[1] bypasses this laborious Nyquist-Shannon data acquisi-
tion scheme in that signals are being compressed while be-
ing sampled with random patterns. Thus the sampling and
compression steps are combined into one action. However,
the reconstruction of the signal from compressively sensed
measurements (CSMs) becomes non-linear and considerably
costlier in the computational effort. This costly signal recon-
struction operation would be counterproductive were it not for
the emerging signal processing algorithms in the compressed
domain. A newly emerging idea [2]–[4] is using CSMs directly
in inference problems without executing any reconstruction.
This promising approach can potentially be advantageous in
real-time applications and/or when dealing with big data.

In a pioneering work, Davenport et al. [4] have addressed
the problem of inference directly on compressively sensed

measurements. In [5], it is theoretically shown that the accu-
racy of the soft margin SVM classifier is preserved when data
is collected with sparse random projections. The authors in [6]
have introduced the idea of smashed filter and, based on the
Johnson-Lindenstrauss Lemma [7] have shown that the inner
product of two signals is relatively preserved for compressively
sampled signals when the sampling matrix consists of random
values, chosen from some specific probability distributions.
Different versions of the smashed filter are used in vari-
ous applications [8], [9]. For instance in [9], a compressive
smashed filter technique is proposed by first producing a set
of correlation filters from uncompressed images in the training
set, and then at the testing stage by correlating CSMs of test
images and with the CSMs of learned filters. A linear feature
extraction method in CS domain is developed in [10] for direct
classification of compressively sensed EEG data. In [11] fed
an SVM classifier with a fusion of CSMs (projected data) and
dynamic features and they reported performance beyond the
state-of-the-art for 1-D ECG data classification.

Other works, e.g., [12], [13], have provided theoretical
guarantees for achievable accuracy in different CSM setups
for both sparse and non-sparse cases.

All the above works try to use compressed samples directly
to solve the inference problem. A second approach is to
boost the size of CSMs to the original image size by a
simple linear projection, but avoiding the costly nonlinear
reconstruction procedure. This simple back-projection yields
a pseudo-image and one then proceeds with the inference task
on this imperfectly reconstructed image. This image, restituted
to its original dimension and also known as proxy image,
is usually a heavily degraded version of the original image.
One way to obtain the proxy image is by premultiplying the
compressed image by the transpose of the sampling matrix. In
[14], the authors apply a CNN-based feature extraction method
on such a proxy image. Their measurement matrix consists of
random Gaussian distributed numbers. Another work [15] uses
a deeper network structure (as compared to [14]) by adding
two fully connected layers at the beginning of the network.
Thus this network can learn as well the linear dimension
reduction (so-called measurement matrix) and linear back
projection to the image domain (i.e., the transpose of the
measurement matrix).

In this work, following the vein of the second approach we
propose a DCT-based discriminative feature scheme, computed



directly from the proxy image. This feature vector (called MB-
DCT) is binary, hence simple and low cost. A preliminary
version of this feature was presented in EUSIPCO [16]. In this
work, we applied MB-DCT on non-compressively sampled
images. In [16] we had shown that this simple scheme of
selected binarized DCT coefficients, computed in increasing
scales of local windows was remarkably robust against linear
and nonlinear image degradations, such as additive white
Gaussian noise, contrast and brightness changes, blurring,
and strong JPEG compression. We use MB-DCT scheme in
[16] for feature extraction from image proxies. Our exper-
imental results show that using this simple binary feature
method surpasses the performance of Smashed Filters [9].
We further introduce feature fusion by concatenating Bag of
Words (BoW) representation of our binary features with one
of the two state-of-the-art CNN-based feature vectors, i.e., in
[14] and [15]. In the method [14], elements of measurement
matrices were drawn from a random distribution as typical
in conventional CS theory, whereas in the method [15] sam-
pling matrices were learned from a deep network; the latter
method proved to be superior for smaller measurement rates.
However, random sensing scheme may still be needed for
some applications where one needs to pre-classify the data
directly using CSMs, then reconstruct the signal for further
analysis. For instance in a remote health monitoring system,
we may wish to detect anomalies directly from CSMs of
ECG signal on the sensor side. Then based on the sensor side
classification, CSMs of selected cases can be transmitted for
a more detailed analysis by a medical doctor. Therefore, we
consider the random sensing approach and learned sensing
approach as two different set-ups. In this paper, we show that
our fused features outperforms the aforementioned works for
both of the schemes and gives the state-of-the-art performance.

We briefly introduce the notation used and some preliminary
information. We define the `0-norm of the vector x ∈ RN as
‖x‖`N0 = limp→0

∑N
i=1 |xi|p = #{j : xj 6= 0}. The compres-

sive sensing (CS) scheme extracts m number of measurements
from the N-dimensional input signal S ∈ RN , i.e.,

y = ΨS, (1)

where Ψ is the m × N measurement matrix and typically
m << N . Consider this signal to be k-sparse in a sparsifying
basis Φ such that S = Φx with ‖x‖`N0 ≤ k. Then, the general
compressive sensing setup is

y = ΨΦx = Ax, (2)

where A = ΨΦ is sometimes called as holographic matrix. It
has been demonstrated that the sparse representation in (3) is
unique if m ≥ 2k [17].

min
x
‖x‖`N0 subject to Ax = y (3)

The organization of the rest of the paper is as follows. In
Section II, we provide the notation, mathematical foundations
and a brief review of CS theory. The difference between the
two measurement approaches, namely, based random weights

or learned weights in the acquisition of CMSs and reconstruc-
tion of proxies are explained in Section III. Then in Section
IV, we introduce the proposed feature extraction method from
the two proxy varieties. Finally, performance evaluations of
the proposed method are given and a conclusion is drawn.

II. RELATED WORKS

The signal reconstruction expounded in (3) is an NP-hard
problem. Among the plethora of methods to overcome the
computational impasse one can list convex relaxation, various
greedy algorithms, Bayesian framework, non-convex optimiza-
tion, iterative thresholding methods etc. [18]. However, these
algorithms still suffer from computational complexity and
must be restricted mostly to non-real time applications. For
an application where a fast and real-time data inference is
required, one possible solution could be designing a non-
iterative solution such as a simple forward pass re-constructor
[19], [20] based on neural networks. These types of solu-
tions, nevertheless, remain still wasteful of resources since
we have to return to the high-dimensional ambient domain
from the compressed domain in order to execute tasks such
as feature extraction, classification etc. Furthermore the exact
recovery probability, that is the phase diagram of the recovery
algorithms, depends critically on the sparsity level k and
the number of measurements, m [21]. When the proportion
of measurements is very low, typically for m

N ≤ 0.1 most
reconstruction algorithms fail. Approaches to tackle the recon-
struction bottleneck have been to bypass the reconstruction
step altogether, and make inferences directly on the CSMs
signal y [9], or on some proxy of the signal, S̃ = ΨT y without
solving the inverse problem for sparse reconstruction x̂ as in
Eq. (3), therefore Ŝ = Φx̂, where Ŝ full recovery of the
vectorized image. We can express the linear degradation on
the proxy as

S̃ = ΨT y = ΨT ΨS = HS, (4)

where H = ΨT Ψ is a non-invertible matrix that represents the
non-linear degradation on original signal S.

A. Feature extraction from compressively sensed signals with
random measurement matrices

In order to guarantee the exact recovery of the k-sparse
signal x from y, the measurement matrix Ψ should satisfy
certain properties. For example, the measurement matrix, Ψ
with i.i.d. elements Ψi,j drawn according to N

(
0, 1

m

)
, and

m > k(log(N/k)) guarantees with high probability the exact
signal reconstruction when we relax the `0 to `1 in (3) [22].
Random measurement matrices are known to be universally
optimum in the sense that they are data independent of charac-
teristics of the data, and they satisfy minimum reconstruction
error with minimum m when we do not have another prior
information about k-sparse signal. The acquisition of the proxy
signal is obviously done as, S̃ = ΨT y, where ΨT ∈ RN×m

is the transpose of the measurement matrix Ψ. An example
proxy image is shown in Figure 1.
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Fig. 1: The image of Lena and its proxy ΨT y obtained from
CSMs, where y results from projecting the original image on
a Gaussian random measurement matrix.

B. Feature extraction from compressively sensed signals based
on measurement matrices with learned coefficients

Design of optimal measurement matrices for CS reconstruc-
tion and/or for inference tasks is an active research area.
An approach to learn a projection operator from image to
measurement domain and its backprojection operator from
compressed domain to image domain is presented in [14]. The
authors have used two fully-connected layers that are followed
by convolution layers. The first layer takes the original image
S and projects it to the measurement domain, y. The learned
weights of this layer represent the elements of measurement
matrix for compressively sensing images. The second layer
represents the back projection to the image domain to produce
a proxy of the image, i.e., S̃ = Ψ̃T y. In this expression Ψ̃T

is the learned transpose of the measurement matrix, which
is used instead of the transpose of the true measurement
matrix, ΨT . The output of this layer, the proxy image, is
given as input to convolutional layers to realize some non-
linear inference task, e.g., classification. Thus the measurement
matrix, the pseudo-transpose of the measurement matrix and
convolutional network are all jointly learned from the training
data. Figure 2 illustrates the first two fully-connected layers
of this network.
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Fig. 2: An original image and its proxy ΨT y where y that is
obtained using the learned measurement matrix.

III. PROPOSED APPROACH

In this work, we have employed MB-DCT features extracted
from proxy images (see Eq. 4) for classification tasks. Specif-
ically, we applied the MB-DCT of [16] as follows: i) we use
4 window scales (instead of 6 as in [16]) and the size of
the largest window is now 24 pixels instead of 128 pixels
[16]) to fit smaller sized MNIST images (28 × 28 pixels);
ii) we apply a different scheme of coefficient elimination in

that we keep the best performing of the three sets (based
on AC energy preservation) of DCT coefficients in the sense
of classification accuracy. An MB-DCT descriptor consists
of mean quantization of 2D-DCT transform coefficients as
computed from multiscale blocks around (densely or sparsely
chosen) image points [16].

We employ the mentioned scheme of MB-DCT features
in two main modes: 1) The conventional BoW framework
as in [16]; 2) A fusion scheme where MB-DCT features are
complemented with deep learning features.

A. MB-DCT

We review briefly the MB-DCT features:
(1) DCT computation: 2D-DCT coefficients are computed

in multiple nested blocks around selected image points, each
incrementally changing in size. Similar to [16], we employ
various sized windows in this work, in order to capture con-
textual information in different sized neighbourhoods around
every image point. We compute 2D-DCT in four scales
corresponding to block sizes {8, 12, 16, 24}, which seemed
adequate for 28 × 28 pixel-sized MNIST images. For larger
images, larger block sizes can be investigated for performance-
computational cost tradeoff.

(2) Eliminating irrelevant coefficients: A subset of zig-zag
ordered DCT coefficients are kept for each block as features
and the remaining coefficients are eliminated as irrelevant.
The DC term was discarded in all scales as in [16], which
also desensitizes the feature vectors to illumination level.
We experimented for different sized subsets of the zig-zag
ordered coefficients in each scale. Specifically, to determine
the quantity of DCT coefficients kept, we start with a random
subset of training images. Then, we find three sets of zig-zag
ordered DCT coefficients for every pixel location preserving,
respectively, 90% and 95% of the AC energy. We repeat this
experiment for each scale and for each window size. Finally,
we fix the number of coefficients for each energy level (and
for each scale) to the average, over all training images, number
of coefficients that have met energy preservation percentages.
For 100% of the energy preservation we keep all the AC coef-
ficients. For the window sizes of {8, 12, 16, 24}, we found that
the average number of AC coefficients corresponding to 90%
and 95% energy are {15, 26, 37, 73} and {21, 40, 63, 130},
respectively. Using these sets of coefficients specific to the
window size, we measured the classification error rate on
MNIST proxy images at different sensing rates. The resulting
error rates are given in Table 1, where one can see that
the performances do not differ significantly. Notice that one
needs to use quite larger set of coefficients as compared to
when original images were used [16]. Due to the imperfect
reconstruction of proxy images, the structural information in
the image is not as compact as in the original one.

(3) Binarization of the coefficients: Since binary features are
memory and computation efficient, we binarized the selected
coefficients of each block by mean quantization similar to [16].
We also tried median quantization and also trimming, but the



MBDCT 
FEATURES 

RSMBDCT or LSMBDCT 

1D
CNN

KNN

F 
U 
S 
E 
D 

F 
E 
A 
T 
U 
R 
E 
S

Computation of 2DDCT
coefficients

Selection of relevant
coefficients

3 4 5 5 7 5 ... 
2 5 6 1 3 0 ... 
4 6 2 1 4 6 ...  

1 2 0 ... 
3 0 1 ... 
0 6 6 ...  

5 0 ... 

0 1 ...  

Binarization and
concatenation over scales

[1 0 1 0 1 0 0 0 1 0 ... 1 1 0 1 ] Classification of
fused features

Proxy Image 
   MR = 0.25 

5 5 7 5 ... 
2 5 3 0 ... 
 4 6 4 6 ...  

Random Sensing [14] 

Learned Sensing [15] 

       BoW  
Representation

CNN 
FEATURES 
RSCNN or LSCNN 

...

MB-DCT

Fig. 3: Computational pipeline for the proposed approach.

mean quantization provide slightly better results (around 0.5%
improvement).

(4) Concatenation of different scales: The final binary
descriptor for a given keypoint is obtained by concatenation
of binarized DCT coefficient sets at each scale.

The computational pipeline of the MB-DCT scheme is
illustrated in Figure 3.

B. Performance of MB-DCT features for classification of CS
proxies

We first compute MB-DCT features densely on the CS
proxies of input images as in Eq. 4. Then, we extract image
descriptors from these features according to the two schemes
explained in the sequel.

1) MB-DCT in the BoW framework: In this scheme, we
follow the conventional BoW procedure to compute descrip-
tors of CS proxies. We learn a visual dictionary by K-Means
clustering of dense MB-DCT features using hamming distance
and computed on a training image set. The MB-DCT feature
of each image point is assigned the nearest binary descriptor
from the dictionary with hard voting. Finally, we apply average
pooling to compute a single image signature to obtain the BoW
representation of each image.

2) Fusion of MB-DCT with Deep Learning features: Deep
learning approaches have been shown to provide superior
performance in the solution of inference problems provided
sufficient amount of training data is available. Nevertheless,
recent studies have demonstrated that the joint use of learned

TABLE I: Effect of the quantity of DCT coefficients, as a
function of energy preserved, on classification performance of
MNIST proxy images at different measurement rates.

Measurement Rate 90% Energy 95% Energy 100% Energy
0.25 8.75 8.67 7.26
0.10 10.81 10.57 9.49
0.05 16.04 15.21 14.28
0.01 41.99 41.1 41.33

features and hand-crafted features (e.g., MB-DCT) can result
in improved performance [23], [24].

For this purpose, we have jointly used the BoW descriptors
obtained from MB-DCT features with CNN features computed
as in the two recent works, i.e. [14] and [15]. In both cases,
proxy images are recovered by pre-multiplying the CSM
vector with the transpose of the sensing matrix. In [14], the
sensing matrix consists of random Gaussian numbers while
in Compressive Learning (CL) the sensing matrix is obtained
using a deep learning architecture. In both approaches, CNN
features are computed on the proxy images. This procedure
of MB-DCT and CNN features is shown in the two upper
branches of the block diagram in Figure 3. We have named
the CNN-derived feature scheme in [14] as Random Sensing
+ CNN (shortly RSCNN ) and that in [15] as Learned Sensing
+ CNN (shortly LSCNN ), respectively.

Some examples of proxy images recovered with the trans-
pose of the random Gaussian matrix using Eq. 4 are shown in
Figure 4 for four sampling rates. Starting from such a proxy
image, we compute CNN features (coefficients of the fully
connected last layer) using the Lenet5 model [14]. We also
compute in parallel BoW descriptors from MB-DCT features,
and we refer to this method as RSMB−DCT . Finally, after L2

normalization, separately of each descriptor, we concatenate
them to obtain the joint descriptor. We denote the fused
descriptor as RS(CNN |MB−DCT ).

Fig. 4: Proxy images recovered when random sensing is used
at different sensing rate

For the LSCNN algorithm [15], we learned the sampling
matrix for the MNIST dataset, i.e. we get the Ψ and ΨT

matrices in Eq. 4 from the first and second fully connected



TABLE II: Test error rates on MNIST dataset. MR: Measurement Rate; RS: Random Sensing; LS: Learned Sensing, [†]
denotes our re-implementation of [14] and [15]; [∗] denotes our proposed features. Presented results are obtained with the
KNN classifier.

