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ABSTRACT

The main strength of neural networks lies in their ability to generalize to unseen
data. ‘Why and when do they generalize well?’ are two extremely important
questions for a full understanding of this phenomenon and for developing better
and more robust models. Several studies have explored these questions from
different perspectives and proposed multiple measures/bounds that correlate
well with generalization. The dissertation proposes a new perspective by focus-
ing on the ‘feature diversity’ within the hidden layers. From this standpoint,
neural networks are seen as a two-stage process, with the first stage being fea-
ture (representation) learning through the intermediate layers, followed by the
final prediction layer. Empirically, it has been observed that learning a rich
and diverse set of features is critical for achieving top performance. Yet, no
theoretical justification exists. In this dissertation, we tackle this problem by
theoretically analyzing the effect of the features’ diversity on the generaliza-
tion performance. Specifically, we derive several Rademacher-based rigorous
bounds for neural networks in different contexts and we demonstrate that, in-
deed, having more diverse features correlates well with better generalization
performance. Moreover, inspired by these theoretical findings, we propose a
new set of data-dependent diversity-inducing regularizers and we present an ex-
tensive empirical study confirming that the proposed regularizers enhance the
performance of several state-of-the-art neural network models in multiple tasks.
Beyond standard neural networks, we also explore different diversity-promoting
strategies in different contexts, e.g., Energy-Based Models, autoencoders, and
bag-of-features pooling layers and we show that learning diverse features helps
consistently.
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1 INTRODUCTION

1.1 Motivation and Objectives

Over the past decade, neural networks in general and deep learning models, in
particular, have emerged as powerful tools capable of learning complex patterns
and representations from data [1, 2]. One of their key strengths lies in their re-
markable capacity to generalize effectively to unseen data, a characteristic that
underlies their success in several applications, e.g., image/text classification [3,
4], compression [5, 6], and generative tasks [7, 8, 9].

“Why and When do neural networks exhibit a strong generalization?” rep-
resents a pivotal inquiry essential for a comprehensive understanding of this
phenomenon and more importantly for developing more efficient neural net-
work models that do not overfit the training data [10, 11, 12]. Several studies
have approached these questions from diverse perspectives, investigating the
impact of dataset characteristics [13, 14], model structure [15, 16, 17], and op-
timization algorithms [18, 19]. This multifaceted exploration has led to the
formulation of theoretical frameworks and empirical studies that contributed
to unraveling the dynamics of neural networks’ generalization [12, 20]. In par-
ticular, to answer the aforementioned questions, several studies have proposed
theoretical measures and bounds, based on Rademacher complexity [21, 22, 23],
VC dimension [24, 25], and margin-based metrics, which have shown strong cor-
relations with the generalization performance of neural networks.

This dissertation proposes a new research direction, which complements
prior studies, by focusing on the “feature diversity” within the hidden layers
of neural networks. Conceptually, deep networks learn hierarchical represen-
tations, capturing complex features at different levels of abstraction. This hi-
erarchical structure allows them to model intricate patterns in the data, con-
tributing to their ability to generalize. “Feature diversity”, as defined in this
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dissertation, refers to the idea that the features, i.e., activations’ output, learned
by different units/ neurons within an intermediate layer in a neural network
should be diverse or distinct from each other. In other words, each unit should
capture unique aspects or patterns of the input data, contributing complemen-
tary information to the overall representation.

Diversity has been extensively explored in the machine learning context [26].
In the domain of deep learning generalization, previous works have predomi-
nantly concentrated on studying the effect of diversity within the set of weights
on generalization both theoretically [27, 28] and practically [29, 30, 31, 32].
However, the diversity of activations, i.e., feature diversity, has received com-
paratively limited attention. Here, we argue that due to the presence of non-
linear activations: (i) weights can not capture the intrinsic properties of the
learned mapping, and (ii) diversity based on weights does not guarantee a di-
verse feature representation. Thus, we advocate directing attention toward the
diversity at the level of feature mapping to study generalization.
In essence, the main hypothesis in this dissertation posits that

“The success of deep learning models hinges not only on their architecture and
training algorithms but also on the diversity of the features they can effectively

capture.”

In other words, feature diversity in neural networks should play a pivotal
role in their ability to generalize and avoid overfitting. The principal part of
the research conducted in this dissertation delves into the critical importance
of feature diversity, exploring how it influences the generalization of neural
networks. By unraveling the dynamics of feature diversity, the aim is to
uncover novel insights that can propel advancements in the field, ultimately
contributing to a deeper understanding of generalization and developing
more versatile and efficient neural network models. The first step in this
endeavor is to provide a theoretical substantiation of our hypothesis. Thus,
the first research question that will be addressed in this dissertation regarding
establishing a theoretical foundation of feature diversity is the following:

Research Question 1: Can we derive rigorous generalization bounds
for neural networks highlighting the role of feature diversity?

2



Building upon the theoretical validation of our hypothesis, the subse-
quent part of this dissertation focuses on developing practical methodologies
to harness the concept of feature diversity. Having diverse features can be ben-
eficial for several reasons. Firstly, it allows the neural network to have a richer
and non-redundant representation, as each unit learns to capture a unique
pattern, thereby enriching the overall representation. This can be important
for learning intrinsic relationships in the data and improving the network’s
capacity to capture complex patterns. Secondly, having diverse features can
make the model more robust to variations and noise in the input data, as the
model does not rely on a single pattern to make a decision. In [33], it has been
shown empirically that learning decorrelated features can reduce overfitting.
As reducing the correlations between the features can be interpreted as a fea-
ture diversity-promoting approach, this showcases that indeed feature diversity
is a promising research direction to boost the performance of neural networks
in general and Convolutional Neural Networks (CNNs) in particular. Thus,
the second research question that will be addressed in this dissertation will
involve developing new strategies that leverage diversity to mitigate overfit-
ting and enhance the generalization capabilities of state-of-the-art CNN models:

Research Question 2: Can we employ feature diversity-promoting strategies
to improve the performance of neural networks in different learning scenarios?

By tackling the first two research questions, we will explore and high-
light the role of feature diversity both theoretically and practically in boosting
the performance of neural networks mainly in the supervised learning context.
In the next step of this dissertation, the aim is to extend both our theoretical
and practical findings to encompass other learning settings. To this end, we
focus on the energy-based learning paradigm [34].

Energy-Based Models (EBMs) form a powerful learning framework that
encapsulates various supervised [34, 35, 36, 37, 38], unsupervised [39, 40,
41], and generative [7, 8, 9, 42, 43] approaches in a unified formulation.
In particular, an EBM is typically formed of inner model(s) that learn a
combination of the different features to generate an energy mapping for each
input configuration. The parameters of the EBM are optimized by associating

3



the desired configurations with small energy values and the undesired ones
with higher energy values. This flexibility of modeling provides a generic
framework to tackle a wide range of tasks ranging from standard regression [36,
37, 38] to image generation [9, 44, 45, 46]. The third research question in this
dissertation aims to extend both our theoretical and empirical findings to the
energy-based learning framework and can be formulated as follows:

Research Question 3: How does feature diversity affect the generaliza-
tion of EBMs?

The first three research questions discussed so far aim to demonstrate
the role of feature diversity in the generalization capabilities of neural networks
and showcase how different diversity-promoting strategies can be used to
mitigate overfitting. Recently, it has been empirically observed that deep
learning models do not generalize equally well for the different classes and
there is a noticeable disparity of overfitting among different classes [14, 47],
i.e., given a task, neural networks tend to exhibit a class-bias in overfitting
having high variance in generalization performance among the different classes.
Moreover, [14, 47] showed that while several regularization techniques improve
standard average generalization and reduce overall overfitting, these techniques
inadvertently aggravate this occurrence increasing the disparity of generaliza-
tion among different classes. It follows that, for a more comprehensive analysis
of feature diversity’s effect, we analyze how the approaches developed in this
dissertation affect class-wise generalization performance. Thus, the fourth
research question can be formulated as follows:

Research Question 4: How does feature-diversity promoting approaches
affect class-wise generalization performance?

The phenomenon of the disparity of overfitting among different classes
poses a substantive puzzle within the domain of deep learning. Understanding
the root causes of such disparity is crucial for refining and advancing deep
learning theory and methodologies. However, existing generalization theories
of supervised learning typically take a holistic approach and provide bounds
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for the expected generalization over the whole data distribution. Thus, they
can not capture the aforementioned behavior and can not provide insights
into this generalization puzzle. In the last part of this dissertation, we aim
to amend this gap in the literature by providing the first rigorous theoreti-
cal framework for studying and understanding this phenomenon. Thus, the
last research question that will be addressed in this dissertation is the following:

Research Question 5: Can we develop a theory of class-wise general-
ization?

To sum up, the contributions of this dissertation are as follows:

• Theoretically, we introduce the concept of feature diversity and provide
the first rigorous bounds highlighting its effect on the generalization of
neural networks in different contexts.

• Methodologically, we propose a new family of regularizers that aim to
encourage the ‘diversification’ of the layers’ output feature maps in neural
networks.

• We extend our theoretical findings to EBMs and showcase how to prac-
tically leverage feature diversity to improve the performance of EBMs in
several tasks.

• We empirically analyze how the regularizers developed in this disserta-
tion, in particular the proposed approaches in Publication II, affect the
disparity of overfitting among different classes.

• We develop theoretical tools aiming to study this generalization puzzle in
general and we derive several rigorous bounds that successfully capture
its behavior in deep learning models. Additionally, we show how to use
the newly developed tools to provide insights into other contexts beyond
this phenomenon, e.g., the subtask problem, and learning with sensitive
attributes.
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1.2 Publications and Author’s Contributions

Publication I This publication presents the first theoretical investigation
of how feature diversity improves generalization. We study
the diversity of the features learned by a two-layer neural
network trained with the least squares loss. We investi-
gate how learning non-redundant distinct features affects
the performance of the network. We derive novel gener-
alization bounds depending on feature diversity based on
Rademacher complexity for such networks. Our analysis
provides theoretical guarantees that more distinct features
at the network’s units within the hidden layer lead to better
generalization. We also show how to extend our results to
deeper networks and different losses.
The candidate proposed the idea, formulated the theoreti-
cal setup, derived the analysis, and wrote the paper. The
co-authors have supervised, reviewed, and edited the publi-
cation.

Publication II This publication presents the first methodology to promote
the ‘diversification’ of the layer-wise feature map outputs
in neural networks. The primary contribution is the intro-
duction of a new family of data-dependent regularizers with
the explicit purpose of encouraging feature diversity and re-
ducing redundancy within the feature layer. Furthermore,
an extensive experimental analysis has been conducted to
demonstrate the efficacy of this approach. The results illus-
trate that implementing such a strategy significantly boosts
the performance of different state-of-the-art networks across
different datasets and different tasks, i.e., image classifica-
tion and label noise. These findings can spark further re-
search in diversity-based approaches to improve the perfor-
mance of neural networks and mitigate overfitting.
The candidate contributed to the proposal of this work, im-
plemented and conducted experimental analysis, and wrote
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the paper. The co-authors have supervised and reviewed the
publication.

Publication III This publication investigates feature diversity within the
context of Bag of Features (BoF) pooling. Specifically, it
introduces an approach that extends BoF pooling to en-
hance its efficiency by ensuring non-redundancy among the
items in the learned dictionary. The proposed method intro-
duces an additional loss term based on pair-wise correlations
among dictionary items. This supplementary loss term, in
conjunction with the standard loss, serves to explicitly reg-
ularize the model to ensure learning a more diverse and rich
dictionary. Experimental results substantiate that the BoF
can benefit from feature diversity regularization to enhance
performance without the need for additional parameters.
The candidate proposed the idea, implemented and con-
ducted the experimental analysis, and wrote the paper. The
co-authors supervised, reviewed, and edited the publication.

Publication IV This work investigates feature diversity within the context
of Autoencoders. The main contribution is introducing a
methodology for reducing redundancies at the bottleneck of
an autoencoder. The proposed approach involves augment-
ing the training loss with an additional regularization term,
specifically targeting the pair-wise covariances of units at the
bottleneck, i.e., the encoder’s output. The proposed regu-
larizer ensures learning more diverse and compact represen-
tations for input samples. Furthermore, it can be seamlessly
integrated into any autoencoder-based model in a plug-and-
play fashion. Through extensive empirical evaluations on
multiple tasks—dimensionality reduction, compression, and
denoising—we substantiate the efficacy of the approach.
The candidate proposed the idea, conducted the experi-
ments, and wrote the paper. The remaining co-authors su-
pervised and reviewed the publication.

7



Publication V This publication explores feature diversity in the context
of energy-based models. The primary contribution is intro-
ducing the concept of feature diversity in this context and
using it to theoretically analyze the generalization of EBMs.
Specifically, we derive different generalization bounds for
various learning contexts, i.e., regression, classification, and
implicit regression, with different energy functions and show
that reducing the redundancy of the feature set can consis-
tently improve the generalization ability and reduce over-
fitting. Furthermore, the theory developed in this work is
independent of the loss function or the training strategy
used to optimize the parameters of the EBM. This provides
a broader theoretical guarantee that feature diversity helps.
The candidate proposed the idea, conducted the theoretical
analysis, and wrote the paper. The remaining co-authors
supervised and reviewed the publication.

Publication VI This paper tackles the deep learning generalization puzzle
concerning the pronounced heterogeneity of overfitting ob-
served across different classes. Conventional generalization
theories of supervised learning typically adopt a holistic ap-
proach, providing bounds for the expected generalization
over the whole data distribution, implicitly assuming that
the model generalizes similarly for all the classes. How-
ever, empirical observations reveal significant variations in
generalization performance among different classes, which
cannot be captured by the existing generalization bounds.
In this work, we close this gap by introducing and exploring
the concept of “class-generalization error” using information-
theoretic tools. In particular, we provided the first rigorous
generalization bounds for this concept. We also empirically
strengthened the findings with supporting experiments val-
idating the efficiency of the proposed bounds. Furthermore,
we showcase the versatility of the theoretical tools, devel-
oped in this work, in providing tight bounds for various con-
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texts, e.g., the subtask problem, generalization certificates
with sensitive attributes, recall & specificity generalization.
The candidate contributed to the proposal of the idea, con-
tributed to the theoretical analysis, conducted the experi-
ments, and wrote the paper. The co-authors have supervised
and reviewed the publication.

1.3 Dissertation Outline

The rest of this dissertation are structured as follows:
Chapter 2 presents the research background. Chapter 3 examines the dis-

sertation contributions and highlights their role and significance to the body of
knowledge. Furthermore, this chapter serves as a valuable augmentation to the
candidate’s previously published works by providing supplementary insights,
presenting additional results, and facilitating comparisons. Finally, Chapter
4 serves as the final segment of the dissertation, providing a comprehensive
summary of the research findings and offers insights into the limitations and
potential avenues for future research directions.
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2 RESEARCH BACKGROUND

2.1 Convolutional Neural Networks

The field of image classification has witnessed significant advancements after the
emergence of CNNs [3]. Deep CNN architectures revolutionized image classifi-
cation on large datasets [4, 48, 49]. The fundamental elements of CNNs include
convolutional layers, which employ learnable filters to systematically scan in-
put data, capturing local patterns and features. Pooling layers further reduce
spatial dimensions, retaining essential information while promoting translation
invariance. Additionally, CNNs often incorporate fully connected layers for
global abstraction and classification. The use of weight sharing in convolutional
layers enhances the network’s ability to recognize spatially invariant patterns
across the input space, enabling CNNs to achieve state-of-the-art performance
in several tasks, e.g., image classification and object detection. Furthermore,
residual learning [4, 50, 51] addressed challenges associated with training very
deep networks, leading to improved performance. One of the main limitations
of standard CNN models is the fact that they typically require large amounts
of labeled training data to effectively learn and generalize well. To mitigate
this problem, several techniques have been proposed, e.g., pretraining [52, 53,
54], data augmentation [13, 55, 56, 57]. In addition, several other hand-crafted
topologies/layers have been proposed to improve the efficiency of CNNs and
reduce their dependency on the availability of data, such as BoF Pooling [58].

2.2 Bag-of-Features Pooling

In this section, we provide a brief review of the Bag of Features (BoF) pooling
mechanism [58, 59], a technique that has garnered broad applicability across
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diverse domains, consistently demonstrating superior performance in various
studies [59, 60, 61, 62, 63, 64]. BoF pooling is parameterized with a dictionary,
and given an input, typically the output maps of the last convolutional layer in
a CNN [59], it generates a histogram representation based on this dictionary.
During the training phase, the optimization of dictionary items is conducted
through standard back-propagation.

The BoF pooling encompasses two inner layers: a Radial Basis Function
(RBF) layer, used to measure the similarity of input features to RBF centers,
and an accumulation layer, used to construct a histogram of quantized feature
vectors. Formally, if X denotes the input image and T (X) ∈ RD×P signifies the
output of the convolutional layer, the RBF layer yields a sequence of quantized
representations denoted as Ψ = [ψ1, ψ2, · · · , ψP ] ∈ RK×P , where ψi corresponds
to the representation of the ith feature, i.e., ψi = [ψi,1, · · · , ψi,K ].

The output of the ith RBF unit is defined by the expression:

ψn,i =
exp

(︂
− ||T (X)n−ci||

mi

)︂

∑︁
j exp

(︂
− ||T (X)n−cj ||

mj

)︂ , (2.1)

where ci represents the center of the ith RBF neuron, and mi is a scaling
factor. The outputs of the P RBF neurons are subsequently accumulated in
the ensuing layer to derive the final representation Φ for each image:

Φ =
1

P

∑︂

j

ψj . (2.2)

In summation, BoF accepts a high-dimensional feature representation, e.g.,
convolution’s output map, as input and discretizes it into a fixed-size shallow
histogram representation. The quantization process relies on an inner dictio-
nary, {c1, · · · , cK}, which can be learned jointly with the other parameters
CNN in an end-to-end manner.

2.3 Autoencoders

Autoencoders [5, 65] are unsupervised learning models designed for feature
learning and data representation [2]. The architecture typically comprises
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an encoder network responsible for compressing input data into a lower-
dimensional latent space and a decoder network that reconstructs the original
input from this encoded representation. The bottleneck, i.e., the output of the
encoder, typically has a low dimension and is the focal part of the autoen-
coder. Training an autoencoder involves minimizing the reconstruction error
and encouraging the model to learn a compact and informative representation
of the input data. This framework has proven to be versatile, finding applica-
tions in diverse domains, such as transfer learning [66, 67, 68], dimensionality
reduction [6, 69, 70], denoising [71, 72], and anomaly detection [73, 74, 75].

2.4 Energy-based Models

EBMs constitute a prominent class of learning models that have garnered sub-
stantial attention due to their versatile applications, such as regression [36, 37,
38], learning to rank [35], image/text generation [39, 44, 46], continual learn-
ing [76], anomaly detection [77], protein conformations [78], and reinforcement
learning [79, 80].

GW(x)

x

D(GW(x),y)

y

E(h,x,y)

GW(x)

x

-yGW(x)
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1(x) - GW

2(y)||2
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E(h,x,y)

GW
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(a) (b) (c)

Figure 2.1 An illustration of an EBM used to solve (a) a regression (b) a classification (c)
an implicit regression [Publication V]

Let E(h,x,y) denote an energy-based model with an inner model h =

GW (x) parameterized with W . Figure 2.1 shows how different learning prob-
lems, i.e., classification, regression, and implicit regression can be solved with
EBMs. Figure 2.1 shows how different learning tasks are solved with EBMs.
The first input x undergoes transformation through an inner model GW (·).
Subsequently, the energy function is computed as the distance to the second
input y with a valid energy function. For example, L1 or L2 can be used as en-
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ergy functions for regression, E(h,x,y) = −yGW (x) for binary classification,
and L2 distance between the transformed inputs for implicit regression.

2.5 Diversity in Machine Learning

Diversity-based approaches have played a pivotal role across various facets of
machine learning [81, 82]. In ensemble learning, the combination of models
employing different learning algorithms or architectures ensures a comprehen-
sive capture of intricate patterns within the data [32, 83]. Sampling strategies,
encompassing exact sampling [84] and batch sampling [85], strategically intro-
duce diversity in training instances, enriching the model’s understanding of the
data distribution [86]. In the context of ranking, the integration of diversity is
imperative to produce balanced and unbiased rankings, as exemplified by ap-
proaches such as balanced ranking [87] and methods enhancing diversity in the
ranking process [81]. In the pruning context, dynamic pruning [88] and filter
pruning [89, 90] leverage diverse strategies to reduce redundancy and enhance
model efficiency without compromising performance [91].

Within the context of neural network regularization, several methodologies
have incorporated diversity as a direct regularizer applied to the weight param-
eters [29, 32, 92]. This overview categorizes these approaches into two distinct
groups based on the definition of diversity. The first category encompasses
regularizers relying on the pairwise dissimilarity of components, asserting that
the overall set of weights is diverse if every pair of weights is dissimilar. Given
weight vectors {wm}Mm=1, [32] define the regularizer as

∑︁
mn(1 − θmn), where

θmn denotes the cosine similarity between wm and wn. [92] proposes an inco-
herence score expressed as

− log

(︄
1

M(M − 1)

∑︂

mn

β|θmn|
1
β

)︄
, (2.3)

incorporating a positive hyperparameter β.[93, 94] utilize mean(θmn)−var(θmn)

as a regularization measure for Boltzmann machines, with theoretical analy-
ses on its impact on generalization error bounds presented in [28] and further
extended to kernel space in [27]. The second group of regularizers adopts a
broader perspective on diversity. For instance, in works such as [29, 95, 96],
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weight regularization based on the determinant of the weights covariance is
proposed, while [97, 98] explore a determinantal point process-based approach.

In contrast to the previously mentioned approaches that advocate for di-
versity at the level of weights, akin to our methodology, [33] introduce a novel
strategy to impose dissimilarity at the feature map outputs, specifically on the
activations. In pursuit of this objective, they introduced a supplementary loss
function grounded in the pairwise covariance of the activation outputs. The
proposed regularizer LDecov is defined as the squared sum of the non-diagonal
elements of the global covariance matrix C:

LDecov =
1

2
(||C||2F − ||diag(C)||22), (2.4)

where ||.||F is the Frobenius norm. The approach in [33], denoted Decov,
demonstrated promising empirical performance of feature diversity. However,
a theoretical substantiation was lacking. Addressing this gap, one of the main
contributions of this dissertation provides theoretical underpinnings, elucidat-
ing how feature diversity can effectively reduce the estimation error bound and
enhance the model’s generalization capacity. Furthermore, we introduce several
approaches that leverage feature diversity to boost the performance of neural
networks in multiple contexts.
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3 CONTRIBUTIONS

This chapter gives a detailed description of the contributions of this disserta-
tion. In Section 3.1, we present the main theoretical results of Publication I. In
Section 3.2, we present the different feature diversity methodologies from Publi-
cation II, Publication III, and Publication IV, where different approaches in the
context of standard neural networks, BoF-based models, and autoencoders are
presented, respectively. In Section 3.3, we present the main theoretical results
of Publication V extending our results to EBMs. Furthermore, in this disser-
tation, we also propose an approach that leverages feature diversity to boost
the performance of EBMs across multiple tasks. Finally, Section 3.4 presents
our study on how the proposed regularizer in Publication II affect class-wise
generalization and presents the findings of Publication VI.

3.1 Feature Diversity in Neural Networks: Theory

The dissertation’s contribution presented in this section provides an answer to
Research Question 1, which concerns providing a theoretical understanding of
the effect of feature diversity on the generalization performance of neural net-
works. In the following, we will describe the main results which were proposed
in Publication I.

3.1.1 Problem Formulation

Here, we aim to derive theoretical generalization bounds for neural networks
depending on feature diversity. Specifically, we consider the case of a regression
task with a two-layer neural network architecture comprising a hidden layer
with M neurons and a one-dimensional output y.

In the regression task, we typically have access to training data S consisting
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of N i.i.d. samples zi = (xi, yi) ∈ X ×Y ≜ Q. Given a network f(·) from
the hypothesis class F , the main goal of generalization theory is to study the
interplay between two critical metrics: the empirical loss and the anticipated
risk defined respectively as follows:

L̂(f) =
1

N

N∑︂

i=1

l
(︁
f(xi), yi

)︁
, (3.1)

L(f) = E(x,y)∼Q[l(f(x), y)], (3.2)

where the empirical loss l(·, ·) measures the performance of the model on the
observed dataset, while the expected risk quantifies the error on the true dis-
tribution, i.e., anticipated performance on unseen data. The objective is to
discern and quantify the extent to which the model’s performance on ob-
served data is indicative of its performance on previously unseen instances. Let
f∗ = argminf∈F L(f) be the expected risk minimizer and f̂ = argminf∈F L̂(f)

be the empirical risk minimizer. We are interested in the estimation error, i.e.,
L(f∗)−L(f̂), defined as the gap in the loss between both minimizers [99]. This
gap quantifies how well a trained model, based on a finite set of observed data,
generalizes to unseen or future data [100, 101]. Several techniques have been
used in the literature to study this generalization error, such as VC dimension
[24] and the Rademacher complexity [102]. Our main goal in this part is to
derive a bound for this quantity that highlights the role of diversity in the
generalization dynamics.

In our case, the hypothesis class is formed of two-layer neural networks. So
it can be expressed as follows

F =

{︄
f |f(x) =

M∑︂

m=1

vmϕm(x) =
M∑︂

m=1

vmρ(w
T
mx)

}︄
, (3.3)

where ρ(·) is the activation function in the hidden layer, W =

[w1,w2, · · · ,wM ] ∈ RD×M is the weight matrix connecting the input to the
hidden layer with M units, Φ(x) = [ϕ1(x), · · · , ϕM (x)] is the M -dimensional
feature representation (intermediate layer output) of the input x, and v =

[v1, v2, · · · , vM ] is the weight vector connecting the hidden layer to the output.
In Figure 3.1, we provide a visual illustration of the hypothesis class used in
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our setup.

