
Thomas Szymkowiak

FPGA-BASED PROTOTYPING OF A MODERN

MPSOC

Master of Science Thesis

Faculty of Information Technology and Communication Sciences

Examiners: Prof. Timo Hämäläinen

Arto Oinonen, M.Sc.

December 2023

i

ABSTRACT

Thomas Szymkowiak: FPGA-Based Prototyping of a Modern MPSoC
Master of Science Thesis
Tampere University
Information Technology - Embedded Systems
December 2023

The complexity of computing systems has been increasing exponentially since the invention of
the integrated circuit in the 1950s. This increase in complexity has led to the creation of modern
computer architectures such as the Multi-Processor System-on-Chip (MPSoC). The development
of MPSoCs is a highly complex and resource-intensive process, with verification forming a signif-
icant portion of the activities required to produce a viable design. FPGA-based prototyping is a
crucial verification activity used to create an accurate, highly performant hardware model of the
system or component subsystems.

This thesis presents an overview of FPGA-based prototyping within the context of modern
MPSoC development and an analysis of the application of FPGA-based prototyping within an
actual MPSoC development project. The benefits and limitations of FPGA-based prototyping in
developing complex ASICs are described in detail.

Keywords: Verification, FPGA, SoC, MPSoC, ASIC, SoC-Hub, RISC-V

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

PREFACE

Coming to Finland and working as a part of SoCHub while studying Embedded Systems

at Tampere University has been the realisation of a dream. I cannot possibly put into

words how thankful I am for the experience. First and foremost, I would like to sincerely

thank my family for the endless support that they have provided throughout this process.

Additionally, the SoCHub team at Tampere University have been key in making the past

3 years so enjoyable. In no particular order, I would like to personally thank Jarkko Passi,

Antti Nurmi, Aisha Ahmed, Arto Oinonen, Matti Käyrä, Antti Rautakoura, Timo Hämäläi-

nen and Sakari Lahti.

Tampere, 31st December 2023

Thomas Szymkowiak

iii

CONTENTS

1. Introduction . 1

2. SoC Development . 2

2.1 Overview . 2

2.2 Verification Challenges . 2

3. FPGA-based Prototyping . 4

3.1 Motivation for Logic Emulation 4

3.2 FPGA-based Emulation . 4

3.2.1 Single-FPGA Emulation Platform 5

3.2.2 Multiple-FPGA Emulation Platform 6

3.2.3 Standalone FPGA Emulation Platform. 7

3.2.4 In-circuit FPGA Emulation Platform 7

3.2.5 Co-simulation FPGA Emulation Platform 8

3.3 FPGA Technology Overview 8

3.3.1 Logic Blocks . 10

3.3.2 IO Blocks . 10

3.3.3 Memory Blocks . 10

3.3.4 Routing Networks . 11

3.3.5 DSP Blocks . 11

3.3.6 High-speed Transceivers 11

3.3.7 Embedded Processor Cores 12

3.3.8 Other Components . 12

3.4 FPGA and ASIC Comparison 12

3.4.1 Technologies. 12

3.4.2 Development Flows . 13

3.5 Related Work . 13

4. Ballast Development and Architecture 17

4.1 SoC Hub . 17

4.2 Ballast Architecture . 17

4.3 Development Methodology . 17

4.4 Verification Strategy. 18

4.4.1 Functional Coverage. 19

4.4.2 FPGA Prototyping. 19

4.5 Subsystems of Interest . 20

4.5.1 SysCtrl . 20

iv

4.5.2 MPC . 21

4.5.3 HPC . 22

4.5.4 C2C . 23

4.6 Debugging Architecture . 24

4.6.1 JTAG . 24

4.6.2 Debug and Trace . 24

4.6.3 OpenOCD . 25

4.6.4 Ballast Debugging. 26

5. FPGA Prototype Implementation 28

5.1 Prototype Configurations. 28

5.2 Platform Hardware Selection 29

5.2.1 Digilent PYNQ-Z1 . 30

5.2.2 AMD Zynq UltraScale+ MPSoC ZCU104. 30

5.2.3 AMD Virtex UltraScale+ FPGA VCU118 30

5.2.4 Prototype Configuration to Platform Mapping 31

5.3 Prototype Build Flow Development 32

5.3.1 GNU Make . 32

5.3.2 TCL . 32

5.3.3 Vivado IDE . 32

5.3.4 Synthesis Flow . 32

5.4 General FPGA Prototype Implementation Strategies 35

5.4.1 RTL Partitioning . 35

5.4.2 Input Clock Architecture 36

5.4.3 Memory Interfaces . 37

5.4.4 Clock Gating . 37

5.4.5 IO Pads . 39

5.5 SysCtrl and MPC Specific FPGA Prototyping Implementation 39

5.5.1 SysCtrl BootROM . 39

5.5.2 SysCtrl SDIO Clock Gating 40

5.5.3 Slow Clock Generator 41

5.5.4 Peripheral Clocks . 42

5.5.5 Memory Capacity . 42

5.6 HPC Specific FPGA Prototyping Implementation 43

5.6.1 L2 Cache Controller . 43

5.6.2 Memory Capacity . 44

5.7 C2C Specific FPGA Prototyping Implementation 44

5.7.1 AXI Driver and AXI Memory modules 45

5.7.2 Two Board Prototype Configuration 46

5.7.3 Ballast Peripheral bridge - "Silta" 46

v

5.8 Top-Level Specific FPGA Prototyping Implementation 47

5.8.1 Synthesis Flow . 49

5.9 Verification of Implementation 50

5.9.1 RTL Simulation . 50

5.9.2 Hardware Validation . 51

5.10Debugging the Hardware Design 51

5.10.1 AMD-Xilinx Integrated Logic Analyser 51

5.10.2 AMD-Xilinx Virtual Input/Output 52

6. Results . 53

6.1 Review of Objectives . 53

6.1.1 Prototype Build Flow Development 53

6.1.2 Validation of SoC Boot Design 53

6.1.3 Validation of Debug Architecture 54

6.1.4 Validation of C2C Interface 55

6.1.5 Validation of SoC Peripheral Interfaces 56

6.1.6 Provision of Platform for BSP Development. 56

6.2 Identification of SDIO Hardware Design Issues 58

6.3 Limitations of FPGA Prototyping 59

6.3.1 Development Complexity 59

6.3.2 Prototype Performance. 60

6.3.3 Technology Differences 60

6.3.4 Verification Coverage 61

7. Conclusion and Future Work . 62

7.1 Future Work . 62

References . 64

Appendix A: Appendix A . 68

vi

GLOSSARY

AI Artificial Intelligence

AIC And-Inverted Cone

ALU Arithmetic Logic Unit

AMBA Advanced Microcontroller Bus Architecture

APU Application Processing Unit

ASIC Application Specific Integrated Circuit

ATPG Automatic Test Pattern Generation

AXI Advanced eXtensible Interface

BRAM Block RAM

BSP Board Support Package

C2C Chip-to-Chip

CDC Clock Domain Crossing

cJTAG Compact JTAG

CMOS Complimentary Metal Oxide Semiconductor

CPI Camera Parallel Interface

CPU Central Processing Unit

CTS Clock Tree Synthesis

CVA Core-V APU

DDR Double Data Rate

DDR3 Double Data Rate Generation 3

DDR4 Double Data Rate Generation 4

DFT Design For Test

DMA Direct Memory Access

DPRAM Dual Port RAM

DRV Design Rule Violation

DSP Digital Signal Processing

DUT Design Under Test

vii

EDA Electronic Design Automation

ETH Ethernet

FLL Frequency Locked Loop

FMC FPGA Mezzanine Card

FPGA Field Programmable Gate Array

GALS Globally Asynchronous Locally Synchronous

Gbps Gigabit per Second

GCN Graphical Convolutional Network

GDB GNU Debugger

GDS Graphic Design System

GLS Gate Level Simulation

GNU GNU’s Not Unix

GPU Graphics Processing Unit

HAL Hardware Abstraction Layer

hart Hardware Thread

HPC High Performance CPU

HPC FMC High Pin Count FPGA Mezzanine Card

HSTL High-Speed Transceiver Logic

HW Hardware

I/O Input/Output

I2C Inter-Integrated Circuit

I2S Inter-IC Sound

IC Integrated Circuit

IDE Integrated Development Environment

ILA Integrated Logic Analyser

IP Intellectual Property

IPC Inter-Processor Communication

ISA Instruction Set Architecture

JTAG Joint Test Action Group

LEC Logic Equivalence Checking

LPC FMC Low Pin Count FPGA Mezzanine Card

LPDDR Low Power Double Data Rate

viii

LTSSM Link Training and Status State Machine

LUT LookUp Table

LVCMOS Low-Voltage CMOS

LVDS Low-Voltage Differential Signalling

LVS Layout Versus Schematic

LVTTL Low-Voltage TTL

MMCM Multi-Mode Clock Manager

MMU Memory Management Unit

MPC Medium Performance CPU

MPSoC Multiprocessor System on Chip

NRE Non-Reoccurring Expense

openOCD Open On Chip Debugger

PCIe Peripheral Component Interconnect Express

PLL Phase-locked Loop

PMOD Peripheral Module

PPA Power, Performance and Area

PULP Parallel Ultra-Low power Processor

QSPI Quad-Serial Peripheral Interface

RAM Random Access Memory

RISC Reduced Instruction Set Computer

ROM Read Only Memory

RTL Register Transfer Level

SD Card Secure Digital Card

SDF Standard Delay Format

SDIO Secure Digital Input Output

SerDes Serializer Deserializer

SMD Surface Mount Device

SoC System on Chip

SPI Serial Peripheral Interface

SPRAM Single Port RAM

SRAM Static RAM

STA Static Timing Analysis

ix

SV System Verilog

SW Software

SWD Serial Wire Debug

SysCtrl System Control

TAP Test Access Port

TAU Tampere University

TCL Tool Command Language

TTL Transitor-Transistor Logic

TUNI Tampere Universities

UART Universal Asynchronous Receiver Transmitter

uDMA Micro-Direct Memory Access

URL Uniform Resource Locator

USB Universal Serial Bus

UVM Universal Verification Methodology

VHDL VLSI Hardware Description Language

VIO Virtual Input/Output

VIP Verification IP

VLSI Very Large Scale Integration

1

1. INTRODUCTION

The complexity of modern MPSoCs can result in complex development life cycles, with

multiple streams of coupled development tasks being performed in parallel. Verification

activities require a high percentage (40% - 50% [37]) of total engineering resources within

projects and contain multiple complimentary activities. One of the commonly used but

rarely analysed activities is FPGA-based prototyping. FPGA-based prototyping is typi-

cally used to provide an accurate, highly performant hardware model, which can interface

to real components within a lab without incurring high material costs. This thesis doc-

uments an overview of FPGA-based prototyping methodologies, a review of the current

related technologies and an analysis of a real-life application within the SoCHub project.

Measuring the effectiveness of FPGA prototyping is a challenging task, as it is an activity

which is mainly used to complement adjacent, metric-driven verification activities. This

thesis attempts to evaluate the strengths and weaknesses of FPGA prototyping by es-

tablishing high-level objectives, which guide the implementation and testing scope, and a

qualitative analysis of the activity is performed.

This thesis is composed of six sections. Section 2 provides an overview of modern SoC

development and the related verification challenges. Section 3 delivers an overview of

FPGA prototyping methodologies, current technologies and related work. The context of

the FPGA prototyping analysis is given within Section 4, in which the Ballast SoC project,

architecture and prototyping objectives are detailed. Section 5 follows this by presenting

the detailed implementation of the FPGA prototyping configurations used as a part of the

Ballast SoC verification activities. A review of the results and identified limitations of the

prototyping activities are provided within Section 6. Section 7 contains the conclusion and

suggestions for future work items that could build upon this thesis’s content.

2

2. SOC DEVELOPMENT

2.1 Overview

Following Moore’s Law, the component density of an IC has approximately doubled ev-

ery two years and historically the complexity of computing systems has increased at an

equivalent rate. Computing architectures have evolved to satisfy the functional and per-

formance requirements placed upon computing systems to manage this complexity [26].

A major milestone in the evolution of computer architecture design was the introduction

of the SoC concept in the 1980’s. An SoC can be summarised as a heterogeneous

VLSI system that utilises a traditional processor core in combination with ASICs con-

tained within a single IC. This combination leverages the optimised performance that a

custom hardware solution provides and the operational flexibility that a general-purpose

CPU running software offers [25].

Another significant evolution of architecture, conceived in the early 2000s, was the MP-

SoC. An MPSoC builds upon the traditional SoC concept by introducing multiple, indepen-

dent, programmable processors connected to memories and other system components

via a dedicated interconnect. The addition of multiple CPU instances within an MPSoC in-

creases the achievable performance and flexibility of the software running on the system.

This combination makes MPSoCs suitable for use in embedded multimedia and high-

speed data communications applications, where there is a need for high performance

that can be implemented to meet strict quantitative goals [55]. Figure 2.1 represents a

basic MPSoC architecture.

2.2 Verification Challenges

During the development of hardware for ICs, the design must be sufficiently tested to

ensure that all bugs are removed before tape-out, as the time/cost impact of fabricating

another chip iteration is significant and often unacceptable. Verification is the most de-

manding task in terms of engineering effort, with typically 40-50% of project resources

allocated to functional verification on a hardware development project [36].

For a modern MPSoC, the typical development life-cycle is highly complex. Due to the

demands of project schedules and multiple activities being coupled, several activities are

3

MPSoC

INTERCONNECT

CPU #0 CPU #1 MEMORY

PERIPHERAL
#0

PERIPHERAL
#1 ACCELERATOR

Figure 2.1. Example of a Basic MPSoC Architecture

Figure 2.2. MPSoC Design Life-cycle, processes and artefacts [44]

often executed in parallel. These include RTL design, SW development, Physical Design

and Verification [44]. Figure 2.2 illustrates the complex and parallel nature of modern

MPSoC project execution. It is imperative to use design and verification techniques to

accelerate the de-risking of hardware and software as early as possible in the life-cycle

to minimise the penalties associated with refactoring software/RTL and reduce the time

to market.

4

3. FPGA-BASED PROTOTYPING

3.1 Motivation for Logic Emulation

Simulating RTL is the most widely used method for performing functional verification of

modern ASIC designs. As the size of the simulated designs grows, the time it takes to

complete the simulation and the amount of host storage/processing required increases.

It becomes impractical to run simulations of designs containing multiple processing cores

or accelerator blocks for a long enough time to perform realistic use cases.

Hardware emulation (or prototyping) is a design-phase verification technique that inte-

grates a hardware design into a reconfigurable prototyping platform to enable functional

testing of the Design Under Test (DUT). It allows the hardware and the low-level software

to be evaluated in a realistic performance setting [35]. Hardware emulation platforms are

applied within ASIC development to satisfy the following typical requirements [18]:

• Providing a platform which can be used to run the designs at emulation speeds

higher than what can be achieved through the use of RTL simulation.

• Being able to emulate the entire system on a single platform.

• Maintaining similarity between the design artefacts used on the delivered solution

and the artefacts used in emulation.

• Supplying a high degree of visibility in the emulation for debug purposes.

• Enabling the ability to offer low-cost copies of the prototype for use in hardware-

software co-design and field testing.

3.2 FPGA-based Emulation

FPGAs are an example of an effective hardware emulation technology that can execute

the design at speeds that would not be possible in RTL simulators [46]. FPGAs have been

used in this way for over 30 years. However, until recently, several weaknesses associated

with the platforms limited their applicability for prototyping (e.g. low compile time and low

area) to small and simple designs. The larger sizes and improved tool performance of the

more recent generations of commercial FPGAs have made them more suitable for the

task [15][35].

5

FPGA logic emulation is typically used to replace or augment traditional CPU-based logic

or gate-level simulation. The logic circuits within an FPGA are implemented and run in

parallel. The parallel performance of CPU-based simulators is limited by the number

of ALUs available to execute instructions. In contrast, the performance of FPGA-based

emulation is only limited by the amount of resources available on the FPGA. The result

is that FPGA-based emulators run logic circuits faster than the equivalent logic executed

using a CPU-based simulator. The execution performance of FPGA-based emulators is

good. However, there are a number of limitations that exist when emulating a design

using FPGA [51]:

• FPGA-based emulators can only support cycle-accurate logic evaluation that is syn-

chronised to the clock of the FPGA design.