MR Smashed
Filter [9] RSCNN [14] RS†CNN

RS∗MBDCT RS∗(CNN|MBDCT ) LSCNN [15] LS†CNN
LS∗MBDCT LS∗(CNN|MBDCT )

0.25 27.42% 1.63% 1.73% 7.26% 2.17% 1.56% 1.95% 5.84% 1.58%
0.10 43.55% 2.99% 2.98% 9.46% 3.02% 1.91% 1.88% 5.90% 1.58%
0.05 53.21% 5.18% 4.78% 14.28% 4.44% 2.86% 2.12% 5.80% 1.59%
0.01 63.03% 41.06% 45.8% 41.33% 24.78% 6.46% 5.52% 19.88% 3.87%

TABLE III: Test error rates of the proposed features on MNIST dataset obtained with different classifiers

Measurement Rate RSMBDCT RS(CNN|MBDCT ) LSMBDCT LS(CNN|MBDCT )

KNN 1D-CNN KNN 1D-CNN KNN 1D-CNN KNN 1D-CNN
0.25 7.26% 8.37% 2.17% 1.69% 5.84% 5.88% 1.58% 1.58%
0.10 9.46% 10.01% 3.02% 2.87% 5.90% 6.19% 1.58% 1.75%
0.05 14.28% 14.16% 4.44% 4.66% 5.80% 5.64% 1.59% 1.63%
0.01 41.33% 48.42% 24.78% 28.11% 19.88% 21.09% 3.87% 4.57%

layers of the trained network. We compute BoW represen-
tation of MB-DCT features on these proxies referred to as
LSMB−DCT . Similarly, we get the CNN features from the
last fully connected layer of the network. Finally, applying L2

normalization to each, we concatenate them to obtain the joint
features that we name as LS(CNN |MB−DCT ).

IV. PERFORMANCE EVALUATION

A. Experimental setup

We have experimented on the MNIST dataset that contains
hand-written digit images and we followed the same experi-
mental setup in [14] as 50K and following 10K images are
used in training and testing, respectively.

a) Computation of the features: To compute MB-DCT
features, we learned a visual dictionary by K-means clustering
based on hamming distance and using training set consisting of
100 randomly selected proxy images. We worked with K=512
clusters as in [16]. The following procedures are as mentioned
in Section IV.B.1.

In order to compute RSCNN and LSCNN features we have
re-implemented the corresponding architectures in [14] and
[15] using the Keras library. For the RSCNN case, we have
trained the network in [14] using stochastic gradient descent
with the parameters: learning rate 0.01, momentum 0.9, weight
decay 0.0005, and we applied 15K epochs following [14]. For
the implementation of LSCNN we have trained the network
in [15] with Adam optimizer, using learning rate 0.00025 and
500 epochs. Training took around 60 (due to high number
of epochs) and 2 hours for the techniques of RSCNN and
LSCNN , respectively, with the GPU of GTX 1080 Ti.

b) Choice of the classifier: We ran experiments with two
different classifiers, namely, KNN and 1D-CNN. For KNN,
we used the chi-square distance to compare histograms. We
decided for the best value of ’k’ by 5-fold cross-validation on
the training set and then measured the performance on the test
set.

We further wanted to examine the classification performance
with a multilayer neural network. However, since the length
of the features were quite high, i.e., 1012 for RSCNN and

596 for LSCNN (recall that these are also to be augmented
with the 512 dimensional MB-DCT features in the fusion
scheme), we decided not to follow this path to avoid excessive
computational overhead. Instead we opted to train a 1D-CNN
network, adopting Lenet-5 model, with the computed features
of the training images. We used Adam optimizer with a
learning rate of 0.00025 and 500 epochs in training which
took around 2 hours for all the techniques.

B. Performance results

The performance results that are obtained with the afore-
mentioned techniques in terms of test error are presented at
Table II. We also present three published performance results
in the literature, namely, Smashed Filter [9], RSCNN [14] and
LSCNN [15].

We observe that with our re-implementation of RSCNN and
LSCNN , we get performances quite close to the reported ones
in [14] and [15]. For the degraded proxy image with random
sampling, our binary descriptor (RSMB−DCT ) outperforms
Smashed Filters [9] significantly. RSMB−DCT also gives
competitive results with respect to RSCNN [14] for the lowest
measurement rate (0.01). We outperform RSCNN [14] at the
lowest measurement rate significantly when we use the fused
feature (41.06% vs 24.78%).

The significant performance gain is achieved when degrada-
tion is created by the learned matrices. In that case, although
LSMB−DCT was behind the reported LSCNN results in
[15], our re-implementation of LSCNN was slightly better
than theirs. More significantly, lowest classification error rates
which can be accepted as the new state-of-the-art are obtained
when we use joint features in LS(CNN |MB−DCT ) implemen-
tation (3.87% test error for 0.01 measurement rate).

The performance results presented in Table II are obtained
with the KNN classifier. We also present the performance
results obtained with 1D-CNN at Table III. As it can be seen in
Table III, although they were competitive for higher sampling
rates, KNN always gives better result, more significantly at
lowest measurement rate. However, execution time of KNN



classifier was much higher than the 1D-CNN execution time
on GPU.

V. CONCLUSION

In this work, we proposed a DCT-based discriminative
feature scheme, computed directly from the proxy image
which is usually a heavily degraded version of the original
image. This feature vector (called MB-DCT) is binary, hence
simple and low cost. We further introduced feature fusion
by concatenating Bag of Words (BoW) representation of our
binary features with one of the two state-of-the-art CNN-
based feature vectors. Our experimental results show that
proposed scheme gives the state-of-the-art performance for
compressively sensed image classification even at the lowest
measurement rate.
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Abstract—Compressive Learning is an emerging topic that
combines signal acquisition via Compressive Sensing and Ma-
chine Learning to perform inference tasks directly on a small
number of measurements. Many data modalities naturally have
a multi-dimensional or tensorial format, with each dimension or
tensor mode representing different features such as the spatial
and temporal information in video sequences or the spatial
and spectral information in hyperspectral images. However, in
existing Compressive Learning frameworks, the Compressive
Sensing component utilizes either random or learned linear
projection on the vectorized signal to perform signal acquisition,
thus discarding the multi-dimensional structure of the signals.
In this paper, we propose Multilinear Compressive Learning,
a framework that takes into account the tensorial nature of
multi-dimensional signals in the acquisition step and builds the
subsequent inference model on the structurally sensed mea-
surements. Our theoretical complexity analysis shows that the
proposed framework is more efficient compared to its vector-
based counterpart in both memory and computation require-
ment. With extensive experiments, we also empirically show that
our Multilinear Compressive Learning framework outperforms
the vector-based framework in object classification and face
recognition tasks, and scales favorably when the dimensionalities
of the original signals increase, making it highly efficient for
high-dimensional multi-dimensional signals.

I. INTRODUCTION

The classical sample-based signal acquisition and manipula-
tion approach usually involve separate steps of signal sensing,
compression, storing or transmitting, then the reconstruction.
This approach requires the signal to be sampled above the
Nyquist rate in order to ensure high-fidelity reconstruction.
Since the existence of spatial-multiplexing cameras, over the
past decade, Compressive Sensing (CS) [1] has become an
efficient and a prominent approach for signal acquisition at
sub-Nyquist rates, combining the sensing and compression
step at the hardware level. This is due to the assumption
that the signal often possesses specific structures that exhibit
sparse or compressible representation in some basis, thus,
can be sensed at a lower rate than the Nyquist rate but still
allows almost perfect reconstruction [2], [3]. In fact, many data
modalities that we operate on are often sparse or compressible.
For example, smooth signals are compressible in the Fourier
domain or subsequent frames in a video are piecewise smooth,
thus compressible in a wavelet domain. With the efficient
realization at the hardware level such as the popular Single
Pixel Camera, CS becomes an efficient signal acquisition
framework, however, making the signal manipulation an intim-

idating task. Indeed, over the past decade, since reversing the
signal to its original domain is often considered the necessary
step for signal manipulation, a significant amount of works
have been dedicated to signal reconstruction, giving certain
insights and theoretical guarantees for the successful recovery
of the signal from compressively sensed measurements [2],
[1], [3].

While signal recovery plays a major role in some sensing
applications such as image acquisition for visual purposes,
there are many scenarios in which the primary objective is the
detection of certain patterns or inferring some properties in the
acquired signal. For example, in many radar applications, one
is often interested in anomaly patterns in the measurements,
rather than signal recovery. Moreover, in certain applications
[4], [5], signal reconstruction is undesirable since the step
can potentially disclose private information, leading to the
infringement of data protection legislation. These scenarios
naturally led to the emergence of Compressive Learning (CL)
concept [6], [7], [8], [9] in which the inference system is built
on top of the compressively sensed measurements without the
explicit reconstruction step. While the amount of literature in
CL is rather insignificant compared to signal reconstruction
in CS, different attempts have been made to modify the
sensing component in accordance with the learning task [10],
[11], to extract discriminative features [7], [12] from the
randomly sensed measurements or to jointly optimize the
sensing matrix [13], [14] and the subsequent inference system.
Improvements to different components of CL pipeline have
been proposed, however, existing frameworks utilize the same
compressive acquisition step that performs a linear projection
of the vectorized data, thereby operating on the vector-based
measurements and thus losing the tensorial structure in the
measurements of multi-dimensional data.

In fact, many data modalities naturally possess the tensorial
format such as color images, videos or multivariate time-series.
The multi-dimensional representation naturally reflects the
semantic differences inherent in different dimensions or tensor
modes. For example, the spatial and temporal dimensions in a
video or the spatial and the spectral dimensions in hyperspec-
tral images represent two different concepts, having different
properties. Thus by exploiting this natural form of the signals
and considering the semantic differences between different
dimensions, many tensor-based signal processing, and learning
algorithms have shown its superiority over the vector-based



approach, which simply operates on the vectorized data [15],
[16], [17], [18], [19], [20], [21]. Indeed, tensor representation
and its associated mathematical operations and properties have
found various applications in the Machine Learning commu-
nity. For example, in multivariate time-series analysis, the
multilinear projection was utilized in [18], [22] to model the
dependencies between data points along the feature and tempo-
ral dimension separately. Several multilinear regression [23],
[24] or discriminant models [25], [26] have been developed to
replace their linear counterparts, with improved performance.
In neural network literature, multilinear techniques have been
employed to compress pre-trained networks [27], [28], [29],
or to construct novel neural network architectures [19], [30],
[22].

It is worth noting that CS plays an important role in many
applications that involves high-dimensional tensor signals be-
cause the standard point-based signal acquisition is both mem-
ory and computationally intensive. Representative examples
include Hyperspectral Compressive Imaging (HCI), Synthetic
Aperture Radar (SAR) imaging, Magnetic Resonance Imaging
(MRI) or Computer Tomography (CT). Therefore, the tensor-
based approach has also found its place in CS, also known as
Multi-dimensional Compressive Sensing (MCS) [31], which
replaces the linear sensing and reconstruction model with
multilinear one. Similar to vector-based CS, thereupon simply
referred to as CS, the majority of efforts in MCS are dedicated
to constructing multilinear models that induce sparse represen-
tation along each tensor mode with respect to a set of bases.
For example, the adoption of sparse Tucker representation and
the Kronecker sensing scheme in MRI allows computationally
efficient signal recovery with very low Peak Signal to Noise
Ratio (PSNR) [31], [32]. In addition, the availability of optical
implementations of separable sensing operators such as [33]
naturally enables MCS, significantly reducing the amount of
data collection and reconstruction cost.

While multilinear models have been successfully applied in
Compressive Sensing and Machine Learning, to the best of our
knowledge, we have not seen their utilization in Compressive
Learning, which is the joint framework combining CS and
ML. In this paper, in order to leverage the multi-dimensional
structure in many data modalities, we propose Multilinear
Compressive Learning framework, which adopts a multilin-
ear sensing operator and a neural network classifier that is
designed to utilize the multi-dimensional structure-preserving
compressed measurements. The contribution of this paper is
as follows:

• We propose Multilinear Compressive Learning (MCL), a
novel CL framework that consists of a multilinear sensing
module, a multilinear feature synthesis component, both
taking into account the multi-dimensional property of the
signals, and a task-specific neural network. The multi-
linear sensing module compressively senses along each
separate mode of the original tensor signal, producing
structurally encoded measurements. Similarly, the feature
synthesis component performs the feature learning steps
separately along each mode of the compressed measure-

ments, producing inputs to the subsequent task-specific
neural network which has the structure depending on the
inference problem.

• We show both theoretically and empirically that the pro-
posed MCL framework is highly cost-effective in terms
of memory and computational complexity. In addition,
theoretical analysis and experimental results also indicate
that our framework scales well when the dimensionalities
of the original signal increases, making it highly efficient
for high-dimensional tensor signals.

• We conduct extensive experiments in object classification
and face recognition tasks to validate the performance
of our framework in comparison with its vector-based
counterpart. Besides, the effect of different components
and hyperparameters in the proposed framework were
also empirically analyzed.

• We publicly provide our implementation of the experi-
ments reported in this paper to facilitate future research.
By following our detailed instructions on how to set up
the software environment, all experiment results can be
reproduced in just one line of code. 1

The remainder of the paper is organized as follows: in
Section 2, we review the background information in Com-
pressive Sensing, Multi-dimensional Compressive Sensing and
Compressive Learning. In Section 3, the detailed description
of the proposed Multilinear Compressive Learning framework
is given. Complexity analysis and comparison with the vector-
based framework are also given in Section 3. In Section 4, we
provide details of our experiment protocols and quantitative
analysis of different experiment configurations. Section 5
concludes our work with possible future research directions.

II. RELATED WORK

A. Notation

In this paper, we denote scalar values by either lower-case
or upper-case characters (x, y,X, Y . . . ), vectors by lower-
case bold-face characters (x,y, . . . ), matrices by upper-case
or Greek bold-face characters (A,B,Φ, . . . ) and tensor as
calligraphic capitals (X ,Y, . . . ). A tensor with K modes
and dimension Ik in the mode-k is represented as X ∈
RI1×I2×···×IK . The entry in the ikth index in mode-k for
k = 1, . . . ,K is denoted as Xi1,i2,...,iK . In addition, vec(X )
denotes the vectorization operation that rearranges elements in
X to the vector representation.

Definition 1 (The Kronecker Product): The Kronecker prod-
uct between two matrices A ∈ RM×N and B ∈ RP×Q is
denoted as A ⊗ B having dimension MP × NQ, is defined
by:

A⊗B =




A11B . . . A1NB
...

. . .
...

AM1B . . . AMNB


 (1)

Definition 2 (Mode-k Product): The mode-k product be-
tween a tensor X = [xi1 , . . . , xiK ] ∈ RI1×...IK and a

1https://github.com/viebboy/MultilinearCompressiveLearningFramework



matrix W ∈ RJk×Ik is another tensor of size I1 × · · · ×
Jk × · · · × IK and denoted by X ×k W. The element of
X ×k W is defined as [X ×k W]i1,...,ik−1,jk,ik+1,...,iK =∑IK

ik=1[X ]i1,...,ik−1,ik,...,iK [W]jk,ik .
The following relationship between the Kronecker product

and k-mode product is the cornerstone in MCS:

Y = X ×1 W1 × · · · ×N WN (2)

can be written as

y = (W1 ⊗ · · · ⊗WN )x (3)

where y = vec(Y) and x = vec(X )

B. Compressive Sensing

Compressive Sensing (CS) [1] is a signal acquisition and
manipulation paradigm that performs simultaneous sensing
and compression on the hardware level, leading to large re-
duction in computation cost and the number of measurements.
The signal y working under CS is assumed to have a sparse
or compressible representation x in some basis or dictionary
Ψ ∈ RI×I , that is:

y = Ψx with ‖x‖0 ≤ K and K � I (4)

where ‖x‖0 denotes the number of non-zero entries in x.
While the dictionary presented in Eq. (4) is complete, i.e., the
number of columns in Ψ is equal to the signal dimension I , we
should note that signal models with over-complete dictionaries
can also work, i.e., Ψ ∈ RJ×I with some modifications [34].