Figure 3.1 Visual illustration of the hypothesis class

Our hypothesis in this dissertation is that learning a rich and diverse set of
features should be important to achieve good performance. Intuitively, if each
unit within Φ(x) captures a unique and distinct pattern of the input data, it will
contribute complementary information to the overall representation yielding a
more robust model with better generalization capabilities. The diversity of the
features can be quantified using the lower-bound of the average pairwise L2

distance between the outputs as expressed in the following assumption:

Assumption 1. Given any input x, we have

1

2M(M − 1)

M∑︂

i ̸=j

(ϕi(x)− ϕj(x))
2 ≥ d2min. (3.4)

The average L2 distance provides a straightforward way to quantify diversity.
In case the mappings captured by two different units are redundant, then, given
the same input sample, both units would return similar values. This similarity
translates into low L2 distance, consequently yielding lower dmin and lower
diversity. Conversely, when each unit learns a distinct mapping, the distances
between the outputs of different units within the layer become substantial.
Thus, this yields a higher lower bound dmin and a high global diversity. So,
dmin can be used as a proxy for the feature diversity of the model. Through an
examination of how the lower bound dmin influences the model’s generalization,
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we can theoretically analyze the impact of diversity on the performance of
neural networks. The subsequent part of this section is dedicated to deriving
generalization bounds for neural networks depending on this measure, i.e., dmin.

The key assumptions of the theoretical setup in Publication I can be sum-
marized as follows:

• Training dataset: S consisting of N i.i.d. samples zi = (xi, yi) ∈
X×Y ≜ Q

• Input/output: The input satisfies ||x||2 ≤ C1 and the output satisfies
|y| ≤ C2.

• Hypothesis: Two-layer neural networks:

F ≜
{︄
f |f(x) =

M∑︂

m=1

vmϕm(x)

}︄

• Loss function: Function ℓ = 1
2 |f(x)− y|2

• Intermediate activation: Positive Lρ-Lipschitz continuous function

• Weight norms: First weight matrix W = [w1,w2, · · · ,wM ] satisfies
||wm||2 ≤ C3 and second weight vector satisfies ||v||∞ ≤ C4.

3.1.2 Learning Distinct Features Helps, Provably

We derive a rigorous bound for the generalization error of a two-layer neural
network. The main result is presented in Theorem 1.

Theorem 1: Generalization bound for regression

With probability of at least (1− δ), we have

L(f̂)− L(f∗) ≤
(︂√

J + C2

)︂ A√
N

+
1

2
(
√
J + C2)

2

√︃
2 log(2/δ)

N
, (3.5)

where C5 = LρC1C3 + ϕ(0), J = C2
4

(︁
MC2

5 +M(M − 1)(C2
5 − d2min)

)︁
,

A = 4
(︂
2LρC1C3C4 + C4|ϕ(0)|

)︂
M , and C5 = LρC1C3 + ϕ(0).
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The proof of Theorem 1 relies on Lemma 3 in Publication I which upper-
bounds the generalization error using the Rademacher complexity [21, 102] and
the supremum of the loss class. The key idea is to upper-bound the different
quantities in Lemma 3 in Publication I using dmin.

The upper-bound for the generalization gap, presented in Theorem 1, offers
a pivotal insight into the role of feature diversity in generalization. The bound
is a decreasing function with respect to dmin scaling as ∼ (C2

5 − d2min)/
√
N .

Remarkably, an increase in dmin, indicative of a greater diversity in learned
features, results in a correspondingly lower generalization error bound. This
inverse dependency underscores the significance of learning distinct and diverse
features in the context of neural networks.

We note that the bound in Theorem 1 converges to zero as the number of
training samples N goes to infinity. From this perspective, it is non-vacuous.
Furthermore, it is essential to clarify that here we are not claiming a tighter
bound for the generalization error of neural networks in the universal sense,
similar to previous works [103, 104, 105]. Rather, our principal contribution lies
in the derivation of a generalization bound depending on the diversity of learned
features, quantified by dmin. Notably, this work represents a pioneering effort
in conducting such theoretical analysis using the average L2-distance between
units within the hidden layer as dmin, offering a novel perspective highlighting
the effect of diversity.

In Publication I, we show that the result of Theorem 1 can be extended to
derive rigorous bounds for the classification task (Theorems 2 and 3 in Publi-
cation I), for general multi-layer networks (Theorem 4 in Publication I), and
multi-dimensional output (Theorems 5 and 6 in Publication I).

Empirical Validation

We empirically validate our findings in Theorem 1, which suggests that gen-
eralization error scales as ∼ (C2

5 − d2min)/
√
N . We trained a two-layer neural

network on the MNIST dataset [106], which is formed of grayscale images of
size 28× 28 pixels. The inputs are vectorized to form 784-dimensional vectors.
The dataset has a total of 50, 000 training samples and 10, 000 test images.
For the intermediate layer in the neural network we use ReLU activation func-
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tion. The models are trained for 100 epochs using Stochastic Gradient Descent
(SGD) with a learning rate of 0.1 and a batch size of 256. The generalization
gap, defined as the difference between the test error and the train error, was
compared with the theoretical bound (C2

5−d2min)/
√
N , for different training set

sizes. The quantity, i.e., dmin, can be estimated, using the minimum average
L2 distance over the training data, as follows:

d̂min = min
x∈S

1

2M(M − 1)

M∑︂

n ̸=m

(ϕn(x)− ϕm(x))2. (3.6)

Different sizes of the hidden layer, specifically 128, 256, and 512, were con-
sidered in our experiments. The averaged results from 5 random seeds are
presented in Figure 3.2, demonstrating a consistent and strong correlation (cor-
relation >0.9939) between the theoretical bound and the observed generaliza-
tion error across various training sizes. This shows that our bound, based on
diversity, is able to capture the behaviour of the generalization error.

Figure 3.2 Generalization gap, i.e., train error - test error, and the theoretical bound, i.e.,
(C2

5 − d2min)/
√
N , as a function of the number of training samples on MNIST

dataset for neural networks with intermediate layer sizes from left to right: 128
(correlation=0.9948), 256 (correlation=0.9939), and 512 (correlation=0.9953).
The theoretical term has been scaled in the same range as the generalization
gap. All results are averaged over 5 random seeds. [Publication I]

3.1.3 Discussion

In this section, we have demonstrated the influence of feature diversity on the
generalization of neural networks. We quantified diversity through the average
L2 distance computed between the hidden-layer features. Notably, we have
introduced novel generalization bounds that are dependent on diversity for dif-
ferent settings in supervised learning. These derived bounds exhibit an inverse
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relationship with the diversity term, elucidating that learning diverse features
can reduce the generalization gap and mitigate overfitting. Furthermore, we
have extended our analyses to encompass deeper networks and diverse loss
functions. These findings address the Research Question 1 showing that it is
possible to derive rigorous generalization bounds hilighting the role of feature
diversity.

The key limitations of the analysis conducted here are the following: (i) The
L2 distance is not scale-invariant, i.e., it is sensitive to the L2-norm of the fea-
ture vector Φ. This is captured by the dependency on (C2

5 −d2min) in the bound
of Theorem 1 and not dmin solely, as the variable C5 captures the feature norm.
Using scale-invariant measures, e.g., correlation or Mutual Information, can be
a potentially superior approach for modeling feature diversity and present an
intriguing direction for future research. (ii) In the main diversity assumption,
Assumption 1, dmin is highly sensitive to the input x. Specifically, it is suffi-
cient that there exists one input x that yields an extremely small (≃ 0) average
L2 distance between the features, for dmin to be vacuous. In our analysis of
the EBM, in Section 3.3.1, we show how to relax the diversity assumption and
ensure that dmin > 0.

3.2 Feature Diversity in Neural Networks:
Algorithms

The dissertation’s contribution presented in this section provides an answer
to Research Question 2, which concerns proposing practical feature diversity-
promoting strategies to improve the performance of neural networks in multiple
contexts. In the following, we will describe the main results that were proposed
in Publication II, Publication III, and Publication IV.

3.2.1 WLD-Reg: A Data-Dependent Within-Layer
Diversity Regularizer

Here, we present the main approach, namely Within-Layer Diversity Regular-
izer (WLD-Reg), presented in Publication II. In Section 3.2.1.1, we highlight the
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details of the proposed algorithm and discuss its mechanism. In Section 3.2.1.2,
we discuss the key empirical performance achieved by WLD-Reg.

3.2.1.1 Methodology

We propose new algorithms that are designed explicitly to promote feature
diversity and reduce redundancy within the feature layer. In this context, the
feature layer corresponds to the final intermediate layer in a neural network.
The objective is to ensure that each unit/neuron within this layer captures a
distinct pattern contributing complementary information to the overall feature
representation.

Figure 3.3 Illustration of ‘within-layer’ feedback and the ‘between-layer’ feedback

Typically, during the training of a neural network model, units at a particu-
lar layer receive feedback from the subsequent layer, as illustrated in Figure 3.3.
This can be referred to as ‘between-layer’ feedback. We propose an augmen-
tation to this conventional feedback mechanism by introducing an additional
‘within-layer’ feedback to encourage diversity. This is achieved using new
data-dependent regularizers at the feature layer that explicitly reduces redun-
dancy within this layer. The first step is modeling similarity between two units
ϕn(·) and ϕm(·). For this end, we use the average radial basis function (RBF)
over the available data {x}Nj=1:
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snm :=
1

N

N∑︂

j=1

exp
(︁
− γ||ϕn(xj)− ϕm(xj)||2

)︁
, (3.7)

where γ is a hyper-parameter. The key advantage of the RBF distance is its
ability to capture non-linear relationships [107]. The similarity snm can be
computed either over the entire dataset or on a batch-wise basis. In essence, if
two units n and m have similar outputs for many samples, their corresponding
similarity snm will be elevated. Conversely, if their outputs differ on average,
their similarity smn is small, making them “diverse".

Subsequently, based on the pairwise similarities snm, we propose three vari-
ations for deriving the overall layer similarity J encompassing all units’ redun-
dancy within the feature layer:

• Direct: J :=
∑︁

n≠m snm. In this variant, the global layer similarity is
directly modeled as the sum of pairwise similarities between the different
units. The minimization of this sum encourages each unit to acquire
distinct and complimentary information.

• Det: J := −det(S), where S is a similarity matrix defined as Snm = snm.
This variant is motivated by the Determinantal Point Process (DPP) [97,
108]. The determinant of S measures the global diversity of the set of fea-
tures. Geometrically, det(S) is the volume of the parallelepiped formed by
the vectors within S [97]. A larger volume indicates more “diversity". So,
maximizing det(·) (minimizing −det(·)) enforces diversity in the learned
features.

• Logdet: J := −logdet(S+ϵI) (defined with the additional ϵI for positive
definiteness). Similar to the Det variant, Logdet serves the same motiva-
tion. However, Logdet is used instead of Det as it is a convex function
over the positive definite matrix space.

We note here that the first proposed variant, denoted as “Direct", shares similar-
ities with DeCov [33], specifically capturing only the pairwise similarity among
components. Notably, this variant cannot model higher-order "diversity." In
contrast, the remaining two variants, namely “Det" and “Logdet", adopt an
approach that considers global similarity, enabling a more holistic measure of
redundancy.
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The final form of the proposed regularizer WLD-Reg is:

L̂WLD−Reg := λ1J + λ2

N∑︂

i=1

||Φ(xi)||22 (3.8)

The primary term of WLD-Reg, J as defined with the three aforementioned
variants, penalizes the similarity between the units, compelling units within
the feature layer to learn distinct patterns. whereas the second term ensures
scale invariance. For instance, being based on the RBF distance, smn is not
scale-invariant. Trivially, it can be minimized by scaling all the activations of
the feature layer with a high factor. This does not affect the performance of the
model, as the model can easily rescale the high activations to normal values by
learning small weights in the subsequent layer. The second term in equation 3.8
mitigates this problem by penalizing solutions with high feature norms. λ1 and
λ2 are two hyperparameters controlling the contribution of each term to the
loss.

The different variants of WLD-Reg introduce new data-dependant regular-
izers that leverage the concept of feature diversity aiming to enhance the per-
formance of neural networks via redundancy reduction. It can be incorporated
in a plug-and-play manner on top of any fully connected layer in a neural net-
work to improve performance. The full details of the algorithm WLD-Reg are
presented in Algorithm 1.

3.2.1.2 Empirical Results

Image Classification

To validate the effectiveness of WLD-Reg regularizers, we experiment with three
different datasets, namely CIFAR10 [109], CIFAR100 [109], and ImageNet [110].
CIFAR10/100 are formed of 32× 32 rgb images. The training set is composed
of 50000 samples and the test set is formed of 10,000 test samples. CIFAR10
has a total of 10 classes, while CIFAR100 is composed of 100 distinct classes.
In our experiment, we split the original training set (50,000) into two sets: we
use the first 40,000 images as the main training samples and the last 10,000 as
validation samples for hyperparameters optimization. The ImageNet contains
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Algorithm 1 WLD-Reg approach [Publication II]
Model: Given a neural network f(·) with a feature representation ϕ(·), i.e.,
last intermediate layer.
Input: Training Data: {xi, yi}Ni=1

Parameters: λ1 and λ2 in equation 3.8

1: for every mini-batch: {xi, yi}mi=1 ∈ {xi, yi}Ni=1 do
2: Forward pass the inputs {xi}mi=1 into the model to obtain the outputs

{f(xi)}mi=1 and the feature representations {Φ(xi)}mi=1

3: Compute the standard loss L̂(f).
4: Compute the extra WLD-Reg loss L̂WLD−Reg (equation 3.8).
5: Compute the total loss as the sum of the standard loss and WLD-Reg
6: Compute the gradient of the total loss and use it to update the weights

of f .
7: end for
8: return Return f .

1000 classes, with 1.28 million training samples and 50 thousand validation
images.

For the CIFAR10/100 datasets, we experiment with two state-of-the-art
CNNs, ResNeXt-29-08-16 [51] and ResNet50 [4]. For the ImageNet dataset,
we experiment with four different models: ResNet50 [4], Wide-ResNet50 [50],
ResNeXt50 [51], and ResNet101 [4]. The full models descriptions and experi-
mental details are presented in Section 4.1 of Publication II.

In Tables 3.1 and 3.2, we report the error rates on the three datasets of our
approach as well as the standard networks, i.e., training without a diversity
regularizer and training with DeCov [33]. It is noteworthy that incorporating
a diversity strategy (Decov or our approach) consistently enhances the results
across all the different models and datasets compared to the standard approach.

In Table 3.1, for example with ResNet50, the three variants of our proposed
approach significantly reduce test errors compared to the standard approach on
both CIFAR10 and CIFAR100 datasets, showing improvements ranging from
0.51% to 0.63% for CIFAR10 and 1.25% to 1.44% for CIFAR100. Notably, the
Direct variant and the Logdet variant yield superior performance for ResNeXt
and ResNet models on CIFAR10, while the Logdet variant performs best for
both models on CIFAR100. For instance, with ResNeXt on CIFAR10, the
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Table 3.1 Classification errors of the different methods on CIFAR10 and CIFAR100. Re-
sults are averaged over three random seeds [Publication II].

method CIFAR10 CIFAR100

ResNeXt-29-08-16

Standard 6.93 ± 0.10 26.73 ± 0.10
Decov [33] 6.82 ± 0.15 26.70 ± 0.10
WLD-Reg (Direct) 6.28 ± 0.11 26.20 ± 0.18
WLD-Reg (Det) 6.51 ± 0.16 26.35 ± 0.23
WLD-Reg (Logdet) 6.38 ± 0.08 25.88 ± 0.21

ResNet50

Standard 8.28 ± 0.41 33.39 ± 0.42
Decov [33] 8.03 ± 0.11 32.26 ± 0.22
WLD-Reg (Direct) 7.77 ± 0.09 32.09 ± 0.11
WLD-Reg (Det) 7.75 ± 0.12 32.14 ± 0.28
WLD-Reg (Logdet) 7.65 ± 0.10 31.99 ± 0.05

Table 3.2 Classification errors of different models with different diversity strategies on
ImageNet dataset [Publication II].

ResNet50 Wide-ResNet50 ResNeXt50 ResNet101

Standard 23.84 22.42 22.70 22.33
DeCov [33] 23.62 22.68 22.57 22.31

WLD-Reg (Direct) 23.24 21.95 22.25 22.14
WLD-Reg (Det) 23.34 21.75 22.44 21.87
WLD-Reg (Logdet) 23.32 21.96 22.40 22.04

Direct variant yields a 0.65% improvement over the standard approach and a
0.54% improvement over DeCov. Overall, our three proposed variants consis-
tently outperform both DeCov and the standard approach across all testing
configurations.

On the ImageNet dataset, as shown in Table 3.2, feature diversity (our ap-
proach and DeCov) reduces test errors and outperforms the standard approach.
Our three variants of WLD-Reg consistently outperform DeCov, with the Di-
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rect variant showing optimal performance for ResNet50 and ResNeXt50 and the
Det variant yielding the lowest error rates for Wide-ResNet50 and ResNet101.

Feature Diversity Reduces Overfitting

The aforementioned results on the three datasets show that using feature
diversity-based approaches consistently boosts the performance of CNNs. This
corroborates the theoretical findings of Section 3.1, which show that feature
diversity can improve generalization and mitigate overfitting. To further high-
light this effect empirically, we report the generalization gap, i.e., training error
- test error, of the different models on ImageNet in Table 3.3.

Table 3.3 The generalization gap, i.e., training error - test error, of different approaches
on ImageNet dataset. * denotes WLD-Reg variants [Publication II].

Standard DeCov Direct* Det* Logdet*

ResNet50 2.87 2.70 1.15 1.23 1.21
Wide-ResNet50 6.33 6.34 4.44 4.34 4.58
ResNeXt50 5.99 5.85 4.41 4.59 4.48
ResNet101 4.64 4.61 3.68 3.38 3.71

As can be seen in Table 3.3, our diversity-promoting strategies reduce the
generalization gap. For instance, the Logdet variant reduces the gap by more
than 1.5% for all the models, except for ResNet101, where the gain is 0.93%.
This further validates the importance of feature diversity on the generalization
of neural networks. The convergence of the theoretical underpinnings and prac-
tical validations holds pivotal significance in furthering our understanding of
generalization and, consequently, for the ongoing advancement of deep learn-
ing towards enhanced efficiency and adaptability across diverse datasets and
real-world scenarios.

Feature Diversity Helps in the Presence of Label Noise

To further substantiate the efficacy of employing a feature diversity strategy
beyond standard classification, we assess the resilience of our methodology in
the context of label noise. In this scenario, conventional neural networks tend
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to overfit to noisy samples, thereby diminishing their generalization capacity to
the test set [111, 112]. Introducing measures to enforce feature diversity can be
useful in obtaining robust and more meaningful representations, mitigating the
adverse impact of noise. To empirically demonstrate this idea, we report results
with supplementary experiments on the CIFAR10 and CIFAR100 datasets with
label noise, specifically at rates of 20% and 40%. The results are presented in
Table 3.4.

Table 3.4 Classification errors of ResNet50 using different diversity strategies on CIFAR10
and CIFAR100 datasets with different label noise ratios. Results are averaged
over three random seeds [Publication II].

20% label noise

Method CIFAR10 CIFAR100

Standard 14.38 ± 0.29 45.11 ± 0.52
DeCov [33] 13.75 ± 0.19 41.93 ± 0.40
WLD-Reg (Direct) 13.31 ± 0.40 40.10 ± 0.31
WLD-Reg (Det) 13.21 ± 0.21 40.35 ± 0.31
WLD-Reg (Logdet) 13.01 ± 0.40 39.97 ± 0.19

40% label noise

CIFAR10 CIFAR100

Standard 19.40 ± 0.80 48.81 ± 0.57
DeCov [33] 17.60 ± 0.66 48.23 ± 0.48
WLD-Reg (Direct) 16.96 ± 0.32 46.73 ± 0.23
WLD-Reg (Det) 17.49 ± 0.04 46.93 ± 0.62
WLD-Reg (Logdet) 17.24 ± 0.31 46.52 ± 0.22

By comparing the results in Table 3.4 with results in Table 3.1, we note that
the performance gap between the standard approach and diversity-promoting
approaches (Decov and our WLD-Reg variants) becomes more noticeable. No-
tably, the Logdet variant of WLD-Reg demonstrates a substantial improvement,
yielding improvements of ∼ 2% on both datasets with 40% noise.

30



WLD-Reg Helps in Transfer Learning

In addition to the results presented in Publication II, in this dissertation, we
also explore other learning contexts where feature diversity can be beneficial.
For instance, transfer learning relies on the pre-training step to learn a set
of transferable features. Learning diverse features in the pre-training phase
enables the neural network to capture a broad spectrum of patterns and features
from the pre-training data, yielding a more robust and rich representation. This
richness in feature learning enhances the model’s ability to generalize effectively
to new tasks. To evaluate the effect of feature diversity in the transfer learning
context, we conduct an additional experiment.

We pre-train different models on ImageNet with different diversity strategies
and then fine-tune these models to CIFAR10 and CIFAR100, with the differ-
ent diversity strategies. The models are fine-tuned for 20 epochs using Adam
optimizer [2] with a learning rate equal to 0.0001 and standard data augmen-
tation is applied. The original images of CIFAR are preprocessed and resized
to (96, 96, 3) to be adequate for ResNet50 trained on ImageNet. The results
are reported in Table 3.5. As can be seen, employing a diversity strategy helps
in the transfer learning context and leads to consistently lower error rates. For
example, the Logdet variant of our approach leads to 0.94% and 1.27% gains
on CIFAR10 and CIFAR100, respectively.

Table 3.5 Transfer learning performance on CIFAR10 and CIFAR100 of ResNet50 models
pre-trained on ImageNet with the different diversity approaches.

↪→ CIFAR10 ↪→ CIFAR100

Standard 6.14 22.99
DeCov 5.92 21.91
WLD-Reg (Direct) 5.89 21.48
WLD-Reg (Det) 5.51 22.01
WLD-Reg (Logdet) 5.20 21.72
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3.2.1.3 Discussion

We have presented a diversity-inducing methodology, namely WLD-Reg and
showed through extensive empirical evaluation that WLD-Reg consistently
boost the performance of CNNs in multiple learning scenarios. Beyond CNN
models, in Table 4 in Publication II, we show that WLD-Reg can be used
to improve the generalization of modern attention-free multi-layer perceptron
(MLP)-based models for image classification [113, 114, 115], which are known
to exhibit high overfitting and require regularization. The findings presented
in this section contribute insights to address Research Question 2, showing
that methodologies based on feature diversity can improve performance and
metigate overfitting in deep learning models.

We note that WLD-Reg requires additional computations compared to the
standard approach, i.e., computing L̂WLD−Reg in equation 3.8. However, in
practice, this corresponds to a small additional time cost during the training.
For instance, the Direct, Det, and Logdet variants cost only 0.29%, 0.39%, and
0.49% extra training time for ResNet50 on the ImageNet dataset.

Weight-based diversity strategies, as shown in Table 1 in Publication II, can
degrade the performance of neural networks in some cases. On the contrary, as
shown through the results in Section 3.2.1.2, WLD-Reg yields consistently an
improved performance in multiple tasks and datasets. Furthermore, it is shown
in [116], that WLD-Reg can help CNNs in the context of one-class classifica-
tion [117, 118, 119, 120]. Another advantage compared to the weight-based
diversity approaches is that they need to be applied on top of all layers which
can result in high computational costs for deep models, whereas WLD-Reg
applied only on top of the last hidden layer is able to achieve consistent perfor-
mance boost. The main limitation of our proposed approach is the fact that it
is compatible only with flat feature representations. Future work includes ex-
tending it for different topologies, e.g., convolutional output maps and recurrent
representations.
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3.2.2 Diversity in BoF Pooling

In this section, we present the main contribution of Publication III, where a
diversity regularizer is proposed to boost the performance of BoF pooling-based
CNNs.

3.2.2.1 Methodology

BoF pooling is an advanced aggregation technique that has been proposed as
an alternative to standard global average and max pooling techniques in CNN
in order to construct powerful models with a low computational cost. The key
element of BoF is the dictionary used to compile the histogram representation.
In this dissertation, we argue that diversity within this dictionary can help to
achieve good performance. For instance, a diverse dictionary ensures that the
quantized representations, i.e., the histograms, encompass various features and
textures present in the images. This leads to a richer and more comprehensive
description of the input and, consequently, enhances the generalization capa-
bility of BoF-based CNN models. In this dissertation, we test this idea by
developing a simple regularizer that aims to reduce the redundancy with the
dictionary items.

Given a CNN model containing a BoF pooling layer with a dictionary
{c1, · · · , cK} of size K, the similarity between two elements ci and cj of this
dictionary can be measured with the squared correlation:

SIM(ci, cj) =
(︂
corr(ci, cj)

)︂2
. (3.9)

Next, the total redundancy loss can be obtained as the sum of the pairwise
similarities as follows:

Similarity Loss =
∑︂

i≠j

(︂
corr(ci, cj)

)︂2
. (3.10)

As illustrated in Figure 3.4, the proposed regularizer can be integrated in any
BoF-based CNN training to augment the original loss. A hyper-parameter β can
be used to control its contribution to the total loss. As the proposed regularizer
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Figure 3.4 An illustration on how the BoF-based CNN model loss is computed using our
approach. The standard loss can be least squares or cross entropy and the
similarity loss corresponds to equation 3.10 [Publication III].

depends only on the dictionary items, only their corresponding gradients change
during optimization. For instance, each item ci receives an extra feedback equal
to

β
∂
∑︁

i ̸=j SIM(ci, cj)
∂ci

.

3.2.2.2 Empirical Results

We report competitive results of the different pooling strategies, namely global
max pooling (GMP) [2], global average pooling (GAP) [2], BoF [58, 59], and
BoF augmented with our proposed regularizer. The detailed experimental setup
is available in Publication III. In Table 3.6 and Table 3.7, we present the average
error rates and standard deviations corresponding to different filter sizes on the
MNIST and fashionMNIST datasets, respectively.