• The technology used to implement a design on FPGA differs significantly from the

technology used for implementing the ASIC. Therefore, reliable post-synthesis/post-

routing timing information cannot be retrieved by running the design on FPGA.

• Debugging designs on an FPGA during runtime is significantly more complex than

debugging a design in simulation. Typically, dedicated resources must be reserved

within the design to allow in-circuit analysis of the signals within the FPGA.

Depending on the application’s requirements, FPGA emulators can be implemented on

a single FPGA or across multiple FPGAs. Furthermore, using the FPGA emulator in a

standalone, in-circuit or co-simulation configuration is possible. The following subsections

provide a summary of each configuration.

3.2.1 Single-FPGA Emulation Platform

The basic form of emulator is a design running on a single FPGA. The design is translated

to remove/replace any design structures that cannot be synthesised on FPGA. Addition-

ally, architectural features in modern ASIC design, such as multiple asynchronous clock

domains, complex reset trees, test/debug interfaces and multi-port memories complicate

the FPGA compilation process. Therefore, modifications are made to the design to sim-

plify these aspects and simplify implementation without compromising the RTL function-

ality of the DUT [27].

Once this is complete, the RTL of the design is synthesised using the FPGA-specific

tooling and mapped to the platform. This approach is the simplest for logic emulation, but

the size of the available FPGA platform limits it. Figure 3.1 (left) illustrates a single-FPGA

emulation platform.

6

3.2.2 Multiple-FPGA Emulation Platform

For larger ASIC designs which cannot be prototyped using a single FPGA platform, it is

possible to partition the design and implement each partition onto single FPGAs which are

connected to each other. Modern multi-FPGA emulation systems are complex systems

containing, in some instances, hundreds of FPGAs/memory chips, high-speed interfaces

and logic analysers. Typical systems contain multiple boards, each of which contains

multiple interconnected FPGAs. The boards are connected together using fixed connec-

tions or across a back-plane bus. The design flow for such a configuration is significantly

more complex than the single FPGA as in addition to the logic implementation required on

each FPGA locally, the implementation also need to be analysed locally across multiple

FPGAs. This analysis includes the following steps [51]:

1. Translation of ASIC design into the FPGA circuit representation.

2. Partitioning and global placement of design such that each design partition is able

to fit onto a single FPGA.

3. Global routing of signals between partitions.

4. Assignment of interconnected signals to pins on each FPGA. It is common that

there is not a sufficient number of pins available to support dedicated connections

between the partitioned design, thus time-based multiplexing of signals on each pin

is used to enable the design to function correctly.

5. Local synthesis, place and route and bitstream generation for each FPGA on the

system.

Figure 3.1 (right) illustrates a multi-FPGA emulation platform connected using a mesh

topology.

7

FPGA Platform

DUT

FPGA Platform

PARTITIONED
DUT

FPGA Platform

PARTITIONED
DUT

FPGA Platform

PARTITIONED
DUT

FPGA Platform

PARTITIONED
DUT

FPGA Platform

PARTITIONED
DUT

FPGA Platform

PARTITIONED
DUT

FPGA Platform

PARTITIONED
DUT

FPGA Platform

PARTITIONED
DUT

FPGA Platform

PARTITIONED
DUT

Single-FPGA Emulation Platform Multiple-FPGA Emulation Platform

Figure 3.1. A Single-FPGA Emulation Platform (left) and a Multi-FPGA Emulation Plat-
form Connected in a Mesh Topology (right)

3.2.3 Standalone FPGA Emulation Platform

As a standalone platform, the design is implemented onto a single or multi-FPGA platform

and driven by sources independent of the target system within which the design will be

integrated. Figure 3.2 illustrates a typical setup when using a standalone FPGA-based

emulation platform. The design can be monitored using integrated debug components

or external test equipment. Similarly, stimuli can be sent to the DUT using test logic

which has been included within the FPGA design, external dedicated hardware to assist

with testing or using test vectors from a host machine, which is usually connected to the

FPGA platform using a standard data interface e.g. USB or PCIe. Depending on the

testing requirements, a selection or all monitoring/stimulus sources can be used during

emulation.

3.2.4 In-circuit FPGA Emulation Platform

For in-circuit emulation, the DUT is implemented on an FPGA-based emulation platform

and connected to the target system within which the final design is intended to reside. The

stimuli to the emulation platform can then come from the surrounding system components

[51] as is shown within Figure 3.3.

8

Common Data
Interface

FPGA Platform

DUT

Power Supply

Host

Test Stimuli +
Monitoring Logic

Logic Analyser/
Debug Logic

External Test Equipment

Figure 3.2. Typical Setup of a Standalone FPGA Emulation Platform

TARGET CIRCUIT

FPGA PLATFORM

DUT

Figure 3.3. Illustration of an In-circuit Emulation Platform

3.2.5 Co-simulation FPGA Emulation Platform

It is possible to use an FPGA-based emulation platform as a simulation accelerator. In

this configuration (FPGA co-simulation/co-verification), the emulator is connected to a

host computer using a common data interface. The host computer simulates the compo-

nents connected to the design running on the emulator, transferring stimuli between the

simulation and the emulator over the data interface [51].

3.3 FPGA Technology Overview

Following the creation of FPGAs in the 1980s, due to the technological limitations of the

time, the initial applications of FPGAs were mainly limited to implementing custom ’glue’

logic that could be used to connect components. The programmability of FPGAs meant

9

Figure 3.4. Generic Example of a Modern FPGA’s Internal Structure [14]

that any design errors recognised at a late stage in the development lifecycle could be

quickly resolved with minimal impact on schedule or cost. Over time as digital technology

advanced and the cost of the technologies reduced, the capabilities of FPGAs and the

range of problem domains they can be applied to has increased [56].

The typical architecture of a modern FPGA can consist of a mixture of monolithically

embedded components:

• Logic blocks,

• I/O blocks,

• Embedded memories,

• DSP blocks,

• High-speed data transceivers,

• Clock management blocks,

• Signal and clock routing networks,

• Processor cores.

A generic example of the internal structure of a modern FPGA can be seen in 3.4.

The following section provides an overview of the most common components and features

of modern FPGAs, focusing on AMD-Xilinx FPGAs.

10

3.3.1 Logic Blocks

FPGA logic blocks contain a combination of n-bit LUTs, interconnecting logic components

and D-type storage elements. The LUTs are composed of n-bit input, 1-bit output SRAM

blocks that are used to perform arbitrary combinatorial operations. The interconnecting

logic enables routing between the logic blocks and to the I/O components on the FPGA

[57]. The storage elements enable sequential operations and, in modern FPGAs, can be

configured as latches or flip-flops. In addition to the basic functions some FPGA vendors

use logic blocks to implement additional functionality such as shift registers, distributed

RAM, LUT-based ROM, arithmetic operations and multiplexing [30]. The terminology used

to reference logic blocks varies between vendors. For example, AMD-Xilinx refers to logic

blocks using the term "configurable logic block (CLB)", while Intel uses the term "adaptive

logic module (ALM)". The exact contents of these blocks vary between vendors and

architectures.

3.3.2 IO Blocks

FPGAs use I/O interfaces to route signals in and out of the chip. Modern FPGAs sup-

port several different I/O standards and the specific standard assigned to an FPGA pin

is typically statically configurable. CMOS, LVCMOS, LVTLL HSTL and LVDS are exam-

ples of some of the I/O standards supported by modern FPGAs [9]. In addition to the

standard, the FPGA pins can be configured as input, output or bidirectional. The FPGA

I/O interfaces and configuration logic are contained within a block referred to as the IO

Block on AMD-Xilinx FPGAs. In addition to the configurable aspects already mentioned,

the IO Blocks also include additional resources, such as voltage translators, buffers, reg-

isters and resistors [48]. The aforementioned configurable I/O properties allow an FPGA

to communicate with external components using various interfaces.

3.3.3 Memory Blocks

A memory block, or "Block RAM" (BRAM), is a discrete, fixed-sized block of SRAM mem-

ory within an FPGA. It can often be configured to operate in various modes depending on

the user requirements, e.g. FIFO, SPRAM, DPRAM. These blocks are typically provided

to enable fast and local memory access. BRAMs can be combined to provide the capabil-

ity of a larger memory without the need for a larger dedicated memory component. There

are often many instances of BRAM available within the FPGA. However, the number of

blocks and the capacity of each block vary between platforms, and they are typically well-

distributed across the FPGA to aid with signal routing. To demonstrate the variable BRAM

usage within FPGAs, at the time of writing this thesis, the Xilinx Vitex Ultrascale+ series

advertises a rather large BRAM capacity of 94.5Mb [29], while the Lattice iCE40 LP640

11

offers a relatively modest 64kb [47].

In addition to ’traditional BRAMs’, some modern FPGAs now include multiple embedded

memory options to help address the increasing need for fast local memory access in

FPGA designs. An example is the availability of ’UltraRAM’ within the Xilinx Ultrascale

range of FPGAs. These are larger (288kb) but less well-distributed blocks of memory to

provide an intermediate between the fast/small BRAMs and large/slow off-chip memories

such as DDR [31].

3.3.4 Routing Networks

A programmable interconnect is used to flexibly connect all of the components mentioned

above and create a complete circuit. A typical routing interconnect comprises an array of

wires and switch matrices, the layout of which is architecture-dependent.

One of the challenges EDA vendors face is to ensure that the signal routing distances

between the elements within a circuit are as small as possible to minimise propagation

delays. Arrangements of logic and routing resources are selected in an attempt to ad-

dress this. For example, a typical routing style used within modern FPGAs is the "Island

style", in which horizontal and vertical channels connect the FPGA functional elements

[57] (see Figure 3.4). Furthermore, it is typical for an FPGA to use dedicated routing for

wires for the clock pins of synchronous elements. These are specially designed to min-

imise propagation delay, clock skew and jitter. In modern FPGAs using small technology

nodes, routing is the factor which limits the FPGA performance. As a result, some modern

devices have started to include register pipelines within routing paths to guarantee better

data throughput [23].

3.3.5 DSP Blocks

To perform high-speed arithmetic operations on values with large word lengths, hard DSP

blocks are implemented within the FPGA fabric. These blocks typically contain pipelined

configurable arithmetic units that allow users to efficiently perform complex arithmetic

which is standard in applications such as digital signal processing [16].

3.3.6 High-speed Transceivers

Modern FPGAs also include high-speed data transceivers to provide a SerDes capabil-

ity. The operation and performance of the transceiver is platform specific. For example,

AMD-Xilinx Virtex Ultrascale devices contain GTY-transceivers to provide 400G network-

ing capabilities which would otherwise be not be possible [8].

12

3.3.7 Embedded Processor Cores

If there is a requirement to have a high degree of configurable control within a design,

it is common to implement one or more "soft" processor cores within an FPGA design.

The operating frequency and performance achieved by such soft processor cores on an

FPGA is lower than can be achieved by an equivalent CPU core implemented as an ASIC

due to the reasons outlined within section 3.4. To try and address the continuous need for

improved efficiency and performance, some vendors offer hybrid solutions within which

a "hard" CPU core is embedded within the FPGA chip alongside the traditional FPGA

fabric. For example, the AMD-Xilinx Zynq-7000 SoC contains a dual-core Arm Cortex-A9

processor block that can be interfaced to the FPGA fabric using AXI connections [23].

3.3.8 Other Components

In addition to the main components listed above, modern FPGAs can contain other hard-

ware peripherals such as media codecs, network controllers, external memory controllers

(e.g. DDR4 and HBM), high-performance ADCs and DACs. However, the existence of

these components is highly variable, depending on the FPGA platform. A detailed de-

scription of these components is beyond the scope of this thesis and therefore they will

not be covered in detail.

3.4 FPGA and ASIC Comparison

3.4.1 Technologies

The mainstream approach that is used to perform the physical design of SoCs is called

semi-custom design. Within this approach, the cells of a standard cell library are used

to construct the logic of the design. The cells within the library are composed of logic

gates, flip-flops, latches, IO pads, clocking components, SRAM memory cells and other

components [23]. During the physical design stages of an ASIC, the cells which make up

the design can be freely placed and connected. This freedom can be used to optimise

the design implementation in a way that isn’t possible within the fixed programmable logic

contained within an FPGA (see Section 3.3). Furthermore, the semi-custom approach

enables the construction of complex clock and reset tree structures, fine-grained power

management logic and memory customisations within ASICs which are not feasible within

modern FPGAs due to the fixed nature of the underlying hardware. The result of this is

that a typical semi-custom ASIC can achieve a clock frequency which 3-15 times faster,

with a 50% reduction in area when comparing to an equivalent FPGA implementation

[23].

While the achievable performance of an ASIC is higher than that of an FPGA, the devel-

13

opment costs and time associated with an ASIC solution are significantly higher than an

FPGA implementation. This can be mainly attributed to the high NRE cost that must be

paid to develop the mask set which is used to fabricate the ASIC. In contrast, the NRE

cost for FPGA development is essentially zero as the programming of the design onto the

platform is a straightforward activity [23].

3.4.2 Development Flows

The development flow is a term used to describe the progressive stages of development

which must be completed to progress from an FPGA or ASIC design specification to a fully

functioning and tested end-product. ASICs and FPGAs share the same high-level steps

to create a design from RTL, but significant practical differences need to be considered in

the development of each.

The general development flow for an FPGA can be seen in Figure 3.5. Most of the tasks

in the flow are completed using the same tool, typically provided by the same vendor that

produces the FPGA.

In contrast, the equivalent flow for a modern ASIC can be seen in Figure 3.6. The main

difference can be seen in the number of discrete steps required for verification and phys-

ical design, mainly because the FPGA is already fabricated and therefore does not need

to be verified to such a high standard before the design is released. Additionally, it can be

seen that the ASIC flow is separated into front-end and back-end stages. The transition

between the front-end and back-end stages occurs over the logic synthesis stage, with

the front-end only containing activities independent of the selected fabrication technology

or ASIC chip instance [23].

3.5 Related Work

Within [33], the implementation of a single-board FPGA prototype (described within 3.2.1)

for the LEON3 SoC is presented. In the final prototype, the entire SoC is implemented

using a single Xilinx XC3S1500 FPGA that is mounted on a PCB. The PCB is shared with

several peripherals connected to the FPGA pins, enabling the testing of the prototype

SoC peripherals using representative hardware. The prototype verification methodology

of the SoC is presented and shows that the individual prototype subsystem IPs from

the SoC were initially verified as standalone designs. Once this was complete, the IPs

were integrated, and the entire SoC prototype verification was performed. The details of

how the ASIC-specific components, such as IO pads, PLLs and SRAMs, were modified

to allow FPGA synthesis are provided. Once the SoC prototype was available, it was

possible to perform HW/SW co-design with ease, as the platform was able to run a Linux-

based operating system.

14

RTL files

Synthesis

Netlist Delay File

Testbench

RTL
Simulation

Post-Synth
SimulationPlace & Route

Delay FileBitstream

Post-Route
Simulation

Program
Device

Design
Constraints

Figure 3.5. Typical FPGA Development Flow

An example of a large SoC implemented using multiple FPGAs (described within 3.2.2)

can be found in [21]. The focus of the work is the creation of a high-bandwidth, low-

latency, scalable interconnect which can be easily re-purposed for other designs requiring

multi-FPGAs prototyping platforms. The SoC design is logically partitioned, and each

partition is placed onto physically separated FPGAs. In addition to the DUT, logic is

added that performs the routing and switching of data flowing in and out of the local

FPGA design via a custom bridge. The routing and switching logic is designed to allow

the FPGAs to communicate in direct link or routed mode, resulting in a topology-agnostic

architecture. Furthermore, transparent error checking and an error correcting protocol

are implemented to remove the bit-errors expected when utilising high-speed interfaces.

The additional logic connects the DUT and the high-speed transceivers on the selected

FPGA platforms. The external pins of the transceivers are connected using SATA cables.

The work claims that using this generic interconnect, adapting a single vector processing

system design from a single FPGA configuration to a 16 FPGA configuration took only a

15

Synthesis
(Logic + DFT)

RTL Files

LEC

STA

Tech. Cell Lib.

SDC

Netlist

SDF

Post-Synth,
GLS

Testbench

RTL
Simulation

Floor Planning

Placement

CTS

Routing

P&R
Netlist

SDCSTA

ATPG Vector
Generation

Post-Layout,
GLS

SDF

DRV Check

LVS Check

Fabrication

GDSII

LEC

Figure 3.6. Typical ASIC Development Flow

single day of effort [21].