With the assumption on the sparsity, CS performs the linear
sensing step using the sensing operator Φ ∈ RM×I , acquiring
a small number of measurements z ∈ RM with M < I , from
analog signal y:

z = Φy (5)

Eq. (5) represents both the sensing and compression step
that can be efficiently implemented at the sensor level. Thus,
what we obtain from CS sensors is a limited number of
measurements z that is used for other processing steps. By
combining Eq. (4, and 5), the CS model is usually expressed
as:

z = ΦΨx with ‖x‖0 ≤ K and K � I (6)

In some applications, we are interested in recovering the
signal y from z. This involves developing theoretical proper-
ties and algorithms to determine the sensing operator Φ, the
dictionary or basis Ψ, and the number of nonzero coefficients
K in order to ensure that the reconstruction is unique, and
of high-fidelity [2], [35], [3]. The reconstruction of y is often
posed as finding the sparsest solution of the under-determined
linear system [36], particularly:

arg min
x

‖x‖0 s.t ‖z−ΦΨx‖2 ≤ ε (7)

where ε is a small constant specifying the amount of residual
error allowed in the approximation. A large body of research
has been dedicated to solve the problem in Eq. (7) and its
variants with two main approaches: basis pursuit (BP) which
transforms Eq. (7) to a convex one to be solved by linear
programming [37] or second-order cones programs [2], and
matching pursuit (MP), a class of greedy algorithms, which
iteratively refines the solution to the sparsest ones [38], [39].
Both BP and MP algorithms are computationally intensive
when the number of elements in y is big, especially in the
case of multi-dimensional signals.

C. Multi-dimensional Compressive Sensing
Given a multi-dimensional signal Y ∈ RI1×···×IN , a direct

application of the sparse representation in Eq. (4) requires
vectorizing y = vec(Y) and the calculations on ΦΨ ∈
RM×(I1...IN ), which is a very big matrix with the number
of elements scales exponentially with N . Instead of assuming
vec(Y) is sparse in some basis or dictionary, MCS adopts a
sparse Tucker model [40] as follows:

Y = X ×1 Ψ1 × · · · ×N ΨN (8)

which assumes that the signal Y is sparse with respect to a
set of bases or dictionaries Ψn, n = 1, . . . , N . Since in some
cases, the sensing step can be taken in a multilinear way, i.e.,
by using a set of linear operators along each mode separately,
also known as separable sensing operators:

Z = Y ×1 Φ1 × · · · ×N ΦN (9)

that allows us to obtain the measurements Z with retained
multi-dimensional structure. From Eq. (2, 3, 8 and 9), the MCS
model is often expressed as:

z = (B1 ⊗ · · · ⊗BN )x with ‖x‖0 ≤ K (10)

where z = vec(Z), and Bn = ΦnΨn (n = 1, . . . , N ). The
formulation in Eq. (10) is also known as Kronecker CS [41].

Since MCS can be expressed in the vector form, the existing
algorithms and theoretical bounds for vector-based CS have
also been extended for MCS. Representative examples include
Kronecker OMP and its tensor block-sparsity extension [42]
that improves the computation significantly. It is worth noting
that by adopting a multilinear structure, MCS operates with
a set of smaller sensing and dictionaries, therefore, requires
much lower memory and computation compared to the vec-
torization approach [31]. For detailed formulation, motivation
as well as extensions of MCS, we refer interested readers to
the comprehensive review paper on this topic [31].

D. Compressive Learning
The idea of learning directly from the compressed measure-

ments dates back to the early work of [7] in which the au-
thors proposed a framework termed compressive classification
which introduces the concept of smashed filters and operates
directly on the compressive measurements without reconstruc-
tion as the first proxy step. The result in [7] was subsequently



Fig. 1. Illustration of the proposed Multilinear Compressive Learning framework

strengthened in [43] showing that when sufficiently large
random sensing matrix is used, it can capture the structure
of the data manifold. Later, further extensions that extract
discriminative features from compressive measurements for
activity recognition [44], [45] or face recognition [12] have
also been proposed.

The concept of CL was introduced in [6], which provides
theoretical analysis illustrating that learning machines can be
built directly in the compressed domain. Particularly, given
certain conditions of the sensing matrix Φ, the performance of
a linear Support Vector Machine (SVM) trained on compressed
measurements is as good as the best linear threshold classifier
trained on the original signal y. Later, for compressive learning
of signals described by a Gaussian Mixture Model, asymptotic
behavior of the upper-bound [9] and its extension [11] to learn
the sensing matrix were also derived.

In applications where input signal acquisition, signal label-
ing, and system optimization can be done separately such as
distributed sensor networks or vision-based multi-agent control
systems, jointly optimizing the sensing matrix with the classi-
fier is feasible and thus, is widely adopted in recent literature.
For example, in [10], the authors proposed an adaptive version
of feature-specific imaging system to learn an optimal sensing
matrix based on past measurements. With the advances in com-
puting hardware and stochastic optimization techniques, end-
to-end CL system was proposed in [13], and several follow-up
extensions and applications [46], [47], [48], indicating superior
performances when simultaneously optimizing the sensing
component and the classifier via task-specific data. Our work
is closely related to the end-to-end CL system in [13] in that
we also optimize the CL system via stochastic optimization
in an end-to-end manner. Different from [13], our proposed
framework efficiently utilizes the tensor structure inherent in
many types of signals, thus outperforming the approach in [13]
in both inference performance and computational efficiency.

III. MULTILINEAR COMPRESSIVE LEARNING
FRAMEWORK

In this Section, we first give our description of the proposed
Multilinear Compressive Learning (MCL) framework that op-
erates directly on the tensor representation of the signals. Then,
the initialization scheme and optimization procedures of the
proposed framework is discussed. Lastly, theoretical analysis
of the framework’s complexity in comparison with its vector-
based counterpart is provided.

A. Motivation

In order to model the multi-dimensional structure in the
signal of interest, we assume that the discriminative structure
in Y ∈ RI1×···×IN can be captured in a lower-dimensional
multilinear subspace F ⊂ RJ1×···×JN of RI1×···×IN with
(Jn < In,∀n = 1, . . . , N ):

Y = X̄ ×1 Ψ̄1 × · · · ×N Ψ̄N (11)

where Ψ̄n ∈ RIn×Jn ,∀n = 1, . . . , N denotes the factor
matrices and X̄ ∈ RJ1×···×JN is the signal representation in
this multilinear subspace.

Here we should note that although Eq. (11) in our frame-
work and Eq. (8) in MCS look similar in its mathematical
form, the assumption and motivation are different. The objec-
tive in MCS is to reconstruct the signal Y by assuming the
existence of the set of sparsifying dictionaries or bases Ψn and
optimizing Ψn to induce the sparsest X . Since our objective
is to learn a classification or regression model, we make no
assumption or constraint on the sparsity of X̄ but assume that
the factorization in Eq. (11) can lead to a tensor subspace F
in which the representation X̄ is discriminative or meaningful
for the learning problem.

As mentioned in the previous Section, in some applications,
the measurements can be taken in a multilinear fashion, with
different linear sensing operators operating along different



tensor modes, i.e., separable sensing operators, we obtain the
measurements Z from the following sensing equation:

Z = Y ×1 Φ1 × · · · ×N ΦN (12)

where Φn ∈ RMn×In (n = 1, . . . , N ) represent the sensing
matrices of those linear operators.

Here we should note that the proposed framework is not
only applicable for multilinear sensing hardwares but also lin-
ear sensing hardwares. That is, the usefulness of the proposed
framework is independent of the hardware implementation. In
cases where the sensor is only capable of vector-based sensing,
i.e., its sensing mechanism is described by the following
equation:

z = Φ vec(Y) (13)

with a single sensing operator Φ ∈ RM×I1∗···∗IN , we can still
enforce a structure-preserving sensing operation similar to the
multilinear sensing scheme in Eq. (12) by setting:

Φ = Φ1 ⊗ · · · ⊗ΦN (14)

to obtain Z in Eq. (12) from z in Eq. (13).
Combining Eq. (11 and 12), we can express our measure-

ments Z as:

Z = X̄ ×1 (Φ1Ψ̄1)× · · · ×N (ΦNΨ̄N ) (15)

By setting the sensing matrices Φn to be pseudo-inverse of
Ψ̄n for all n = 1, . . . , N , we obtain the measurements Z that
lie in the discriminative-induced tensor subspace F mentioned
previously.

B. Design

Figure 1 illustrates our proposed MCL framework which
consists of the following components:

• CS component: the data acquisition step of the multi-
dimensional signals is done via separable linear sensing
operators Φn, n = 1, . . . , N . As mentioned previously,
in cases where the actual hardware implementation only
allows vector-based sensing scheme, Eq. (14) allows the
simulation of this multilinear sensing step. This com-
ponent produces measurements Z with encoded tensor
structure, having the same number of tensor modes (N )
as the original signal.

• Feature Synthesis (FS) component: from Z , this step
performs feature extraction along N modes of the mea-
surements Z with the set of learnable matrices Θn. Since
the measurements typically have many fewer elements
compared to the original signal Y , the FS component
expands the dimensions of Z , allowing better separability
between the sensed signals from different classes in a
higher multi-dimensional space that is found through op-
timization. While the sensing step performs linear inter-
polations for computational efficiency, the FS component
can be either multilinear or nonlinear transformations. A

typical nonlinear transformation step is to perform zero-
thresholding, i.e., ReLU, on Z before multiplying with
Θn, n = 1 . . . , N , i.e., ReLU(Z) ×1 Θ1 × · · · ×N ΘN .
In applications which require the transmission of Z to
be analyzed, this simple thresholding step can, before
transmission, increase the compression rate by sparsifying
the encoded signal and discarding the sign bits. While
nonlinearity is often considered beneficial for neural
networks, adding the thresholding step as described above
further restricts the information retained in a limited
number of measurements Z , thus, adversely affects the
inference system. In the Experiments Section, we provide
empirical analysis on the effect of nonlinearity towards
the inference tasks at different measurement rates. Here
we should note that while our FS component resembles
the reprojection step in the vector-based framework [13],
our FS and CS components have different weights (Θn

and Φn, n = 1, . . . , N ) and the dimensionality of the
tensor feature T produced by FS component is task-
dependent, and is not constrained to that of the original
signal.

• Task-specific Neural Network N: from the tensor repre-
sentation T produced by FS step, a neural network with
task-dependent architecture is built on top to generate the
regression or classification outputs. For example, when
analyzing visual data, the N can be a Convolutional
Neural Network (CNN) in case of static images or a Con-
volutional Recurrent Neural Network in case of videos. In
CS applications that involve distributed arrays of sensors
that continuously collect data, specific architectures for
time-series analysis such as Long-Short Term Memory
Network should be considered for N. Here we should
note that the size of T is also task-dependent and should
match with the neural network component. For example,
in object detection and localization task, it is desirable to
keep the spatial aspect ratio of T similar to Y to allow
precise localization.

C. Optimization

In our proposed MCL framework, we aim to optimize
all three components, i.e., Φn, Θn and N, with respect to
the inference task. A simple and straightforward approach
is to consider all components in this framework as a single
computation graph, then randomly initialize the weights ac-
cording to some popular initialization scheme [49], [50] and
perform stochastic gradient descend on this graph with respect
to the loss function defined by the learning task. However,
this approach does not take into account any existing domain
knowledge of each component that we have.

As mentioned in Section III.A, with the assumption of
the existence of a tensor subspace F and the factorization
in Eq. (11), the sensing matrix Φn in the CS component
can be initialized equal to the pseudo-inverse of Ψ̄n for all
n = 1, . . . , N to obtain initial Z that are discriminative or
meaningful. There have been several algorithms proposed to
learn the factorization in Eq. (11) with respect to different



TABLE I
COMPLEXITY OF THE PROPOSED MCL FRAMEWORK AND VECTOR-BASED FRAMEWORK [13]

Our Vector [13]
Memory O(2

∑N
n=1 In ∗Mn) O(

∏N
n=1 In ∗Mn)

Computation O
(∑N

n=1

(∏n
p=1Mp ∗

∏N
k=n Ik

)
+
∑N

n=1

(∏n
p=1 Ip ∗

∏N
k=nMk

)
) O(2

∏N
n=1 In ∗Mn)

criteria such as the multi-class discriminant [25], class-specific
discriminant [26], max-margin [51] or Tucker Decomposition
with non-negative constraint [52].

In a general setting, we propose to apply Higher Order
Singular Value Decomposition (HOSVD) [40] and initialize
Φn with the left singular vectors that correspond to the largest
singular values in mode n. The sensing matrices are then
adjusted together with other components during the stochastic
optimization process. This initialization scheme resembles the
one proposed for vector-based CL framework which utilizes
Principal Component Analysis (PCA). In a general case where
one has no prior knowledge on the structure of F, a transfor-
mation that retains the most energy in the signal such as PCA
or HOSVD is a popular choice when reducing dimensionalities
of the signal. While for higher-order data, HOSVD only
provides a quasi-optimal condition for data reconstruction in
the least-square sense [53], since our objective is to make
inferences, this initialization scheme works well as indicated
in our Experiments Section.

With the aforementioned initialization scheme of CS com-
ponent for a general setting, it is natural to also initialize Θn

in FS component with the right singular vectors corresponding
to the largest singular values in mode n of the training data.
With this initialization of Θn, during the initial forward steps
in stochastic gradient descent, the FS component produces an
approximate version of Y , and in cases where a classifier C
pre-trained on Y or its approximated version Ŷ exists, the
weights of neural network N can be initialized with that
of C. It is worth noting that the reprojection step in the
vector-based framework in [13] shares the weights with the
sensing matrices, performing inexplicit signal reconstruction
while we have different sensing Φn, n = 1, . . . , N and feature
extraction Θn, n = 1, . . . , N weights. Since the vector-based
framework involves large sensing and reprojection matrices,
from the optimization point of view, enforcing shared weights
might be essential in their framework to reduce overfitting as
indicated by their empirical results.

After performing the aforementioned initialization steps, all
three components in our MCL framework are jointly optimized
using Stochastic Gradient Descent method, i.e., end-to-end
training after the initialization. It is worth noting that above
initialization scheme for CS and FS component is proposed in
a generic setting, which can serve as a good starting point. In
cases where certain properties of the tensor subspace F or the
tensor feature T are known to improve the learning task, one
might adopt a different initialization strategy for CS and FS
components to induce such properties.

D. Complexity Analysis

Since the complexity of the neural network component N
varies with the choice of the architecture, we will estimate
the theoretical complexity for the CS and FS component and
make comparison with the vector-based framework [13]. Let
RI1×···×IN and RM1×···×MN denote the dimensionality of
the original signal Y and its measurements Z , respectively.
In addition, to compare with the vector-based framework,
we also assume that the dimensionality of the feature T
is also RI1×···×IN . Thus, Φn belongs to RMn×In and Θn

belongs to RIn×Mn for n = 1, . . . , N in our CS and FS
component, while in [13], the sensing matrix Φ and the
reconstruction matrix ΦT belong to R(I1∗···∗IN )×(M1∗···∗MN )

and R(M1∗···∗MN )×(I1∗···∗IN ), respectively.
It is clear that the memory complexity of CS and FS compo-

nent in our MCL framework is O(2
∑N

n=1 In ∗Mn), and that
of the vector-based framework is O(

∏N
n=1 In∗Mn). To see the

huge difference between the two frameworks, let us consider
3D MRI image of size I1×I2×I3 = 256×256×64 with the
sampling ratio 70%, i.e., M1 ×M2 ×M3 = 214× 214× 64,
the memory complexity in our framework is O(256 ∗ 214 +
256 ∗ 214 + 64 ∗ 64) ≈ O(105) while that of the vector-based
framework is O(256 ∗ 214 ∗ 256 ∗ 214 ∗ 64 ∗ 64) = O(1013)

Regarding computational complexity of our framework, the
CS component performs Z = Y ×1 Φ1 × · · · ×N ΦN having
complexity of O

(∑N
n=1

(∏n
p=1Mp ∗

∏N
k=n Ik

))
, and the FS

component performs T = Z×1Θ1×· · ·×N ΘN having com-
plexity of O

(∑N
n=1

(∏n
p=1 Ip ∗

∏N
k=nMk

))
. For the vector-

based framework, the sensing step computes z = Φvec(Y)
and reprojection step computes ΦT z, resulting in total com-
plexity of O(2

∏N
n=1 In ∗ Mn). With the same 3D MRI

example as in the previous paragraph, the total computational
complexity of our framework is O(109) while that of the
vector-based framework is O(1013).

Table I summarizes the complexity of the two frameworks.
It is worth noting that by taking into account the multi-
dimensional structure of the signal, the proposed framework
has both memory and computational complexity several orders
of magnitudes lower than its vector-based counterpart.

