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ABSTRACT  

Big Data analytics focus on the collection, modelling, and analysis of large-scale data 

to identify correlations and relationships, gain new insights as well as to make 

predictions about possible future outcomes or new facts about the world under 

investigation. In the health sciences, Big Data can have many different facets and 

applications, ranging from hospital process optimization, over image classification 

and personalized medicine to drug development and chemicals safety assessment. 

However, current Big Data studies in the life sciences are often limited to a small 

range of data sources and data types due to the diversity and complexity of the 

available data, standards, and interpretations. 

Knowledge Graphs are a highly flexible, link-oriented data structure, which, based 

on the application of a reasoning engine, allow the inference of new facts about the 

world under investigation. Knowledge Graphs are built upon a graph data model, 

which is a schema-free, highly flexible, and modifiable data management model. In 

addition to classical data retrieval and analytical methodologies, graph-based data 

models are link and path focused as well as allow the application of network metrics 

to analyse not only individual data points, but with respect to the whole system.  

In this thesis I have investigated the use of graph data models and Knowledge 

Graphs as data management, data integration and knowledge inference engines for 

the highly diverse data across the life sciences with a focus on their application to 

the compound safety and development process. In addition, I developed and 

collected different network analysis methodologies for the analysis of networks 

created from molecular data as well as networks contained directly or indirectly in a 

Knowledge Graph data model or in combination with molecular data. 
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1 INTRODUCTION 

With the constant development of new methodologies and the continuous 

production of data across different life science sub-domains, the manual processing, 

analysis, and combination is not feasible. In addition, the chemical industry, develops 

compounds at a far faster speed than their mechanism of action (MOA) or safety 

can be evaluated with traditional toxicology methodologies. In the medical field it 

has been widely acknowledged that the personalised medicine concept, where 

treatment decisions are based on an individual's behavioural, environmental and 

genetic factors, is the future (Chang et al., 2018; Cirillo & Valencia, 2019; Fröhlich 
et al., 2018; Kurnit et al., 2017; Vogenberg et al., 2010). Therefore, there is a need 

for alternative, computational driven methods, that can handle large scale, highly 

diverse data sets, produced across the different life science sub-domains (Pavel, 
Saarimäki, et al., 2022).   

Large scale data gathering, and its analysis has become a stable method in many 

different industries, especially in the information technology (IT) domain, where data 

is often used to predict user behaviour or needs, to boost sales, advertisement payout 

or interaction time. Big Data are large collections of high complexity structured and/ 

or unstructured data that due to their size are challenging to analyse and store with 

traditional data analysis and management methods (Günther et al., 2017; Gupta et 
al., 2019; Pavel, Saarimäki, et al., 2022; Sagiroglu & Sinanc, 2013). 

However, large scale Big Data analytics in the life sciences is not as easy as in many 

other IT-based fields, due to the high variety of data types, data points, reporting 

quality, standards and even often that the data is not available in computational 

processable formats (Leonelli, 2019; Pavel, Saarimäki, et al., 2022), which makes 

automated data integration into a large data model highly challenging. Traditional, 

relational data models are not suitable due to their non-schema free nature, meaning 

that a data model needs to be pre-defined, missing data points are not allowed (these 

will need to be stored as NULL values, increasing the needed storage space 

unnecessarily) and the data model cannot evolve easily with change in the data. 

Further joining operations across multiple entity and relationship tables becomes 

expensive and complex quickly. This limitation suggests that, before the available 
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life-science data can be used to its full potential, suitable data integration and data 

modelling solutions, that can handle such complex and diverse data, must be 

developed or identified. One such schema-free, highly flexible and network driven 

data model are graph data models, which can be elevated to Knowledge Graphs 

(KG)s.  

Knowledge Graphs are knowledge bases, which model data in a graph-based format, 

to which a reasoning engine can be applied to infer new facts about the “world under 

investigation” (Figure 1) (Ehrlinger & Wöß, 2016; Hogan et al., 2021; Pavel, 
Saarimäki, et al., 2022; Sheth et al., 2019). Entities in the KG are modelled as nodes, 

while relationships between entities are modelled as edges. By enriching the graph 

with semantics, additional meaning can be added, which allows reasoning and 

complex decision making based on the data.  Depending on the data model or 

database management system used, the graph can be directed, undirected, 

homogeneous, heterogenous, as well as can contain node and edge attributes and/ 

or labels (Hogan et al., 2021; S. Ji et al., 2022). Therefore KGs 1) are knowledge 

bases, 2) can be analysed in addition to classical data retrieval methods with network-

based metrics, and 3) can be used as a reasoning engine (Pavel, Saarimäki, et al., 
2022), as displayed in Figure 1. 

 
Figure 1   Knowledge Graphs are data models, where entities and relationships are modelled in a network-

based format to which semantic meaning is added. A KG can be used as a database for knowledge retrieval, 

analysed as a graph and allows the application of a reasoning engine to infer new facts about the world under 

investigation. 
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During my PhD, I have developed the Unified Knowledge Space (UKS), a multi-

source, multi-dimension knowledge graph, modelling more than three billion data 

points across the life science domain, collected from over 80 different independent 

data sources. This dissertation demonstrates the potential of KGs as a highly flexible 

and suitable data model for Big Data analytics across the life sciences, as well as 

showcases that with a combination of computational and manual data integration 

procedures, large scale multi-dimensional data collection is achievable in the life-

sciences. The UKS, to my knowledge, is one of the largest multi-dimensional data 

sources created in the chemical and drug domain (Abdelaziz et al., 2017; Al‑Saleem 
et al., 2021; Mohamed et al., 2019; Pavel, Saarimäki, et al., 2022; R. Zhang et al., 
2021) and can be seen as the data modelling base for further Big Data driven (deep) 

learning models, which can be applied towards a multitude of different hypothesis, 

questions and research domains. The UKS has potential as a 1) knowledge base, 2) 

base for network analytics and 3) knowledge inference engine which is showcased 

across different case studies from the realm of toxicology. 
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2 HEALTH DATA SCIENCE 

2.1 Data Science and Big Data Analytics 

Large collections of structured and/ or unstructured data, that may come from a vast 

variety of sources, are of high complexity and therefore are challenging to analyse 

and store with traditional data analysis and management methods are described as 

Big Data (Günther et al., 2017; Gupta et al., 2019; Pavel, Saarimäki, et al., 2022; 
Sagiroglu & Sinanc, 2013). The possibly high variety of data types and data sources 

suggests large varieties in the data with respect to their quality, distribution and 

creation methodologies. In the field of Data Science and Data Analytics the mining 

and corresponding analysis of such large collections of data are used to identify 

correlations, relationships and make predictions about future behaviour by 

modelling, transforming and analysing the data. 

Data Science combines statistical methods with computational methods to gain 

insight into (large scale) data. This allows for example to identify correlations 

between data points, optimize business procedures and in general gather knowledge 

about what is and what could be in the future. Big Data and Data Science find a wide 

range of applications in the industry, ranging from Amazon1, Meta2 and Google3 to 

Process Optimizations and machine part failure predictions. Also in the life sciences, 

data science and large-scale data are of interest and are becoming increasingly more 

available. Their application range for example from hospital management, patient 

care, phenotype classification to drug development and toxicology (Cirillo & 
Valencia, 2019; Cozzoli et al., 2022; Dash et al., 2019; Leonelli, 2019; Mayo et al., 
2017; Pavel, Saarimäki, et al., 2022; Qian et al., 2019; H. Zhu et al., 2014) (Figure 2). 

Combining Big Data with Data Science can improve insights and predictions by 

enhancing data quality, robustness and increases the information content. In general, 

it is considered that prediction accuracy, robustness and generalization power 

correlate with the amount of (diverse) data available (Gupta et al., 2019; Leonelli, 

 
1 amazon.com 

2 meta.com 

3 google.com 
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2014; Pavel, Saarimäki, et al., 2022)  under the constraints of applied methodology, 

data quality and data availability. 

 
Figure 2  Complexity and diversity of Big Data in healthcare, which can lead to improved patient care and 

safety through the application of health Data Science. 

2.2 Large Scale Data in the Life Sciences 

The term Big Data can have different meanings depending on the life science sub-

field it is applied to. For example, in chemistry it can refer to large sets of compounds 

and their structural information, as used in Quantitative Structure Activity 

Relationship (QSAR) modelling (Lo et al., 2018; Serra et al., 2020), in medicine, Big 

Data often refers to collections of medical records (Goldstein et al., 2018; Rajkomar 
et al., 2018), while in molecular biology (such as transcriptomics or proteomics) 

research it may refer to a large number of samples or exposures (Serra et al., 2020; 
Tolani et al., 2021; Zielinski et al., 2021) (Figure 2). However, the term “large” is not 

clearly defined and therefore often refers to “large for that specific field”. This 

implies that there is a high variation in what is considered high volumes of data, 

which leads to an expected diversity of Big Data in the life sciences (Pavel, Saarimäki, 
et al., 2022). 
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2.2.1 Healthcare 

Healthcare data can include a wide variety of data, such as clinical information 

coming from a patient's medical record, vital signs, medical history and other 

measurable or descriptive data points (Dash et al., 2019; Mehta & Pandit, 2018). In 

addition, it can contain imaging data, laboratory biomarkers, genetic analysis, -omics 

data or data coming from medical sensors, such as steps walked in a day or sleeping 

patterns. This data can further be enriched with clinical trial data, social media data 

or insurance data (Mehta & Pandit, 2018; Subrahmanya et al., 2022). Integrating and 

analysing this data allows to generate a complex picture of an individual but also 

allows them to be put into a broader perspective of other patients and knowledge, 

potentially allowing to identify currently unknown links or personalized treatment 

and preventive measures. In addition, healthcare apps and online platforms are 

becoming more and more available as tools to reduce in person visits as well as to 

collect patient data, which is made available to a patient's physician or is analysed 

automatically (Cozzoli et al., 2022). Multiple medical devices, such as glucose 

measurement devices (Funtanilla et al., 2019; Kamath et al., 2010; Kruger et al., 
2019) or heart monitors (Miller et al., 2020)  can send data to either a patient’s 

healthcare provider or their own personal mobile devices. This allows the constant 

monitoring of a patient's condition and possible alert for early changes so that 

counter measures can be taken as fast as possible, which increases the success rate 

of performed treatments. 

2.2.2 Personalized Medicine 

Through the increased collection of medical data, such as imaging data, the evolving 

of technologies, such as whole genome sequencing and Big Data processing 

platforms, large scale data collection and creation has become of increased interest 

in personalized healthcare and for the first time makes it a reachable possibility 

(Cirillo & Valencia, 2019). Personalized medicine aims to shift the focus from a 

population view to a single patient view, based on the paradigm that a one solution 

fits all approach neglects the individual needs of patients.  It aims at finding the best 

treatment, or disease management plan for an individual patient instead of the whole 

population of patients suffering from a given condition. Many diseases (disease 

processes) display a high heterogeneity, suggesting that homogeneous treatment 

plans are not suitable but rather individual tuned options should be considered 

(Goetz & Schork, 2018).  It takes factors such as personal environmental conditions, 

genetics and medical history into account, to identify the most likely successful 
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treatment with the least adverse outcomes (Vogenberg et al. 2010; Fröhlich et al. 

2018; Cirillo and Valencia 2019). Personalized medicine, however, is dependent on 

the integration and analysis of large numbers of heterogeneous data (sources) (Silva 
et al., 2022), of which the lack of consistent standards is currently one of the limiting 

factors. It is widely acknowledged that cancer is a highly heterogeneous disease, even 

between its known sub-types, and therefore custom treatments are suggested to be 

more successful (Chang et al., 2018; Dumbrava & Meric‑Bernstam, 2018; Fröhlich 
et al., 2018; Kurnit et al., 2017; Lee et al., 2018).  

Electronic health records have a large potential to be mined for their data (Jensen et 
al., 2012; Rajkomar et al., 2018). On one hand, patient individual data can be 

collected, compared and learned from, while on the other hand, many electronic 

health record systems are based on structured data, ontologies and defined 

vocabularies, which makes the data easy to model from a Big Data perspective. These 

records allow to group data from different patients, which in turn allows to make 

informed decisions about possible successful treatments based on previous 

observations made in patients who show similar disease characteristics. In addition, 

this data also allows to make predictions about possible future health outcomes (Kurt 
et al., 2008), which might allow patients and healthcare providers to instigate possible 

countermeasures (in time) to potentially prevent or minimize adverse events. 

Rajkomar et al. (Rajkomar et al., 2018) used a deep learning method based on 

electronic health data to predicted multiple endpoints of hospital admitted patients. 

Such endpoints included medical diagnosis, mortality, re-admission and length of 

stay. While diagnosis and mortality predictions can be used to improve patient care, 

re-admission and length can help in optimizing and pre-planning hospital 

procedures, such as staffing and bed distribution. Gu et al. (Gu et al., 2021) used 

patient data to predict the likelihood for a patient to not follow their prescribed 

medication schedule, based on data gathered from home devices which monitor 

medication injection. The efficacy of drugs and their safety can also be affected by 

individual differences. It is already widely acknowledged that drugs can have different 

effects based on the patient’s gender (Gandhi et al., 2004; Sharifi et al., 2021), but 

also other genetic, ethnic or environmental differences can impact the suitability of 

a drug or drug combination (Ivanov et al., 2014; M. R. Nelson et al., 2016; 
Ramamoorthy et al., 2015). Therefore, considering these parameters during 

treatment decisions, and selecting treatment plans based on individual 

responsiveness to a drug, can lead to higher medication effectiveness, reduce the risk 

of adverse outcomes and as a result decreased healthcare cost overall (Fröhlich et al., 
2018). 
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2.2.3 Hospital/ Healthcare Optimization 

Process optimization through data analytics is a common practice across all 

industries. Hospitals, healthcare providers or nursing homes are at their core 

“businesses”, build on complex processes, which can be improved by identifying 

bottlenecks, workflows and optimizing implemented processes. This optimization 

can lead to better care, reduced costs and in general more relaxed staff. By analysing 

workflows and processes, the distribution of equipment can be optimized and 

adjusted, as well as potential machine (part) failure can be predicted ahead of time, 

which allows timely replacement and in turn improves safety, availability and 

performance (Aboul‑Yazeed et al., 2017; Kovačević et al., 2020). In large cities 

patients can automatically be distributed across facilities based on bed, staff and 

experts available as well as within a facility a patient can be assigned the most optimal 

available bed based on the features of the room/ bed and the patients' requirements 

(Ceschia & Schaerf, 2011; Taramasco et al., 2019). Emergency calls can be 

automatically classified based on their severity and a suggestion of the best suitable 

response team, based on their knowledge, experience, closeness and availability can 

be made, which allows also non medically trained personal to take emergency calls 

(Ferri et al., 2021).  

2.2.4 Image/ Disease Recognition 

Diagnosis is often based on imaging data, being it radiographic produced images (X-

ray), Magnetic resonance imaging (MRI), optical coherence tomography (OCT) or 

photographic images (Giarratano et al., 2020; Jaber et al., 2020; Phung et al., 2022; 
Salvatore et al., 2014; Z. Zhang & Sejdić, 2019). Computational analysis and 

classification of such images can make it possible to identify disease stages before a 

human expert would be able to make a diagnosis, reduce human error as well as allow 

to detect early changes, which may even occur in tissues/ areas unrelated to the 

disease phenotype (Giarratano et al., 2020; Haghanifar et al., 2020; Hou & Gao, 
2021; M. Liu et al., 2015; Phung et al., 2022; Salvatore et al., 2014; Veena et al., 
2017).  

2.2.5 Clinical Trials 

Clinical Trials are expensive and time-consuming endeavours. While they are 

necessary to ensure the success rate and safety of a drug, clinical trial design can be 
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optimized by analysing past trials and their set-up (A. Li & Bergan, 2020; Mayo et 
al., 2017). In addition, data from similar drugs or phenotypes, can be used to enrich 

or predict outcomes, which can minimize the amount of late-stage trial failures (Z. 
Chen et al., 2022). Of especial interest can be terminated clinical trials or trials that 

have been suspended before their intended end data. This data can help in learning 

from previous mistakes, not to put resources into trials, that may fail due to design, 

condition or compound as well as support the re-design/ improvement of trials that 

may be resumed later (Zame et al., 2020). Chen et al. (Z. Chen et al., 2022) created 

the Clinical Trials Knowledge Graph (CTKG), which is a large scale data collection 

of clinical trial information modelled as a Knowledge Graph and suggested its 

possible application for drug repositioning, to identify similar medical entities, such 

as phenotypes, drugs and studies, or for the designing of future clinical trials.  

The COVID-19 pandemic has put clinical trials in front of new challenges, where a 

fast discovery of successful and safe drugs was needed. Virtual clinical trials combine 

patient data across hospitals, states or countries and group them based on treatment 

and patient descriptors into virtual treatment and control groups. While virtual 

clinical trials may not yet compete with classical clinical trials, they can suggest the 

first compounds to be tested in clinical trials and in result speed up the process and 

increase success rate (Zame et al., 2020). This information can be further enriched 

with data known about the compounds, phenotype or similar entities, to predict the 

most likely to be successful drugs. Observational patient data can also be leveraged 

to emulate randomized clinical trials, if these are not available (Admon et al., 2019; 
Franklin et al., 2021; Hernán & Robins, 2016). 

2.2.6 In Toxicology, Drug Design & Chemical Safety 

Toxicology, drug design and chemical safety are traditionally based on the principle 

of trial and error. Through testing it is evaluated what the compound does from a 

phenotypic point of view, understanding the molecular mechanisms behind the 

observed outcomes was not a priority. With the rise of –omics technologies, 

understanding instead of observing has become a research focus (Federico et al., 
2020; Kinaret, Serra et al., 2020; Serra et al., 2020). When adding Big Data, data 

analytics and artificial intelligence into the mix the aim is to predict molecular 

mechanisms and phenotypic outcomes before any time and cost extensive 

experiments have been performed. In addition, it allows to suggest or even design 

compounds for a desired outcome, instead of relying on the classical method of trial 

and error. 
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Integrative approaches focus on combining computational and data driven power 

with experimental validation. They are built on the assumption that while the 

scientific community has already created enormous amounts of data, they are by far 

not enough to completely rely on computational predictions. Especially as such 

models become weaker the less prior knowledge around a data point is available. 

Therefore, they focus on using computational predictions to pre-filter potential 

compounds (Serra, Fratello, et al., 2022).  

Compound Design, Drug Repurposing and Drug Adverse Outcome Monitoring 

De novo drug design focuses on going from a desired (phenotypic) outcome to the 

optimal compound, instead of going from a compound to its observed phenotypic 

outcome. While the aim of de novo drug design is to create novel compounds, during 

drug repurposing the aim is to identify already existing compounds, which could be 

used as treatment for additional phenotypic conditions (Mingyang Wang et al., 
2022). Both methods rely on large scale data being available, covering data such as 

compound structural properties, target information, -omics data, associated 

molecular processes or textual based information. 

The de novo drug design process is mostly based on structural representations of 

compounds and the suitability of the newly created compound is scored based on its 

binding affinity to the desired target. The structural information can be two-

dimensional, three-dimensional, can be based on whole compounds, substructures 

or molecular descriptors and properties of the training compounds (Bai et al., 2021; 
Domenico et al., 2020; Mouchlis et al., 2021; X. Tong et al., 2021; Mingyang Wang 
et al., 2022). The use of Big Data libraries in combination with machine learning 

methodologies, allows the inclusion, screening and learning across millions of 

existing compounds to propose compounds with desired functions, such as specified 

protein and phenotypic targets, the minimization of adverse effects or specific 

physical properties for their industry application (Bai et al., 2021; Fang et al., 2023; 
Meyers et al., 2021; Mouchlis et al., 2021; Mingyang Wang et al., 2022).  

Drug repurposing studies can be performed with a variety of methods and on a 

diverse set of data (Wieder & Adam, 2022), common data types are however protein 

protein interactions (PPI), drug targets, compound structural information, –omics 

and/ or clinical data (Afzaal et al., 2022; Cheng et al., 2019; J.‑H. Gan et al., 2023; 
C. Xu et al., 2018; Xu Zhou et al., 2020). Zhou et al.  used micro ribonucleic acid 

(RNA) drug associations (drug microRNA regulation (X. Liu et al., 2013) or 
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microRNAs impacting gene expression of gene products relevant for the drug 

function (Rukov et al., 2014) ) to create a drug – drug network, by determining if two 

drugs share statistical significantly microRNAs. This network is further enriched with 

drug – disease relationships and the set of therapeutic drugs for a disease is used as 

seed nodes for random walks (s. chapter 4). The most often visited drugs are 

considered as potential repositioning candidates for the selected disease. XU et al.  

developed the core-signature drug-to-gene software, which builds cell signatures for 

cancer cells based on occurred gene mutations and compares these with drug gene 

signatures computed from microarray data, retrieved from the Connectivity Map 

(CMap) dataset. Cheng et al. (Cheng et al., 2019), combined PPI, drug gene target, 

drug drug interactions, structural drug information, protein sequence information 

and gene expression profiles with additional information, such as Gene Ontology or 

phenotypic data to suggest drug combinations for specific diseases. DrugRep , is a 

virtual screening-based drug repositioning software, offering receptor and ligand-

based screening, based on compound and protein structural information. Afzaal et 

al. (Afzaal et al., 2022) performed virtual screening on the ZINC database to identify 

compounds, which could act as possible human telomerase reverse transcriptase 

inhibitors, based on docking analysis of compounds structurally like compounds 

known to bind to human telomerase reverse transcriptase. Serra et al.  combined 

multiple approaches and data types, such as gene co-expression network analysis , 

dose-response analysis , differential gene expression analysis (Federico et al., 2020) 

and QSAR modelling to identify possible repositioning candidates for the treatment 

of COVID-19. 

Electronic health records provide a vast amount of data for drug repurposing studies, 

since they allow the testing of drug repurposing hypothesis across a large group of 

patients and time (Zong et al., 2022). Additionally, mining the large-scale 

information available, can help in detecting hidden associations between drugs and 

phenotypes or help in discovering complementary or interfering drug combinations 

(Y. Wu et al., 2019). The information can further be integrated with other data, such 

as structural/ chemical data points, experimental data, such as –omics data or 

biological knowledge, such as PPI, Adverse Outcome Pathways (AOP) (Ankley et 
al., 2010; Saarimäki, Fratello, et al., 2023), Gene Ontology (The Gene Ontology 
Consortium, 2021) terms or pathways (Goldstein et al., 2018; M. Zhou et al., 2021). 

Not all drug adverse reactions or drug interactions can be identified during clinical 

trials. Therefore, continuous collection of data after its release is important. Social 

media and online platforms in addition to medical and patient reports allow the 

collection of large-scale data in combination with additional meta-data about 
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patients, such as lifestyle, which often may not have been reported in official reports. 

These data can be collected across nations and allows the scanning for potential 

adverse effects in specific sub-populations, the detection of drug drug interactions 

or the identification of outside influences on the efficacy and safety of a compound 

(Coloma et al., 2011; X. Wang et al., 2009). Adverse effects, in addition, can already 

be predicted before a compound is released to the market, allowing to identify 

possible harmful effects before large groups of patients can be affected. These 

methods often rely on large amounts of available drug, protein and phenotype data 

(Galeano et al., 2020; Liang et al., 2023; Nguyen et al., 2021; Pancino et al., 2022; 
H. Zhou et al., 2020). Galeano et al. (Galeano et al., 2020) developed a computation 

matrix decomposition-based model, able to predict side effect frequencies for 

unknown adverse drug outcomes from a small set of already known adverse effect 

frequencies. This method can be used in combination with GSEM (Galeano & 
Paccanaro, 2022), a matrix completion-based tool, which can predict possible side 

effects for a drug, given a small set of already identified adverse effects for a 

compound. DSGAT (X. Xu et al., 2022), uses the drug molecular graph to predict 

side effect frequencies, trained on known drug – side effect relationships. However, 

since DSGAT assumes that similar drugs will have similar adverse outcomes and vice 

versa, it can also be applied to drugs for which no adverse effects or their frequencies 

are reported yet.  

Mechanism of Action, Compound Toxicity and Toxicogenomics 

With the development and use of different compounds in the industry and medicine, 

ensuring their safety for human exposure and the environment is essential. However, 

the sheer amount of existing compounds and ever newly developed compounds 

makes manual testing from a time and cost perspective impossible (Pavel, Saarimäki, 
et al., 2022; Serra et al., 2020). Therefore, it is of utmost importance to use 

alternative (computational) methods to predict the possible adverse effects of an 

exposure as well as to understand its mechanism of action (MOA). Commonly used 

data used for toxicity prediction and the characterization of the MOA are –omics 

data, such as gene expression, structural compound information or other biological 

data, such as Gene Ontology or pathway gene sets, AOPs and phenotypic or genetic 

data points (A. Liu et al., 2023; Serra et al., 2020).   

QSAR and Structure Active Relationship (SAR) models use a compounds structure 

and known associations to predict the potential outcomes of structural similar 

compounds, where SAR models create qualitative relationships between a 

compounds sub-structural area and its possible toxicity, QSAR models create 
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functions describing a compounds structural descriptor in relationship to its 

physiochemical, toxicological as well as biological endpoints (Ruiz et al., 2012). 

Overall, the underlying assumption is that structural similar compounds behave 

similar to each other (Serra et al., 2020) under the constraint of the selected endpoint. 

Chen et al. (J. Chen et al., 2021) trained a graph convolutional neural network on the 

Tox21 (Richard et al., 2021) data, based on the simplified molecular input line entry 

system (SMILES) representation of compounds and known endpoints measuring 

seven nuclear receptor signals as well as five stress response indicators. In Sharma et 

al. (Sharma et al., 2023), molecular fingerprint signatures and SMILES embeddings 

are used to model in vitro, in vivo as well as clinical toxicity with multi and single task 

deep neuronal networks. Chirico et al. (Chirico et al., 2021) released QSARINS-

Chem, a software to perform QSAR analysis, based on multiple different QSAR 

models, to predict different endpoints, such as toxicity, physio-chemical properties 

or environmental persistence. 

 

AOPs model chains of events, so called Key Events (KE), in a consecutive order, 

leading from a molecular initiating event (caused due to an exposure) to an adverse 

outcome in an organism or population (Ankley et al., 2010). AOPs are a relatively 

new model and only a few hundred manually created AOPs are currently available. 

However, through being modelled as a network, it is possible to infer outcomes or 

travel backwards from an observed outcome by identifying a matching event block 

in the chain (Kinaret et al., 2020). Bell et al. (Bell et al., 2016) developed a 

computational model, which based on toxicogenomic data creates computational 

predicted AOP modules. Wu et al. (Q. Wu et al., 2021) used the AOP framework to 

identify biological processes linked to drugs, through linking drugs to existing Key 

Events in the AOP network. Ball et al. (Ball et al., 2021) combined Key Event 

information with biological assays and chemical structural information to make 

predictions about adverse outcomes. 

 

Toxicogenomics 
The field of toxicology focuses on understanding how different compounds can 

affect humans and the environment (Kinaret, Serra et al., 2020). Toxicogenomic 

approaches focus on studying molecular alterations with respect to a compound 

exposure, which can provide insights into the underlying molecular processes taking 

place, which helps to characterize a compounds MOA instead of observing the 

exposure effect on organism level, as done in traditional toxicology (Kinaret, Serra 
et al., 2020; Z. Liu et al., 2019). The most popular methods to measure gene 

expression are Deoxyribonucleic acid (DNA)-Microarrays, Polymerase Chain 

Reaction (PCR) and RNA-Sequencing, which both count the occurrences 



34 
 

(expression) of specified genes (Kinaret, Serra et al., 2020; Z. Liu et al., 2019; Rao et 
al., 2018). 

Such transcriptomics assays can be used to characterize a compounds MOA by 

analysing its induced transcriptomic alterations (Federico et al., 2020). Gardiner et al. 

(Gardiner et al., 2020) tested multiple classifiers, such as linear regression, K-nearest-

neighbour and random forest to predict kidney disfunction on transcriptomics 

profiles from the Library of Integrated Network-based Cellular Signature (LINCS) 

1000 dataset (Subramanian et al., 2017). Kohonen et al. (Kohonen et al., 2017) 

developed the predictive toxicogenomic space, which models cytotoxic effects based 

on transcriptomic profiles of the connectivity map dataset (Lamb et al., 2006). 

Fortino et al. (Fortino et al., 2022) analysed a set of 31 engineered nanomaterials 

(ENM), based on their induced toxicity levels, to identify physiochemical properties 

as well as molecular features that can distinguish between the toxicity classes. 
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3 DATA INTEGRATION 

Big Data has large potential in the life sciences of which some cases have been 

outlined in the previous chapter. Many computational models exist and their 

predictive as well as analytical power for different scenarios have been shown. Many 

of the current models are trained and created on only a few data types and data 

sources while the data has been collected for a specific application scenario only 

(Pavel, Saarimäki, et al., 2022). However biological processes and events are of high 

complexity and in order to understand them in detail, many different data points, 

measuring and/ or describing a variety of (molecular) process or entities, need to be 

considered. Capturing all these with a single data type (or limited number of data 

types) is not possible. Therefore, combining large sets of different data types and 

sources can increase the predictive and modelling power as well as improve the 

understanding of underlying complex molecular processes, which not only focus on 

observable endpoints, such as dead & alive, but rather to understand why these 

endpoints appear. However, the data in the life sciences is by tradition highly 

fractured, lacking defined standards and methodologies across sub-fields (Leonelli, 
2019; Pavel, Saarimäki, et al., 2022). Therefore, before the full potential of the data 

can be explored, data integration and modelling strategies, adapted to the complexity 

and diversity of life science data, need to be explored. 

Data Integration (DI) describes the process of combining data coming from 

different sources or types into a single view or system. DI can focus on the 

integration of the same data type, different data types or both combined (Figure 3). 

DI is important to create large data sets, which combine data from multiple source 

systems, which can provide a more complete view of the problem under 

investigation than a single data source can. 
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Figure 3   Vertical data integration, combines data across multiple data types, horizontal data 

integration combines data of the same type across multiple data sources and diagonal data integration 

combines data of different types across different data sources. 

3.1 Horizontal Data Integration 

Horizontal Data Integration describes the process of combining data of the same 

type, coming from different sources and possible in different formats (Argelaguet et 
al., 2021; Mihaylov, Nisheva‑Pavlova, et al., 2019; Urbanski et al., 2019). So can for 

example the same entity be identified by different identifiers, the data can be created 

with different technologies or be of different quality (Pavel, Saarimäki, et al., 2022). 