As described within 3.2.2, the partitioning of designs onto multiple FPGA prototyping

configurations can be highly complex. This complexity can lead to delays and uncertainty

in project schedules and create the need for experienced engineers to perform the task.

[52] looks at solving the complexity associated with partitioning and mapping a single SoC

onto a multi-FPGA configuration by applying deep learning methods to reduce the time

to market. The work redefines the process of partitioning and mapping as a high-level

task: group the SoC IPs into clusters that do not require more resources than are avail-

able on each FPGA and then ensure that the number of signals between the IP clusters

is minimised. A graph convolutional network (GCN) is used to generate the FPGA-level

clusters as they are proven effective for learning rich representations of nodes and edges

in a graph [52]. The SoC IPs can be represented as nodes, and the connections between

them can be described as edges of a graph, making a GCN suited for this task. Addi-

16

tionally, the FPGA logic resource constraints are fed into the constraining of the clusters.

Once this is complete, a constrained greedy approach is used to map the DUT to a multi-

FPGA platform and the clusters with the most connections between them are placed close

together. This approach was applied to map three different SoCs containing 100-150 IPs.

In parallel, the same mapping task was also completed manually to act as a control. The

results show that the automated partitioning and mapping process performed the map-

ping more efficiently than the manual attempt for each SoC, with an estimated saving of

one month of engineering effort [52].

Compared to simulation-based functional verification of hardware, measuring the func-

tional coverage achieved when using FPGA prototyping to verify a design is complex.

[38] looks at implementing a synthesisable active agent and coverage collecting compo-

nent, which can be integrated into an FPGA prototype to improve input stimuli quality and

perform test coverage calculations.

The work focuses on the hardware implementation of a USB3.0 IP core, which is to be

verified using an FPGA prototype. The prototyped IP core is driven using an external

USB3.0 host device and the output of the IP core is captured using a CPU core, which

is embedded within the FPGA prototyping platform and connected via an AXI interface.

In this configuration, it is impossible to gain functionality coverage within the USB3.0

link layer, such as the Link Training and Status State Machine (LTSSM), as properties

such as signal timing cannot be configured on the driving external USB3.0 host. This

work implements an active agent component between the DUT and the external USB3.0

host, which can be configured to set the signal timing of the link layer and therefore,

freely control the stimuli. The embedded CPU which collects the DUT output data is also

connected to the active agent to configure the timing parameters. A coverage collector

application is executed on the CPU, creating a closed-loop system that can then be used

to thoroughly test the time-sensitive aspects of the link layer and report on the coverage

achieved. The active agent is designed to minimise resource consumption on the FPGA

and the resulting design utilised 13% of LUTs and 6% of the registers when compared to

the DUT [38].

17

4. BALLAST DEVELOPMENT AND ARCHITECTURE

4.1 SoC Hub

SoC-Hub is a research ecosystem created by Tampere University to bring together stake-

holders from academia and industry in Finland to boost research and education in the

field of SoC design. One of the targets of SoC-Hub is to produce SoCs at a cadence of

one each year. Ballast is the name of the first SoC that was developed as a part of this

initiative [43].

4.2 Ballast Architecture

Ballast is an edge-capable, heterogeneous MPSoC which has been taped out on 22nm

technology and has a maximum frequency of 1.2GHz. There are seven subsystems

contained within the SoC, namely:

• System Control (SysCtrl) subsystem,

• High Performance CPU (HPC) subsystem,

• Medium Performance CPU (MPC) subsystem,

• Chip-to-Chip (C2C) subsystem,

• Artificial Intelligence (AI) subsystem,

• Ethernet (ETH) subsystem,

• Digital Signal Processing (DSP) subsystem [43].

There is also a top-level interconnect which consists of three AMBA AXI4 [34] crossbar

components, connected in a cascaded bus matrix topology [22], as shown within Figure

4.1.

4.3 Development Methodology

The SoC is designed using a GALS architecture so that each subsystem was intended

to operate within its own clock domain. To help ensure that the development of the SoC

was as efficient as possible, each subsystem (and the interconnect) used the same top-

18

Ballast SoC

AI Subsystem
(AI)

Ethernet
Subsystem

(ETH)

Digital Signal
Processing
Subsystem

(DSP)

Interconnect
(ICN)

High
Performance

Low
Performance

Configuration

High
Performance
Computing
Subsystem

(HPC)

Medium
Performance
Computing
Subsystem

(MPC)

System Control
Subsystem
(SysCtrl)

Chip-to-Chip
Subsystem

(C2C)

external
periphs.

external
periphs.

PHY

PHY

Figure 4.1. Ballast High-Level Architecture

level architecture template. This template contained generic definitions for the AXI CDC

interface(s), control/status signal synchronisers and clock/reset controls (see Figure 4.2.

It enabled the use of a hierarchical ASIC design flow, allowing for concurrent development

of subsystems and reduced complexity of the design environment [43].

In addition, the use of this template provided a functional partition between subsystems

and allowed each subsystem to be developed/tested in isolation from the other subsys-

tems on the chip.

4.4 Verification Strategy

Hierarchical verification was the primary strategy employed during the development of

Ballast. Each subsystem was independently verified as a separate entity using the most

appropriate verification methodologies. Once verified as a standalone, the subsystem

was then integrated into the top-level design and integration testing was performed [43].

The verification methodologies applied at the subsystem level included basic functional

19

Subsystem

IP

AXI Slave
CDC Bridge

AXI Master
CDC Bridge

Scalar Signals
CDC

Clock + Reset
Controls PLL

clock reset

AXIAXI
Scalar
Inputs

External
Clock + Reset

Scalar
Outputs

Figure 4.2. Ballast Subsystem Template

testbenches, UVM, HW/SW co-simulation and FPGA prototyping. This work focuses on

FPGA prototyping; therefore, only this will be covered in detail.

4.4.1 Functional Coverage

When performing functional verification of a design, one must have access to a metric

which has a direct relationship to the functionality of the design to determine at which

point the design has been sufficiently tested. To define such a metric, a fault model of

the design is created that is described at the functional level and is independent of the

implementation details [37]. A fault analysis was performed during the planning stages

of the Ballast SoC and was used as an input during the generation of the verification

planning artefacts. The details of the verification plan creation and its contents outside of

the FPGA prototyping testing objectives are beyond the scope of this thesis.

4.4.2 FPGA Prototyping

The Ballast FPGA prototyping objectives were dictated by the Ballast verification planning

activities as follows:

1. Create an extensible and re-usable build flow which can be applied across the FPGA

prototyping configurations required by Ballast,

2. Validate the SoC boot design,

3. Validate the SoC debugging architecture,

4. Validate SoC peripheral functionality through the use of real components,

5. Provide a platform for development of the SoC BSP and tools used for the SoC wake-up

20

activities.

6. Validate the functionality of the asynchronous C2C interface.

4.5 Subsystems of Interest

Ideally, creating an FPGA prototype of the entire Ballast SoC would be possible. However,

this is not feasible due to hardware resource constraints on modern FPGAs. Different ap-

proaches can be taken to partition the SoC into smaller modules, which can then be

individually prototyped on separate platforms. For example, [46] outlines an approach

that uses the resources required to implement each module of the SoC on an FPGA and

implements an algorithm that partitions the design into sections that can be implemented

on a pre-defined FPGA platform. Due to project constraints, a more conservative ap-

proach was taken in the design partitioning of Ballast. Rather than aiming to prototype

the entire SoC, it was found that to meet the FPGA prototyping objectives, only a subset

of the subsystems and functionality of Ballast needed to be implemented on the same

FPGA. Each subset (a prototype configuration) is described in more detail in Section 5.1.

As the selected prototype configurations only contain a fraction of the total subsystems

on Ballast, only the subsystems relevant to the Ballast SoC prototyping configurations are

described in detail here. It is possible that for some subsystems, FPGA prototyping was

completed when developing the subsystem IPs. However, a prototype was not created as

a part of the Ballast SoC development and integration activities. For example, the DSP

subsystem was an IP developed independently of the SoCHub project and subsequently

integrated into the Ballast SoC. It is known that FPGA prototyping of this subsystem was

performed, but this was independent of the development of the Ballast SoC and is there-

fore not covered within this thesis.

4.5.1 SysCtrl

The System Control (SysCtrl) subsystem is adapted from the Pulpissimo SoC [45], ini-

tially developed by the University of Bologna. The SoC contains a collection of peripherals

which are standard in contemporary microcontrollers (e.g. UART, SPI, timers, etc.), ac-

cessed using a low-power uDMA [42]. SysCtrl utilises the zero-RISCY variant of the

RISC-V core, which is a minimal, 32-bit, 2-stage, in-order core; it implements the ’I’, ’M’

and ’C’ extensions of the RISC-V ISA [53][17].

The primary purposes of the SysCtrl subsystem are to manage the boot sequence of the

Ballast SoC, to control the clock/reset inputs to the other subsystems and to configure

the SoC. Full details of the boot control can be found within [39]. The subsystem is not

designed to be computationally powerful and, therefore, is not a main target for running

application code. However, it contains several peripherals, which make it suitable to per-

21

SysCtrl

uDMA
Pa

d
Fr

am
e

UART

SPI

ICN

RAM

Debug
AXI

ROM

SDIO

GPIO

RISC-V Ibex CPU

IRQ Control

Clk Control

Pad Control

Timer

Peripheral I/O

Pa
d

M
ux

Subsystem Control

Figure 4.3. High-level View of SysCtrl Architecture

form supporting tasks such as acting as a system monitor for waking up from a low power

state.

The following modifications were made to the Pulpissimo IP to create the SysCtrl subsys-

tem:

• To enable a resilient boot process, the SDIO peripheral was removed from the

uDMA subsystem and refactored to be accessed via the main system bus.

• Removal of unnecessary peripherals such as I2C, I2S and the parallel camera in-

terface.

• Removal of the internal FLL and associated internal clock generators, as the clock

signals of SysCtrl are generated by an external reference clock.

• Addition of external interrupt sources to enable IPC.

• Modifications to memory layout and reduction of ROM/RAM memory size.

A high-level view of the SysCtrl subsystem architecture can be seen in Figure 4.3.

4.5.2 MPC

Similar to SysCtrl, the MPC subsystem of Ballast is also created from a modified version

of the Pulpissimo SoC. However, rather than using the low-power zero-RISCY variant,

MPC utilises the RISCY core. The RISCY core is a 32-bit, in-order, 4-stage RISC-V core

with the ’I’ and ’M’ extensions implemented. It has been further extended to increase

performance and can be used within DSP and edge applications.

22

MPC

uDMA

Pa
d

Fr
am

e UART

SPI

ICN

RAMDebug

AXI

GPIO

RISC-V RISCY CPU

IRQ Control

Clk Control

Pad Control

Timer

Peripheral I/O

Pa
d

M
ux

I2C

CPI

I2S

Figure 4.4. High-level View of MPC Architecture

The following modifications were made to the Pulpissimo IP to create the MPC subsys-

tem:

• Removal of unnecessary peripherals such as SDIO as this is provided by SysCtrl.

• Removal of the internal FLL and associated internal clock generators, as the clock

signals of SysCtrl are generated by an external reference clock.

• Addition of external interrupt sources to enable IPC.

• Removal of ROM.

A high-level view of the MPC subsystem architecture can be seen in Figure 4.4.

4.5.3 HPC

The HPC subsystem is designed for to handle computationally intensive applications on

Ballast. It is implemented using two CVA6 RISC-V cores. The CVA6 is a 64-bit, single-

issue, in-order RISC-V core which implements the ’I’, ’M’, ’A’ and ’C’ extensions. Addition-

ally, it has Machine, User and Supervisor privilege levels implemented [54]. Furthermore,

the CVA6 provides complete hardware support for MMU translation. These features en-

able the CVA6 to operate as an application class core and provide the infrastructure

required to run popular operating systems such as Linux [58].

As well as two CVA6 cores, the HPC subsystem implements a 32kB 8-way L1 cache

per core and a 256kB 8-way L2 cache, which is coherently shared between the cores.

23

HPC

RISC-V CVA6 RISC-V CVA6

L1 $ L1 $

L2 Subsystem

L2 $

ICN

Timer CLINT PLIC BootRAM Cfg

AXI

AXIDebug
Peripheral I/O

Figure 4.5. High-level View of HPC Architecture

Moreover, HPC includes an interrupt controller and timer peripherals.

A high-level view of the HPC subsystem architecture can be seen in Figure 4.5.

4.5.4 C2C

The C2C subsystem allows Ballast to be functionally extended by exposing a bidirec-

tional physical interface. The interface implementation performs data transfer at a higher

frequency than conventional serial communications protocols (e.g. SPI or I2C) without

significantly increasing the pin count of the chip as would happen when using a paral-

lel interface. The C2C interface enables efficient communications between Ballast and

off-chip memories, sensors or another instance of Ballast.

The subsystem is connected to the Ballast interconnect via an AXI interface. It takes

AXI transactions from the interconnect, converts them to an asynchronous serial protocol

and then transmits them off-chip. Similarly, it receives serial data asynchronously over the

external interface and converts it to an AXI transaction, which is then sent over the Ballast

interconnect. Data synchronisation between the external interface and the interconnect is

performed using asynchronous FIFOs and handshaking over the physical interface. With

a clock frequency of 200MHz, a uni-directional bandwidth of 3.2Gbps can be achieved

24

C2C

Transmitter

Receiver

AXI
Subordinate

Packet
ConverterSerialiser

TX

RX

TX

RX

Serialiser Packet
Converter

AXI4
Manager

AXI

AXI

RX PHY

TX PHY

RX PHY

TX PHY

Figure 4.6. High-level View of C2C Architecture

[43]. A high-level view of the HPC subsystem architecture can be seen in Figure 4.6.

4.6 Debugging Architecture

4.6.1 JTAG

As integrated circuits became more complex and SMD components became more preva-

lent in solutions, it became more challenging for engineers to test the ICs by directly

probing pins: JTAG was developed in 1985 as a solution to this problem. JTAG defines

that a small number of pins and testing infrastructure are to be added to the design of

each IC in a solution (see Figure 4.7. The pins of each IC can then be connected and

presented to the user as a single JTAG port [14].

The JTAG standard defines a protocol which can be used to control the testing infrastruc-

ture (JTAG TAP) on each IC. The protocol controls a state machine that can store/load

data to/from the IC [49]. With a few basic instructions, it is possible to control/monitor the

IC functionality or perform boundary scan tests to verify the integrity of the circuits imple-

mented on the chip. Additionally, the scope of how JTAG can be used has expanded to

include more advanced functions, such as programming FPGA bitstreams into devices

and integrating with external logic analysers to present the internal operations of an IC

onto a display [14].

Alternatives to JTAG have been developed such as cJTAG and SWD with the goal of

reducing the pin-count and area of the testing/debugging infrastructure.

4.6.2 Debug and Trace

With the complexity of modern SoCs, it is of utmost importance that mechanisms are pro-

vided to allow engineers to understand software behaviour and quickly identify software

25

Device 1

nTRST

nTRST

TCK

TMS

TDITDI

TDO

TCK

TMS Device 2

TDO TDI

nTRST

TCK

TMS Device 3

TDI

nTRST

TCK

TMS

TDO TDO

Figure 4.7. Example of Daisy-Chained JTAG Bus for Test/Debug of Three Devices

issues. Exactly how this is achieved can vary from chip to chip. However, the imple-

mentations generally aim to provide either debug capabilities, trace capabilities or some

combination of both.

Debug capabilities typically include:

• Controlling execution of a core to enable the pausing of execution and stepping

through the instruction execution.

• Accessing core registers.

• Performing reads/writes either directly from the debug infrastructure or using a se-

lected core to perform the operation.

• Setting/clearing watchpoints/breakpoints within the code such that system events

can be generated when particular conditions are met.

When debugging some code of interest on an SoC, manipulating the execution state can

cause undesired secondary effects in the system’s state. Therefore, it can become difficult

to replicate an issue using debug capabilities alone. Trace capabilities complement this

by allowing the user to stream configurable data or events to a dedicated memory or IO

port. This data can be extracted and reviewed externally to allow the user to analyse the

core or system behaviour without interfering with the execution [23].