A noteworthy observation is that both variations of BoF consistently outper-
form standard pooling approaches, namely GMP and GAP. For instance, with
16 filters, GMP and GAP exhibit error rates of 3.63% and 4.67% on MNIST,
respectively, while standard BoF and our BoF variant achieve lower error rates
of 1.03% and 1.00%, respectively, for the same configuration. On the fashion-
MNIST dataset, our variant of BoF, which penalizes the correlations between
dictionary items, consistently boosts the performance in all the settings. For
instance, with a 128-filter model on fashionMNIST, our approach achieves an
error rate of only 8.77% compared to the 9.02% error rate attained by standard
BoF.
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Table 3.6 Average error rates and standard deviation of different approaches for different
number of filters in the last convolutional layer on the MNIST dataset. Results
are averaged over 5 random seeds. The top results for each approach are in bold
and the best global result is underlined [Publication III].

method 16 filters 32 filters 64 filters 128 filters

GMP 3.63 ± 0.31 1.97 ± 0.20 1.39 ± 0.07 1.09 ± 0.08
GAP 4.67 ± 1.17 2.01 ± 0.09 1.31 ± 0.05 1.06 ± 0.02

BoF 1.03 ± 0.08 0.97 ± 0.11 1.00 ± 0.08 1.03 ± 0.06

BoF (ours) 1.00 ± 0.06 0.98 ±0.06 0.87 ±0.10 0.98 ± 0.08

Table 3.7 Average error rates and standard deviation of different approaches for different
numbers of filters in the last convolutional layer on the fashionMNIST dataset.
Results are averaged over 5 random seeds. The top results for each approach
are in bold and the best global result is underlined [Publication III].

method 16 filters 32 filters 64 filters 128 filters

GMP 14.94 ± 0.70 12.13 ± 0.30 10.46 ± 0.18 9.48 ± 0.12
GAP 15.09 ± 0.19 12.30 ± 0.20 10.91 ± 0.21 9.97 ± 0.06

BoF 9.55 ± 0.29 9.44 ± 0.25 9.04 ± 0.22 9.02 ± 0.15

BoF (ours) 9.52 ± 0.29 9.14 ± 0.12 8.98 ± 0.18 8.77 ± 0.22

To further show the effectiveness of our approach, we conduct an additional
experiment with the CIFAR10 dataset. We evaluate the performance with three
filter sizes, 32, 64, and 128 in the final convolutional layer. The results are
presented in Table 3.8 Notably, our approach yields the best result, achieving
a minimal error rate of 15.93% with 128 filters. This represents a noteworthy
enhancement, surpassing the best results obtained by GMP, GAP, and the
standard BoF by 2.87%, 1.68%, and 0.17%, respectively.

3.2.2.3 Discussion

In this section, we showed that BoF pooling can benefit from feature diversity.
We developed a simple, yet effective, approach that reduces the redundancy
along the features (dictionary items) and showed that it yields performance
improvement. This provides insights into Research Question 2 showing that
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Table 3.8 Average error rates and standard deviation of different approaches for different
number of filters in the last convolutional layer on the CIFAR10 dataset. Results
are averaged over three random seeds. Top results for each approach are in bold
and best global result is underlined [Publication III].

method 32 filters 64 filters 128 filters

GMP 22.31 ± 0.48 20.33 ± 0.67 18.80 ± 1.03
GAP 20.94 ± 0.53 20.08 ± 0.99 17.61 ± 0.33

BoF 17.15 ± 0.58 17.05 ± 0.11 16.10 ± 0.20

BoF (ours) 17.21 ± 0.71 16.57 ± 0.25 15.93 ± 0.11

feature diversity can be useful for neural networks beyond the standard CNN
models.

The main limitation of this work is the limited empirical validation. How-
ever, we are confident these results will spark future research to develop ad-
vanced diversity-based methodologies and extensively validate their ability to
boost the performance of BoF-based CNNs with large datasets.

3.2.3 Feature Diversity in Autoencoders

In addition to the results presented in Publication II and Publication III, in
this dissertation, we also present the results in Publication IV, exploring feature
diversity in the context of autoencoders.

3.2.3.1 Methodology

We present an approach which leverages the concept of feature diversity to
improve the performance of autoencoders. The key component of the autoen-
coders is the bottleneck layer, which typically has a low-dimensionality. By
optimizing the autoencoder to learn to reconstruct the input, the model is
forced to avoid redundancies and noise in the bottleneck.

In the context of autoencoders, the bottleneck layer, i.e., the output of the
encoder is considered the feature layer. In this dissertation, we propose a new
diversity-based regularizer that can be added on top of the bottleneck layer
to explicitly minimize redundancy among features. Specifically, we propose to
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penalize high pairwise covariance between different features. Formally, given a
training data set {xi}Ni=1 and an encoder ϕ(·) ∈ RD, the covariance between
the ith and jth features, ϕi and ϕj , can be expressed as follows:

C(gi, gj) =
1

N

∑︂

n

(︃
ϕi(xn)− µi

)︃(︃
ϕj(xn)− µj

)︃
, (3.11)

where µi = 1
N

∑︁
n ϕi(xn) is the average output of the ith unit. The objective

is to minimize redundancy in the bottleneck representation, which corresponds
to minimizing the pairwise covariance between distinct features. So, the final
form of the proposed regularizer is as follows:

Redundancy Loss =
∑︂

i ̸=j

(︂ 1

N

∑︂

n

(gi(xn)− µi)(gj(xn)− µj) (3.12)

As illustrated in Figure 3.5, the proposed regularizer can be seamlessly inte-
grated into any autoencoder-based model to compliment the distortion loss
and optimized in a batch-wise manner, making it adaptable to various learning
strategies and network topologies. Furthermore, a hyper-parameter α can be
used to control its contribution to the final loss.

Figure 3.5 An illustration of how the autoencoder loss is computed using our approach.
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3.2.3.2 Empirical Results

Dimensionality Reduction

We assess the efficacy of the proposed methodology in the task of dimensional-
ity reduction with autoencoders. We use three different datasets Madelon [121],
ISOLET [122], and P53 Mutants [123]. The different characteristic of the
datasets are reported in Table 3.9.

Table 3.9 Statistics of the three datasets used in the dimensionality reduction experiments.
# Dim: dimensionality of the data. # Train: number of training samples. #
Test: number of test samples. d: projection dimension [Publication IV].

Dataset # Dim # Train # Test d

Madelon [121] 500 2000 1800 10
ISOLET [122] 617 6238 1559 10
P53 Mutants [123] 5408 21811 9348 50

In order to evaluate the quality of the bottleneck features obtained by the
different autoencoders, we apply K-Nearest Neighbor (K-NN) classifier on top
of them and report the classification accuracy. The results for K = 3 and
K = 5 are presented in Table 3.10.

We note that the proposed approach exhibits improved performance for the
different values of α. For instance, with α = 0.005, the proposed regularizer
yields improvement of 4% for (K = 3)-NN and 3% for (K = 5)-NN for Madelon
dataset. Similar trends are observed for the ISOLET and P53 Mutants datasets.
Particularly, for ISOLET, the proposed approach achieves the highest accuracy
of 78.96% for (K = 3)-NN and 79.83% for (K = 5)-NN with α = 0.01. Overall,
the results on the three datasets underscore the effectiveness of the proposed
approach in improving the quality of the features of the bottleneck to achieve
strong performance.

To further investigate the impact of dimensionality of the bottleneck on the
performance of our approach, we plot the (K = 3)-NN accuracy as a function
of the dimension of the bottleneck size d on ISOLET dataset in Figure 3.6. The
results indicate that learning diverse features at the bottleneck side consistently
improves the results. Notably, the improvement is higher for smaller values of
d, as for smaller dimensions it is more crucial to learn rich and diverse features
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Table 3.10 Classification accuracy of Nearest Neighbor classifier applied on the bottleneck
representations (average and standard deviation over 10 repetitions) [Publica-
tion IV].

Madelon
(K = 3)-NN (K = 5)-NN

Standard 69.33% ± 2.71 71.32% ± 2.82
Ours (α =0.1) 72.51% ± 1.73 74.08% ± 1.63
Ours (α =0.05) 73.52% ± 1.91 74.53% ± 1.49
Ours (α =0.01) 72.65% ± 2.21 74.50% ± 1.87
Ours (α =0.005) 73.82% ± 1.83 74.78% ± 1.78

ISOLET
(K = 3)-NN (K = 5)-NN

Standard 76.32% ± 1.85 77.70% ± 1.60
Ours (α =0.1) 78.35% ± 0.46 79.82% ± 0.47
Ours (α =0.05) 78.18% ± 0.40 79.43% ± 0.44
Ours (α =0.01) 78.96% ± 0.56 79.83% ± 0.54
Ours (α =0.005) 77.34% ± 0.66 79.29% ± 0.66

P53 Mutants
(K = 3)-NN (K = 5)-NN

Standard 56.42 % ± 0.60 54.99% ± 0.48
Ours (α =0.1) 57.88% ± 0.46 56.18% ± 0.59
Ours (α =0.05) 56.17% ± 0.46 55.39% ± 1.09
Ours (α =0.01) 57.22% ± 0.50 55.65 % ± 0.46
Ours (α =0.005) 56.83% ± 0.41 55.92% ± 0.46

to be able to address the task at hand.

Image Compression

Next, we assess the efficacy of the proposed methodology in the task of image
compression with autoencoders on CIFAR10 dataset. The input original images
are flattened to generate inputs with size 32× 32× 3 = 3072. The autoencoder
architecture used is presented in Table 3.11. We experiment with different
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Figure 3.6 Average (K = 3)-NN accuracy as a function of the dimension of the bottleneck
size d on Isolet dataset. Results are averaged over 10 random seeds [Publication
IV].

sizes of bottleneck, i.e., d ∈ {128, 256}. The training is conducted with Adam
optimizer for 50 epochs with a 1e−2 learning rate and a batch size of 128.

Table 3.11 Autoencoder topology used for CIFAR10. * denotes the bottleneck represen-
tation [Publication IV].

Layer Output shape

Input [3072]
Linear [512]
ReLU activation [512]
Linear [256]
ReLU activation [256]
Linear [d]
ReLU activation* [d]
Linear [256]
ReLU activation [256]
Linear [512]
ReLU activation [512]
Linear [3072]

We report different performance metrics, namely root-mean-square error
(RMSE), peak signal-to-noise ratio (PSNR), and structural similarity index
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(SSIM) over 10 random seeds. Given two images I1 and I2, the three metrics
can be computed as follows:

RMSE =
√
MSE =

⌜⃓
⎷⃓ 1

mn

m∑︂

i=1

n∑︂

j=1

[I1(i, j)− I2(i, j)]2, (3.13)

PSNR = 10 · log10
(︃

Max2I
MSE

)︃
, (3.14)

SSIM(I1, I2) =
(2µI1µI2)(2σI1I2)

(µ2I1 + µ2I2)(σ
2
I1
+ σ2I2)

, (3.15)

where MaxI is the maximum value of the images, (µI1 , µI2) are the mean of
the images, (σI1 ,σI2) are the variances, and σI1I2 is the covariance.

The results for different bottleneck sizes are reported in Table 3.12. Notably,
our proposed approach, particularly when employing a regularization parameter
of 0.0005, consistently surpasses the standard compression methodology across
all compression ratios. For d = 256, the best performance is achieved by using
α = 0.0005, whereas for d = 128, α = 0.001 leads to the best result. The results
underscore the efficacy of our proposed approach in preserving image quality
during compression, emphasizing the advantages of applying diversity-inducing
approaches to improve the performance of autoencoders.

Image Denoising

Next, we assess the efficacy of the proposed methodology in the task of image
denoising with autoencoders on the CIFAR10 dataset. We construct a noisy
variant of the dataset by adding a random noise from the normal distribution
β×N (0, 1), where β is the weight of the added noise. For the model topology, we
use the same topology as in the compression task, i.e., Table 3.11. The results
for different levels of noise β = 0.1 and β = 0.2 are presented in Table 3.13.

As shown in Table 3.13, for the noise level β = 0.1, our approach consistently
outperforms the standard autoencoders. Specifically, by using our regulariza-
tion technique with α = 0.005 and α = 0.001, the autoencoder achieves lower
RMSE (0.0940 and 0.0952, respectively), higher PSNR (0.6227 and 0.6129, re-
spectively), and enhanced SSIM (21.0411 and 20.9325, respectively) compared
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Table 3.12 RMSE, PSNR, and SSIM on the image compression task with CIFAR10 dataset
(average and standard deviation over 5 repetitions) [Publication IV].

RMSE ↓ PSNR ↑ SSIM ↑
3072 → 256

Standard 0.0888 ± 0.0022 0.6601 ± 0.0068 21.5547 ± 0.2470
Ours (0.01) 0.0882 ± 0.0012 0.6637 ± 0.0064 21.6168 ± 0.1314
Ours (0.005) 0.0882 ± 0.0006 0.6628 ± 0.0060 21.6271 ± 0.0593
Ours (0.001) 0.0882 ± 0.0011 0.6613 ± 0.0068 21.6347 ± 0.1154
Ours (0.0005) 0.0877 ± 0.0011 0.6642 ± 0.0078 21.6829 ± 0.1156
Ours (0.0001) 0.0885 ± 0.0014 0.6610 ± 0.0060 21.5927 ± 0.1518

3072 → 128

Standard 0.0929 ± 0.0015 0.6151 ± 0.0100 21.2830 ± 0.1455
Ours (0.01) 0.0920 ± 0.0010 0.6210 ± 0.0078 21.3765 ± 0.0920
Ours (0.005) 0.0927 ± 0.0014 0.6144 ± 0.0089 21.3093 ± 0.1280
Ours (0.001) 0.0917 ± 0.0009 0.6246 ± 0.0054 21.4150 ± 0.0888
Ours (0.0005) 0.0923 ± 0.0016 0.6190 ± 0.0130 21.3436 ± 0.1527
Ours (0.0001) 0.0926 ± 0.0019 0.6182 ± 0.0072 21.3184 ± 0.2070

to the standard approach without diversity regularization. With higher noise
level, i.e., β = 0.2, our approach, particularly with a regularization parame-
ter of 0.0001, also exhibits superior performance, showcasing improved scores
across all metrics. These outcomes affirm the efficacy of our proposed approach
in the denoising task, highlighting the role that feature diversity plays in this
context.

3.2.3.3 Discussion

In this section, we showed that autoencoders can benefit from feature diversity.
We showed through several experiments that reducing redundancy within the
bottleneck representation of the autoencoder boosts its performance and its
generalization to unseen data. This provides insights into Research Question 2
showing feature diversity can be usefull for neural networks beyond the standard
supervised learning.

The main limitation of the proposed approach is being based on covariance
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Table 3.13 RMSE, PSNR, and SSIM on the image denoising task with CIFAR10 dataset
(average and standard deviation over 5 repetitions)

RMSE ↓ PSNR ↑ SSIM ↑
β = 0.1

Standard 0.0954 ± 0.0019 0.6098 ± 0.0121 20.9243 ± 0.1734
Ours (0.01) 0.0948 ± 0.0016 0.6172 ± 0.0093 20.9703 ± 0.1550
Ours (0.005) 0.0940 ± 0.0010 0.6227 ± 0.0056 21.0411 ± 0.1021
Ours (0.001) 0.0952 ±0.0018 0.6129 ± 0.0116 20.9325 ± 0.1651
Ours (0.0005) 0.0943 ± 0.0012 0.6190 ± 0.0085 21.0238 ± 0.1097
Ours (0.0001) 0.09489 ± 0.0012 0.6157 ± 0.0072 20.9644 ± 0.1102

β = 0.2

Standard 0.1001 ± 0.0012 0.5798 ± 0.0081 20.4497 ± 0.0972
Ours (0.01) 0.0996 ± 0.0013 0.5846 ± 0.0089 20.4900 ± 0.1155
Ours (0.005) 0.1000 ± 0.0015 0.5806 ± 0.0104 20.4597 ± 0.1118
Ours (0.001) 0.0999 ± 0.0014 0.5824 ± 0.0090 20.4626 ± 0.1118
Ours (0.0005) 0.0997 ± 0.0015 0.5814 ± 0.0111 20.4881 ± 0.1206
Ours (0.0001) 0.0992 ± 0.0015 0.5884 ± 0.0081 20.5186 ± 0.1370

as a measure of redundancy, which is sensitive to noise and scale. However,
we are confident these results will spark future research to develop more ad-
vanced diversity-based methodologies that can further boost the performance
of autoencoders and other unsupervised learning models.

3.3 Feature Diversity in Energy-Based Models

The dissertation’s contribution presented in this section provides an answer to
Research Question 3, which concerns extending our findings to the energy-based
learning framework. In the following, we will describe the main theoretical
results of Publication V. Furthermore, in this dissertation, we propose and
experiment with a methodology, inspired by the theoretical findings, that boosts
the performance of EBMs.
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3.3.1 Feature Diversity in Energy-Based Models: Theory

In this part of the dissertation, we present the main findings of Publication V,
extending the theoretical findings of Section 3.1 to EBMs.

3.3.1.1 Problem Formulation

There has been an interest in studying the theoretical generalization properties
of EBMs [34, 124, 125]. In [124], a generalization bound based on Rademacher
complexity is derived. Their main result is presented in Lemma 1.

Lemma 1. [124] For a well-defined energy function E(h,x,y) over hypothesis
class H, input set X and output set Y, the following holds for all h in H with
a probability of at least 1− δ

E(x,y)∼Z [E(h,x,y)] ≤ 1

m

∑︂

(x,y)∈S
E(h,x,y)+ 2Rm(E)+M

√︃
log(2/δ)

2m
, (3.16)

where m is the total training samples, E is the energy function class defined as
E = {E(h,x,y)|h ∈ H}, Rm(E) is its Rademacher complexity, and M is the
upper-bound of E.

The key insight of the result in Lemma 1 is that minimizing empirical energy
over the training data, i.e., 1

m

∑︁
(x,y)∈S E(h,x,y) is not enough to guarantee

the minimization of the true energy expectation, i.e., E(x,y)∼Z [E(h,x,y)], as
the right-hand side of the bound contains other terms. Thus, it is crucial to
understand and characterize the gap between these two quantities to boost the
generalization power of EBM models to unseen data.

The inner model h = GW (x), typically modeled with a neural network,
plays a pivotal role in the performance of the EBM model and its generalization
performance. Similar to Section 3.1, the inner model can be interpreted as a
two-stage process

GW (x) =
M∑︂

i

wiϕi(x), (3.17)

where {ϕ1(·), · · · , ϕM (·)} is the feature set. From this stand point, GW relies
on the features.
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In the scope of this dissertation, our hypothesis postulates the significance of
acquiring a diverse set of features to ensure generalization. If each unit within
Φ(x) adeptly captures distinct and unique pattern aspects of the input data, the
collective contribution of such units will yield a rich and robust representation
of the data. Consequently, this feature diversity can boost the performance of
the EBM model and supply it with superior generalization capabilities.

As mentioned in Section 3.1.3, one of the main limitations of using dmin, i.e.,
the lower bound of the average L2 distance to model diversity, is the sensitivity
to data noise. For instance, if a ReLU-based neural network is used, several
feature functions may yield a zero value for different inputs. From this per-
spective, defining diversity directly as a lower bound for the pair-wise diversity
is unrealistic. To address this, in this part of the dissertation, we propose to
relax the diversity assumption using a probabilistic lower-bound. This yields
new diversity measure defined as follows:

Definition 1 ((ϑ− τ)-diversity). A set of feature functions, {ϕ1(·), · · · , ϕD(·)}
is called (ϑ − τ)-diverse, if there exists a constant ϑ ∈ R, such that for every
input x we have

1

2

D∑︂

i ̸=j

(ϕi(x)− ϕj(x))
2 ≥ ϑ2 (3.18)

with a high probability τ .

Similar to the intuition in Section 3.1, if a pair of two feature maps, ϕi(·)
and ϕj(·), are diverse, they tend to produce distinct values for the same input
with a high likelihood. As a result, their L2 distance is high and, cumulatively,
the ϑ of the whole feature set is large. From this perspective, ϑ quantifies the
diversity of the features’ set.

3.3.1.2 Feature Diversity Improves the Generalization of EBMs

Here, we aim to study how feature diversity affects the generalization of EBMs
and highlight its role. We consider different cases and derive rigorous general-
ization bounds, based on Lemma 1, on EBMs depending on (ϑ − τ)-diversity.
The detailed proofs are available in Publication V.
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Regression with E(h,x,y) = 1
2
||GW (x)− y||22

We first consider the task of regression. This problem can be solved with an
EBM, as illustrated in Figure 2.1. In this case, several energy functions can
be used [36, 37]. Here, we consider the case of E(h,x,y) = 1

2 ||GW (x) − y||22.
The hypothesis class H = {h(x) = GW (x) =

∑︁D
i=1wiϕi(x) = wTΦ(x) | Φ ∈

F , ∀x : ||Φ(x)||2 ≤ A}, and the output set Y ⊂ R. By bounding all the
quantities in Lemma 1 using ϑ, we obtain the first feature diversity-dependent
bound for the EBM. The main result is presented in Theorem 2.

Theorem 2: Generalization bound, regression

For the energy function E(h,x,y) = 1
2 ||GW (x) − y||22, if the feature

set {ϕ1(·), · · · , ϕD(·)} is (ϑ − τ)-diverse with a probability τ , with a
probability of at least (1− δ)τ , the following holds for all h in H:

E(x,y)∼Z [E(h,x,y)] ≤ 1

m

∑︂

(x,y)∈S
E(h,x,y)

+ 4D||w||∞(||w||∞
√︁
DA2 − ϑ2 +B)Rm(F)

+
1

2
(||w||∞

√︁
DA2 − ϑ2 +B)2

√︃
log(2/δ)

2m
, (3.19)

where B is the upper-bound of Y, i.e., y ≤ B, ∀y ∈ Y .

The main insight of the bound in Theorem 2 is the dependency on feature
diversity. Specifically, it exhibits an inverse proportionality to ϑ and scales
as

√
DA2 − ϑ2. This suggests that reducing redundancy, characterized by an

increase in ϑ, results in a reduction of the gap between true and empirical
energies, consequently boosting the performance of EBMs.

Classification with E(h,x,y) = −yGW (x)

Here, we consider the binary classification problem, as illustrated in Figure
2.1 (b). We use the same assumption as in regression for the inner model,
i.e., h(x) = GW (x) =

∑︁D
i=1wiϕi(x) = wTΦ(x). In this setting, we consider

the energy function E(h,x,y) = −yGW (x) [34], over the input set X ∈ RN ,
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hypothesis class H = {h(x) = GW (x) =
∑︁D

i=1wiϕi(x) = wTΦ(x) | Φ ∈
F , ∀x : ||Φ(x)||2 ≤ A}, and output set Y ⊂ R. The main result for this case
is presented in Theorem 3.

Theorem 3 presents a rigorous bound for the generalization of EBM in the
classification task. The bound highlights the effect of diversity on general-
ization. It shows that increasing diversity, i.e., increasing ϑ, can yield better
generalization. Compared to the regression case, i.e., Theorem 2, we note that
for the classification, the diversity term, i.e., ϑ, appears only the last term of the
bound, whereas for the regression task, increasing diversity leads to reducing
last two terms, as they are both dependent on ϑ.

Theorem 3: Generalization bound, classification

For the energy function E(h,x,y) = −yGW (x), if the feature set
{ϕ1(·), · · · , ϕD(·)} is (ϑ − τ)-diverse with a probability τ , then with a
probability of at least (1− δ)τ , the following holds for all h in H:

E(x,y)∼Z [E(h,x,y)] ≤ 1

m

∑︂

(x,y)∈S
E(h,x,y)

+ 4D||w||∞Rm(F) +||w||∞
√︁
DA2 − ϑ2

√︃
log(2/δ)

2m
.

(3.20)

Implicit regression with E(h,x,y) = 1
2
||G(1)

W (x)−G
(2)
W (y)||22

Next, we consider the case of the implicit regression with an EBM (Figure 2.1
(c)). This constitutes a generalized formulation applicable to various problem
domains, including metric learning, image denoising, object detection, as illus-
trated in [34], or semi-supervised learning [82, 126]. As illustrated in Figure
2.1 (c), this form of EBM features encompass two inner models, G1

W (·) and
G2

W (·), which can be either identical or distinct based on the specific problem
being addressed. In this discussion, we consider the general scenario where
the two models correspond to different combinations of diverse features, i.e.,
G

(1)
W (x) =

∑︁D(1)

i=1 w
(1)
i ϕ

(1)
i (x) and G

(2)
W (y) =

∑︁D(2)

i=1 w
(2)
i ϕ

(2)
i (y). Consequently,

two distinct (ϑ− τ)-diversity terms are attributed to each set.
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To sum up, we consider the energy function E(h,x,y) = 1
2 ||G

(1)
W (x) −

G
(2)
W (y)||22, over the input set X ∈ RN , hypothesis class H = {h(1)(x) =

G
(1)
W (x) =

∑︁D(1)

i=1 w
(1)
i ϕ

(1)
i (x) = w(1)TΦ(1)(x), h(2)(x) = G

(2)
W (y) =∑︁D(2)

i=1 w
(2)
i ϕ

(2)
i (y) = w(2)TΦ(2)(y) | Φ(1) ∈ F1, Φ

(2) ∈ F2, ∀x : ||Φ(1)(x)||2 ≤
A(1), ∀y : ||Φ(2)(y)||2 ≤ A(2)}, and the second input set Y ⊂ RN . The result
is presented in Theorem 4.

Theorem 4: Generalization bound, implicit regression

For the energy function E(h,x,y) = 1
2 ||G

(1)
W (x)−G(2)

W (y)||22, if the feature
set {ϕ(1)1 (·), · · · , ϕ(1)

D(1)(·)} is ϑ(1)-diverse with a probability τ1 and the

feature set {ϕ(2)1 (·), · · · , ϕ(2)
D(2)(·)} is ϑ(2)-diverse with a probability τ2,

then with a probability of at least (1− δ)τ1τ2, the following holds for all
h in H:

E(x,y)∼Z [E(h,x,y)] ≤ 1

m

∑︂

(x,y)∈S
E(h,x,y)

+ 8(
√︁
J1 +

√︁
J2)
(︂
D(1) ||w(1)||∞Rm(F1)

+D(2)||w(2)||∞Rm(F2)
)︂

+ (J1 + J2)

√︃
log(2/δ)

2m
, (3.21)

where J1 = ||w(1)||2∞
(︁
D(1)A(1)2−ϑ(1)2

)︁
and J2 = ||w(2)||2∞

(︁
D(2)A(2)2−

ϑ(2)
2)︁.