Horizontal data integration can improve the robustness of the data type, due to 

having multiple data sources, and possible technologies combined. This assumes that 

the more support a specific data point receives, the more likely it is to be true. In 

addition, horizontal DI can lead to the creation of a more complete picture of the 

data under investigation, due to possible covering a larger data space than a single 

data source would (Pavel, Saarimäki, et al., 2022). A similar concept is applied in the 

wisdom of crowds' principle (Marbach et al., 2012). Horizontal data integration is 

popular in patient studies, where data from multiple patients are combined to study 

a common phenotype (Ravera et al., 2021), to create a robust PPI network by 

combining data from multiple sources (Martha et al., 2011) or in the study of 

multiple transcriptomic datasets (Oestreich et al., 2022). 
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3.2 Vertical Data Integration 

Vertical Data Integration describes the process of combining data of different types 

to gain a more comprehensive view of the entity (entities) under investigation 

(Argelaguet et al., 2021; Mihaylov, Nisheva‑Pavlova, et al., 2019; Oestreich et al., 
2022; Urbanski et al., 2019). For example, can multiple data about a phenotype, such 

as patient lifestyle, treatment and clinical data together with transcriptomics be 

combined to understand the phenotype under investigation in more detail as well as 

to form a more informed picture, than would be possible from single data points 

(Mihaylov, Kańduła, et al., 2019; Serra et al., 2019; M. Wu et al., 2021). Vertical data 

integration is popular in –omics studies, where the results of different omics 

experiments are combined (Serra et al., 2015; Ulfenborg, 2019). 

3.3 Diagonal Data Integration 

Diagonal Data Integration refers here to data integration that combines both aspects 

of horizontal and vertical DI (Argelaguet et al., 2021; Y. Xu & McCord, 2022). In 

result, it both supports robustness of individual data points and data types, as well as 

allows to form a comprehensive multidimensional view over data points. This is 

important, especially when Big Data models are used in computational approaches 

for chemical safety assessment, where a diverse set of data is needed to approximate 

organism level (Pavel, Saarimäki, et al., 2022).  Diagonal DI  is on the rise but due to 

its complexity not as widespread in the life sciences as horizontal and vertical DI but 

has become popular in the single cell sequencing field (Y. Xu & McCord, 2022). 

3.4 Challenges of Big Data & Data Integration in the Life Sciences 

Large-scale data integration across multiple data types and data sources poses some 

unique challenges in the life sciences which are not as strongly observable in the IT-

industry. 

3.4.1 Entity Identification and Mapping 

By tradition the life science research field is highly fractured (Leonelli, 2014, 2019; 
Marx, 2013) with multiple different sub-disciplines. As a result, there are multiple 
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standards, with respect to methodologies, definitions and naming systems available. 

Even within the same sub-field differences based on research language or location 

can be observed. An example for this is the difference in gene naming and gene 

definition between the United States of American Entrez system (Maglott et al., 
2011) and the European Ensembl system (Cunningham et al., 2022), for which no 

1-1 mapping exists. However, solving this identification challenge is not a technical 

but a semantic task, where common terminologies, such as ontologies, need to be 

defined, accepted and enforced across research fields, institutes and countries (Pavel, 
Saarimäki, et al., 2022). The current standard of using whatever identifiers the 

researcher in question is used to, as well as a preference for using language-based 

terminology, instead of fixed identifiers, makes the large-scale data integration across 

datasets, and especially across disciplines highly challenging. While using gene 

symbols or phenotype names are easier to understand by human readers, they are 

not strictly defined. Not for all genes official gene symbols exist, and a gene can refer 

to for example multiple proteins, as well as can variations in the spelling be observed. 

While for a human reader small spelling differences are acceptable to a computer 

these are different strings (Locke et al., 2021). Natural Language Processing (NLP) 

can identify these matches with a confidence score, however it is easily thrown by 

the highly similar naming used for different genes, where a single character difference 

can either indicate that it is the same entity or may also be a different entity. Such 

conflicts cannot be resolved without human interaction and correction as well as an 

acceptance of mistakes, based on relying on confidence scores during the entity 

mapping process.  

Entity identification and mapping is further complicated by terminologies that are 

language dependent, such as phenotypes (diseases), where especially for clinical data, 

the data is reported based on the terminology and language common to the location 

the data is produced in. Further not all phenotypes are clearly defined or are reported 

in different granularities across organisations.  

NLP based entity recognition is further complicated by the lack of large, annotated 

training data, which can lead to poorly generalizable models and therefore introduce 

a data bias by identifying specific terms more than others, due to their availability in 

the training data (Leaman et al., 2015; Locke et al., 2021).  

The entity identification and mapping challenge is one of the fundamental causes 

why large scale inter-disciplinary data integration in the life sciences is still missing 

and many of the current projects are built on a small number of source systems only, 
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due to the manual effort needed in supervising or correcting the automatic entity 

identification (Pavel, Saarimäki, et al., 2022). 

3.4.2 Data Design does not take Big Data Applications into Account 

Big Data analytics are based on the processing of large amounts of data that cannot 

be performed manually. This implies that data would need to be created in machine 

readable formats with the goal of data integration, re-use and computational 

processing in mind. However, for many researchers and life science sub-fields, such 

as clinicians, this is not the focus of their work (Pavel, Saarimäki, et al., 2022). 

Further the heterogeneous landscape of information and recording systems used 

across health care providers and nations creates information silos that are not directly 

interoperable between each other  (Queralt‑Rosinach et al., 2022). However, in 

recent years there have been efforts to unify terminology used across systems by 

defining ontologies to be used by all participants (Queralt‑Rosinach et al., 2022).  

In addition, many research outputs are often not published with computational 

readability or in general re-use in mind, making the output nearly impossible to use 

in Big Data analytics studies. While the emerging FAIR (Findable, Accessible, 

Interoperable and Reproducible) principles are a step in the right direction, to 

enforce the documentation and reporting of digital data (Martínez‑García et al., 
2023), the focus is on individual dataset and not on reporting data in such a way that 

it is re-useable in large scale data integration projects (Pavel, Saarimäki, et al., 2022). 

This means metadata can be reported differently for the same data types (Hughes et 
al., 2023) or data points measured can vary as well as is there no standard on what 

“good quality” data is (Saarimäki et al., 2022). Hughes et al. (Hughes et al., 2023) 

further criticised the lack of incentive for researchers to publish their digital data with 

complete and re-useable metadata, which significantly limits the findability and 

reusability of data as well as leads to duplicate efforts. 

Lastly the lack of taking computational use into account leads to a lack of reporting 

of negative data points (Pavel, Saarimäki, et al., 2022). Supervised machine learning 

task are relying on the availability of positive and negative samples, however in the 

research community there is a focus on only considering positive results as 

noteworthy (Maloney et al., 2023; Nimpf & Keays, 2020), while from a machine 

learning point of view both are valuable and their lack can lead to data driven biases 

in the analyses and trained models. 
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These topics make large scale data integration and Big Data analytics highly 

challenging in the life sciences. However, especially in the chemical safety and drug 

development process, alternative methods to large scale experimental approaches are 

highly sought after, as a result from a time, cost and ethical point of view.  
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4 NETWORK ANALYSIS IN THE LIFE SCIENCES 

Network models and their analysis have become popular in many life science sub-

fields, due to the fact that many data types are by nature reported as networks, such 

as PPI (Steven Wang et al., 2022), regulation (Pratapa et al., 2020) and metabolic 

networks (Christensen & Nielsen, 2000), as well as pathways (Jassal et al., 2020; 
Kanehisa et al., 2017) and ontologies (Köhler et al., 2021; The Gene Ontology 
Consortium, 2021). In addition, associations and correlations are often only different 

representations of a network data structure (Marwah et al., 2018; Pavel, Saarimäki, et 
al., 2022). In addition, the modelling of data as a graph makes it possible to analyse 

data points with respect to their surroundings and the whole system, instead of as 

individual entities. Network analyses have found especially application in the analysis 

of protein interactions (Jeong et al., 2016; N Przulj et al., 2006; Simões et al., 2012; 
Steven Wang et al., 2022), gene co-expression networks (Marwah et al., 2018; 
Odibat & Reddy, 2012; Song et al., 2019; Yuan et al., 2017) or for drug 

repositioning (Badkas et al., 2021; Federico, Fratello, et al., 2022; Zeng et al., 2019; 
Xu Zhou et al., 2020).   

4.1 Network Inference from Transcriptomics  

Gene expression data coming from transcriptomic assays can not only be used to 

study individual genes, but also to investigate the interactions between them as well 

as to model the whole system (Federico, Pavel, et al., 2022; Pavel, Serra, et al., 2022). 

Gene regulatory networks model regulators and their gene targets as nodes and edges 

represent their relationships (Y. Gan et al., 2022) . In gene co-expression networks 

genes are modelled as nodes and edges indicate if a pair has a (significant) co-

expression (i.e., shows similar expression patterns across samples and/ or 

conditions) relationship (Marwah et al., 2018; Pavel, Serra, et al., 2022). 

Unsupervised network inference algorithms mostly rely on principles from 

information theory, where the correlation and/ or mutual information is measured 

between the expression profiles of two genes and a relationship is inferred if a 

significant correlation between two genes exists  (Pavel, Serra, et al., 2022; Zhao et 
al., 2022). Multiple different algorithms exist which try to estimate significant edges 
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in a more sophisticated manner, than setting a significance threshold (Butte & 
Kohane, 2000; Faith et al., 2007; Langfelder & Horvath, 2008; Margolin et al., 
2006; Marwah et al., 2018; Meyer et al., 2007; Zhao et al., 2022). However, 

correlations are by nature bi-directional, which does not allow to infer a regulation 

direction when computing a regulatory network. Therefore, supervised approaches 

have been proposed, such as DGRNS (Zhao et al., 2022), which adds time 

information onto the gene expression data or GRADIS (Razaghi‑Moghadam & 
Nikoloski, 2020), which uses prior knowledge of transcription factors.  

Gene co-expressions can be used to study the system response to a specific condition 

or can be compared across conditions, tissues, cell types or organisms to identify 

similarities and changes in gene gene relationships (Anglani et al., 2014; Federico, 
Pavel, et al., 2022; P. Kinaret et al., 2017; Y. Liu et al., 2019; Odibat & Reddy, 2012; 
Ovens et al., 2021; Pavel, Serra, et al., 2022; Pierson et al., 2015; Song et al., 2019; 
Y. Yang et al., 2014; Yuan et al., 2017). These insights can for example be used to 

characterize and/or compare a compounds MOA (Koenig et al., 2021; W. Liu et al., 
2018), identify possible drug targets or key players in a condition under investigation 

(Federico, Pavel, et al., 2022; Hasankhani et al., 2021; Y. Liu et al., 2019; W. Li et 
al., 2020; Song et al., 2019; Tanvir & Mondal, 2019; Yuan et al., 2017), or to outline 

cell, tissue and organism differences (Eidsaa et al., 2017; Ovens et al., 2021; Pierson 
et al., 2015; Y. Yang et al., 2014). 

The different biological networks are often analysed and/ or compared based on 

different network metrics and methods. 

4.2 Network Metrics and Their Applications in Toxicology and 

Pharmacology 

Topological metrics make use of the network structure to score nodes and edges 

based on their importance in the network (Pavel, Serra, et al., 2022). These 

measures either take local network properties into account or the whole network. 

Scoring the importance of a node in a network is a popular method applied onto 

biological networks. Degree centrality evaluates the importance of a node by the 

number of edges it contains, while closeness centrality scores the node based on 

how close it is to any other node in the network. Eigenvector centrality measures 

the influence of a node based on its connection to “influential” nodes and 

betweenness centrality evaluates the importance of the node based on its 

contribution to the information flow in the network (Pavel, Serra, et al., 2022) 
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(Figure 4).  Shortest paths are the least expensive (based on steps or edge weights) 

path that can be taken between two nodes in the network (Ren et al., 2018; Simões 
et al., 2012), while random walks are random steps taken in the network from a 

starting node (Lao et al., 2011; Newman, 2005; Rosvall & Bergstrom, 2008). Cycles 

are loop structures in the network (Giarratano et al., 2020; Paton, 1969) and 

graphlets are small sub-graphs that can be used to describe the topology of a 

network (Hayes et al., 2013; Przulj, 2007; Sonmez & Can, 2017). Examples of 

network metrics and their possible application on biological networks are listed in 

Table 1. 

Cheng et al. (Cheng et al., 2018) performed drug repositioning on a human PPI 

network, by estimating the shortest path distance between a drug target and a disease 

protein and estimated their significance by comparing their shortest path distance to 

the distribution of shortest paths in the network. A similar approach is applied by 

Zhou et al. (Y. Zhou et al., 2020) where drug repositioning for COVID-19 is 

performed on a PPI network, by estimating the shortest paths between virus-host 

interactors and drug targets on the PPI network. Manczinger et al. (Manczinger et 
al., 2018) performed drug repositioning by modelling the impact of a drug via its 

target on a PPI network and evaluating its efficacy based on downstream affected 

proteins. Guo et al. (Guo et al., 2022) identified genes associated with the studied 

phenotype (unstable carotid atherosclerotic plaques) by computing differentially 

expressed genes across multiple transcriptomic datasets and using them to construct 

a PPI network via STRING (Szklarczyk et al., 2019). The most central genes are 

identified based on multiple centrality metrics and miRNA, transcription factors as 

well as drugs targeting the hub genes are identified and used to identify the gene 

targeted by most miRNAs/ transcription factors and drugs. A similar approach of 

identifying genes associated to a studied condition, based on the central proteins in 

a PPI network, constructed from condition related differential expressed genes has 

been used to study for example heart failure (Tu et al., 2022), diabetes (Prashanth et 
al., 2021), and breast cancer (Tang et al., 2019). Sonmez et al. (Sonmez & Can, 2017) 

grouped tissue specific PPI networks, by describing each network based on their 

graphlet counts. 
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Table 1  Examples of network metrics that can be applied to biological networks. 

Metric Category Explanation 

Degree Connectivity of a 

Node 

Number of connections of a node, for directed networks it can 

be measured as in-degree and out-degree, i.e., incoming and 

outgoing edges. This metric can identify the hub nodes in a 

network. In cancer therapy they may be considered good targets 

to destroy the whole system (Federico, Fratello, et al., 2022). 

Closeness 

Centrality 

Node position in 

the network 

Measures the distances from a node to all the other nodes in the 

network. High centrality nodes in a set of disease related genes, 

may be suitable drug target candidates (Pavel, Serra, et al., 2022). 

Betweenness 

Centrality 

Node position in 

the network 

 

Measures how important a node is for the information flow in a 

network. It measures how often a node is on the shortest path 

between any two nodes in the network. These genes may be good 

targets when genes with the most influence between two sets of 

genes are sought (Federico, Pavel, et al., 2022; Pavel, Serra, et al., 
2022). 

Eigenvector 

Centrality 

Node position in 

the network 

Measures a nodes importance based on its connectivity to other 

important nodes in the network. 

Shortest Path Path in the 

network 

The minimum resource path to take in the network between two 

nodes (Pavel, Serra, et al., 2022). 

Random Walk Path in the 

network 

Random walks are walks performed on the network, where each 

step is performed at random, edge weights can be considered, 

corresponding to the probability a step is taken (Lao et al., 2011; 
Newman, 2005; Rosvall & Bergstrom, 2008). 

Cycles Loop in the 

network 

Cycles in the network can have different meanings based on the 

type of network. In regulation network cycles can for example 

indicate feedback loops or can be used to describe the topological 

structure of a vascular network (Giarratano et al., 2020; Paton, 
1969). 
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Figure 4   Node w has the highest degree centrality due to being the node with the most edges, 

b the highest eigenvector centrality due to being connected to high value nodes, such as w and d, f the 

highest betweenness centrality due to being the only path between g, i, k and all the other nodes and c the 

highest closeness centrality due to being closely connected to many of the nodes in the network. Figure 

adapted from (Pavel, Serra, et al., 2022). 

Global network metrics describe the graph structure and its connectivity. Such 

metrics are for example the graph radius, which is the smallest of all the longest 

shortest path of each node in the network, the diameter, which is the longest shortest 

path in the network (Figure 5), the clustering coefficient, which measures how 

connected the graph structure is based on the tendency of triplet structures forming 

triangles or the graph density, which is the fraction of existing edges out of all 

possible edges (Pavel, Serra, et al., 2022).  In addition, local metrics can be calculated 

for each node and their distribution across the whole network can be used to describe 

the global topology of the network. Graphlet distribution and random walk-based 

path distribution, as well as the loop structure of the network are used by Giarratano 

et al. (Giarratano et al., 2020) to create retinal biomarkers applied to the vascular 

network of retinal images (OCTA images) to identify patients with diabetic 

retinopathy and chronic kidney disease. 
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Figure 5   A) graph diameter (red) and B) graph radius (red). 

Often not only single nodes are of interested but groups of nodes. In gene co-

expression networks identifying communities can help in detecting active biological 

processes (W. Li et al., 2020; Marwah et al., 2018; Tanvir & Mondal, 2019). A 

network community (Figure 6) is described as a densely connected subgraph, i.e., a 

group of nodes that interact with each other more often than with other nodes in 

the network (Linhares et al., 2020). Kinaret et al. (P. Kinaret et al., 2017) showed 

that using communities on gene co-expression networks allows to approximate the 

MOA (based on gene set enrichment) between in vitro and in vivo engineered 

nanomaterial exposures. Combining community detection on gene co-expression 

networks with computing community hub genes to identify disease related genes and 

pathways, based on pathway enrichment, has been applied to study multiple diseases, 

such as cancer (Yuan et al., 2017), bipolar disorder (Y. Liu et al., 2019) and atrial 

fibrillation (W. Li et al., 2020). 



47 
 

 
Figure 6   A network with three communities, w, x and z. Figure adapted from (Pavel, Serra, et 
al., 2022). 
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5 KNOWLEDGE GRAPHS 

Knowledge graphs are reasoning engines, which are applied on top of a graph data 

model (Figure 1), which have recently gained attention as possible data models and 

prediction engines for Big Data analytics in the life sciences (Pavel, Saarimäki, et al., 
2022). 

5.1 Advantages of a Graph Data Model 

Graph database management systems, as well as other No-SQL (non-tabular) 

database management systems are schema-free. This means that the data model does 

not need to be defined in advance, and therefore can evolve with the data and its 

applications (Pavel, Saarimäki, et al., 2022) and in addition, it allows for gaps in the 

data. However, the schema free nature implies that more responsibility is put on the 

database administrator to ensure integrity of the data (Pavel, Saarimäki, et al., 2022). 

Life science data is by nature prone to gaps, differences and is constantly evolving. 

Different data sets will report different variables, different technologies measure and 

evaluate different parameters and between sub-disciplines even the same term may 

not refer to the same entity or standard. Therefore, a flexible and schema free data 

model is needed when creating an integrated and expandable Big Data knowledge 

base for the life sciences. 

In contrast to other data models, network data models put high emphasis on 

connections and paths instead of entities. This is in accordance with data types in the 

life sciences and their research questions, where often relationships, associations or 

correlations between entities are of high interest, instead of the entities themselves. 

Especially the field of systems biology aims at understanding molecular processes, 

their interactions and impacts through the modelling of networks (Albert, 2007; 
Arrell & Terzic, 2010; Serra et al., 2019; Yan et al., 2018). But not only data that is 

commonly analysed or represented as networks is of advantage to be modelled in a 

network-based data model. Any correlation, association, data represented in a tabular 

format or as a matrix can be seen as a representation of a network and therefore 

easily be translated into a network data model. 
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In addition, graph representation of the data allows to analyse the data in addition 

with network-based metrics (chapter 4).  

5.1.1 Leveraging the Knowledge Graph Topology  

The individual data layers, combined data layers, subnetworks or the whole KG 

network structure can be used to gain insight into the data modelled in the KG. 

Centrality metrics (chapter 4) allow to identify the entities in the network most 

connected, which can indicate high relevance or importance with respect to the 

modelled data but also can suggest knowledge biases existing in the available data. 

For example, cancer is a highly studied disease which results in more data available, 

while a rarer disease has less data available and as a result will have weaker connected 

entities. However, in a phenotype centred KG this would not mean that these 

diseases are for example associated with less genes, chemical exposures or 

mechanism of actions but only that there is less knowledge available. Community 

detection on a KG can again be performed on a subgraph of the KG or the whole 

and can for example be used to identify similar entities or entities that have a strong 

correlation. In a clinical KG communities can be used to identify patients that are 

highly similar with respect to their diagnosis, treatment or epigenetics (Z. Chen et 
al., 2022). Path based metrics, such as shortest paths and random walks are often 

directly applied during querying to retrieve direct and indirect information about the 

query entity. 

Hidden Links 

Hidden links represent information that is contained across multiple data sources 

and points but only becomes visible when these data are integrated into a common 

system (Pavel, Saarimäki, et al., 2022). The network-based structure of a KG makes 

the identification of these hidden links visible due to showcasing them as paths in 

the network as shown in Figure 7, which can be queried directly by the user instead 

of performing complex joins across multiple tables as would be needed in traditional 

relational database models. 
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Figure 7   Shows the integration of data into a KG and how hidden links can become visible in 

a network data model. The figure is taken from (Pavel, Saarimäki, et al., 2022). 

Assessing Data Point Quality via Network Topology 

It is commonly accepted that with Big Data comes the risk of adding erroneous data 

points, however the general idea is that individual false data points are outweighed 

by correct ones (Pavel, Saarimäki, et al., 2022). In the life sciences the concept of 

true and false is less strongly defined, since for many insights numerous variables 

affect the results, ranging from the experimental setup to individual patient 

variability. The topology of the KG can help in accessing the quality and likelihood 

of individual entities and relationships. The underlying assumption is that similar 

entities should be close in the network, and therefore relationships can be scored 

based on how many similar entities they are connected to, which allows the 

identification of possible outliers, while entities can also be scored on their 

connectivity profiles as well as node and edge labels can be assessed or suggested 

based on the local surrounding information (Lao et al., 2011; Pavel, Saarimäki, et al., 
2022; Steenwinckel et al., 2022). 

5.2 Knowledge Graphs as Predictive Engines 

Data analytics and Big Data are often used as basis to make predictions about the 

world under investigation or future behaviours. A graph data model allows to make 

use of edge prediction algorithms as well as classical machine learning and prediction 

algorithms. Triangle closure or common neighbours is one of the simplest edge 

prediction algorithms. It assumes that if a node has a connection to two other nodes 

it is likely that these two other nodes also have a connection (Koutrouli et al., 2020; 
Leskovec et al., 2008). Through node/ graph embedding the graph space can be 

translated into a vector space (Grover & Leskovec, 2016; Pancino et al., 2022; Pavel, 
Saarimäki, et al., 2022; Steenwinckel et al., 2022). This allows to use classical vector-
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based machine learning approaches, such as logistic regression (Serra et al., 2020). 

One of the most common node embedding algorithms is Node2Vec (Grover & 
Leskovec, 2016), which is based on Word2Vec (Mikolov et al., 2013) and its Skip-

Gram model. The Skip-Gram model is used to estimate the probability of a word 

given another word and is trained over a specified window size on sentences. In 

Node2Vec sentences are replaced by random walks and the algorithm translates each 

node into a vector of dimension x, where nodes that appear more often on the same 

random walks are placed closer in space than nodes that do not appear on the same 

random walks (Grover & Leskovec, 2016). 

5.3 Examples of Knowledge Graphs in Toxicology, Chemical 

Safety and Drug Development 

KGs have been used in different stages of the drug/ chemical development and 

safety assessment process and shown their potential for a diverse set of tasks across 

various sets of data types (Al‑Saleem et al., 2021; Che et al., 2021; Z. Gao et al., 
2022; Mohamed et al., 2020, 2019; Nováček & Mohamed, 2020; Ratajczak et al., 
2022; Meng Wang et al., 2021; Zhankun Xiong et al., 2022; F. Zhang et al., 2021; R. 
Zhang et al., 2021; Y. Zhu et al., 2020). Many of these models are however based on 

single data sets or limited data types, due to the complexity and diversity of available 

data (chapter 3). KGs offer a framework that allows to investigate relationships 

between entities across a multitude of data layers, hence improving the insight and 

predictive power, by taking multiple views into account and reducing (possibly) 

existing data biases (Pavel, Saarimäki, et al., 2022). 

Drug drug interactions can have severe impact on a patient and are often only 

noticeable after a drug has been released on the market and taken by large numbers 

of patients. Predicting these interactions (positive or negative) in silico can be used to 

reduce potential harm to patients as well as to identify new drug combinations for 

successful treatments (Karim et al., 2019). Abdelaziz et al. (Abdelaziz et al., 2017) 

developed Tiresias, a framework built on the construction of a KG on which drug 

similarities are computed across different data types and the whole KG structure to 

predict drug drug interactions via logistic regression. MUFFIN (Y. Chen et al., 2021) 

combines drug structural information with bio-medical data, in form of a KG, to 

predict drug drug interactions, by converting both the KG and the graph structural 

representation of the drug into a vector space, which combined, is used in a classifier 

model.  Karim et al. (Karim et al., 2019) constructed a KG from different drug 
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related databases, such as DrugBank (Wishart et al., 2018) and PharmGKB 

(Whirl‑Carrillo et al., 2021) on which graph embedding is performed to transform 

the graph into a vector space which is used as input for a classification model. The 

approach of creating a KG, embed it and using a classifier model on the embedding 

vectors to perform a link prediction task has also been applied by Wang et al. (Meng 
Wang et al., 2021) to predict drug drug interactions but can be applied to many 

different tasks (Z. Chen et al., 2022; Z. Gao et al., 2022; F. Zhang et al., 2021) and 

currently is one of the preferred methodologies to learn from KGs in the life sciences 

(Pavel, Saarimäki, et al., 2022).  

The aim of drug repositioning is to re-use already existing and approved compounds 

for other applications. KGs have a large potential to integrate relevant data, ranging 

from drug structural information, protein targets, protein interactions, molecular 

processes to phenotypes on which drug repositing can be performed (Al‑Saleem et 
al., 2021; Zhankun Xiong et al., 2022; Zeng et al., 2019). In a KG this translates to a 

link prediction task, which can, for a specific relationship type, be translated into a 

binary classification task of relationship exists or does not exist. Especially for the 

prediction of COVID-19 drug repositioning candidates have KGs become popular 

(Al‑Saleem et al., 2021; R. Zhang et al., 2021)  due to their flexibility with respect to 

data diversity and availability as well as the computational models that can be added 

on top of them. Che et al. (Che et al., 2021) used available information about 

COVID-19 to add to their medical KG on which drug disease interactions are 

predicted via a graph convolutional network model. Ge et al. (Ge et al., 2021) 

constructed a virus centred KG, comprising drug target, virus drug, virus protein, 

protein interaction, drug similarity and protein similarity information on which drug 

candidates are extracted based on a graph convolution model. This information is 

further enriched with literature-based information, drug gene expression 

perturbation profiles, clinical trial data and molecular docking. KG-Predict is a drug 

repositioning framework which comprises KG construction, KG embedding and 

the scoring of relationships for a specific question (Vashishth et al., 2020). GraphPK 

(Zhankun Xiong et al., 2022) combines drug disease associations, a drug KG and 

drug structural information, which are all transformed into a vector representation 

and fed into a multimodal neuronal network for the prediction of drug phenotype 

pairs. Wang et al. (Shudong Wang et al., 2022) developed KG-DTI, Mohamed et al. 

(Mohamed et al., 2020) used an embedding based method and Thafar et al. (Thafar 
et al., 2020) developed DTiGEMS+, which combines node embedding of the KG 

via node2vec (Grover & Leskovec, 2016) with classifiers to predict drug target 

interactions from which possible drug repositioning candidates can be inferred.  
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As discussed in section 2.2.5, large amounts of data are generated during clinical 

trials, which can be pooled and analysed to produce new insights into drug 

combinations, drug interactions, drug repositioning candidates and drug adverse 

outcomes as well as can be used to perform virtual clinical trials (Zame et al., 2020). 

The Clinical Trials KG (Z. Chen et al., 2022) is a KG constructed based on clinical 

trial metadata and results, which can be used as a framework to design clinical trials, 

perform drug repositioning, based on the concept of similarity between the drug and 

phenotype entity in the KG, or identify similar entities, such as studies or 

phenotypes. All information retrieval on the Clinical Trial KG is based on its node 

embedding and estimating the cosine similarity between entities to score their 

“relatedness”.   

Chandak et al. (Chandak et al., 2023) developed PrimeKG, a KG that integrates 20 

data-sources, covering diseases and relevant relationships, such as pathways, 

biological processes and protein perturbations. PrimeKG is focused on disease sub-

typing and disease clustering, which can be used to identify the most suitable possible 

drug for a patient's disease-subtype, by leveraging known information in the 

knowledge graph about closely related phenotypes. 

Toxicity of chemical compounds is not only a concern when considering human 

exposure, but they are a risk for the environment and every living organism in it. 

KGs have been used to understand a compound’s influence on its environment 

(Myklebust et al., n.d.)  as well as to have all safety information about a compound 

readily available when needed in an integrated knowledge base (Zheng et al., 2021). 

These wide range of possibilities to analyse and learn from the data makes a graph-

based data model highly flexible, in addition to allowing analysis and prediction 

methods that are unique to a network-based data model. Further it allows to translate 

the whole network into a vector space, which makes it analysable with a wide range 

of methods coming from different research areas. In addition, the model makes it 

easy to generate sub-graphs which can be used to investigate specific problems and 

research questions, while the common data-model makes it re-usable and adjustable 

to other research problems, areas and hypothesis developments. However, the 

unique computational and data integration challenges have so far hindered the large-

scale development of KGs in the life sciences and mostly resulted in small scale KGs 

only including data tailored to specific analysis question (Pavel, Saarimäki, et al., 
2022). 
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6 AIMS OF THE STUDY 

Big Data and data analytics are being increasingly used in the life sciences, especially 

in the medical sub-fields. However, due to different challenges, such as non-

standardization and non-computational data representations, existing studies have 

been limited to specific use-cases and are based on limited data sources and data 

types. In my PhD, I investigated the possibility to integrate multidisciplinary data of 

different quality, standards and completeness by combining manual and automatic 

data curation processes. Here I present a highly flexible data model which can evolve 

with the data as well as showcases the usage of this integrated knowledge base across 

different use-cases. To showcase the applicability of the developed data model, 

different case studies from the field of toxicogenomic and drug repositioning are 

performed. However, the data model can be used for many different application 

scenarios and can be expanded or adjusted easily to other research domains if 

needed. 

 

1. Creation of a unified Knowledge Graph for drug and chemical safety. 

a. Proof of Concept that life science KGs with billions of data points 

can be created across a multitude of data types, data sources and 

data standards for its application in chemical safety and drug 

development. 

 

2. Development of computational methods adapted to computational 

aided toxicology research. 

a. Metrics that can be used to analyse and compare biological 

networks as well as to be applied on the data layers of the KG or 

in combination with data extracted from the KG. 

 

3. Application of the KG to drug development, drug repositioning and 

toxicology research. 

a. Showcase the versatility and applicability of the KG in compound 

centred case studies. 
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7 MATERIALS AND METHODS 

7.1 The Unified Knowledge Space 

The Unified Knowledge Space (UKS) is a bio-medical knowledge graph created to 

contain a diverse set of publicly available data sets as well as specifically created 

experimental data, which allows its application in many different areas, such as for 

drug repositioning, compound discovery, PPI prediction, data retrieval and entity 

mapping, phenotype grouping, as well as to understand underlying molecular 

processes in depth. The data types and sources integrated into the UKS are listed in 

Table A 1.  

The different data sources integrated can contribute to the entity layer, indicating 

that these sources contain information regarding a specific entity only. This data is 

modelled in the data model as a node and its attributes. The data sources can also 

contain data with respect to relationships between the same entity type, such as 

protein protein interactions, which are modelled as relationships in the data model. 