4.6.3 OpenOCD

OpenOCD is an open-source software project which can be used to debug an application

on a remote device. OpenOCD runs as a server and can be targeted by the GDB and can

then communicate to a hardware debugging interface to send commands to a remote chip

using a protocol such as JTAG or SWD. It supports the debugging of multiple platforms

and can be configured to allow the debugging of multiple cores within a heterogeneous

26

Table 4.1. Debug modules contained within Ballast and their compliance with the RISC-V
Debug Specification.

Subsystem Debug Module Specification Version

SysCtrl PULP Debug Module Not Compliant
RISC-V Debug Module v0.13.1

MPC PULP Debug Module Not Compliant
RISC-V Debug Module v0.13.1

HPC RISC-V Debug Module v0.13.1

SoC [41].

4.6.4 Ballast Debugging

The Ballast SoC is designed with the capability to debug the subsystems containing CPU

cores and use these cores to debug the remaining systems on the chip indirectly. No

trace capability is included to minimise the design complexity. Each of the HPC, MPC

and SysCtrl subsystems is implemented with a RISC-V debug module and JTAG TAP.

In addition, the SysCtrl and MPC subsystem also contain a custom implementation of a

debug module, which was used by the PULP project for internal testing.

The RISC-V debug module specification has not yet been formally ratified and is in a draft

state. As a result, the specification is updated frequently. Each of the HPC, MPC and

SysCtrl IPs were initially forked from separate existing project repositories. The reposito-

ries for each subsystem used implementations of the RISC-V debug module, which are

aligned to version v0.13.1 of the draft specification. The versions used by each subsystem

can be found in Table 4.1.

Version 0.13.1 of the RISC-V Debug Specification the RISC-V module can be found in

[20]. A sample of the most relevant supported features are:

• RISC-V hart registers can be read/written.

• Ability to debug all harts in the hardware platform.

• Each hart can be debugged from first instruction execution.

• Memory access from the system bus or hart.

• Breakpoint support.

• Hardware single-step can execute one instruction at a time.

The Ballast SoC has a single set of JTAG ports on the top level. As is typical in modern

SoC architectures, these ports for the JTAG bus and the JTAG TAP of each subsystem

with debug capabilities are connected to this bus, as can be seen in Figure 4.8.

27

Ballast SoC

AI

ETH

DSP
ICN

High
Performance

Low
Performance

Configuration

C2C

Ballast SoC

HPC

MPC

SysCtrl

TDO
JTAG

TDI

DBG

DBG

DBG

Figure 4.8. Ballast JTAG Bus Connections

28

5. FPGA PROTOTYPE IMPLEMENTATION

5.1 Prototype Configurations

The objectives for the Ballast FPGA prototyping were outlined within Section 4.4.2. The

list below re-states the objectives as requirements and describes the FPGA prototype

configurations that were suitable to satisfy them.

1. Validate the SoC boot design:

Ballast boot is controlled by the SysCtrl subsystem. It utilises the JTAG, SDIO and

QSPI peripherals. An FPGA prototype containing at least the SysCtrl subsystem with

those interfaces exposed externally is required to verify the boot design.

2. Validate the debugging architecture:

As Section 4.6.4 mentions, the Ballast debugging infrastructure is connected to the

SysCtrl, MPC and HPC subsystems. An FPGA prototype containing these subsystems

and the debugging infrastructure is required to test the chip debugging capabilities.

3. Validate peripheral functionality through the use of real components:

Both SysCtrl and MPC are the designated subsystems to perform operations with pe-

ripherals. An FPGA prototype of at least the SysCtrl and MPC subsystems (together or

standalone) with exposed peripheral IO pins is required to achieve this objective.

4. Provide a platform for development of the SoC BSP and tools used for the SoC wake-up

activities:

The main focus of the software development plan for Ballast was using the RISC-V

cores to develop a Rust-based HAL. Therefore, FPGA prototypes of the HPC, MPC

and SysCtrl subsystems were a priority for this. These could be in a standalone or

combined platform.

5. Validate the functionality of the asynchronous C2C interface:

As mentioned in Section 4.5.4, the C2C subsystem is designed to be used as an asyn-

chronous interface. Therefore, to fully validate this aspect of the design, a prototype

configuration of two connected C2C subsystems would need to be created. Each sub-

system would use a clock which is asynchronous to each other.

29

The image in Figure 5.1 illustrates how the Ballast architecture was partitioned for proto-

typing. Each partition is labelled with the ID of the requirement it aimed to satisfy. Some

requirements are partially satisfied by multiple partitions. The remaining subsystems were

not included within the scope of SoCHub FPGA prototyping due to them already being

prototyped independently of the SoCHub project.

AI Subsystem
(AI)

Ethernet
Subsystem

(ETH)

Digital Signal
Processing
Subsystem

(DSP)

Ballast SoC

Interconnect
(ICN)

High
Performance

Low
Performance

Configuration

High
Performance
Computing
Subsystem

(HPC)

Medium
Performance
Computing
Subsystem

(MPC)

System Control
Subsystem
(SysCtrl)

Chip-to-Chip
Subsystem

(C2C)

C2C Partition
(5)

HPC Partition
(4)

MPC Partition
(3, 4)

SysCtrl Partition
(1, 3, 4)

To
p

Le
ve

l P
ar

tit
io

n
(2

)

Figure 5.1. Partitioning of Ballast Architecture for Prototyping

5.2 Platform Hardware Selection

The primary characteristics that were considered when selecting a platform for prototyp-

ing were the size of the FPGA fabric, functional features offered by the FPGA and number

of available IO pins. This led to the selection of three platforms which are described in the

following sections.

30

Figure 5.2. Digilent Pynq-Z1 Development Board [19]

5.2.1 Digilent PYNQ-Z1

The PYNQ-Z1 (Figure 5.2) is an FPGA development board supplied by Digilent, which is

designed to be used with the PYNQ project, an open-source project from AMD, to make it

easier to develop adaptive computing platforms by using Python to develop programmable

logic for selected AMD platforms [1].

The board itself houses an AMD Zynq (XC7Z020-1CLG400C) SoC, which contains a

dual-core Arm Cortex-A9 processor, a DDR3 memory controller, high-bandwidth periph-

eral controllers, low-bandwidth peripheral controllers, with Artix-7 programmable logic

having the resources shown in Table 5.1[19]. The PYNQ-Z1 board exposes 49 external

IOs, making it an appropriate choice for implementing smaller designs with many external

peripherals.

5.2.2 AMD Zynq UltraScale+ MPSoC ZCU104

The ZCU104 (Figure 5.3) is an evaluation kit supplied by AMD-Xilinx targeted for use

in embedded vision applications. It houses a Zynq Ultrascale+ (XCZU7EV-2FFVC1156)

MPSoC, which contains a quad-core Arm Cortex-A53 APU, a dual-core Cortex-R5 real-

time processor, GPU, video codec, DDR4 memory controller, a rich set of both high-

bandwidth peripheral controllers and low-bandwidth peripheral controllers, with Ultrascale

programmable logic containing the resources shown in Table 5.1[3]. The ZCU104 board

exposes three PMOD interfaces and an LPC FMC socket, making it an appropriate choice

to implement medium-sized designs with a small number of external peripherals.

5.2.3 AMD Virtex UltraScale+ FPGA VCU118

The VCU118 (Figure 5.4) is an evaluation kit supplied by AMD-Xilinx targeted for high-

performance FPGA designs. It houses a VCU118 XCVU9P-L2FLGA2104E FPGA, which

31

Figure 5.3. AMD-Xilinx ZCU104 Development Board [3]

Figure 5.4. AMD-Xilinx VCU118 Development Board [2]

contains a DDR4 memory controller, a selection of high-bandwidth peripheral controllers,

with a Virtex Ultrascale programmable logic having resources shown within 5.1[2]. The

VCU118 board exposes 2 PMOD connectors and 2 HPC FMC sockets, making it an

appropriate choice for large, high-performance designs with few external peripherals.

Table 5.1. Comparison of Programmable Logic Resources In Selected Platforms

Resources PYNQ-Z1 [19] ZCU104 [3] VCU118 [2]

Logic Cells 13.3k 504.0k 2,586.0k

Memory (Mb) 5.04 38.0 345.9

DSP Slices 220 1,728 6,840

5.2.4 Prototype Configuration to Platform Mapping

Using the platform information and configuration requirements detailed within the previous

sections, Table 5.2 indicates a suitable mapping between the prototype configurations and

the selected hardware platforms.

32

Table 5.2. Mapping of Prototype Configuration Against the Most Suitable Hardware Plat-
forms

Configuration Design Size IO Count Platform

SysCtrl Small High PYNQ-Z1

MPC Small High PYNQ-Z1

HPC Medium Low ZCU104/VCU118

C2C Medium Low ZCU104/VCU118

Top Level Large Low VCU118

5.3 Prototype Build Flow Development

5.3.1 GNU Make

GNU Make is an easy to use, but powerful build tool which allows Users to define com-

mands (referred to as Make targets), which can then be used to perform complex com-

mand sequences and generate output artefacts [32]. It is traditionally used to construct

C/C++ software projects but can also be used in hardware to drive tools.

5.3.2 TCL

TCL is a general-purpose interpreted scripting language which is commonly used to drive

the operation of modern IC development tools. It was developed in the late 1980s to

attempt to unify the various command line tools used to drive the various IC development

tools that existed at the time. It was designed to be easily extensible so that on top of the

base language, each vendor could extend and add custom functions which could be used

to drive their tool efficiently [40].

5.3.3 Vivado IDE

As AMD-Xilinx FPGA platforms were selected for prototyping, the AMD-Xilinx Vivado IDE

was used to develop the prototypes. The Vivado IDE can be operated using a GUI or

driven using TCL [11]. Version 2019.2 was chosen to maintain compatibility with the

example FPGA flows by the open-source IP used within Ballast.

5.3.4 Synthesis Flow

As described in Section 3.4.2, the synthesis flow for FPGA designs contains multiple

artefacts and stages. There was a desire to develop a flow for the Ballast prototyping

aligned with the ASIC RTL simulation flow. An aligned flow would ensure that users

33

who are familiar with the existing RTL simulation flow, but might be unfamiliar with FPGA

development would be able to quickly generate a bitstream for running tests on FPGA

without any need to modify their environment or use unfamiliar tools.

The entry point for building and simulating the Ballast RTL was a top-level Makefile con-

taining multiple targets. The general approach to align the FPGA build process with the

existing RTL simulation process was to create a top-level Makefile within a sub-directory

dedicated to the FPGA build. The Makefile contained targets to fully build a prototype

configuration, build selected IPs for a specific prototype configuration, or clean the en-

vironment of all files generated during the build process. Once the main build target is

called, the build completes the FPGA build efficiently and returns to the entry point. The

specific prototype configuration and target platform are selected through variables as-

signed when calling the target (FPGA_CONF and FPGA_BRD, respectively). The static

configuration data for each FPGA prototype is stored within separate files, which are in-

cluded depending on the value of the FPGA_CONF and FPGA_BRD variables. Listing

5.1 shows an example of how the build process for the HPC prototype configuration on

the ZCU104 platform could be initiated:

Listing 5.1. Example call of FPGA build

make a l l FPGA_CONF=HPC FPGA_BRD=ZCU104

An abstract illustration of how the FPGA build flow operates can be seen in Figure 5.5.

34

FP
G

A
co

nf
.m

k
FP

G
A

co
nf

.m
k

To
p

le
ve

l M
ak

ef
ile

va
ria

bl
es

:
f
p
g
a
_
b
o
a
r
d

=

z
c
u
1
0
4

f
p
g
a
_
c
o
n
f
i
g
=

B
O
O
T
_
V
A
L
I
D
A
T
I
O
N

re
ci

pe
s:

f
p
g
a
_
s
y
n
t
h
:

$
(
M
A
K
E
)

-
C

$
(
f
p
g
a
_
c
o
n
f
i
g
)
_
s
y
n
t
h

f
p
g
a
_
b
i
t
_
g
e
n
:

$
(
M
A
K
E
)

-
C

$
(
f
p
g
a
_
c
o
n
f
i
g
)
_
b
i
t

FP
G

A
gl

ob
al

 M
ak

ef
ile

FP
G

A
co

nf
.m

k

in
cl

ud
es

:
i
n
c
l
u
d
e

$
(
f
p
g
a
_
b
o
a
r
d
)
_
c
o
n
f
.
m
k

FP
G

A
sp

ec
ifi

c
va

ria
bl

es
 to

 b
e

us
ed

 w
ith

in
 s

yn
th

es
is

 e
.g

. b
oa

rd
nu

m
be

r,
pa

rt
nu

m
be

r,
cl

k
fre

qu
en

cy
...

de
si

gn
 s

yn
th

 re
ci

pe
s:

B
O
O
T
_
V
A
L
I
D
A
T
I
O
N
_
s
y
n
t
h
:

<
I
P
s
>

v
i
v
a
d
o

-
m
o
d
e

b
a
t
c
h
.
.
.

<
f
p
g
a
_
c
o
n
f
i
g
_
2
>
_
s
y
n
t
h
:

<
I
P
s
>

v
i
v
a
d
o

-
m
o
d
e

b
a
t
c
h
.
.
.

<
f
p
g
a
_
c
o
n
f
i
g
_
3
>
_
s
y
n
t
h
:

<
I
P
s
>

v
i
v
a
d
o

-
m
o
d
e

b
a
t
c
h
.
.
.

1.2.

IP
 re

ci
pe

s:
I
P
_
c
l
k
_
1
_
o
u
t
p
u
t
:

v
i
v
a
d
o

-
m
o
d
e

b
a
t
c
h
.
.
.

I
P
_
c
l
k
_
2
_
o
u
t
p
u
t
:

v
i
v
a
d
o

-
m
o
d
e

b
a
t
c
h
.
.
.

D
es

ig
n

Sy
nt

h.
tc

l

El
ab

or
at

e
Sy

nt
he

si
s

Pl
ac

e
an

d
ro

ut
e

G
en

er
at

e
Bi

ts
tre

am
Pr

od
uc

e
R

ep
or

ts

FP
G

A
co

ns
t.x

dc

C
on

st
ra

in
ts

 fo
r F

P
G

A
, p

in
as

si
gn

m
en

ts
 m

ay
 v

ar
y

de
pe

nd
in

g
on

t h
e

co
nf

ig
ur

at
io

n
ch

os
en

IP
 S

yn
th

.tc
l

Sy
nt

he
si

s
Pr

od
uc

e
R

ep
or

ts

fil
es

et
s

D
es

ig
n

so
ur

ce
 fi

le
s,

 in
cl

ud
es

et
c.

..

Fi
gu

re
5.

5.
FP

G
A

B
ui

ld
Fl

ow
us

ed
fo

rS
oC

H
ub

P
ro

to
ty

pi
ng

35

5.4 General FPGA Prototype Implementation Strategies

Modifications to the ASIC design were required to implement the FPGA prototype config-

urations. As described within [24], the focus of this exercise was not to completely rewrite

the design as this would contradict the aim of using the same sources for ASIC and FPGA

prototype, but to optimise critical design parts either for performance or resource utilisa-

tion. The scope of this section is limited to prototype implementation modifications applied

to all of the prototyping configurations in Ballast. Subsystem-specific considerations can

be found in Sections 5.5 to 5.8.

5.4.1 RTL Partitioning

When prototyping a portion of a complex SoC, it is necessary to ensure a suitable partition

is drawn between the parts of the design required for functional testing of the target design

and the rest of the SoC design. The process of functionally partitioning the SoC into

prototyping configurations is outlined in Section 4.5. This section describes the common

low-level approach to partition each prototyping configuration from the rest of the SoC.

Each subsystem of Ballast was initially developed as a standalone IP. The IP was then

integrated into a wrapper component, which contained components and interfaces com-

mon to each subsystem on the SoC. This wrapper component was then instantiated on

the SoC top level and connected to the other subsystems on the SoC. For the FPGA pro-

totyping of the individual subsystems, the wrapper component is replaced with an FPGA

wrapper equivalent, which removes the unwanted ports to the rest of the SoC and con-

tains required FPGA-specific components (see Figure 5.6).