The upper-bound of the energy model is contingent on the diversity variable
of both feature sets. Notably, the bound for implicit regression diminishes
in direct proportion to ϑ2, which contrasts with cases such as classification,
where the bound is proportional to ϑ. This observation leads to the conclusion
that diminishing redundancy enhances the generalization performance of EBMs
within the context of implicit regression.
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3.3.1.3 Discussion

In this section of the dissertation, we introduced the concept of (ϑ−τ)-diversity
to characterize the feature diversity within the EBM models. Several rigorous
generalization bounds were derived for different settings, i.e., regression, classi-
fication, and implicit regression. The results show that learning diverse feature
is consistently beneficial to EBM models. Notably, our theoretical framework
is agnostic toward both the choice of loss function and the specifics of the train-
ing strategy employed for parameter optimization in EBMs. This noteworthy
characteristic provides more general theoretical guarantees that learning non-
redundant feature is beneficial to EBM generalization. This provides an answer
to Research Question 3, showing that feature diversity helps improve EBM gen-
eralization.

Similar to dmin in Section 3.1, the main limitation of (ϑ − τ)-diversity is
sensitivity to the feature norm. Future research direction include using scale-
invariant measures, e.g., correlation or Mutual Information, to mitigate this
issue.

3.3.2 Feature Diversity in Energy-Based Models:
Algorithms

Beyond the theoretical results in Publication V, in this dissertation, we also
show how to translate these results into practical algorithms. Inspired by Sec-
tion 3.2, we develop and test a practical approach that directly encourages the
EBM to learn diverse features during the training process and we evaluate the
proposed approach in several contexts and tasks.

3.3.2.1 Methodology

In the realm of deep learning, theoretical generalization bounds often lack di-
rect practical implications due to their inherent looseness [10, 105]. Nonetheless,
these bounds frequently serve as a guide for introducing regularizers to encour-
age desirable properties within the hypothesis class [28, 127, 128]. Building
upon the theoretical insights from Section 3.3.1.2, we propose a direct strategy
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to mitigate the acquisition of redundant features by introducing regularization
during model training, which is inversely proportional to the (ϑ− τ)-diversity
of the features. Given an EBM with a learnable feature set {ϕ1(·), · · · , ϕD(·)}
and a training set S, we propose to augment the original training loss L as
follows:

Laug = L− β
∑︂

x∈S

D∑︂

i≠j

(ϕi(x)− ϕj(x))
2 , (3.22)

where β is a hyperparameter that controls the contribution of the regularizer
to the total loss. The approach presented in equation 3.22 can be incorporated
in a plug-and-play manner into any EBM approach to ensure the models learn
a rich representation composed of non-redundant features.

3.3.2.2 Empirical Results

Regression Task

EBMs have gained significant attention for their efficacy in addressing regres-
sion tasks, as shown in [36, 37, 38]. Here, we demonstrate that learning diverse
features contributes to superior generalization. To validate the proposed regu-
larizer introduced in equation 3.22, we conduct experiments on two 1-D regres-
sion tasks. The first task involves the dataset introduced in [37], comprising
2,000 training examples, as illustrated in the left side of Figure 3.7. For the
second task, we evaluate our approach on the dataset in [36]. We utilize the
dataset proposed in [129] following the same methodology as [36]. This dataset
incorporates 1,900 test examples and 1,700 training examples, with the training
data visualized in the right panel of Figure 3.7.

Various loss functions have been proposed to train EBMs for regression [38,
130, 131]. In alignment with the methodology presented in [37], we use the noise
contrastive estimation (NCE) loss [131], defined by the noise distribution q(y) =
1
2

∑︁2
j=1N (y; yi, σ

2
j I), where σ1 and σ2 serve as hyperparameters. Following the

suggestions in [36, 37], we set σ2 = 8σ1 in all experiments. To evaluate our
approach, we augment the NCE loss using equation 3.22 to penalize feature
redundancy.

The experimental setup mirrors that of [36, 37]. The inner model consists
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Figure 3.7 Visualization of the training data for the 1-D regression tasks: The dataset [37]
on the left and the dataset [129] on the right [Publication V].

of two fully connected layers with ReLU activations and its final output is
used to compute our proposed regularizer. The input y is fed to one fully-
connected layer with 10 neurons and a ReLU activation function. Furthermore,
the concatenated outputs of both models pass through a network composed of
four hidden layers. All hidden layers have 10 units except the final output,
which has one hidden unit, i.e., the estimated energy. The model undergoes
end-to-end training for 75 epochs using Adam optimizer [2] and a learning rate
of 0.001. Consistent with [36, 37], the batch size is set to 32, and the number
of samples M is always fixed at M = 1024.

In Table 3.14, we present the results of the EBM trained with NCE and the
EBM augmented with our proposed regularizer for 1-D regression tasks on two
datasets [37, 129]. The reported metrics include the approximate KL divergence
for the first dataset and the approximate Negative Log-Likelihood (NLL) for
the second dataset, considering three different values of σ1 ∈ {0.05, 0.1, 0.2}.

For the first dataset [37], our approach consistently outperforms the baseline
EBM across all values of σ1. Specifically, our method achieves a notable re-
duction in KL divergence, indicating enhanced model performance. The gains
are particularly pronounced when σ1 is set to 0.05 and 0.1, demonstrating the
efficacy of feature diversity strategy in improving the model’s representation of
the underlying data distribution.

Similarly, for the second dataset [129], our approach consistently exhibits
superior performance compared to the EBM without regularization. The re-
duction in NLL values across all values of σ1 signifies the efficacy of our regular-
izer in improving the model’s ability to capture the data distribution. Notably,
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Table 3.14 Results of the EBM trained with NCE (EBM) and the EBM trained with NCE
augmented with our regularizer (ours) for the 1-D regression tasks. We report
the approximate KL divergence for the first dataset [37], and the approximate
NLL for the second dataset [129]. For each dataset, we report the results for
three different values of σ1.

Dataset [37]

Approach σ1 = 0.05 σ1 = 0.1 σ1 = 0.2

EBM 0.0445 0.0420 0.0374

ours (β = 1e−11) 0.0398 0.0345 0.0357

ours (β = 1e−12) 0.0409 0.0380 0.0343
ours (β = 1e−13) 0.0410 0.0332 0.0377

Dataset [129]

Approach σ1 = 0.05 σ1 = 0.1 σ1 = 0.2

EBM 2.7776 2.5650 1.9876

ours (β = 1e−11) 2.6187 2.4414 1.8072
ours (β = 1e−12) 2.5846 2.3685 1.8880

ours (β = 1e−13) 2.7483 2.5420 1.9303

the most substantial improvement is observed when σ1 is set to 0.2, showcasing
the adaptability and effectiveness of our approach under varying noise levels.
Overall, the results on both datasets underscore the consistent gains achieved
by our approach in enhancing the performance of EBMs for 1-D regression tasks
across different datasets and noise levels.

In addition to conducting regression experiments on the two toy datasets, we
assess the efficacy of our methodology in a more challenging regression dataset
involving image-based age estimation. Specifically, we employ the UTKFace
Age Estimation dataset [132], which comprises 14,760 facial images along with
corresponding age labels. The objective is to predict individuals’ ages based
on their images. In line with the methodology of [36], we allocate 80% of
the dataset for training and the remaining 20% for testing. We adhere to the
experimental setup detailed in [36] and adopt their EBM as a baseline. To
assess the effectiveness of our approach, we enhance their loss function with
our proposed regularizer. The results are presented in Table 3.15.
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Table 3.15 Results in terms of approximate NLL for the EBM age estimation experiments.
The results are reported as the mean/SEM over these runs.

Approach NLL

EBM [36] 4.12± 0.07

ours (β = 1e−11) 4.04± 0.10

ours (β = 1e−12) 4.03± 0.04

ours (β = 1e−13) 3.99± 0.15

As shown by results in Table 3.15, introducing our regularizer to standard
EBM leads to notable improvements. This confirms that feature diversity is
helpful also for large datasets. Specifically, with β = 1e−13, our method achieves
a NLL of 3.99 ± 0.15 compared to 4.12 ± 0.07 of the standard EBM. These
results suggest that deploying a diversity regularization approach enriches the
feature representation of the model and consistently enhances the generalization
capabilities of the EBM.

Image Generation

Recent attention has been directed toward leveraging EBMs for image and text
generation tasks [8, 44, 46]. In this dissertation, we evaluate the proposed
regularizer on image generation using the MNIST digits [44]. The EBM archi-
tecture is presented in Table 3.16. We use the same training protocol as in [44,
133], employing Langevin dynamics Markov chain Monte Carlo (MCMC) and
a sampling buffer to accelerate training. All models were trained for 60 epochs
using Adam optimizer with learning rate of 1e−4 and a batch size of 128.

Our approach, i.e., augmenting the contrastive divergence loss using equa-
tion 3.22, is designed to discourage redundancy in the acquired features in the
last intermediate layer. In Table 3.17, we report the Fréchet Inception Dis-
tance (FID) score [134] and the NLL loss for varying values of β. The results
demonstrate that penalizing the similarity of learned features leads to improved
FID and NLL scores. The optimal performance is obtained with β = 1e−13,
showcasing a notable over 10% enhancement in FID compared to the original
EBM.

In Figure 3.8, we present some qualitative results for our approach. We
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Table 3.16 Simple CNN model used in the example. * refers to the features’ layer.

Layer Output shape

Input [1,28,28]
Cov (16 5× 5) [16,16,16]
Swish activation [16,16,16]
Cov (32 3× 3) [32,8,8]
Swish activation [32,8,8]
Cov (64 3× 3) [64,4,4]
Swish activation [64,4,4]
Cov (64 3× 3) [64,2,2]
Swish activation [64,2,2]
Flatten [256]
Linear [64]
Swish activation* [64]
Linear [1]

Figure 3.8 Qualitative results of our approach (β = 1e−13) : Few intermediate samples of
the MCMC sampling (Langevin Dynamics).

plot intermediate samples of the MCMC sampling (Langevin Dynamics) for
β = 1e−13. Initiating from random noise, MCMC obtains reasonable figures
after only 64 steps. The digits get clearer and more realistic over the iterations.
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Table 3.17 Table of FID scores and NLL loss of different approaches for generations of
MNIST images. Each experiment was performed three times with different
random seeds, the results are reported as the mean/SEM over these runs.

Approach FID NLL loss

EBM 0.0109± 0.0004 0.7112± 0.0190

ours (β = 1e−11) 0.0107± 0.0004 0.7109± 0.0111

ours (β = 1e−12) 0.0104± 0.0003 0.7105 ± 0.0112
ours (β = 1e−13) 0.0099 ± 0.0006 0.7108± 0.0111

Continual Learning

We substantiate the efficacy of our approach in a more challenging task, specif-
ically, the Continual Learning (CL) problem. CL addresses the challenge of
catastrophic forgetting in deep learning models [135, 136, 137]. The primary
objective of CL is to sequentially learn multiple tasks while retaining knowledge
acquired from previous tasks. Consequently, a continual learner is anticipated
to generalize well in new tasks without compromising the understanding of pre-
viously learned tasks. Notably, [76] proposed an EBM-based approach for CL
that led to superior results on this task.

In this experimental setup, we use the models of [76] as baseline and use
the exact same experimental protocol. Specifically, we evaluate the different
models on the class-incremental learning task with CIFAR10 and CIFAR100
datasets, under both the boundary-aware and boundary-agnostic settings [76].
The former characterizes a scenario where there is an explicit separation be-
tween consecutive tasks during learning. The latter refers to the situation where
data distributions undergo gradual changes without a predefined notion of task
boundaries. The results are reported in Table 3.18.

As demonstrated in Table 3.18, promoting feature diversity substantively
enhances the performance of the EBM, resulting in consistently superior accu-
racy across both datasets in both settings. Figure 3.9 shows the accumulated
classification accuracy, computed as an average across the tasks at each step
of the CL task. Over the course of five tasks, our methodology consistently
attains higher classification accuracy compared to the standard EBM, across
both boundary-aware and boundary-agnostic configurations.
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Table 3.18 Evaluation of class-incremental learning on both the boundary-aware and
boundary-agnostic setting on CIFAR10 and CIFAR100 datasets. Each ex-
periment was performed ten times with different random seeds, the results are
reported as the mean/SEM over these runs.

Boundary-aware

Method CIFAR10 CIFAR100

EBM 39.15± 0.86% 29.02± 0.24%

ours (β = 1e−11) 39.61± 0.81% 29.15± 0.27%

ours (β = 1e−12) 40.64 ± 0.79% 29.38 ± 0.21%
ours (β = 1e−13) 40.15± 0.87% 29.28± 0.28%

Boundary-agnostic

Method CIFAR10 CIFAR100

EBM 48.40± 0.80% 34.78± 0.26%

ours (β = 1e−11) 49.63± 0.90% 34.86± 0.30%

ours (β = 1e−12) 50.25 ± 0.63% 35.20 ± 0.23%
ours (β = 1e−13) 50.20± 0.94% 35.03± 0.21%

3.3.2.3 Discussion

In this section of the dissertation, inspired by the theoretical findings, a regu-
larizer that explicitly penalizes similarities within the features set of EBM, was
proposed. Empirical evaluation over multiple tasks and datasets consistently
corroborates the theoretical findings showing that learning diverse features
yields superior performance. This provides insights into Research Question
3 from an empirical prospective, showing that feature diversity methodologies
can help boost the performance of EBMs.

We note that the regularizer is simply an illustrated example showing how
our theory can be used in practice to inspire different regularization. Thus,
when formulating the approach, the aim was to construct it as close as possible
to the (ϑ− τ)-diversity definition. To this end, the exact definition of diversity
was used directly as the regularizer (equation 3.22). It has two sums: the first
encompasses the entire batch, while the second spans all pairs of units within
the layers. This yields a cumulative count of ND2 terms, where N denotes
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Figure 3.9 Test classification accuracy vs number of observed tasks on CIFAR10 using the
boundary-aware (left) and boundary-agnostic (right) setting. The results are
averaged over ten random seeds.

the batch size and D signifies the number of units within the layer. Notably,
this approach results in empirically significant magnitudes for the second term,
approximately on the order of 1e9. Consequently, it is imperative to maintain
a small value for the hyperparameter β to prevent the loss function from being
dominated by the second term. Our empirical investigations reveal that the
interval [1e−11, 1e−13] is a stable range for β. Additionally, it is pertinent to
acknowledge that the incorporation of our proposed regularizer introduces a
marginal temporal overhead during training, amounting to less than 1% of the
total training time.

3.4 Feature Diversity vs Class-wise Overfitting

The preceding sections of this dissertation have exclusively investigated the
influence of feature diversity on the generalization of neural networks. The
empirical and practical examinations conducted thus far affirm that feature
diversity contributes substantively to mitigating overfitting, thereby resulting in
a diminished generalization gap. Nevertheless, recent observations underscore
a nuance in the impact of overfitting, indicating disparate effects on different
classes/categories within the learned task.
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Figure 3.10 Class-generalization errors of the different classes in ImageNet of different
approaches: ResNet50 with no diversity regularizer (top left), ResNet50 with
WLD-Reg (Direct) (top right), ResNet50 with WLD-Reg (Det) (bottom left),
and ResNet50 with WLD-Reg (Logdet) (bottom right).

3.4.1 Feature Diversity and Class-wise Generalization

In [14, 47], it has been observed that various regularization techniques, while ex-
hibiting improvements in standard average generalization and mitigating over-
all overfitting, inadvertently amplify the disparities in generalization across the
different classes. Consequently, for a more comprehensive exploration of the im-
pact of feature diversity on generalization, in this dissertation, we conduct an
empirical study of the effect of feature diversity, mainly, WLD-Reg introduced
in Section 3.2.1 and Publication II on the class-wise generalization performance
of neural networks. Specifically, we investigate how different approaches affect
the distribution of the class-generalization errors of ResNet50 trained ImageNet,
composed of 1000 class. The class-generalization gaps’ histograms correspond-
ing to the different approaches are presented in Figure 3.10.

As can be seen in Figure 3.10 for the different approaches, overfitting
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Table 3.19 Different quantitative measures of the effect of different approaches on the
class-generalization error of the model.

Variance Worst 25% Worst 10% Worst 5%

Standard 1.27% 18.53% 25.82% 30.87%

WLD-Reg (Direct) 1.25% 17.45% 24.78% 29.32%

WLD-Reg (Det) 1.21% 16.93% 23.94% 28.80%

WLD-Reg (Logdet) 1.18% 16.77% 23.31% 27.97%

does not uniformly impact all classes. Rather, the models exhibit a nuanced
class-generalization performance, demonstrating tendencies to underfit certain
classes, effectively learn others, and manifest varying degrees of overfitting
across other classes. Employing a feature diversity-promoting approach, namely
WLD-Reg, alternates the distribution of the class-generalization gaps, with the
Det and Logdet variants demonstrating more clear shifts. To further assess
the impact of WLD-Reg of class-wise generalization performance of the mod-
els, we report various quantitative measures assessing the impact of different
approaches. The metrics include the variance of class-generalization gaps, the
mean of the worst 25%, 10%, and 5% of the class-generalization gaps of the
different models. The results are reported in Table 3.19.

Table 3.19 shows that, in comparison to the standard approach, using WLD-
Reg exhibits notable advantages. Specifically, both the direct and the Det vari-
ants approach result in reductions across all metrics with the Logdet approach
demonstrating even more pronounced improvements. For instance, in terms
of variance, our Logdet approach achieves a reduction to 1.18% compared to
the standard 1.27%. These results underscore the efficacy of our approaches
in enhancing the class-generalization performance of the model, particularly in
mitigating disparities within the worst-performing subsets.

3.4.2 Class-wise Generalization: an
Information-Theoretic Perspective

Here, we present the main findings of Publication VI.
Notations: We use upper-case letters to denote random variables, e.g., Z,
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and lower-case letters to denote the realization of random variables. EZ∼P

denotes the expectation of Z over a distribution P . Consider a pair of ran-
dom variables W and Z = (X,Y) with joint distribution PW,Z. Let W

be an independent copy of W and Z = (X,Y) be an independent copy
of Z, such that PW,Z = PW ⊗ PZ. For random variables X, Y and Z,
I(X;Y) ≜ D(PX,Y∥PX ⊗ PY) denotes the mutual information (MI), and
Iz(X;Y) ≜ D(PX,Y|Z=z∥PX|Z=z ⊗ PY|Z=z) denotes disintegrated conditional
mutual information (CMI), and EZ[IZ(X;Y)] = I(X;Y|Z) is the standard
CMI. We will also use the notation X,Y|z to simplify X,Y|Z = z when it is
clear from the context.

3.4.2.1 Problem Formulation

In order to study the class-wise generalization, we rely on the conditional mu-
tual information (CMI) framework [15], which has been shown to yield tight
generalization bounds [138, 139].

In the standard CMI setting [15], we assume that the dataset is formed
of n super-samples Z[2n] = (Z±

1 , · · · ,Z±
n ) ∈ Z2n i.i.d. generated from PZ.

The training samples are selected using n independent Rademacher random
variables U = (U1, · · · ,Un) ∈ {−1, 1}n. Each Ui selects a sample ZUi

i from
the pair Z±

i to be used in training, and the remaining one Z−Ui
i is assigned to

the testing dataset. Let S = (ZU1
1 ,ZU2

2 , · · · ,ZUn
n ) denote the training dataset.

Furthermore, for a specific class y ∈ Y , let ny = nP (Y = y), the number of
supersamples n scaled with the probability of class y.

Our main goal is to study the generalization error of a specific class y. To
this end, we define the class-generalization error in the CMI setting as follows:

Definition 2. (class-generalization error) For any y ∈ Y, the class-
generalization error is defined as

geny ≜ EZ[2n]

[︂ 1

ny

n∑︂

i=1

EUi,W |Z[2n]

[︁
1{Y −Ui

i =y}ℓ(W ,Z−Ui
i )− 1{Y Ui

i =y}ℓ(W,ZUi
i )
]︁]︂
,

(3.23)

where 1{a=b} is the indicator function, returning 1 when a = b and zero other-
wise.
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Definition 2 quantifies the expected generalization error between the train-
ing set and the test set with respect to a particular class y. In contrast to
the conventional generalization error definition in the CMI setting [15, 138], we
underscore two main distinctions: (i) our class-generalization error uses indica-
tor functions to exclusively account for samples belonging to the specified class
y, and (ii) our generalization error is normalized by ny, in contrasts with the
standard practice of averaging over n samples in the conventional super-sample
setting.

3.4.2.2 Main Results

The following theorem provides a bound for the class-generalization error using
the disintegrated conditional mutual information between W and the selection
variable Ui conditioned on super-sample Z[2n].

Theorem 5: class-CMI

Assume that the loss ℓ(w, x, y) ∈ [0, 1] is bounded, then the class-
generalization error for class y in Definition 2 can be bounded as

|geny| ≤ EZ[2n]

[︄
1

ny

n∑︂

i=1

√︂
2max(1{Y−

i =y},1{Y+
i =y})IZ[2n]

(W;Ui)

]︄
.

The detailed proof is available in Publication VI. The key idea is select-
ing the function in Donsker-Varadhan’s variational representation to corre-
spond to the definition of class-generalization error. Next, using the fact
that for a fixed realization z[2n], 1{yUi=y}ℓ(W, zUi

i )− 1{y−Ui=y}ℓ(W , z−Ui
i ) =

Ui(1{y−i =y}ℓ(W, z−i )− 1{y+i =y}ℓ(W, z+i )) with Hoeffding’s Lemma [140] yields
the final result.

Theorem 5 establishes an upper bound for the class-specific generalization
error explicitly dependent on the learned parameters W. The result suggest
that the extent of information revealed by the random selection Ui about the
parameters W is pivotal in determining the class-specific generalization error,
particularly when one of the two samples, z±i , belongs to the class y. Previous
works [141, 142, 143] has established connections between overfitting and the
memorization of weights. Theorem 5 shows that this observation extends to
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our context, where if the model parameters W effectively memorize the random
selection U, the CMI and hence the class-generalization error will be large.

Although the bound presented in Theorem 5 is finite given the binary nature
of Ui, practical evaluation of IZ[2n]

(W;Ui) poses empirical challenges, partic-
ularly when dealing with high-dimensional W as encountered in deep neural
networks. A proposed strategy to address this challenge is to shift the focus
from the model weights W to the model predictions fW(X±

i ), as proposed in
[144]. We use a similar strategy in our context and derive a rigorous bound of
the class-generalization error using the disintegrated CMI between the model
prediction and the random selection, i.e., IZ[2n]

(fW(X±
i );Ui). The main result

is present in Theorem 6.

Theorem 6: class-f-CMI

Assume that the loss ℓ(ŷ, y) ∈ [0, 1] is bounded, then the class-
generalization error for class y in Definition 2 can be bounded as

|geny| ≤ EZ[2n]

[︂ 1

ny

n∑︂

i=1

√︂
2max(1{Y−

i =y},1{Y+
i =y})IZ[2n]

(fW(X±
i );Ui)

]︂
.

We note two key advantages of the class-f-CMI in Theorem 6 bound com-
pared to the bound in Theorem 5: (i) It is typically easy to estimate as it
involves two low-dimensional random variables. (ii) Similar to [144], it does
not require access to the model parameters W but solely relies on the model
output f(·). This characteristic renders it well-suited for non-parametric meth-
ods and black-box algorithms.

The main limitation of the two previous bounds in Theorems 5 and 6 is
the dependency on max(1{Y−

i =y},1{Y+
i =y}). This term can potentially make

the bounds loose. Specifically, in the scenarios where one sample in the
pair (Z−

i , Z
+
i ) belongs to class y and the other do not, this term is non-zero

and the information from both samples of the pair contributes to the bound
(IZ[2n]

(fW(X±
i );Ui)). Consequently, samples from other classes ( ̸= y) can still

affect these bounds.
To overcome this limitation, we consider a new random variable ∆yLi based

on the indicator function and the loss, i.e.,
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∆yLi ≜ 1{y−i =y}ℓ(fW(Xi)
−, y−i )− 1{y+i =y}ℓ(fW(Xi)

+, y+i ). (3.24)

∆yLi can be interpreted as a weighted sum of class-dependent losses. Theorem 7
provides a bound depending on the CMI between this newly introduced variable
and the random selection.

Theorem 7: class-∆yL-CMI

Assume that the loss ℓ(ŷ, y) ∈ [0, 1], then the class-generalization error
of class y defined in 2 can be bounded as

|geny| ≤ EZ[2n]

[︄
1

ny

n∑︂

i=1

√︂
2IZ[2n]

(∆yLi;Ui)

]︄
. (3.25)

Moreover, the ∆yL-CMI bound is always tighter than the class-f -CMI
bound in Theorem 6, and the latter is always tighter than the class-CMI
bound in Theorem 5.

The key advantages of the bound in Theorem 7 are: (i) It is easier to estimate
as ∆yLi is a one-dimensional scalar, whereas fW(X±

i ) is two-dimensional. (ii) It
is tighter than bounds in Theorems 6 and 5. Intuitively, the difference between
two weighted loss values, ∆yLi, reveals considerably less information about the
selection process Ui compared to the pair fW(X±

i ).
Here, we perform empirical experiments to assess the efficacy of our class-

generalization error bounds. Specifically, we evaluate the bounds in Theorems 6
and 7. As previously mentioned, the bounds outlined here are notably easy
to estimate in practice. We follow the same experimental settings in [144],
i.e., we fine-tune a ResNet-50 [4] on the CIFAR10 dataset [109] (Pretrained
on ImageNet [145]). Additionally, we extend our experimentation to a more
challenging dataset—specifically, a noisy variant of CIFAR10 with 5% label
noise.

The class-generalization error of two classes “trucks” and “cats”, along with
the bounds in Theorems 6 and 7 are presented in the first two columns of Fig-
ure 3.11 (first row for CIFAR10 and second row for noisy CIFAR10). As can be
seen, both bounds are able to capture the behaviour of the class-generalization
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Figure 3.11 Experimental results of class-generalization error and our bounds in Theo-
rems 6 and 7 for the class of “trucks” (left) and “cats” (right) in CIFAR10
(top) and noisy CIFAR10 (bottom), as we increase the number of training
samples [Publication VI].

error with the class-∆yL-CMI bound being consistently tighter. For instance,
as we increase the number of training samples, the “trucks” class generalization
error in CIFAR10 decreases at a low rate, whereas in the noisy CIFAR10, it
increases. The “cats” class in CIFAR10 has a large slope at the start and then
an incremental decrease. The class-∆yL-CMI, as shown in Figure 3.11, pre-
cisely predicts the behaviour of class-generalization error. All these complex
behaviours of class-generalization errors are successfully captured by the class-
∆yL-CMI bound. Notably, this bound exhibits a proportional relationship with
the true class-generalization error, wherein an elevated class-∆yL-CMI bound
corresponds to a heightened class-generalization error.