Lastly data sources can contain information of both layers and between different 

entity types and/ or different relationship types. Their data is modelled as both nodes 

and relationships in the later described data model (Figure 10). The different types 

of information and layers, data sources can contribute to are depicted in Figure 8. 
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Figure 8  Describes different types of information and the data layers they can contribute to.  Data types 

only containing entity information (data source X, coloured pink) contain data modelled as nodes and their 

attributes in the UKS, data sources containing data contributing to the relationship layer (data source Y, 

coloured green) contain information about the relationships of two entities, which may or may not be of the 

same type. Lastly data sources can contribute to both layers (data source Z, coloured red and yellow) by 

containing entity specific information as well as information about the relationships between two entities. 

7.1.1 Technology 

The database management system behind the UKS is Neo4j4. Neo4j has been 

selected over other available database management systems, mainly due to being one 

of the biggest providers of an open-source graph database system in addition to 

having a large active community. Additionally, Neo4j provides a “start-up” program, 

which allows access to the commercial tools and database management system for 

smaller enterprises and research usage. However, the UKS is of such a scale that the 

commercial visualization tools are not suited to its size and the database management 

 
4 neo4j.com 
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system features coming with the commercial license mostly span enterprise 

dependent features, such as extensive user and permission management, which are 

not needed in the way the UKS is deployed for internal research purposes only 

(Figure A 1). Therefore, the UKS is deployed in the freely available Community 

edition5. The UKS was firstly deployed in Neo4j 3 and upgraded with the 

development of Neo4j to Neo4j 5 over 4. To start, stop, move and be system 

independent, the UKS is deployed via Docker Containers (Merkel, 2014), which 

allows to run the UKS detached from the deployment server, scale hardware usage 

on demand and move the image between computing infrastructures as needed.  The 

system architecture hosting the UKS is displayed in Figure A 1.  

Querying and adding data are performed via Python’s py2neo package6  by sending 

the Cypher commands directly to the connected Neo4j database. Cypher is Neo4j’s 

query language, which syntax is based on SQL (Structured Query Language) and 

natively models the graph structure. Examples of Cypher queries are displayed in 

Figure 9. 

 

 
Figure 9  Cypher queries with their graph and textual representation. Figure taken from (Pavel, Saarimäki, 
et al., 2022). 

 
5 neo4j.com/licensing/ 

6 https://py2neo.org/v4/index.html 
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7.1.2 Data Model 

A simplified data model of the UKS is displayed in Figure 10. The data model is 

created to be flexible, highly adjustable as well as performance orientated for the 

most common use cases. Therefore, any parameters that are common between 

multiple entities and are non-numeric are modelled as nodes and the same applies to 

entities. Each node is labelled with at least one label and sub-labels are attached if 

possible. These labels can increase node search performance, human readability of 

the graph and encode information about sub-types or the hierarchical relationship 

between entities.  

Whenever possible numeric data is transformed into categorical data to allow the 

integration into the graph data model, which allows the matching and re-use of these 

data-points. For example, patient age is mapped to age groups and expression data 

is classified for each dataset into expression categories of LOW, MIDDLE, HIGH 

and NOT EXPRESSED based on the DFP (Discriminant Fuzzy Pattern) method 

(Glez‑Peña et al., 2009). Especially for expression data this allows the re-use and 

comparability between datasets, since the count values on their own are highly 

affected by technology and environmental factors (Federico et al., 2020).  

Relationships between entities are modelled as directed edges. Due to technical 

restrictions of Neo4j each edge must be direct. To avoid adding duplicate edges for 

bi-directional relationships, each edge is fitted with a Boolean parameter indicating 

if the edge needs to be interpreted directional or bi-directional. Each edge is of a 

specific type and no sub-types can be added due to restrictions of the database 

management system. 

Every node and edge are fitted with parameters, which provide at least identifiers of 

the entity and for relationships the source of the relationship. Any further unique edge 

or node data are added as attributes. When multiple commonly used identifiers exist 

for an entity, such as gene Ensembl ID (Cunningham et al., 2022), gene Entrez ID 

(Maglott et al., 2011) and gene symbol, all identifiers are added, when possible, to an 

entity, while one of the identifiers is selected as the main identifier used in the UKS 

and the others are mapped towards it. These node identifiers can be used to map 

between different terms for the same entity when the UKS is used as a knowledge 

base, as well as simplify the integration of data sources into the UKS by allowing the 

use of multiple identification systems (when applicable). The edge source attribute can 

be used to signify the strength of the relationship or filter for relevant source data 

points as well as provides transparency into the origin of the data point. 
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In addition, the UKS is used to manage experimental meta-data for experimental 

datasets. Such data is for example gene expression counts (Federico et al., 2020; 
Kinaret, Serra et al., 2020) or fold changes of an exposure (Federico et al., 2020; 
Ritchie et al., 2015). This data is stored on a file storage, since these are data points 

that need to be processed differently depending on the use-case and therefore not 

suitable to be stored in a graph data model. However, the UKS manages the metadata 

and points to the relevant file locations, so that search queries for experimental data 

of specific conditions can be performed within the UKS.  The complete data and 

system infrastructure of the UKS is displayed in Figure A 1. 

Node labels and edge types are created custom as needed and if possible existing 

labels and types are used. Each edge is allowed to be of one type only, while nodes 

can have multiple labels, as restricted by the database management system. This 

functionality is used to add additional information or hierarchical order into the 

nodes, as well as to increase query performance. For example, all genes or gene 

products are of type GENE, while additional information on the type of gene 

product is added with additional labels, such as PROTEIN CODEING, 

PSEUDOGENE or miRNA. Table A 4 and Table A 5 list all node and edge types 

currently available in the UKS, while Figure 10 showcases different node labels and 

their sub-labels in a simplified data model. 

While the data modelled in the UKS is human centred, it contains information of 

multiple different organisms, such as common modelling organisms like mouse and 

rat. Organism specific nodes, such as genes or organism specific pathways are linked 

to their corresponding organism node, as displayed in Figure 10. For genes, 

information about the relationships between human genes and a model organisms' 

genes, such as homologous information are added, which allows to infer knowledge 

across species. 
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Figure 10   Simplified data model of the UKS. In-node labels denote different sub-labels of the 

main node types, which are displayed in bold outside of the node. 

Technical Attributes 

Most node and edge attributes in the UKS contain node and edge specific 

information extracted from their corresponding data source. However, there are a 

few identifiers that are used for data transparency, performance, and purely technical 

reasons. Each node and edge have a unique identifier (ID), automatically created by 

Neo4j, which is used by Neo4j to manage the data, but can be used to identify the 

same node and edge even if their name has been updated or to improve querying 

performance in complex queries, due to the natively implemented fast lookup 
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structure of the ID attribute. On creation of each node and edge, a created attribute is 

set on them, which contains the timestamp of its first creation. This, in contrast to 

the ID attribute, is not a default attribute, but instead has been defined in the data 

model to keep track of creation dates.  The already described Boolean directed edge 

property is an attribute defined in the data model, used to describe how the 

directionality of an edge needs to be interpreted by the user. Due to the technical 

restrictions of only allowing directed edges in Neo4j, this attribute can be used 

instead of adding a bi-directional edge twice. Another custom defined attribute used 

for data transparency is the source attribute contained on each edge. This edge 

attribute is a list and every time an additional source, supporting the same edge is 

added, its origin source is appended to the source list attribute. This attribute preserves 

transparency of each relationship data point by allowing to trace it back to its original 

data source(s). In addition, this allows to evaluate an edge based on its source 

support, which can be an indication of its quality or research interest. 

Indexing to Improve Query Performance 

Database indices are data structures stored and maintained by the database 

management system to improve querying speed by improving lookup. Neo4j 5 

introduced different indexing types, from the previously binary search trees7. 

LOOKUP indices on node labels and edge types are natively maintained, while 

indices for node/edge attributes need to be defined in the data model. Maintaining 

multiple, especially text-based indices, can increase the database size significantly, 

since a separate search structure needs to be maintained.  Decisions on if an index 

and what type of index should be created for an attribute in the UKS have been 

made based on the expectancy of queries on a specific attribute. The offered indices 

in Neo4j 5 are RANGE index (operate for existence search, equality search, range 

search, prefix search and list search), LOOKUP index (solve node label and edge 

type, present by default), (full) TEXT index (operate on strings for contains and 

suffix searches) and POINT index (only operate on points, not applicable to the data 

in the UKS)8. If multiple indices are available the system will automatically decide 

which index to use, based on the statement it must solve. TEXT indices are preferred 

for CONTAINS and ENDS WITH Cypher statements, POINT indices for distances 

and in all other cases RANGE indices are selected when available. The default 

 
7 https://neo4j.com/docs/operations-manual/current/performance/index-configuration/ 

8 https://neo4j.com/docs/cypher-manual/current/indexes-for-search-performance/ 
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LOOKUP indices are applied for node label and edge type searches 9. The created 

indices, together with their expected search queries are listed in Table A 2. 

7.1.3 Data Integration 

The goal of the data integration process is to link data from different sources, be able 

to uniquely identify entities as well as to avoid duplicate entries. In the UKS the data 

integration process focuses on entity recognition, while edges of the same type 

between the same nodes are updated with the additional supporting sources and 

edges of different types are added as a new relationship. 

Whenever possible, established identification systems are used, however for many 

entities no widespread identification system exists. In these cases, custom identifiers 

have been created. For entities where multiple established identification systems 

exist, one is selected as the main identifier and other identifiers are added as far as 

possible. The main system is selected based on if there are automatic mapping and 

search tools or APIs (application programming interface) available as well as based 

on if an identifier is more commonly used in the local research community. The 

entity recognition challenge is further complicated by the fact that for many entities 

there is no complete 1 – 1 mapping between identifiers, such as for genes or 

phenotypes (chapter 3). In Table A 3 the different entities and the selected 

identification systems are listed for the main node types in the UKS. 

Entity Mapping 

Entity mapping is performed based on a mix of manual identification, external 

engines and custom developed pipelines. Gene products are mapped to Ensembl 

Gene IDs via the mygene API (C. Wu et al., 2013). Phenotypes are mapped to NCBI 

Concept IDs via the NCBI MedGen API (Sayers et al., 2022) based on their names 

and for terms not found, a broader matching via a custom NLP based pipeline, based 

on Python’s NLTK API (Bird et al., 2009) or created software (Di Lieto et al., 2023) 

is used. Chemicals are mapped to NCBI PubChem CIDs or SIDs via the NCBI 

PubChem API (Kim et al., 2023) based on their name or SMILES. Unique sets, such 

as pathways (Jassal et al., 2020; Kanehisa et al., 2017; Martens et al., 2021), Gene 

 
9 https://neo4j.com/docs/cypher-manual/current/indexes-for-search-performance/ 
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Ontology terms (Ashburner et al., 2000; The Gene Ontology Consortium, 2021), 

gene sets (Liberzon et al., 2015) or Adverse Outcome Pathways10 (Saarimäki, 
Morikka, et al., 2023) are identified by their origin system identifiers, since they are 

unique sets created by the source system. Non standardized terms, such as tissues 

and cell types are identified with custom defined naming. 

Due to the complexity and non-standardized way of entity identification in the life 

sciences, the entity identification process is not 100% and some entities cannot be 

identified or are mapped to the wrong entity.  When identified, errors in the mapping 

are corrected manually and entities not mappable are discarded or added manually 

based on their origin and quality. Further users can submit possible detected errors 

in the UKS, which are manually corrected if confirmed. Possible suspect edges or 

entities are flagged in the UKS and a description is added, so that other users are 

informed and when more information is available a decision about the quality can be 

made. For example a phenotype, identified by an established ID system, but cannot 

be mapped to a term in NCBI MedGen (Sayers et al., 2022) will be added based on 

its name and alternative ID, if the alternative ID is an established identification 

system, such as Human Phenotype Ontology (Köhler et al., 2021) terms or KEGG 

disease (Kanehisa et al., 2017) terms, since it is assumed that the entity can be found 

and mapped in the future to other sources. However, a phenotype, identified by a 

custom name created by the source author will be discarded, since it cannot be linked 

to other sources or information and therefore on a large scale will not add 

information to the UKS. 

Version Control 

When updated versions of already integrated data sources are added to the UKS, 

their old data is not removed but rather the new version is added as a “different 

source”. This means that for example on a KEGG (Kanehisa et al., 2017) update, 

any relationships added with the current KEGG version are added as any other new 

data source and the source identifier, added on each relationship, reflects the KEGG 

version. This allows the user to filter their queries based on which version they are 

interested in, but also to retrieve older identifiers and associations. For example, GO 

(The Gene Ontology Consortium, 2021) terms may be removed or updated in a new 

release, however there are many other data available which use GO identifiers or link 

 
10 aopwiki.org 
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knowledge to these identifiers. These external sources may not be updated at the 

same time, if they are. So, by removing non-current identifiers from the UKS, the 

UKS would lose any other information linked to these identifiers. By adding version 

information instead, it allows to retrieve old and new information at the same time, 

while the user can evaluate the version information and make decisions based on 

available data and their use-case. 

7.1.4 Data Retrieval 

Data points can be retrieved from the UKS as sub-networks of the UKS, which can 

be networks directly contained in the UKS or inferred from the UKS. Individual data 

points can be queried based on relationships between entities and in addition entity 

specific information can be retrieved from the node attributes. These data can be 

used to describe an entity or relationship further but is not linked to a different entity 

in the UKS (Figure 11A). Such data points are for example alternative node 

identifiers or the edge source attribute from which the origin of each relationship can 

be traced (Figure 11B). 

 
Figure 11   A) Example of a GENE entity node in the UKS and some of its attributes, which 

provide further information about the node. B) Example of a P_P_INTERACTION edge in the UKS and 

some of its attributes.  
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Robust Single Layer Network 

A single layer network only contains one type of data between two entities, which 

may or may not be of the same type. The relationships between the entities can come 

from one data source or multiple data sources. When multiple data sources are 

available, this information can be used to extract robust networks. An example of a 

single layer network would be the protein protein interaction data layer in the UKS 

(Figure 12). 

 
Figure 12   An example of a homogenous node and edge network, showcasing the protein protein 

interaction layer in the UKS. 

Source Support Global Threshold 

Robust edges can be extracted based on a global threshold. This threshold states 

how many sources need to support a data point (relationship) for it to be considered 

“TRUE” and to be kept in the final network (Figure 13).  

This method works well when data source availability is equally distributed across all 

entities. In case there is a data availability bias, this method may enforce the bias 

further by discriminating against entities that have less data available or are less 

researched in general. In this case a local threshold may be more appropriate. 
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Figure 13   Extraction of a robust network from the UKS based on a global threshold. The edge 

weight indicates its strength of the relationships. 

Source Support Local Threshold 

When a local threshold is applied to cut edges, a source support score is calculated 

for each node independently. This can for example be the mean, median, minimum, 

or maximum number of sources supporting all edges of a node. This method reduces 

data availability/ research bias, since for each entity the score (number of sources to 

be considered a “TRUE” edge) is determined independently (Figure 14). 
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Figure 14   A robust network is extracted based on local (per node) estimated edge weight 

thresholds. In the example for each node only the edges with at least the maximum edge weight of all the 

edges connecting to that node are considered. An edge is kept if this is true for at least one of the nodes 

connected by the edge. The values in the nodes indicate the computed local edge weight threshold for that 

node. 

Multi-dimensional Network 

A multidimensional network combines information of different data types, which 

can be in a homogeneous or heterogeneous node network. The extracted multilayer 

network can also be transformed from a heterogeneous to a homogeneous network. 

 

Homogenous Network 

A homogeneous multilayer network contains different relationships between one 

type of entity (Figure 15). Many network analysis algorithms expect only one type of 

edge between entities, so it may be advisable to merge the different layers into a 

single layer. This can be done by creating for each data layer a weighted network, 

where the score represents either a defined edge weight or for example the source 

support score of the edge. The single layer networks can either be directly cut as 

described previously or cut after the individual layers have been merged. Cutting 

after merging allows to keep edges that may not have made the cut in the individual 

networks but when combined are scoring high enough to be considered. Which 

strategy to employ depends on the analysis to be performed. The individual layers 

can be merged by either summing, averaging (or any other metric) the single layer 

scores or using the number of layers present as total score. The resulting network 

can be cut globally or locally (section 7.1.4), depending on the data and planned 

analysis. 
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Figure 15   Example of a multilayer network in the UKS, combining multiple edge types and node 

types. Grey) a network of the same node type connected by different edge types. Green) a network 

connecting different node types by the same edge type. Blue) a network combining different node types 

connected by different edge types. Entity and relationship types are indicated by their node and edge colour 

respectively.  

Heterogenous Network 

A heterogenous multilayer network contains (different) relationships between 

different entity types (Figure 15). If from a heterogeneous multilayer network, a 

robust heterogenous multilayer network needs to be extracted, the same merging and 

cutting methods as described earlier can be deployed. In case the heterogenous 

network information needs to be transformed into a homogenous network, the to 

be extracted edges are not directly contained in the data but are calculated based on 

for example paths in the graph. So can for example edges be created between entities 

of the same type based on how many common neighbours of a different type they 

have, or what the shortest path distance between them is in the graph or a specific 

data layer. Once the heterogenous network has been transformed into a homogenous 

network the same merging and cutting principles as described earlier can be applied. 

The same can be applied when multiple heterogenous networks are transformed into 

a homogenous network in order to be merged. 



69 
 

Path Based 

Relationships can be directly retrieved from the UKS to provide information to 

which other entities a specific entity is linked. Data points can be retrieved from the 

UKS, that are not directly the result of individual data sources but only visible 

through their representation as a graph. These data points can be retrieved based on 

meta-paths, which are paths in the network where the to be visited edge/ node 

(types) are defined. Figure 16 displays a Cypher query stating the node and edge types 

to be visited to retrieve a possible drug for the treatment of a disease by specifying 

that the drug target needs to be associated to the disease. 

 
Figure 16   Path based data extraction in the UKS. The example showcases a Cypher query stating 

the node and edge types to be visited to retrieve a possible drug for the treatment of a disease by specifying 

that the drug target needs to be associated to the disease. 

Entity Based 

Entity based data extraction, focuses on the data stored in an entity's node properties. 

These are datapoints only applicable to the individual entity and not in relationship 

with other entities. Such data can for example be alternative names or identifiers. 

These queries are especially helpful when a mapping engine between different 

identification systems is needed, such as from Ensembl Gene IDs to gene symbols 

or additional entity information is requested, such as SMILES for a chemical 

compound (Figure 11A).  



70 
 

7.2 Intermediate Genes – Identifying Relevant Non-Measured 
Genes 

Transcriptomics or differential gene expression analysis only allows to identify 

relevant gene products at a specific point in time. Therefore, not all gene (products) 

taking part in a molecular process can be identified. PPI networks, gene regulation 

networks or similar gene gene networks contain possible cascades of involved gene 

(products) in a molecular process. With network analytical methods these hidden 

intermediate genes can be identified. 

In publication I all shortest paths between two sets of genes are computed with the 

Python NetworkX API (Hagberg et al., 2008). Paths of size 1, i.e., where there exists 

a direct link between two genes of the different sets are excluded, so that only paths 

with at least one connecting intermediate gene are considered. To determine 

statistical significance of the newly identified intermediate genes a hypergeometric 

test is performed, comparing the frequency of the gene being an intermediate gene 

between all shortest paths in the gene network against the frequency of being on the 

shortest paths between all gene pairs of the two compared sets. The hypergeometric 

test is performed with Pythons SciPy API (Virtanen et al., 2020) and the p-values are 

corrected for multiple testing with the Benjamini Hochberg method (Benjamini & 
Hochberg, 1995) from the statsmodels Python API (Seabold & Perktold, 2010). 

Figure 17 showcases the shortest path based intermediate gene identification 

method. This metric can be performed on any gene network of relevance to the 

research question and can further be applied to other homogeneous or 

heterogeneous networks. 
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Figure 17   Shows how intermediate nodes (genes) can be identified on a network via shortest 

paths. A) Node set 1, can for example be genes known to directly interact with a compound. B) Node set 2, 

can for example be genes measured as differential expressed in an exposure study. C) Nodes on the shortest 

paths between node set 1 and node set 2, this can for example be genes propagating the signal from the 

directly targeted genes to the measured genes. These genes can provide further insight into the molecular 

processes taking place. 

7.3 VOLTA – Network Analytics & Multi Network Clustering 

Publication II VOLTA is a Python package, providing necessary functions for the 

analysis and comparison of biological networks, with a focus on gene co-expression 

networks (Marwah et al., 2018; Pavel, Serra, et al., 2022). The aim is to provide a 

highly flexible and modifiable package, which in contrast to comparable resources is 

not limited by a graphical interface, which makes it easily useable for other types of 

analysis or networks, such as can be extracted from the UKS. For each possible 

analytical step, VOLTA tries to provide different available algorithms and consensus 

strategies (where applicable) to allow users to fully customize their analysis. By 

building on basic Python objects and established Python APIs (such as NetworkX 

(Hagberg et al., 2008)) for function input and output, the user can further add their 

own algorithms or analysis steps in-between, without needing to perform complex 

transformations of the input and output object types. 

The aim of VOLTA is not to re-implement algorithms for which already established 

Python APIs exist, but rather to make use of their open-source and community 

availability and integrate their API calls into VOLTA. Algorithms without a suitable 

implementation are implemented based on their corresponding publication. In 
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addition, VOLTA also provides ready-made analysis pipelines, which can easily be 

modified or used as is, to allow the usage of VOLTA through inexperienced users. 

7.3.1 Comparison of Drug MOA via Network Analysis 

Gene expression data is retrieved from the Lincs 1000 Gene Expression Omnibus 

(GEO: GSE70138). The gene co-expression networks are computed with INfORM 

(Marwah et al., 2018), with the selected inference algorithms of CLR (Faith et al., 
2007), ARACNE (Margolin et al., 2006)  and MRNET (Meyer et al., 2007, 2008), 

based on all available correlation and mutual information metrics as implemented in 

the R minet package (Meyer et al., 2008). For the case study the A549 cell line treated 

with dasatinib and mitoxantrone at 10 μm and 24 hours are selected. 

Differential Centrality Analysis 

Different node centrality metrics are calculated for each network, the nodes are 

ranked for each individual centrality measure (degree, closeness and betweenness 

centrality) and a median rank across all centrality metrics for each node is estimated 

with volta.distances.node_edge_similarities.sort_node_list(). The rank difference for the 

same node (gene) between two networks is estimated and the nodes are ranked by 

their difference in ranks. This allows to identify genes, which network position and 

therefore their importance in the gene network, are strongly altered by the 

condition(s) under investigation. 

Comparing a Nodes Neighbourhood 

Random walks are a method often employed to characterize local network structures. 

In densely connected structures, random walks will rarely leave the neighbourhood 

while in looser structures the walks are more likely to explore further distant areas. 

Characterizing a nodes neighbourhood allows to identify genes likely connected to 

the same molecular function. When comparing the change in neighbourhood 

between two networks/ conditions, this can help in identifying if the same molecular 

processes or different ones take place. 

For each node in the network 10 * node degree random walks of length five are 

computed with volta.example_pipeline_wrappers.get_walk_distances.helper_walks(). The 

large number of short walks increases the accuracy of characterizing the explored 



73 
 

nodes neighbourhood. For each starting node the visited nodes are counted and 

ranked based on their occurrence with 

volta.example_pipeline_wrappers.get_walk_distances.helper_get_counts(). To compare the two 

networks a Kendall rank correlation for each node between its ranked visited nodes 

across the networks is estimated. 

Comparing Networks via Their Communities 

Different algorithms perform differently, extract communities based on different 

parameters and in result the community structures for the same network can vary 

strongly. While there are metrics to estimate how “good” an identified community 

is, there is no established algorithm which is considered best on biological networks 

in general. Therefore, VOLTA provides a consensus strategy, which takes as input 

different community partitionings and computes a consensus. The consensus 

partitioning is computed with volta.communities.fast_consensus() and the individual 

communities are functionally enriched via the Panther Enrichment API (Mi et al., 
2021) for Reactome pathways (Jassal et al., 2020). 

7.3.2 Grouping Networks Based on Network Metrics 

The networks are created the same way as described in the previous section. For this 

case study 20 cell lines, treated with 10 μm dasatinib for 24 hours are selected. The 

available 20 cell lines are listed in Figure 26. 

The networks are clustered based on their node similarities, edge similarities, 

topological similarities and subgraph similarities. The whole pipeline is displayed in 

Figure 18. 
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Figure 18   Clustering pipeline available in VOLTA. Image taken from publication II. 

Node Similarities 

For each network their node centrality scores are estimated and the Kendall Rank 

correlation between the ranked nodes for each network pair is computed with 

volta.example_pipeline_wrappers.get_node_similarity.estimate_similarities_nodes(). The so 

resulting correlation matrix is transformed into a distance matrix with distance d = 

(1-correlation)/2. Since the investigated networks are all made of the same nodes, 

distance metrics that are based on the number of shared nodes are not computed.  

Edge Similarities 

Next the similarity for each network pair is computed for their edges, based on edge 

betweenness scores and their overall overlap of edges. The investigated networks are 

binary, so all edges are of equal weight. With 

volta.example_pipeline_wrappers.get_edge_similarity.estimate_similarities_edges() the Jaccard 

distance (Jaccard, 1908), Hamming distance  (Hamming, 1980), simple matching 

coefficient distance as well as the fraction of edge overlap between each network pair 

is computed. In addition, the Kendall Rank Correlation based on the edge 

betweenness scores for the top 100 edges between each network pair is calculated. 

Non distance matrices are again transformed into a distance matrix and if necessary, 
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scaled to be in [0,1]. The individual distance matrices are combined into a consensus 

matrix with volta.clustering.create_median_matrix(). 

Topological Similarities 

For each network a feature vector based on different topological measures is 

computed with 

volta.example_pipeline_wrappers.get_network_structural_vector.estimate_vector(), which 

computes  graph radius, diameter, number of nodes and edges, density, average 

clustering, fraction of existing and non-existing edges, number of cycles, cycle size 

distribution, shortest path distribution, clustering coefficient, degree distribution, 

closeness centrality distribution and betweenness centrality distribution. For each 

network pair the Euclidean, Canberra, correlation, cosine and Jaccard distance are 

estimated with 

volta.example_pipeline_wrappers.get_network_structural_vector.matrix_from_vector() and 

combined into a single distance matrix with volta.clustering.create_median_matrix(). 

Substructure Similarities 

For each node random walks are performed, and their neighbourhoods compared as 

described in section  7.3.1 (Comparing a Nodes Neighbourhood) with walk length 

five and 3*node degree walks per node. For each network pair the visited nodes and 

edges for the same starting nodes are ranked by their occurrence and the Kendall 

Rank correlation is estimated. The resulting matrices are transformed into a distance 

matrix and combined into a consensus matrix. 

Clustering 

On each of the four resulting distance matrices K-mediod 

(volta.clustering.kmedoids_clustering()), Affinity propagation 

(volta.clustering.affinityPropagation_clustering()) and hierarchical clustering 

(volta.clustering.hierarchical_clustering()) are performed. Where applicable parameter 

selection is performed with volta.clustering.multiobjective(), which is set to prioritize 

within cluster similarity, maximize between cluster dissimilarity and favour an even 

cluster size distribution. For the selected parameters, algorithms relaying on 

randomness are run 10 times, non-randomness-based algorithms are considered 10 

times to avoid biasing the final consensus clustering towards one algorithm. The 
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consensus clustering is computed with volta.clustering.consensus_clustering(), which builds 

an agreement graph between the individual cluster groupings, removes weak edges 

and performs community detection x (x=10) times. This process is repeated until it 

converges, or the maximum number of iterations is reached. Weak edges can either 

be identified based on a set threshold or automatically be determined based on 

permutations of the adjacency matrix. 

7.4 Grouping of MOA Across Systems and Data Sets 

Publication III KNeMAP is a method, available as a Python module, which is aimed 

at comparing and clustering gene expression data. Due to its dependence on a multi-

dimensional and expression data independent prior network, it is more robust to 

noise in comparison to alternative methods and can be used across data sets and 

technologies.  

7.4.1 Extraction of a Homogenous Multilayer Network 

The aim of the prior network is to be an independent robust data source, describing 

how similar genes are across different data types. For this individual data layers 

between gene entities in the UKS are extracted, in addition to multidimensional 

heterogenous networks, which are transformed into homogenous networks, as 

described in section 7.1.4 (Multi-dimensional Network). Each individual network is 

a weighted network. The networks resulting from a single layer in the UKS are 

weighted based on their source support score (section 7.1.4 (Robust Single Layer 

Network)), the generated homogenous networks from the heterogenous networks 

are weighted based on the number of common neighbours two entities share. To 

avoid biasing the final prior network by the availability of similar individual networks, 

the individual networks are first evaluated based on their similarity of existing binary 

edges. The distance matrix between the individual data layers is computed with 

VOLTA (publication II) based on a Jaccard distance, Simple Matching Coefficient 

and the fraction of shared edges. The individual distance matrices are combined into 

a single distance matrix as described in section 7.3.2. Hierarchical clustering is 

performed on the final distance matrix with SciPy’s python API (Virtanen et al., 
2020). The individual layers in the so detected clusters are merged first. Each network 

in a cluster is scaled to all have the same median edge weight and summed up. The 

same process is performed between the so resulting cluster networks, which results 

in the final multilayer prior network. 
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7.4.2 Detection of Similar Genes 

The prior network is partitioned with the publication II VOLTA API 

(volta.communities.agglomerative). The agglomerative network partitioning algorithms has 

been selected due to its ability to yield multiple small communities, which in this case 

are preferred to keep the specificity of the grouped genes. 

7.4.3 KNeMAP Vector 

Publication III KNeMAP maps the x most deregulated genes of an exposure against 

the prior network communities. For the case study x=200 is selected, which keeps 

the specificity of an exposure but allows to identify similarities between them. For 

each community, the fraction of deregulated genes falling into it, is computed and 

the scores for all communities are combined into a feature vector describing the 

exposure.  

Noise Analysis 

To showcase the noise robustness of the KNeMAP vector against other metrics, 

different levels of noise (0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) are added to 

the raw gene expression values. In a second experiment the selected x most, 

deregulated genes are perturbated with the same noise levels. For each noise level 

the difference between the newly created vector and the baseline vector (noise = 0) 

is measured across all available exposures. The median distance is computed, and the 

difference measured via the area under the curve (AUC). 
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8 RESULTS 

8.1 The UKS as a Robust Multidimensional Data Source for Data 

Retrieval, Knowledge Linkage and to Support Transcriptomic 

Analysis  

The UKS is an integrated data source, comprising to date 83 independent data 

sources, 13.3 million nodes and 1.02 billion edges. Each node and edge contain 

additional data points unique to the entity or relationship. This makes the UKS 

comprise approximate 3.3 billion data points in total, which can directly be accessed 

via nodes and edges (Table A 4 and Table A 5). In addition, approximately 600 

million data points (Table A 6) are stored in the file storage (Figure A 1) managed by 

the UKS. The data point estimate, however, does not include data points stored 

indirectly in the graph via paths or hidden links, hierarchical node relationships 

contained on the node labels, as well as the data that can be extracted by viewing an 

individual entity with respect to the whole system or the surrounding entities, such 

as node centrality measures or network communities (chapter 4). These dimensions 

add another multiple billion indirectly modelled data points to the total number of 

data points in the UKS. The dimensionality of data points stored in the UKS is 

showcased in Figure 19. 