IV. EXPERIMENTS

In this section, we provide a detailed description of our
empirical analysis of the proposed MCL framework. We start
by describing the datasets and the experiments’ protocols that
have been used. In the standard set of experiments, we analyze
the performance of MCL in comparison with the vector-
based framework proposed in [13], [54]. We further investigate



the effect of different components in our framework in the
Ablation Study Subsection.

A. Datasets and Experiment Protocol

We have conducted experiments on the object classification
and face recognition tasks on the following datasets:

• CIFAR-10 and CIFAR-100: CIFAR dataset [55] is a color
(RGB) image dataset for evaluating object recognition
task. The dataset consists of 50K images for training and
10K images for testing with resolution 32 × 32 pixels.
CIFAR-10 refers to the 10-class objection recognition
task in which each individual image has a single class
label coming from 10 different categories. Likewise,
CIFAR-100 refers to a more fine-grained classification
task with each image having a label coming from 100
different categories. In our experiment, from the training
set of CIFAR-10 and CIFAR-100, we randomly selected
5K images for validation purpose and only trained the
algorithms on 45K images.

• CelebA: CelebA [56] is a large-scale face attributes
dataset with more than 200K images at different resolu-
tions from more than 10K identities. In our experiment,
we used a subset of 100 identities in this dataset which
corresponds to 7063, 2373, and 2400 samples for training,
validation, and testing, respectively. In order to evaluate
the scalability of our proposed framework, we resized the
original images to different set of resolutions, including:
32× 32, 48× 48, 64× 64, and 80× 80 pixels, which are
subsequently denoted as CelebA-32, CelebA-48, CelebA-
64, and CelebA-80, respectively.

In our experiments, two types of network architecture have
been employed for the neural network component N: the
AllCNN architecture [57] and the ResNet architecture [58].
AllCNN is a simple 9-layer feed-forward architecture which
has no max-pooling (pooling is done via convolution with
stride more than 1) and no fully-connected layer. ResNet
is a 110-layer CNN with residual connections. The exact
topologies of AllCNN and ResNet in our experiment can be
found in our publicly available implementation2.

Since all of the datasets contain RGB images, we followed
the implementation proposed in [54] for the vector-based
framework, which is an extension of [13], which has 3
different sensing matrices for each of the color channel, and
the corresponding reprojection matrices are enforced to share
weights with the sensing matrices. The sensing matrices in
MCL were initialized with the HOSVD decomposition on
the training sets while the sensing matrices in the vector-
based framework were initialized with PCA decomposition on
the training set. Likewise, the bases obtained from HOSVD
and PCA were also used to initialize the FS component in
our framework and the reprojection matrices in the vector-
based framework. In addition, we also trained the neural
network component N on uncompressed data with respect
to the learning tasks and initialized the classifier in each

2https://github.com/viebboy/MultilinearCompressiveLearningFramework

TABLE II
DIFFERENT CONFIGURATIONS OF MEASUREMENTS BETWEEN

VECTOR-BASED FRAMEWORK AND OUR FRAMEWORK. * Measurement
Rate IS CALCULATED WITH RESPECT TO THE ORIGINAL SIGNAL OF SIZE

32× 32× 3

Type Configuration #measurements Measurement Rate
vector [54] 256× 3 768 0.250
MCL (our) 20× 19× 2 760 0.247
MCL (our) 28× 27× 1 756 0.246

vector [54] 102× 3 306 0.100
MCL (our) 14× 11× 2 308 0.100
MCL (our) 18× 17× 1 306 0.100

vector [54] 18× 3 54 0.018
MCL (our) 9× 6× 1 54 0.018
MCL (our) 6× 9× 1 54 0.018

framework with these pre-trained networks’ weights. After the
initialization step, both frameworks were trained in an end-to-
end manner.

All algorithms were trained with ADAM optimizer [59] with
the following learning rate the schedule {10−3, 10−4, 10−5},
changing at epoch 80 and 120. Each algorithm was trained for
160 epochs in total. Weight decay coefficient was set to 0.0001
to regularize all the trainable weights in all experiments.
We performed no data preprocessing step, except scaling
all the pixel values to [0, 1]. In addition, data augmentation
was employed by random flipping on the horizontal axis
and image shifting within 10% of the spatial dimensions. In
all experiments, the final model weights which are used to
measure the performance on the test sets, are obtained from
the epoch which has the highest validation accuracy.

For each experiment configuration, we performed 3 runs and
the mean and standard deviation of test accuracy are reported.

B. Comparison with the vector-based framework

In order to compare with the vector-based framework in
[13], [54], we performed experiments on 3 datasets: CIFAR-
10, CIFAR-100, and CelebA-32. To compare the performances
at different measurement rates, we employed three differ-
ent measurement values Z for the vector-based framework:
256× 3 = 768, 102× 3 = 306, and 18× 3 = 54. Here ×3 in-
dicates that the vector-based framework has 3 different sensing
matrices for each color channel. Since we cannot always select
the size of the measurements Z in MCL to match the number
of measurements in the vector-based framework, we try to
find the configurations of Z that closely match with the vector-
based ones. In addition, with a target number of measurements,
there can be more than one configuration of Z that yields a
similar number of measurements. For each measurement value
(768, 102, 54) in the vector-based framework, we evaluated
two different values of Z , particularly, the following sizes
of Z were used: 20 × 19 × 2 = 760, 28 × 27 × 1 = 756,
14 × 11 × 2 = 308, 18 × 17 × 1 = 306, 6 × 9 × 1 = 54
and 9 × 6 × 1 = 54. The measurement configurations are
summarized in Table II.



In order to effectively compare the CS and FS component
in MCL with those in [54], two different neural network
architectures with different capacities have been used. Table
III and IV show the accuracy on the test set with AllCNN
and ResNet architecture, respectively. The second row of each
table shows the performance of the base classifier on the
uncompressed data, which we term as Oracle.

It is clear that our proposed framework outperforms the
vector-based framework in all compression rates and datasets
with both AllCNN and ResNet architecture, except for CIFAR-
100 dataset at the lowest measurement rate (0.018). The
performance gaps between the proposed MCL framework and
the vector-based one are huge, with more than 10% differences
for the CIFAR datasets at measurement rates 0.25 and 0.10.
In case of CelebA-32 dataset and at measurement rate 0.246
(configuration 28× 27× 1), the inference systems learned by
our proposed framework even slightly outperform the Oracle
setting for both AllCNN and ResNet architecture. One possible
explanation for the inferior performance of MCL model for
CIFAR-100 dataset at the lowest measurement rate might
come from regularization hyper-parameter. Since the number
of parameters of MCL at this configuration is significantly
smaller than the vector-based model, the effect of weight decay
regularization at coefficient 0.0001 might be too aggressive for
the MCL model but moderate for the vector-based counterpart.

Although the capacities of AllCNN and ResNet architecture
are different, their performances on the uncompressed data
are roughly similar. Regarding the effect of two different
base classifiers in the two Compressive Learning pipelines,
it is clear that the optimal configurations of our framework
at each measurement rate are consistent between the two
classifiers, i.e., the bold patterns from both Table III and IV are
similar. When switching from AllCNN to ResNet, the vector-
based framework observes performance drop at the highest
measurement rate (0.25), but increases in lower rates (0.1
and 0.018). For our framework when switching from AllCNN
to ResNet, the test accuracies stay approximately similar or
improve.

Table V shows the empirical complexity of both frameworks
with respect to different measurement configurations, exclud-
ing the base classifiers. Since all three datasets employed
in this experiment have the same input size and the size of
the feature tensor T in MCL was set similar to the original
input size, the complexities of CS and FS components in
all three datasets are similar. It is clear that our proposed
MCL framework has much lower memory and computational
complexity compared to the vector-based counterpart. In our
proposed framework, even operating at the highest measure-
ment rate 0.247, the CS and FS components require only
2.5K parameters and 5K FLOPs, which are approximately
20 times fewer than that of the vector-based framework
operating at the lowest measurement rate 0.018. Interestingly,
the optimal configuration at each measurement rate obtained
in our framework also has lower or similar complexity than
the other configuration.

In Figure 2, we visualize the features obtained from the

reprojection step and the FS component in the proposed frame-
work, respectively. It is worth noting that the sensing matrices
and the reprojection matrices (in case of the vector-based
framework) or Θn (in FS component of MCL framework)
were initialized with PCA and HOSVD. In addition, the base
network classifiers were also initialized with the ones trained
on the original data. Thus, it is intuitive to expect the features
obtained from both frameworks to be visually interpretable
for human, despite no explicit reconstruction objective was
incorporated during the training phase. Indeed, from Figure 2,
we can see that with the highest number of measurements, the
feature images obtained from both frameworks look very simi-
lar to the original images. Particularly, the ones synthesized by
the vector-based framework look visually closer to the original
images than those obtained from our MCL framework. This is
due to the fact that [54] enforces the weight sharing between
the projection step (CS matrices) and the re-projection step,
i.e., the input to the classifier in [54] is ΦTΦ vec(Y), with Y
is the signal and Φ and ΦT are the sensing and reprojection
matrices, respectively. In addition, Φ is initialized with PCA,
thus the whole system is more constrained to reconstruct the
signals.

When the number of measurements drops to approximately
10% of the original signal, the reverse scenario happens: the
feature images (in configuration 14 × 11 × 2, 28 × 27 × 1)
obtained from our framework retain more facial features
compared to those from the vector-based framework (102×3),
especially in the 28 × 27 × 1 configuration. This is due to
the fact that most of the facial information in particular, and
natural images in general, lie on the spatial dimensions, i.e.,
height and width. Besides, when the dimension of the third
mode of the measurement Z is set to 1 (as in configuration
28×27×1, 18×17×1), after the optimization procedure, our
proposed framework effectively discards the color information
which is less relevant to the facial recognition task, and retains
more lightness details, thus, performs better than the configu-
rations with the 3-mode dimension set to 2 (in configuration
20× 19× 2, 14× 11× 2).

With the above observations from the empirical analysis,
it is clear that structure-preserving Compressive Sensing and
Feature Synthesis components in our proposed MCL frame-
work can better capture essential information inherent in the
multi-dimensional signal for the learning tasks, compared with
the vector-based framework.

C. Ablation Study

In this subsection, we provide the empirical analysis on
the effect of different components in MCL framework. These
factors include the effect of the popular nonlinear thresholding
step discussed in Section III.B; the choice of having shared or
separate weights in CS and FS component; the initialization
step discussed in Section III.C; the scalability of the proposed
framework when the original dimensionalities of the signal
increase. Since the total number of experiment settings when
combining all of the aforementioned factors is huge, and the



Original 256x3
(vector)

102x3
(vector)

18x3
(vector)

20x19x2
(our)

14x11x2
(our)

6x9x1
(our)

28x27x1
(our)

18x17x1
(our)

9x6x1
(our)

Fig. 2. Illustration of the feature images (inputs to ResNet) synthesized by the proposed framework and the vector-based counterpart. The original images
come from the test set of CelebA-32.

TABLE III
TEST ACCURACY WITH ALLCNN ARCHITECTURE AS THE BASE

CLASSIFIER

Configuration CIFAR-10 CIFAR-100 CelebA-32
Oracle 92.33 72.25 92.58

256× 3 [54] 81.36± 00.00 55.32± 00.00 89.25± 00.00
20× 19× 2 (our) 89.35± 00.26 65.97± 00.19 92.36± 00.07
28× 27× 1 (our) 88.56± 00.14 62.82± 00.09 92.74± 00.31

102× 3 [54] 65.14± 02.37 44.03± 03.60 67.04± 02.36
14× 11× 2 (our) 84.15± 00.55 59.77± 00.12 87.01± 00.99
18× 17× 1 (our) 83.17± 00.32 54.96± 00.17 91.26± 00.13

18× 3 [54] 61.38± 00.05 37.78± 00.08 63.76± 00.22
9× 6× 1 (our) 64.45± 00.39 34.74± 00.29 68.49± 00.28
6× 9× 1 (our) 64.28± 00.35 35.16± 00.16 65.92± 00.77

TABLE IV
TEST ACCURACY WITH RESNET ARCHITECTURE AS THE BASE

CLASSIFIER

Configuration CIFAR-10 CIFAR-100 CelebA-32
Oracle 92.47 72.38 93.08

256× 3 [54] 78.56± 00.00 53.03± 00.00 87.29± 00.00
20× 19× 2 (our) 89.22± 00.27 67.21± 00.18 92.00± 00.48
28× 27× 1 (our) 88.24± 00.15 63.37± 00.44 93.54± 00.32

102× 3 [54] 67.65± 02.99 47.90± 01.22 76.32± 02.35
14× 11× 2 (our) 84.74± 00.16 60.30± 00.21 88.50± 00.26
18× 17× 1 (our) 83.31± 00.21 55.51± 00.08 90.82± 00.14

18× 3 [54] 61.96± 00.17 41.03± 00.22 67.29± 00.44
9× 6× 1 (our) 64.14± 00.24 33.67± 00.17 69.90± 00.41
6× 9× 1 (our) 64.07± 00.16 32.40± 01.62 67.39± 00.34

results involved multiple factors are difficult to interpret, we
analyze these factors in a progressive manner.

1) Linearity versus Nonlinearity and Shared versus Sepa-
rate Weights: Firstly, the choice of linearity or nonlinearity
and the choice of shared or separate weights in CS and FS
component are analyzed together since the two factors are
closely related. In this setting, the CS and FS components are
initialized by HOSVD decomposition as described in Section

TABLE V
COMPLEXITY OF THE PROPOSED FRAMEWORK AND THE VECTOR-BASED

COUNTERPART, EXCLUDING THE BASE CLASSIFIER COMPONENT

Configuration #Parameters #FLOPs
256× 3 [54] 786K 1573K

20× 19× 2 (our) 2.5K 5K
28× 27× 1 (our) 3.5K 7K

102× 3 [54] 313K 627K
14× 11× 2 (our) 1.6K 3.2K
18× 17× 1 (our) 2.2K 4.5K

18× 3 [54] 55K 111K
9× 6× 1 (our) 1.0K 1.9K
6× 9× 1 (our) 1.0K 1.9K

III.C. The neural network classifier N has the AllCNN archi-
tecture with the weights initialized from the corresponding
pre-trained network on the original data. Table VI shows
the test accuracies on CIFAR-10, CIFAR-100 and CelebA-
32 at different measurements. It is clear that most of the
highest test accuracies are obtained without the thresholding
step and with separate weights in CS and FS component,
i.e., most bold-face numbers appear in the lower quarter on
the left side of Table VI. Comparing between linearity and
nonlinearity option, it is obvious that the nonlinearity effect
of ReLU adversely affect the performances, especially when
the number of measurements decreases. The reason might be
that applying ReLU to the compressed measurements restricts
the information to be represented in the positive subspace only,
thus further losing the representation power in the compressed
measurements when only a limited number of measurements
allowed.

In the linearity setting, while the performance differences
between shared and separate weights in some configurations
are small, here we should note that allowing non-shared
weights can be beneficial in cases where we know that certain
features should be synthesized in the FS component in order



to make inferences.
2) Effect of The Initialization Step: From the observation

obtained from the above analysis on the effect of linearity and
separate weights, we investigated the effect of the initialization
step discussed in Section III.C. All setups were trained with
a multilinear FS component having separate weights from CS
component. From Table VII, we can easily observe that by
initializing the CS and FS components with HOSVD, the
performances of the learning systems increase significantly.
When CS and FS components are initialized with HOSVD,
utilizing a pre-trained network further improves the inference
performance of the systems, especially in the low measure-
ment rate regime. Thus, the initialization strategy proposed in
Section III.C is beneficial in a general setting for the learning
tasks.

3) Scalability: Finally, the scalability of the proposed
framework is validated in different resolutions of the CelebA
dataset. All of the previous experiments were demonstrated
with CelebA-32 dataset, which we assume that there are
only 3072 elements in the original signal. To investigate
the scalability, we pose the following question: What if the
original dimensions of the signal are higher than 32×32×3,
with the same numbers of measurements presented in Table
II, can we still learn to recognize facial images with feasible
costs?. To answer this question, we trained our framework
on CelebA-32, CelebA-48, CelebA-64 and CelebA-80 and
recorded the test accuracies, the number of parameters and the
number of FLOPs at different number of measurements, which
are shown in Table VIII. It is clear that at each measurement
configuration, when the original signal resolution increases,
the measurement rate drops at a similar rate, however, without
any adverse effect on the inference performance. Particularly,
if we look into the last column of Table VIII, with a sampling
rate of only 4%, the proposed framework achieves 93%
accuracy, which is only 2% lower compared to that of the
base classifier trained on the original data. Here we should
note that most of the images in CelebA dataset have higher
resolution than 80×80×3 pixel, therefore, 4 different versions
of CelebA (32×32×3, 48×48×3, 64×64×3, 80×80×3)
in our experiments indeed contain increasing levels of data
fidelity. From the performance statistics, we can observe that
the performance of our framework is characterized by the
number of measurements, rather than the measurement rates
or compression rates.