For example, the SysCtrl wrapper module port definition includes ports for the AXI4 in-

terface, clock controls, PLL configuration and peripheral IO signals. The SysCtrl FPGA

wrapper module removed the AXI4 interface, clock controls and PLL configuration. It

should be noted that some of the external signals removed from the original wrapper are

inputs to the SysCtrl IP. These signals were driven by constant values within the wrapper

to prevent build issues or bugs in the FPGA design. In addition to the port modifications,

the SysCtrl wrapper module contained CDC logic for the signals travelling between clock

domains on the SoC. As described within Section 5.4.2, to simplify the prototyping design,

each design was implemented within a single clock domain. Therefore, the CDC compo-

nents within the wrapper were removed. Furthermore, to control the clock generation in

the FPGA design, a clock management IP was instantiated in the FPGA wrapper, which

replaced the PLL component contained within the original wrapper.

36

FPGA Subsystem Wrapper

IP
clock reset

External
Reset

Clock
Manager

External
Clock

Scalar Signals

constants

Scalar
Inputs

SoC Subsystem Wrapper

IP

AXI Slave
CDC Bridge

AXI Master
CDC Bridge

Scalar Signals
CDC

Clock + Reset
Controls PLL

clock reset

AXIAXI
Scalar
Inputs

External
Clock + Reset

Scalar
Outputs

Scalar
Outputs

Figure 5.6. Comparison of Top-Level Wrapper Used for ASIC and FPGA Prototyping

5.4.2 Input Clock Architecture

The Ballast SoC was designed to allow most IPs to operate at configurable clock fre-

quencies by including a PLL IP and clock selection logic components within the wrapper

of each subsystem. It is impossible to synthesise the PLL IP used within each wrapper

for FPGA, as it is implemented using mixed-signal components not present in the FPGA

platforms. Additionally, as the FPGA platform uses different technologies to implement

the logic compared to the ASIC, there is no way to gain useful timing information from

the prototype. Therefore, a decision was made to make the clock tree in the prototype as

simple as possible. As a result, clock selection logic was not included within the FPGA

wrapper, leaving the design to be fed from a single clock.

While the clocking inputs to the design were simplified for prototyping, having control

over the clock configuration is still valuable. As mentioned previously, the technology

used to implement the design on FPGA significantly differs from the technology used to

implement the ASIC design. As a result, achieving the targeted high clock frequencies

of the ASIC design is often impossible. Therefore, clock management components need

to be inserted into the FPGA design to reduce the frequency of the design. The AMD-

Xilinx Clocking Wizard is an IP provided within Vivado, which enables the possibility of

synthesising one or more clock signals with an output frequency independent of the IP’s

input clock frequency [4]. The frequency of the clock manager IP was defined within the

37

static configuration data described in Section 5.3.4 and could be changed at compile time

if desired. Note that the IP can also perform dynamic clock configuration via an AXI-Lite

slave interface; whilst this was not used for prototyping Ballast subsytems, it is clear that

this could provide value when prototyping future designs.

5.4.3 Memory Interfaces

A common component found within modern SoCs is on-chip memory. Depending on

the requirements and process selected to implement the ASIC, on-chip memory can be

implemented using different technologies. The functionality of on-chip memory modules

can also vary depending on the needs of the design. This difference in functionality is

typically reflected in the ports on the interface to the memory module. For example,

memory interfaces can use a single port or dual port configuration and contain additional

control signals, such as a byte-enable signal, to mask the contents of the read memory.

As described in Section 3.3.3, FPGAs contain limited on-chip memory in the form of

BRAMs. It is desirable to utilise FPGA BRAM to implement the ASIC on-chip memories

within the FPGA prototype, as otherwise, the memories are implemented using regis-

ters (known as register RAM) or LUTs (known as distributed RAM). For larger memory

sizes, register RAM or LUT RAM can become expensive in terms of logic resources and

increase the complexity of the routing task performed by the FPGA design tools.

The memory configurations created using BRAMs on FPGA vary between FPGA plat-

forms. Vivado offers the ability to either infer memories through specific RTL constructs

(an example of a module which infers a single port memory can be seen in Listing A.1

) or via instantiating BRAM IPs within the design. Each on-chip memory instance within

Ballast included within the prototype was refactored to ensure that the RTL used to in-

stantiate the memory was compatible with the pattern required by Vivado to infer the

appropriate BRAM. Furthermore, due to the resource constraints of the FPGA platform,

reducing the size of the memories used by the prototype configuration may be neces-

sary. The specific modifications for each configuration are described in detail within the

appropriate subsection below.

5.4.4 Clock Gating

To optimise the PPA of an ASIC design, various power reduction techniques are applied

by ASIC designers, including clock gating, pipelining, parallel logic implementation and

clock frequency reduction. Clock gating is the most widely used technique. It involves

applying a mask to the clock signal, such that when the logic block is not in use, the

clock signal (and therefore all logic transitions within the block) can be dynamically halted.

Halting the clock prevents dynamic power consumption while the logic block is not in

38

D Q

Q

Gated Clock

Clock

Clock
Enable

Clock Gating Cell

Figure 5.7. Example of Clock Gate Component Used in ASIC Design

use. Clock gates are typically implemented within a dedicated module, which contains

a sequential element to control the enable, fed into an AND gate along with the clock

(Figure 5.7) [14].

As described within Section 3.3.4, FPGAs contain dedicated routing networks for clock

and logic distribution, which are configured during the programming of the device. These

networks are distinct, with each clock network being optimised to minimise skew. The

clock gating implementation used for ASICs would require the addition of arbitrary logic

to the clock signals which is not achievable on FPGAs. As a result, the FPGA clock

signal must be routed and fed into the logic network within which the combinatorial and

sequential elements can be accessed. The logic output is then routed back into the

clock network, from where it can feed the downstream sequential logic blocks. This re-

routing of clock signals introduces a significant amount of skew onto the clock signal, and

therefore, traditional implementations of clock gates are inefficient on AMD-Xilinx FPGA

platforms [6]. As a result, work was required to review the use of clock gates throughout

the components of Ballast, which were targeted for prototyping and to modify the design

to be suitable for implementation on FPGA.

Reduction of power is not a relevant consideration in FPGA prototyping as the main focus

is verifying the functionality of the design. A conservative approach was taken to restrict

the application of clock gating to only those areas in which it was used to control func-

tionality e.g. controlling external clock signals of synchronous peripherals. With this in

mind, the two following logic transformations were applied to remove the timing issues

introduced by clock gating:

1. If the clock gating has no functional implications (i.e., it is only for power saving), the

clock gate module was replaced with an alternative implementation that removed the

internal logic and created a direct connection between the input and output clock, es-

sentially bypassing the clock gate entirely.

2. If the clock gate was used to control functionality within the design, the clock gate

module was replaced with an alternative implementation which replaced the existing

logic components with an instantiation of a gated clock buffer (BUFGCE). The BUFGCE

39

Clock
Enable

Clock Gated Clock

BUFGCE

Figure 5.8. BUFGCE Component Used to Replace Clock Gates in Prototypes [7]

is an FPGA primitive located within the FPGA clock network (see Figure 5.8) but can

be used to gate clock signals without introducing significant skew. There are a limited

number of these primitives contained within the FPGA. Therefore, to ease the burden of

placement and STA, these were only used when bypassing the clock gate would have

functional ramifications.

5.4.5 IO Pads

The IO pads used in ASIC implementations are hard macros linked to the technology

used. Within RTL simulation, these components are modelled using functional models

which emulate the behaviour of the pad component. As described within Section 3.3.2,

FPGAs typically contain a set of configurable IO components. The IO components avail-

able within the FPGA platforms chosen to prototype the Ballast SoC do not perfectly

match the IO pad components used by the ASIC implementation. Therefore, additional

logic was required to emulate as much of the IO pad functionality as possible without

affecting the functional operation of the design. The result was a simplified IO pad that

could be dynamically configured as an input or output. Additionally, the pad could stati-

cally be configured to apply a weak pull-up or pull-down resistor. The code used for the

FPGA IO pad definition can be found in Listing A.4.

5.5 SysCtrl and MPC Specific FPGA Prototyping Implementation

A high-level architectural diagram of the SysCtrl and MPC prototype configurations can

be seen in Figure 5.9 and Figure 5.10, respectively. The functional blocks which were

modified for prototyping are highlighted with a hatched pattern.

5.5.1 SysCtrl BootROM

As mentioned in Section 4.5.1, one of the main functions supported by the SysCtrl sub-

system is the boot management for the Ballast SoC. The bootROM for the subsystem

was under development during the prototyping of the subsystem. A substitute bootROM

module was created to simplify the initial testing of the emulated subsystem during this

40

SysCtrl FPGA Prototype Subsystem Wrapper

SysCtrl

uDMA

Pa
d

Fr
am

e

UART

SPI

ICN

RAM

Debug

ROM

SDIO

GPIO

RISC-V Ibex CPU

IRQ Control

Clk Control

Pad Control

Timer

Pa
d

M
ux

Clock Manager

reset external
clock

JTAG

SDIO

GPIO

SPI

UART

fetch
enable

Constants

Figure 5.9. High-level Architecture of the SysCtrl FPGA Prototype

period. The simplified bootROM contains a single unconditional jump instruction with the

offset set to zero. When the SysCtrl CPU executes from the modified bootROM, it will

remain in a stable infinite loop. The simplified bootROM provides a helpful starting point

for emulation from which the JTAG and debug interface could be tested. The code used

for the simplified BootROM can be found within Listing A.2. This simplified bootROM was

replaced with the final bootROM once it was mature.

5.5.2 SysCtrl SDIO Clock Gating

The SysCtrl boot relies on using the SDIO protocol to boot from an SD Card. The SDIO in-

terface consists of several signal pins, namely clock (CLK), command (CMD) and four par-

allel data (DATA) pins [13]. The command and data signals are transmitted synchronously

to the signal transmitted on the clock pin. To control the clock of the SDIO interface, the

module developed for Ballast relies on clock gating. As described in Section 5.4.4, a mod-

ification to the RTL was required to transform the ASIC clock gate implementation such

that it could be implemented on FPGA with the BUFGCE component. The code used to

41

MPC FPGA Prototype Subsystem Wrapper

Clock Manager

external
clock

Constants

MPC

uDMA

Pa
d

Fr
am

e UART

SPI

ICN

RAMDebug

GPIO

RISC-V RISCY CPU

IRQ Control

Clk Control

Pad Control

Timer

Pa
d

M
ux

I2C

CPI

I2S

JTAG

SPI

CPI

I2C

I2S

UART

GPIO

resetfetch
enable

Figure 5.10. High-level Architecture of the MPC FPGA Prototype

implement the SysCtrl clock gating on FPGA can be found within Listing A.3.

5.5.3 Slow Clock Generator

Both SysCtrl and MPC subsystems contain timer modules that can generate interrupts

at a defined rate. The timer modules require a reference clock at a set frequency of

32.768kHz. The input reference clock frequency for Ballast is fixed; therefore, implement-

ing a divider to create the necessary frequency is trivial. However, FPGA development

boards’ input reference clock frequencies vary between boards. As a result, more work

is required to create a generic solution that will allow the generation of the necessary

32.768kHz frequency.

The chosen solution combines an AMD-Xilinx Clock Wizard IP instance and a fixed clock

divider (Figure 5.11). The input and output frequency of the Clock Wizard can be defined

as variables within the TCL scripts used to build the FPGA prototype. The lower limit of

the Clock Wizard output frequency is 4.9MHz; therefore, it is impossible to set the output

frequency to the required 32.768kHz. As a result, the output of the Clock Wizard is set

42

FPGA Clock
Manager

Arbitrary Input
Clock Frequency

~8.38MHz
DIV 256

32.768kHz

in

out

Figure 5.11. FPGA Slow Clock

to a value 256 times faster than 32.768kHz, and then it is divided by 256 using a clock

divider implemented within the RTL immediately after. As the input frequency of the Clock

Wizard can be set in the TCL scripts used to build the prototype, this design will guarantee

correct frequency synthesis regardless of the input clock frequency.

5.5.4 Peripheral Clocks

The frequency of the clocks used by several of the peripherals on SysCtrl and MPC

are configurable to allow them to operate at variable rates. The ASIC implementation

achieves this through a combination of clock dividers and clock muxing components.

Similar to the clock gating considerations stated in Section 5.4.4, efficient clock selec-

tion through multiplexers cannot be achieved in FPGA implementations without specific

FPGA components. The clock mux components in the ASIC design were replaced with

BUFGCTRL components accordingly.

Additionally, special consideration was given to the peripheral clock feeding the SDIO

interface of SysCtrl, as the initial frequency value of the interface during SD Card initiali-

sation needs to be set to a frequency between 0 - 400kHz [13]. The input clock frequency

of SysCtrl on Ballast is 33.33Mhz, and the clock feeding the SDIO module is divided by

128 at boot, such that the SDIO clock initial frequency is 260kHz. As the input clock

for the FPGA prototype was set at 10Mhz, this would result in the SDIO initial frequency

being set to 78kHz. While this is within the acceptable range per the specification, experi-

mentally, it was discovered that the SDIO initialisation was unstable when the SDIO clock

frequency was below 100kHz. Therefore, the FPGA prototype was modified such that the

clock feeding the SDIO module was only divided by 64, leading to an initial frequency of

156kHz. The modified clock tree contained within the SysCtrl FPGA prototype, with the

default SDIO clock path highlighted, can be seen within Figure 5.12.

5.5.5 Memory Capacity

The ASIC implementation of SysCtrl contains 64kB of Private RAM in total, accessed

across two 32kB blocks. Furthermore, MPC has the same 64kB of Private RAM but

includes four interleaved blocks, which are 114kB each. By default, the memory of the

43

Input Clock (10MHz)

DIV 8

DIV 8

DIV 8

UART

SDIO

UDMA (SPI)

Configured via register at address:
0x1A1040A8 (REG_PERIPH_CLK_DIV)
Default value of mux is 1.

Configured via register at address:
0x1A120040 (SDIO_CLK_DIV)
Default value of mux is 1.

BUGCTRL

BUGCTRL

BUGCTRL

0

1

0

1

0

1

Figure 5.12. FPGA SysCtrl Peripheral Clock Tree

FPGA implementation for both SysCtrl and MPC is the same as the ASIC. Still, this can

easily be modified by modifying variables within the build scripts if necessary.

5.6 HPC Specific FPGA Prototyping Implementation

A high-level architectural diagram of the HPC prototype configuration can be seen in

Figure 5.13. The functional blocks which were modified for prototyping are highlighted

with a hatched pattern. The removed (and bypassed L2 cache subsystem) is highlighted

with a cross pattern.

5.6.1 L2 Cache Controller

As described in Section 4.5.3, the HPC subsystem contains a 256kB 8-way L2 shared

cache. When prototyping HPC, it was found that some of the SystemVerilog structures

used to implement the L2 cache could not be synthesised for FPGA within Vivado 2019.2.

The L2 cache is a complex module, and project time constraints meant that finding a work-

ing fix for this issue would be a significant challenge. In addition, modifying the RTL to

ensure that the L2 cache could be synthesised would create considerable differences be-

tween the ASIC design and the prototype. A review was performed to assess the benefits

of fixing the issue, which concluded that it would not merit the time investment. As a

result, the FPGA prototype of HPC does not contain a shared L2 cache and all mem-

ory accesses from the L1 cache of each core are performed directly upon the memory,

bypassing the L2 cache.

44

HPC FPGA Prototype Subsystem Wrapper

HPC

RISC-V CVA6 RISC-V CVA6

L1 $ L1 $

L2 Subsystem

ICN

Timer CLINT PLIC BootRAM Cfg

DebugJTAG
AXI

BRAM
8kB

Clock Manager

external
clockreset

Figure 5.13. High-level Architecture of the HPC FPGA Prototype

5.6.2 Memory Capacity

The ASIC implementation of HPC contains 32kB internal memory and can access a 4GB

external memory space. The testing of HPC on the FPGA prototype platform consisted

of simple software operations. As a result, the external memory size was set to 8kB on

the FPGA prototype to reduce the resources required by the prototype, thereby reducing

the burden on the synthesis tools to route large memories or implement external memory

controllers.