 
Figure 19   Dimensionality of data points stored in the UKS. 

Data integration is performed successfully for the 83 data sources. The data 

integration tasks consist mainly out of two main tasks, entity identification and 
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mapping as well as relationship classification. Entity identification and mapping is 

performed mainly via external APIs, as listed in Table A 3. Gene (product) entities 

are mapped between identifiers, such as gene symbols, Entrez Gene ID (Maglott et 
al., 2011) or Ensembl Gene ID (Cunningham et al., 2022) via the mygene API (C. 
Wu et al., 2013). The usage of Ensembl Gene ID allows to add the exact loci of each 

gene as additional attributes to the entity in the UKS, making the entity, while 

identified by the assigned ID, independent from its name but based on its physical 

location. This contrasts with for example gene symbols. In addition, the Ensembl 

platform provides itself an easy to access API, which provides additional information 

about genes, such as location or alternative identifiers, which are all data points added 

to the entity nodes in the UKS. In the UKS all gene (products) are modelled as gene 

nodes, identified by their Enesmbl Gene ID, meaning that for example proteins are 

mapped to their corresponding gene. This decision has been made to simplify the 

data integration problem but implies that for example protein protein interaction 

data is mapped to the corresponding genes and some information is lost during the 

integration stage. However, the data model would allow to add protein nodes as 

separate node types if this is required in the future. The usage of established ID 

systems for gene (product) information is wide-spread and therefore most entities 

can be integrated into the UKS. Further there is not always a 1-1 mapping between 

gene identifiers available, in such cases multiple data points are added to the UKS / 

multiple data points are merged to one based on the corresponding Ensembl Gene 

ID, which has been selected as the UKS gene (product) identification system. For 

example, if protein protein interaction data is integrated, which contains interactions 

between proteins which are all mapped to the same GENE entity in the UKS then 

a self-edge is added to the UKS but the detailed information interactions between 

the proteins is simplified in the UKS representation. 

Chemical compounds are identified by their PubChem CID or SID (Kim et al., 
2023) and are mapped to these via the PubChem API either based on the name 

provided by the source system or their chemical structure represented as SMILES. 

PubChem is one of the largest chemical databases available and has been selected as 

the UKS reference system for chemicals and drugs due to its easy to use and highly 

accessible API, which allows the automation of the integration task, as well as 

provides additional information about entities, such as alternative identifiers or 

PubChem fingerprints. Chemical substructures are identified and mapped based on 

their SMILES representation. Well defined compounds, such as approved drugs are 

in most source systems easy to map via the PubChem API, even when represented 

with a name instead of a standardized identification system or their structural 

information. As a secondary system for drugs, DrugBank IDs are used and for 
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compounds which are not in PubChem, such as engineered nanomaterials, custom 

naming as well as physical properties are used, since for these compounds not only 

the chemical makeup but also its engineered structure matters for their identification. 

The usage of PubChem IDs and the definition as drugs as a sub-label of chemicals, 

indicates that drugs of different manufactures but the same core-chemical 

composition will be added as the same CHEMICAL entity in the UKS and therefore 

some manufacturing or country specific information may get lost in the integration 

task. Most compounds are identifiable based on this method, however for some 

entities no match can be found, which often is a result of custom compounds used 

in a source system. Such compounds are often not available or a result of small 

modifications of existing compounds. If a compound can't be identified it is 

discarded based on the assumption that (custom) compounds are unlikely to appear 

in future source systems and therefore are not linked to future information, which 

does not contribute to the information in the UKS on a global scale. 

Phenotypes are identified in the UKS based on their NCBI MedGen Concept ID 

(Sayers et al., 2022), which are when possible mapped via the NCBI MedGen API. 

MedGen, similar as PubChem has been selected due to its easy-to-use API, which 

can translate most similar phenotype terms to an entry in its database. Additionally, 

it is a large database for which the API also returns additional information about a 

Phenotype, such as alternative IDs, such as Orphanet IDs or HPO IDs (Köhler et 
al., 2021) . Phenotypes are, out of the entities mainly identified via external APIs, the 

most challenging to integrate and the entity type experiencing the most loss. The 

main reason for this is that Phenotypes are usually reported as text, as well as that 

the classification granularity and disease naming is highly subjective and language 

dependent. Therefore, this is the only entity type where if no direct match can be 

found the phenotypes are mapped to the most likely match(es) via a custom NLP 

pipeline (section 7.1.3) in order to minimize data loss, which is for the other entity 

types so minimal that it can be neglected or in the most cases it happens due to the 

deprecation of the by the source system used identifier. If a phenotype can be 

mapped to multiple Concept IDs multiple data points are added to the UKS, while 

if multiple source system phenotype entities are mapped to the same Concept ID the 

information is merged onto the specific node in the UKS. Further PHENOTYPE 

nodes can have additional sub-labels such as DISEASE, SYMPTOM or 

SIDE_EFFECT, which are again highly subjective to the source-system author and 

in multiple cases depend on a specific case, so can headache be the side effect of a 

medication, the symptom of a disease or be considered a disease itself. Therefore, a 

label does not exclude the addition of other labels and only indicates that this 
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phenotype may be considered as any of these subcategories under specific 

circumstances, but it does not necessarily need to apply in all cases. 

Organism nodes are identified by their NCBI Taxonomy ID and due to the limited 

species considered in the UKS these mappings can be done manually. Pathways, 

AOP, GO (The Gene Ontology Consortium, 2021) and similar entities are identified 

by their source system identifiers in the UKS together with their names. These 

entities are commonly reported in third party source systems by their official IDs 

and therefore integration into the UKS can be done easily and entity loss is very 

rarely observed. The few cases an ID cannot be identified in the UKS as well as when 

queried on the source reference system, mostly appear, when a deprecated identifier 

is used in the source system which has been deprecated before the first version of 

the entities have been integrated into the UKS. In these instances, it has been decided 

to not include the datapoint due to its deprecation and the assumption that it likely 

will not appear in other future datasets to be integrated. Tissues, cell types and cell 

lines are identified by manual created naming, since a widespread identification 

system is not available. Further there is no clear definition when an entity is a tissue, 

organ, system or cell type and the definition is subjective. Therefore, a manual 

standard for the UKS needs to be created. Additionally, many experimental datasets 

will report tissues only but then maybe contains a few entities that are under a 

different definition not considered a tissue (e.g. the GTEX dataset (GTEx 
Consortium, 2013), which leads to mismatches between source systems and entities 

in the UKS. Since TISSUE and CELL_TYPE nodes are kept separate in the UKS 

this can also lead to duplicate entries due to different entity type definitions of the 

source systems. Therefore, manual curation and entity definition is needed for these 

entity types, and the applied semi-automatic entity recognition and mapping is 

performed via custom software (Di Lieto et al., 2023) , due to the lack of suitable 

APIs and entity definition. 

The data engineering tasks, however, does not always allow for a 1-1 translation of 

source system to UKS data model. In case multiple UKS entities can be mapped to 

a source system entity, the source system information is added to all matched UKS 

entities. On the other hand, if multiple source system entities can be matched onto 

a single UKS entity the source system information is merged onto the individual 

UKS entity. Entities may also be discarded if it is not possible to retrieve a possible 

match against the UKS entity system. This can happen if a source system uses 

deprecated identifiers that may have been removed from current (used) versions of 

the identifier source system. For example, if a data source report GO identifiers that 

have been deprecated before any version integrated into the UKS they cannot be 
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matched and therefore the data point will be discarded. Section 7.1.3 discusses how 

identifiers are handled that have been deprecated after their integration into the UKS. 

In summary the entity recognition and integration task can be mostly automated by 

relying on external APIs but require the selection of a reference system and 

consistency in its application. Further it needs to be acknowledged that 100% data 

translation is not possible, and, in some cases, granularity will be added in the UKS 

representation, while in others it is simplified. However, the goal of the Big Data 

integration is, that large scale data is available in a unified format, and the drawback 

of mismatched data points or missing data points can be neglected in comparison to 

the available data. Without the simplification of the problem, relying on external 

source system identifiers and mapping technologies the large-scale data availability 

of the UKS would not be possible in the limited amount of time and its 

maintainability as well as expandability could only be achieved with enormous 

manual effort. The selected approach for entity mapping and identification has in 

conclusion worked well when weighted between its resource intensity (time, manual 

effort) and the observed data loss/ data simplification. 

Relationship classification is done manually by understanding the data provided in 

the individual data sources and their information type being mapped to existing 

relationship types if possible. If a new type of relationship is introduced a new edge 

type is defined in the data model. Table A 5 lists the currently defined edge types in 

the UKS. Also, here a decision between simplification, i.e., using existing relationship 

types and granularity needs to be made. New relationship types are only introduced 

if no existing type can meet its needs and if the new type would provide significant 

additional information or can be expected in the future from different source 

systems. If this is not the case the general ASSOCIATED_WITH relationship type 

is used. 

The to date existing node types, their sub-labels and most common attributes are 

listed in Table A 4. Table A 5 showcases the same for the to date existing edge types. 

This data is used to estimate the currently available data points in the UKS. Due to 

the graph data model, data points are distributed across multiple dimensions (Figure 

19 and Figure 8). Node and edge labels add information about the entities and 

relationship types. Especially for nodes, the sub-labels contain information about the 

sub-types of entities, such as if a GENE is PROTEIN_CODEING or if a 

PHENOTYPE is considered a DISEASE (Figure 10). Node and edge attributes are 

data points of a specific entity or relationship, however not all nodes and edges of 

the same type have the same attributes. The nodes and edges itself comprise data 

points describing the relationships between entities. Further not only directly existing 
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edges but also paths and hidden links in the network model can be seen as data 

points. Due to the complexity, the available data points cannot be exactly calculated. 

In the estimate the number of entity data points is estimated for each main node 

label * the number of its most common attributes. For relationships a similar 

approach is taken by computing the number of edges of a specific type * the number 

of its most common attributes. The data point estimates are listed in Table A 4 and 

Table A 5. 

8.1.1 Robust, Multi-Source Support Data 

The UKS can be used as an integrated data source, where multiple sources for the 

same data points are combined to infer robust data points as well as to minimize 

biases resulting from considering single data sources only (section 7.1.4). In 

publication I the UKS has been used to create a robust PPI network across four 

independent data sources, by only keeping edges that are supported by 75% of the 

available data sources (at point of publication) (HIPPIE (Alanis‑Lobato et al., 2017), 

KEGG (Kanehisa et al., 2017), HitPredict (López et al., 2015) and STRING 

(Szklarczyk et al., 2019)). The final network contained 20,793 nodes, 132,244 edges 

with a network density of 0.0006. 

8.1.2 Multidimensional Data 

In publication III the UKS is used to construct a multidimensional gene gene 

network, which is comprised out of 11 data types and 12 data sources, as described 

in section 7.1.4 (Multi-dimensional Network). The final prior network used in 

publication III contains 22,316 gene (product) nodes, connected by 213,784,257 

edges. This network is used as an independent prior to reduce noise in expression 

data sets, minimize differences between biological system exposures as well as to 

allow the direct comparison between different expression data sets.  

In Federico et al. (Federico, Fratello, et al., 2022) a similar multidimensional gene 

gene network is constructed from the UKS, comprised out of 6 different data types 

and 12 data sources, used to evaluate the coverage of different drug combinations 

for the investigated phenotype.  
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8.1.3 Linking Between Independent Data Sets and Data Points 

Additionally, the UKS makes it possible to infer links between independent data sets, 

that are not visible in the individual data, but only become visible when integrated 

across multiple data types. Saarimäki et al. (Saarimäki, Fratello, et al., 2023; 
Saarimäki, Morikka, et al., 2023) linked AOP KEs to known gene sets, such as 

pathways, phenotypes or Gene Ontology terms, to infer possible genes linked to 

specific KE terms. The AOPs as well as the KE annotations are integrated into the 

UKS as showcased in Figure 20. Through path analysis in the UKS these KE terms 

can be associated to individual genes via the KEY_EVENT-[MAPPED_TO]-

TERM-[ASSOCIATED_WITH]-GENE meta path, which allows to create a gene 

level annotation for KEs.  

 
Figure 20   How meta-paths (bold) in the UKS are used to infer genes associated with key events.  

Figure adapted from (Saarimäki, Morikka, et al., 2023). 

In publication I possible drug repositioning candidates for COVID-19 are identified 

by retrieving drugs from the UKS, known to target genes linked to all measured and 

inferred stages of a SARS-CoV-2 infection (Figure 21). This suggested drugs, 

targeting the opioid receptor and the coagulation cascade, as well as HDAC and 

proteasome inhibitors as possible drug candidates. 
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Figure 21   UKS sub-network, containing gene (product) nodes, their interactions as well as drug 

nodes and drug gene target edges. Paths between genes, associated with different stages of a SARS-CoV-2 

infection (red, blue, green), targeted by drugs are indicated by bold edges. 

8.2 Robust Prior Information Can Reduce Noise in Gene 

Expression Data 

KNeMAP (publication III), maps differential gene information to a robust 

multidimensional prior network (section 8.1.2). This method reduces the impact 

individual genes have on the comparative analysis between exposures or between 

datasets and therefore reduces the overall impact noisy data points can have across 

the analysis in comparison to other methods (Figure 22). 
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Figure 22   Showcases the impact artificial added noise to gene expression data has on the stability 

of MOA vectors, computed with KNeMAP, gene deregulation analysis, fold changes and GSEA. 

KNeMAPs lowest AUC score indicates the least divergence from the baseline. Figure taken from publication 

III. 

8.3 Identifying Non-Measured Relevant Genes  

During the early stages of the COVID-19 pandemic, not much information about 

the MOA of COVID-19 or its long-term effects have been known, and relevant 

datasets were sparse. Gene expression data only measures a point in time and 

differential gene expression analysis only allows to identify genes, that change 

statistical significantly between measured time points. Molecular processes taking 

place in between these measured time points may stay undiscovered. In publication 

I two primary data types are available, one comprising genes, known to directly 

interact with SARS-CoV2 (Gordon et al., 2020) and transcriptomics data for 

multiple biological systems (Blanco‑Melo et al., 2020), on which differentially 

expressed genes are computed (Ritchie et al., 2015). Based on the robust PPI 

network retrieved from the UKS (s. section 8.1.1), in combination with network 

analytical methods (chapter 4), it is possible to identify a set of genes, linking the 
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measurable sets of genes.  This methodology identifies additional genes for each of 

the five available experimental gene expression datasets (Blanco‑Melo et al., 2020), 

which significantly increases the set of genes possibly associated to a SARS-CoV2 

infection (Figure 23).  

 
Figure 23   Shows the number of genes known to be associated to COVID-19 (at the time of 

publication) and how it can be increased with network analytics (set of IN genes). Figure taken form 

publication I. 

Analysing the biological processes of these identified genes, provided further insight 

into the pathogenesis of COVID-19, mostly suggesting an impact on vascular 

function of COVID-19, which is not significantly visible based on either the virus 

gene targets, or the measurable differential expressed genes.  

8.4 A Comprehensive Network Analysis and Comparison Library 

VOLTA (publication II) is a comprehensive Python package for network analysis, 

with a focus on multi gene co-expression network analysis. It is tuned to compare 

networks with each other, to cluster networks based on different similarity measures 

as well as to extract similarity patterns between networks. However, the individual 

methods and functions can be applied to a wide variety of networks due to its open-

source and function focused implementation.  
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8.4.1 Modules  

The VOLTA API consists out of seven main modules, of which some contain 

additional sub-modules. In total there are 158 exposed functions distributed over 

seven main modules and 10 submodules, as showcased in Figure 24.  

 
Figure 24   Showcases the modules and sub-modules implemented in VOLTA. Figure taken from 

publication II. 
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Network Similarity and Distance Module 

The network similarity and distance module combines four sub-modules, focusing on 

different aspects of how networks can be described and similarities between them 

measured. The global distance sub-module contains topological network measures, 

which describe a network in its whole, instead of focusing on individual genes. The 

local distance sub-module focuses on exploring individual nodes and their 

neighbourhoods as well as comparing them between networks. The node and edge 

similarity sub-module provides different distance metrics, which can be applied to 

nodes, edges and to compute similarity scores between networks. The tree sub-

module converts the network structure into a binary tree and allows the application 

of different binary tree metrics to describe the network. This can be especially useful 

for networks with a loop-based structure (Giarratano et al., 2020). In total there are 

53 exposed functions across four sub-modules.  

Network Clustering Module 

The network clustering module contains different clustering algorithms, which take as 

input the distance matrices and metrics, computed in the network similarity and distance 

module. In addition, it also provides a multi-objective function to tune clustering 

parameters, based on the user-set objectives. 

Community Module 

In the community module different community detection algorithms, a consensus 

method (Tandon et al., 2019) as well as different community evaluation functions 

are provided. The module contains 49 exposed functions. 

Identification of Common Sub-patterns Module 

This module takes a set of networks or multiple groups of networks as input and 

extracts common or statistical overrepresented sub-graphs from them. In addition, 

a method to compute a consensus community partitioning across a set of networks 

is provided. The module is constructed out of seven exposed functions. 
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Network Simplification Module 

The module contains different functions to simplify complex networks by node or 

edge removal. It provides different methods on how to estimate weak links in the 

network as well as functions for edge weight adjustment. The module exposes seven 

functions in total. 

Plotting Module 

This module implements multiple functions which can plot the results of the other 

modules and contains a total of seven exposed functions. 

Pipeline Wrappers Module and Analysis Pipelines 

The module provides wrappers to call a group of functions, that lead to a specific 

intermediate analysis step as well as complete example pipelines, in the form of 

Jupyter Notebooks, which allow for simple modification and adjustment by the user. 

The module consists out of 22 exposed functions, three analysis pipelines and three 

additional tutorial Jupyter Notebooks. 

8.4.2 Integration into a Toxicogenomic-Analysis Pipeline 

Publication II VOLTA, as a network analysis Python package, especially tuned for 

the comparison and analysis of multiple gene co-expression networks can be used to 

analyse and interpreted toxicogenomic data in combination with other 

toxicogenomic software. The NEXCAST software suite (Serra, Saarimäki, et al., 
2022), showcases how VOLTA can be integrated and combined with different 

toxicogenomic software into a comprehensive software suite. NEXTCAST offers 

diverse software to analyse and model toxicogenomic data, that can be combined in 

diverse manner to suit available data and analysis goals. The complete software suite 

is displayed in Figure 25.  
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Figure 25   The NEXCAST software suite, combining multiple software needed for 

comprehensive toxicogenomic analysis, including VOLTA as a network analysis and comparison module. 

Figure taken from (Serra, Saarimäki, et al., 2022). 

8.5 Differential Analysis of Co-Expression Networks 

The MOA of a condition versus a control can be described in a co-expression gene 

network, by characterizing which genes change in their network influence with 

respect to the whole system. In publication II, the efficiency of such a differential 

centrality analysis is shown, by showcasing how this method can correctly identify 

genes related to the known MOA of specific drugs (the networks and algorithm 

parameters are described in section 7.3.1). The effect of dasatinib and mitoxantrone 

on A549 cell lines are compared and it can be observed that OXA1L, DNAJC15 

and YME1L1 play a role in the mitoxantrone network, which are linked to 

mitochondrial protein metabolism impairment (Rossato et al., 2014).  

In Federico et al. (Federico, Pavel, et al., 2022) the methodology is applied to identify 

genes that play a possible role in the outbreak of psoriatic lesions and further shows 

that this methodology can identify possible genes of interested, that are not visible 
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with traditional differential gene expression analysis methodologies (Federico et al., 
2020). 

8.6 Characterizing the Impact of Exposure System on a 

Compound´s MOA 

To showcase the importance of considering the exposure system when comparing 

the MOA of different compounds, it is investigated how different exposures across 

biological systems cluster. For 20 different biological systems, gene co-expression 

networks are created and grouped by means of different network metrics and 

clustering algorithms (as described in section 7.3.2). Publication II VOLTA identifies 

three different cell line clusters, which have different responses when treated with 

dasatinib. The cell lines within each cluster can be described by their tissue of origin 

as well as disease status as described in Figure 26. These results indicate that it is 

necessary to take the differences between exposure systems into account when 

characterizing and comparing MOAs of compounds. 
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Figure 26   The three MOA clusters detected with VOLTA across 20 different cell lines treated 

with dasatinib. Cluster B contains mainly cell lines derived from breast tissue, cluster C only cell lines derived 

from healthy tissue and cluster A contains mostly epithelial (like) carcinoma cells. 

8.6.1 Identifying Compounds with Similar MOA Across Biological Systems 

and Across Data Sets 

To identify compounds, with a similar MOA when exposed on the same biological 

system but which can differ when exposed on different biological systems, 676 drugs 

across three biological systems are analysed with KNeMAP (publication III) and 

clustered with VOLTA (publication II), as described in section 7.4. This identifies, a 

set of 38 compounds, which show a similar MOA on MCF7, PC3 as well as HL60 

cell lines, by grouping into the same cluster when each biological system is analysed 

independently, and the clusters are compared. However, when clustering the MOA 

of the 38 compounds across all biological systems, the systems induce a different 

MOA, indicated by the grouping in exposure system rather than exposure 

compound. When characterizing the identified compounds, a prevalence of 

antimicrobial and antiarrhythmic agents as well as antipsychotics and hsp90 

inhibitors is found. These compounds further can be linked to cancer treatment or 

are under investigation for cancer treatment (the three investigated exposure systems 
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are different cancer cell lines) by inducing a cytotoxic or cytostatic effect (Becker & 
Banik, 2014; Jafari et al., 2022; Kepp et al., 2012; Kingston, 2009; Majolo et al., 
2019; Unsal‑Beyge & Tuncbag, 2022; Weissenrieder et al., 2019; C.-H. Wu et al., 
2016). 

8.7 Linking Engineered Nanomaterials and Drugs based on their 

MOA 

ENMs are more recently developed and therefore less described and understood 

compounds but show large potential usage in the industry as well as in medicine 

(Saarimäki et al., 2021). Identifying similarities between ENMs and already 

characterized compounds can therefore provide valuable insights into the MOA of 

ENMs and potential toxicity can be inferred. Publication III, KNeMAP, allows the 

comparison of exposure profiles across datasets by using a data independent multi-

dimensional prior network (s. section 0). With the help of KNeMAP it is possible to 

identify drugs with a similar MOA in the CMap dataset (Lamb et al., 2006) to the 

ENM core materials used in the Fortino et al. dataset (Fortino et al., 2022), as listed 

in Table 2. 
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Table 2  ENM core materials and known drugs with a similar MOA, computed across datasets 
with publication III KNeMAP. 

ENM Core Material Drug MOA 

Copper oxide Lycorine Lycorine, is an acetylcholinesterase inhibitor (Kola 
et al., 2023),which plays a role in nerve impulse 

transmission. Copper oxide has been linked to affect 

acetylcholinesterase levels and is known to have a 

potential effect on the nervous system (Ganesan et 
al., 2016; Sezer Tuncsoy et al., 2019) . 

Silver Ciclopirox Both silver and Ciclopirox have been used as 

antimicrobial treatments (L. Xu et al., 2020) . 

Gold Oxyphenbutazone Gold compounds and gold nanoparticles have been 

used as treatment for inflammatory diseases, such as 

rheumatoid arthritis (Hornos Carneiro & Barbosa, 
2016), while Oxyphenbutazone is not in use 

anymore, due to potential adverse outcomes, it was 

in use as an anti-inflammatory agent to reduce 

symptoms of arthritis (National Center for 
Biotechnology Information, n.d.). 

Titanium dioxide Nortriptyline Both compounds are known to influence 

neurotransmitters, where nortriptyline is used as an 

antidepressant (Merwar et al., 2023; Naima et al., 
2021) . 

Multi-Walled Carbon 

Nanotubes 

Thioridazine Thioridazine has been taken off the market due to 

its potential to cause liver injury (“Thioridazine,” 
2012), similar it is known that multi-walled carbon 

nanotubes are hepatotoxic (Z. Ji et al., 2009; Sun et 
al., 2021) . 
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9 DISCUSSION 

Alternative methods for chemical safety assessment, drug repositioning and 

development as well as the personalized medicine concept rely on or need to be 

supported by computational methodologies, prior knowledge and available data 

(Pavel, Saarimäki, et al., 2022; Serra et al., 2020; Serra, Fratello, et al., 2022). Data is 

one of the most valuable currencies of our time and while many industries are at the 

top of mining, analysing and learning form large scales of data, the life science 

domain is only at the beginning of it.  

Making efficient use of the data available across the different life science sub-fields 

can provide in depth understandings of underlying processes (Federico et al., 2020; 
Federico, Pavel, et al., 2022; S. Gao et al., 2021; P. Kinaret et al., 2017; Saarimäki et 
al., 2020; Serra et al., 2019), improve patient care (Cirillo & Valencia, 2019; 
D’Onofrio et al., 2022; Dash et al., 2019; Gu et al., 2021; Kovačević et al., 2020; 
Kruger et al., 2019; Kurt et al., 2008; Rajkomar et al., 2018; Taramasco et al., 2019; 
Zame et al., 2020) or the safety of materials, such as industrial chemicals, drugs and 

engineered nanomaterials for humans and the whole environment (J. Chen et al., 
2021; Mouchlis et al., 2021; Sharifi et al., 2021; Sharma et al., 2023; X. Tong et al., 
2021).  

However, while a lot of data is currently available and is constantly produced, there 

are many unique challenges associated with Big Data integration in the life sciences, 

due to the differences in standards, technologies as well as the lack of a data centred 

view during data creation (Leonelli, 2019; Marx, 2013; Pavel, Saarimäki, et al., 2022). 

Additionally, the data is of high complexity, ever evolving and comprises many 

different data types, standards, and formats, which makes traditional data models 

and integration methodologies unsuitable when used on a large amount of these data. 

Here the Unified Knowledge Space is presented, a Knowledge Graph framework 

comprising a graph data model, connected to a file storage, uniquely adjusted to life-

sciences data, with a focus on chemical and drug relevant data points.  I have 

identified different data types available as well as more than 80 independent data 

sources that can be processed and integrated with a mix of computational and 

manual data curation and entity identification methodologies. For each data type I 
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have identified a reference identification system, which is comprehensive and 

computational available to allow supervised automatic entity identification. For data 

types where such a reference system is not available, I have showcased the manual 

curation of an entity vocabulary and how manual curation in combination with NLP 

based software (Di Lieto et al., 2023) can be used to maintain the vocabulary as well 

as to perform automated entity identification. Based on these approaches, together 

with the developed data model, it was possible to create a life science Big Data 

knowledge based. This knowledge base can be applied to many different problems 

across the life sciences as well as can be adjusted and expanded into additional sub-

fields and research areas through the integration of additional data types and sources, 

as well as is flexible enough to evolve with the data creation technologies. The UKS 

is to my knowledge the largest life-sciences knowledge graph data model created to 

date (Abdelaziz et al., 2017; Al‑Saleem et al., 2021; Z. Chen et al., 2022; Mohamed 
et al., 2019; R. Zhang et al., 2021), by including over three billion data points. 

The data integration task was especially challenging for data/ entity types for which 

no standardized reference systems exist or have been used by the publisher of the 

data. For example, phenotypic data are often reported as strings, which when needed 

to be mapped between data sources can either be done based on NLP methods or 

due to manual curation. NLP based approaches have the advantage of automatic this 

task, however, do not have the professional understanding of identifying if two 

phenotypes should be considered the same or maybe be a subgroup of each other, 

while for manual curation a lot of field specific knowledge is needed. For example, 

Diabetes Type 1 and Diabetes Type 2 will receive a high string-matching score based on 

NLP methodologies however based on the granularity of the data system may be 

considered as different diseases. Similar issues arise with other entities often reported 

as strings, such as cell lines, cell types or tissues. Drugs and chemicals if reported 

under their government approved, commercial name or based on their chemical 

structure can mostly be identified, however custom compounds that are not 

widespread available will likely not appear in any other data source in the future. 

However, if structural information is available, they can be matched to similar 

compounds in the future. The mapping between genes and gene product 

identification systems can be mostly automated due to the widespread use of 

common identification systems, such as Entrez (Maglott et al., 2011) and Ensembl 

(Cunningham et al., 2022) for which while no 1-1 mapping exists, many public mapping 

APIs, such as mygene  (C. Wu et al., 2013), exist. Further it has been widely accepted to 

report genes and gene products on these identification systems and the less consistent 
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identification by gene symbol is mostly used in-text and for highly described genes or gene 

products. Lastly the least challenging data types to integrated are these based on widely 

accepted source systems, such as Gene Ontology  (The Gene Ontology Consortium, 
2021) terms, pathways  (Jassal et al., 2020; Kanehisa et al., 2017; Martens et al., 2021) 

or AOPs, which when reported based on their source system IDs are easy to identify. 

However, if the less standardized and consistent names are used the mapping relies again on 

NLP based approaches and not all conflicts can be resolved. In conclusion the large-scale 

data integration challenges is dependent on the way entities are reported across data sources, 

and standardized IDs should be used when available.  

The UKS contrasts with many other KGs available in the field (Abdelaziz et al., 
2017; Al‑Saleem et al., 2021; Chandak et al., 2023; Z. Chen et al., 2022; Che et al., 
2021; Z. Gao et al., 2022; Jiajing Hu et al., 2021; Karim et al., 2019; Mohamed et 
al., 2020, 2019; Myklebust et al., n.d.; Nováček & Mohamed, 2020; Sosa et al., 2020; 
Meng Wang et al., 2021; Shudong Wang et al., 2022; F. Zhang et al., 2021; R. 
Zhang et al., 2021; Zheng et al., 2021; Y. Zhu et al., 2020) by not being created for a 

specific study, hypothesis or problem but rather a general framework on which a 

multitude of studies can be performed. This implies that data search, data adjustment 

or scope adjustment can be performed highly efficient on the UKS, since the 

individual datasets do not need to be curated or identified from different sources but 

can rather be retrieved in an already curated and unified manner from the UKS. In 

the example of meta-analysis, it has been shown that the most expensive step is the 

identification and combination of relevant data sets or studies and by using data 

management methods their cost can be reduced, while flexibility and speed can be 

improved  (Tiddi et al., 2020).  

Due to the combined vocabulary of the UKS, as well as its management of 

experimental datasets, it allows the fast search and retrieval of data for a certain 

condition without the need of curating the data to use the same identifiers or be in 

the same format and therefore having the potential to significantly improve speed 

and reduce cost of a diverse set of data-dependent (toxicology and pharmacology) 

analyses.  In addition, the UKS allows to retrieve additional information and data-

points about entities or processes under investigation without the need to first 

identify suitable external resources and likely needing to convert the current used 

identifiers to the identifiers used in the external system. Such information can be 

used to enrich analysis results or to understand the implications of multiple or 

individual data points/ entities for the condition under investigation. Additionally, 

the output format can be retrieved in the same format as previously retrieved data 

points on which the analysis may have been performed. Publications I and III as well 
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as Federico et al. (Federico, Fratello, et al., 2022) and Saarimäki et al. (Saarimäki, 
Fratello, et al., 2023; Saarimäki, Morikka, et al., 2023) made use of the unified nature 

of the UKS, by retrieving different datasets, in the same format, from the UKS in 

the form of gene-gene similarity networks and a robust PPI network or enriching 

entities with further information, such as drugs targeting a set of gene(s) (products) 

or linking AOP KEs to gene (products).  