Due to the memory limitation when training the vector-
based framework at higher resolutions, we could not perform
the same set of experiments for the vector-based framework.
However, to compare the scalability in terms of computation
and memory between the two frameworks, we measured
the number of FLOPs and parameters in the vector-based
framework, excluding the base classifier and visualize the
results on Figure 3. It is worth noting that on the y-axis is the
log scale and as the dimensions of the original signal increase,
the complexity of the vector-based framework increases by an
order of magnitude while our proposed MCL framework scales
favorably in both memory and computation.

V. CONCLUSIONS

In this paper, we proposed Multilinear Compressive Learn-
ing, an efficient framework to tackle the Compressive Learning
task that operates on multi-dimensional signals. The proposed
framework takes into account the tensorial nature of the multi-
dimensional signals and performs the compressive sensing as
well as the feature extraction step along different modes of
the original data, thus being able to retain and synthesize
essential information on a multilinear subspace for the learning
task. We show theoretically and empirically that the proposed
framework outperforms its vector-based counterpart in both
inference performance and computational efficiency. Extensive
ablation study has been conducted to investigate the effect
of different components in the proposed framework, giving
insights into the importance of different design choices.
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TABLE VI
TEST ACCURACY WITH RESPECT TO THE CHOICE OF LINEARITY OR NONLINEARITY IN CONJUNCTION WITH THE CHOICE OF SHARED OR SEPARATE

WEIGHTS IN CS AND FS COMPONENT. THE BOLD NUMBERS DENOTE THE BEST TEST ACCURACY (AMONG 4 COMBINATIONS OF LINEARITY VERSUS
NONLINEARITY AND SHARED VERSUS SEPARATE) IN THE SAME DATASET WITH THE SAME CONFIGURATION

Configuration LINEARITY NONLINEARITY
CIFAR-10 CIFAR-100 CelebA-32 CIFAR-10 CIFAR-100 CelebA-32

SHARED

20× 19× 2 89.25± 00.39 66.00± 00.26 92.24± 00.21 89.16± 00.14 66.11± 00.10 91.69± 00.46
28× 27× 1 88.44± 00.04 62.62± 00.30 92.42± 00.64 88.32± 00.20 61.99± 01.24 92.61± 00.61
14× 11× 2 84.37± 00.35 59.75± 00.23 88.00± 00.38 83.84± 00.21 58.01± 00.80 84.75± 01.37
18× 17× 1 83.73± 00.10 54.88± 00.23 91.22± 00.43 83.57± 00.30 54.47± 00.39 90.85± 00.60
6× 9× 1 64.27± 00.28 33.17± 00.20 64.47± 00.61 62.18± 01.37 33.04± 00.08 49.46± 00.95
9× 6× 1 64.43± 00.25 32.82± 00.39 68.25± 00.09 62.34± 00.16 33.08± 00.16 59.29± 01.83

SEPARATE

20× 19× 2 89.35± 00.26 65.97± 00.19 92.36± 00.07 88.19± 01.00 64.28± 02.29 91.79± 00.21
28× 27× 1 88.56± 00.14 62.82± 00.09 92.74± 00.31 88.14± 00.34 62.15± 00.04 92.49± 00.43
14× 11× 2 84.15± 00.55 59.77± 00.12 87.01± 00.99 82.16± 02.61 59.15± 00.16 84.64± 00.57
18× 17× 1 83.17± 00.32 54.96± 00.17 91.26± 00.14 82.90± 00.19 53.90± 00.41 90.10± 00.69
6× 9× 1 64.28± 00.35 35.16± 00.16 65.92± 00.77 61.09± 00.20 32.15± 00.49 50.68± 01.00
9× 6× 1 64.45± 00.39 34.74± 00.29 68.49± 00.28 62.18± 00.25 32.68± 00.81 61.54± 01.40

TABLE VII
TEST ACCURACY WITH RESPECT TO THE INITIALIZATION OF CS & FS COMPONENT AND THE BASE CLASSIFIER (ALLCNN). THE BOLD NUMBERS

DENOTE THE BEST TEST ACCURACY (AMONG 4 COMBINATIONS OF PRECOMPUTE CLASSIFIER VERSUS RANDOM CLASSIFIER AND PRECOMPUTE
CS & FS VERSUS RANDOM CS & FS) IN THE SAME DATASET WITH THE SAME CONFIGURATION

Configuration PRECOMPUTE CS & FS RANDOM CS & FS
CIFAR-10 CIFAR-100 CelebA-32 CIFAR-10 CIFAR-100 CelebA-32

PRECOMPUTE
CLASSIFIER

28× 27× 1 88.56± 00.14 62.82± 00.09 92.74± 00.31 71.47± 00.62 38.59± 02.60 68.65± 01.56
18× 17× 1 83.17± 00.32 54.96± 00.17 91.26± 00.14 69.46± 01.16 38.65± 00.28 65.65± 00.70
9× 6× 1 64.45± 00.39 34.74± 00.29 68.49± 00.28 59.88± 00.17 29.03± 01.69 60.43± 02.29

RANDOM
CLASSIFIER

28× 27× 1 88.71± 00.05 60.36± 00.62 85.56± 00.84 71.37± 01.24 38.98± 01.40 67.18± 00.32
18× 17× 1 83.82± 00.28 49.41± 04.07 84.71± 01.39 68.93± 01.16 37.84± 03.06 64.12± 02.06
9× 6× 1 63.99± 00.11 33.66± 00.66 65.62± 02.71 59.85± 00.67 30.90± 00.17 56.61± 02.27

TABLE VIII
TEST PERFORMANCE & COMPLEXITY OF THE PROPOSED FRAMEWORK AT DIFFERENT RESOLUTIONS OF THE ORIGINAL CELEBA DATASET, WITH

ALLCNN AS THE BASE CLASSIFIER

Configuration ACCURACY MEASUREMENT RATE
CelebA-32 CelebA-48 CelebA-64 CelebA-80 CelebA-32 CelebA-48 CelebA-64 CelebA-80

Oracle 92.58 93.37 94.75 95.04 1.0 1.0 1.0 1.0
20× 19× 2 92.36± 00.07 91.24± 00.23 92.62± 00.36 93.01± 00.32 0.247 0.110 0.062 0.040
28× 27× 1 92.74± 00.31 92.43± 00.19 93.39± 00.52 93.42± 00.37 0.246 0.109 0.062 0.039

14× 11× 2 87.01± 00.99 87.00± 00.87 87.75± 00.27 88.67± 00.26 0.100 0.045 0.025 0.016
18× 17× 1 91.26± 00.14 90.17± 00.30 91.36± 00.43 91.89± 00.46 0.1 0.044 0.025 0.016

6× 9× 1 65.92± 00.77 66.56± 00.05 66.69± 00.46 66.03± 00.37 0.018 0.008 0.004 0.003
9× 6× 1 68.49± 00.28 68.69± 00.96 67.75± 01.62 67.31± 00.49 0.018 0.008 0.004 0.003

Configuration #FLOP #PARAMETER
CelebA-32 CelebA-48 CelebA-64 CelebA-80 CelebA-32 CelebA-48 CelebA-64 CelebA-80

20× 19× 2 5.0K 7.5K 10.0K 12.5K 2.5K 3.8K 5.0K 6.3K
28× 27× 1 7.0K 10.6K 14.1K 17.6K 3.5K 5.3K 7.0K 8.8K

14× 11× 2 3.2K 4.8K 6.4K 8.0K 1.6K 2.4K 3.2K 4.0K
18× 17× 1 4.5K 6.7K 9.0K 11.2K 2.2K 3.4K 4.9K 5.6K

6× 9× 1 1.9K 2.9K 3.9K 4.8K 1.0K 1.4K 1.9K 2.4K
9× 6× 1 1.9K 2.9K 3.9K 4.8K 1.0K 1.4K 1.9K 2.4K
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Fig. 3. #FLOP and #PARAMETER versus the original dimensionalities of the signal, measured in the proposed framework and the vector-based framework,
excluding the base classifier. The x-axis represents the original dimension of the input signal. The y-axis on the first row represents the number of FLOPs in
log scale while the y-axis on the second row represents the number of parameters
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[47] A. Değerli, S. Aslan, M. Yamac, B. Sankur, and M. Gabbouj, “Com-
pressively sensed image recognition,” in 2018 7th European Workshop
on Visual Information Processing (EUVIP), pp. 1–6, IEEE, 2018.

[48] Y. Xu and K. F. Kelly, “Compressed domain image classification using
a multi-rate neural network,” arXiv preprint arXiv:1901.09983, 2019.

[49] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the thirteenth
international conference on artificial intelligence and statistics, pp. 249–
256, 2010.

[50] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in European conference on computer vision, pp. 630–645,
Springer, 2016.

[51] F. Wu, X. Tan, Y. Yang, D. Tao, S. Tang, and Y. Zhuang, “Supervised
nonnegative tensor factorization with maximum-margin constraint,” in
Twenty-Seventh AAAI Conference on Artificial Intelligence, 2013.

[52] Y.-D. Kim and S. Choi, “Nonnegative tucker decomposition,” in 2007
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8,
IEEE, 2007.

[53] L. Grasedyck, D. Kressner, and C. Tobler, “A literature survey of low-
rank tensor approximation techniques,” GAMM-Mitteilungen, vol. 36,
no. 1, pp. 53–78, 2013.

[54] E. Zisselman, A. Adler, and M. Elad, “Compressed learning for image
classification: A deep neural network approach,” Processing, Analyzing
and Learning of Images, Shapes, and Forms, vol. 19, p. 1, 2018.

[55] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” tech. rep., Citeseer, 2009.

[56] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in Proceedings of International Conference on Computer
Vision (ICCV), 2015.

[57] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller,
“Striving for simplicity: The all convolutional net,” arXiv preprint
arXiv:1412.6806, 2014.

[58] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
pp. 1026–1034, 2015.

[59] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.



256



PUBLICATION

VIII

Generalized Tensor Summation Compressive Sensing Network (GTSNET): An
Easy to Learn Compressive Sensing Operation

M. Yamaç, U. Akpinar, E. Sahin, S. Kiranyaz, and M. Gabbouj

IEEE Transactions on Image Processing, vol. 32, pp. 5637–5651
doi: 10.1109/TIP.2023.3318946

©. 2023 IEEE. Reprinted, with permission, from M. Yamaç, U. Akpinar,
E. Sahin, S. Kiranyaz, and M. Gabbouj, Generalized Tensor Summation

Compressive Sensing Network (GTSNET): An Easy to Learn Compressive
Sensing Operation, IEEE Transactions on Image Processing

https://doi.org/10.1109/TIP.2023.3318946




IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 32, 2023 5637

Generalized Tensor Summation Compressive
Sensing Network (GTSNET): An Easy to

Learn Compressive Sensing Operation
Mehmet Yamaç , Ugur Akpinar , Erdem Sahin , Member, IEEE, Serkan Kiranyaz , Senior Member, IEEE,

and Moncef Gabbouj , Fellow, IEEE

Abstract— The efforts in compressive sensing (CS) literature
can be divided into two groups: finding a measurement matrix
that preserves the compressed information at its maximum
level, and finding a robust reconstruction algorithm. In the
traditional CS setup, the measurement matrices are selected
as random matrices, and optimization-based iterative solutions
are used to recover the signals. Using random matrices when
handling large or multi-dimensional signals is cumbersome
especially when it comes to iterative optimizations. Recent deep
learning-based solutions increase reconstruction accuracy while
speeding up recovery, but jointly learning the whole measurement
matrix remains challenging. For this reason, state-of-the-art
deep learning CS solutions such as convolutional compressive
sensing network (CSNET) use block-wise CS schemes to facilitate
learning. In this work, we introduce a separable multi-linear
learning of the CS matrix by representing the measurement
signal as the summation of the arbitrary number of tensors.
As compared to block-wise CS, tensorial learning eases blocking
artifacts and improves performance, especially at low mea-
surement rates (MRs), such as MRs < 0.1. The software
implementation of the proposed network is publicly shared at
https://github.com/mehmetyamac/GTSNET.

Index Terms— Compressive sensing, deep reconstruction,
tensorial compressive learning, separable compressive learning.

I. INTRODUCTION

COMPRESSIVE sensing (CS) theory has attracted a lot of
attention since its first appearance in 2005 [1]. CS theory

claims that a signal can be sampled with far fewer measure-
ments than the conventional Nyquist/Shannon-based sampling
methods use. It has been applied in many fields such as
CS-based MRI imaging [2], radar monitoring systems [3],
[4], and ECG measurements in a health monitoring system
[5]. Along with sampling, the technology has been adopted in
many other fields. For instance, in a conventional CS system,
random or pseudo-random measurement matrices are used,
enabling a CS-based encryption mechanism [6], [7].
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In Nyquist/Shannon based data acquisition systems, the
reconstruction process is performed by sinc interpolation,
which is a linear process and does not require expensive com-
putations. The traditional CS-based data acquisition systems
require advanced optimization-based iterative algorithms such
as ℓ1-minimization techniques [8], [9], [10]. Even if convex
relaxation can bring a guarantee of sparse recovery with
polynomial time, most solvers work in an iterative manner, and
it makes them infeasible for real-time applications especially
for large-scale signals, such as vectorized images. Moreover,
ℓ1 type estimators may lead to an unbiased estimation of the
sparse signal [11]. There have been significant efforts spent to
have faster recovery algorithms such as [12], [13], and [14]
which are more feasible for a CS imaging system or similar
multi-dimensional signals. However, the optimization-based
recovery in a sparse domain can completely fail under some
measurement rates, which are determined by the phase transi-
tion of the algorithms [15]. Moreover, the signal of interest
in real applications rarely becomes strictly sparse in any
sparsifying domain.

The first category of the deep learning-based CS approaches
includes the works that use neural networks only for the
reconstruction part [16], [17], [18]. They generally use con-
ventional random matrices as the CS operators. To handle
the images (2D signal), they apply the CS matrices to the
vectorized smaller blocks of the image of interest. The well-
known state-of-the art examples of this category of work can
be listed as stacked denoising autoencoder (SDA) [16], non-
iterative reconstruction of the compressively sensed images
using CNN (ReconNet) [17], and learned version of iterative
shrinkage thresholding algorithm for CS imaging (ISTA-Net)
[18]. Among them, SDA uses the fully connected layers while
the others adopt convolutional layers in their network. As a
reconstruction part, ReconNet introduces fully convolutional
layers, and this is why it is a non-iterative recovery framework
that significantly reduces the computational time. ISTA-Net is
based on iterative soft thresholding algorithms, and can be put
into the category of deep unrolling techniques.

The second category of deep learning attempts can be
enlisted as the ones that jointly learn CS matrices and
reconstruction part instead of using conventional CS matri-
ces. The recent state-of-the-art networks in this category
are convolutional compressive sensing network (CSNET)
[19] and scalable convolutional compressive sensing net-
work (SCSNET) [20]. These works also handle CS of both

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/
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gray-scale and RGB images in a block-by-block manner.
However, they learn these CS matrices using convolutional
kernels having the same size as the image blocks. In the
reconstruction part they use convolutional layers to recover
the full image as a whole. In this way, they can significantly
improve the blocking artifacts.

In this study, we propose a novel network, Generalized
Tensor Summation Networks (GTSNETs), that can jointly
learn both CS matrix and reconstruction algorithm. With
the proposed learned CS operator, conventional CS setup,
matrix-vector multiplication, is approximated as T -number of
measurement tensors’ summation, where each measurement
tensor is determined by the mode product of tensor and
matrices (i.e. smaller sizes than full-sized CS matrices). As a
result, GTSNETs can factorize and approximate unfactorized
full-size CS matrices (i.e., matrices that can be applied to a
vectorized image or multidimensional signal in the traditional
CS setting) using Kronecker products [21] of smaller-size
matrices. In contrast to previous attempts, a GTSNET is capa-
ble of replacing a wide range of compressive sensing systems,
such as sub-Gaussian [22], separable [23], and structural CS
matrices (e.g., sparsifying basis as a part of the CS matrix [6],
[24], [25]). Some CS systems, however, in which hardware
limitations impose special requirements over CS matrices (e.g.,
CS MRI [26], [27], CS Radar [3], [4] etc.), are outside the
scope of this study.