5.7 C2C Specific FPGA Prototyping Implementation

As described in Section 5.1, a requirement of the FPGA prototyping for the C2C sub-

system was to validate communications using an asynchronous external interface. This

would require two instances of the C2C subsystem, each implemented within a sepa-

45

C2C FPGA Prototype (single instance) Subsystem Wrapper

lo
op

ba
ck C2C

Transmitter

Receiver (unused)

AXI
Subordinate

Packet
ConverterSerialiser

TX

RX

TX

RX

Serialiser Packet
Converter

AXI4
Manager

Clock Manager

external
clock reset

Error
StateAXI Driver LEDs

C2C

Transmitter (unused)

Receiver

AXI
Subordinate

Packet
ConverterSerialiser

TX

RX

TX

RX

Serialiser Packet
Converter

AXI4
Manager AXI BRAM

Figure 5.14. High-level Architecture of the Single-board C2C FPGA Prototype

rate clock domain. However, an incremental approach was taken in the implementation

to minimise the number of unknowns in the design. Initially, an implementation with two

C2C instances on a single FPGA (Figure 5.14), but with a loopback on the external in-

terface, was created and validated. Only one of the two channels on each C2C instance

was connected to keep the initial implementation simple. Following this, each instance

was implemented on a separate FPGA, and they were connected via an external FMC

connection to validate the asynchronous interface. Additionally, the C2C prototype was

extended to create a peripheral bridge which could be used to support the Ballast ASIC

(named Silta).

5.7.1 AXI Driver and AXI Memory modules

When implemented as a part of the Ballast SoC, the C2C subsystem is driven either by

AXI transactions originating from other subsystems on the SoC or external transactions

originating from the external C2C interface. To test the subsystem prototype effectively,

the AXI Transaction Module was required to generate AXI transactions and exercise the

subsystem. This module is connected to the AXI Subordinate interface of one of the C2C

46

modules and automatically starts sending transactions once the design reset is released.

The AXI Transaction Module sends a write transaction followed by a read transaction,

after which the read value is compared to the written value. The AXI Transaction Module

is statically configurable and the following parameters can be controlled through generics:

• AXI address width,

• AXI data width,

• AXI ID width,

• The number of AXI transactions to be performed,

• Whether the address is incremented after each transaction or if the same address

is used,

• The number of beats to be sent in each AXI incrementing burst transaction,

• The number of clock cycles to wait between sending transactions.

Similarly, requests received over the external C2C interface will be converted to AXI trans-

actions and transmitted over the AXI Manager interface of the subsystem. As a result,

there must be a module provided to serve these AXI requests. On the C2C prototype, an

AXI BRAM IP was connected to the AXI Manager. The default size of the BRAM was set

to 65kB and is statically configurable within the synthesis scripts.

5.7.2 Two Board Prototype Configuration

The C2C serial interface is designed to be asynchronous. Two connected designs must

be placed in different clock domains to test this on the FPGA prototype. It is possible to

achieve this using two designs on the same board, with each design using a dedicated

clock manager IP configured to output a different frequency. However, this configuration

would not emulate the more significant signal propagation delays on the C2C external

interface. A decision was made to split the prototype over two boards (Figure 5.15),

connected via the FMC interface on each board, over which the C2C interface signals

would be transmitted. In addition to a higher emulation fidelity, splitting the design over

two boards would create several FPGA design artefacts, which could be re-used to create

Silta (see Section 5.7.3).

5.7.3 Ballast Peripheral bridge - "Silta"

Ballast was not designed with a typical high-capacity memory interface (e.g. LPDDR,

flash, etc.) but included the C2C interface, which can extend the SoC. A proof of concept

(named Silta) was created to demonstrate how the C2C interface of Ballast could be used

to expand the memory capacity of the SoC, consisting of an FPGA with a C2C interface

and an implemented DDR4 controller. When the Silta board was connected to Ballast

47

BOARD A

C2C FPGA Prototype (single instance) Subsystem Wrapper

C2C

Transmitter

Receiver

AXI
Subordinate

Packet
ConverterSerialiser

TX

RX

TX

RX

Serialiser Packet
Converter

AXI4
Manager

Clock Manager

external
clock reset

Error
StateAXI Driver LEDs

AXI BRAM

C2C FPGA Prototype (single instance) Subsystem Wrapper

C2C

Transmitter

Receiver

AXI
Subordinate

Packet
ConverterSerialiser

TX

RX

TX

RX

Serialiser Packet
Converter

AXI4
Manager

Clock Manager

external
clock reset

Error
StateAXI Driver LEDs

AXI BRAM

BOARD B

Async

Figure 5.15. High-level Architecture of the Two-board C2C FPGA Prototype

over the C2C interface, the subsystems on Ballast could then access the DDR4 memory

on the Silta board. The Ballast SoC was mounted onto a development board named

Graniitti (Figure 5.16).

The Silta design re-used the C2C design files and constraints, which were used to develop

the two-board prototype configuration. However, the AXI BRAM was replaced with an AXI

DDR4 IP, and the design frequency was increased to 250MHz.

5.8 Top-Level Specific FPGA Prototyping Implementation

The main verification requirement targeted by the top-level configuration was to verify the

entire JTAG chain of Ballast. This demanded a prototype configuration which contained

SysCtrl, MPC and HPC. The interconnect was also included to allow communication be-

tween the subsystems in the design and to perform additional testing (Figure 5.17).

48

Graniitti

SILTA

Silta Wrapper

Silta C2C
Receiver

TX

RX

Serialiser Packet
Converter

AXI4
Manager

external
clock

reset

250MHz clock

reset

AXI MIG (DDR4) DDR4

Ballast SoC

AI Subsystem
(AI)

Ethernet
Subsystem

(ETH)

Digital Signal
Processing
Subsystem

(DSP)

Interconnect
(ICN)

High
Performance

Low
Performance

Configuration

High
Performance
Computing
Subsystem

(HPC)

Medium
Performance
Computing
Subsystem

(MPC)

System Control
Subsystem
(SysCtrl)

Chip-to-Chip
Subsystem

(C2C)

external
periphs.

external
periphs.

PHY

C2C
Phy.

Figure 5.16. High-level Architecture of Silta and Graniitti

49

Top-Level FPGA Prototype Subsystem Wrapper

Interconnect
(ICN)

High
Performance

Low
Performance

Configuration

HPC Prototype

MPC Prototype

SysCtrl Prototype

Clock
Manager

external
clock

reset

Constants

Constants

JTAG

TDOTDI

TDO

TDI

TDO

TDI

reset
clk

reset

clk

reset

clk

TDITDO

Figure 5.17. High-level Architecture of the Top-Level FPGA Prototype

5.8.1 Synthesis Flow

When creating the flow for the top-level configuration, an issue was identified with the

synthesis flow, which had been used to prototype the individual subsystems. Some sub-

systems utilised design files with the same file and module name but contained different

logic implementations. This is generally bad practice as it increases the risk of the wrong

files being included for a specific design. Furthermore, the flow used for the other designs

adds all RTL files to a Vivado project, and if files share the same name, there is no way to

instruct the tool to associate a particular file with a specific module instance. This results

in a non-deterministic build.

If this issue had been identified earlier in the flow, the file names would have been

changed to be unique for each subsystem. However, the ASIC implementation flow was

already mature by the time the top-level prototype was created and changing the file

names would have created issues across the project. Therefore, an update to the flow

was required. Each subsystem was synthesised independently for the top-level configu-

50

ration, and the netlist was exported. Once completed, the top-level project was created,

and the netlist of each subsystem was imported into the top design, removing the de-

pendency on design files and resolving the issue. In addition to fixing the conflicting file

issues, this also improved the flexibility of the synthesis flow. If the design was mono-

lithically synthesised, the entire design would need to be synthesised again if a single

subsystem was updated, resulting in long synthesis times. However, with the updated

flow, the top-level design can be synthesised modularly so that only the updated subsys-

tem netlist needs to be re-synthesised. De-coupling the subsystems in this way should

result in an improved synthesis time. However, this could not be measured, as building

the design in a monolithic fashion was impossible due to the file name conflicts.

5.9 Verification of Implementation

As described within section 3.4.2, once the first iteration of an FPGA design is com-

plete, it should be simulated within a testbench to verify the RTL behaviour. Once the

RTL simulation is completed successfully, the design can be synthesised and the out-

put netlist can be simulated within the testbench to ensure logical equivalence between

the pre/post-synthesis design files. Following this completion, a bitstream of the design

can be generated and loaded onto the FPGA platform upon which integration testing can

be performed. The following sections outline the salient details of each verification step

which was taken during the FPGA prototyping of Ballast.

5.9.1 RTL Simulation

Vivado was the primary development tool used to develop the Ballast prototype designs,

and it comes with an integrated logic simulator. During the development process, it was

found that the Vivado 2019.2 simulator did not support a number of the SystemVerilog

structures used within the Ballast design. Siemens Questa had been used to simulate the

RTL within the ASIC flow, and as a result, the Vivado simulation flow was reconfigured to

use Questa when performing the simulation.

Within the Ballast ASIC development flow, testbenches for each of the subsystems had al-

ready been created and used to verify the subsystem RTL. These subsystem testbenches

were also used to perform the RTL simulation on the prototype designs. Minor modifica-

tions to the testbench were required when running the post-synthesis simulations as the

design netlist ports differed from the RTL design. Excepting this, test benches and infras-

tructure common to the ASIC development could be used.

51

5.9.2 Hardware Validation

After completing the testing of the prototype designs in simulation and the bitstreams

generated, the designs were loaded onto the appropriate FPGA platform and then vali-

dated. The method used to validate each prototype configuration varied slightly between

the prototypes.

If the prototype included a JTAG (all configurations apart from Silta/C2C), the initial test

was to attempt to halt the CPU using openOCD and an external USB to JTAG adapter.

Once this was successful, some basic firmware would be loaded onto the subsystem

CPU using GDB and executed. The result of the firmware execution would be analysed

using GDB, confirming that the prototype was successfully running.

For Silta and the C2C prototypes, there was no CPU contained within the design, so the

validation process was different. As described within Section 5.7.1, AXI driving logic was

included within the prototype configuration. The input signal to enable the AXI driver was

routed to a switch, and the error-reporting output signals were routed to LEDs on the

FPGA board. The design was initially synthesised and tested in the most basic config-

uration (single AXI bursts to a fixed address). Once this was complete, the design was

incrementally modified and tested to increase the size of the feature set tested on the

board. This approach was taken to ease the burden of debugging, as it would be easier

to determine what feature was causing an issue.

5.10 Debugging the Hardware Design

An issue may become visible in the design when running on hardware, which was not

identified during the simulation. This could be due to several reasons, including improp-

erly constraining the physical interfaces of the design, which might lead to timing excep-

tions at the external interface of the design. Typical debugging methods (e.g., using a

UART to print information to a terminal or using JTAG to access the debug module of a

core) cannot accurately identify the root cause of an issue in hardware as they depend

on the hardware design itself to work properly. The internal logic of the FPGA at runtime

is not visible, and without additional tooling, it can be challenging to debug hardware is-

sues. However, AMD-Xilinx FPGA development tools provide two IP cores, which make

debugging in hardware significantly easier, namely the Integrated Logic Analyser (ILA)

and Virtual Input/Output (VIO) cores.

5.10.1 AMD-Xilinx Integrated Logic Analyser

The ILA IP core can be inserted into the FPGA design selected to debug and monitor

runtime signal behaviour. It allows users to store signal values over a period of time. It

52

provides features found in modern logic analysers, such as Boolean equations for trig-

gering and edge transition triggers [5]. An example application of the ILA during the

prototyping was to analyse the SDIO and SPI peripheral logic while developing the SysC-

trl BootROM. The ability to observe the logic states accelerated the development process

and allowed hardware issues to be identified very quickly.

5.10.2 AMD-Xilinx Virtual Input/Output

The VIO IP core is similar to the ILA in that it can be inserted into the target design

and provides the ability to monitor signals. The VIO cannot store signal states over a

period of time. However, it allows users to drive selected signals during runtime in real

time [10]. The VIO core was used during the development of the Silta design to identify

issues in the FPGA pin constraints. With the VIO, the resets of individual synchronous

processes within the modules of Silta could be asserted and de-asserted independently

of each other. Once this was in place, it was easy to identify the logic blocks generating

erroneous data values and the reason for that.

53

6. RESULTS

This section qualifies how well the prototyping objectives outlined within Section 4.4.2

were met. Additionally, details of the hardware design issues identified as a result of the

Ballast prototyping activities, the recognised limitations of prototyping and future improve-

ments which could be applied to the prototyping implementation are also described.

6.1 Review of Objectives

6.1.1 Prototype Build Flow Development

As described in Section 5.3.4, an extensible and modular FPGA prototype synthesis flow

was successfully created. This flow was applied to the standalone subsystem prototyping

configurations (SysCtrl, MPC and HPC). The flow configuration is performed by changing

the value of a limited number of variables and is not dependent on any configuration-

specific artefacts. As a result, the FPGA prototyping synthesis flow could be easily re-

used in future projects.

In Section 5.8.1, it is described that for the top-level configuration, a modified version of

the flow was created to overcome an issue in file name conflicts. Alternative approaches

to fixing this issue, such as re-naming files, would have allowed the synthesis flow to

remain unchanged. However, this was not possible for Ballast due to project time con-

straints.

6.1.2 Validation of SoC Boot Design

The prototyping configuration created for SysCtrl was successfully used to test the Ballast

boot process design thoroughly. The complete design and testing process of the Ballast

SoC boot flow is documented within [39] and is therefore not repeated here. The main

advantage of using the FPGA prototype to test the boot design was that the testing could

be completed with the real off-chip storage devices (SD cards) which were to be used by

the ASIC. The available RTL simulation environment SD card models were not compre-

hensive and could not be trusted to verify the entire boot operation. Furthermore, tests

using the firmware stored within the SysCtrl bootROM could be executed quicker than

54

SD Card with
 SDIO + SPI

Interface

USB to JTAG/UART
Adapter

Figure 6.1. FPGA Prototype Board Configuration Used to Validate SysCtrl Boot

in RTL simulation, allowing for faster development times. The boot flow of Ballast was

successfully tested using the sample chips after tape-out without any failures.

The physical prototyping configuration used to validate the boot testing is shown in Figure

6.1.

6.1.3 Validation of Debug Architecture

The top-level prototype configuration contained all of the Ballast SoC subsystems acces-

sible via the JTAG interface on the chip. This configuration successfully provided a plat-

form which could be used to interface with a debugging solution running on a separate

host machine. The debugging solution used to test the JTAG chain was a combination of

a USB-to-JTAG adapter hardware with OpenOCD. Tests were performed using the FPGA

prototype to ensure that each subsystem could be controlled as expected via the JTAG.

The tests not only validated the hardware design of the debug infrastructure but led to the

creation of scripts which could be used for debugging the ASIC during the bring-up activ-

ities. After tape-out, the same debugging architecture tests were successfully performed.

Figure 6.2 contains an extract of OpenOCD successfully identifying all of the JTAG taps

within Ballast and subsequently halting using the SysCtrl RISC-V debug components to

halt the Ibex core within SysCtrl.

55

HPC

MPC

SYSCTRL

Figure 6.2. OpenOCD TAP Report for Top-level FPGA Configuration

Graniitti

Ballast

Silta

C
2C

 In
te

rf
ac

e

Figure 6.3. Silta connected to Graniitti and Ballast

6.1.4 Validation of C2C Interface

The main aim of prototyping the C2C interface on FPGA was to test the asynchronous

interface. A fully asynchronous interface can be created with a C2C module on two sepa-

rate FPGA boards connected by a physical connector. Additionally, the signal propagation

delays across the wires in the connector improve the fidelity of the verification platform.

See [28] for full details of the verification of the Ballast C2C subsystem. The C2C proto-

type was then used as a baseline to create the Silta board, which extends Ballast over

the C2C interface (see Figure 6.3).

56

6.1.5 Validation of SoC Peripheral Interfaces

The SysCtrl and MPC subsystems contained several standard peripheral interfaces. Us-

ing the FPGA prototype platform for these subsystems, it was possible to test the oper-

ation of these interfaces using representative hardware. The tested peripheral interfaces

were UART, CPI, I2C, SPI, SDIO and GPIO. The specifics of each test executed using

each peripheral varied, but generally, testing was performed to check the configuration

of the peripherals worked as expected and that communication to an external hardware

component over the interface was possible.

For example, the JTAG, UART, CPI and I2C interfaces within MPC were tested using

the Omnvision OV7670 camera module [12]. The camera module was configured using

the I2C interface, and image data was captured using the CPI interface. Once an entire

frame had been transmitted, the image data was read from MPC memory and sent over

the UART to a host device. The host device captured the transmitted UART data and

rendered the image data for display using a Python script.

Additionally, the SPI and SDIO interfaces were tested through the development of the

bootROM described within Section 6.1.2. These interfaces were used to read/write the

SD Card during boot. The JTAG interface was indirectly and continuously tested during

the testing of all other peripheral interfaces, as it was the mechanism used to load code

into the subsystems for testing. Therefore, all testing performed on subsystems that were

running software-based tests were also validating the JTAG interface.