While in these cases the UKS allowed fast data retrieval and knowledge lookup it 

also restricts the research to the data points and sources integrated (at the point of 

analysis) in the UKS and in result introduces a data availability bias into the analysis. 

However, selecting and combining data sources for each new analysis when needed, 

may lead to a different selection of data sources, but likely also to a smaller selection 

of sources due to the manual effort needed in the curation step and in result 

propagating the biases existing in the selected data source(s). For example, Tang et 

al. (Tang et al., 2019), Guo et al. (Guo et al., 2022), Prashanth et al. (Prashanth et al., 
2021) and Tu et al. (Tu et al., 2022) supported, enriched or performed their analysis 

with/ on PPI data collected from only one data source. 

While the general nature of the UKS has many advantages, it could reduce predictive 

power of individual analysis if the sub-graphs used for the analysis are not selected 

problem specific. It has been shown that KG predictive performance improves with 

the problem specificity of the KG (Ratajczak et al., 2022) However, the UKS allows 

the retrieval of sub-graphs, which allows to create problem specific networks, but 

this requires the user to identify the most relevant data-points for their study in the 

UKS. 

Creating and maintaining such a large-scale general knowledge space requires a lot 

of manual effort during the data engineering process. Especially in a schema free 

framework, such as the UKS, the database administrator is responsible to keep the 

knowledge space as clean and understandable as possible, as well as to maintain 

transparency of the individual data points. Additionally, such a large knowledge space 

requires large amounts of computational power with respect to disk space and 

memory, which is required to stored and load the UKS, while large amounts of 

computational power, such as central processing units (CPU) and possibly graphics 

processing units (GPU) are needed to perform large scale analyses on the UKS. 

Scaling computational power can quickly become expensive and the resources 

required for such a framework are not always available.  
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With the continuous production of data across the life sciences as well as with the 

updating of existing data sets, the UKS needs to be constantly maintained, adapted 

and new data sets need to be integrated. Next to the hardware needed, this also 

requires personnel dedicated to the maintenance of such a general knowledge base. 

However, many projects are funded for a limited time only which can lead to such 

general framework not being able to be continued or maintained for a long time. 

While there have been automated approaches suggested for the creation of KGs 

(Lobentanzer et al., 2023), they often require a pre-defined schema, which severely 

limits the adaptability of a KG to different data sources and sets as well as neglect 

the entity identification and mapping challenge by either only accepting a set of 

identification systems or separating namespaces. 

While developing the UKS, I particularly emphasized entity mapping, which requires 

a combination of automated (NLP based) methods together with manual efforts. 

This effort contrasts with other proposed approaches (Lobentanzer et al., 2023), 

where emphasis is put on automation rather than combining namespaces. Keeping 

namespaces separate however severely limits the linked power of KGs, by only 

allowing to link between knowledge coming from data sources which already use the 

same namespace. This approach allows for duplicate entities, when they make use of 

different namespaces, which can complicate the data retrieval process as well as the 

knowledge inference process, since the user either needs to perform entity mapping 

at a later stage or select a namespace for their analysis. This limits the analysis to data 

linked to that namespace only, meaning other information linked to a different 

namespace are not included in the analysis. Keeping namespaces separated can 

further propagate or introduce biases into the analysis, since the available data is 

limited as well as are namespaces often common to specific research areas or regions, 

which will emphasise their native data biases in the performed analysis. For example, 

European data points will likely be linked to Ensembl Gene identifiers (Cunningham 
et al., 2022), while (US) American research outputs are likely linked to Entrez gene 

identifiers (Maglott et al., 2011). 

Further a general framework implies, that all the decisions taken during the data 

integration and curation stage will be propagated towards all analyses performed on 

the knowledge space. This can imply that possible errors introduced during the 

curation stage may be propagated into many analyses before they are identified. 

However, collecting and curating data for each analysis individually increases the risk 

of introducing errors, since the steps are performed multiple times (for each analysis) 

instead of a single time only. Further the Big Data approach in the UKS, allows to 

possibly identify erroneous data points (s. Section 5.1.1 (Assessing Data Point 
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Quality via Network Topology)), which may be introduced during the data creation 

or data curation step. 

The UKS can be seen as a proof of concept of the possibility to create highly flexible, 

multi-billion data point Big Data models, which can easily be expanded to include 

additional data from other life science sub-domains. Currently the UKS is chemical 

centred, due to the nature of the applied case studies, but with the addition of new 

datasets the focus can be broadened or shifted entirely without the need to design a 

new data model or infrastructure. The here presented case studies only focus on 

small aspects of the UKS to showcase its possibilities in combination with network 

analytical methodologies, and the suitability of the data model for multiple different 

application scenarios. However, the UKS has further potential, especially as a 

predictive engine and underlying data source for deep learning models based on 

multiple millions to billions of data points (Nickel et al., 2016), which will be 

explored in the future. 

The work presented in this thesis, showcases how with a combination of 

computational approaches, manual efforts as well as flexibility, large scale 

multidimensional knowledge bases can be created in the life sciences. While the life 

sciences are made up of different sub-fields, that use different methodologies and 

standards, they are however not stand-alone fields but rather contribute to each 

other. Therefore, to make use of the available data to its full potential they need to 

be integrated, analysed and learned from in a combined manner. This thesis 

showcases how Knowledge Graphs and graph data models can be used for this task, 

while in addition to their highly flexible nature, allows the interpretation and analysis 

of data points as part of a connected system rather than on their own. The paradigm 

that entities, processes, events and their outcomes can only be understood as part of 

the whole system is a concept that has become more and more prevalent in different 

areas of the life sciences (chapter 4), which the UKS, with its network-based data 

model, together with VOLTAs network analytical methodologies supports natively. 

For example in toxicology AOP networks are used to understand what mechanisms 

take part between observable triggers and (phenotypic) outcomes (Ankley et al., 
2010; Knapen et al., 2018), in systems biology different interaction and regulation 

networks are used to understand molecular processes in depth (Albert, 2007; Gosak 
et al., 2018; Yan et al., 2018) and in the neurosciences neuronal networks are used to 

understand the brain (Bullmore & Sporns, 2009; Meng & Xiang, 2018), while in 

ethology interaction networks between species and individuals are studied (Gosztolai 
& Ramdya, 2022; Makagon et al., 2012; Wey et al., 2008). 
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VOLTA aims in comparison to other comparable network analytical tools to be 

Graphical User Interface free (Kuntal et al., 2016; Marwah et al., 2018; Proost & 
Mutwil, 2018) and rather expose all main functionalities to not restrict applicability, 

adjustability or importable data. While providing pre-defined analysis pipelines for 

gene co-expression network analysis VOLTA also provides many analysis and 

machine learning methodologies, such as clustering, that can be used on (biological) 

networks but also in different application scenarios, such has been done in 

publication III, where VOLTA is used to cluster gene expression vectors in addition 

to perform community detection on a gene gene similarity network extracted from 

the UKS. This allows VOLTA to be used in a wide range of applications and datasets 

and not be limited by implementation specific factors, such as pipeline restrictions 

or missing function exposure. Further VOLTA is one of the few (biological) network 

analysis packages, which supports the grouping of multiple networks and the 

computation of similarities between networks (Csardi & Nepusz, 2006; Hagberg et 
al., 2008; Marwah et al., 2018). Gene co-expression networks are often used to 

identify the MOA of an exposure or phenotype (Federico, Pavel, et al., 2022; P. 
Kinaret et al., 2017; Koenig et al., 2021; Song et al., 2019), however identifying 

groups of similar acting compounds or similarities in gene co-expression profiles 

across compounds and phenotypes can for example help in identifying compounds 

(or sub-structures) which may lead to similar MOAs or identifying drugs that show 

similar/ opposite characteristics to phenotypes which can be used during drug 

repositioning studies or the chemical safety assessment process. In publication II this 

feature has been used to showcase that cell line/ tissue of origin has a strong effect 

on the behaviour of a drug, and therefore biological system information must be 

considered when interpreting transcriptomic data. 

Across different case studies I have presented how different aspects of the UKS in 

combination with network analytical and toxicogenomic methodologies can be used 

to a) support and improve toxicogenomic analysis through robust data retrieval and 

b) how it can be used to infer new data points and knowledge. The main contribution 

of this thesis work is to showcase the possibility and applicability of diagonal Big 

Data integration in the life sciences to create a problem unspecific knowledge base, 

which can be achievable by combining different computational and manual curation, 

modelling and analysis methodologies, which contrasts with many currently available 

approaches. 
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10 SUMMARY AND CONCLUSION 

Big Data integration and analytics have become highly popular over the last decade, 

especially in the IT industry. Large IT companies, such as Meta, Google, Amazon 

and Netflix are built on the idea of gaining insight into user behaviour through 

collecting and analysing user data on a large scale. Also in the life sciences, Big Data 

has gained interest in recent years (Z. Chen et al., 2022; Fröhlich et al., 2018; Gu et 
al., 2021; Pavel, Saarimäki, et al., 2022; Y. Wu et al., 2019; Zong et al., 2022). 

However, due to the fractured nature of the field, the non-standardized data 

reporting and creation standard and in general the large diversity across sub-

disciplines have made the large-scale usage of data across disciplines challenging 

(Leonelli, 2014, 2019; Pavel, Saarimäki, et al., 2022).  

Network analytics have been widely applied in recent years, especially in systems 

biology, and have shown their potential to gain in-depth insights into molecular 

processes (Badkas et al., 2021; Guo et al., 2022; P. Kinaret et al., 2017; Y. Liu et al., 
2019; Marwah et al., 2018; Pavel, Serra, et al., 2022; Serra et al., 2019). KGs have 

been applied on a small scale in different life science disciplines (Abdelaziz et al., 
2017; Chandak et al., 2023; Y. Chen et al., 2021; Z. Chen et al., 2022; Z. Gao et al., 
2022; Karim et al., 2019; Pavel, Saarimäki, et al., 2022) and together with network 

analytical methods have shown their potential to infer valuable data driven insights 

into the problem under investigation  (Z. Gao et al., 2022; Karim et al., 2019; R. 
Zhang et al., 2021). However, due to the challenging nature of the data, complexity 

of the data integration and data modelling task, there have mostly only been small, 

problem specific KGs and data analysis task created to date (Pavel, Saarimäki, et al., 
2022). 

Here, I presented the Unified Knowledge Space, as a proof of concept, that large 

scale manual supported data integration across multiple life science sub-domains to 

model multiple billions of data points is possible, when a highly flexible but strictly 

maintained data model is used. I have further showcased how different sub-graphs 

of the UKS, in combination with network analytical concepts can be used to improve 

toxicogenomic data, analyse and compare it or infer additional knowledge about the 

problem under investigation. I have shown how the UKS can be used as a 1) 

integrated data source for data retrieval and entity mapping, 2) how its modelled data 
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can be analysed with network analytical methods and 3) how it can be used to infer 

facts that are either only visible through the path based data model or can be 

computed by applying a reasoning engine (for example in the application of the AOP 

KE gene annotation process or drug repositioning for COVID-19). 

The full potential of the UKS has not been exploited yet, especially on its potential 

to infer new facts about the world under investigation. But due to the complexity, 

size and ever-growing nature of the UKS, these are continuously ongoing tasks. This 

further shows that the UKS and its applicability are not statics but ever evolving and 

I predict the here presented data model to be used in many further studies and to 

gain ever more detailed insights into complex biological processes and the interaction 

of compounds with living beings and the environment. 
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APPENDIX A – THE UNIFIED KNOWLEDGE SPACE 

The UKS – Materials and Methods 

Data Sources 
Table A 1   Data types and sources integrated into the UKS at this point of time. The 

data is grouped into 5 different categories: a) interaction: describes direct interactions between two nodes, 

such as protein protein interactions or drug interactions, b) regulation: describes a regulation relationship 

between two nodes, such as transcription factor gene regulation, c) functional: describes information about 

a nodes function or its mechanism of action, such as pathways or a compounds effect on the system, d) 

associations: describe relationships between nodes that are not of the previous three types, such as 

ontologies, and e) informative: contains additional knowledge about a node, such as different names, 

identifiers or sub-structures. To date the UKS contains information collected from more than 80 different 

databases and data collections. The last column describes if the data in the sources mainly contributes to the 

relationship layer, entity layer or both, as described in Figure 8. 

Data Type Data Sources Data Category Description Contributes to 

Gene product 

relationships 

HIPPIE 

(Alanis‑Lobato et 
al., 2017) 
HitPredict (López 
et al., 2015; Patil 
et al., 2011) 
HuRI (Luck et al., 
2020) 
HI-union (Luck et 
al., 2020) 
Lit-BM (Luck et 
al., 2020) 
Yang-16 (X. Yang 
et al., 2016) 
HI-II-14 (Rolland 
et al., 2014) 
PINA (Du et al., 
2021) 
MINT 

(Chatr‑aryamontri 
et al., 2007) 

Interaction 

regulation 

Protein protein 

interactions, gene 

regulation 

(transcription factor, 

mirRNA) 

Relationship Layer 
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PhosphoNetworks 

(Jianfei Hu et al., 
2014) 
InnateDB (Breuer 
et al., 2013) 
SignaLink (Csabai 
et al., 2022; 
Fazekas et al., 
2013) 
KEGG (M 
Kanehisa & Goto, 
2000; Kanehisa et 
al., 2017) 
Reactome (Jassal 
et al., 2020) 
TRRUST (Han et 
al., 2018) 
TargetScan 

(Agarwal et al., 
2015) 
JASPAR 

(Castro‑Mondrago
n et al., 2022; 
Sandelin et al., 
2004) 
STRING 

(Szklarczyk et al., 
2015, 2019) 
MiRTarBase 

(Huang et al., 
2022) 
TransmiR  (Z. 
Tong et al., 2019; 
J. Wang et al., 
2010) 

Associations – 

Compounds 

CTD (Davis et al., 
2023) 
KEGG (M 
Kanehisa & Goto, 
2000; Kanehisa et 
al., 2017) 
OpenTargets 

(Ochoa et al., 
2023) 
DrugBank 

(Wishart et al., 
2018) 

Functional 

Associations 

interaction 

Relationships 

between Chemicals 

and any node type, 

such as genes, 

phenotypes or other 

compounds. A 

compound can be a 

chemical, drug or 

engineered 

nanomaterial. 

Relationship Layer 
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SMPDB (Frolkis 
et al., 2010; 
Jewison et al., 
2014) 
STITCH 

(Szklarczyk et al., 
2016) 
SIDER (Kuhn et 
al., 2016) 
MEDI (Wei et al., 
2013) 
LabeledIn (Khare 
et al., 2014) 
BioSNAP11 

(Wishart et al., 
2018) 
Zhou et al. 

(XueZhong Zhou 
et al., 2014) 
Wang et al. (F. 
Wang et al., 2014) 
Offsides 12 

Pharos (Kelleher 
et al., 2023) 
GuidetoPharmacol

ogy (Harding et 
al., 2022) 
DrugCombDB (H. 
Liu et al., 2020) 
RxNorm (S. J. 
Nelson et al., 
2011) 
DSigDB (Yoo et 
al., 2015) 

Associations - 

Phenotypes 

CTD (Davis et al., 
2021) 
KEGG (M 
Kanehisa & Goto, 
2000; Kanehisa et 
al., 2017) 
SIDER (Kuhn et 
al., 2016) 

Functional 

associations 

Relationships 

between phenotypes 

and any node type 

Relationship Layer 

 

 
11 https://snap.stanford.edu/biodata/datasets/10002/10002-ChG-Miner.html 

12 https://nsides.io/#offsides-and-twosides 

https://nsides.io/#offsides-and-twosides
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MEDI (Wei et al., 
2013) 
LabeledIn (Khare 
et al., 2014) 
BioSNAP 

(Wishart et al., 
2018) 
Zhou et al. 

(XueZhong Zhou 
et al., 2014) 
DisGeNet (Piñero 
et al., 2020) 
PsyGenNet 

(Gutiérrez‑Sacrist
án et al., 2015, 
2017) 
Wang et al. (F. 
Wang et al., 2014) 
Offsides13 

Pharos (Kelleher 
et al., 2023) 
HPO (Köhler et 
al., 2021) 
NCBI ClinVar 

(Landrum et al., 
2018) 
NCBI PheGenl 

(Sayers et al., 
2022) 
PheWeb 

(Gagliano Taliun 
et al., 2020) 
Orphanet 14 

OMIM (Amberger 
et al., 2015, 2019) 
GWAS Catalog 

(Sollis et al., 
2023) 
EWAS Data Hub 

(Zhuang Xiong et 
al., 2020) 
EWAS Catalog 

(Battram et al., 
2022) 

 
13 https://tatonettilab.org/offsides/ 

14 www.orpha.net/consor/cgi-bin/index.php 
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EWAS atlas (M. Li 
et al., 2019) 

Gene Sets GO (The Gene 
Ontology 
Consortium, 
2021) 
Reactome (Jassal 
et al., 2020) 
KEGG (M 
Kanehisa & Goto, 
2000; Kanehisa et 
al., 2017) 
Wikipathway 

(Martens et al., 
2021) 
PANTHER (Mi et 
al., 2021) 
MSigDB 

(Liberzon et al., 
2011, 2015; 
Subramanian et 
al., 2005) 
SMPDB (Frolkis 
et al., 2010; 
Jewison et al., 
2014) 

functional Collection of genes, 

associated to specific 

functions or 

phenotypes 

Relationship Layer 

Entity Layer 

Functional 

Cascades 

KEGG (M 
Kanehisa & Goto, 
2000; Kanehisa et 
al., 2017) 
Reactome (Jassal 
et al., 2020) 
Wikipathway 

(Martens et al., 
2021) 
AOPwiki 15 

functional MOA and how they 

are causative of each 

other. 

Relationship Layer 

Biological 

System 

EWAS Data Hub 

(Zhuang Xiong et 
al., 2020) 
EWAS Catalog 

(Battram et al., 
2022) 
EWAS atlas (M. Li 
et al., 2019) 

informative Information about 

organisms, tissues, 

cell types and cell 

lines. 

Entity Layer 

 

15 aopwiki.org 
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Expression Atlas 

(Papatheodorou et 
al., 2018) 
ENCODE (Luo et 
al., 2020) 
Tabula Sapiens 

(Tabula Sapiens 
Consortium* et 
al., 2022) 
Cancer Cell Line 

Enclopedia 

(Barretina et al., 
2012) 
GTEx (GTEx 
Consortium, 
2013) 

Gene product 

information 

Ensembl 

(Cunningham et 
al., 2022) 
NCBI 

HomoloGen 

(Sayers et al., 
2022) 
NCBI Entrez 

(Maglott et al., 
2011; Sayers et 
al., 2022) 
GWAS Catalog 

(Sollis et al., 
2023) 
EWAS Data Hub 

(Zhuang Xiong et 
al., 2020) 
EWAS Catalog 

(Battram et al., 
2022) 
EWAS atlas (M. Li 
et al., 2019) 
InterPro 

(Paysan‑Lafosse 
et al., 2023) 

informative Additional 

information about a 

node, such as 

different identifiers, 

protein families, 

homologs 

Entity Layer 

Phenotype 

information 

NCBI MedGen 

(Sayers et al., 
2022) 
ICD10 16 

informative Additional 

information about 

phenotypes, such as 

different identifiers 

Entity Layer 

 
16 www.cdc.gov/nchs/icd/icd-10-cm.htm 
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ICD9 17 

HPO (Köhler et 
al., 2021) 
Experimental 

Factor Ontology 

(Malone et al., 
2010) 
MONDO Disease 

Ontology 

(Mungall et al., 
2017) 
Disease Ontology 

(Schriml et al., 
2023) 
Ontology for 

Biomedical 

Investigations 

(Bandrowski et 
al., 2016) 
Ontology for 

General Medical 

Science 

(Scheuermann et 
al., 2009) 
Orphanet18  

National Cancer 

Institute Thesaurus 
19 

Mammalian 

Phenotype 

Ontology (Smith 
& Eppig, 2009) 
OpenTargets 

(Ochoa et al., 
2023) 

or relationships 

between phenotypes. 

Compound 

information 

Food and Drug 

Administration 

product database20 

NCBI PubChem 

(Kim et al., 2023) 
ZINC20 (Irwin et 
al., 2020) 

informative Additional 

information about a 

compound, such as 

different identifiers 

or structural 

information  

Entity Layer 

 
17 www.cdc.gov/nchs/icd/icd9.htm 

18 www.orpha.net 

19 ncithesaurus.nci.nih.gov/ncitbrowser/ 

20 https://www.fda.gov/drugs 
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DrugTax (Preto et 
al., 2022) 

Experimental Open TG-GATEs 

(Igarashi et al., 
2015) 
EWAS Data Hub 

(Zhuang Xiong et 
al., 2020) 
EWAS Catalog 

(Battram et al., 
2022) 
EWAS atlas (M. Li 
et al., 2019) 
Expression Atlas 

(Papatheodorou et 
al., 2018) 
ENCODE (Luo et 
al., 2020) 
Tabula Sapiens 

(Tabula Sapiens 
Consortium* et 
al., 2022) 
Cancer Cell Line 

Enclopedia 

(Barretina et al., 
2012) 
GTEx (GTEx 
Consortium, 
2013) 
Engineered 

Nanomaterial 

Transcriptomics 

Collection 

(Saarimäki et al., 
2021) 
Human Protein 

Atlas (Thul & 
Lindskog, 2018) 

functional Such as gene 

expression, 

differential 

expression analysis 

(limma (Ritchie et 
al., 2015)). For most 

the data is stored in a 

file storage and its 

metadata is managed 

in the UKS. 

Relationship Layer 
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System Architecture 

 
Figure A 1  Data and System infrastructure used to manage and deploy the data. External data 

sources are processed and integrated into a graph database storage, hosted on a NAS (Network Attached 

Storage). Experimental data, which when processed, is not suitable to be hosted in a graph data model is 

stored in a file storage and its metadata is stored in the graph database storage. The file storage is hosted on 

a NAS, accessible from both computing servers and personal devices, when connected to the VPN (Virtual 

Private Network). The graph database storage is read and hosted with Neo4j, which is deployed via Docker 

on the database server. The deployed database management system can be accessed from both computing 

servers and personal devices when situated within the VPN. Access security is managed by the VPN access, 

which is due to the completely internal use and limited number of users enough. Also, while some of the 

data may be licensed, none of the hosted data are of sensitive nature. 
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Indexing to Improve Query Performance 
Table A 2   Custom created indices in the UKS. Indices are only created for nodes, since 

the default LOOKUP index covers node label and edge type searches and most of the expected UKS queries 

are node and relationship type focused, meaning edge attribute-based searches are not expected. Due to the 

more expensive (with respect of storage) nature of TEXT indices, they are only created for data points 

where substring searchers are expected, such as PHENOTYPE or CHEMICAL names. For ID based 

attributes equality searchers are expected, hence RANGE indices have been selected. To save storage, 

indices have only been created for highly queried or node types for which large amounts of data are available. 

The number of nodes per label are displayed in Table A 3.. 

Node Type Index Attribute Index Type Expected searchers 

GENE Ensembl_ID RANGE = 

GENE Gene_symbol TEXT =, CONTAINS, STARTS 

WITH, ENDS WITH 

VARIANT CpG_site_ID 

SNP_ID 

RANGE = 

GENE_EXPRESSI

ON 

Ensembl_ID RANGE = 

CELL_TYPE name TEXT =, CONTAINS, STARTS 

WITH, ENDS WITH 

TISSUE name TEXT =, CONTAINS, STARTS 

WITH, ENDS WITH 

PHENOTYPE HP_ID 

Concept_ID 

RANGE = 

PHENOTYPE name TEXT =, CONTAINS, STARTS 

WITH, ENDS WITH 

AOP 

KEY_EVENT 

name TEXT =, CONTAINS, STARTS 

WITH, ENDS WITH 

CHEMICAL name TEXT =, CONTAINS, STARTS 

WITH, ENDS WITH 

PATHWAY X_ID RANGE = 

GO GO_ID RANGE = 

CHEMICAL PubChem_CID 

PubChem_SID 

Zinc20_ID 

RANGE = 

DATA_SET name TEXT =, CONTAINS, STARTS 

WITH, ENDS WITH 
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Main UKS Entities and their Identification System 
Table A 3  The main UKS node types and their selected identification system to which other 

identification systems are mapped. 

Node Type Main Identifier Description 

GENE Ensembl ID Established gene identification system, 

widespread use in the European research 

community. Good mapping APIs towards 

other systems exist, to integrate into the 

UKS Python’s mygene API (C. Wu et al., 
2013) is used. 

CHEMICAL PubChem CID & SID Established identification system and 

provides a search API (Kim et al., 2023). 
CHEMICAL:PATTERN Canonical SMILES Widespread representation of chemical 

structures, though if non canonical 

SMILES are used, they may differ for the 

same compound structure. 

COMPOUND_CLASSIFICA

TION 

name As defined by source system. 

PHENOTYPE Concept ID NCBI MedGen Concept ID (Sayers et 
al., 2022), provides an API and maps 

between multiple different identification 

systems. 

ORGANISM Taxonomy ID Widespread use and easily accessible 

(Schoch et al., 2020). 

PATHWAY Internal ID of the different 

databases (KEGG 

(Kanehisa et al., 2017), 
Reactome (Jassal et al., 
2020), Wikipathway 

(Martens et al., 2021) and 

SMPDB (Jewison et al., 
2014)) 

Reactome, KEGG and Wikipathway are 

widely in use. SMPDB is the pathway 

library connected to DrugBank (Wishart 
et al., 2018) compounds. There is no 

direct mapping between pathways of 

different databases. 

GO Gene Ontology (Boyle et 
al., 2004) identifier 

Widely in use. 

PROTEIN_FAMILY Panther ID  (Mi et al., 
2021) 
InterPro ID 

(Paysan‑Lafosse et al., 
2023) 

Identification of the source system, due to 

independent definitions and categories of 

protein families. 

GENE_SET MSigDB ID (Liberzon et 
al., 2015) 

Collection of gene sets as defined by 

source system. 

VARIANT SNP ID 

CpG site ID 

Defined system, no mapping between the 

two identifiers. 

ADVERSE_OUTCOME_PA

THWAY 

KEY_EVENT 

AOP ID Identifier of source system. As defined by 

source system. 
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TISSUE name Custom curated, since no official 

widespread terminology/ ontology exists. 

CELL_LINE 

CELL_TYPE 

name Custom curated, since no official 

widespread terminology/ ontology exists. 

SAMPLE_DESCRIPTORS 

ETHNICITY 

AGE 

SEX 

name Custom curated, since no official 

widespread terminology/ ontology exists. 

 

CELL_EXPERIMENTAL_D

ESCRIPTOR 

GROWTH 

LIFE_SPAN 

BASE_MEDIUM 

name Custom curated, since no official 

widespread terminology/ ontology exists. 

 

The UKS – Results 

The UKS as a Robust – Multidimensional Data Source 
Table A 4   Node labels and to date data point count in the UKS. To date there are ~68 

million data points stored on the nodes in the UKS. 

Main Node 

Label 

Sub-labels Number of 

Nodes to 

Date in UKS 

Most common node 

attributes 

Estimated 

Number of 

Data 

Points 

ADVERSE_OU

TCOME_PAT

HWAY (AOP) 

 412 Created 

Name 

AOP_ID 

1,236 

CELL_EXPERI

MENTAL_DES

CRIPTORS 

(CED) 

BASE_MEDIUM 

GROWTH 

SAMPLING_SITE 

LIFE_SPAN 

109 Created 

Name 

218 

CELL_LINE/ 

CELL_TYPE 

DISEASED 

NORMAL 

CELL_LINE_TYPE 

2,893 Created 

Name 

5,786 

CHEMICAL DRUG 

DRUG_COMBINATIO

N 

NANOMATERIAL 

(ENM) 

PATTERN 

RING 

STRESSOR 

MATERIAL 

4,128,579 Created 

Name 

PubChem_CID 

SMILES 

16,514,316 

COMPOUND_

CLASSIFICATI

ON (CCL) 

CLASS 

KINGDOM 

SUBCLASS 

859 Created 

Name 

Classification_system 

2,577 
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SUPERCLASS 

DATA_SET PROJECT 

STUDY 

340 Created 

Name 

Description 

Provided_by 

Data_set_ID 

File_location 

2,040 

DATA_SET_T

YPE 

 6 Created 

Name 

12 

GENE MICRO_RNA 

PROTEIN_CODING 

PSEUDOGENES 

SNO_RNA 

LNC_RNA 

TRANSCRIPTION_FAC

TOR 

146,133 Created 

Ensembl_ID 

Gene_symbol 

Entrez_ID 

Biotype 

Ensembl_Protein_ID 

Ensembl_Transcript_I

D 

Strand 

Start 

End 

Contig 

Assembly_name 

1,753,596 

GENE_EXPR

ESSION 

HIGH 

MEDIUM 

LOW 

NOT_EXPRESSED 

716,927 Created 

Ensembl_ID 

1,433854 

GENE_SET  10,420 Created 

Name 

Description 

 

31,260 

GO BIOLOGICAL_PROCES

S 

CELLULAR_COMPON

ENT 

MOLECULAR_FUNCTI

ON 

44,369 Created 

Name 

GO_ID 

 

133,107 

INFORMATIO

N_ENTITY 

CLINICAL_HISTORY 

MEASURMENT 

1 755 Created 

Name 

EFO_ID 

5,265 

KEY_EVENT ADVERSE_OUTCOME 

MOLECULAR_INITIAT

ING_EVENT 

1 626 Created 

Name 

AOP_ID 

4,878 

ORGANISM  339 Created 

Name 

Taxonomy_ID 

1,017 

PATHWAY DRUG_ACTION 

DRUG_METABOLISM 

METABOLIC 

PHYSIOLOGICAL 

56,725 Created 

Name 

Source_ID 

 

170,175 
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PROTEIN 

SIGNALING 

PHENOTYPE ABNORMALITY 

CLINICAL_COURSE 

DISEASE 

FINDING 

GROUP 

SIDE_EFFECT 

SYMPTOM 

71,345 Created 

Name 

Concept_ID 

MESH_ID 

HPO_ID 

ICD10_ID 

428,070 

PROTEIN_FA

MILY (PF) 

ACTIVE_SITE 

BINDING_SITE 

CONSERVED_SITEHO

MOLOGOUS_SUPERFA

MILY 

HOMOLOGUE_GENE_

GROUP 

PROTEIN_DOMAIN 

PTM 

REPEAT 

SUB_FAMILY 

76,308 Created 

Name 

 

152,616 

PUBCHEM_FI

NGERPRINT 

(PCF) 

 881 Created 

Bit 

1,762 

SAMPLE_DES

CRIPTOR (SD) 

AGE_GROUP 

ETHNICITY 

SEX 

35 Created 

Name 

70 

SPECIFIC_EX

PERIMENT_C

ELL_LINE/ 

SPECIFIC_EX

PERIMENT_C

ELL_TYPE 

(SEC) 

 4,318 Created 

Name 

Provided_by 

Experiment_ID 

17,272 

SPECIFIC_EX

PERIMENT_T

ISSUE (SET) 

 54 Created 

Name 

Provided_by 

Experiment_ID 

216 

SPECIFIC_KE

Y_EVENT 

(SKE) 

 2,724 Created 

Name 

AOP_ID 

Event_AOP_ID 

AOP_AOP_ID 

13,620 

TISSUE TISSUE_GROUP 169 Created 

Name 

338 

VARIANT  7,996,538 Created 

SNP_ID 

Allele 

Start 

End 

47,979,228 
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chromosome 

     

Total  13,267,245  68,662,672 
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Table A 5  Edge types and to date data points stored on the relationships in the UKS. To date 
there are ~3.3 billion edge data points stored in the UKS. 