In a GTSNET, CS operation can be performed directly over
the spatial domain or in any other separable transformation
basis like CS in the frequency domain using DCT. This is
why GTSNET can generalize many CS systems, and thus we
use the term Generalized Tensor Summation (GTS). When
it comes to the performance comparison with a traditional
deep learning approach, especially for lower measurement
rates, the proposed system exhibits a superior performance in
terms of PSNR and SSIM with a particular improvement over
the fine details. At the same time, GTSNET performs signal
reconstruction from compressively sensed measurements in a
feed-forward manner and this significantly reduces the com-
putational complexity compared to the iterative approaches.

The rest of the paper is organized as follows. In Section II,
we shall make a brief introduction to compressive sensing,
separable and multidimensional. Then, the proposed learn-
able compressive sensing operations will be presented in
Section III. In Section IV extensive experimental results will
be presented for the CS in both gray-scale and RGB images.
We shall then present comparative evaluations in spatial and
frequency domains. In addition, we shall investigate which
information is more preserved when T is increased. Finally,
the conclusions are drawn in Section VI.

II. PRELIMINARIES AND PRIOR ART

A. Compressive Sensing

CS [1], [28] theory has shown that a sparse signal can
be recovered from far fewer measurements than traditional
Shannon-Nyquist-based data acquisition methods use. Math-
ematically speaking, let a CS scheme linearly extracts m
number of measurements of the signal, s ∈ RN , i.e.,

y = 9s, (1)

where the measurement matrix, 9 ∈ Rm×N represents the
linear data acquisition with m ≪ N . In the CS literature, the
efforts of designing such a linear measurement system can be
categorized into two groups: (i) Finding a measurement matrix,
9 which maximally preserves the information of s while
transforming it in a lower-dimensional subspace as in (1).
(ii) Finding a robust reconstruction algorithm, which is able
to recover s from y in a reasonable time with a tolerable
reconstruction error.

From elementary linear algebra, one can easily say that
(1) is an underdetermined linear system of equations where
for a given 9 and y pair, s has infinitely many solutions.
Therefore, at least one more assumption is needed to have
unique solution. For instance, if we know that the signal of
interest, s, is sparse in a proper sparsifying domain 8, then
(1) can be expressed as

y = 98x = Ax, (2)

where x ∈ RN is sparse or compressible coefficient vector
(e.g., if it is k-sparse ∥x∥ℓN

0
≤ k) and A = 98, which can

be named as equivalent dictionary [29]. Under the assumption
that the coefficient vector is k-sparse, then the following sparse
representation,

min
x

∥x∥0 subject to Ax = y (3)

is unique if m ≥ 2k and the minimum number of linearly
dependent columns of A (see the definition of spark of a
matrix [30]) is greater than 2k [30]. However, the problem
in (3) is non-convex and known to be NP-hard. Fortunately,
the most common approach will be the relaxation of it to an
ℓ1 minimization problem,

arg min
x

∥x∥1 s.t. x ∈ ℧ (y) (4)

where ℧ (y) = {x : Ax = y} in noisy-free case, which is
known as Basis Pursuit (BP) [8]. To guarantee the equiva-
lence of the solutions of (3) and (4), some properties of A
are needed such as Null Space Property (NSP) [31], [32].
NSP can also be used to deal with approximately sparse
signals. Moreover, if one should deal with approximately
sparse signals in a noisy environment, a stronger property
known as Restricted Isometry Property (RIP) [33], [34] can
be borrowed from the CS literature. In this noisy case, the
constraint in the optimization problem can be relaxed by
setting ℧ (y) =

{
x : ∥Ax − y∥2 ≤ ϵ

}
which is known as Basis

Pursuit Denoising (BPDN) [9] or Dantzig Selector [35] if we
set ℧ (y) =

{
x :

∥∥A′ (y − Ax)
∥∥

∞
≤ λ

}
. Although RIP can be

used for both stability and uniqueness analysis, the calculation
of Restricted Isometric Constant (RIC) of A (defined with RIP
of A) generally requires a combinatorial search. Therefore,
instead of RIC of a matrix, another important measure of
a measurement matrix is defined in the literature. This is a
functional µ(A) = maxi, j

∣∣Ai, j
∣∣, which is known as coher-

ence. In CS literature, choosing the best measurement matrix
9 according to sparsifying matrix 8 is well studied in terms
of µ(A). The system in (2) is nothing but a linear dimensional
reduction system. To be able to preserve enough information
while transforming x to y, we generally wish each row of
matrix A to get enough information from each element of x.
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In other words, the flatness of the rows of A is desired. This
can be satisfied when the rows of the measurement matrix 9
is not sparse in 8. To describe this concept, the functional
called “mutual coherence” is defined,

µ (9,8) := max
1≤k≤m,1≤ j≤N

∣∣〈ψk, φ j
〉∣∣ (5)

which measures the coherence between 9 and 8, where
ψk is the k’th row of 9 and φ j is the j’th column of 8.
It is clear that µ(9,8) ∈

[
1

√
N
, 1

]
when 9 has normalized

rows and 8 has normalized columns. A theoretical lower
bound to guarantee exact recovery for BP on the number of
measurement in terms of defined mutual coherence can be
found in [36] and [37] as,

m ≥ κ.N .µ2(9,8).k. log N , (6)

where κ is a positive constant. In plain terms, the minimum
number of required measurements is dictated by the mutual
coherence, and one wishes to keep it a minimum in a CS
system. For instance, the measurement matrices, which have
random waveforms with i.i.d elements such as Gaussian,
are well known to be incoherent with any fixed basis, i.e.,

µ (9,8) ≈

√
2 log(N )
√

N
[38].

B. Multi-Dimensional and Separable Compressive Sensing

As reviewed above, the mathematical foundation of the
conventional CS scheme is well established. However, this
traditional scheme, where dimensional reduction is per-
formed via vector-matrix multiplication and recovery is
represented via ℓ1-minimization, may not be convenient in
most multi-dimensional signal acquisition schemes such as
compressive sensing of imaging systems. For instance, assume
that the signal of interest is a 512 × 512 gray-scale image,
S. Assume that we wish to build a sub-Gaussian CS system
with a measurement rate of m

N = 0.36. In that CS scheme
that samples the vectorized image, s ∈ RN with N = 5122,
the measurement matrix size will be m × N = 94372 ×

262144. The conventional CS recovery algorithms such as ℓ1-
minimization techniques are iterative algorithms and in each
iteration, they perform matrix-vector multiplications using
CS matrix and the transpose of it. However, even saving
alone such massive size matrices requires more than 80GB
of storage. Therefore, the computational complexity of the
iterative recovery algorithms becomes cumbersome. As a
remedy, block-base CS and separable CS imaging [23] have
become the most frequently used approaches. Among them,
separable CS (also known as Kronecker CS) has the advantage
of introducing fewer blocking artifacts. In a separable CS
imaging introduced in [23], the CS sampling operator is
separable over horizontal and vertical axes, i.e., Y = 91S9 ′

2,
where S ∈ R

√
N×

√
N is the input image, s ∈ RN , in its original

matrix form, and 91 ∈ R
√

m×
√

N and 92 ∈ R
√

m×
√

N are the
measurement matrices. In that way, the computational cost of
the matrix multiplications is reduced from 2 × m × N flops
to 4 ×

√
m × N flops compared to conventional CS setup.

Moreover, this separable CS setup can be easily formulated
in a traditional CS setup, which makes the analysis and

algorithms of CS theory still valid. For instance, consider that
the sparsifying basis is also separable as in 2D DCT matrices,
then CS in matrix-vector form is nothing but vec(Y) =

91 ⊗ 92 vec(S) = A1 ⊗ A2 vec(X), where Ai = 9i8i ,
X ∈ R

√
N×

√
N is a sparse coefficient matrix and ⊗ is the

Kronecker product. Let us assume the separable measurement
matrices are Gaussian projection matrices, then mutual coher-
ence between 91 ⊗92 and 81 ⊗82 can be easily calculated,
i.e., µ (81 ⊗82, 91 ⊗92) ≈

log(N )
√

N
. Hence, the mutual

coherence increases
√

1
2 log(N ) times and the number of the

necessary measurement increases by the square of it compared
to a conventional setup where CS matrix is unfactorized Gaus-
sian projection matrix. That is to say, in a separable CS setup,
although computational complexity decreases, the minimum
number of required measurements increases as a trade-off
compared to conventional unfactorized CS scheme. On the
other hand, based on RIP or mutual coherence properties, these
types of analysis for the CS reconstruction algorithm have
been referred to by the term theoretical guarantee conditions
in the worst-case scenario [39]. It is generally found, however,
that algorithms perform much better than the performance
bounds given by these types of worst-case scenario analyses,
especially for recovering structurally sparse signals [27], [40].

In general multi dimensional and separable CS setup, the
J -dimensional signal, S ∈ Rn1×n2...×n J with N =

∏J
j=1 n j ,

can be acquired by separable sensing operator:

Y = S ×1 91 ×2 92 . . . 9J−1 ×J 9J , (7)

where S ×i 9i is the i-mode product of tensor S and matrix
9i ∈ Rmi ×ni and Y ∈ Rm1×m2...×m J is CS tensor, with
m =

∏J
j=1 m j . Assuming that the sparsifying basis is also

separable, then (7) can be re-cast as,

Y = X ×1 A1 ×2 A2 . . .AJ−1 ×J AJ (8)

where Ai = 9i8i and X ∈ Rn1×n2...×n J is the sparse
representation tensor. (8) can be cast as a vector-matrix mul-
tiplication,

y = (A1 ⊗ A2 ⊗ . . .⊗ AJ ) x, (9)

where y = vec(Y) and x = vec(X ). Therefore, the con-
ventional CS recovery techniques defined in (4) can be used
and this setup is also known as tensor compressive sensing or
Kronecker compressive sensing [21].

III. GENERALIZED STRUCTURAL TENSOR SUM
COMPRESSIVE SENSING

A. Tensor Sum as a Computationally Efficient Approximation
of Non-Separable CS Matrix

Earlier, we discussed in detail the trade-off for computa-
tional complexity versus the minimum number of measure-
ments when we move from conventional non-separable CS
scheme to separable CS setup. In the sequel, to our knowledge
for the first time in literature, we will demonstrate that
non-separable or unfactorized CS matrix can be approximated
with the summation of tensorial sum operation. By doing this,
while preserving the “goodness” of the CS matrix (i.e., the
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probability of exact sparse signal recovery) as possible as
close to unfactorized CS case, we can reduce the number of
parameters to represent the CS matrix. This will enable us
to have a feasible number of learnable parameters when we
will attempt to jointly learn CS operation and recovery system
using a neural network architecture. Mathematically speaking,
let us sum T number of different separable CS tensor obtained
from S:

Y =

T∑

t=1

S ×1 9
(t)
1 ×2 9

(t)
2 . . . 9

(t)
J−1 ×J 9

(t)
J , (10)

where 9(t)i is the i th dimension CS matrix of t th operation.
(10) can be re-formulated in a non-separable CS setup via

y =

T∑

t=1

(
9
(t)
1 ⊗9

(t)
2 ⊗ . . .⊗9

(t)
J

)
s =

T∑

t=1

P(t)s = Ps,

(11)

where P(t) =

(
9
(t)
1 ⊗9

(t)
2 ⊗ . . .⊗9

(t)
J

)
and P =

∑T
t=1 P(t).

Note that (11) is nothing but conventional non-separable CS
operation with measurement matrix P. For special case where
T = 1, (10) reduces to a separable CS scheme as in (7).
Compared to the conventional CS, y = 9s with unfactorized
CS matrix 9, the number of parameters to represent the CS
matrix is reduced from m N =

∏J
j=1 m j n j to T

∑J
j=1 m j n j .

We design an experiment to show how the goodness of the
new CS matrix P is increased with T . For the goodness
metric, we selected the probability of exact recovery of the k-
sparse signal in our experimental results. As the CS matrices,
we selected Gaussian random projection matrices; in the case
of 9 which is unfactorized,

∏J
j=1 m j ×

∏J
j=1 n j size Gaussian

matrix is produced with each element of it is randomly drawn
from the Gaussian distribution. For the new case, CS matrix
P is generated with the summation of Kronecker products of
the separable random Gaussian matrices as shown in (11).
Figure 1 shows us that when T increases the probability
of exact recovery from y = Px also increases. The sparse
signal length is set to 1024 and orthogonal matching pursuit
algorithm [41] was used as the CS recovery algorithm. For
T = 5, P can achieve similar performance in recovery when
k = 80. The exact recovery probability is estimated over
250 trials.

B. Structural Tensor Sum or Transformation Basis as a Part
of the CS Matrix

In the literature, adjusting the measurement matrix as the
multiplication of two or more matrices is a common practice.
For instance, in [42], structural compressive sensing matrices
are constructed as the multiplication of random permutation,
an orthonormal basis, and sub-sampling matrices. Thanks to
such pseudo-random matrices, faster recovery can be possi-
ble compared to the CS system with full random matrices.
Moreover, in [24] and [25], CS matrix is in the form of
multiplication of a sparsifying basis and a random matrix (i.e.,
an ordinary CS sensing matrix such as Gaussian projection
matrix) i.e., 9 = 9∗�′, where �′ is transformation domain

Fig. 1. Estimated probability of exact recovery over 250 trials for different
realizations of CS matrix. An exactly sparse signal is synthetically produced
for N = 1024 and k = 80.

Fig. 2. CS Matrix configuration. Left: The CS operation modeled as the
summation of tensor sums. Right: An individual tensor sum for the case of
3D tensors.

basis, and 9∗ is ordinary random CS matrix. Even though this
CS system was originally proposed for CS-based encryption
in the frequency domain, in Section V we will discuss that
the learned CS systems in the frequency domain may slightly
carry more high-frequency details compared to the learned CS
system in the spatial domain. If the transformation basis is
also separable like DCT, such a system can also be injected in
the proposed tensorial and sum of tensorial CS scheme, i.e.,
9
(t)
i = 9

(t)
i

∗

�
(t)′
i , where �(t)

′

i is i th-coordinate matrix of the
separable transformation basis.

C. Generalized Tensor Summation Compressive Sensing
Network (GTSNET)

In this section, we propose a neural network architecture
that jointly learns the CS sensing mechanism (CS matrix),
and the reconstruction of the signal. The proposed network is
composed of three parts: i) A CS operation, ii) Adjoint of the
CS operation (or coarse estimation of the signal), and iii) a
refinement module.

1) Separable and Multi-Linear Learning of CS Operation
(i.e., Learnable CS matrix): Our learnable CS matrix P is
factorized as

P =

T∑

t=1

(
9
(t)
1 ⊗9

(t)
2 ⊗ . . .⊗9

(t)
J

)
, (12)

where 9
(t)
i = 9

(t)
i

∗

�
(t)′
i , �(t)

′

i is i th-coordinate matrix of
the t th separable transformation matrix such as the one that
represents 8 × 8 size block-wise 2D DCT on the horizontal
axis and 9(t)i

∗

learnable i th-coordinate matrix of the t th term
in the summation. The CS operation can be factorized using a
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Fig. 3. Course estimation module. Left: The adjoint operation modeled as
the summation of tensor sums. Right: An individual tensor sum with an input
tensor in 3D.

reasonable number of training parameters thanks to the mode-j
product:

Y =

T∑

t=1

S ×1

(
9
(t)
1

∗

�
(t)′
1

)
×2 . . .×J

(
9
(t)
J

∗

�
(t)′
J

)
. (13)

A schematic explanation of (13) is given in Figure 2.
• For special case, �(t)

′

J = I, the CS system reduces to
an un-structural tensor sum system, which is the learned
version of the CS system defined in (10).

• For T = 1, the unfactorized system reduces to a separable
CS system (e.g., the learned version of the separable CS
imaging [23]).

• The system is valid for compressively sensing of any
signal, S.

• Thanks to the formulation in (13), the number of train-
able parameters for unfactorized CS matrix is reduced
from

∏J
j=1 m j n j to T

∑J
j=1 m j n j , compared to conven-

tional matrix-vector multiplication formula. Therefore,
it makes the learning unfactorized CS sensing possible
for large-scale and multi-dimensional signals.

Considering these properties, we call our learnable CS opera-
tion Generalized Tensor Summation Compressive Sensing.