To underscore the ability of our bound in predicting the behaviour of the
true class-generalization error, we plot in Figure 3.12 a scatter plot illustrating
the relationship between distinct class-generalization errors and their respective
class-∆yL-CMI bound values for various classes in CIFAR10 (left) and Noisy
CIFAR10 (right), under varying sample sizes. Notably, a linear correlation is
observed between our bound and the class-generalization error, demonstrating
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Figure 3.12 The scatter plots between the bound in Theorem 7 and the class-generalization
error of the different classes for CIFAR10 (left) and noisy CIFAR10 (right)
[Publication VI].

its efficacy in predicting the behaviour of the latter. This implies that one can
potentially use our bound for predicting the relative generalization performance
across different classes.

3.4.2.3 Extra Applications

In addition to allowing the study of class-generalization errors, the theoretical
tools developed in this section offer the opportunity to glean theoretical insights
across various applications. In this part, we delve into several potential use cases
for the tools developed.

The Subtask Problem

The subtask problem is a specific instance of distribution shift in supervised
learning. The training data generated from the source domain PX,Y encom-
passes multiple classes or labels, whereas the test data associated with target
domain QX,Y is limited to a specific subset of the classes encountered during
the training phase. An example of the subtask problem is illustrated in Fig-
ure 3.13. The motivation behind this problem arises in scenarios where a large
model has undergone training on an extensive array of classes, possibly thou-
sands. However, the model is subsequently employed in a target environment
where only a limited subset of the classes, observed during the training phase,
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Figure 3.13 Illustration of the Subtask problem. The source domain is composed of 5
different classes and the target domain is composed of data from two particular
classes encountered during training in the source domain.

is present.
By tackling the problem as a standard domain adaptation task, the gener-

alization error of the subtask problem, genQ,EP
, can be bounded as follows:

|genQ,EP
| ≤

√︁
2σ2D(Q∥P ) +

√︁
2σ2I(W;S), (3.26)

where S is the training data and EP is the empirical risk on the source domain.
The bound in equation 3.26, similar to classic domain adaptation bounds [146,
147], is based on the KL divergence D(QX,Y∥PX,Y) and does not utilize the
fact that the target task is encapsulated within the source task.

Deriving tight bounds for the subtask problem is straightforward using our
class-wise generalization bounds. In essence, using Jensen’s inequality, we can
show that

|genQ,EQ
| = |EY∼QY

[︁
genY

]︁
| ≤ EY∼QY

[︁
|genY|

]︁
, (3.27)

where EQ is the empirical risk relative to the target domain and genY is the
class-generalization error of class Y. Equation 3.27 shows that it is possible to
bound the subtask task error using the expectation over the class-generalization
error. For instance, using Theorem 7, we can bound the subtask generalization
error bound using ∆YLi;Ui). The main result is presented in Theorem 8.

The bound in Theorem 8 is discrepancy-independent. It involves only a
quantity analog to the second term with the mutual information in equa-
tion 3.26. The first term, in the latter, depends on some measure that quantifies
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the discrepancy between the target and domain distributions. This demon-
strates the tightness of our bound. We note that similarly, it is possible to
extend the results of Theorems 5 and 6 to derive CMI and f-CMI bounds for
the subtask problem.

Theorem 8: subtask-∆ Ly-CMI

Assume that the loss ℓ(w, x, y) ∈ [0, 1] is bounded, Then the subtask
generalization error can be bounded as

|genQ,EQ
| ≤ EY∼QY

[︃
EZ[2n]

[︂ 1

nY

n∑︂

i=1

√︂
2IZ[2n]

(∆YLi;Ui)
]︂]︃
.

Generalization Certificates With Sensitive Attributes

A primary concern impeding the deployment of machine learning models in
high-stake applications revolves around the potential biases associated with
sensitive attributes, including but not limited to gender and skin color [148,
149]. Consequently, it is imperative not only to mitigate sensitivity to such at-
tributes but also to provide guarantees regarding the fairness of the models [150,
151]. An integral facet of fairness entails ensuring that the machine learning
model exhibits equitable generalization performance across various minority
groups characterized by different sensitive attributes [149, 152].

By refining the definition of our class-generalization error, we demonstrate
the applicability of the theoretical tools developed in this dissertation to es-
tablish rigorous bounds for attribute-generalization errors. Let us consider a
random variable T ∈ T representing a sensitive feature. The focus is on investi-
gating the model’s generalization performance for the sub-population character-
ized by the attribute T = t. Drawing inspiration from our class-generalization
framework, we introduce the attribute-generalization error with the following
definition:

Definition 3. (attribute-generalization error) Given t ∈ T , the attribute-
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generalization error is defined as follows:

gent ≜ EZ[2n]

[︂ 1
nt

n∑︂

i=1

EUi,W |Z[2n]

[︁
1{T−Ui

i =t}ℓ(W ,Z−Ui
i )

−1{TUi
i =t}ℓ(W,ZUi

i )
]︁]︂
, (3.28)

Let ∆tLi ≜ 1{t−i =t}ℓ(fW(Xi)
−, y−i )− 1{t+i =t}ℓ(fW(Xi)

+, y+i ). By exchang-
ing ∆yLi and Y with T and ∆tLi in Theorem 7, respectively, we can show the
following CMI bound for the attribute-generalization error.

Theorem 9: subtask-∆ Ly-CMI

Assume that the loss ℓ(ŷ, y) ∈ [0, 1], then the attribute-generalization
error of the sub-population T = t, can be bounded as follows:

|gent| ≤ EZ[2n]

[︂ 1
nt

n∑︂

i=1

√︂
2IZ[2n]

(∆tLi;Ui)
]︂
. (3.29)

Similarly, we can extend the results of Theorems 5 and 6 to this case. Using
the attribute generalization, we can show that the standard expected general-
ization error can be bounded as follows:

Corollary 1. Assume that the loss ℓ(ŷ, y) ∈ [0, 1], then

|gen(PX,Y, PW|S)| ≤ EY

[︃
EZ[2n]

[︂ 1

nT

n∑︂

i=1

√︂
2IZ[2n]

(∆TLi;Ui)
]︂]︃
. (3.30)

The result of Corollary 1 proves that the average generalization error is
upper-bounded by the expectation over the attribute-wise generalization. This
observation suggests that one potential way to enhance the overall generaliza-
tion is by reducing the generalization across each individual population.

3.4.3 Discussion

In this section, our contributions are two folds: (i) we have analyzed how the fea-
ture diversity regularizer in Publication II affects the class-wise generalization
error distribution.These findings contribute insights to address the Research
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Question 4 showing that feature diversity techniques, specifically WLD-Reg,
is able to mitigate the disparities in class-generalization performance of the
model. (ii) We have tackled the deep learning generalization puzzle concerning
the pronounced nuance in the impact of overfitting on different classes/cate-
gories within the learned task. We close the literature gap by introducing and
exploring the concept of “class-generalization error” using information-theoretic
tools. These findings contribute insights to address the Research Question 5
providing the first theoretical analysis of this generalization puzzle. We also
empirically strengthened the findings with supporting experiments validating
the efficiency of the proposed bounds in capturing the behaviour of class-wise
generalization.

The developed theoretical tools in Section 3.4.2 are versatile and useful be-
yond studying class-generalization error. In fact, they allow to study the sub-
task problem and providing guarantees in the presence of sensitive attributes,
as shown in Section 3.4.2.3. Furthermore, beyond the discussed extra applica-
tions in this dissertation, as shown in Publication VI, the developed tools can
be used to efficiently capture the behaviour of generalization in terms of recall
and specificity and derive label-dependent standard generalization bounds.

It should be noted that, in Section 3.4.2 of this dissertation , we have mainly
focused on the CMI setting to derive our bounds for class-generalization error.
However, in Publication VI Section 2.1, we show that it is possible to address
this problem in MI setting [153, 154] also.
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4 CONCLUSIONS

In this comprehensive exploration, the dissertation has focused on the critical
role of feature diversity within the hidden layers of neural networks, contribut-
ing novel insights to the understanding of their generalization capabilities. The
dissertation started by addressing the fundamental question of deriving rigorous
generalization bounds that highlight the influence of feature diversity on over-
fitting. The theoretical contributions show feature diversity can help improve
the generalization of neural networks.

Moving beyond theory, the dissertation introduced practical methodologies,
specifically a family of regularizers, aimed at promoting feature diversity within
neural network layers, in multiple contexts. Empirical results substantiated the
efficacy of these strategies, demonstrating improved performance through richer
representations and reduced overfitting.

The third research question extended the theoretical and empirical findings
to the energy-based learning paradigm. EBMs provide a unified framework for
various learning tasks, and the dissertation explored the impact of feature diver-
sity on their generalization ability. This extension broadened the applicability
of feature diversity strategies beyond standard supervised learning contexts.
Extensive experimental results showed that reducing redundancy within the
features of EBMs leads to improved performance across multiple tasks.

The fourth research question focused on the phenomenon of class-wise gen-
eralization disparities observed in deep learning models. The dissertation an-
alyzed how feature-diversity approaches affect class-wise generalization perfor-
mance, showing that feature diversity-based regularization can mitigate this
effect and reduce the variance of class-generalization errors.

The final research question aimed to develop a comprehensive theory of
class-wise generalization. Existing generalization theories often provide holis-
tic views, but fail to capture the nuanced behavior observed in deep learning
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models. The dissertation addressed this gap by introducing a rigorous theo-
retical framework specifically designed to study and understand class-wise gen-
eralization, contributing novel insights to deep learning theory. Furthermore,
the dissertation showed how the developed theoretical tools are useful beyond
studying this phenomena and can be applied to study other tasks.

In summary, this dissertation has provided a holistic examination of fea-
ture diversity’s pivotal role in generalization. The main contributions span
theoretical advancements, methodological innovations, and empirical valida-
tion and insights. The establishment of feature diversity as a key factor in
neural network generalization, the development of practical strategies for pro-
moting feature diversity, and the extension of these findings to energy-based
learning settings demonstrate the versatility and impact of leveraging feature
diversity. The combination of the theoretical understanding and algorithmic
development collectively contribute to a deeper understanding of neural net-
works’ generalization and offer pathways for mitigating overfitting and hence
developing more efficient models. The overarching aim of the dissertation was
to unravel the dynamics of feature diversity and provide a nuanced perspec-
tive on its effect on generalization. The insights gained from this exploration
are expected to inspire future research in developing more advanced feature
diversity-promoting strategies and regularizers to improve the performance of
neural networks in multiple contexts. For example, similar to WLD-Reg Det
and Logdet variants, regularizers using global diversity measures can be used
in the context of EBMs and autoencoders. Additionally, the analysis of class-
wise generalization disparities and the development of a theoretical framework
for studying this phenomenon contribute substantially to the understanding
of deep learning generalization. Future works in this line of research include
deriving tighter bounds for class-generalization error and developing practical
techniques to mitigate this problem in deep learning models.

Besides the limitations discussed within the main body of the dissertation,
the scope of the theoretical analysis considered here is restricted to the standard
generalization. For a more comprehensive study of feature diversity, future re-
search direction can include for example theoretically studying its effect on ad-
versarial generalization [22, 155]. Intuitively, learning diverse features reduces
the dependency on a single pattern to make decisions and hence can improve
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the adversarial robustness of the model. Another noteworthy limitation of the
methodologies developed within this dissertation is the limited compatibility
with flat feature representations. Future work can include studying diversity
within other topologies, e.g., convolutional output maps and recurrent repre-
sentations. Furthermore, as mentioned in Section 3.1.3, future research can
also include studying feature diversity using scale-invariant measures such as
correlation and mutual information.
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Abstract. We study the diversity of the features learned by a two-layer
neural network trained with the least squares loss. We measure the di-
versity by the average L2-distance between the hidden-layer features and
theoretically investigate how learning non-redundant distinct features af-
fects the performance of the network. To do so, we derive novel gener-
alization bounds depending on feature diversity based on Rademacher
complexity for such networks. Our analysis proves that more distinct
features at the network’s units within the hidden layer lead to better
generalization. We also show how to extend our results to deeper net-
works and different losses.

Keywords: Neural Networks · Generalization Theory· Feature Diver-
sity

1 Introduction

Neural networks are a powerful class of non-linear function approximators that
have been successfully used to tackle a wide range of problems. They have en-
abled breakthroughs in many tasks, such as image classification [31], speech
recognition [20], and anomaly detection [16]. However, neural networks are often
over-parameterized, i.e., have more parameters than the data they are trained
on. As a result, they tend to overfit to the training samples and not generalize
well on unseen examples [18]. Avoiding overfitting has been extensively stud-
ied [14, 15, 43, 45, 47] and various approaches and strategies have been proposed,
such as data augmentation [18, 64], regularization [1, 8, 32], and Dropout [21, 38,
39], to close the gap between the empirical loss and the expected loss.

Formally, the output of a neural network consisting of P layers can be defined
as follows:

f(x;W) = ρP (W P (ρP−1(· · · ρ2(W 2ρ1(W 1x)))), (1)

where ρi(.) is the element-wise activation function, e.g., ReLU or Sigmoid, of
the ith layer and W = {W 1, . . . ,W P } are the weights of the network with the
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superscript denoting the layer. By defining Φ(·) = ρP−1(· · · ρ2(W 2ρ1(W 1·))),
the output of neural network becomes

f(x;W) = ρP (W PΦ(x)), (2)

where Φ(x) = [ϕ1(x), · · · , ϕM (x)] is theM -dimensional feature representation of
the input x. This way neural networks can be interpreted as a two-stage process,
with the first stage being representation learning, i.e., learning Φ(·), followed by
the final prediction layer. Both parts are jointly optimized.

Learning a rich and diverse set of features, i.e., the first stage, is critical
for achieving top performance [3, 10, 34]. Studying the different properties of
the learned features is an active field of research [11, 13, 29]. For example, [13]
showed theoretically that learning a good feature representation can be helpful
in few-shot learning. In this paper, we focus on the diversity of the features.
This property has been empirically studied in [10, 36, 35] and has been shown to
boost performance and reduce overfitting. However, no theoretical guarantees are
provided. In this paper, we close this gap and we conduct a theoretical analysis
of feature diversity. In particular, we propose to quantify the diversity of the
feature set {ϕ1(·), · · · , ϕM (·)} using the average pairwise L2-distance between
their outputs. Formally, given a dataset {xi}i=N

i=1 , we have

diversity =
1

N

N∑

k=1

1

2M(M − 1)

M∑

i̸=j

(
ϕi(xk)− ϕj(xk)

)2
. (3)

Intuitively, diversity measures how distinct the learned features are. If the map-
pings learned by two different units are redundant, then, given the same input,
both units would yield similar output. This yields in low L2-distance and as a
result a low diversity. In contrast, if the mapping learned by each unit is distinct,
the corresponding average distances to the outputs of the other units within the
layer are high. Thus, this yields a high global diversity.

To confirm this intuition and further motivate the analysis of this attribute,
we conduct empirical simulations. We track the diversity of the representation
of the last hidden layer, as defined in equation 3, during the training of three
different ResNet [19] models on CIFAR10 [30]. The results are reported in Figure
1. Indeed, diversity consistently increases during the training for all the models.
This shows that, in order to solve the task at hand, neural networks learn distinct
features.

Our contributions: In this paper, we theoretically investigate diversity in the
neural network context and study how learning non-redundant features affects
the performance of the model. We derive a bound for the generalization gap
which is inversely proportional to the proposed diversity measure showing that
learning distinct features helps. In our analysis, we focus on the simple neural
network model with one-hidden layer trained with mean squared error. This
configuration is simple, however, it has been shown to be convenient and in-
sightful for the theoretical analysis [9, 12, 13]. Moreover, we show how to extend
our theoretical analysis to different losses and different network architectures.
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Fig. 1. Preliminary empirical results for additional motivation to theoretically under-
stand feature diversity. The figure shows diversity versus the number of epochs for
three different ResNet models trained on CIFAR10 dataset.

Our contributions can be summarized as follows:

– We analyze the effect the feature diversity on the generalization error bound
of a neural network. The analysis is presented in Section 3. In Theorem
1, we derive an upper bound for the generalization gap which is inversely
proportional to the diversity factor. Thus, we provide theoretical evidence
that learning distinct features can help reduce the generalization error.

– We extend our analysis to different losses and general multi-layer networks.
These results are presented in Theorems 2, 3, 4, 5, and 6.

Outline of the paper: The rest of the paper is organized as follows: Section
2 summarizes the preliminaries for our analysis. Section 3 presents our main
theoretical results along with the proofs. Section 4 extends our results for dif-
ferent settings. Section 5 concludes the work with a discussion and several open
problems.

2 PRELIMINARIES

Generalization theory [50, 28] focuses on the relation between the empirical loss
defined as

L̂(f) =
1

N

N∑

i=1

l
(
f(xi;W), yi

)
, (4)

and the expected risk, for any f in the hypothesis class F , defined as

L(f) = E(x,y)∼Q[l(f(x), y)], (5)

where Q is the underlying distribution of the dataset and yi the correspond-
ing label of xi. Let f∗ = argminf∈F L(f) be the expected risk minimizer and
f̂ = argminf∈F L̂(f) be the empirical risk minimizer. We are interested in the
estimation error, i.e., L(f∗)−L(f̂), defined as the gap in the loss between both
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minimizers [6]. The estimation error represents how well an algorithm can learn.
It usually depends on the complexity of the hypothesis class and the number of
training samples [5, 63].

Several techniques have been proposed to quantify the generalization error,
such as Probably Approximately Correctly (PAC) learning [50, 53], VC dimen-
sion [52], and the Rademacher complexity [50]. The Rademacher complexity has
been widely used as it usually leads to a tighter generalization error bound than
the other metrics [17, 45, 51]. The formal definition of the empirical Rademacher
complexity is given as follows:

Definition 1. [7, 50] For a given dataset with N samples D = {xi, yi}Ni=1 gen-
erated by a distribution Q and for a model space F : X → R with a single
dimensional output, the empirical Rademacher complexity RN (F) of the set F
is defined as follows:

RN (F) = Eσ

[
sup
f∈F

1

N

N∑

i=1

σif(xi)

]
, (6)

where the variables σ = {σ1, · · · , σN} are independent uniform random variables
in {−1, 1}.

In this work, we rely on the Rademacher complexity to study diversity. We
recall the following three lemmas related to the Rademacher complexity and the
generalization error:

Lemma 1. [7] For F ∈ RX , assume that g : R −→ R is a Lg-Lipschitz continuous
function and A = {g ◦ f : f ∈ F}. Then we have

RN (A) ≤ LgRN (F). (7)

Lemma 2. [58] The Rademacher complexity RN (F) of the hypothesis class
F = {f |f(x) =

∑M
m=1 vmϕm(x) =

∑M
m=1 vmϕ(wT

mx)} can be upper-bounded
as follows:

RN (F) ≤ 2LρC134M√
N

+
C4|ϕ(0)|M√

N
, (8)

where C134 = C1C3C4 and ϕ(0) is the output of the activation function at the
origin.

Lemma 3. [7] With a probability of at least 1− δ,

L(f̂)− L(f∗) ≤ 4RN (A) +B

√
2 log(2/δ)

N
, (9)

where B ≥ supx,y,f |l(f(x), y)| and RN (A) is the Rademacher complexity of the
loss set A.
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Lemma 3 upper-bounds the generalization error using the Rademacher com-
plexity defined over the loss set and supx,y,f |l(f(x), y)|. Our analysis aims at
expressing this bound in terms of diversity, in order to understand how it affects
the generalization.

In order to study the effect of diversity on the generalization, given a layer
with M units {ϕ1(·), · · · , ϕM (·)}, we make the following assumption:

Assumption 1 Given any input x, we have

1

2M(M − 1)

M∑

i̸=j

(ϕi(x)− ϕj(x))
2 ≥ d2min. (10)

dmin lower-bounds the average L2-distance between the different units’ activa-
tions within the same representation layer. Intuitively, if several neuron pairs i
and j have similar outputs, the corresponding L2 distance is small. Thus, the
lower bound dmin is also small and the units within this layer are considered
redundant and “not diverse”. Otherwise, if the average distance between the dif-
ferent pairs is large, their corresponding dmin is large and they are considered
“diverse”. By studying how the lower bound dmin affects the generalization of the
model, we can analyze how the diversity theoretically affects the performance of
neural networks. In the rest of the paper, we derive generalization bounds for
neural networks using dmin.

3 Learning distinct features helps

In this section, we derive generalization bounds for neural networks depending
on their diversity. Here, we consider a simple tow-layer neural network with a
hidden layer composed of M neurons and one-dimensional output trained for
a regression task. The full characterization of the setup can be summarized as
follows:

– The activation function of the hidden layer, ρ(·), is a positive Lρ-Lipschitz
continuous function.

– The input vector x ∈ RD satisfies ||x||2 ≤ C1 and the output scalar y ∈ R
satisfies |y| ≤ C2.

– The weight matrix W = [w1,w2, · · · ,wM ] ∈ RD×M connecting the input
to the hidden layer satisfies ||wm||2 ≤ C3.

– The weight vector v ∈ RM connecting the hidden-layer to the output satisfies
||v||∞ ≤ C4.

– The hypothesis class is F =
{
f |f(x) =∑M

m=1 vmϕm(x) =
∑M

m=1 vmρ(wT
mx)

}
.

– Loss function set is A =
{
l|l(f(x), y) = 1

2 |f(x)− y|2
}
.

– Given an input x, 1
2M(M−1)

∑M
n̸=m(ϕn(x)− ϕm(x))2 ≥ d2min.

Our main goal is to analyze the generalization error bound of the neural
network and to see how its upper-bound is linked to the diversity of the different
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units, expressed by dmin. The main result of the paper is presented in Theorem
1. Our proof consists of three steps: At first, we derive a novel bound for the
hypothesis class F depending on dmin. Then, we use this bound to derive bounds
for the loss class A and its Rademacher complexity RN (A). Finally, we plug all
the derived bounds in Lemma 3 to complete the proof of Theorem 1.

The first step of our analysis is presented in Lemma 4:

Lemma 4. We have
sup

x,f∈F
|f(x)| ≤

√
J , (11)

where J = C2
4

(
MC2

5 +M(M − 1)(C2
5 − d2min)

)
and C5 = LρC1C3 + ϕ(0),

Proof.

f2(x) =

(
M∑

m=1

vmϕm(x)

)2

≤
(

M∑

m=1

||v||∞ϕm(x)

)2

= ||v||2∞
(

M∑

m=1

ϕm(x)

)2

≤ C2
4

(
M∑

m=1

ϕm(x)

)2

= C2
4

(∑

m,n

ϕm(x)ϕn(x)

)

= C2
4


∑

m

ϕm(x)2 +
∑

m ̸=n

ϕn(x)ϕm(x)


 . (12)

We have supw,x ϕm(x) = supw,x ρ(wTx) ≤ sup(Lρ|wTx| + ϕ(0)), because ρ
is Lρ-Lipschitz. Thus, ||ϕ||∞ ≤ LρC1C3 + ϕ(0) = C5. For the first term in
equation 12, we have

∑
m ϕm(x)2 < M(LρC1C3 + ϕ(0))2 = MC2

5 . The second
term, using the identity
ϕm(x)ϕn(x) =

1
2

(
ϕm(x)2 + ϕn(x)

2 − (ϕm(x)− ϕn(x))
2
)
, can be rewritten as

∑

m≠n

ϕm(x)ϕn(x) =
1

2


∑

m ̸=n

ϕm(x)2 + ϕn(x)
2 −

(
ϕm(x)− ϕn(x)

)2

 . (13)

In addition, we have 1
2

∑
m ̸=n(ϕm(x)− ϕn(x))

2 ≥ M(M − 1)d2min. Thus, we have:

∑

m≠n

ϕm(x)ϕn(x) ≤ 1

2

∑

m ̸=n

(2C2
5 )−M(M − 1)d2min = M(M − 1)(C2

5 − d2min). (14)

By putting everything back to equation 12, we have:

f2(x) ≤ C2
4

(
MC2

5 +M(M − 1)(C2
5 − d2min)

)
= J . (15)

Thus, supx,f |f(x)| ≤
√

supx,f f(x)
2 ≤

√
J .

Note that in Lemma 4, we have expressed the upper-bound of supx,f |f(x)| in
terms of dmin. Using this bound, we can now find an upper-bound for supx,f,y |l(f(x), y)|
in the following lemma:
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Lemma 5. We have

sup
x,y,f

|l(f(x), y)| ≤ 1

2
(
√
J + C2)

2. (16)

Proof. We have supx,y,f |f(x)− y| ≤ supx,y,f (|f(x)|+ |y|) =
√
J + C2. Thus,

supx,y,f |l(f(x), y)| ≤ 1
2 (
√
J + C2)

2.

Next, using the result of lemmas 1, 2, and 5, we can derive a bound for the
Rademacher complexity of A. We have, thus, expressed all the elements of
Lemma 3 using the diversity term dmin. By plugging in the derived bounds
in Lemmas 4, 5, we obtain Theorem 1.

Theorem 1. With probability at least (1− δ), we have

L(f̂)− L(f∗) ≤
(√

J + C2

) A√
N

+
1

2
(
√
J + C2)

2

√
2 log(2/δ)

N
, (17)

where C134 = C1C3C4, J = C2
4

(
MC2

5+M(M−1)(C2
5−d2min)

)
, A = 4

(
2LρC134+

C4|ϕ(0)|
)
M , and C5 = LρC1C3 + ϕ(0).