Edge Type Start Node 

Type 

End Node 

Type 

Number of 

Edges to 

date in the 

UKS 

Most 

Common 

Edge 

Attributes 

Estimated 

Number of 

Data Points 

ACTIVATES GENE 

CHEMICAL 

GENE 

 

100,015 Source 

Directed 

Created 

Downloaded 

400,060 

AFFECTS CHEMICAL 

 

GENE 

ORGANISM 

1,175,742 Source 

Directed 

Created 

Downloaded 

4,702,968 

ASSOCIATED_

WITH 

CHEMICAL 

GO 

GENE 

PHENOTYP

E 

CHEMICAL 

GENE 

PHENOTYP

E 

GENE 

VARIANT 

CHEMICAL 

ORGANISM 

CHEMICAL 

CELL_LINE 

 

 

 

PF 

PHENOTYP

E 

PHENOTYPE 

ORGANISM 

PATHWAY 

PATHWAY 

GO 

PHENOTYPE 

PHENOTYPE 

GO 

PHENOTYPE 

AOP 

AOP 

PATHWAY 

ORGANISM 

PHENOTYPE 

SD 

CED 

GO 

GO 

50,670,061 Source 

Directed 

Created 

Downloaded 

 

 

202,680,244 

BINDS CHEMICAL GENE 4,780,759 Source 

Directed 

Created 

Downloaded 

19,123,036 

CATALYSIS CHEMICAL GENE 53,607 Source 

Directed 

Created 

Downloaded 

214,428 

CLASSIFIED_

AS 

PHENOTYP

E 

PHENOTYPE 2,074 Source 

Directed 

Created 

Downloaded 

8,296 

CONTAINS DATA_SET 

 

TISSUE 

CHEMICAL 

47,122,432 Source 

Directed 

188,489,728 
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ENM 

CHEMICAL 

DATA_SET 

CELL_LINE 

ORGANISM 

MATERIAL 

PATTERN 

Created 

Downloaded 

 

DESCRIBES CHEMICAL PCF 556,040,688 Source 

Directed 

Created 

1,668,122,064 

DIFFERENTIA

L_EXPRESSES 

PHENOTYP

E 

GENE 1,331,236 Source 

Directed 

Created 

Downloaded 

FC_directio

n 

6,656,180 

DIRECTLY_LE

ADS_TO 

SKE SKE 2,192 Source 

Directed 

Created 

Downloaded 

8,768 

EXPRESSES CHEMICAL 

CELL_TYPE 

CELL_LINE 

TISSUE 

GENE 

 

34,823,682 Source 

Directed 

Created 

Downloaded 

139,294,728 

EXPRESSION_ 

CLASSIFICATI

ON 

CELL_TYPE 

CELL_LINE 

TISSUE 

GENE 

 

14,736,335 Source 

Directed 

Created 

Downloaded 

Probability_l

ow 

Probability_

medium 

Probability_

high 

88,418,010 

HAS_AFFINIT

Y 

CHEMICAL GENE 130,694 Source 

Directed 

Created 

Downloaded 

Affinity_sco

re 

653,470 

HAS_CORE_ 

MATERIAL 

ENM MATERIAL 559 Source 

Directed 

Created 

Downloaded 

2,236 

HAS_MATURE

_ 

SEQUENCE 

MICRO_RNA MICRO_RNA 21,032 Source 

Directed 

Created 

Downloaded 

84,128 

HAS_ 

METASTASIS_

IN 

CELL_LINE TISSUE 105 Source 

Directed 

Created 

420 
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Downloaded 

HAS_SAMPLI

NG_SITE 

CELL_LINE SAMPLING_SI

TE 

127 Source 

Directed 

Created 

Downloaded 

508 

HAS_SHAPE ENM GEOMETRY 551 Source 

Directed 

Created 

Downloaded 

1,653 

HAS_SIDE_ 

EFFECT 

CHEMICAL PHENOTYPE 1,415,012 Source 

Directed 

Created 

Downloaded 

reporting_fr

equency 

7,075,060 

INDIRECTLY_ 

LEADS_TO 

SPECIFIC_K

EY_EVENT 

SPECIFIC_KE

Y_ 

EVENT 

299 Source 

Directed 

Created 

Downloaded 

1,196 

INHERITS_FR

OM 

PHENOTYP

E 

PHENOTYPE 8,242 Source 

Directed 

Created 

Downloaded 

32,968 

INHIBITS CHEMICAL GENE 111,173 Source 

Directed 

Created 

Downloaded 

444,692 

INTERACTS_ 

WITH 

CHEMICAL 

 

CHEMICAL 

GENE 

16,327,003 Source 

Directed 

Created 

Downloaded 

65,308,012 

IS_A GO GO 70,938 Source 

Directed 

Created 

Downloaded 

283,752 

IS_CAPABLE_

OF 

GO GO 511 Source 

Directed 

Created 

Downloaded 

2,044 

IS_CAPABLE_

OF_PART_OF 

GO GO 300 Source 

Directed 

Created 

Downloaded 

1,200 

IS_CAUSATIV

E_ 

OF 

GENE 

CHEMICAL 

PHENOTYPE 

 

9,812 Source 

Directed 

Created 

Downloaded 

39,248 

IS_CHILD_OF PF 

GENE_SET 

PF 

GENE_SET 

785,195 Source 

Directed 

3,140,780 
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SKE 

SET 

SEC 

CELL_LINE 

 

GENE_EXP

RESSION 

TISSUE 

ETHNICITY 

AGE_GROU

P 

PHENOTYP

E 

CELL_TYPE 

CCL 

KEY_EVENT 

TISSUE 

CELL_LINE 

CELL_LINE_ 

TYPE 

GENE 

 

TISSUE_GRO

UPETHNICIT

Y 

AGE_GROUP 

PHENOTYPE 

CELL_TYPE 

CCL 

Created 

Downloaded 

 

IS_EVENT_OF KEY_EVEN

T 

AOP 5,417 Source 

Directed 

Created 

Downloaded 

21,668 

IS_EXPOSED_

ON 

CHEMICAL 

 

 

TISSUE 

CELL_LINE 

ORGANISM 

3,259 Source 

Directed 

Created 

Downloaded 

21,668 

IS_GENE_OF ORGANISM GENE 134,848 Source 

Directed 

Created 

404,544 

IS_ 

MANIFESTATI

ON_OF 

PHENOTYP

E 

PHENOTYPE 91,940 Source 

Directed 

Created 

Downloaded 

367,760 

IS_MAPPED_T

O 

KEY_EVEN

T 

PATHWAY 

GO 

PHENOTYPE 

GENE 

4,075 Source 

Directed 

Created 

Downloaded 

16,300 

IS_ORTHOLO

G_OF 

GENE GENE 66,413 Source 

Directed 

Created 

Downloaded 

Homology_t

ype 

332,065 

IS_PARALOG_

OF 

GENE GENE 777,217 Source 

Directed 

Created 

Downloaded 

Homology_t

ype 

3,886,085 

IS_PART_OF GO 

CHEMICAL 

GENE 

GO 

DATA_SET 

15,655 Source 

Directed 

Created 

62,620 
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IS_PATHWAY

_OF 

PATHWAY ORGANISM 8,025 Source 

Directed 

Created 

Downloaded 

24,075 

IS_PRESENT VARIANT TISSUE 

CELL_TYPE 

2,093,740 Source 

Directed 

Created 

Downloaded 

8,374,960 

IS_RELATED_

TO 

PHENOTYP

E 

PHENOTYPE 3,210 Source 

Directed 

Created 

Downloaded 

12,840 

IS_VARIANT_

OF 

VARIANT GENE 6,746,801 Source 

Directed 

Created 

20,240,403 

MEDICATES CHEMICAL PHENOTYPE 27,877 Source 

Directed 

Created 

Downloaded 

111,508 

MEMBER_OF GENE 

 

CHEMICAL 

PF 

GENE_SET 

DRUG_ 

COMBINATIO

N 

CCL 

23,932,237 Source 

Directed 

Created 

 

719,796,711 

NEGATIVELY

_ 

REGULATES 

GO GO 3,126 Source 

Directed 

Created 

Downloaded 

12,504 

NOT_EXPRES

SES 

CELL_TYPE GENE 25,613,578 Source 

Directed 

Created 

76,840,734 

OCCURES_IN GO GO 300 Source 

Directed 

Created 

Downloaded 

1,200 

POSITIVELY_ 

REGULATES 

GO GO 3,112 Source 

Directed 

Created 

Downloaded 

12,448 

P_P_ 

INTERACTIO

N 

GENE GENE 15,591,537 Source 

Directed 

Created 

Downloaded 

62,366,148 

REACTION CHEMICAL GENE 42,146 Source 

Directed 

Created 

Downloaded 

168,584 
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REGULATES GENE 

GO 

GENE 

GO 

858,966 Source 

Directed 

Created 

Downloaded 

regulation_ty

pe 

4,294,830 

REPRESSES GENE GENE 711 Source 

Directed 

Created 

Downloaded 

2,844 

TARGETS CHEMICAL GENE 38,168 Source 

Directed 

Created 

Downloaded 

action 

190,840 

      

TOTAL   1,021,782,73

4 

 3,292,744,584 
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Table A 6  To date data points stored in the file storage manged by the UKS. If a data set varies 

in their number of genes or samples across the collection an estimate is used. 

Data Type Data Set Number of 

Sub Datasets 

Measured 

Genes 

Number 

Analysis/ 

Samples 

Estimated Data 

Points 

Differential 

Expression 

Analysis with 

Limma 

Open TG-

GATEs (Igarashi 
et al., 2015) 

1 19,939 938 18,702,782 

Differential 

Expression 

Analysis with 

Limma 

 

Engineered 

Nanomaterial 

Transcriptomics 

Collection 

(Saarimäki et al., 
2021) 

106 20,000 100 212,000,000 

Gene 

Expression  

Engineered 

Nanomaterial 

Transcriptomics 

Collection 

(Saarimäki et al., 
2021) 

106 20,000 100 212,000,000 

 

Gene 

Expression 

CCLE (Barretina 
et al., 2012) 

 53,827 1,405 75,626,935 

Gene 

Expression 

Tabula Sapiens 

(Tabula Sapiens 
Consortium* et 
al., 2022) 

 58,559 472 27,639,848 

Gene 

Expression 

Human Protein 

Atlas (Thul & 
Lindskog, 2018) 

 19,553 65 1,270,945 

Gene 

Expression 

ENCODE (Luo 
et al., 2020) 

 58, 426 240 14,022,240 

Gene 

Expression 

 

Expression Atlas 

(Papatheodorou 
et al., 2018) 

3 50,000 400 60,000,000 

Total     621,262,750 
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Introduction
The newly identified coronavirus SARS-CoV-2 is responsible for
a pandemic form of respiratory tract infection currently ongoing
worldwide. Even if most patients remain asymptomatic or show
mild symptoms, some develop complications, such as severe
pneumonia and acute respiratory distress syndrome (ARDS)
[1, 2]. Furthermore, systemic complications, such as cardiovas-
cular disorders, persistent lung injuries and possibly fibrosis are
rapidly emerging as key threats in addition to the respiratory
syndrome. Restrictive measures have been adopted to slow
down the spreading of the virus; however, it is expected that the
infection will remain entrenched in the population for years [3].

To date, no approved vaccine is yet available and some
therapeutic strategies have been proposed to control the clinical
outcomes of the infection [4, 5]. Currently, a great effort is being
made by the scientific community in order to develop new
therapeutic approaches as well as to understand the molecular
events characterizing the host response to SARS-CoV-2 infection.
SARS-CoV-2 infects the cells via the angiotensin converting
enzyme 2 (ACE2) receptor-mediated endocytosis [6]. ACE2 is
expressed in several organs and cell types, such as lung, heart,
kidney, intestine and endothelial cells, which further raises
concerns about possible ectopic effects of the infection [7].

Molecular characterization of infected tissues and cells can
elucidate key potential molecular targets involved in the patho-
genesis of COVID-19. To this end, for instance, Gordon et al.
[8] applied mass spectrometry to identify SARS-CoV-2 human
protein interactors. These proteins can be considered as the first
responders to the virus, acting upstream in the host response
to the infection. Moreover, transcriptomic data of infected lungs
and cell types are already publicly available [9]. On the con-
trary, the genes derived from the transcriptomic data represent
late effectors in the host immune response. Nonetheless, a
knowledge gap exists to link the first host responses to the
virus with the subsequent phenotypic alterations. In this work,
we hypothesize that genes linking the upstream interactors
and downstream effectors are involved in the transduction and
amplification of the host response to the virus and can therefore
represent a new set of potentially relevant genes. Developing
computationalmethods that are able to infer suchmissing infor-
mation is of extreme importance, especially in situations where
there are limited data available, such as in the COVID-19 disease.
Moreover, a deeper understanding of the underlying molecular
responses is required in order to develop suitable treatment
methods and prepare for possible long-term effects. This gap
could be filled by exploiting the large amount of biomedical
data accumulated in recent years. However, the use of this infor-
mation is currently hampered by the heterogeneity of data for-
mats scattered across multiple repositories [10–12]. In this study,
we applied scalable and flexible data integration methods to
develop a robust compendium of molecular knowledge, the Uni-
fied Knowledge Space (UKS). Knowledge graphs (KGs) are large
data structures that model different entities, their properties
and relationships [13–16]. KGs allow to integrate multiple data
from diverse domains and repositories into a common space.
In this way, KGs facilitate the organization of information in a
structured manner and allow to visualize and retrieve complex
relationships between different entities derived from multiple
sources. Another purpose of KGs is the generation of currently
unknown facts, which can be inferred from existing links in the
KG. In the domain of biology, KGs have for example been used
in drug repositioning [17, 18] or to infer disease-biomolecule
associations [19, 20]. In our UKS, nodes can be genes, gene

products or drugs, while edges represent different relationships
between the entities. The UKS is created by combining homoge-
neous with heterogeneous network integrationmethods. Homo-
geneous network integration combines different networks with
the same node (type) but different edges, merging them into a
single network (e.g. combining multiple protein–protein interac-
tions (PPI) networks), while heterogeneous network integration
aims at connecting networks with different node (types) (e.g.
gene–drug target networks with a gene–gene network) [21].

The expansion of the PPI network through other data types
to construct a heterogeneous network has been previously
applied in a variety of contexts [20, 22, 23]; Davis and Chawla
[23] constructed a phenotypic-disease network merged with
a genetic-disease network to investigate disease comorbidities,
while Goh et al. [20] built a network linking genetic disorderswith
known disease genes to investigate the role of disease genes
in the human interactome. A detailed review about different
network data integration methods and their application is
provided by Gligorijević and Pržulj [21]. While previous studies
aimed at constructing a homogeneous or heterogeneous
network for a specific case study, we built an expandable and
flexible data structure. Consequently, high-quality networks can
be inferred (homogeneous and/or heterogeneous networks can
be retrieved). This allows the UKS to be used in a wide variety of
different studies in the future.

We analysed the UKS and retrieved a novel set of genes
potentially associated with the molecular host response to
SARS-CoV-2 infection. The functional characterization of this
new set of genes allows us to describe possible unpredicted
long-term complications of the COVID-19 disease, as well as to
suggest repositioning of some already approved drugs.

Methods
The proposed methodology aims at giving insights into the
possible mechanistic aspects of the SARS-CoV-2 infection and
host response through the construction of a Unified Knowl-
edge Space. Combining knowledge about viral physical inter-
actor human proteins and transcriptomic studies into a single
knowledge space allows to gain new valuable insights about
the mechanisms underlying COVID-19. By further expanding
the UKS with information about drug targets, valuable novel
knowledge regardingmultiple facets of the SARS-CoV-2 infection
can be generated.We define the UKS as a knowledge graph con-
stituted through multiple network layers [24, 25], where nodes
are representing either gene (products) or drugs, and edges
represent either direct known physical gene–gene interactions
or drug–gene target relationships. The UKS comprises all human
protein-coding genes as retrieved from Ensembl [26], known
physical interactions of their associated proteins as well as all
known drug target relationships. Our whole applied pipeline,
including data retrieval, processing and knowledge extracted, is
outlined as pseudocode in the Supplementary File S1 available
online at https://academic.oup.com/bib.

Data collection
Viral interactors

Genes known to be physically interacting with the viral com-
ponents of SARS-CoV-2 were retrieved from [8]. These genes
are involved in the first events of the host response upon viral
infection.

https://academic.oup.com/bib
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Transcriptomics data

The gene expression data of human lung biopsies of SARS-
CoV-2 infected patients and SARS-CoV-2 infected cell lines were
retrieved from the Gene Expression Omnibus (GEO) repository
(GEO ID GSE147507) [9]. The dataset only consisted of one time
point, and RNA was extracted 24 h after the infection. In this
work, we analyzed five different experimental conditions con-
tained in the GEO dataset: human lung biopsies of SARS-CoV-2
infected patients and uninfected control; A549 cell line infected
with SARS-CoV-2; A549 cell line infected with SARS-CoV-2 over-
expressing ACE2; Calu-3 cells infected with SARS-CoV-2; NHBE
cell line infected with SARS-CoV-2. For each of the cell lines, the
mock treated lines were collected to be used as controls for the
expression analysis.

Transcriptomics data analysis (DE gene set
identification)

Gene expression analysis was carried out starting from the raw
counts provided within the GEO record. Low read counts were
filtered by applying the proportion test method implemented
within the NOISeq Bioconductor package [27]. Filtered counts
were normalized through the upper quartile method imple-
mented in the NOISeq package. Differential expression anal-
ysis was carried out by using the DESeq2 Bioconductor pack-
age [28], while p-values were adjusted through the Benjamini-
Hochberg method [29]. The pre-processed expression matrices
are reported in the Supplementary Files S2–S5 available online
at https://academic.oup.com/bib.

UKS construction and PPI network retrieval
Known human protein coding genes were retrieved from
Ensembl (Assembly: GRCh38) [26], which represent the base of
the developed UKS. Known protein–protein interactions were
retrieved from HIPPIE (downloaded 28/10/2019) [30], HitPredict
[31, 32] (downloaded 04/11/2019), KEGG (downloaded 08/12/2019)
[33] and STRING (downloaded 23/02/2020) [34]. We combined
these PPI networks into a unique homogeneous network, by
mapping the proteins to their associated genes. The edges were
weighted based on an interaction source support score, where
an edge weight of 1 indicates source support by 100% of the
collected sources. This is important, since it has been shown that
there is a high variance between links in PPI networks, in terms
of quality of the determined interactions (e.g. experimental
based versus literature based). Therefore, the confidence of
the interaction varies widely and, in addition, links between
proteins may be missing [35–37]. To reduce the data quality bias,
we consider source support for each edge as important to reveal
a high confidence subnetwork from the homogeneously merged
PPI network. This approach is similar to the robust PPI network
construction approach suggested by Martha et al. [38]. Drug
target information was collected from DrugBank (downloaded
22/04/2020) [39] and Open Targets (downloaded 15/02/2019) [40]
and integrated into the UKS. The data contained in these two
sources aremerged into a single data layer bymeans of mapping
drugs to PubChem CIDs or SIDs [41], again conserving source
information. In order to link the data accurately to the previously
discussed data layers, gene symbols are mapped to Ensembl
Gene IDs [26] through mygene.info (http://mygene.info) [42, 43].
To provide a highly flexible data provisioning system, the UKS
is stored as a graph database in Neo4j 4.0 (https://neo4j.com/),
which allows to edit, retrieve and add new data as needed. The

complete UKS contains 20 793 human protein coding genes,
which are interlinked by 5 941 639 edges, representing physical
known interactions. Additional 7099 drugs are linked through
22 973 edges to their genetic targets. To construct a high-quality
gene–gene network, gene–gene relationships, associated with a
source support score of at least 0.75, are queried from the UKS
and used to construct a single layer gene–gene network, which
is represented as a Python NetworkX graph [44]. The final gene–
gene network is made up of 20 793 nodes, representing Ensembl
gene IDs, interlinked by 132 244 high-quality edges, describing
interactions between the gene’s associated proteins.

Identification of intermediate genes through shortest
paths

In order to identify the relevant genes that may have a crucial
role in the progression of SARS-CoV-2 infection, the shortest
paths between the physical interacting (PI) and the differentially
expressed (DE) gene sets were computed. Shortest path analysis
is a method to link two sets of nodes of interest and identify
interactor nodes between them. On a graph G= (V, E), where V is
the set of nodes and E is the set of edges, a shortest path between
vi and vj is defined as the path between vi and vj requiring the
least effort. In an unweighted network, this translates into the
least number of steps to be taken to connect vj and vi [45]. The
shortest path analysis was performed for each group of DE genes
identified in each biological system.

The shortest paths were retrieved with Python NetworkX
[44], shortest_path() function, by running Dijkstra’s shortest path
algorithm [45] between all possible pairs of PI and DE genes
(Python 3.6.9, NetworkX 2.3). All edges were considered to have
equal weight, meaning that only the number of steps was con-
sidered when running the algorithm. Only paths consisting of at
least one intermediate gene (IN) (path length >1) were consid-
ered during further analysis.

For each gene in the PPI network, its occurrences as an IN
between PI and DE was estimated separately for each experi-
mental class and statistically significant enriched IN genes were
identified. Hypergeometric test was performed by comparing
the IN frequencies identified in the shortest paths of interest
with their occurrences on all possible shortest paths in the com-
plete gene–gene network. By estimating statistical significance
of each visited intermediate node, only intermediate nodes that
are relevant in linking the previously defined sets of key nodes
(DE and PI) are considered. Adjusted p-values were estimated by
applying the Benjamin and Hochbergmultiple testing correction
[29]. The nominal p-values were calculated with Python’s SciPy
package [46] and the adjusted p-values were estimated based
on Python’s statsmodels package [47] (SciPy 1.3.2, statsmodels
0.11.1).

Pathway enrichment analysis

In order to functionally characterize the lists of PIs, INs, and
DEs, pathway enrichment analyses were performed using the
Wikipathway 2019 Human database through the EnrichR online
tool [48, 49]. The enriched pathways were visualized bymeans of
the FunMappOne tool [50].

Gene ranking

In order to evaluate the overall most common genes crossed
in the shortest paths, for each in vivo and in vitro system,
only statistically significant genes were selected and ranked

https://academic.oup.com/bib
mygene.info
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according to the intermediate gene count value. The five lists
were given as an input to the Borda function of the TopKList R
package [51], to calculate the Borda scores and rank the genes
according to the median function.

Identification of relevant drugs

In order to highlight drugs that could simultaneously affect
multiple steps of the host response to SARS-CoV-2, we retrieved
from the UKS the list of drugs targeting genes in the PI, IN and
DE sets and retrieved the set contained in their intersection.

Results and discussion
A novel set of genes involved in the pathogenesis of
COVID-19 can be retrieved from multi-scale molecular
network analysis

The Unified knowledge space (UKS) defined in this work has
been generated by integrating multiple data sets containing
protein–protein interaction (PPI) information as well as drug–
target relationships. By querying the UKS, we derived a net-
work of 20 793 human protein coding genes, represented as
nodes, and 132 244 edges, representing the physical interac-
tion relationships existing between the proteins encoded by
the UKS gene nodes. These interactions were integrated from
four data sources and stored in the UKS together with a data
support score, representing the number of sources in which the
connections are present. In order to have a reliable structure
of the network, we selected only edges supported in at least
three out of four sources (see section ‘UKS Construction and PPI
Network Retrieval’ for more details). The UKS network was fur-
ther extended with gene–drug information by adding 7099 drug
nodes that are linked to their target gene nodes through 22 973
edges (Figure 1A). We systematically mapped the SARS-CoV-2
physical interacting (PI) genes and the differentially expressed
(DE) genes inmultiple biological systems infected by SARS-CoV-2
[9] (Figure 1B).

A set of human proteins has been recently described by
Gordon et al. as physical interactors of the SARS-CoV-2 viral
components [8]. We considered these as the first set of proteins
involved in the host response to a SARS-CoV-2 infection. On
the other hand, we considered the differentially expressed
genes retrieved from transcriptomic analysis of infected in
vivo (infected versus healthy human lung biopsies) and in vitro
(infected versus mock CALU-3, A549, A549 overexpressing ACE2,
and NHBE cell lines) systems, as late effectors associated with
the COVID-19 pathological phenotype. In order to identify the
relationships between the first interactors of SARS-CoV-2 (PI
gene set) and the late effectors (DE gene set), a third set of genes,
located in the shortest path between each possible pair of (PI-DE
genes) was retrieved.

The concept of shortest paths has already been widely
applied in the analysis of biological networks and has yielded
biologically relevant results [52–54]. Du et al. [52] mapped differ-
entially expressed genes onto a PPI network and successfully
identified transcription factors linking a cancer gene to its
differentially expressed genes. Simões et al. [53] applied a
similar strategy in order to identify genes associated to complex
diseases.

In our study, we use the concept of shortest paths to investi-
gate the set of genes linking the genes directly interacting with
viral components and the ones whose transcription is altered
by the induced host response. From a kinetics perspective, the

first set of genes (PI) can be assumed to have a role in the
first molecular events upon viral exposure; on the contrary,
modulation of the expression of the late effector genes (DE) is
associated with cellular and, ultimately, systemic response to
the infection. We, therefore, assumed that genes in the shortest
paths can be involved in the transduction and amplification
of the host response. In this light, the intermediate genes can
better explain the chain of the molecular events characterizing
the response to SARS-CoV-2, as well as can represent another
important set of therapeutic targets.

For each in vitro and in vivo system analyzed, we named as
intermediate genes (IN gene set), all the genes, not belonging to
either the PI nor the DE gene sets, significantly overrepresented
(P-value ≤ 0.05) in the shortest paths.

In contrast with the heterogeneity of the DE gene set sizes,
the number of intermediate genes is comparable among the
different biological systems (Figure 2). Overall, we observe a
progressive increase in the size of the gene sets when going
from the first interactors (PI), through the intermediate genes
(IN), to the effector pathways genes (DE), suggesting the role
of the intermediate genes in propagating the host response
mechanisms to the virus entry. The human bronchial epithelial
cells (NHBE), on the contrary, was the only dataset showing a
decreasing trend from the PI to the DE gene set. This is probably
due to the smaller number of differentially expressed genes,
which can be associated with the lower permissiveness of the
NHBE cell line.

Functional characterization of intermediate gene set
reveals possible long-term effects of COVID-19 disease

In order to characterize the IN gene set, we performed path-
way enrichment analysis independently for each in vivo and
in vitro biological system analyzed. Moreover, we compared the
pathways over-represented in the IN set with the ones over-
represented in the PI and DE genes, respectively, in order to
identify specific biological functions, which could fill the gap
between the early molecular interaction events and the down-
stream transcriptomic host response (Figure 3).

As expected, PI genes specifically enriched pathways related
to viral infections, such as Ebola Virus pathway on Host and
Dual hijack model of Vif in HIV infection. Not surprisingly, cilia
associated pathways were also enriched, since epithelial cells
are the first ones to encounter SARS-CoV-2 in the respiratory
system. These pathways are also well represented in the IN
genes, while they are not significantly enriched in the DE
gene set.

Metabolic pathways are present in all the gene sets (PI, IN and
DE), with the oxidative phosphorylation and lipid metabolism
being the most affected functions. Viral infections are known to
induce a global metabolic alteration of the cell and, in particular,
lipids play a pivotal role in facilitating viral replication [55].

DE genes specifically enriched immune system related
pathways, which were not represented in the PI gene set and
minorly represented in the IN set. Some of the main effector
molecules involved in the cytokine storm observed in COVID-19
were present in the enriched immune pathways (e.g. INFγ , TNF,
IL-1β and other chemokines) as well as the NFkB transcription
factor pathway (Figure 3) [6, 56]. Interestingly, interferon
response was retrieved as significantly over-represented both
in IN and DE genes. However, type I interferon was specifically
enriched in the IN set,whereas type II was enriched in the DE set
only. Interferon gamma, the only type II interferon, is one of the
genes involved in the cytokine storm [56]. On the contrary, type I



1434 Pavel, del Giudice et al.

Figure 1. Scheme of the analytical framework. Data from multiple protein–protein interaction (PPI) sources (KEGG, HIPPIE, HitPredict and STRING) were collected and

mapped to their corresponding Ensembl Gene IDs. The PPI network was further integrated with drug–target information, derived from DrugBank and OpenTargets, to

form the UKS (A, left). A robust gene–gene network was extracted from the UKS,where only edges supported by at least three of themerged PPI networks were included

(A, right). PI and DE genes were mapped onto the extracted gene–gene network and intermediate genes (IN) were identified by means of shortest paths between each

possible pair of PI and DE (B). Pathway enrichment analysis was performed for all three gene sets. Drugs that have targets in all three gene sets (PI, DE and IN) were

selected and classified as ‘relevant drugs’ (C).

Figure 2. Number of known gene sets (DE and PI) and new gene set (IN) in each biological system. The number of differentially expressed genes (DE), and the new

retrieved set of intermediate genes (IN), are compared in each in vitro and in vivo system. The samples (biological system) derived from public transcriptomics dataset

comprising a lung biopsy and four different cell lines infected with the virus: the transformed cell lines A549 (adenocarcinomic human alveolar basal epithelial cells)

and CALU-3 (human lung cancer epithelial cell), the epithelial cell line NHBE and A549 overexpressing the angiotensin receptor ACE2 (A549_ACE2).
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Figure 3. Pathway enrichment of the PI, IN and DE gene sets. For each biological system (in vitro and in vivo), significantly enriched Wikipathways by the three sets of

genes (PI, IN, DE in the columns) are shown (rows). The number of samples that enriched specific pathways aremarked with different colours (values). Furthermore, the

enriched pathways have been grouped according to more generic biological processes (cell differentiation, cell metabolism, cell death, metabolism, immune system)

or molecules and structures (mRNA, viral, vascular and cilia).
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interferons are key antiviral mediators, and low levels have been
described in COVID-19 patients [57] .