2) A Coarse Estimation of the Signal: Separable Learning
of Adjoint of CS Operation: In traditional iterative CS recon-
struction algorithms, the transposition or the pseudo-inverse
of the CS matrix is used in each iteration. On the other hand,
in reconstruction-free inference tasks over CS signals [43],
[44] or non-iterative deep learning-based recovery algorithms
[17], a coarse estimation of the signal, also known as the
proxy of the signal is first obtained, i.e., s̃ = 9 ′y. Although,
it is also possible to obtain such a proxy using the regularized
pseudo inverse of CS matrix, i.e., s̃ =

(
9 ′9 + λI

)−1
9 ′y [45],

we follow the notation with the transpose or adjoint operator
in general for simplicity. Eventually, the adjoint operator will
be a learnable linear transformation. The adjoint of the P
that is defined with the factorization in (12) can simply be
expressed as,

P′
=

T∑

t=1

(
9
(t)
1 ⊗9

(t)
2 ⊗ . . .⊗9

(t)
J

)′

=

T∑

t=1

(
9
(t)′
J ⊗9

(t)′
J−1 ⊗ . . .⊗9

(t)′
1

)
. (14)

where 9(t)
′

i = �
(t)
i

(
9
(t)∗
i

)′

, �(t)i is i th-coordinate matrix of

the inverse of the t th separable transformation matrix such as
the one that represents the inverse operation of the 8 × 8 size
block-wise 2D DCT transformation on the horizontal axis and

(
9
(t)∗
i

)′

is the transpose of
(
9
(t)∗
i

)
. As stated above we

introduce to learn the adjoint CS matrix from the training set.
Mathematically speaking, we wish to have the proxy signal,
s̃ = By where the operation B is learned by a neural network
instead of directly applying P′. In practice, there is no need
to formulate it in vector-matrix multiplication formulation
since the adjoint can be applied directly on the tensorized
measurement. As shown in Figure 3, it can be expressed as,

S̃ =

T∑

t=1

Y ×1

(
�
(t)′
J B(t)

∗

1

)
×2 . . .×J

(
�
(t)
J B(t)

∗

J

)
, (15)

where B(t)
∗

i is the i th- coordinate learnable adjoint operation
matrix for the t th term and �(t)i is the corresponding fix (non-
trainable) inverse transformation operation. As it was in the
case of CS operation, the tensorial factorization in (15) makes
the adjoint operation trainable instead of attempting directly
to learn the elements of the unfactorized matrix B.

3) Reconstruction Free Recovery With Deep Neural Net-
work: Having the proxy signal, S̃, we train a conventional
CNN, C(.), which takes the proxy signal, S̃ as input and
produce a finer estimation of the signal, i.e., Ŝ = C(S̃).
In that way, a non-iterative reconstruction network and CS
operation can jointly be optimized (learned). The final network
is called Generalized Tensor Summation Compressive Sensing
Network (GTSNET-T ) which includes T tensor summation
in its formula. Our solution introduces a generalized but
flexible learning paradigm, it encapsulated many special cases
which are set as the adjustable parameter of the network. For
instance, one can set T = 1 to have a separable optimal
CS operation and its reconstruction. Or alternatively, the
transformation �(t)i can be set to the identity operator to sense
in the spatial domain.

For the refinement module, C(.), we incorporate a modified
version of the Residual Dense Network (RDN) [46]. Such
network takes advantage of the so-called residual dense blocks
(RDBs), within which all the layer outputs are fully utilized via
local feature fusion. The outputs of each RDB are further con-
nected via a global feature fusion, where the information from
each block is effectively preserved. The performance of the
network is improved by both local and global residual learning.
We modify the original RDN configuration by omitting the
upscale layer as it was proposed for image super-resolution
[46]. Furthermore, we adapt the overall RDN structure as a
residual network, i.e., the output of the modified RDN is added
to the input proxy signal, S̃, to obtain Ŝ.

The overall GTSNET-T structure is illustrated in Figure 4,
including the learnable CS matrix and the adjoint operation,
as well as the final refinement module. The adjoint operation
matrices �(t)j B(t)

∗

j are denoted altogether as B(t)j = �
(t)
j B(t)

∗

j
for simplicity. Each branch t in the CS matrix (pink blocks
in Figure 4) performs a single tensor product with the input
tensor S, while the final CS operation is the summation
over the products as dictated by (10) and (11). Similarly,
the adjoint operation is the summation over the individual
tensor products with the compressed signal Y (green blocks in
Figure 4), as given by (15). The refinement module composes
of D RDBs, each of which having C convolution layers with
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Fig. 4. Overall block diagram of the proposed end-to-end system.

rectified linear units (ReLUs) [47] as activation functions. The
input feature map to each RDN, F (d−1) has G0 channels, while
each convolution layer inside has G filters with a 3 × 3 filter
size. The concatenated feature maps at the end of the RDB
are processed through one 1 × 1 convolution layer to map the
output channel size back to G0. In our implementation, we set
D = 4, C = 3, G0 = 30, and G = 12.

We train the network with an overall loss function
L(S̃, Ŝ,S), which is the combination of two loss functions
defined over the proxy signal, S̃, and the final output, Ŝ,
respectively. The loss over the proxy signal, L̃(S̃,S), is set
to be a simple L1-loss, as it was previously demonstrated to
achieve better performance compared to the L2-loss in various
image processing problems [48]. Assuming each training batch
contains K input tensors {S1,S2, . . . ,SK },

L̃(S̃,S) =
1
K

K∑

k=1

∥̃sk − sk∥1 . (16)

The loss over the final output, L̂(Ŝ,S), is also an L1-loss with
an additional regularization term, R̂(Ŝ,S),

L̂(Ŝ,S) =
1
K

K∑

k=1

(
∥̂sk − sk∥1 + α R̂(Ŝk,Sk)

)
, (17)

where α is a hyperparameter. Our regularization term is a
modified sparse gradient prior [49] applied on the spatial
domain, which has been proposed for image debluring as it
provides sharper details compared to, e.g., Gaussian prior. The
mathematical description of the regularization is expressed as
follows:

R̂(Ŝ,S) =

∑

n1,...,n J

exp (−β|∇n1S|
γ )|∇n1 Ŝ|

γ

+

∑

n1,...,n J

exp (−β|∇n2S|
γ )|∇n2 Ŝ|

γ , (18)

where ∇n1 and ∇n2 are the discrete differential operators
over the first and second dimensions, respectively. The expo-
nential weights exp (−β|∇n1S|

γ ) and exp (−β|∇n2S|
γ ) are

introduced to decrease the prior term over the edges of the
original tensor S, as proposed in [49]. We empirically set,

α = 0.005, β = 10, and γ = 0.9. Finally, the overall loss
function is L(S̃, Ŝ,S) = L̃(S̃,S)+ L̂(Ŝ,S).

IV. EXPERIMENTAL SETUP AND RESULTS

A. Training Setup

We prepare the training dataset in the following manner:
Div2K image dataset was used and 256 × 256 image patches
were selected with stride 512 and they were cropped. Data
augmentation was applied during the data generation with
rotations in four different degrees; 0, 90, 180, and 270, flipping
and downsampling with scale factors; 1, 0.8, and 0.6. Hence,
by using the training set of DIV2K total of 89272 image
patches were obtained to be used as the training set. Similarly,
as the validation set, we obtained 1512 images from the
validation set of DIV2K. All the images are normalized to
range [0, 1]. The batch size was selected as 16 and the
networks were trained with 100 epochs. During training, the
learning rates are scheduled to be 10−3 for the first 50 epoch,
10−4 for the later 30 epoch, and 10−5 for the last 20 epoch.
The network of the 100. epoch was chosen as final. The
implementation of the GTSNET was done using MatConvNet
package [50].

B. Comparative Evaluations

As traditional CS reconstruction methods, which are well-
known state-of-the-art sparse recovery methods, comparative
evaluations are performed against the following three methods;
Gradient Projection for Sparse Reconstruction (GPSR) [14],
TV Minimization by Augmented Lagrangian and Alternat-
ing Direction Algorithms (TVAL3) [12] and Denoising-based
AMP (D-AMP) [13]. GPSR is a sparse recovery algorithm that
was specifically proposed as computationally more efficient
and feasible to apply for any image CS framework. As the
CS matrix, a randomly selected subset of the rows of noiselet
basis [51] was used. As the sparsifying transform, wavelet
“Coiflet 2” was used with the toolbox WaveLab850 [52].
TVAL3 is one of the state-of-the-art TV minimization solvers.
Walsh Hadamard Transform whose fast implementation avail-
able in the TVAL3 toolbox was used as the CS matrix. The
parameters on TVAL3 toolbox were set as follows: µ = 213,
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TABLE I
PERFORMANCE METRICS (PSNR AND SSIM) OBTAINED BY THE COMPETING AND PROPOSED METHODS OVER THREE BENCHMARK DATASETS

β = 26, µ0 = 22, β0 = 2−2, tol = 10−6, maxit = 300.
D-AMP was proposed to improve the performance of CS
recovery for the natural signals by employing off-the-shelf
denoising algorithms. We test the algorithm with default
settings, where the elements of the CS matrix are picked
from i.i.d. Gaussian distribution and BM3D [53] is used as
the denoiser. The number of iterations and the image block
size are empirically set as 30 and 128 × 128, respectively.

As the akin state-of-the-art deep learning methods,
we selected CSNET [19] and SCSNET [20]. The algorithms
and the trained models were taken from the competing algo-
rithms’ web pages. Both methods jointly learn the CS matrix
and reconstruction of the image from the measurement as
proposed in this study. However, these methods learn the
block-wise CS matrix using convolution operation in a non-
overlapping manner. In that sense, when the kernel size is
increased to full image size, the method turns out to be the
classical unfactorized CS setup with an infeasible increase in
the number of parameters to train.

We trained two GTSNET versions; GTSNET-1 and
GTSNET-3. Among them GTSNET-1 learns tensorial repre-
sentation of CS matrix, therefore suitable for both separable
and unfactorized CS schemes. For this network, separable
transformation matrices �′

1 and �′

2 were chosen as 8 × 8
DCT transformation matrices in the horizontal and vertical
directions, respectively. GTSNET-3 includes the three-tensor
summation as the CS operation and represents an unfactorized
CS setup. As the sparsifying matrices, �(t)

′

i , we selected
8 × 8, 16 × 16 and 32 × 32 2D DCT transformations for
t = 1, t = 2, t = 3, respectively. All the competing algorithms
were tested on three commonly-used datasets: Set14 [54], Set5
[55], and Set11 [17]. The results on five different measurement
rates (MRs) are presented in Table I. Against the competing
traditional methods, GPRS, TVAL3 and DAMP, a significant
gap on the average performance is observed. In particular,
we achieve 7.21 dB, 4.55 dB, 1.6 dB, 1.63 dB, and 2.81 dB
improvements in PSNRs compared to the closest performance,

for MRs of 0.01, 0.05, 0.1, 0.2 and 0.3, respectively. When
we compare against the deep learning-based competing meth-
ods, CSNET+ and SCSNET, GTSNET-T shows superiority
for the lower MRs (< 0.2), i.e., 0.3 dB, 0.3 dB, 0.18 dB
PSNR improvement over the best competing method, for the
MRs of 0.01, 0.05 and 0.1, respectively. Figure 1 presents
visual comparisons over the state-of-the-art CS methods.
Although there is no significant gap between the PSNR and
SSIM of GTSNET-1 and GTSNET-3 results, one can observe
GTSNET-3 outputs preserve high frequency details better, e.g.,
see Parrot and Flinstone images in Figure 5 and Figure 6. The
performance gap in both PSNR and SSIM measures becomes
significant in RGB images while the visual quality of the
GTSNET-3 outputs especially at the fine details noticeably
improves.

C. Comparative Evaluations Against Deep Learning-Based
CS Methods

As the competing deep learning-based solutions,
(i) the stacked denoising autoencoder (SDA) [16], which is

the pioneer method,
(ii) non-iterative reconstruction of the compressively sensed

images using CNN (ReconNet) [17]
(iii) the learned version of iterative shrinkage thresholding

algorithm for CS imaging (ISTA-Net),
(iv) akin state of the art techniques convolutional compres-

sive sensing network (CSNET) [19]
(v) scalable convolutional compressive sensing network

(SCSNET) [20],
(vi) memory augmented cascading Network (MAC-Net)

[56],
(vii) dual-path attention network for compressed sensing

(DPA-Net) [57], and the most recent deep unrolling
techniques,

(viii) OPINE-NET [58],
(ix) AMP-Net+ [59], and
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(x) COAST [60]
are selected as the most recent techniques. This article was
updated to include a few more deep learning-based solutions
[61], [62] while it was being prepared. Through self-attention
mechanisms, these algorithms enhance the performance of
recovery refinement parts of end-to-end CS networks based on
vision transformers [63], which have recently become an active
research area. While learning compressively sensing operator
part, however, they use a strided convolution (block-by-block
sensing) based module similar (or identical) to the ones used
by CSNET, SCSNET, OPINE-NET, and AMP-Net.

For ISTA-Net, CSNET, and AMPNet we choose their
improved versions ISTA-Net+, CSNET+, and AMP-Net+,
respectively. The comparative evaluations are conducted on
the benchmark SET11 dataset. The results for different mea-
surement rates are presented in Table II. All the algorithms
and the trained models were downloaded from authors’ web
pages and run over SET11 except SDA and DPA-Net, whose
source codes are not available online. The results of SDA
were taken from [17] and the results of DPA-Net were taken
from [57]. The average PSNR values show the superiority of
the proposed network over all competing methods especially
for the case of lower sampling rates, e.g., for MR < 0.1.
Figure 6 shows samples for the qualitative performance com-
parison where it is clear that the outputs of SDA, ReconNet,
and ISTA-Net+ may exhibit strong blocking artifacts. The
reason is that they use block-by-block sampling strategy to
compressively sense the signal, and then apply block-by-block
recovery strategy. On the other hand, CSNET, MAC-Net, and
SCSNet algorithms have block-by-block compressive sensing
setup, but their reconstruction step recovers the image as a
whole by using convolutional layers. Therefore, their outputs
show fewer blocking artifacts. On the other hand, GTSNET-1
CS module is convenient for both separable and unfactorized
(conventional vector-matrix CS system) CS setup. When it
comes to reconstruction, it uses a CNN similar to CSNET
and SCSNET and recovers the image as a whole. For the
use case, where one wants to use a traditional sampling setup
with a better approximation of unfactorized CS matrices, the
GTSNET-T (T > 1) can be used. The sampling strategies of
deep learning methods are summarized in Table I. Although
there is no significant gap in PSNR and SSIM values on
average, GTSNET-3 can recover more high-frequency details
as seen in the Parrot image in Figure 6. In Section V, we will
discuss the effects of the tensor sum in the frequency domain.

D. Comparative Evaluations Over RGB Images

Unfortunately, most aforementioned competing methods
except CSNET were designed only for gray-scale images.
Therefore, we compare GTSNET with CSNET. An extensive
set of comparative evaluations was conducted on the following
benchmark RGB image datasets: Set5, Set11, Manga109 [64],
and Urban100 [65]. The results are reported in Table III.
For GTSNET-5, as the sparsifying matrices, we selected,
8 × 8, 16 × 16, 32 × 32, 64 × 64 and 128 × 128
2D DCT transformations for �(1)

′

, �(2)
′

, �(3)
′

, �(4)
′

and
�(5)

′

, respectively. As clearly observable from the table that

TABLE II
SAMPLING AND RECOVERY STRATEGIES OF THE DEEP

LEARNING-BASED ALGORITHMS. GTSNET-T CAN
BE USED FOR BOTH CLASSICAL (UNFACTORIZED)

CS AND SEPARABLE CS SYSTEMS

TABLE III
PSNR LEVELS OBTAINED BY THE COMPETING AND

PROPOSED METHODS OVER SET11 DATASET

the performance gap between GTSNET-1 and GTSNET-T
(T > 1) widens in terms of PSNR and SSIM. Compared to
CSNET+, a comparable performance with the separable CS
setup (GTSNET-1) is achieved. For the unfactorized CS matrix
setup (T > 1), the performance gap between CSNET+ and
the best operating GTSNET configuration becomes significant,
i.e., 1.15 dB, 0.92 dB and 2.91 dB for sampling rates of 0.05,
0.1 and 0.2, respectively. Moreover, some samples for visual
comparison of the recovered images are shown in Figure 5.
The outputs of CSNET+ exhibit certain level of blocking
artifacts that are entirely absent in any of the outputs of the
proposed GTSNET-T networks.