Proof. Given that l(·) is K-Lipschitz with a constant K = supx,y,f |f(x)− y| ≤√
J +C2, and using Lemma 1, we can show that RN (A) ≤ KRN (F) ≤ (

√
J +

C2)RN (F). For RN (F), we use the bound found in Lemma 2. Using Lemmas 3
and 5, we have

L(f̂)−L(f∗) ≤ 4
(√

J+C2

)(
2LρC134+C4|ϕ(0)|

) M√
N

+
1

2
(
√
J+C2)

2

√
2 log(2/δ)

N
,

(18)

where C134 = C1C3C4, J = C2
4

(
MC2

5 + M(M − 1)(C2
5 − d2min)

)
, and C5 =

LρC1C3 + ϕ(0). Thus, setting A = 4
(
2LρC134 + C4|ϕ(0)|

)
M completes the

proof.

Theorem 1 provides an upper-bound for the generalization gap. We note that
it is a decreasing function of dmin. Thus, this suggests that higher dmin, i.e., more
diverse activations, yields a lower generalization error bound. This shows that
learning distinct features helps in neural network context.

We note that the bound in Theorem 1 is non-vacuous in the sense that it
converges to zero when the number of training samples N goes to infinity. More-
over, we note that in this paper we do not claim to reach a tighter generalization
bound for neural networks in general [14, 24, 44, 48]. Our main claim is that we
derive a generalization bound which depends on the diversity of learned features,
as measured by dmin. To the best of our knowledge, this is the first work that
performs such theoretical analysis based on the average L2-distance between the
units within the hidden layer.
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Connection to prior studies

Theoretical analysis of the properties of the features learned by neural network
models is an active field of research. Feature representation has been theoret-
ically studied in the context of few-shot learning in [13], where the advantage
of learning a good representation in the case of scarce data was demonstrated.
[2] showed the same in the context of imitation learning, demonstrating that
it has sample complexity benefits for imitation learning. [55] developed similar
findings for the self-supervised learning task. [42] derived novel bounds showing
the statistical benefits of multitask representation learning in linear Markov De-
cision Processes. Opposite to the aforementioned works, the main focus of this
paper is not on the large sample complexity problems. Instead, we focused on
feature diversity in the learned representation and showed that learning distinct
features leads to better generalization.

Another line of research related to our work is weight-diversity in neural
networks [4, 33, 57, 58, 61]. Diversity in this context is defined based on dissim-
ilarity between the weight component using, e.g., cosine distance and weight
matrix covariance [59]. In [58], theoretical benefits of weight-diversity have been
demonstrated. We note that, in our work, diversity is defined in a fundamentally
different way. We do not consider dissimilarity between the parameters of the
neural network. Our main scope is the feature representation and, to this end,
diversity is defined based on the L2 distance between the feature maps directly
and not the weights. Empirical analysis of the deep representation of neural
networks has drawn attention lately [10, 11, 29, 36]. For example, [10, 36] showed
empirically that learning decorrelated features reduces overfitting. However, the-
oretical understanding of the phenomena is lacking. Here, we close this gap by
studying how feature diversity affects generalization.

4 Extensions

In this section, we show how to extend our theoretical analysis for classification,
for general multi-layer networks, and for different losses.

4.1 Binary classification

Here, we extend our analysis of the effect of learning a diverse feature represen-
tation on the generalization error to the case of a binary classification task, i.e.,
y ∈ {−1, 1}. Here, we consider the special cases of a hinge loss and a logistic
loss. To derive diversity-dependent generalization bounds for these cases, similar
to the proofs of Lemmas 7 and 8 in [58], we can show the following two lemmas:

Lemma 6. Using the hinge loss, we have with probability at least (1− δ)

L(f̂) − L(f∗) ≤ 4
(
2LρC134 + C4|ϕ(0)|

) M√
N

+ (1 +
√
J )

√
2 log(2/δ)

N
, (19)
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where C134 = C1C3C4, J = C2
4 (MC2

5 + M(M − 1)(C2
5 − d2min)

)
, and C5 =

LρC1C3 + ϕ(0).

Lemma 7. Using the logistic loss l(f(x), y) = log(1 + e−yf(x)), we have with
probability at least (1− δ)

L(f̂)−L(f∗) ≤ 4

1 + e
√
−J

(
2LρC134+C4|ϕ(0)|

) M√
N

+log(1+e
√
J )

√
2 log(2/δ)

N
,

(20)

where C134 = C1C3C4, J = C2
4 (MC2

5 + M(M − 1)(C2
5 − d2min)

)
, and C5 =

LρC1C3 + ϕ(0).

Using the above lemmas, we can now derive a diversity-dependant bound for the
binary classification case. The extensions of Theorem 1 in the cases of a hinge
loss and a logistic loss are presented in Theorems 2 and 3, respectively.

Theorem 2. Using the hinge loss, with probability at least (1− δ), we have

L(f̂)− L(f∗) ≤ A/
√
N + (1 +

√
J )

√
2 log(2/δ)

N
, (21)

where J = C2
4 (MC2

5 +M(M − 1)(C2
5 − d2min)

)
, A = 4

(
2LρC134 +C4|ϕ(0)|

)
M ,

and C5 = LρC1C3 + ϕ(0).

Theorem 3. Using the logistic loss l(f(x), y) = log(1+e−yf(x)), with probability
at least (1− δ), we have

L(f̂)− L(f∗) ≤ A

(1 + e
√
−J )

√
N

+ log(1 + e
√
J )

√
2 log(2/δ)

N
, (22)

where J = C2
4 (MC2

5 +M(M − 1)(C2
5 − d2min)

)
, A = 4

(
2LρC134 +C4|ϕ(0)|

)
M ,

and C5 = LρC1C3 + ϕ(0).

As we can see, also for the binary classification task, the generalization bounds
for the hinge and logistic losses are decreasing with respect to dmin. Thus, this
shows that learning distinct features helps and can improve the generalization
also in binary classification.

4.2 Multi-layer networks

Here, we extend our result for networks with P (> 1) hidden layers. We assume
that the pair-wise distances between the activations within layer p are lower-
bounded by d

(p)
min. In this case, the hypothesis class can be defined recursively.

In addition, we assume that: ||W (p)||∞ ≤ C
(p)
3 for every W (p), i.e., the weight

matrix of the p-th layer. In this case, the main theorem is extended as follows:
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Theorem 4. With probability of at least (1− δ), we have

L(f̂)− L(f∗) ≤ (
√

J P + C2)
A√
N

+
1

2

(√
J P + C2

)2√2 log(2/δ)

N
, (23)

where A = 4((2Lρ)
PC1C

0
3

∏P−1
p=0

√
M (p)C

(p)
3 +|ϕ(0)|∑P−1

p=0 (2Lρ)
P−1−p

∏P−1
j=p

√
M jCj

3),
and J P is defined recursively using the following identities: J 0 = C0

3C1 and

J (p) = M (p)Cp2
(
Mp2(LρJ p−1 + ϕ(0))2 −M(M − 1)d

(p)
min

2
)
)
, for p = 1, . . . , P .

Proof. Lemma 5 in [58] provides an upper-bound for the hypothesis class. We
denote by v(p) the outputs of the pth hidden layer before applying the activation
function:

v0 = [w0T

1 x, ....,w0T

M0x], (24)

v(p) =



Mp−1∑

j=1

w
(p)
j,1ϕ(v

p−1
j ), ....,

Mp−1∑

j=1

w
(p)

j,M(p)ϕ(v
p−1
j )


 , (25)

v(p) =

[
w

(p)
1

T
ϕ(p), ...,w

(p)

M(p)

T
ϕ(p)

]
, (26)

where ϕ(p) = [ϕ(vp−1
1 ), · · · , ϕ(vp−1

Mp−1)]. We have ||v(p)||22 =
∑M(p)

m=1 (w
(p)
m

T
ϕ(p))2

and w
(p)
m

T
ϕ(p) ≤ C

(p)
3

∑
n ϕ

(p)
n . Thus,

||v(p)||22 ≤
M(p)∑

m=1

(
C

(p)
3

∑

n

ϕ(p)
n

)2

= M (p)Cp
3
2

(∑

n

ϕ(p)
n

)2

= M (p)Cp
3
2
∑

mn

ϕ(p)
m ϕ(p)

n .

(27)
We use the same decomposition trick of ϕ(p)

m ϕ
(p)
n as in the proof of Lemma 2. We

need to bound supx ϕ
(p):

sup
x

ϕ(p) < sup(Lρ|vp−1|+ ϕ(0)) < Lρ||vp−1||22 + ϕ(0). (28)

Thus, we have

||v(p)||22 ≤ M (p)Cp
3
2(
M2(Lρ||vp−1||22 + ϕ(0))2 −M(M − 1)d2min)

)
= J P . (29)

We found a recursive bound for ||v(p)||22 and we note that for p = 0 we have
||v0||22 ≤ ||W 0||∞C1 ≤ C0

3C1 = J 0. Thus,

sup
x,fP∈FP

|f(x)| = sup
x,fP∈FP

|vP | ≤
√
J P . (30)

By replacing the variables in Lemma 3, we have

L(f̂)− L(f∗) ≤ 4(
√
J P + C2)

(
(2Lρ)

PC1C
0
3√

N

P−1∏

p=0

√
M (p)C

(p)
3

+
|ϕ(0)|√

N

P−1∑

p=0

(2Lρ)
P−1−p

P−1∏

j=p

√
M jCj

3

)
+

1

2

(√
J P + C2

)2√2 log(2/δ)

N
,
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Taking A = 4
(
(2Lρ)

PC1C
0
3

∏P−1
p=0

√
M (p)C

(p)
3 +|ϕ(0)|∑P−1

p=0 (2Lρ)
P−1−p

∏P−1
j=p

√
M jCj

3

)

completes the proof.

In Theorem 4, we see that J P is decreasing with respect to d
(p)
min. This extends

our results to the multi-layer neural network case.

4.3 Multiple outputs

Finally, we consider the case of a neural network with a multi-dimensional out-
put, i.e., y ∈ RD. In this case, we can extend Theorem 1 with the following two
theorems:

Theorem 5. For a multivariate regression trained with the squared error, there
exists a constant A such that, with probability at least (1− δ), we have

L(f̂)− L(f∗) ≤ (
√
J + C2)

A√
N

+
D

2
(
√
J + C2)

2

√
2 log(2/δ)

N
(31)

where J = C2
4 (MC2

5 + M(M − 1)(C2
5 − d2min)

)
, C5 = LρC1C3 + ϕ(0), and

A = 4D
(
2LρC134 + C4|ϕ(0)|

)
M .

Proof. The squared loss 1
2 ||f(x)−y||22 can be decomposed into D terms 1

2 (f(x)k−
yk)

2. Using Theorem 1, we can derive the bound for each term and, thus, we
have:

L(f̂)−L(f∗) ≤ 4D(
√
J+C2)

(
2LρC134+C4|ϕ(0)|

) M√
N

+
D

2
(
√
J+C2)

2

√
2 log(2/δ)

N
,

(32)
where C134 = C1C3C4, J = C2

4 (MC2
5 + M(M − 1)(C2

5 − d2min)
)
, and C5 =

LρC1C3 + ϕ(0). Taking A = 4D
(
2LρC134 + C4|ϕ(0)|

)
M completes the proof.

Theorem 6. For a multi-class classification task using the cross-entropy loss,
there exists a constant A such that, with probability at least (1− δ), we have

L(f̂)−L(f∗) ≤ A

(D − 1 + e−2
√
J )

√
N

+log
(
1+(D−1)e2

√
J
)√2 log(2/δ)

N

(33)

where J = C2
4 (MC2

5 +M(M − 1)(C2
5 − d2min)

)
and C5 = LρC1C3 + ϕ(0), and

A = 4D(D − 1) (2LρC134 + C4|ϕ(0)|)M .

Proof. Using Lemma 9 in [58], we have supf,x,y l = log
(
1 + (D − 1)e2

√
J )

and l is D−1
D−1+e−2

√
J -Lipschitz. Thus, using the decomposition property of the

Rademacher complexity, we have

Rn(A) ≤ 4D(D − 1)

D − 1 + e−2
√
J (2LρC134 + C4|ϕ(0)|) M√

N
. (34)

Taking A = 4D(D − 1) (2LρC134 + C4|ϕ(0)|)M completes the proof.
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Fig. 2. Generalization gap, i.e., train error - test error, and the theoretical bound,
i.e., (C2

5 − d2min)/
√
N , as a function of the number of training samples on MNIST

dataset for neural networks with intermediate layer sizes from left to right: 128 (corre-
lation=0.9948), 256 (correlation=0.9939), and 512 (correlation=0.9953). The theoret-
ical term has been scaled in the same range as the generalization gap. All results are
averaged over 5 random seeds.

Theorems 5 and 6 extend our result for the multi-dimensional regression and
classification tasks, respectively. Both bounds are inversely proportional to the
diversity factor dmin. We note that for the classification task the upper-bound
is exponentially decreasing with respect to dmin. This shows that learning a
diverse and rich feature representation yields a tighter generalization gap and,
thus, theoretically guarantees a stronger generalization performance.

5 Discussion and open problems

In this paper, we showed how the diversity of the features learned by a two-
layer neural network trained with the least-squares loss affects generalization.
We quantified the diversity by the average L2-distance between the hidden-layer
features and we derived novel diversity-dependant generalization bounds based
on Rademacher complexity for such models. The derived bounds are inversely-
proportional to the diversity term, thus demonstrating that more distinct fea-
tures within the hidden layer can lead to better generalization. We also showed
how to extend our results to deeper networks and different losses.

The bound found in Theorem 1 suggests that the generalization gap, with
respect to diversity, is inversely proportional to dmin and scales as ∼ (C2

5 −
d2min)/

√
N . We validate this finding empirically in Figure 2. We train a two-

layer neural network on the MNIST dataset for 100 epochs using SGD with a
learning rate of 0.1 and batch size of 256. We show the generalization gap, i.e.,
test error - train error, and the theoretical bound, i.e., (C2

5 − d2min)/
√
N , for

different training set sizes. dmin is the lower bound of diversity. Empirically, it
can be estimated as the minimum feature diversity over the training data S:
dmin = minx∈S

1
2M(M−1)

∑M
n̸=m(ϕn(x)−ϕm(x))2. We experiment with different

sizes of the hidden layer, namely 128, 256, and 512. The average results using 5
random seeds are reported for different training sizes in Figure 2 showing that
the theoretical bound correlates consistently well (correlation > 0.9939) with the
generalization error.
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Fig. 3. From left to right: (a)-(b) Tracking the diversity during the training for different
models on ImageNet. (c) Final diversity as a function of depth for different models on
MNIST.

As shown in Figure 1, diversity increases for neural networks along the train-
ing phase. To further investigate this observation, we conduct additional ex-
periments on ImageNet [49] dataset using 4 different state-of-the-art models:
ResNet50 and ResNet101, i.e., the standard ResNet model [19] with 50 lay-
ers and 101 layers, ResNext50 [60], and WideResNet50 [62] with 50 layers.
All models are trained with SGD using standard training protocol [10, 22, 64].
We track the diversity, as defined in equation 3, of the features of the last in-
termediate layer. The results are shown in Figure 3 (a) and (b). As it can be
seen, SGD without any explicit regularization implicitly optimizes diversity and
converges toward regions with high features’ distinctness. These observations
suggest the following conjecture:

Conjecture 1. Standard training with SGD implicitly optimizes the diversity of
intermediate features.

Studying the fundamental properties of SGD is extremely important to under-
stand generalization in deep learning [23, 25, 27, 54, 65]. Conjecture 1 suggests
a new implicit bias forSGD, showing that it favors regions with high feature
diversity.

Another research question related to diversity that is worth investigating is:
How does the network depth affect diversity? In order to answer this question,
we conduct an empirical experiment using MNIST dataset [37]. We use fully
connected networks (FCNs) with ReLU activation and different depths (1 to 12).
We experiment with three models with different widths, namely FCN-256, FCN-
512, and FCN-1024, with 256, 512, and 1024 units per layer, respectively. We
measure the final diversity of the last hidden layer for the different depths. The
average results using 5 random seeds are reported in Figure 3 (c). Interestingly, in
this experiment, increasing the depth consistently leads to learning more distinct
features and higher diversity for the different models. However, by looking at
Figure 1, we can see that having more parameters does not always lead to higher
diversity. This suggests the following open question:

Open Problem 1 When does having more parameters/depth lead to higher di-
versity?
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Understanding the difference between shallow and deep models and why deeper
models generalize better is one of the puzzles of deep learning [26, 40, 47]. The
insights gained by studying Open Problem 1 can lead to a novel key advantage of
depth: deeper models are able to learn a richer and more diverse set of features.

Another interesting line of research is adversarial robustness [40, 41, 46, 56].
Intuitively, learning distinct features can lead to a richer representation and,
thus, more robust networks. However, the theoretical link is missing. This leads
to the following open problem:

Open Problem 2 Can the theoretical tools proposed in this paper be used to
prove the benefits of feature diversity for adversarial robustness?
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Abstract

Neural networks are composed of multiple layers arranged in
a hierarchical structure jointly trained with a gradient-based
optimization, where the errors are back-propagated from the
last layer back to the first one. At each optimization step, neu-
rons at a given layer receive feedback from neurons belong-
ing to higher layers of the hierarchy. In this paper, we pro-
pose to complement this traditional ’between-layer’ feedback
with additional ’within-layer’ feedback to encourage the di-
versity of the activations within the same layer. To this end,
we measure the pairwise similarity between the outputs of the
neurons and use it to model the layer’s overall diversity. We
present an extensive empirical study confirming that the pro-
posed approach enhances the performance of several state-
of-the-art neural network models in multiple tasks. The code
is publically available at https://github.com/firasl/AAAI-23-
WLD-Reg

Introduction
Deep learning has been extensively used in the last decade
to solve several tasks (Krizhevsky, Sutskever, and Hinton
2012; Golan and El-Yaniv 2018; Hinton et al. 2012a). A
deep learning model, i.e., a neural network, is formed of
a sequence of layers with parameters optimized during the
training process using training data. Formally, an m-layer
neural network model can be defined as follows:

f(x;W) = ϕm(Wm(ϕm−1(· · ·ϕ2(W 2ϕ1(W 1x)))), (1)

where ϕi(.) is the non-linear activation function of the ith

layer and W = {W 1, . . . ,Wm} are the model’s weights.
Given a training data {xi, yi}Ni=1, the parameters of f(x;W)

are obtained by minimizing a loss L̂(·):

L̂(f) =
1

N

N∑

i=1

l
(
f(xi;W), yi

)
. (2)

However, neural networks are often over-parameterized,
i.e., have more parameters than data. As a result, they tend
to overfit to the training samples and not generalize well
on unseen examples (Goodfellow et al. 2016). While re-
search on double descent (Advani, Saxe, and Sompolinsky

*This work was supported by NSF-Business Finland Center for
Visual and Decision Informatics (CVDI) project AMALIA.

2020; Belkin et al. 2019; Nakkiran et al. 2020) shows that
over-parameterization does not necessarily lead to overfit-
ting, avoiding overfitting has been extensively studied (Dzi-
ugaite and Roy 2017; Foret et al. 2020; Nagarajan and Kolter
2019; Neyshabur et al. 2018; Poggio et al. 2017; Grari et al.
2021) and various approaches and strategies, such as data
augmentation (Goodfellow et al. 2016; Zhang et al. 2018),
regularization (Arora et al. 2019; Bietti et al. 2019; Kukačka,
Golkov, and Cremers 2017; Ouali, Hudelot, and Tami 2021;
Han and Guo 2021), and Dropout (Hinton et al. 2012b; Lee
et al. 2019; Li, Gong, and Yang 2016; Wang et al. 2019),
have been proposed to close the gap between the empirical
loss and the expected loss.
Diversity of learners is widely known to be important

in ensemble learning (Li, Yu, and Zhou 2012; Yu, Li, and
Zhou 2011) and, particularly in deep learning context, di-
versity of information extracted by the network neurons has
been recognized as a viable way to improve generalization
(Xie, Liang, and Song 2017; Xie, Deng, and Xing 2015b).
In most cases, these efforts have focused on making the set
of weights more diverse (Yang, Gkatzelis, and Stoyanovich
2019; Malkin and Bilmes 2009). However, diversity of the
activations has not received much attention. Here, we ar-
gue that due to the presence of non-linear activations, di-
verse weights do not guarantee diverse feature representa-
tion. Thus, we propose focusing on the diversity on top of
feature mapping instead of the weights.
To the best of our knowledge, only (Cogswell et al. 2016;

Laakom et al. 2021a) have considered diversity of the ac-
tivations directly in the neural network context. The work
in (Laakom et al. 2021a) studied theoretically how diver-
sity affects generalization showing that it can reduce over-
fitting. The work in (Cogswell et al. 2016) proposed an ad-
ditional loss term using cross-covariance of hidden activa-
tions, which encourages the neurons to learn diverse or non-
redundant representations. The proposed approach, known
as DeCov, was empirically proven to alleviate overfitting
and to improve the generalization ability of neural network.
However, modeling diversity as the sum of the pairwise
cross-covariance, it is not scale-invariant and can lead to
trivial solutions. Moreover, it can capture only the pairwise
diversity between components and is unable to capture the
”higher-order diversity”.
In this work, we propose a novel approach to encour-



age activation diversity within the same layer. We pro-
pose complementing the ’between-layer’ feedback with ad-
ditional ’within-layer’ feedback to penalize similarities be-
tween neurons on the same layer. Thus, we encourage each
neuron to learn a distinctive representation and to enrich the
data representation learned within each layer. We propose
three variants for our approach that are based on different
global diversity definitions.
Our contributions in this paper are as follows:

• We propose a new approach to encourage the ’diversifi-
cation’ of the layers’ output feature maps in neural net-
works. The proposed approach has three variants. The
main intuition is that, by promoting the within-layer ac-
tivation diversity, neurons within a layer learn distinct
patterns and, thus, increase the overall capacity of the
model.

• We show empirically that the proposed within-layer ac-
tivation diversification boosts the performance of neural
networks. Experimental results on several tasks show that
the proposed approach outperforms competing methods.

Within-layer Diversity Regularizer
In this section, we propose a novel diversification strategy,
where we encourage neurons within a layer to activate in a
mutually different manner, i.e., to capture different patterns.
In this paper, we define as “feature layer” the last interme-
diate layer in a neural network. In the rest of the paper, we
focus on this layer and propose a data-dependent regularizer
which forces each unit within this layer to learn a distinct
pattern and penalizes the similarities between the units. In-
tuitively, the proposed approach reduces the reliance of the
model on a single pattern and, thus, can improve generaliza-
tion.
We start by modeling the global similarity between two

units. Let ϕn(xj) and ϕm(xj) be the outputs of the nth and
mth unit in the feature layer for the same input sample xj .
The similarity snm between the the nth and mth neurons
can be obtained as the average similarity measure of their
outputs forN input samples. We use the radial basis function
to express the similarity:

snm :=
1

N

N∑

j=1

exp
(
− γ||ϕn(xj)− ϕm(xj)||2

)
, (3)

where γ is a hyper-parameter. The similarity snm can be
computed over the whole dataset or batch-wise. Intuitively,
if two neurons n and m have similar outputs for many sam-
ples, their corresponding similarity snm will be high. Oth-
erwise, their similarity smn is small and they are considered
“diverse”.
Next, based on these pairwise similarities, we propose

three variants for obtaining the overall similarity J of all the
units within the feature layer:
• Direct: J :=

∑
n≠m snm. In this variant, we model the

global layer similarity directly as the sum of the pairwise
similarities between the neurons. By minimizing their
sum, we encourage the neurons to learn different repre-
sentations.

• Det: J := −det(S), where S is a similarity matrix de-
fined as Snm = snm. This variant is inspired by the
Determinantal Point Process (DPP) (Kulesza and Taskar
2010, 2012), as the determinant of S measures the global
diversity of the set. Geometrically, det(S) is the volume
of the parallelepiped formed by vectors in the feature
space associated with s. Vectors that result in a larger
volume are considered to be more “diverse”. Thus, max-
imizing det(·) (minimizing −det(·)) encourages the di-
versity of the learned features.

• Logdet: J := −logdet(S)1. This variant has the same
motivation as the second one. We use Logdet instead of
Det as Logdet is a convex function over the positive def-
inite matrix space.

It should be noted here that the first proposed variant,
i.e., direct, similar to DeCov (Cogswell et al. 2016), cap-
tures only the pairwise similarity between components and
is unable to capture the higher-order “diversity”, whereas the
other two variants consider the global similarity and are able
to measure diversity in a more global manner. Promoting di-
versity of activations within a layer can lead to tighter gen-
eralization bound and can theoretically decrease the gap be-
tween the empirical and the true risks (Laakom et al. 2021a).
The proposed global similarity measures J can be min-

imized by using them as an additional loss term. However,
we note that the pair-wise similarity measure snm, expressed
in equation 3, is not scale-invariant. In fact, it can be triv-
ially minimized by making all activations of the feature layer
high, i.e., by multiplying by a high scaling factor, which has
no effect on the performance, since the model can rescale
high activations to normal values simply by learning small
weights on the next layer. To alleviate this problem, we pro-
pose an additional term, which penalizes high activation val-
ues. The total proposed additional loss is defined as follows:

L̂WLD−Reg := λ1J + λ2

N∑

i=1

||Φ(xi)||22, (4)

where Φ(x) = [ϕ1(x), · · · , ϕC(x)] is the feature vector,
C is the number of units within the feature layer, and λ1

and λ2 are two hyper-parameters controlling the contribu-
tion of each term to the diversity loss. Intuitively, the first
term of equation 4 penalizes the similarity between the units
and promotes diversity, whereas the second term ensures the
scale-invariance of the proposed regularizer.
The total loss function L̂(f) defined in equation 2 is aug-

mented as follows:

L̂aug(f) := L̂(f) + L̂WLD−Reg (5)

= L̂(f) + λ1J + λ2

N∑

i=1

||Φ(xi)||22.

The proposed approach is summarized in Algorithm 1. We
note that our approach can be incorporated in a plug-and-

1This is defined only if S is positive definite. It can be shown
that in our caseS is positive semi-definite. Thus, in practice, we use
a regularized version (S + ϵI) to ensure the positive definiteness.