Both IN and DE genes enriched pathways related to cell
differentiation, such as lung fibrosis, Wnt pathway and ecto-
derm differentiation. As we already reported, COVID-19 disease
shares many mediators of the lung fibrosis pathogenesis, such
as NFkB, IL-6, TGF and INF [58]. Furthermore, the receptor ACE2
is a known anti-fibrotic mediator, and lung fibrosis has already
been reported subsequently to the outbreak of SARS-CoV [59],
making it also a plausible long-term consequence of SARS-CoV-
2 viral infection. IN genes specifically enriched theWnt pathway,
which has been linked to chronic lung pathologies, including
idiopathic pulmonary fibrosis, pulmonary arterial hypertension,
asthma and chronic obstructive pulmonary disease [60]. Alto-
gether, this suggests that fibrogenic alterations in the lung can
be a possible long-term effect of the COVID-19 pathogenesis, as
we have already recently suggested [58].

Finally, the IN gene set enriched specific biological functions
represented in neither PI nor DE. Signalling related pathways,
with the exception of nuclear receptors, are only present in
the IN group. This indicates the central role of the IN genes in
propagating the signal from the PI initial interactors to the late
effector pathways. Consistently,mRNA processing pathways are
only enriched in the IN group.

Therefore, the pathway enrichment of the newly identified IN
set of genes reveals specific categories that represent signalling
and metabolic pathways. These intermediate pathways are fill-
ing the gap between the first interactors and the late effector
pathways, as well as cell differentiation pathways, suggesting
possible long-term lung tissue remodelling.

The intermediate genes are also linked to endothelial
cells dysfunction and vascular remodelling

Interestingly, the IN gene set also enriched vascular related
pathways. Among them, we found VEGF signaling pathways,
angiogenesis, EPO signaling and extracellular matrix related
pathways. Ackermann et al. recently showed that lung tis-
sue of SARS-CoV-2 infected patients presented endothelial
damage and significant new vessel growth [61]. The overall
modulation of vascular related pathways highlighted in the
IN genes, as well as the previously described cell differ-
entiation pathways, may be an indication of endothelial
remodelling and dysfunction. Endothelial dysfunction refers
to a systemic condition in which the endothelium loses
its physiological properties, including the tendency to pro-
mote vasodilation, fibrinolysis and platelets aggregation [62].
Different studies already proposed the endothelium as one of
the main targets of SARS-CoV-2 [63–65], furthermore increasing
evidence of coagulation alterations and fibrotic lesions are
currently emerging in the scientific literature [63, 66]. Therefore,
the new set of IN genes further strengthens the notion that the
endothelial cells play a pivotal role in the COVID-19 disease and
can help in predicting long-term effects in the lung in terms of
vascular remodeling and dysfunction.

We further compiled five ranked lists of intermediate genes
(for each in vitro and in vivo system represented in the DE space),
according to the frequency in which they occurred in the list of
shortest paths identified in each biological system. To obtain a
final consensus rank, we merged the lists by using the Borda
method (Supplementary File S6 available online at https://acade
mic.oup.com/bib).

Leucine-rich repeat kinase 2 (LRRK2) is the most frequently
visited gene in the shortest paths identified in the gene–gene
network retrieved from the UKS. This gene, which has been

extensively studied for its role in Parkinson disease [67], is
known to upregulate the transcriptional activity of NFkB by
increasing phosphorylation levels of NFkB inhibitor alpha (IkBa).
Hongge et al. proposed that LRRK2 has the potential to be an
important target for the treatment of endothelial dysfunction
[68]. Furthermore, Marker et al. [69] demonstrated that in
HIV infection, LRRK2 decreases the levels of the angiogenesis
inhibitor BAI1 and increases the production of pro-inflammatory
cytokines and phagocytosis. Given the pivotal role of NFkB in the
COVID-19 disease, LRRK2 is potentially important in both acute
and long-term responses.

Cullin 3 (CUL3), the third gene in the rank, has a role in
endothelial remodelling and angiogenesis, both in physiological
and pathological conditions [70].

The Exportin 1 (XPO1) gene is known tomodulate the activity
of mothers against decapentaplegic homolog 3 (SMAD3), a well-
established initiator of epithelial mesenchymal transition (EMT)
[71]. SMAD3 is an important downstream transcription factor
of TGF-beta, which regulates the transcription of extracellular
matrix components involved in cellular infection [72]. Interest-
ingly, XPO1, together with SMAD3 and TGF-beta, are strongly
linked to lung fibrosis [73, 74]. Similarly, heat shock protein fam-
ily A (Hsp70) member 4 (HSPA4), a chaperone protein, modulates
the expression of transcription factor TWIST1, amaster regulator
of morphogenesis and epithelial mesenchymal transition [75].

The histone variant H2AX, a sensitive marker of DNA repair
machinery, is also present among the top genes of the Borda
ranking. There is evidence that it plays an important role in
endothelial cell proliferation under hypoxia and,more generally,
in hypoxia-induced angiogenesis.

The heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1)
gene has the capability of controlling migration, proliferation
and gene expression levels of vascular smooth muscle cells. A
recent functional study showed that not only hnRNPA1 is an
important regulator in vascular smooth muscle cells function
and lesion-induced vessel remodeling but may also represent a
potential therapeutic target [76].

Finally, during lung epithelium infection, an important role
in activating both the innate and adaptive immune system and
the tissue repair mechanisms is also played by the estrogen
receptors [77]. Furthermore, anti-inflammatory effects of estro-
gens have already been reported [78] and are also supported
by our results since both estrogen receptors ESR1 and ESR2
are contained in the top ranked genes (Supplementary File S6
available online at https://academic.oup.com/bib). Based on our
results, our novel UKS is able to highlight key genes involved
in possible long-term effects of SARS-CoV-2, which are asso-
ciated with vascular remodelling and endothelial dysfunction,
and in some cases have already been pointed out as interesting
therapeutic targets.

Drugs targeting genes in all gene sets suggest
repositioning of drugs with anti-angiogenic and
immuno-modulatory properties

Given the functional importance of the IN gene set, we fur-
ther investigated whether these genes could also be molecular
targets of known drugs. We retrieved information about drugs
targeting the PI, IN and DE gene sets from the UKS.

Highlighting drugs,which can simultaneously targetmultiple
components of the host response (PI, IN and DE gene sets)
allows to uncover possible therapeutic strategies, which can
more effectively reduce the clinical consequences of the viral
infection [79, 80]. We hence identified 77 drugs targeting genes

https://academic.oup.com/bib
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Figure 4. Overview of the 77 drugs targeting genes in all gene sets (PI, IN, DE).

The list of 77 drugs sharing at least one target in each set of genes (PI, IN, DE)

belong to four main therapeutic classes showing both immunomodulatory and

anti-angiogenic properties: HDAC inhibitors (12%), proteasome inhibitors (5%),

drugs targeting the opioids receptors (16%) and the coagulation cascade (13%).

in all the three gene sets of interest (Figure 4 and Supplementary
File S7 available online at https://academic.oup.com/bib).

Among the 77 drugs, four different therapeutic classes were
strongly represented: HDAC inhibitors, proteasome inhibitors,
drugs targeting the coagulation cascade and drugs targeting the
opioids receptors (Figure 4).

Moreover, we found cough suppressants, such as dex-
tromethorphan, hydrocodone and pentoxyverine, as well
as expectorants and bronchodilators, such as theophylline,
aminophylline and oxtriphylline [81]. These drugs are all
centrally acting agents, thus exerting their effect on the lungs
by inhibiting the cough centre in the brain.

Other well-represented drug categories were analgesics,
antipsychotics and opioid antagonists. Haloperidol, amitripty-
line, pentazocine and naltrexone, among others, belong to such
categories. These drugs, together with the previously described
dextromethorphan, hydrocodone and pentoxyverine, share the
samemolecular targets both in the PI and IN gene sets: the sigma
non-opioid intracellular receptor 1 (SIGMAR1) and the μ opioid
receptor (OPRM1), respectively (Supplementary File S7 available
online at https://academic.oup.com/bib). Opioid drugs have a
well-recognized effect on immune cells both modulating the
immune system and exerting anti-inflammatory properties [82].
Besides, existing literature suggests that opioids might be able
to interact with viral receptors, viral proteins, viral promoters
and even modulate epigenetic mechanisms, such as the
expression of anti-viral miRNAs [83]. In fact, dextromethorphan
was already reported by Gordon et al., because of its antiviral
properties. On the other hand, dextromethorphan also shows
immunomodulatory effects by decreasing NF-κB and the MAPK
cascade genes activation in LPS-treated dendritic cells, and
interfering with primary T-cell responses [84]. On the contrary,
naltrexone, an antagonist of the μ receptor, has been shown
to revert the immunomodulatory action of opioids in several
experimental models [85]. Since the sigma receptors have
negligible affinity for naltrexone, it might be speculated that
a significant part of the effect is exerted via direct binding to
the opioid receptors. Taken together, these data suggest that
compounds acting on the sigma opioid receptors might be
involved in the innate and adaptive immunity in response to
a SARS-CoV-2 infection and that they can have an effect in
modulating the cytokine storm observed in the most severe
and life-threatening stages of the disease.

Fostamatinib, a tyrosine kinase inhibitor, is also present in
the list of identified drugs and importantly it targets LRRK2,
the most commonly crossed IN genes in the shortest paths

derived from the UKS. Fostamatinib is currently used to treat
autoimmune diseases and thrombocytopenia, but it has recently
been proposed for COVID-19 disease treatment by Saha et al. [86].
Similar to fostamatinib, we retrieved several drugs targeting the
coagulation cascade, such as kappadione, a vitamin K analogue,
andmenadione, used in hypoprothrombinemia treatment. It has
already been shown that COVID-19 patients commonly show
thrombocytopenia and are at risk of developing disseminated
intravascular coagulation, even though the molecular mecha-
nisms have been poorly described [87, 88]. Thrombocytopenia
is usually associated with an excessive activation of platelets
and of the coagulation cascade, which can be triggered upon
viral infection. Indeed, viruses have the ability of altering the
balance between procoagulant and anticoagulant homeostatic
mechanisms, as well as to induce pathogenic processes such as
endothelial dysfunction, Toll-like receptor activation and tissue
factor pathway inhibitor activation [87, 89].

Noteworthy, the drugs listed in Supplementary File S7
available online at https://academic.oup.com/bib highlighted
possible repositioning of HDAC inhibitors. HDAC inhibitors
are a class of compounds that act on epigenetic regulation
of gene expression by increasing the lysine acetylation of
histones [90]. They have antiviral properties by controlling
the virus replication cycle and exerting cytotoxic activity, but
they also have immunomodulatory properties by regulating the
production of cytokines as well as the activity of macrophages
and dendritic cells [91, 92]. Gordon et al. [8] showed that the
SARS-CoV-2 non-structural protein 5 (Nsp5) interacts with
the histone deacetylases and proposed valproic acid as a
therapeutic agent in COVID-19. Our UKS system was able to
detect several HDAC inhibitors, which target genes in all the PI,
IN and DE sets: romidepsin, belinostat, entinostat, tacedinaline,
fimepinostat, panobinostat, Cucd-101 and the valproic acid
itself. Specifically, the eight HDAC inhibitors targeted the
HDAC2 gene present in the PI set, and the HDAC5, HDAC7
and HDAC11 present in the IN gene list, and HDAC9, HDAC1,
HDAC10, HDAC3, HDAC6 and HDAC8 in the DE set. HDAC2 is
a class I inhibitor located in the nucleus of the cell, where it
can modulate inflammation in macrophages and monocytes
by inhibiting the NFkB complex [93]. On the contrary, HDAC5 is
a class II inhibitor, which can migrate into the nucleus upon
phosphorylation and mediate important anti-inflammatory
functions [94]. Thalidomide and its derivatives, pomalidomide
and lenalidomide, also share HDAC2 as a molecular target.
Thalidomide is an immunomodulatory agent and works by a
number of mechanisms including the stimulation of T cells
as well as decreasing TNF production. Importantly, these
compounds also share anti-angiogenic properties and inhibit
the proliferation of endothelial vascular cells [95].

Moreover, we identified proteasome inhibitors, sharing
both antiviral and anti-angiogenic activity [96]. The ubiquitin–
proteasome system plays an important role in virus replication
and cell cycle, thus inhibiting virus entry, genome replication
and viral protein synthesis. Proteasome inhibitors have already
been pointed out as therapeutic strategies against other
coronaviruses, since they can also limit the cytokine storm
associated with the abnormal immunological response induced
by the virus [97]. Most proteasome inhibitors can inhibit the
NFkB-mediated production of IL-6, and, by inhibiting the
NFkB transcription factor, they also exert an important anti-
angiogenic effect [98]. Remarkably,HDAC inhibitors, proteasome
inhibitors and thalidomide derivatives, are all currently used as
a therapeutic regimen against multiple myeloma, an oncological
condition in which myeloma cells produce a microenvironment
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enriched with pro-angiogenic factors, such as VEGF and IL-
6 [95]. In conclusion, the four classes of drugs identified by
the UKS share both immuno-modulatory and anti-angiogenic
properties and are therefore good candidates in counteracting
both the acute cytokine storm as well as endothelial and
vascular complications.

Conclusions
Characterizing the cascade of events taking place at multiple
levels in response to SARS-CoV-2 infection is urgently needed
as the COVID-19 pandemic keeps rampaging worldwide. Here,
we interrogated a unified network of public biomedical data,
the Unified Knowledge Space (UKS), in order to elucidate the
molecular alterations characterizing the SARS-CoV-2 infection.

By assuming that early viral responses aremediated by virus-
interacting genes, while the downstream effects of infection
are mediated by genes whose expression is altered, we inter-
rogated the UKS in search of a novel set of intermediate genes
that would help to further characterize the COVID-19 patho-
genesis. Our analysis highlighted genes representing functions
related to fibrosis and vascular remodelling, implying further
long-term consequences of SARS-CoV-2 infection. Furthermore,
we identified a set of drugs with at least one target present
in each of the identified gene sets: proteins known to interact
with SARS-CoV-2 (PI, as defined by Gordon et al. [8]), differ-
entially expressed (DE) genes in multiple biological systems
infected by SARS-CoV-2 (Blanco-Melo et al. [9]) and intermediate
genes (IN, newly discovered here). Our results point to ther-
apeutic classes with immunomodulatory and anti-angiogenic
roles.

In conclusion, the robust network-based approach applied
here helps to shed light on the details of the SARS-CoV-2–host
interaction, suggesting possible long-term effects of the viral
infections, and highlights important therapeutic targets, paving
the way to new drug repositioning studies. Furthermore, due to
the high flexibility of the UKS, our strategy can be applied to
study the molecular alterations induced by other diseases or by
the exposure to drugs or chemicals.

Key Points
• Integrated molecular network analysis can help to
clarify the pathogenesis of complex diseases and sug-
gest novel drug targets.

• By mapping SARS-CoV-2 first physical interactors and
COVID-19 downstream differentially expressed genes
on the integrated humanmolecular network,we iden-
tified a new set of intermediate genes.

• The newly discovered set of intermediate genes
underlies important aspects of COVID-19 pathogen-
esis and long-term consequences, pointing to lung
tissue remodelling and fibrosis.

• We highlighted immuno-modulatory and anti-
angiogenic drugs targetingmultiple genes in each and
every relevant set: physical interactors, intermediate
and downstream effectors.

Supplementary data

Supplementary data are available online at Briefings in Bioin-
formatics.

Funding

Academy of Finland (grant number 322761).

Conflict of interest

The authors declare no conflict of interest.

Author contributions

A.P. collected, integrated and analysed the raw data, devel-
oped the computational framework, drafted themanuscript.
G.d.G. analysed and interpreted the results, drafted the
manuscript. A.F. analysed the transcriptomics data and
revised the manuscript. A.D.L. and P.A.S.K. interpreted the
results and drafted the manuscript. A.S. supervised the
development of the computational framework and revised
the manuscript. D.G. conceived and supervised the project,
edited the manuscript.

References
1. Girija ASS, Shankar EM, Larsson M. Could SARS-CoV-

2-induced hyperinflammation magnify the severity
of coronavirus disease (COVID-19) leading to acute
respiratory distress syndrome? Front Immunol 2020;11:
1206.

2. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of
critically ill patientswith SARS-CoV-2 pneumonia inWuhan,
China: a single-centered, retrospective, observational study.
Lancet Respir Med 2020;8:475–81.

3. O’Neill LAJ, Netea MG. BCG-induced trained immunity:
can it offer protection against COVID-19? Nat Rev Immunol
2020;20:335–7.

4. Zhu S, Guo X, Geary K, et al. Emerging therapeutic strate-
gies for COVID-19 patients. Discoveries (Craiova) 2020;8:
e105.

5. Jeong GU, Song H, Yoon GY, et al. Therapeutic strategies
against COVID-19 and structural characterization of SARS-
CoV-2: a review. Front Microbiol 2020;11:1723.

6. Matricardi PM, Dal Negro RW, Nisini R. The first, holistic
immunological model of COVID-19: implications for preven-
tion, diagnosis, and public health measures. Pediatr Allergy
Immunol 2020;31(5):454–70.

7. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell
infection and endotheliitis in COVID-19. Lancet 2020;395:
1417–8.

8. Gordon DE, Jang GM, Bouhaddou M, et al. A SARS-CoV-2
protein interactionmap reveals targets for drug repurposing.
Nature 2020;583:459–68.

9. Blanco-Melo D,Nilsson-Payant BE, LiuW-C, et al. Imbalanced
host response to SARS-CoV-2 drives development of COVID-
19. Cell 2020;181:1036, e9–45.

10. Wang X,Williams C, Liu ZH, et al.Big datamanagement chal-
lenges in health research-a literature review. Brief Bioinform
2019;20:156–67.

11. Manzoni C, Kia DA, Vandrovcova J, et al. Genome, tran-
scriptome and proteome: the rise of omics data and their
integration in biomedical sciences. Brief Bioinform 2018;19:
286–302.

12. Tadist K, Najah S, Nikolov NS, et al. Feature selection meth-
ods and genomic big data: a systematic review. J Big Data
2019;6:79.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa417#supplementary-data


Integrated network analysis reveals new genes suggesting COVID-19 chronic effects and treatment 1439

13. Liang X, Li D, Song M, et al. Predicting biomedical relation-
ships using the knowledge and graph embedding cascade
model. PLoS One 2019;14:e0218264.

14. Nicholson DN, Greene CS. Constructing knowledge graphs
and their biomedical applications. Comput Struct Biotechnol J
2020;18:1414–28.

15. Nickel M, Murphy K, Tresp V, et al. A review of rela-
tional machine learning for knowledge graphs. Proc IEEE
2016;104:11–33.

16. Ehrlinger L, Wöß W. Towards a definition of knowledge
graphs. SEMANTiCS 2016: 12th International Conference on
Semantic Systems, Leipzig, Germany, New York (NY), United
States: Association for Computing Machinery, 2016. p. 1695

17. Cheng F, Liu C, Jiang J, et al. Prediction of drug-target inter-
actions and drug repositioning via network-based inference.
PLoS Comput Biol 2012;8:e1002503.

18. Sosa DN, Derry A, Guo M, et al. A literature-based knowl-
edge graph embedding method for identifying drug repur-
posing opportunities in rare diseases. Pac Symp Biocomput
2020;25:463–74.

19. Shen Z, Zhang Y-H, Han K, et al. miRNA-disease association
prediction with collaborative matrix factorization. Complex-
ity 2017;2017:1–9.

20. Goh K-I, Cusick ME, Valle D, et al. The human disease
network. Proc Natl Acad Sci U S A 2007;104:8685–90.
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Abstract

Motivation: Network analysis is a powerful approach to investigate biological systems. It is often applied to study
gene co-expression patterns derived from transcriptomics experiments. Even though co-expression analysis is
widely used, there is still a lack of tools that are open and customizable on the basis of different network types and
analysis scenarios (e.g. through function accessibility), but are also suitable for novice users by providing complete
analysis pipelines.

Results: We developed VOLTA, a Python package suited for complex co-expression network analysis. VOLTA is
designed to allow users direct access to the individual functions, while they are also provided with complete analysis
pipelines. Moreover, VOLTA offers when possible multiple algorithms applicable to each analytical step (e.g. mul-
tiple community detection or clustering algorithms are provided), hence providing the user with the possibility to
perform analysis tailored to their needs. This makes VOLTA highly suitable for experienced users who wish to build
their own analysis pipelines for a wide range of networks as well as for novice users for which a ‘plug and play’ sys-
tem is provided.

Availability and implementation: The package and used data are available at GitHub: https://github.com/fhaive/
VOLTA and 10.5281/zenodo.5171719.

Contact: dario.greco@tuni.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Co-expression network analysis has become popular to charac-
terize gene–gene expression patterns from omics data by provid-
ing insight into the differential gene co-expression patterns and
their local and global organizations, between different biological
conditions (van Dam et al., 2018; Liu et al., 2017). Currently
three main classes of network analysis software exist to (i) infer
co-expression networks from experimental data (Marwah et al.,
2018), (ii) investigate the properties of individual networks
(Hagberg et al., 2008) and (iii) compare multiple networks
(Proost and Mutwil, 2018), while flexible, comprehensive tools
are currently still missing. We therefore developed VOLTA, a
Python package that combines traditional network metrics with
functions adjusted to the comparison and evaluation of co-
expression networks. In addition, VOLTA is highly versatile by
nature, allowing users easy access to all functionalities and
parameters. This helps the users to create analytical pipelines to
answer a wide range of biological questions, which is in contrast
to many other available software/tools which are restricted to

specific steps through their implementation (Proost and Mutwil,

2018; Supplementary Text). To the best of our knowledge there
is currently no other package available, which combines a diverse

set of network analysis methods into a single package, complete-
ly exposes its internal functionalities and therefore is highly
versatile.

2 Implementation

VOLTA consists of seven modules (Supplementary Fig. S2), which
can be used independently or in combination to create complex ana-

lytical pipelines. VOLTA is implemented in Python 3 and allows
users deep access to all functionalities and parameter settings. In
addition to the main function modules, VOLTA provides six prede-

fined pipeline wrappers. Three fully functional pipelines are pro-
vided in the form of Jupyter Notebooks respectively addressing: (i)
clustering of multiple networks employing global and local similar-

ities; (ii) identification of common connectivity patterns in a set of

VC The Author(s) 2021. Published by Oxford University Press. 4587
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networks and (iii) network–network comparison based on their
nodes, edges and communities (Supplementary Text S1).

3 Application

To demonstrate the functionalities and applicability of VOLTA in
co-expression network analysis, we selected three possible analysis
scenarios. The networks for this study were generated from the
Lincs 1000 data (Supplementary Text S4.1). In the first case, in
order to describe the transcriptional perturbation induced on A549
cells by treatment with dasatinib and mitoxantrone, we compared
the characteristics (i.e. connectivity) of the two co-expression net-
works by exploiting the functionalities of the VOLTA package.
Such an analysis allowed the characterization of the specific mech-
anism of action of the considered chemotherapeutic drugs.
Evaluation of difference in gene centrality in the two networks,
showcases a high difference in centrality among the networks of
OXA1L, YME1L1 and DNAJC15 genes, suggesting an involvement
of mitoxantrone in the impairment of mitochondrial function, as
has been previously demonstrated (Rossato et al., 2014).
Comparison of pathway enrichment of the modules of the two net-
works showcases the difference in mechanisms of mitoxantrone and
dasatinib. Modules detected in the mitoxantrone network enrich for
DNA double strand break pathways, highlighting the genotoxic ef-
fect of mitoxantrone. On the other hand, functional characterization
of the modules in the dasatinib network highlight the involvement in
the intracellular signaling processes (Supplementary Text S4.2).

In the second case study, we aimed to assess the impact of the
different molecular makeup of 20 cancer cell lines on the mechanism
of action of dasatinib (Supplementary Text S4). Exploiting VOLTA
functionalities for this aim allowed the investigation of drug sensitiv-
ity profiles of cancer cell lines to dasatinib treatment and to identify
clusters of similarly responding cell lines. The three clusters that
could be identified were (i) a cluster mainly made up of breast (can-
cer) related tissues, (ii) one containing ‘normal’ samples from differ-
ent tissues and (iii) another one containing different tissue types—
not fitting into the previous two clusters (Supplementary Table S8).
In the third analysis, we showcased and characterized the statistical
sub-graph of the breast related tissue cluster. Investigation of the
cluster characterized sub-graph reveals genes that are involved in
processes related to cell cycle, differentiation and metabolism as cen-
tral. Pathway enrichment of the modules of the characterized sub-
graph indicates a deregulation of immune-related pathways, to-
gether with cell cycle and DNA repair machinery (Supplementary
Table S10).

4 Discussion

To date, many network analysis software solutions have been pro-
posed, which have often either very general purpose (Hagberg et al.,
2008) or they are specialized packages to solve a specific problem
(Rossetti et al., 2019). Software solutions for co-expression network
analysis, on the other hand, are commonly optimized for a single
analysis pipeline or step (Marwah et al., 2018; Proost and Mutwil,
2018). While these tools are easy to use, they can have the downside
of being non-adaptable to other problems. This can for example re-
sult through stringent input format requirements, or commonly that

individual functionalities are implemented in such a way that they
are not accessible from outside the provided software, which often
means that individual functionalities (of a pipeline) cannot be re-
used outside the ‘intended’ flow as well as that parameter adjust-
ment is restricted (Supplementary Text S2). We therefore developed
VOLTA, which combines a diverse set of exposed functions, applic-
able in many different fields of network analysis and aims, when
possible, to provide different algorithms for a given task (for ex-
ample a diverse set of community detection algorithms is provided).
This allows users to customize their pipelines, for example based on
their network structure, or allows the application of ensemble meth-
ods. In addition, pipelines (which can easily be modified by users
due to being provided as Jupyter Notebook files (https://github.com/
fhaive/VOLTA/tree/master/jupyternotebooks) for specific analysis in
the domain of co-expression networks are provided. This allows in-
experienced users a plug-and-play experience, while more advanced
users have the possibility to construct customized pipelines.

5 Conclusion

Here, we presented VOLTA, a Python package highly adapted to
biological network analysis (with a focus on co-expression net-
works). It is the first package providing a wide range of functional-
ities adaptable to different studies in Python, which is both suited to
naive as well as expert users. The usability and applicability of
VOLTA in (co-expression) network analysis has been highlighted in
the performed case studies.
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Abstract
Motivation: Transcriptomic data can be used to describe the mechanism of action (MOA) of a chemical compound. However, omics data tend
to be complex and prone to noise, making the comparison of different datasets challenging. Often, transcriptomic profiles are compared at the
level of individual gene expression values, or sets of differentially expressed genes. Such approaches can suffer from underlying technical and bi-
ological variance, such as the biological system exposed on or the machine/method used to measure gene expression data, technical errors and
further neglect the relationships between the genes. We propose a network mapping approach for knowledge-driven comparison of transcrip-
tomic profiles (KNeMAP), which combines genes into similarity groups based on multiple levels of prior information, hence adding a higher-level
view onto the individual gene view. When comparing KNeMAP with fold change (expression) based and deregulated gene set-based methods,
KNeMAP was able to group compounds with higher accuracy with respect to prior information as well as is less prone to noise corrupted data.

Result: We applied KNeMAP to analyze the Connectivity Map dataset, where the gene expression changes of three cell lines were analyzed af-
ter treatment with 676 drugs as well as the Fortino et al. dataset where two cell lines with 31 nanomaterials were analyzed. Although the expres-
sion profiles across the biological systems are highly different, KNeMAP was able to identify sets of compounds that induce similar molecular
responses when exposed on the same biological system.

Availability and implementation: Relevant data and the KNeMAP function is available at: https://github.com/fhaive/KNeMAP and 10.5281/
zenodo.7334711.

1 Introduction

A fundamental challenge in compound safety and efficacy as-
sessment is to understand the multi-scale mechanistic effects
that compounds have on genes, cells, tissues, and organisms.
Toxicogenomics approaches can be used to characterize the
mechanism of action (MOA) of a compound (Gao et al.
2021), through the use of transcriptomics (Federico et al.
2020, Kinaret et al. 2020b, Serra et al. 2020). In addition, the
comparison of molecular alteration profiles allows to identify
similarities between phenotypic entities and to make conclu-
sions about possible phenotypic changes of an exposure
(Kinaret et al. 2020b). Transcriptomics data are complex and
prone to technical and biological variability and noise (Raser
and O’Shea 2005, Freytag et al. 2015, Federico et al. 2020,
Fratello et al. 2022). Therefore many variables need to be

considered when comparing expression profiles, especially
coming from different datasets or (biological) systems.
Methods to compare gene expression or gene expression al-

teration profiles aim to analyze lists of genes ordered by their
expression levels as measured by DNA microarrays or RNA
sequencing (Federico et al. 2020, Kinaret et al. 2020b). A
common metric used for this is the correlation (Freytag et al.
2015, Serra et al. 2018, Serra et al. 2020). Differential analy-
sis or the comparison of deregulated genes is another method,
where the affected genes are compared with respect to a con-
trol, instead of using the expression values directly (Marwah
et al. 2019, Federico et al. 2020). In this case, the lists of
deregulated genes are directly compared to highlight differen-
ces and commonalities. Alternatively their functional profiles
are compared through pathway enrichment (Federico et al.
2020, Serra et al. 2022b).
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The approach suggested in this study, a network mapping
approach for knowledge-driven comparison of transcriptomic
profiles (KNeMAP), builds on the assumption that genes can
be grouped together based on higher level classifications, such
as functions, processes or evolutionary origin. Therefore the
individual gene view is replaced by a “similar gene” view,
where instead of considering genes individually, a set of genes
are grouped together based on multi-level prior knowledge.
This gene grouping is used to create a feature vector for each
experimental instance, which can be used in downstream
analysis, such as clustering or machine learning (ML) applica-
tions, where often a numeric feature vector is needed as input
(Serra et al. 2020, Fratello et al. 2022). This is in contrast to
many functional enrichment applications, where individual
pathway names are returned, that cannot be directly provided
as input to such downstreamML applications.
In addition since KNeMAP is prior knowledge dependent,

new feature vectors can be computed for new data, without
the need to re-process existing data, since the feature vectors
as long as computed from the same prior knowledge are com-
parable between each other. For the same reason it is also
possible to compare exposure fingerprints via KNeMAP
across datasets. Another difference to traditional functional
enrichment is that we define gene similarity as multi-view,
across multiple different data layers, capturing functional, in-
teractional, and associational gene (product) similarities.
Here, we showcase the effectiveness of the KNeMAP

method by applying it on the CMap (Lamb et al. 2006) data-
set to compare the transcriptomic profiles of drugs across
three different cell lines (biological systems), as well as the
Fortino et al. (2022) dataset to compare the transcriptomic
profiles of engineered nanomaterials (ENMs) across two dif-
ferent human cell lines. In addition, we compare the CMap
(Lamb et al. 2006) and Fortino et al. data with each other to
identify for each ENM, the drug that shows the most similar
transcriptomic alterations across all biological systems. We
also compare our method with three other approaches based
on correlation of the gene expression fold changes (in com-
parison to the control gene expression), gene deregulation
analysis as well as a Gene Set Enrichment Analysis (GSEA)-
based methodology (Subramanian et al. 2005, Iorio et al.
2010).

2 Materials and methods
2.1 Data collection and prior network

In order to investigate the difference between the transcrip-
tomic alterations induced by small molecules on different bio-
logical systems, we downloaded microarray data including a
set of compounds, tested on different systems (Fig. 1A), as de-
scribed in Lamb et al. (2006) (CMap) and as described in
Fortino et al. (2022). The processing of the data is described
in the Supplementary Materials (Methods—Collection of
Expression Data and Pre-Processing).