V. DISCUSSION

A. Tensor Vs Tensor Sum for CS Matrix Learning

In this section, we perform an ablation study concerning
the effects of the number of tensor sums, T , over the final
reconstruction quality. As a starting point, we plot the PSNR
values of each image in Set5, sensed and reconstructed via
three different setups, for T = 1, T = 3, and T = 5.
We perform analysis on both gray-scale and RGB images,
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Fig. 5. Visual comparison with the state-of-the-art on grayscale images with varying measurement rates.

TABLE IV
PERFORMANCE METRICS (PSNR AND SSIM) OBTAINED BY THE COMPETING AND PROPOSED METHODS

OVER FOUR BENCHMARK RGB IMAGE DATASETS

where the measurement rate is set as 0.1. The gray-scale
images are constructed via taking the luminance channel of
each image in YCbCr color space. The results are shown in
Figure 6. While the performance gap is negligible difference
on the gray-scale images, we observe a significant performance
improvement in reconstructing the RGB images as T increases
from 1 to 3, e.g., up to 2.74 dB PSNR improvement on the

“woman” image. An interesting observation worth mentioning
is that GTSNET-T with T = 3 outperforms the one with
T = 5, both for each individual image in Set5, and for the
average of each dataset presented in Table III. This might
seem at first contradictory to our derivations within the theo-
retical discussions, where we demonstrate in Section III-A and
Figure 1 that the mutual coherence decreases as T increases.
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Fig. 6. The recovered images of the competing and proposed methods with the GT image on the left.

However, within such analysis each tensor is chosen to be
composed of Gaussian random matrices. As in practice we
further learn the CS matrices to improve performance over
the random matrices, an inherent trade-off occurs, where the
number of learned parameters increases linearly with increas-
ing T . The experimental analysis shows that T = 3 provides
best of both worlds with a consistently superior image quality
for MR = 0.1.

To enrich the discussion above, we visually compare the
three methods over a rather tricky color image: “zebra” from
Set14. In particular, we examine the frequency responses of
both the proxy signals, S̃, as the immediate reconstruction,
and the final outputs, Ŝ. The results are shown in Figure 9.
The differences between each method are clearly visible over
the frequency responses of the proxy signals (middle row),
where the cut-off frequency of GTSNET-3 is higher compared
to that of GTSNET-1 and GTSNET-5. Subsequently, the
final output of GTSNET-3 can preserve the higher frequency
information while providing better quantitative result in terms
of PSNR value.

Having shown the improvement in image quality with
T > 1, we now provide the information flowing from each

branch of the adjoint operator. Figure 10 illustrate the tenta-
tive reconstruction results, where one of the branches (B(3))
performs the majority of the reconstruction over the lower
frequency region and the residual high-frequency details
are recovered through branches B(1) and B(2). In addition,
the first and second branches carry information regard-
ing the different regions of the spectrum; the support of
B(2) is more concentrated towards the low-frequency region,
whereas the frequency response of the first branch con-
tains higher frequencies. The proximal signal, S̃ (Figure 10,
fourth column), is the summation of each output, having a
wider response than each individual branch.

B. Tensor Sum vs Structural Tensor for CS Matrix Learning

In Section III-C1, we discuss that the proposed method is
suitable for designs of both structured and unstructured tensor
summations, whereas we mainly demonstrate our results via
the learned structured matrices. In this subsection, we compare
a network trained for unstructured tensor sums, i.e., �(t)

′

J = I,
with the previously discussed structured tensors. We train both
setups for GTSNET-3, where the measurement rate is set as
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TABLE V
PERFORMANCE COMPARISON OF TIED VS. UNTIED LEARNING OF CS MATRICES

Fig. 7. The recovered images of the competing and proposed methods with the GT image on the left.

0.1. A test image is picked from the Urban100 dataset for the
experiment, carrying high-frequency components with fixed
patterns. Figure 11 shows the results. While the differences
are not prominent through visual inspection on the spatial
domain at first, the proxy output of the structured tensor

summation is observed to contain a wider frequency response.
We also notice a decrease in the high-frequency region of
the final output with the unstructured tensor sum, visible as
a box in the middle of the frequency response (Figure 11,
bottom left), and a decrease of 0.43 dB in PSNR. For such
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Fig. 8. Quantitative reconstruction results of Set5 dataset, with varying
number of tensor sums T . Left: Gray-scale (luminance) images. Right:
Original color (RGB) images. The measurement rate is set to be 0.1 in both
scenarios.

Fig. 9. Frequency analysis with varying number of tensor sums. Top: Final
outputs Ŝ in spatial domain. Middle: Proxy signals Ŝ in frequency domain.
Bottom: Final outputs Ŝ in frequency domain. Measurement rate is set as 0.1.

purposes, we proceed with the structured matrices. Neverthe-
less, it is important to demonstrate that the proposed method
has flexibility generalizing various types of CS matrix designs.

C. Performance on Sparse Signals

The proposed GTSNET-T scheme is able to sense the
images in sparsifying domain e.g., DCT basis directly. The
adjoint operator consists of two parts; one is a learned adjoint
matrix and the other is the fixed inverse transform basis of
the sparsifying transform. Therefore, the coarse estimation of
the image is also done in sparsifying, firstly. However, the
natural images do not exhibit exact sparsity but approximate
sparsity in any sparsifying domain. This is why in the sequel,
we will investigate the the performance of the GTSNET-T in
the recovery of exact sparse signals.

In this section, we use the MNIST dataset for our experi-
ments. Images in this dataset have resolutions of 28×28 pixels,
and intensities ranging from 0 to 1. The background of each
image covers a larger area than the foreground, making it
a sparse signal in the canonical basis. Non-zero coefficients
to vectorized signal dimension ratios (i.e., k

N ) range from
0.05 to 0.4 [45]. Therefore it is actually a challenging sparse
signal dataset for the traditional CS setup since it includes
a large number of less sparse samples. The dataset includes
70000 samples, among them 50000 were used to train the
networks, and 20000 were used for the test.

Fig. 10. Tentative reconstruction result of each individual adjoint operation
in GTSNET-3, as well as the proxy signal Ŝ as the summation of each branch.

Fig. 11. Visual comparison between the unstructured and structured (DCT)
Tensor sums. Top: Final outputs Ŝ in the spatial domain. Middle: Proxy signals
Ŝ in the frequency domain. Bottom: Final outputs Ŝ in the frequency domain.
The results are shown for GTSNET-3 with MR = 0.1.

1) Tied Learning (B = A′) vs Untied Learning B ̸= A′: In
conventional solutions for linear inverse problems, the adjoint
operator is taken as the transpose of the linear degradation
matrix A, i.e., B = AT . However, the adjoint B is also
learned without any constraint depending on A. In this section,
we will investigate the advantages/disadvantages of such a
learning scheme instead of tied learning where A and B are
learned with a constraint B = AT . For the MNIST dataset,
we assume that the i th vectorized sparse signal xi ∈ RN=784

is compressively sensed, yi = Axi, where A ∈ Rm×N for
different m values. The measurement matrix A is selected
in three different ways: a) Unfactorized full-size Gaussian
matrix. b) Learned CS matrix with GTSNET-T with constraint
B = AT . c) Learned CS matrix with GTSNET-T without such
constraint.

As an example let us consider that one wants to take
m = 81 measurements. In this setup, the number of parameters
to represent the unfactorized conventional Gaussian matrix can
be calculated as 81 × 728 = 58968. On the contrary for
the learning matrix with T = 3-tensor sum scheme will be
2 × T × 9 × 28 = 1512 since each Kronecker product is
represented by left and right matrix multiplications with the
matrices of size 9 × 28. If there is no constraint in the adjoint
operator then the number of parameters to represent the abjoint
B will be the same. In the meanwhile, when there is a such
constraint then, there is no additional parameter in order to
represent the adjoint matrix.
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Fig. 12. Comparison of Gaussian measurement matrix and learned measurement matrix: Proxy, minimum norm solution, ℓ1-minimization results from the
measurement vector As when A is Gaussian matrix (on the left) and when A is learned with proposed tensorial sum approach (on the right).

Table V shows the comparison of the reconstruction per-
formance of these three setups with different measurement
rates and with different T values. For the conventional CS
setup, we used ℓ1-minimization to solve the recovery problem:
x̂ = arg minx ∥x∥1 s.t ∥y − Ax∥

2
2. There is a clear pattern that

shows that untied learning can achieve superior performance
with increasing margin, especially when MR gets smaller.
On the other hand, conventional CS setup performs very poorly
due to the fact that the data sparsity ratio makes the sparse
recovery very challenging.

2) Learned Measurement Matrix Within ℓ1-Minimization
Based Sparse Recovery: In order to compare the good-
ness of the learned measurement matrices to conventional
sub-Gaussian matrices, the following experimental setup is
designed: Learned measurement matrices are obtained via
A =

∑T
t=1 A(t)1 ⊗ A(t)2 , where A(t)1 and A(t)2 are left and

right multiplication matrices for t th Kronecker product. Then,
compressive sensing of vectorized sparse signal, x, is done,
i.e., y = Ax. In order to recover recover sparse signal,
ℓ1-minimization is used: x̂ = arg minx ∥x∥1 s.t ∥y − Ax∥

2
2.

ADMM [66] is used to solve this optimization problem.
Figure 7 shows an example visual comparison of the recovered
outputs in this vector CS setup for conventional Gaussian
CS matrix vs. learned CS matrix. Even coarse estimations
of x via minimum norm solution and simple matrix vector
multiplication with adjoint matrix (tied learning is used in this
experiment, i.e., B = AT) are significantly improved compared
to the ones from conventional Gaussian projection CS setup.

VI. CONCLUSION AND FUTURE WORK

We propose generalized tensor summation networks for fast
and high-quality CS. Our framework incorporates end-to-end
learning where the parameters of both the CS matrix and the
signal recovery are jointly optimized. On the sensing part, the
CS matrices are modeled as the summation of T tensors, which
has certain critical advantages. On one hand, the complexity
and the number of parameters are greatly reduced thanks to the
separability of tensors. By keeping T = 1, for instance, we can
reduce the system to a Kronecker CS. On the other hand,
unfactorized CS matrices can be approximated well enough by
increasing T . In addition, we can design structured matrices
by incorporating any separable basis into our framework, such
as DCT.

The reconstruction step of the proposed algorithm takes
advantage of an adjoint operator learned similarly in tenso-
rial sum representation to perform a tentative reconstruction.

In this proof of concept work, a non-iterative, CNN-based
deep learning architecture is used as the refinement module.
To further increase the performance, one can use the most
advance deep backbone structures such as transformers or
optimization-inspired deep neural networks in future works.
We further note that increasing T improves the recovery until
it reaches a maximum value at a certain T value (generally at
T = 3 or 4). However, contrary to the expectation of staying
in saturation, after this point, the performance metric starts
decreasing with a further increase in T . Future works can be
devoted to analyzing the reason for such behavior which may
lead to better training strategies and increased performance.
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1. DERIVATIVE OF GENERALIZED TENSOR SUM OPERATIONS FOR BACK PROPA-
GATION

Eq. (10) and Eq. (11) of the main article provide a mathematical description of the proposed
CS module. In practice, we implement a single custom Tensor layer P(t)(.) to perform a tensor
product with the input signal, as in the pink blocks in Figure S1,

P(t)(S) = S ×1 Ψ
(t)
1 ×2 Ψ

(t)
2 ...Ψ(t)

J−1 ×J Ψ
(t)
J . (S1)

Here, with respect to the error, we derive the input derivatives of such layer, which are to be
calculated during the backward pass. Let us first denote a j− dimensional tensor multiplication,

Y (t)
j = S ×1 Ψ

(t)
1 ×2 Ψ

(t)
2 ...×j Ψ

(t)
j , (S2)

where we can immediately see

Y (t)
j = Y (t)

j−1 ×j Ψ
(t)
j , (S3)

with Y (t)
0 = S and P(t)(S) = Y (t)

J . In the backward pass, we assume that the partial derivative

of the error with respect to the output, ∂L/∂Y (t)
J , is known. From Eq. Eq. (S3) and the basics of

linear algebra,
∂L

∂Y (t)
J−1

=
∂L

∂Y (t)
J

×J Ψ
(t)
J

′
, (S4)

form which we iteratively go back to conclude

∂L
∂S =

∂L

∂Y (t)
J

×J Ψ
(t)
J

′
×J−1 Ψ

(t)
J−1

′
...×2 Ψ

(t)
2
′
×1 Ψ

(t)
1
′
, (S5)

which is nothing but the multiplication with the transposed tensor.

To calculate the partial derivatives with respect to the individual matrices of the CS tensor, Ψ
(t)
j ,

we can start by rearranging Eq. Eq. (S3) in discrete form as

Y (t)
j [n1, ..., nj, ...nJ ] = ∑̃

nj

Ψ(t)
j [nj, ñj]Y (t)

j−1[n1, ..., ñj, ...nJ ]. (S6)

Eq. Eq. (S6) can be converted to a simpler form as follows: Suppose an operator matj(.) takes a
J−dimensional input Y and convert it to a matrix Yj, by first permuting its dimensions so that
the jth dimension of Y become the rows of Yj, and then rescaling so that all the other dimensions
become the columns. Then

Y (t)
j = mat−1

j (Ψ
(t)
j matj(Y (t)

j−1)), (S7)
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Fig. S1. Overall block diagram of the proposed end-to-end system.

where mat−1
j is the inverse of the above-mentioned matj(.) operator. It is then straightforward to

see that
∂L

∂Ψ
(t)
j

= matj

(
∂L

∂Y (t)
j

)
matj(Y (t)

j−1))
′, (S8)

Unfortunately, Eq. Eq. (S8) requires a forward propagation of Y (t)
j−1 all the way up to Y (t)

J−1, which
practically indicates another forward propagation before starting the backward pass. However,
as these matrix multiplications at each dimension are relatively fast, such requirement does not
add any noticeable overhead to the computational complexity.

2. DERIVATIVE OF LOSS FUNCTION FOR BACK PROPAGATION

Here we aim to provide the partial derivatives of error with respect to the final estimation Ŝ ,
∂L/∂Ŝ . As we discussed previously, our loss function is a combination of an L1-loss over proxy,
L̃(S̃ ,S), and a regularized L1-loss over the final output, L̂(Ŝ ,S). As the derivatives of L1-losses
are well-known, the derivation of the partial derivative of the regularization function with respect
to Ŝ , ∂R/∂Ŝ will be sufficient. Furthermore, considering Eq. (18) of the main article is separable
into first and second dimensions, we can derive the derivative in 1D for simplicity, from which
the extension to 2D is straightforward. If we then reformulate Eq. (18) of the main article in 1D

R̂n1 (Ŝ ,S) = ∑
n1,...,nJ

exp (−β|∇n1S|γ)|∇n1 Ŝ |γ, (S9)

where ∇n1 Ŝ = Ŝ [n1 + 1, n2, ..., nJ ]− Ŝ [n1, n2, ..., nJ ] in discrete form. Let us first denote

Ĝn1 = ∇n1 Ŝ , Gn1 = |Ĝn1 |, Wn1 = exp (−β|∇n1S|γ). (S10)

From now on we can treatWn1 as a constant, element-wise weighting factor, as it only depends
on the label S . Then, using Eq. Eq. (S9), the first partial derivative is

∂Rn1

∂Gn1

= γWn1G
(γ−1)
n1 . (S11)

Assuming the derivative of |.| is sgn(.), i.e., the sign function,

∂Rn1

∂Ĝn1

= γWn1G
(γ−1)
n1 sgn(Ĝn1 ). (S12)

The partial derivative ∂Ĝ/∂Ŝ is defined as follows

∂Ĝn1 [n1, ..., nJ ]

∂Ŝ [ñ1, ..., ñJ ]
=





1, if ñ1 = n1 − 1 & ñ2, ..., ñJ = n2, ..., nJ

−1, if ñ1 = n1 & ñ2, ..., ñJ = n2, ..., nJ

0, otherwise
(S13)

2



Using Eq. Eq. (S12) and Eq. Eq. (S13), and the chain rule, one can find in 1D

∂Rn1

∂Ŝ
=

∂Rn1

∂Ĝn1

[n1 − 1, n2, ..., nJ ]−
∂Rn1

∂Ĝn1

[n1, n2, ..., nJ ]. (S14)

By changing dimension from n1 to n2 and extending to 2D, we can conclude that

∂R
∂Ŝ

=
∂Rn1

∂Ŝ
+

∂Rn2

∂Ŝ
. (S15)
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