A list of all functional tests performed (including peripheral tests) using the Ballast FPGA

prototypes are listed within Tables 6.1, 6.2 and 6.3. The external components used to

test peripheral functions are listed. Tests without peripheral components listed are testing

internal subsystem components and do not require external components aside from the

JTAG adapter used to load/control the code. The functional tests for SysCtrl and MPC

were performed using the Pynq-Z1 platform and the HPC tests were performed using

the ZCU104 platform. Where possible, the code for the integration testing within RTL

simulation as re-used.

The successful running of these tests provided confidence that the RTL design of the

Ballast peripherals was correct. Furthermore, it was possible to reuse the same tests

when testing the delivered ASIC samples.

6.1.6 Provision of Platform for BSP Development

A BSP is a software layer responsible for abstracting the hardware implementation details

from higher software layers. It includes low-level code, which is used to access the hard-

ware registers of the device [50]. For the Ballast SoC, the software written to perform the

57

Table 6.1. Listing of SysCtrl Functional Tests Performed During Prototyping

Functional Test External Components Used

Boot FT2232H Mini-Module

JTAG -

Register Connectivity -

Memory Access -

Advanced Timer -

APB Timer -

GPIO Logic Analyser

SDIO SD Card Adapter

SPI SD Card Adapter

UART FT2232H Mini-Module

Local Interrupts -

Table 6.2. Listing of MPC Functional Tests Performed During Prototyping

Functional Test External Components Used

JTAG FT2232H Mini-Module

Register Connectivity -

Memory Access -

GPIO Logic Analyser

SPI SD Card Adapter

UART FT2232H Mini-Module

I2C OV7670 Camera

CPI OV7670 Camera

Local Interrupts -

Table 6.3. Listing of HPC Functional Tests Performed During Prototyping

Functional Test External Components Used

JTAG FT2232H Mini-Module

Register Connectivity -

Memory Access -

APB Timer -

Local Interrupts -

integration tests in the simulation was written in the C programming language. However,

there is ongoing research into applying the Rust programming language in embedded

devices at the university. The FPGA prototyping platforms provided a suitable testing

platform using both languages. The significant improvement in software execution time

58

when using the FPGA prototypes relative to simulation will likely reduce the BSP software

development speed as new design iterations could be tested at a higher frequency. Fur-

thermore, the ability to use real hardware when developing the driver code improved the

confidence that could be gained from testing the implementation. This level of confidence

could not be gained from simulation as the hardware models used to simulate peripheral

functions were basic. The physical prototyping configuration used to develop the initial

software artefacts for HPC can be seen in Figure 6.4.

A limitation of the FPGA prototyping platforms concerning the BSP development was

caused by the differences in the hardware architecture when compared with the ASIC

(see Sections 5.4 - 5.8. The FPGA prototypes were developed to try and minimise these

differences as much as possible. However, simplifications to the clocking architecture re-

sulted in small regions of functionality for which the BSP software could not be tested. For

example, the PLL configuration could not be tested using the FPGA prototyping platforms

because it was replaced with a simplified clocking structure in the FPGA implementation.

To minimise the risk caused by the differences between the FPGA and ASIC implementa-

tions, the PLL configuration was thoroughly tested in RTL simulation and post-synthesis

GLS.

After the tape-out of Ballast was complete and the sample chips were delivered, it was

found that all of the BSP code developed using the FPGA prototypes could be reused to

perform the wake-up testing of the SoC. The advantage of having the FPGA prototypes

available early in the software development process ensured that the risk of software

issues being present on the chip was reduced.

6.2 Identification of SDIO Hardware Design Issues

During the FPGA prototyping of SysCtrl, a significant bug in the hardware design relating

to boot operation was identified. One of the interfaces used by the SysCtrl bootROM is the

SDIO, which reads code into the Ballast SoC from an SD card during boot. To access the

SD card memory via SDIO, the card must be first initialised for operation through a defined

set of commands the host sends. This initialisation command sequence is managed by

hardware in the SysCtrl boot design. In the early development stages of Ballast, boot

operation was tested using an open-source SD card VIP. The SD card VIP’s accuracy

was unknown at the time, and an alternative IP could not be found. No issues were

identified within the SDIO boot functionality during the RTL simulation testing of the early

hardware designs using this VIP. However, when the equivalent testing was performed

using the SysCtrl FPGA prototype, it was observed that the boot functionality failed to

initialise the SD card for operation. Following an investigation, it was discovered that the

command sequence sent by the hardware was not correct.

Additionally, it was discovered that there was a bug in the SD card VIP used, in that it

59

USB to JTAG/UART
Adapter

Figure 6.4. FPGA Prototype Board Configuration Used to Develop Initial Software Arte-
facts HPC

was possible to initialise the VIP without sending the correct command set. A hardware

fix was immediately implemented, and the SysCtrl FPGA prototype was re-synthesised.

The test was repeated using the updated design and the result confirmed that the SD

card was successfully initialised.

Identifying and eliminating this bug demonstrated the value provided by the FPGA pro-

totyping activity on Ballast. Testing the boot functionality using a prototype platform con-

nected to the representative hardware made it possible to derisk the critical boot functions

in a way that was not possible in RTL simulation. Furthermore, the use of the prototype

platform enabled the ability to quickly and easily synthesise updated hardware design in

order to test the fix, reducing the overall development time required.

6.3 Limitations of FPGA Prototyping

6.3.1 Development Complexity

FPGAs are complex devices requiring domain-specific knowledge to implement designs

effectively. Using FPGAs to prototype ASIC designs brings advantages, such as using

the same RTL design files for both the ASIC and FPGA designs. However, the technol-

60

ogy differences between an FPGA and an ASIC can be significant, especially when the

ASIC design is a complex SoC containing multiple clock domains and external interfaces.

These differences create a need to modify the design files to implement a functional pro-

totype of the design (see Chapter 5). Making the modifications requires the engineer to

understand both the ASIC design intent/implementation and the target FPGA platform

being used for prototyping.

The design effort calculations presented within [43] determined that the FPGA prototyp-

ing of Ballast accounted for 21% of the effort required to develop the SoC. As already

described within [43] and earlier within this section, the high amount of effort can be

attributed to the complexity of the SoC design and the large number of modifications re-

quired to prototype it successfully. The FPGA prototyping team also comprised a mixture

of junior and more experienced engineers. While the experienced engineers had good

experience in FPGA development, they had little experience in ASIC emulation and had

not previously used AMD-Xilinx tools.

6.3.2 Prototype Performance

As mentioned previously, one of the challenges of implementing an ASIC design on FPGA

is that the design is not naturally optimised for the FPGA platform. While the FPGA design

tools can synthesise such a design successfully, the performance (i.e. clock frequency)

achieved by the design will almost certainly be reduced. It is possible to improve the

performance of the prototype by modifying the design. However, great care must be

taken when modifying the design. This is to ensure that the accuracy of the design being

verified is not compromised, as every modification creates a delta between the prototype

and the ASIC design and reduces the value of the verification activity.

On Ballast, this resulted in a maximum achievable clock frequency of 10MHz for the SysC-

trl, MPC and HPC prototypes. While this speed allows for reduced test run times com-

pared to simulation, it is still significantly slower than the targeted frequency of the ASIC.

This performance did not create issues during the Ballast development as all testing was

performed using simple bare-metal software tests. However, this performance restriction

could become problematic if testing more complex software requires an operating system

or high-level software libraries.

6.3.3 Technology Differences

When prototyping an SoC, key areas of functionality are unavoidably affected by the tech-

nology differences between an ASIC and an FPGA. Section 5.4 outlines the functional

areas affected during the prototyping of Ballast. These changes must be factored into the

verification plan to ensure that the gaps in coverage which are created by modifying the

61

design are satisfied using alternative verification techniques.

An example of improperly considering the verification coverage gaps within FPGA proto-

typing can be found within the DSP subsystem implemented within the Ballast SoC. As

mentioned within Section 4.5, the DSP subsystem was developed as an independent IP

and integrated into the Ballast SoC. The design was verified using an FPGA prototype

and in RTL simulation. However, following tape-out, a bug was discovered within the in-

ternal memory interface of the DSP, which prevented the memory from being accessible

on the ASIC. This issue would not have been found using the FPGA prototype because

the memory interface was replaced with an FPGA-compatible module.

Furthermore, this issue was not identified within RTL simulation, as a simplified memory

model was used to simulate the subsystem. The issue was identified when the subsys-

tem was simulated using accurate memory models within a post-synthesis or post-layout

netlist. However, due to human error, the wrong memory file was specified within the file

lists used to tape-out the ASIC. This demonstrates that multiple verification techniques,

in addition to FPGA prototyping, must be used in combination to achieve the verification

coverage required.

6.3.4 Verification Coverage

It is typical to use several coverage measures during the validation of an ASIC design

to determine how thoroughly the verification activity has been performed [37]. Functional

coverage and code coverage are examples. These coverage metrics can be used to drive

RTL simulation based verification, as the tester has full visibility of the logic during simula-

tion and the freedom to drive the design from an arbitrary location. However, this visibility

and access to logic is not available within an FPGA prototype by default. Therefore, it pre-

vents the tester from being able to use the same verification metrics which were used in

RTL simulation to drive the testing on an FPGA prototype. As seen within [38], some has

been performed to demonstrate that coverage-driven verification using an FPGA platform

is possible, but a variable amount of additional effort is required to do so and no stan-

dardised methodology to apply this currently exists. As a result, a practical application

of FPGA prototyping is to satisfy high-level validation objectives which compliment the

coverage-driven RTL simulation results.

62

7. CONCLUSION AND FUTURE WORK

The development of modern MPSoCs is a complex task, with verification becoming more

critical than ever as the resources required to thoroughly verify the design are increasing.

This thesis presents an overview of FPGA-based prototyping methodologies, a review

of the current related technologies and an analysis of a real-life application within the

SoCHub project.

FPGA-based prototyping is typically used to provide an accurate, highly performant hard-

ware model which can interface with real components within a lab without incurring high

material costs. This thesis describes a set of high-level objectives to measure the effec-

tiveness of using FPGA-based prototyping (Section 4.4.2). These objectives were derived

from the Ballast SoC verification planning artefacts and describe the development and ex-

ecution of the prototyping activities to satisfy those objectives. The results show that that

the objectives were successfully met using FPGA prototyping, and also highlight several

limitations which exist in FPGA prototyping-based verification. These results emphasise

the value of FPGA prototyping and the need to use it with other verification methodologies

to verify an SoC design thoroughly.

7.1 Future Work

The FPGA prototyping work conducted for the Ballast SoC focused on using standalone,

single-board FPGA prototype configurations. As described within Section 3, FPGA pro-

totypes can be created using multiple FPGAs and integrated with simulators to create

a co-simulation environment. Future work could be performed to utilise these methods

when prototyping a design of comparable complexity to evaluate the benefits and draw-

backs. In addition, Section 3.3 describes the capabilities of modern FPGAs. It would also

be interesting to assess whether or not these capabilities could be applied to FPGA pro-

totyping activities to improve the process. For example, test automation and integration

within CI tools could be achieved through the use of embedded CPUs and high-speed

networking interfaces.

Moreover, further work could be performed to investigate how some of the limitations

identified within this thesis could be eliminated. An example would be extending the

work presented within [38] to create a generic framework that could be adapted to other

63

designs and enable the ability to drive FPGA prototypes using coverage metrics. An

additional example would be to employ ML techniques similar to those outlined in [52] to

improve the efficiency of performing the tasks within FPGA prototyping.

64

REFERENCES

[1] AMD. pynq_io. What is PYNQ? 2016. URL: http://www.pynq.io/ (visited on 05/13/2023).

[2] AMD. vcu118_overview. AMD Virtex UltraScale+ FPGA VCU118 Evaluation Kit.

2023. URL: https://www.xilinx.com/products/boards-and-kits/vcu118.html (visited

on 05/13/2023).

[3] AMD. zcu104_overview. Zynq UltraScale+ MPSoC ZCU104 Evaluation Kit. 2018.

URL: https: / /www.xilinx.com/products/boards- and- kits /zcu104.html (visited on

05/13/2023).

[4] AMD-Xilinx. Clocking Wizard v6.0 LogiCORE IP Product Guide. 2021.

[5] AMD-Xilinx. Integrated Logic Analyser v6.2 Product Guide. 2016.

[6] AMD-Xilinx. UltraFast Design Methodology Guide for FPGAs and SoCs UG949

(v2022.2). 2022.

[7] AMD-Xilinx. UltraScale Architecture Clocking Resources User Guide. 2021.

[8] AMD-Xilinx. UltraScale Architecture GTY Transceivers User Guide. 2021.

[9] AMD-Xilinx. UltraScale Architecture SelectIO Resources User Guide. 2019.

[10] AMD-Xilinx. Virtual Input/Output v3.0. 2018.

[11] AMD-Xilinx. Vivado Design Suite User Guide UG893 (v2019.2). 2019.

[12] Arducam and Omnivision. CMOS OV7670 Camera Module 1/6-Inch 0.3-Megapixel

Module Datasheet. 2015.

[13] SD Card Association. SD Specification Part E1 - SDIO Simplified Specification Ver-

sion 3.00. SD Card Association, 2018. URL: http://applelogic.org/files/SDIO.pdf.

[14] René Beuchat et al. Fundamentals of System-on-Chip Design on Arm Cortex-M

Microcontrollers. 2021.

[15] Abhishek Bhattacharjee, Gilberto Contreras, and Margaret Martonosi. “Full-system

chip multiprocessor power evaluations using FPGA-based emulation”. In: (2008),

p. 335. URL: http://portal.acm.org/citation.cfm?doid=1393921.1394010 (visited on

05/31/2022).

[16] Louise H. Crockett et al. Embedded Processing with the ARM Cortex-A9 on the

Xilinx Zynq-7000 All Programmable SoC. First. Strathclyde Academic Media, 2014.

[17] Pasquale Davide Schiavone et al. “Slow and steady wins the race? A comparison of

ultra-low-power RISC-V cores for Internet-of-Things applications”. In: (2017), pp. 1–

8. URL: http://ieeexplore.ieee.org/document/8106976/ (visited on 03/25/2023).

[18] Wayne Wilson - Design Engineer Qualcomm Inc. San Diego and Calif. Michel Cour-

toy - Marketing Manager Aptix Corp. San Jose. “FPGA emulation speeds ASIC

design”. English. In: Electronic Engineering Times (1996).

http://www.pynq.io/
https://www.xilinx.com/products/boards-and-kits/vcu118.html
https://www.xilinx.com/products/boards-and-kits/zcu104.html
http://applelogic.org/files/SDIO.pdf
http://portal.acm.org/citation.cfm?doid=1393921.1394010
http://ieeexplore.ieee.org/document/8106976/

65

[19] Digilent. pynq_z1_reference. PYNQ-Z1_reference. 2016. URL: https://digilent.com/

reference/programmable-logic/pynq-z1/reference-manual (visited on 05/13/2023).

[20] Paul Donahue and Tim Newsome. RISC-V Debug Specification. 2019. URL: https:

//github.com/riscv/riscv-debug-spec/tree/66c3117145 (visited on 08/20/2023).

[21] Paul J Fox, A Theodore Markettos, and Simon W Moore. “Reliably prototyping large

SoCs using FPGA clusters”. In: (2014), pp. 1–8. URL: http:// ieeexplore.ieee.org/

document/6861350/ (visited on 08/08/2023).

[22] Aleksei Gimbitskii. “INTERCONNECT DESIGN FOR THE EDGE COMPUTING

SYSTEM-ON-CHIP”. In: (2022).

[23] David J. Greaves. Modern system-on-chip design on Arm. Cambridge: arm Educa-

tion Media, 2021. 564 pp.

[24] M. Gschwind, V. Salapura, and D. Maurer. “FPGA prototyping of a RISC proces-

sor core for embedded applications”. In: IEEE Transactions on Very Large Scale

Integration (VLSI) Systems 9.2 (2001), pp. 241–250. ISSN: 1063-8210, 1557-9999.

URL: http://ieeexplore.ieee.org/document/924027/ (visited on 05/31/2022).

[25] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Approach.

6th. San Fransisco: Elsevier Science & Technology, 2011.