Algorithm 1: One epoch of training with WLD-Reg
Model: Given a neural network f(·) with a feature repre-
sentation ϕ(·), i.e., last intermediate layer.
Input: Training Data: {xi, yi}Ni=1
Parameters: λ1 and λ2 in equation 4

1: for every mini-batch: {xi, yi}mi=1 ∈ {xi, yi}Ni=1 do
2: Forward pass the inputs {xi}mi=1 into the model to

obtain the outputs {f(xi)}mi=1 and the feature repre-
sentations {Φ(xi)}mi=1

3: Compute the standard loss L̂(f) (equation 2).
4: Compute the extra loss L̂WLD−Reg (equation 4).
5: Compute the total loss L̂aug(f) (equation 5)
6: Compute the gradient of the total loss and use it to

update the weights of f .
7: end for
8: return Return f .

play manner into any neural network-based approach to aug-
ment the original loss and to ensure learning diverse fea-
tures. We also note that although in this paper, we focus only
on applying diversity regularizer to a single layer, i.e., the
feature layer, our proposed diversity loss, as in (Cogswell
et al. 2016), can be applied to multiple layers within the
model.
Our newly proposed loss function defined in equation 5

has two terms. The first term is the classic loss function. It
computes the loss with respect to the ground-truth. In the
back-propagation, this feedback is back-propagated from the
last layer to the first layer of the network. Thus, it can be
considered as a between-layer feedback, whereas the second
term is computed within a layer. From equation 5, we can
see that our proposed approach can be interpreted as a regu-
larization scheme. However, regularization in deep learning
is usually applied directly on the parameters, i.e., weights
(Goodfellow et al. 2016; Kukačka, Golkov, and Cremers
2017), while in our approach a data-dependent additional
term is defined over the output maps of the layers. For a fea-
ture layer with C units and a batch size of m, the additional
computational cost is O(C2(m + 1)) for Direct variant and
O(C3 + C2m)) for both Det and Logdet variants.

Related work
Diversity promoting strategies have been widely used in
ensemble learning (Li, Yu, and Zhou 2012; Yu, Li, and
Zhou 2011), sampling (Bıyık et al. 2019; Derezinski, Ca-
landriello, and Valko 2019; Gartrell et al. 2019), energy-
based models (Laakom et al. 2021b; Zhao, Mathieu, and Le-
Cun 2017), ranking (Gan et al. 2020; Yang, Gkatzelis, and
Stoyanovich 2019), pruning by reducing redundancy (He
et al. 2019; Kondo and Yamauchi 2014; Lee et al. 2020;
Singh et al. 2020), and semi-supervised learning (Zbon-
tar et al. 2021). In the deep learning context, various ap-
proaches have used diversity as a direct regularizer on top
of the weight parameters. Here, we present a brief overview
of these regularizers. Based on the way diversity is de-

fined, we can group these approaches into two categories.
The first group considers the regularizers that are based
on the pairwise dissimilarity of the components, i.e., the
overall set of weights is diverse if every pair of weights
is dissimilar. Given the weight vectors {wm}Mm=1, (Yu, Li,
and Zhou 2011) defines the regularizer as

∑
mn(1 − θmn),

where θmn represents the cosine similarity betweenwm and
wn. In (Bao et al. 2013), an incoherence score defined as
− log

(
1

M(M−1)

∑
mn β|θmn|

1
β

)
, where β is a positive hy-

perparameter, is proposed. In (Xie, Deng, and Xing 2015a;
Xie, Zhu, and Xing 2016), mean(θmn) − var(θmn) is used
to regularize Boltzmann machines. The authors theoretically
analyzed its effect on the generalization error bounds in
(Xie, Deng, and Xing 2015b) and extend it to kernel space in
(Xie, Liang, and Song 2017). The second group of regulariz-
ers considers a more global view of diversity. For example,
in (Malkin and Bilmes 2008, 2009; Xie, Singh, and Xing
2017), a weight regularization based on the determinant of
the weights’ covariance is proposed based on determinantal
point process (Kulesza and Taskar 2012; Kwok and Adams
2012).
Unlike the aforementioned methods which promote diver-

sity on the weight level and similar to our method, (Cogswell
et al. 2016; Laakom et al. 2022) proposed to enforce dissim-
ilarity on the feature map outputs, i.e., on the activations.
To this end, they proposed an additional loss based on the
pairwise covariance of the activation outputs. Their addi-
tional loss, LDecov, is defined as the squared sum of the non-
diagonal elements of the global covariance matrix C of the
activations:

LDecov =
1

2
(||C||2F − ||diag(C)||22), (6)

where ||.||F is the Frobenius norm. Their approach, De-
cov, yielded superior empirical performance. However, cor-
relation is highly sensitive to noise (Kim, Kim, and Ergün
2015), as opposite to the RBF-based distance used in our
approach (Savas and Dovis 2019; Haykin 2010). Moreover,
theDecov approach only captures the pairwise diversity be-
tween the components, whereas we propose variants of our
approach which consider a global view of diversity. More-
over, based on the cross-covariance, their approach i-s not
scale-invariant. In fact, it can be trivially minimized by mak-
ing all activations in the latent representation small, which
has no effect on the generalization since the model can
rescale tiny activations to normal values simply by learning
large weights on the next layer.

Experimental results
CIFAR10 & CIFAR100
We start by evaluating our proposed diversity approach on
two image datasets: CIFAR10 and CIFAR100 (Krizhevsky,
Hinton et al. 2009). They contain 60,000 (50,000
train/10,000 test) 32 × 32 images grouped into 10 and 100
distinct categories, respectively. We split the original train-
ing set (50,000) into two sets: we use the first 40,000 images
as the main training set and the last 10,000 as a validation
set for hyperparameters optimization. We use our approach
on two state-of-the-art CNNs:



• ResNext-29-08-16: we consider the standard ResNext
Model (Xie et al. 2017) with a 29-layer architecture, a
cardinality of 8, and a width of 16.

• ResNet50: we consider the standard ResNet model (He
et al. 2016) with 50 layers.
We compare against the standard networks2 as well as net-

works trained with the DeCov diversity strategy (Cogswell
et al. 2016). All the models are trained using stochastic gra-
dient descent (SGD) with a momentum of 0.9, weight decay
of 0.0001, and a batch size of 128 for 200 epochs. The initial
learning rate is set to 0.1 and is then decreased by a factor of
5 after 60, 120, and 160 epochs, respectively. We also adopt
a standard data augmentation scheme that is widely used for
these two datasets (He et al. 2016; Huang et al. 2017). For
all models, the additional diversity term is applied on top the
last intermediate layer. The penalty coefficients λ1 and λ2,
in equation 4, for our approach and the penalty coefficient
of Decov are chosen from {0.0001, 0.001, 0.01, 0.1}, and γ
in the radial basis function is chosen from {1, 10}. For each
approach, the model with the best validation performance is
used in the test phase. We report the average performance
over three random seeds.

Table 1 reports the average top-1 errors of the different
approaches with the two basis networks. We note that, com-
pared to the standard approach, employing a diversity strat-
egy consistently boosts the results for all the two models and
that our approach consistency outperforms both competing
methods (standard and DeCov) in all the experiments. With
ResNet50, the three variants of our proposed approach sig-
nificantly reduce the test errors compared to standard ap-
proach over both datasets: 0.51%− 0.63% improvement on
CIFAR10 and 1.25%− 1.44% on CIFAR100.

For CIFAR10, the best performance is achieved by the di-
rect variant and the Logdet variant for ResNext and ResNet
models, respectively. For example, with ResNext, our direct
variant yields 0.65 boost compared to the standard approach
and 0.54 boost compared to DeCov. For CIFAR100, the best
performance is acheived by our Logdet variant for both mod-
els. This variant leads to 1.4% and 0.85% boost for ResNet
and ResNext, respectively. Overall, our three variants con-
sistently outperform DeCov and standard approach in all
testing configurations.

ImageNet
To further demonstrate the effectiveness of our approach
and its ability to boost the performance of state-of-the-
art neural networks, we conduct additional image classi-
fication experiments on the ImageNet-2012 classification
dataset (Russakovsky et al. 2015) using four different mod-
els: ResNet50 (He et al. 2016), Wide-ResNet50 (Zagoruyko
and Komodakis 2016), ResNeXt50 (Xie et al. 2017), and
ResNet101 (He et al. 2016). The diversity term is applied on
the last intermediate layer, i.e., the global average pooling
layer for both DeCov and our method.

2For the standard approach, the only difference is not using
an additional diversity loss. The remaining regularizers, data aug-
mentation, weight decay etc., are all applied as specified per-
experiment.

For the hyperparameters, we fix λ1 = λ2 = 0.001 and
γ = 10 for all the different approaches. The Scope of this pa-
per is feature diversity. However, in this experiment, we also
report results with weight diversity approaches. In particular,
we compare with the methods in (Yu, Li, and Zhou 2011),
(Xie, Deng, and Xing 2015b), (Rodrı́guez et al. 2016), and
(Ayinde, Inanc, and Zurada 2019).

We use the standard augmentation practice for this dataset
as in (Zhang et al. 2018; Huang et al. 2017; Cogswell et al.
2016). All the models are trained with a batch size of 256 for
100 epoch using SGD with Nesterov Momentum of 0.9. The
learning rate is initially set to 0.1 and decreases at epochs 30,
60, 90 by a factor of 10.

Table 2 reports the test errors of the different approaches
on ImageNet dataset. As it can be seen, feature diversity
(our approach and DeCov) reduces the test error of the
model and yields a better performance compared to the stan-
dard approach. We note that, as opposite to feature diver-
sity, weight diversity does not always yield performance im-
provement and it can sometimes hurt generalization. Com-
pared to decov, our three variants consistently reach better
performance.

For ResNet50 and ResNeXt50, the best performance is
achieved by our direct variant, yielding more than 0.5% im-
provement compared to standard approach for both mod-
els. For Wide-ResNet50 and ResNet101, our Det variant
yields the top performance with over 0.6% boost for Wide-
ResNet50. We note that our approach has a small additional
time cost. For example for ResNet50, our direct, Det and
Logdet variants take only 0.29%, 0.39%, and 0.49% extra
training time, respectively.

Sensitivity analysis
To further investigate the effect of the proposed diversity
strategy, we conduct a sensitivity analysis using ImageNet
on the hyperparameters of our methods: λ1 and λ2 which
controls the contribution of the global diversity term to the
global loss. We analyse the effect of the two parameters on
the final performance of ResNet50 on ImageNet dataset. The
analysis is presented in Figure 1.

As shown in Figure 1, using a diversity strategy, i.e., three
variants of our method, consistently outperform the stan-
dard approach and are robust to the hyperparameters. For
the Direct variant, the best performance is reached with
λ1 = 0.005 and λ2 = 0.001. With this configuration, the
model achieve 0.71% improvement compared to the stan-
dard approach. For the Det and the Logdet variants, using
λ1 = 0.001 and λ2 = 0.0005, the model reaches the lowest
error rate (23.09%) corresponding to 0.75% accuracy boost.
Emphasizing diversity and using a high weights (λ1 and λ2)
still lead to better results compared to standard approach but
can make the total loss dominated by the diversity term. In
general, we recommend using λ1 = λ2 = 0.001. However,
this depends on the problem at hand.

Feature diversity reduces overfitting
In (Laakom et al. 2021a; Cogswell et al. 2016), it has been
observed that feature diversity can reduce overfitting. To
study the effect of feature diversity on the generalization



Table 1: Classification errors of the different approaches on CIFAR10 and CIFAR100 with three different models. Results are
averaged over three random seeds.

ResNext-29-08-16 ResNet50

method CIFAR10 CIFAR100 CIFAR10 CIFAR100

Standard 6.93 ± 0.10 26.73 ± 0.10 8.28 ± 0.41 33.39 ± 0.42
DeCov 6.82 ± 0.15 26.70 ± 0.10 8.03 ± 0.11 32.26 ± 0.22
Ours(Direct) 6.28 ± 0.11 26.20 ± 0.18 7.77 ± 0.09 32.09 ± 0.11
Ours(Det) 6.51 ± 0.16 26.35 ± 0.23 7.75 ± 0.12 32.14 ± 0.28
Ours(Logdet) 6.38 ± 0.08 25.88 ± 0.21 7.65 ± 0.10 31.99 ± 0.05

Table 2: Performance of different models with different diversity strategies on ImageNet dataset

ResNet50 Wide-ResNet50 ResNeXt50 ResNet101

Standard 23.84 22.42 22.70 22.33

(Yu, Li, and Zhou 2011) 23.87 22.48 22.57 22.23
(Ayinde, Inanc, and Zurada 2019) 23.95 22.41 22.67 22.36
(Rodrı́guez et al. 2016) 24.23 22.70 22.80 23.10
(Xie, Deng, and Xing 2015b) 23.79 22.66 22.64 22.71

DeCov 23.62 22.68 22.57 22.31
Ours(Direct) 23.24 21.95 22.25 22.14
Ours(Det) 23.34 21.75 22.44 21.87
Ours(Logdet) 23.32 21.96 22.40 22.04

gap, in Table 3, we report the final training errors and the
generalization gap, i.e., training accuracy - test accuracy
for the different feature diversity approaches on ImageNet
dataset.

Table 3: Generalization Gap, i.e., training error - test error,
of different models with different diversity strategies on Im-
ageNet dataset. * denotes our approach.

ERM DeCov direct* det* logdet*

ResNet50 2.87 2.70 1.15 1.23 1.21
Wide-ResNet50 6.33 6.34 4.44 4.34 4.58
ResNeXt50 5.99 5.85 4.41 4.59 4.48
ResNet101 4.64 4.61 3.68 3.38 3.71

As shown in Table 3, we note that using diversity indeed
can reduces overfitting and decreases the empirical general-
isation gap of neural networks. The three variants of our ap-
proach significantly reduces overfitting for all the four mod-
els by more than 1% compared standard and DeCov for all
the models. For example, our Det variant reduces the empir-
ical generalization gap, compared to the standard approach
and DeCov, by 2% for Wide-ResNet model and over 1.2%
for the ResNet101 model.

MLP-based models
Beyond CNN models, we also evaluate the performance
of our diversity strategy on modern attention-free, multi-
layer perceptron (MLP) based models for image classifica-
tion (Tolstikhin et al. 2021; Liu et al. 2021; Lee-Thorp et al.

2021). Such models are known to exhibit high overfitting
and require regularization. We evaluate how diversity affects
the accuracy of such models on CIFAR10. In particular, we
conduct a simple experiment using two models: MLP-Mixer
(Tolstikhin et al. 2021), gMLP (Liu et al. 2021) with four
blocks each.

For the diversity strategies, i.e., ours and Decov, similar
to our other experiments, the additional loss has been added
on top of the last intermediate layer. The input images are
resized to 72× 72. We use a patch size of 8× 8 and an em-
bedding dimension of 256. All models are trained for 100
epochs using Adam with learning rate of 0.002, weight de-
cay with rate 0.0001, batch size 256. Standard data augmen-
tation, i.e., random horizontal flip and random zoom with
a factor of 20%, is used. We use 10% of the training data
for validation. We also reduce the learning rate by a factor
of 2 if the validation loss does not improve for 5 epochs and
use early stopping when the validation loss does not improve
for 10 epochs. All experiments are repeated over 10 random
seeds and the average results are reported.

The results in Table 4 show that employing a diversity
strategy can indeed improve the performance of these mod-
els, thanks to its ability to help learn rich and robust repre-
sentation of the input. Our proposed approach consistently
outperforms the competing methods for both the MLP-
Mixer and gMLP. For example, our direct variant leads to
1.15% and 0.3% boost for MLP-Mixer and gMLP, respec-
tively.

For the MLP-mixer, the top performance is achieved by
the Det variant of our approach reducing the error rates by



Figure 1: Sensitivity analysis of λ1 and λ2 on the test error using ResNet50 trained on ImageNet. First row contains experiments
with fixed λ1 and second row contains experiments with fixed λ2. From left to right: our Direct variant, our Det variant and our
Logdet variant. γ is fixed to 10 in all experiments.

Table 4: Classification errors of modern MLP-based ap-
proaches on CIFAR10. Results are averaged over ten ran-
dom seeds.

MLP-Mixer gMLP

Standard 23.93 22.26
DeCov 24.10 22.00
Ours(Direct) 22.78 21.95
Ours(Det) 22.66 21.62
Ours(Logdet) 22.84 21.56

1.27% and 1.44% compared to the standard approach and
DeCov, respectively. For the gMLP model, the top perfor-
mance is achieved by the Logdet variant of our approach
boosting the results by 0.7% and 0.44% compared to the
standard approach and DeCov, respectively.

Learning in the presence of label noise
To further demonstrate the usefulness of promoting diver-
sity, we test the robustness of our approach in the presence of
label noise. In such situations, standard neural network tend
to overfit to the noisy samples and not generalize well to the

test set. Enforcing diversity can lead to better and richer rep-
resentations attenuating the effect of noise. To show this, we
performed additional experiments with label noise (20% and
40%) on CIFAR10 and CIFAR100 using ResNet50. We use
the same training protocol used for the original CIFAR10
and CIFAR100: all models are trained using SGD with a
momentum of 0.9, weight decay of 0.0001, and a batch size
of 128 for 200 epochs. The initial learning rate is set to 0.1
and is then decreased by a factor of 5 after 60, 120, and 160
epochs, respectively. We also adopt a standard data augmen-
tation scheme that is widely used for these two datasets (He
et al. 2016; Huang et al. 2017). For all models, the addi-
tional diversity term is applied on top the last intermediate
layer. For the hyperparameters: The loss weights is chosen
from {0.0001, 0.001, 0.01, 0.1} for both our approach (λ1

and λ2) and Decov and γ in the radial basis function is cho-
sen from {1, 10}. For each approach, the model with the best
validation performance is used in the test phase. The average
errors over three random seed are reported.

The results are reported in Table 5. As it can be seen, in
the presence of noise, the gap between the standard approach
and diversity (Decov and ours) increases. For example, our
Logdet variant boosts the results by 1.91% and 2.29% on



Table 5: Classification errors of ResNet50 using different diversity strategies on CIFAR10 and CIFAR100 datasets with different
label noise ratios. Results are averaged over three random seeds.

20% label noise 40% label noise

Method CIFAR10 CIFAR100 CIFAR10 CIFAR100

Standard 14.38 ± 0.29 45.11 ± 0.52 19.40 ± 0.80 48.81 ± 0.57
DeCov 13.75 ± 0.19 41.93 ± 0.40 17.60 ± 0.66 48.23 ± 0.48
Ours(Direct) 13.31 ± 0.40 40.10 ± 0.31 16.96 ± 0.32 46.73 ± 0.23
Ours(Det) 13.21 ± 0.21 40.35 ± 0.31 17.49 ± 0.04 46.93 ± 0.62
Ours(Logdet) 13.01 ± 0.40 39.97 ± 0.19 17.24 ± 0.31 46.52 ± 0.22

CIFAR10 and CIFAR100 with 40% noise, respectively.

Conclusions
In this paper, we proposed a new approach to encourage
‘diversification’ of the layer-wise feature map outputs in
neural networks. The main motivation is that by promot-
ing within-layer activation diversity, units within the same
layer learn to capture mutually distinct patterns. We pro-
posed an additional loss term that can be added on top of
any fully-connected layer. This term complements the tradi-
tional ‘between-layer’ feedback with an additional ‘within-
layer’ feedback encouraging diversity of the activations. Ex-
tensive experimental results showing that such a strategy can
indeed improve the performance of different state-of-the-art
networks across different datasets and different tasks, i.e.,
image classification, and label noise. We are confident that
these results will spark further research in diversity-based
approaches to improve the performance of neural networks.
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Abstract—Despite the superior performance of CNN, deploying
them on low computational power devices is still limited as
they are typically computationally expensive. One key cause of
the high complexity is the connection between the convolution
layers and the fully connected layers, which typically requires
a high number of parameters. To alleviate this issue, Bag of
Features (BoF) pooling has been recently proposed. BoF learns
a dictionary, that is used to compile a histogram representation
of the input. In this paper, we propose an approach that builds
on top of BoF pooling to boost its efficiency by ensuring that the
items of the learned dictionary are non-redundant. We propose
an additional loss term, based on the pair-wise correlation of the
items of the dictionary, which complements the standard loss to
explicitly regularize the model to learn a more diverse and rich
dictionary. The proposed strategy yields an efficient variant of
BoF and further boosts its performance, without any additional
parameters.

Index Terms—deep learning, CNN, diversity, bag of features
pooling

I. INTRODUCTION

In recent years, Convolutional Neural Networks (CNNs)
have significantly advanced many tasks in the computer vision
field due to their ability to learn ‘good’ feature representation
in an end-to-end manner [1], [2]. However, despite their supe-
rior performance across multiple tasks, e.g., image classifica-
tion [3]–[5], object detection [6]–[8], anomaly detection [9]–
[12], deploying CNN-based solutions on low computational
power devices, such as mobile phones, is still limited as most
of the high-accuracy models are typically computationally
expensive [1], [13], [14]. Thus, they are inefficient in terms
of time and energy consumption [15]. To alleviate this issue,
several approaches have been proposed to reduce the number
of parameters required by a CNN model [16]–[20].
The standard CNN model is usually composed of two

parts: The first part is formed of convolutional layers typically

This work was supported by NSF-Business Finland Center for Visual and
Decision Informatics (CVDI) project AMALIA.

Fig. 1. An illustration of a simple BoF-based CNN model. From left to
right: Input image, convolutional layer, BoF layer containing a dictionary and
outputting a histogram, and fully connected layers.

coupled with max-pooling operations. Then, in the second part,
fully connected layers are connected directly to a flattened
version of the last convolutional layer output. This connection
dramatically increases the total number of parameters, as
convolutional layer outputs usually have high dimensionality.
Recent approaches mitigate this problem by developing better
mechanisms for connecting both parts, e.g., global average
pooling and Bag of Features (BoF) pooling.
BoF pooling is a neural extension [18], [19] of the famous

Bag-of-Visual Words [21]–[26]. An illustration of a simple
BoF-based CNN model is presented in Figure 1. Based on
the convolutional output, BoF pooling learns a codebook
(dictionary) and outputs a shallow histogram representation
of the input. The items of the dictionary are optimized in
an end-to-end manner during the standard back-propagation.
This yields powerful and efficient models, that achieve a high
performance with a low computational footprint. Recently,
CNN models, based on BoF pooling, have been used to
solve multiple tasks [27]–[32], such as action recognition [30],
information retrieval [33], and illumination estimation [34].
In this paper, we propose an approach that builds on top

of BoF pooling to boost its efficiency by ensuring that the
items of the learned dictionary are non-redundant. Forcing an



uncorrelated structure on the codebook yields a more powerful
model which can achieve a high performance with minimal
dictionary size. Diversity in deep learning context has been
shown to lead to better results [35]–[48]. To this end, we
propose to augment the loss of the model to penalize pair-
wise correlations between the items of the codebook. The
proposed technique requires no additional parameters and can
be incorporated in any BoF-based CNN model to boost the
performance of the CNN model.

The contributions of this paper can be summarized as
follows:

• We propose a scheme to avoid redundant items in the
dictionary learned by the BoF.

• We propose to augment the CNN-loss to explicitly pe-
nalize the pair-wise correlations between codebook items
and learn rich compressed dictionary.

• The proposed regularizer acts as an unsupervised reg-
ularizer on top of the BoF pooling layer and can be
integrated into any BoF-based CNN model in a plug-
and-play manner.

• The proposed approach is evaluated with three datasets.
The results show a consistent performance boost com-
pared to the standard approach.

The rest of this paper is organized as follows. First, provide
a brief overview of BoF in Section II. In Section III, we present
the proposed approach. In Section IV, we empirically evaluate
the performance of our method on three different datasets. We
conclude the paper in Section V.

II. BAG-OF-FEATURES POOLING

In this section, we briefly describe the BoF pooling mech-
anism. BoF [18], [19] has been incorporated in a variety
of applications and often led to superior results [31], [33],
[34]. The BoF pooling is parameterized with a dictionary.
Given an input, i.e., the output maps of the last convolutional
layer, a histogram representation is compiled based on the
dictionary. In the training phase, the items of the dictionary
are optimized with the traditional back-propagation. The size
of the dictionary is a hyper-parameter that can be adjusted
with a validation set to avoid over-fitting.

BoF pooling is formed using two inner layers: a Radial
Basis Function (RBF) layer that measures the similarity of
the input features to the RBF centers and an accumulation
layer that builds a histogram of the quantized feature vectors.
Formally, let X be the input image and ρ(X) ∈ RD×P the
output of the convolutional layer, the RBF layer outputs a
sequence of of quantized representations:

Ψ = [ψ1, ψ2, · · · , ψP ] ∈ RK×P ,

where ψi is the representation corresponding to the ith feature,
i.e.,

ψi = [ψi,1, · · · , ψi,K ].

The output of the ith RBF unit is as follows:

ψn,i =
exp(−||ρ(X)n − ci||/mi)∑
j exp(−||ρ(X)n − cj ||/mj)

, (1)

where ci is the center of the i-th RBF neuron, and mi is
a scaling factor. The outputs of the P RBF neurons are
accumulated in the next layer in order to obtain the final
representation Φ of each image:

Φ =
1

P

∑

j

ψj . (2)

To summarize, BoF receives as input a feature represen-
tation, usually in high dimension, and quantizes it into a
fixed-size shallow histogram representation. The quantization
is based on the inner dictionary, {c1, · · · , cK}, which can be
learned jointly with the rest of the parameters in an end-to-end
manner.