2.1.1 Prior network creation and community detection

In order to build a robust gene network, we collected multiple
data layers and datasets, covering different aspects of a gene’s
function, relationships, and structure (Fig. 1A). By combining
these data, we created a weighted network that captures mul-
tiple views of “gene similarity.” For example two genes can
be considered as similar, based on their structural or ancestral
similarities, on their functional similarities (e.g. takes part in

the same pathway) or on a higher level, such as that genes are
associated with the same or closely related phenotypes. A sim-
ilar approach is applied in multi-omics, where data from dif-
ferent omics technologies are combined in order to generate a
more complete view of the analyzed data (Serra et al. 2015,
Rappoport and Shamir 2018, Mitra et al. 2020). The data
used to create the prior network is described in the
Supplementary Materials (Methods—Prior Network Data
Collection). Which has been integrated into a Knowledge
Graph framework (Pavel et al. 2022), the Unified Knowledge
Space (UKS), which has been previously described in Pavel
et al. (2021a,b) and Federico et al. (2022).

2.1.1.1 Prior network

For each of the data types collected (Paralog, Homolog,
Protein Family, Protein Sub-Family, Chemical associations,
Disease associations, Pathways, Biological Process, Molecular
Function, Cellular Component, PPI) a single gene–gene simi-
larity network was created (Fig. 1B1). For data representing
gene–gene edges in the UKS, such as contained in the protein–
protein interaction layer a gene–gene similarity network was
constructed by retrieving the interactions and assigning as
weights the number of data sources supporting this edge. This
approach of unifying gene networks has already proven to be
effective, as described in Pavel et al. (2021a,b). The other type
of data, representing gene–entity edges, such as gene–disease
associations or gene–pathway associations were converted
into a gene–gene similarity network. Here an edge represents
two genes that are associated with the same entity (e.g. a dis-
ease) and the edge weight represents how many shared entities

Figure 1. Description of the proposed methodology. (A) The collection

and pre-processing of the gene expression data. The values are sorted by

their 6logFC * �log(Pval) (FCP) values. In addition, different layers of

gene (product) information are collected, such as protein family, homolog,

protein-protein interaction (PPI) information as well as associations to

phenotypes, compounds, and gene ontology (GO) (The Gene Ontology

Consortium 2021) terms. (B) The individual gene (product) information

data types are converted into gene–gene similarity networks (1). The

individual networks are merged into a single weighted gene–gene

similarity network, the prior network (2). (C) The prior network is

partitioned into communities. (D) For each exposure a feature vector is

created. The gene expression data are filtered to only include genes

contained in the prior network (1). The genes are sorted by their up/down

regulation and the top (up-regulated) and bottom (down-regulated) 100

genes are selected (2). These 200 genes are mapped onto the prior

network partitions (communities). For each exposure a feature vector is

created, whose length is equal to the number of detected communities

and its values indicate the fraction of the most affected 200 genes falling

into each community (3). (E) The feature vectors are used to cluster the

compounds for each biological system. (F) The clusters are compared

between the biological systems, via a jaccard index.
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the pair of genes has, similarly to the approach described in
Federico et al. (2022). After the individual gene similarity net-
works were created, their edge weights were scaled to be in
(0,1), where a value close to 1 represents a strong similarity
and a value close to 0 represents a weak similarity. This was
performed in order to merge the individual networks into a
combined gene similarity network. The individual networks
were merged in a hierarchical, data-driven fashion. First the
individual networks edge similarity was assessed, based on a
combined distance on their binary edges. The aim was to first
merge data layers, which span similar areas, therefore it was
only considered if an edge is present or not and not their com-
puted edge weights, which are first considered in the merging
process. The combined distance was created by summing the
jaccard distance matrix, the SMC (Simple Matching
Coefficient, also known as Rand similarity) distance matrix
and a distance matrix computed from the percentage of
shared edges (1-fraction of shared edges) (Pavel et al.
2021a,b). All three distance matrices were weighted equally
and the resulting distance matrix was scaled to be in (0,1).
On this combined matrix, hierarchical clustering was per-
formed with scipy.cluster.hierarchy.linkage(method¼“ward”)
(Virtanen et al. 2020), resulting in three main clusters as
shown in Supplementary Fig. S1. The networks in the individ-
ual clusters were merged first, in such a way that their individ-
ual edge weights were scaled to all have the same median
value and then were added up, a similar approach has been
applied in Federico et al. (2022). After this was performed for
all three clusters the process was repeated for the resulting
three new gene similarity networks in order to create one sin-
gle combined gene similarity network (Fig. 1B2), whose val-
ues were again scaled to be in (0,1). The final created network
consisted of 22 316 nodes and 213 784 257 edges, which cor-
responds to a network density of 0.86. The prior network is
available at 10.5281/zenodo.7334711.
On the so created weighted gene similarity network

community detection was performed (Fig. 1C) with
volta.communities.agglomerative(distance_threshold¼0.5)

(Pavel et al. 2021a,b), which performs agglomerative cluster-
ing on the networks adjacency matrix using its edge weights
(similarities). In order to identify genes that are highly similar
in different data layers but not to generate large groups of
genes, we aimed at a community distribution of many small-
scale communities. In comparison to other community detec-
tion algorithms available in VOLTA (Pavel et al. 2021a,b),
volta.communities.agglomerative() showed a partitioning
closest to the desired community distribution. The final net-
work partitioning consisted of 1466 communities with a
mean size of 15.2 genes per community. The network parti-
tioning is available at https://github.com/fhaive/KNeMAP/
tree/main/data.

2.2 Feature vector creation

The MOA of a compound can be defined as the list of most
deregulated genes (Federico et al. 2020, Serra et al. 2022b).
Thus, KNeMAP compares the drug induced transcriptomic
alterations by means of a feature vector, capturing the similar-
ity (gene groups on the prior network) between the most
deregulated genes. Additionally, in previous analysis of the
CMap dataset, it has been suggested that a subset of affected
genes is enough to describe the data instance (biological sys-
tem þ exposure) (Struckmann et al. 2021). For each data in-
stance, the genes are sorted by their FCP (6logFC *
�log(Pval)) score. The top 100 most positive deregulated
genes and the top 100 most negative deregulated genes
(Fig. 1D2), which are represented in the created gene similar-
ity network (Fig. 1D1), were selected. Supplementary Figure
S4 outlines the correlation and distance between feature vec-
tors for different gene set sizes in combination with the vari-
ability of these values. The selected genes were mapped onto
the computed communities of the prior network and for each
community the fraction of the 200 genes falling into that com-
munity were estimated. Based on these fractions, a feature
vector for each data instance was generated, where each bit
position describes a community and its value indicates the dis-
tribution of most deregulated genes across them (Fig. 1D3).
The script to compute the vectors is available at https://
github.com/fhaive/KNeMAP.

2.3 Similarity of the exposures based on the

deregulated genes in a binary feature vector

To compare the KNeMAP method, to a commonly used gene-
based method (Scala et al. 2018, Kinaret et al. 2020a,
Saarimäki et al. 2020, Kinaret et al. 2021, Serra et al. 2022a),
a binary gene vector (BDG) for each data instance was cre-
ated. To create this vector, the same 200 genes for each in-
stance, as used in the KNeMAP feature vector, were selected.
In a gene wide vector (11 868 genes were measured) a value
of 1 was set if the corresponding gene at this position is in the
set of 200 most deregulated genes of that specific data in-
stance, else a value of 0 was set.

2.4 Similarity of the exposures based on the FCP

values in a FCP feature vector

We also compared KNeMAP to a vector making use of all
gene FCP values of all common measured genes. For each
compound exposure on each system, the gene FCP values
were collected into a feature vector (FC). A clustermap
(Supplementary Fig. S2A), indicating similarities between
sample pairs was computed with seaborns (Waskom et al.
2018) clustermap(method¼“ward,” metric¼“euclidean”). In

Figure 2. Median cosine distance between KNeMAP, BDG, GSEA, and

FC-based vectors with increased levels of added noise to the gene

expression values as well as the selected deregulated genes. (A) Shows

the median performance across both dataset for increasingly added noise.

(B) Shows the median performance across both datasets for increased

perturbation noise added to the top 200 selected most deregulated

genes. The cosine distance between the vectors was computed from the

gene expression data with different noise levels or the set of selected

deregulated genes and the baseline (noise¼ 0). The noise levels are on

the x-axis, the mean cosine distance on the y-axis. The stars are indicators

of the KNeMAP line, used to improve inclusivity of the figure.

KNeMAP 3

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad341#supplementary-data
https://github.com/fhaive/KNeMAP/tree/main/data
https://github.com/fhaive/KNeMAP/tree/main/data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad341#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad341#supplementary-data
https://github.com/fhaive/KNeMAP
https://github.com/fhaive/KNeMAP
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad341#supplementary-data


addition, the Pearson correlation between all pairwise sam-
ples of two biological systems were computed and are dis-
played in Supplementary Fig. S2B. These two plots show the
correlation between instances based on the gene expression
fold changes.

2.5 Similarity of the exposures based on the GSEA

values in a GSEA feature vector

As a third comparison we selected a GSEA (Subramanian
et al. 2005)-based comparison for KNeMAP, as a more com-
plex and computationally expensive methodology. This ap-
proach is in accordance with the method selected by Iorio
et al. (2010), who used this metric to compute distances be-
tween compounds on the CMap dataset. Since KNeMAP,
FCP, and BDG are all vectors to describe the alteration profile
of a compound on a specific biological system, we computed
a GSEA-based vector to describe a compound exposure. For
each compound the same top 200 most deregulated genes
were selected and used in a GSEA to map against the ranked
gene lists (by their FCP) of all the other compounds in a bio-
logical system. The GSEA was computed with the blitzGSEA
python package (Lachmann et al. 2022). The enrichment P-
values were used to create a feature vector that describes the
enrichment of a compound with respect to all other com-
pounds exposed on the same biological system.

2.6 Method comparison
2.6.1 Comparing compound similarities to prior knowledge

To evaluate KNeMAP’s performance to other methods, we
compared the numerical correlations and similarities based on
their distributions as well as with respect to both functional
and structural prior knowledge. In addition, we investigated
how susceptible to added noise the four methods are. A com-
parison between KNeMAP, the BDG vectors, the GSEA vec-
tors as well as the FC vectors was performed. The pairwise
Pearson correlations and Cosine distances on all three biologi-
cal systems were computed and their distributions set side by
side.
In addition, we compared the four methods based on their

ability to identify functional similar compounds. Since the bi-
ological system can have a strong impact on the gene expres-
sion profiles (Mullard 2018), we focused on identifying
similarities on the same biological system rather than between
them in order to minimize system dependent biases towards
our validation. Our method validation is based on the as-
sumption that drugs with a similar effect should be more simi-
lar in their feature vectors than other drugs on the same
biological system. In order to describe compound similarity
we retrieved ATC (Anatomical Therapeutic Chemical) codes,
where possible for compounds in the CMap dataset. ATC
codes are unique identifiers assigned to a drug, which is based
on the organ it affects as well as how it works. Where the first
level describes its anatomical group, the second a drugs thera-
peutic group, the third level its pharmacological group, the
fourth a drug’s chemical group and the last level its chemical
substance (https://www.whocc.no/atc_ddd_index/). For 312
drugs respective ATC codes could be retrieved
(Supplementary File S1). We used the Pearson correlation to
compare the two vectors, as suggested by (Struckmann et al.
2021), where it was shown to be the highest performing met-
rics (out of 26) on the L1000 datasets (CMap 2)
(Subramanian et al. 2017) in identifying the same chemical
across different exposures, which vary in system exposed on

or dosage used. To adjust the method to our data, where we
only have one exposure of a compound for each biological
system, we used the ATC classes to group compounds to-
gether. For each compound, c, the other compounds were
ranked by their similarity to c, based on the four different fea-
ture vectors (KNeMAP, BDG, GSEA, and FC), and the top x
(ranging from 1 to the number of compounds for which an
ATC code could be retrieved) compounds were selected. Then
it was counted how often compounds with the same ATC
Code Class (Level 3) were in the top x. This value was divided
by the total number of the ATC class in the dataset, in order
to limit biases through more represented ATC classes. For
each x all values for each c were summed up and displayed in
Supplementary Fig. S5. To compare how the methods per-
formed, not only for a specific biological system, we com-
puted the mean for each method across all three biological
systems. This allows us to evaluate which method shows the
“best” performance on average. The average performance is
displayed in Supplementary Fig. S5D. The best performing
method is determined by comparing their area under the
curve (AUC) scores, where the highest AUC score indicates
the best performance. For the NANOSOLUTION data the
same metric was performed, however instead of using ATC
codes, the core material as well as the ENM shape were used
as shown in Supplementary Fig. S9.
In addition, we computed the similarity (based on

KNeMAP, the BDG vectors, the GSEA vectors, and the FC
vectors) between each compound pair, ranked these pairs
based on their similarities and compared the rankings to a
similarity computed from the chemical structures. We re-
trieved the (canonical) SMILES for all CMap compounds,
where available, from PubChem (Kim et al. 2019, Sayers
et al. 2022). For each compound pair, in the CMap dataset,
(for 450 compounds SMILES were available) the Levenshtein
distance, which is the minimum number of character edits
needed to make two strings identical (Miller et al. 2009), was
calculated and the compound pairs were ranked accordingly.
This ranking was used as a reference ranking to which the
KNeMAP, BDG, GSEA, and FC-based similarity rankings are
compared to. Between KNeMAP, BDG, GSEA, and FC, we
computed the cosine distance for all compound pairs. Only
compounds that had an associated SMILES were considered.
These pairs were ranked on their cosine distance. For each
method we selected the top x (2–200) compound pairs and
computed the rank difference between its rank and the
SMILES-based rank. The mean of these values was computed
and the results are plotted in Supplementary Fig. S6, the
curves are compared by means of their AUC of which a lower
value indicates more agreement with the SMILE-based rank-
ing. In addition, we computed the jaccard index based on the
top x (1–1000) pairs and compared the performance of all
four methods via their AUC scores, of which a high AUC indi-
cates an overall higher jaccard index (Supplementary Fig. S6).
This allows us to evaluate the compound pair similarities
against a biological system and exposure indifferent factor,
the compound structure. To compare how the methods fare
not only for a specific biological system, we computed the
mean for each method across all three biological systems.
This allows us to evaluate which method shows the “best”
performance on average. The average performance is dis-
played in Supplementary Figs S6D and S7D. In addition, we
also computed the rank difference for each method’s top 20
compound pairs with the SMILES-based ranking. The density

4 Pavel et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad341#supplementary-data
https://www.whocc.no/atc_ddd_index/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad341#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad341#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad341#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad341#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad341#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad341#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad341#supplementary-data


plots of these values, for each biological system, are displayed
in Supplementary Fig. S8. For the Fortino et al. data, instead
of SMILES, functional descriptors of the ENMs, as down-
loaded from (https://github.com/fhaive/metanalysis_toxicoge
nomic_data/) were used. Only descriptors available for all
ENMs were considered and the cosine distance was estimated
between each ENMs descriptor vector of which their pairwise
ranks were used the same way as the chemical SMILE-based
ranks.

2.6.2 Comparing the impact of added noise between the
methods

To investigate how the three different methods are reacting to
added noise to the data, two different experiments were per-
formed. First different variations of noise were directly added
to the batch corrected gene expression data, from which the
6logFC * �log(Pval) (FCP) scores, as described previously,
were calculated. Noise was added per sample, drawn from a
Gaussian distribution with mean¼ 0 and standard deviation
levels of 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.
For each noise level the KNeMAP, GSEA, and FC vectors, as
described previously, were calculated. For each compound, its
cosine distance between the added noise levels and the base-
line (no noise added to the gene expression vector) was esti-
mated. The mean cosine distance for each noise level across
all compounds of a biological system were calculated, to-
gether with the average standard deviation (change) across
the noise levels, which provides an indication on how much
the cosine distance is affected by increasing noise. The cosine
distance instead of the Pearson correlation was selected, since
we wanted to measure the effect (distance) the different noise
levels have with respect to the baseline (noise¼ 0). For the sec-
ond experiment the selected 200 most deregulated genes were
permuted. Each gene in the selected 200 genes, with a proba-
bility of 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1
was replaced by another random selected gene from the whole
list of measured genes. From this the KNeMAP, GSEA, and
BDG vectors were estimated and the cosine distance to their
baseline vectors (noise 0) calculated as described in the previ-
ous experiment. The results are displayed in Fig. 2,
Supplementary Figs S13 and S17.

2.7 Stability of KNeMAP vector across different

biological systems

To investigate the stability of KNeMAP with respect to differ-
ences in steady state gene expressions between different bio-
logical systems, we compared the KNeMAP fingerprints
computed on different sets of genes. Exposures on different
biological systems are known to be different, which partially
is caused by the differences in steady state gene expression.
To showcase that KNeMAP is robust to such change, we
compute the KNeMAP fingerprints based only on the genes
that are not differentially expressed as well as only differential
expressed genes between the control samples of the individual
CMap cell systems. A gene was differentially expressed, if it
was classified as differentially expressed between at least one
cell line pair. Differential expression analysis was performed
with limma() (Ritchie et al. 2015), as already described in the
Supplementary Materials for the pre-processing of the CMap
dataset. We then computed the cosine distance between each
compound pair on a biological system for both types of vec-
tors and then estimated the difference in cosine distance for
each compound pair. The distribution of differences is plotted

in Supplementary Fig. S21, showing that there is a minimal
change in pairwise distance between the fingerprints com-
puted based on the complete gene vector or only when taking
stable genes between all biological systems into account, due
to the independence and multi-dimension of the prior gene–
gene network.

2.8 Individual analysis of the CMap and Fortino et al.

dataset

Transcriptomics profiles alterations induced by compound ex-
posure under different experimental conditions (e.g. biologi-
cal systems, exposure time) can vary strongly (Kinaret et al.
2017, Fortino et al. 2022). In addition data biases can be pre-
sent, e.g. due to technical differences, batch effects or to un-
derlying differences in the biological systems (Supplementary
Fig. S3) (Federico et al. 2020, Serra et al. 2020). Therefore we
decided to analyze, for the CMap dataset, the three different
biological systems independently from each other and merge
their results in order to identify similarities between the sys-
tems. Analyzing the biological systems independently, allows
us to compare the MOA of the exposures detached from the
underlying data and in result minimizes data and system re-
lated biases, which has been suggested to be an issue of the
CMap dataset (Lim and Pavlidis 2021). We performed the
same analysis pipeline for the two biological systems available
in the Fortino et al. dataset. The analysis methodology is de-
scribed in detail in the Supplementary Materials (Methods—
Comparison of the Biological Systems).

2.9 Comparative analysis between the CMAP and

Fortino et al. dataset

To showcase the capability of KNeMAP to compare tran-
scriptomic alteration profiles across datasets, we performed a
comparative analysis between the transcriptomic profiles in-
duced by the ENM and drug exposures. Thus, for each ENM
in the Fortino et al. data we retrieved the most similar drug in
the CMap dataset. For each exposure instance between the
Fortino et al. data and the CMap data we computed the co-
sine distance between their KNeMAP feature vectors, then
ranked the drugs according to their similarity to a nanomate-
rial exposure. For each nanomaterial–drug pair the mean
rank was estimated and the highest ranked drug was selected
for the ENM. It is important to note, that when the same
prior network is used, KNeMAP offers the possibility to com-
pare different datasets without the need to recompute or ad-
just the computed feature vectors.

3 Results

We developed KNeMAP, a novel methodology for compari-
son of transcriptomic profiles. We showcased the effectiveness
of our method by analyzing the Connectivity Map (CMap)
dataset (Lamb et al. 2006) and the Fortino et al. (2022) data-
set. The CMap dataset is a popular reference database for
drug-induced expression profiles and combines chemical
exposures over three cell lines of which 11 868 genes are mea-
sured across all three biological systems. The diversity of
CMap makes it a suitable dataset for the identification of
groups of chemicals that act similarly on different biological
systems, which are challenging to identify with traditional
gene-based methods. In Supplementary Fig. S3 the steady
state gene expression profiles of the three different cell lines
are outlined, which are very different. The Fortino et al.
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dataset comprises transcriptomic profiles of different nano-
materials exposed on two human cell lines (THP-1 and BEAS-
2B). The materials vary in core material as well as in their sur-
face chemistry. We evaluated KNeMAP against three existing
methods: BDG, GSEA, and FC, by comparing the similarity
of transcriptomic profiles calculated with the three methods
against similarities computed with independent data layers
such as the chemical structure and functional knowledge.

3.1 KNeMAP-based similarities better resemble

those computed from prior knowledge

To evaluate the performance of KNeMAP, we investigated
how it performs with respect to prior knowledge. Since prior
knowledge was not equally available for all compounds, these
metrics were only computed for compounds where the consid-
ered prior knowledge was available. To evaluate the method’s
capability in identifying structurally similar CMap com-
pounds, pairwise compound similarities were estimated and
their rankings compared to compound pair rankings based on
KNeMAP, BDG, GSEA, and FC-based vectors.
Supplementary Figures S6 and S7 showcase the improvement
in agreement to the structural-based ranking for KNeMAP.
While differences in performance between the biological sys-
tems could be observed. On average (Supplementary Figs S6D
and 7D) KNeMAP is in more agreement with the structural-
based ranking, which is indicated by lower AUC values
(the difference to a structural-based ranking is measured)
in Supplementary Fig. S6, a higher AUC values in
Supplementary Fig. S6 and a shift of the distribution to the
left in Supplementary Fig. S8.
Supplementary Figure S5, showcases the performance of

KNeMAP in comparison to BDG, GSEA, and FC in identify-
ing functionally similar CMap compounds. Functional simi-
larity of compounds was determined based on their ATC level
3 codes. However, on average the performance across all
three systems is very similar between the methods. For the
Fortino et al. data, KNeMAP outperforms the other methods
on average on identifying ENMs with the same shape
(Supplementary Fig. S9E), while GSEA and FC show stronger
performance in identifying ENMs based on their core-
material (Supplementary Fig. S9F). This suggests that it is ad-
visable to select a metric based on the task to be performed
and data quality available. While for the molecular
descriptor-based ranking KNeMAP was outperformed by FC
for the difference in rankings and BDG for the jaccard index,
it performed second best for both methods, overall showing
the most stable performance, as displayed in Supplementary
Fig. S10.

3.2 KNeMAP reduces the noise associated to

transcriptomic studies and improves the retrieval of

similarity patterns

To show the improvement on the overall comparability of the
investigated datasets and to investigate the impact KNeMAP
has on the overall similarity distributions, we compared the
within dataset distance and correlation by means of the
Pearson correlation and cosine distance.
When comparing the Pearson correlation and cosine dis-

tance distribution values for each compound pair on each bio-
logical system (Supplementary Figs S11 and S12) for the FC
vectors, the BDG vectors, the GSEA vectors and KNeMAP, it
can be observed that while the BDG and FC-based values
show a similar narrow peaked distribution at 0 and 1

respectively, KNeMAP and GSEA yield a broader distribution
shifted to the right and left respectively, while GSEA shows a
strong difference in shape between the data-sets in contrast to
the other three methods. This indicates a shift in similarity/
correlation between the exposures, which is not observable
based on traditional methods, making this previously difficult
dataset easier to analyze and to identify similarities between
exposures by reducing the noisy peak observable with the
other two methods.
As shown in Fig. 2, KNeMAP is less impacted on average

by increasingly added noise to the gene expression values in
comparison to the FC and GSEA-based cosine distance. The
same applies to KNeMAP in comparison to BDG and GSEA
when impacting the selected deregulated genes, which is indi-
cated by its overall lower AUC score.
In Supplementary Figs S14, S15, S18, and S19 the plots are

shown for selected compounds, Supplementary Figs S13 and
S17 show the performance for each individual biological sys-
tem as well as the median for each dataset and Supplementary
Figs S16 and S20 showcases the standard deviation distribu-
tion for each biological system for the cosine distance against
its baseline (noise¼0). Next to the overall better AUC scores
that KNeMAP achieves (Fig. 2), it can be observed that
KNeMAP, FC, and BDG are relatively stable across all five bi-
ological systems with respect to their AUC scores, while the
performance of GSEA varies strongly across biological sys-
tems (Supplementary Figs S13 and S17).

3.3 Comparison of transcriptomic profiles across

different cell lines identifies compounds with a

system dependent similar mechanism of action

Through the clustering of the compounds (Fig. 1E) across the
three different biological systems of the CMap dataset, based
on KNeMAP, we were able to identify a set of 38 drugs
(Supplementary Fig. S22) that behave similarly when exposed
on the same biological system (Fig. 1F). From now on, we
consider these 38 chemicals during further analysis. Given the
low correlation between the individual MOAs
(Supplementary Fig. S2A), we hypothesize that these drugs
might have different responses in different systems, while
showing similarities when exposed to the same cancer cell
lines. It is often observed that molecular heterogeneity across
cancer cell lines causes differences in response to the same
drug, possibly offering a biological explanation to the ob-
served phenomenon (Dagogo-Jack and Shaw 2018). When
clustering the individual treatments, it is apparent how they
group by the exposed biological system (Supplementary Fig.
S23), rather than by drug. Therefore, we investigated possible
characteristics of the 38 drugs that would be responsible for
their similar behavior. When addressing their therapeutic
indications, 33% were antimicrobial drugs, 15% cardiac gly-
cosides (antiarrhythmic agent), 10% hsp90 inhibitors, and
10% antipsychotic (Supplementary Fig. S26). Although all
these drug classes have been already repurposed for various
cancer treatments, no specific primary molecular target or
pathway could justify their similar activity. Therefore, we hy-
pothesized that the chemical structure may be responsible for
the observed phenomenon. Through scaffold analysis
(Supplementary Table S2) we were able to identify high level
scaffolds statistically enriched in this set of drugs
(Supplementary Fig. S27) that can interact with membranes,
cytoskeleton and alter the redox state. All these targets are
very sensible in cancer cell lines, and when targeted they
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ultimately induce a cytostatic or cytotoxic effect. We further
explored the structure information to identify other com-
pounds that may show the same or similar behavior when ex-
posed on the same biological systems (Supplementary Table
S3).
To showcase the functionality of KNeMAP, we also ap-

plied this approach to a set of ENMs exposed to two different
cell lines. As in the first case study, our approach was able to
highlight a cluster of hazardous nanoparticles (gold and quan-
tum dots with various functionalizations) with peculiar opti-
cal and electronic properties (Supplementary Fig. S28). It is
known that physicochemical characteristics of nanomaterials
affect the induced biological response, possibly explaining the
observed similarities across cell lines (Liu et al. 2006, Ellis
et al. 2020). A detailed description of the analysis results and
the identified drugs can be found in the Supplementary
Materials (Results—Comparison of Transcriptomic Profiles
Across Different Cell Lines Identifies Drugs with a System
Dependent Similar Mechanism of Action and Description of
the Identified Nanomaterials).

3.4 Identifying drugs and nanomaterials with a

similar mechanism of action

Through the comparison of the KNeMAP fingerprints of the
Fortino et al. data with the CMap data, we identified for each
nanomaterial the chemical compound with the most similar
MOA across all biological systems. All identified pairs are
listed in Supplementary Table S5 and detailed descriptions of
selected pairs are provided in the Supplementary Materials
(Results—Identifying the Most Similar Chemical for each
Nanomaterial Based on their Mechanism of Action). For ex-
ample a copper oxide nanomaterial was found to act similar
to Lycorine and both have been shown to affect acetylcholin-
esterase and in result the nervous system (Sezer Tuncsoy et al.
2019, Kola et al. 2023).

4 Discussion/conclusions

We propose KNeMAP as a new knowledge-driven method to
compare transcriptomic profiles. In comparison to other
methods, which focus on individual genes, KNeMAP groups
genes into a “similarity group,” which allows to compare
expression profiles in a higher-level manner than when com-
paring genes individually. We showed that a network
mapping-based approach is able to identify similar com-
pounds in higher agreement with functional as well as struc-
tural prior knowledge, when compared to the BDG, GSEA,
and FC methods. In addition, it is able to reduce the observ-
able noise in the data, which makes the dataset easier to ana-
lyze and allows it to identify patterns. KNeMAP can be
especially suitable for datasets where data from different sys-
tems and with different exposure parameters are compared.
In this work, the KNeMAP was applied on the CMap (Lamb
et al. 2006) dataset as well as the Fortino et al. dataset
(Gallud et al. 2020, Kinaret et al. 2021) and we were able to
identify a set of compounds that always show a similar re-
sponse between each other on the same biological system,
even though their response may vary across biological sys-
tems. While the identified CMap compounds have different
therapeutic uses and molecular targets they all have been
linked to similar effects on cancer, and have often been repur-
posed for oncological treatments. Since they do not share
most of the molecular mechanism, a more traditional

comparison between differentially expressed genes would
have not identified this commonality. The underlying differen-
ces of the biological systems can explain the differences in ex-
pression patterns between the biological systems for similar
compounds, suggesting that these compounds affect the can-
cer cells differently but always in a similar manner between
each other (on the same biological system). In order to make
statements about the comparability or the behavior of these
compounds on non-cancer related biological systems, further
analysis needs to be done, showcasing again how important it
is to understand the comparability between biological systems
with respect to chemical safety assessment. Moreover, when
compared with three different gene focused approaches,
KNeMAP is able to identify similarities between compounds
with higher agreement to functional as well as structural in-
formation. When comparing transcriptomic experiments, one
limitation is given by the fact that the same molecules (e.g.
genes) need to be profiled. However, different experiments
are often performed on different platforms, with only par-
tially overlapping probes/genes. The KNeMAP approach can
be further exploited in this case and be used to compare the
datasets since thanks to the fact that genes can be grouped
into communities, no one-to-one mapping between the genes
is required. We showcase this by comparing the CMap data-
set with the Fortino et al. dataset by identifying for each nano-
material the drug with the most similar MOA across all
biological systems. Furthermore, KNeMAP is highly flexible
with respect to what prior data is used to construct the net-
work, so can, e.g. only a single data layer (e.g. pathways, GO)
be used or a subset of layers, as well as to the size of gene
communities to be detected (based on the algorithm chosen).
This allows a “stricter” or “looser” view on gene similarity as
needed based on the data or study. In conclusion KNeMAP is
a generic approach, that can be customized with respect to
prior information and gene clusters used, to compare noisy
transcriptomic datasets.
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Pavel A, Saarimäki LA, Möbus L et al. The potential of a data centred

approach & knowledge graph data representation in chemical safety
and drug design. Comput Struct Biotechnol J 2022;20:4837–49.

Rappoport N, Shamir R. Multi-omic and multi-view clustering algo-
rithms: review and cancer benchmark. Nucleic Acids Res 2018;46:
10546–62.

Raser JM, O’Shea EK. Noise in gene expression: origins, consequences,
and control. Science 2005;309:2010–3.

Ritchie ME, Phipson B, Wu D et al. limma powers differential expres-
sion analyses for RNA-sequencing and microarray studies. Nucleic
Acids Res 2015;43:e47.
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