[26] Michael Hübner and Jürgen Becker. “Multiprocessor System-on-Chip”. In: (2011).

URL: http://link.springer.com/10.1007/978-1-4419-6460-1 (visited on 07/25/2022).

[27] William N.N. Hung and Richard Sun. “Challenges in Large FPGA-based Logic Em-

ulation Systems”. In: Proceedings of the 2018 International Symposium on Physical

Design (2018), pp. 26–33.

[28] Mohamed Ibrahim. “Chip-to-chip Interface Communication”. In: (2022).

[29] Xilinx Inc. UltraScale Architecture and Product Data Sheet: Overview (DS890).

2022, p. 50.

[30] Xilinx Inc. UltraScale Architecture Configurable Logic Block User Guide (UG574).

2017, p. 58.

[31] Xilinx Inc. UltraScale Architecture Memory Resources User Guide. 2021, p. 138.

[32] Chase Lambert. Makefile Tutorial. Makefile Tutorial. 2023. URL: https://makefiletutorial.

com/ (visited on 10/04/2023).

[33] Xuemei Li et al. “The FPGA Prototyping Implementation of LEON3 SoC”. In: (2012),

pp. 1643–1646. URL: http : / / ieeexplore. ieee.org /document /6322724/ (visited on

08/09/2023).

[34] Arm Limited. AMBA AXI and ACE Protocol Specification (ARM IHI 0022H.c). 2021.

[35] Ashok B. Mehta. Hardware/Software Co-verification. Cham: Springer International

Publishing, 2018, pp. 243–253. URL: http://link.springer.com/10.1007/978-3-319-

59418-7_12 (visited on 05/31/2022).

[36] Ashok B. Mehta. Introduction. Cham: Springer International Publishing, 2018, pp. 1–

4. URL: http : / / link . springer. com / 10 . 1007 / 978 - 3 - 319 - 59418 - 7 _ 1 (visited on

05/26/2022).

https://digilent.com/reference/programmable-logic/pynq-z1/reference-manual
https://digilent.com/reference/programmable-logic/pynq-z1/reference-manual
https://github.com/riscv/riscv-debug-spec/tree/66c3117145
https://github.com/riscv/riscv-debug-spec/tree/66c3117145
http://ieeexplore.ieee.org/document/6861350/
http://ieeexplore.ieee.org/document/6861350/
http://ieeexplore.ieee.org/document/924027/
http://link.springer.com/10.1007/978-1-4419-6460-1
https://makefiletutorial.com/
https://makefiletutorial.com/
http://ieeexplore.ieee.org/document/6322724/
http://link.springer.com/10.1007/978-3-319-59418-7_12
http://link.springer.com/10.1007/978-3-319-59418-7_12
http://link.springer.com/10.1007/978-3-319-59418-7_1

66

[37] P Mishra and N.D. Dutt. Functional Verification of Programmable Embedded Ar-

chitectures. New York: Springer-Verlag, 2005. ISBN: 978-0-387-26143-0. URL: http:

//link.springer.com/10.1007/b137514 (visited on 08/11/2023).

[38] Dipakkumar Modi and Usha Mehta. “Coverage Driven Functional Testing Architec-

ture for Prototyping System Using Synthesizable Active Agent”. In: International

Journal of VLSI Design & Communication Systems 9.3 (2018), pp. 41–50. ISSN:

09761527, 09761357. URL: http : / / aircconline . com / vlsics / V9N3 / 9318vlsi04 . pdf

(visited on 08/09/2023).

[39] Antti Nurmi et al. “A Resilient System Design to Boot a RISC-V MPSoC”. In: (2022),

pp. 232–238. URL: https : / / ieeexplore . ieee . org / document / 9996852/ (visited on

06/17/2023).

[40] John K. Ousterhout and Ken Jones. Tcl and the Tk toolkit. 2nd Edition. Addison-

Wesley, 2009. ISBN: 0-321-60176-9.

[41] OpenOCD Project. OpenOCD User’s Guide. 2022. URL: https://openocd.org/pages/

documentation.html.

[42] Antonio Pullini et al. “uDMA: An autonomous I/O subsystem for IoT end-nodes”. In:

(2017), pp. 1–8. URL: http: / / ieeexplore. ieee.org/document/8106971/ (visited on

03/25/2023).

[43] Antti Rautakoura et al. “Ballast: Implementation of a Large MP-SoC on 22nm ASIC

Technology”. In: (2022), pp. 276–283. URL: https://ieeexplore.ieee.org/document/

9996602/ (visited on 02/25/2023).

[44] Antti Rautakoura et al. “Kamel: IP-XACT compatible intermediate meta-model for

IP generation”. In: (2020), pp. 325–331. URL: https://ieeexplore.ieee.org/document/

9217651/ (visited on 07/24/2022).

[45] Pasquale Davide Schiavone et al. “Quentin: an Ultra-Low-Power PULPissimo SoC

in 22nm FDX”. In: (2018), pp. 1–3.

[46] H. Selvaraj, P. Sapiecha, and N. Dhavlikar. “Partitioning of large HDL ASIC designs

into multiple FPGA devices for prototyping and verification”. In: (2001), pp. 411–

415. URL: http://ieeexplore.ieee.org/document/970504/ (visited on 05/30/2022).

[47] Lattice Semiconductor. iCE40 LP/HX Family Data Sheet FPGA-DS-02029-4.0. 2022,

p. 54.

[48] Gina R. Smith. FPGAs 101: everything you need to know to get started. Amsterdam

; Boston: Newnes, 2010. 229 pp. ISBN: 978-1-85617-706-1.

[49] IEEE Computer Society. IEEE Standard Test Access Port and Boundary-Scan Ar-

chitecture. IEEE, 2008.

[50] John Taylor and Wayne Taylor. Patterns in the Machine: A Software Engineering

Guide to Embedded Development. Apress, 2021. ISBN: 978-1-4842-6439-3.

[51] Russell Tessier. “MULTI-FPGA SYSTEMS: LOGIC EMULATION”. In: . Reconfig-

urable computing (2007).

http://link.springer.com/10.1007/b137514
http://link.springer.com/10.1007/b137514
http://aircconline.com/vlsics/V9N3/9318vlsi04.pdf
https://ieeexplore.ieee.org/document/9996852/
https://openocd.org/pages/documentation.html
https://openocd.org/pages/documentation.html
http://ieeexplore.ieee.org/document/8106971/
https://ieeexplore.ieee.org/document/9996602/
https://ieeexplore.ieee.org/document/9996602/
https://ieeexplore.ieee.org/document/9217651/
https://ieeexplore.ieee.org/document/9217651/
http://ieeexplore.ieee.org/document/970504/

67

[52] Divyasree Tummalapalli et al. “Novel Design partitioning technique for ASIC proto-

typing on multi-FPGA platforms using Graph Deep Learning”. In: (2022), pp. 1–4.

URL: https://ieeexplore.ieee.org/document/9970882/ (visited on 08/09/2023).

[53] Andrew Waterman, Krste Asanovic, and CS Division. The RISC-V Instruction Set

Manual Volume I: Unprivileged ISA. 2019.

[54] Andrew Waterman et al. The RISC-V Instruction Set Manual Volume II: Privileged

Architecture. 2021.

[55] W. Wolf, A.A. Jerraya, and G. Martin. “Multiprocessor System-on-Chip (MPSoC)

Technology”. In: IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems 27.10 (2008), pp. 1701–1713. ISSN: 0278-0070. URL: http : / /

ieeexplore.ieee.org/document/4627532/ (visited on 05/26/2022).

[56] Roger Woods et al. FPGA-based implementation of signal processing systems,

Second edition. eng. 2nd ed. Wiley, 2017. ISBN: 9781119077978.

[57] Haigang Yang et al. “Review of advanced FPGA architectures and technologies”. In:

Journal of Electronics (China) 31.5 (2014), pp. 371–393. ISSN: 0217-9822, 1993-

0615. URL: http : / / link . springer. com / 10 . 1007 / s11767 - 014 - 4090 - x (visited on

08/01/2022).

[58] Florian Zaruba and Luca Benini. “The Cost of Application-Class Processing: Energy

and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in 22-nm

FDSOI Technology”. In: IEEE Transactions on Very Large Scale Integration (VLSI)

Systems 27.11 (2019), pp. 2629–2640. ISSN: 1063-8210, 1557-9999. URL: https:

//ieeexplore.ieee.org/document/8777130/ (visited on 03/25/2023).

https://ieeexplore.ieee.org/document/9970882/
http://ieeexplore.ieee.org/document/4627532/
http://ieeexplore.ieee.org/document/4627532/
http://link.springer.com/10.1007/s11767-014-4090-x
https://ieeexplore.ieee.org/document/8777130/
https://ieeexplore.ieee.org/document/8777130/

68

APPENDIX A: APPENDIX A

Listing A.1. Example Verilog module definition used to infer a single port BRAM memory

1 module single_port_ram_memory #(

2 parameter RAM_WIDTH = 18 ,

3 parameter RAM_DEPTH = 1024 ,

4 parameter INIT_FILE = " "

5) (

6 i npu t [clogb2 (RAM_DEPTH−1) −1:0] addra ,

7 i npu t [RAM_WIDTH−1:0] dina ,

8 i npu t c lka ,

9 i npu t wea ,

10 inpu t ena ,

11 output [RAM_WIDTH−1:0] douta

12) ;

13

14 reg [RAM_WIDTH−1:0] BRAM [RAM_DEPTH− 1 : 0] ;

15 reg [RAM_WIDTH−1:0] ram_data = {RAM_WIDTH{1 ’ b0 } } ;

16

17 generate

18 i f (INIT_FILE != " ") begin : u s e _ i n i t _ f i l e

19 i n i t i a l

20 $readmemh (INIT_FILE , BRAM, 0 , RAM_DEPTH−1) ;

21 end else begin : in i t_bram_to_zero

22 i n t e g e r ram_index ;

23 i n i t i a l

24 f o r (ram_index = 0; ram_index < RAM_DEPTH;

25 ram_index = ram_index + 1)

26 BRAM[ram_index] = {RAM_WIDTH{1 ’ b0 } } ;

27 end

28 endgenerate

29

30 always @(posedge c lka)

69

31 i f (ena) begin

32 i f (wea)

33 BRAM[addra] <= dina ;

34 ram_data <= BRAM[addra] ;

35 end

36

37 assign douta = ram_data ;

38

39 / / The f o l l o w i n g f u n c t i o n c a l c u l a t e s the address width based

40 / / on s p e c i f i e d RAM depth

41 f u n c t i o n i n t e g e r clogb2 ;

42 inpu t i n t e g e r depth ;

43 f o r (clogb2 =0; depth >0; clogb2=clogb2 +1)

44 depth = depth >> 1;

45 endfunc t ion

46

47 endmodule

Listing A.2. Temporary SysCtrl BootROM

1 module fpga_bootrom #(

2 parameter ADDR_WIDTH=32 ,

3 parameter DATA_WIDTH=32

4) (

5 i npu t l o g i c CLK,

6 i npu t l o g i c CEN,

7 i npu t l o g i c [ADDR_WIDTH−1:0] A,

8 output l o g i c [DATA_WIDTH−1:0] Q

9) ;

10

11 assign Q = 32 ’ h0000006f ; / / j a l x0 ,0

12

13 endmodule

Listing A.3. SysCtrl Clock Gate for FPGA

1 / / c lock ga t ing implemented using BUFGCE

2 module pu lp_c lock_gat ing_fpga (

3 i npu t l o g i c c l k _ i ,

4 i npu t l o g i c en_i ,

5 i npu t l o g i c tes t_en_ i , / / not connected

6 output l o g i c c lk_o

70

7) ;

8

9 BUFGCE BUFGCE_inst (

10 .O(c lk_o) ,

11 .CE(en_i) , / / CE = 0 , c lock d isab led

12 . I (c l k _ i)

13) ;

14

15 endmodule

Listing A.4. IO Pad Implementation for FPGA

1 module t ico_pad_funct iona l_wrapper_ fpga #(

2 / / 1 = ETH, 2 = GENERAL, 20 = GENERAL_PD, 21 = GENERAL_PU

3 parameter PAD_TYPE = 20 ,

4 parameter PAD_CONF_WIDTH = 10

5) (

6 i npu t l o g i c [PAD_CONF_WIDTH−1:0] conf_ in ,

7 i npu t l o g i c I ,

8 output l o g i c O,

9 i nou t l o g i c PAD

10) ;

11 generate

12 i f (PAD_TYPE == 2) begin

13 / / not implemented on FPGA

14 end

15 i f (PAD_TYPE == 20) begin

16 / / con f_ in [5] == 0: OUTPUT

17 / / con f_ in [5] == 1: INPUT

18

19 (* PULLDOWN = "YES" *)

20 IOBUF i o b u f _ i (

21 / / T == 0 , PAD = OUTPUT

22 / / T == 1 , PAD = INPUT (t r i s t a t e d)

23 . T (con f_ in [5]) ,

24 . I (I) ,

25 .O (O) ,

26 . IO (PAD)

27) ;

28 end

29 i f (PAD_TYPE == 21) begin

71

30 / / con f_ in [5] == 0: OUTPUT

31 / / con f_ in [5] == 1: INPUT

32

33 (* PULLUP = "YES" *)

34 IOBUF i o b u f _ i (

35 / / T == 0 , PAD = OUTPUT

36 / / T == 1 , PAD = INPUT (t r i s t a t e d)

37 . T (con f_ in [5]) ,

38 . I (I) ,

39 .O (O) ,

40 . IO (PAD)

41) ;

42 end

43 endgenerate

44

45 endmodule

	Introduction
	SoC Development
	Overview
	Verification Challenges

	FPGA-based Prototyping
	Motivation for Logic Emulation
	FPGA-based Emulation
	Single-FPGA Emulation Platform
	Multiple-FPGA Emulation Platform
	Standalone FPGA Emulation Platform
	In-circuit FPGA Emulation Platform
	Co-simulation FPGA Emulation Platform

	FPGA Technology Overview
	Logic Blocks
	IO Blocks
	Memory Blocks
	Routing Networks
	DSP Blocks
	High-speed Transceivers
	Embedded Processor Cores
	Other Components

	FPGA and ASIC Comparison
	Technologies
	Development Flows

	Related Work

	Ballast Development and Architecture
	SoC Hub
	Ballast Architecture
	Development Methodology
	Verification Strategy
	Functional Coverage
	FPGA Prototyping

	Subsystems of Interest
	SysCtrl
	MPC
	HPC
	C2C

	Debugging Architecture
	JTAG
	Debug and Trace
	OpenOCD
	Ballast Debugging

	FPGA Prototype Implementation
	Prototype Configurations
	Platform Hardware Selection
	Digilent PYNQ-Z1
	AMD Zynq UltraScale+ MPSoC ZCU104
	AMD Virtex UltraScale+ FPGA VCU118
	Prototype Configuration to Platform Mapping

	Prototype Build Flow Development
	GNU Make
	TCL
	Vivado IDE
	Synthesis Flow

	General FPGA Prototype Implementation Strategies
	RTL Partitioning
	Input Clock Architecture
	Memory Interfaces
	Clock Gating
	IO Pads

	SysCtrl and MPC Specific FPGA Prototyping Implementation
	SysCtrl BootROM
	SysCtrl SDIO Clock Gating
	Slow Clock Generator
	Peripheral Clocks
	Memory Capacity

	HPC Specific FPGA Prototyping Implementation
	L2 Cache Controller
	Memory Capacity

	C2C Specific FPGA Prototyping Implementation
	AXI Driver and AXI Memory modules
	Two Board Prototype Configuration
	Ballast Peripheral bridge - "Silta"

	Top-Level Specific FPGA Prototyping Implementation
	Synthesis Flow

	Verification of Implementation
	RTL Simulation
	Hardware Validation

	Debugging the Hardware Design
	 AMD-Xilinx Integrated Logic Analyser
	 AMD-Xilinx Virtual Input/Output

	Results
	Review of Objectives
	Prototype Build Flow Development
	Validation of SoC Boot Design
	Validation of Debug Architecture
	Validation of C2C Interface
	Validation of SoC Peripheral Interfaces
	Provision of Platform for BSP Development

	Identification of SDIO Hardware Design Issues
	Limitations of FPGA Prototyping
	Development Complexity
	Prototype Performance
	Technology Differences
	Verification Coverage

	Conclusion and Future Work
	Future Work

	References
	Appendix A