III. OUR APPROACH

BoF pooling layer is a key technique that can be used in
CNNs to construct powerful models with a low computational
cost. The BoF relies on a dictionary, learned during the
training, to compute its shallow output. In this paper, we
propose an approach that builds on top of BoF pooling to boost
its efficiency by explicitly forcing the items of the learned
dictionary to be distinct and non-redundant. We propose a
simple additional regularizer that penalizes the similarities
between the codebook items. This can further boost the
performance of the model, without any additional parameters.
The dictionary learned the BoF layer plays a critical role

in the global performance of the model. Intuitively, Learning
a diverse and rich dictionary yields in a robust codebook and
increases the efficiency of the global model. Given a CNN
model containing a BoF pooling layer with an inner dictionary
{c1, · · · , cK} of size K, the similarity SIM between two
elements ci and cj of this dictionary can be measured with
the squared correlation:

SIM(ci, cj) =
(
corr(ci, cj))

)2

, (3)

where corr(·, ·) is the correlation operator. We use the square
to insure that the similarity is always positive.
Intuitively, SIM measures how similar two items are. Our

goal is to regularize the similarities between the elements of
the dictionary. So, the global similarity regularizer can be
computed as the the sum of the pair-wise similarities, i.e.,

∑

i̸=j

SIM(ci, cj). (4)

Given the original loss L, e.g., least squares or cross entropy,
we propose to regularize it as follows:

Lnew ≜ L+ β
∑

i̸=j

SIM(ci, cj), (5)

where Lnew is the augmented loss and β is a hyper-parameter
employed to control the contribution of the supplementary
regularizer in the global loss of the model. The computation
of the total loss is illustrated in Figure 2.
Setting β = 0 corresponds to the standard BoF case, while

a higher β yields a loss dominated by the regularizer. In



Fig. 2. An illustration on how the BoF-based CNN model loss is computed using our approach. The standard loss can be least squares or cross entropy and
the similarity loss corresponds to the second term in (5).

the training phase, at each step in the back-propagation, the
gradient of the loss w.r.t. the parameters is computed. The
additional term depends only on the elements of the dictionary,
i.e., {c1, · · · , cK}, of the BoF layer. Thus, the gradient of all
the model parameters, except {c1, · · · , cK}, remains the same
as in the standard BoF case. For each of dictionary parameters
ci, we have an additional feedback term equal to

β
∂
∑

i̸=j SIM(ci, cj)
∂ci

,

which encourages different elements within this dictionary to
be distinct.

The proposed approach affects only the training loss and
does not require any additional parameters. It can be integrated
in a plug-and-play manner in any BoF-based model to improve
performance. Intuitively, the proposed schema acts as a penalty
on top of the learned dictionary to provide supplementary
feedback in the training phase to lessen the correlations of
the codebook’s items. By explicitly forcing the BoF layer
to learn a diverse and rich dictionary, we can increase the
model efficiency and reach a high performance with a minimal
number of parameters.

IV. EXPERIMENTAL RESULTS

In this Section, we present the empirical results of the
proposed approach along with the competing methods.

A. Experiment Setup

1) Datasets: We evaluate the performance of our approach
using three different dataset:

• MNIST [49] is a dataset of 28 × 28 images from 10
classes. It contains 50,000 samples for training and
10,000 for testing.

• fashionMNIST [50] is a clothes dataset containing 28×28
images from 10 classes. It has in total 50,000 samples for
training and 10,000 for testing.

• CIFAR10 [51] is an RGB image dataset containing 32×
32 images from a total of 10 distinct classes. It has a total
of 50,000 and 10,000 samples for training and testing,
respectively.

2) Training & Testing: In all our experiments, we hold
20% of the training data for validation and hyper-parameter
selection. We also experiment with different values for the
number of filters in the last convolutional layer. The full
topology of the CNN models used in MNIST/fashionMNIST
and CIFAR10 experiments are reported in Table I and Table
II, respectively.
For MNIST and fashionMNIST experiments, all the models

are trained for 50 epochs using Adam [52] regularizer with a
0.001 learning rate and a batch-size of 128. For CIFAR10
experiments, all the models are trained for 200 epochs with
standard data augmentation [4] using Adam regularizer with
a 0.0001 learning rate and a batch-size of 128.
We report the competitive results of the different pooling

strategies, namely global max pooling (GMP) [15], global
average pooling (GAP) [15], BoF [18], [19], and our approach.
The size of the codebook is a hyperparameter for both BoF
and our approach. It is optimized with the validation set
from {8, 16, 32, 64, 128} for MNIST and fashionMNIST and
from {32, 64, 128, 256} for CIFAR10. The hyper-parameter
β in Eq. (5), used for controlling the contribution of the
proposed regularizer in the global loss, is selected from
{0.1, 0.01, 0.001, 0.0001} using the validation set in all ex-
periments.

B. Empirical Results

In Table III and Table IV, we report the average error rates
and standard deviations for the different filter sizes, i.e., C in
Table I, on MNIST and fashionMNIST datasets, respectively.
Compared to standard pooling approaches, i.e., GMP and GAP,
we note that both variants of BoF consistently yield a better
performance. For the 16 filter case, for example, GMP and
GAP reach 3.63% and 4.67% errors on MNIST, respectively,



Input layer

3× 3× 32 - Relu
3× 3× 32 - Relu
2× 2 max pooling layer
3× 3× C - Relu
Pooling strategy
Dropout (0.2)
512-Fully connected - Relu
Dropout (0.2)
10-fully connected
softmax layer

TABLE I
TOPOLOGY USED FOR MNIST AND FASHIONMNIST EXPERIMENTS. WE

EXPERIMENT WITH DIFFERENT VALUES OF C, I.E., THE NUMBER OF
FILTERS IN THE LAST CONVOLUTIONAL LAYER. POOLING STRATEGY
REFERS TO THE USED METHOD, E.G., GLOBAL MAX POOLING OR BOF.

Input layer

3× 3× 128 - Relu
3× 3× 128 - Relu
2× 2 max pooling layer
3× 3× 64 - Relu
3× 3× 64 - Relu
2× 2 max pooling layer
3× 3× C - Relu
Pooling strategy
Dropout (0.2)
512-Fully connected - Relu
Dropout (0.2)
10-fully connected
softmax layer

TABLE II
TOPOLOGY USED FOR CIFAR10 EXPERIMENTS. WE EXPERIMENT WITH
DIFFERENT VALUES OF C, I.E., THE NUMBER OF FILTERS IN THE LAST
CONVOLUTIONAL LAYER. POOLING STRATEGY REFERS TO THE USED

METHOD, E.G., GLOBAL MAX POOLING OR BOF.

whereas standard BoF and our variant of BoF reach 1.03 and
1.00% for the same case, respectively.

For the fashionMNIST dataset with a 16-filter model, using
BoF reduces the error rates by more than 5%. Compared to
the standard BoF, we note that penalizing correlations between
the items of the dictionary yields in a consistently better
performance in most cases. For example, for fashionMNIST
using a 128-filters model, our approach reaches only 8.77%
error rate compared to 9.02% reached by BoF.

For MNIST dataset, as shown in Table III, the best perfor-
mances reached by GMP and GAP pooling are 1.09% and
1.06%, respectively. In both cases, it is achieved by the 128-
filters model. We note that our approach requires only 16 filters
to achieve a better performance (1.00%). This finding is also in
agreement with the results on fashionMNIST dataset in Table
IV. In this case, our approach with only 16 filters achieves
better results compared to the best GAP case and only 32
filters to achieve better results compared to the best GMP case.
The best performance both on MNIST and fashionMNIST is
achieved by our approach with the 64-filters and 128-filters
model, respectively.

In Table V, we report the results of the different approaches
on CIFAR10 dataset with three different filter sizes in the
final convolutional layer, namely 32, 64 and 128 filters. As
can been seen, the best result is 15.93% error rate which is

achieved by our approach using 128 filters. This constitutes
an improvement by 2.87, 1.68%, and 0.17% compared to the
best results achieved by GMP, GAP, and the standard BoF,
respectively.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a scheme that builds on top
of BoF pooling to improve its performance. We proposed a
regularizer, based on the pair-wise correlation of the items of
the dictionary, which ensures the diversity and the richness
of the learned dictionary within the BoF layer. It led to an
efficient variant of BoF and further improved its capability,
without any additional parameters. The proposed approach can
be incorporated in any BoF-based model in a plug-and-play
manner. Empirical results over three different dataset showed
that the proposed regularizer boosts the performance of the
model and led to lower error rates.
Future directions include more extensive experimental eval-

uation of the proposed approach over larger datasets and
proposing more advanced techniques for quantifying the sim-
ilarities between the codebook elements.
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A B S T R A C T

Autoencoders (AEs) are a type of unsupervised neural networks, which can be used to solve various tasks,
e.g., dimensionality reduction, image compression, and image denoising. An AE has two goals: (i) compress
the original input to a low-dimensional space at the bottleneck of the network topology using an encoder, (ii)
reconstruct the input from the representation at the bottleneck using a decoder. Both encoder and decoder
are optimized jointly by minimizing a distortion-based loss which implicitly forces the model to keep only the
information in input data required to reconstruct them and to reduce redundancies. In this paper, we propose
a scheme to explicitly penalize feature redundancies in the bottleneck representation. To this end, we propose
an additional loss term, based on the pairwise covariances of the network units, which complements the data
reconstruction loss forcing the encoder to learn a more diverse and richer representation of the input. We tested
our approach across different tasks, namely dimensionality reduction, image compression, and image denoising.
Experimental results show that the proposed loss leads consistently to superior performance compared to using
the standard AE loss.

1. Introduction

With the progress of data gathering techniques, high-dimensional
data are becoming available for training machine learning approaches.
The impracticality of working in high dimensional spaces due to the
curse of dimensionality and the understanding that the data in many
problems reside on manifolds with much lower dimensions than those
of the original space has led to the development of various approaches
which try to learn a mapping of the data representations in the original
space to more meaningful lower-dimensional representations.

Autoencoders (AEs) [1] are a powerful data-driven unsupervised
approach used to learn a compact representation of a given input dis-
tribution. An autoencoder focuses solely on finding a low-dimensional
representation, from which the input data can be reconstructed with
minimal distortion. Autoencoders have been applied successfully in
many tasks, such as transfer learning [2], anomaly detection [3],
dimensionality reduction [4], and compression [5].

To accomplish these tasks, an autoencoder has two different parts:
an encoder 𝑔(⋅), which maps an input 𝒙 ∈  to a compact low-
dimensional space 𝑔(𝒙), called the bottleneck representation, and a

∗ Corresponding author.
E-mail addresses: firas.laakom@tuni.fi (F. Laakom), jenni.k.raitoharju@jyu.fi (J. Raitoharju), ai@ece.au.dk (A. Iosifidis), moncef.gabbouj@tuni.fi

(M. Gabbouj).

decoder 𝑓 (⋅), which takes the output of the encoder as its input and uses
it to reconstruct the original input 𝑓◦𝑔(𝒙). Given a distortion metric 𝐷:
 ×  → R, which measures the difference between the original input
and the reconstructed input. Autoencoders are trained in an end-to-end
manner using gradient descent-based optimization [1] to minimize the
loss 𝐿 defined as the average distortion over the training data {𝒙𝑖}𝑁𝑖=1:

min
𝑓,𝑔

𝐿
(
{𝒙𝑖}𝑁𝑖=1

) ≜ min
𝑓,𝑔

1
𝑁

𝑁∑
𝑖=1

𝐷(𝒙𝑖, 𝑓◦𝑔(𝒙𝑖)). (1)

Several extensions and regularization techniques have been proposed to
augment this loss [5,6] aiming at improving the mapping of the input
to a compressed representation at the bottleneck of the autoencoder so
that the original inputs can be better reconstructed from these compact
representations using the decoder.

By controlling the size of the bottleneck, one can explicitly control
the dimensionality of the representation and the compression rate [5].
A low size of the bottleneck increases the complexity of the task of
the decoder risking a higher distortion rate. This trade-off forces the
model to keep only those variations in the input data that are required

https://doi.org/10.1016/j.patrec.2024.01.013
Received 28 November 2022; Received in revised form 5 January 2024; Accepted 10 January 2024



Pattern Recognition Letters 178 (2024) 202–208

203

F. Laakom et al.

Fig. 1. An illustration of how the autoencoder loss is computed using our approach.

to reconstruct the input and to avoid redundancies and noise within
the input. This is achieved implicitly by using error back-propagation
for minimizing the reconstruction error, i.e., distortion 𝐷.

In the context of supervised neural networks, it has been shown
that reducing redundancy improves generalization [7–9]. Approaches
helping to reduce redundancy have been successfully applied, e.g., for
pruning [10]. In this paper, we propose to model the feature re-
dundancy in the bottleneck representation and minimize it explicitly.
To this end, we propose augmenting the loss 𝐿 using a redundancy
term computed as the sum of the pairwise covariance between the
bottleneck elements. The full scheme is illustrated in Fig. 1. We argue
that explicitly penalizing the pairwise covariance between the different
units in the bottleneck provides extra feedback for the encoder to avoid
redundancy and to learn a richer representation of the input data.

The contributions of this paper can be summarized as follows:

• We propose a scheme to avoid redundant features in the bottle-
neck representation of autoencoders.

• We propose to augment the autoencoder loss to explicitly penalize
the pairwise covariance between the features and learn a diverse
compressed embedding of the training data.

• The proposed penalty term acts as an unsupervised regularizer on
top of the encoder and can be integrated into any autoencoder-
based model in a plug-and-play manner.

• The proposed method is extensively evaluated over three tasks: di-
mensionality reduction, image compression, and image denoising.
Experimental results show consistent performance improvements
compared to the standard approach.

The rest of this paper is organized as follows. Section 2 provides
the background of autoencoders’ training strategies and a brief review
of different tasks considered in this work, i.e., dimensionality reduc-
tion, image compression, and image denoising. Section 3 describes
the proposed approach. Section 4 reports experimental results for the
dimensionality reduction task on the Madelon [11], ISOLET [12], and
P53 Mutants [13] datasets. Section 5 reports experimental results for
the image compression task on the MNIST [14] and CIFAR10 [15]
datasets. Section 6 evaluates our approach on the image denoising
task using the fashion MNIST [16] and CIFAR10 datasets. Section 7
concludes the paper.

2. Related work

Autoencoders are models trained to reconstruct their input, i.e., to
approximate the identity function 𝑓 (𝑥) ≈ 𝑥. While the identity function
seems a particularly trivial function to learn, enforcing certain con-
straints on the network topology and particularly using a low number
of units in the hidden layers [1] forces the model to learn to efficiently
represent the data in a much lower-dimensional space compared to
the original space [17,18]. This is a desired property in several tasks,
e.g., dimensionality reduction [4], compression [5,19], and image de-
noising [20,21]. In [3,22–24], different extensions of autoencoders
have been proposed to improve their performance in different contexts.

Several approaches based on reducing redundancy have been pro-
posed recently in different contexts [25–29]. In particular, in the con-
text of self-supervised learning, [26,28] proposed a training loss based
on the pairwise correlation between the features of two perturbed
variants of the same input. [9] proposed a data-dependent regularizer
based on the 𝐿2 distance between the units outputs in the last hidden
layer of CNNs and showed that such approach can reduce overfitting in
the context of supervised learning. In this paper, we explore a similar
direction in the context of unsupervised learning with autoencoders.
To the best of our knowledge, this is the first work that considers
reducing redundancy in this context. We show that it helps improve
the performance.

Dimensionality reduction refers to the problem of learning a map-
ping from a high-dimensional input space  ∈ R𝐷 into a lower-
dimensional space  ∈ R𝑑 , where 𝑑 ≪ 𝐷, while preserving features of
interest in the input data. Several linear [30–32] and non-linear [33–
36] approaches have been proposed to solve this task. Some are su-
pervised approaches, such as Linear Discriminant Analysis (LDA) and
its extensions [37], others are unsupervised methods [38], such as
Principal Component Analysis (PCA) [39]. Dimensionality reduction
is the most straightforward application of autoencoders [4,40], as the
mapping can be learned using an autoencoder by setting the size of the
bottleneck to 𝑑 units and training the model to reconstruct the input.

Image compression is an important task in many applications. Re-
cent advances in deep neural networks [1] have enabled efficient
modeling of high-dimensional data and led to outperforming traditional
image compression techniques [41,42]. Recently, there has been inter-
est in autoencoders to solve this task [5] due to their flexibility and
easiness of training.

Image denoising [43] refers to the task of trying to restore a clean
version of the image from its noisy corrupted counterpart. Due to
their plug-and-play network architectures, CNN-based autoencoders
have been widely adopted to solve this task [44,45]. In particular, an
autoencoder is trained using pairs of noisy and clean images. By taking
a noisy sample as input and setting its clean version as the target, the
model learns to keep only the important information from the image
and discard the noise.

3. Reducing the pairwise covariance within the bottleneck repre-
sentation

Autoencoders are a special type of neural networks trained to
achieve two objectives: (i) to compress an input into a low-dimensional
space, (ii) to reconstruct the original input from the low-dimensional
representation. This is achieved by minimizing the reconstruction loss
over the training data, which implicitly forces learning a concise ‘non-
redundant’ representation of the data. In this paper, we propose to
augment the reconstruction loss with an additional term designed to
explicitly minimize redundancy between the features learned at the
bottleneck.

Given a training data set {𝒙𝑖}𝑁𝑖=1 and an encoder 𝑔(⋅) ∈ R𝐷, the
covariance between the 𝑖th and 𝑗th features, 𝑔𝑖 and 𝑔𝑗 , can be expressed
as follows:

𝐶(𝑔𝑖, 𝑔𝑗 ) =
1
𝑁

∑
𝑛

(
𝑔𝑖(𝒙𝑛) − 𝜇𝑖

)(
𝑔𝑗 (𝒙𝑛) − 𝜇𝑗

)
, (2)

where 𝜇𝑖 =
1
𝑁

∑
𝑛 𝑔𝑖(𝒙𝑛) is the average output of the 𝑖th unit. Our aim

is to minimize the redundancy of the bottleneck representations which
corresponds to minimizing the pairwise covariance between different
features. Thus, we augment the loss 𝐿

(
{𝒙𝑖}𝑁𝑖=1

)
as follows:

𝐿
(
{𝒙𝑖}𝑁𝑖=1

)
𝑎𝑢𝑔 ≜ 𝐿

(
{𝒙𝑖}𝑁𝑖=1

)
+ 𝛼

∑
𝑖≠𝑗

𝐶(𝑔𝑖, 𝑔𝑗 )

= 1
𝑁

𝑁∑
𝑖=1

𝐷(𝒙𝑖, 𝑓◦𝑔(𝒙𝑖)) (3)
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Table 1
Statistics of the three datasets used in the dimensionality reduction experiments. #
Dim: dimensionality of the data. # Train: number of training samples. # Test: number
of test samples. d: projection dimension.
Dataset # Dim # Train # Test d

Madelon [11] 500 2000 1800 10
ISOLET [12] 617 6238 1559 10
P53 Mutants [13] 5408 21811 9348 50

+ 𝛼
∑
𝑖≠𝑗

( 1
𝑁

∑
𝑛
(𝑔𝑖(𝒙𝑛) − 𝜇𝑖)(𝑔𝑗 (𝒙𝑛) − 𝜇𝑗 )

)
, (4)

where 𝛼 is a hyper-parameter used to control the contribution of the
additional term in the total loss. 𝐿𝑎𝑢𝑔 is composed of two terms, the first
term is the standard autoencoder loss that depends on both the encoder
and decoder parts to ensure that the autoencoder learns to reconstruct
the input, while the second term depends only on the encoder and its
aim is to promote the diversity of the learned features.

Intuitively, the proposed approach acts as an unsupervised regu-
larizer on top of the encoder providing extra feedback during train-
ing to reduce the redundancy of the encoder’s output. The proposed
scheme can be embedded into any autoencoder-based model as a plug-
in and optimized in a batch-manner, i.e., at each optimization step,
we can compute the pairwise covariance using the mini-batch samples.
Moreover, it is suitable for different learning strategies and different
topologies.

4. Experiments on dimensionality reduction

In this section, we consider the dimensionality reduction task using
an autoencoder. We test the proposed approach using three different
tabular datasets, namely Madelon [11], ISOLET [12], and P53 Mu-
tants [13]. The Madelon dataset [11] contains samples represented by
500-dimensional vectors grouped in 32 clusters placed on the vertices
of a five-dimensional hypercube. The ISOLET dataset [12] is composed
of alphabet-speech data from 150 different subjects. Each instance is
represented by a 617-feature vector complied using spectral coeffi-
cients, contour features, sonorant features, pre-sonorant features, and
post-sonorant features. The P53 Mutants dataset [13] is a large Biophys-
ical dataset with more than 30k samples in total and 5408 attributes
per instance. The feature representation is formed by combining the 2D
electrostatic and surface-based attributes with the 3D distance-based
attributes.

As the autoencoder topology, we use a simple architecture where
the encoder maps the input using two intermediate fully-connected
layers composed of 64 units with ReLU activation. Then, the bottleneck
representation of size 𝑑 is obtained using a fully-connected layer with
d units and Leaky ReLU [1] activation. Symmetrically, the decoder
is composed of two 64-dimensional fully-connected layers followed
by ReLU activation and an output layer with the same size as the
input using a sigmoid activation. The number of data dimensions,
cardinalities of the training and test sets, and the value of 𝑑 for each
dataset is specified in Table 1. For training, we use the Adam optimizer
with a learning rate of 10−2 and the mean square error as the standard
training loss 𝐿. The number of epochs and the batch size are set to 50
and 32, respectively, in all experiments. Each experiment is repeated
10 times and the mean and standard deviation of the root mean square
error (RMSE) on the test set are reported.

In Table 2, we report the experimental results obtained by training
the autoencoder using the standard loss and our proposed augmented
loss and different values for the hyper-parameter 𝛼, introduced in (4). It
can be seen that, by explicitly penalizing redundancy in the bottleneck
representations, the proposed approach consistently achieves lower
errors compared to the standard approach on the three datasets. On
the Madelon dataset, the best performance is achieved using 𝛼 = 0.005.
On the ISOLET dataset, using 𝛼 = 0.1 leads to the highest improvement,

Table 2
Reconstruction error on the three datasets used in the dimensionality reduction
experiments (average and standard deviation over 10 repetitions).

Madelon ISOLET P53 Mutants

Standard 0.14027 ± 0.00023 0.13143 ± 0.00259 0.02777 ± 0.00159
Ours (0.1) 0.14022 ± 0.00016 0.12993 ± 0.00283 0.02717 ± 0.00087
Ours (0.05) 0.14024 ± 0.00038 0.13081 ± 0.00366 0.02689 ± 0.00054
Ours (0.01) 0.14022 ± 0.00043 0.13101 ± 0.00204 0.02709 ± 0.00052
Ours (0.005) 0.14005 ± 0.00037 0.13135 ± 0.00267 0.02694 ± 0.00051

whereas, on the P53 Mutants dataset, the best performance is achieved
using 𝛼 = 0.05. It should be noted that while the performance gap
is not large compared to the standard approach, the improvement is
consistent on all the datasets and the different regularization rates.

In Fig. 2, we provide visualization results comparing the two ap-
proaches. We visualize the data in the projected space of the AE
trained with the standard loss and the proposed augmented loss using
t-SNE [35]. As can be seen, the AE trained with the augmented loss
provides a more compact representation of the classes. We also note
that by reducing redundancy, the learned embedding is more spread
over the projection space and contains fewer empty regions.

Dimensionality reduction is typically applied as a pre-processing
step to compile a compact feature representation that can be used to
solve another task, such as classification. Intuitively, learning diverse
and non-redundant features is crucial to achieve good performance
on the task of interest. Here, to further assess the quality of the
data representations learned using our approach, we conduct an extra
experiment by applying the 𝐾-Nearest Neighbor (𝐾-NN) classifier on
top of the bottleneck features. In Table 3, we report the classification
accuracy for 𝐾 = 3 and 𝐾 = 5. As can be seen, the bottleneck features
obtained using our approach yield consistently higher accuracy on the
three datasets. For example, for the Madelon dataset, using 𝛼 = 0.005
leads to 4.49% and 3.46% accuracy improvement compared to the
standard approach when using 𝐾 = 3 and 𝐾 = 5, respectively. It
is interesting to note also that using the augmented loss consistently
leads to more stable performance compared to the standard approach,
as shown by the lower variances.

Moreover, for comparative purposes, we report results obtained by
using WLD-reg [7], i.e., replacing the proposed regularizer with the
direct variant of WLD-reg on top of the bottleneck representation.1
Consistently with our results, WLD-reg also boosts performance com-
pared to the standard approach showing that reducing redundancy
in the bottleneck representation indeed helps to learn better features.
Compared to our approach, we also note that the use of pairwise
covariance instead of the 𝐿2 distance leads to higher performance on
all three datasets.

To further study the effect of the number of dimensions at the
bottleneck on performance, we conducted an additional experiment
using the Isolet dataset. We plot the average accuracy over training
the AE using 10 random seeds for different values of 𝑑 in Fig. 2
(right). As can be seen, reducing redundancy improves performance
for the different bottleneck sizes. It is interesting to note also that the
performance gap is larger for small values of 𝑑. This can be explained
by the fact that, when a smaller number of dimensions is used, it is
more crucial to learn diverse features for solving the task.

5. Experiments on image compression

In this section, we consider the image compression task using an
autoencoder. We start by testing the proposed approach on the MNIST

1 We note that WLD-reg [7] is a diversity promoting regularizer designed to
be added on top of the last intermediate layer of a neural network in a standard
supervised learning setting and not designed for unsupervised learning on top
of the bottleneck of an autoencoder.
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Fig. 2. t-SNE-based visualization of the ISOLET representations obtained by an AE trained by the standard approach (left) and the proposed approach (middle). Each color
corresponds to data from a specific class. Average (𝐾 = 3)-NN accuracy as a function of the dimension of the bottleneck size 𝑑 (right).

Table 3
Classification accuracy of Nearest Neighbor classifier applied on the bottleneck
representations (average and standard deviation over 10 repetitions).

Madelon
(𝐾 = 3)-NN (𝐾 = 5)-NN

Standard 69.33% ± 2.71 71.32% ± 2.82
WLD-reg [7] 70.83% ± 2.08 72.45% ± 2.01
Ours (0.1) 72.51% ± 1.73 74.08% ± 1.63
Ours (0.05) 73.52% ± 1.91 74.53% ± 1.49
Ours (0.01) 72.65% ± 2.21 74.50% ± 1.87
Ours (0.005) 73.82% ± 1.83 74.78% ± 1.78

ISOLET
(𝐾 = 3)-NN (𝐾 = 5)-NN

Standard 76.32% ± 1.85 77.70% ± 1.60
WLD-reg [7] 78.22% ± 0.64 79.73% ± 0.70
Ours (0.1) 78.35% ± 0.46 79.82% ± 0.47
Ours (0.05) 78.18% ± 0.40 79.43% ± 0.44
Ours (0.01) 78.96% ± 0.56 79.83% ± 0.54
Ours (0.005) 77.34% ± 0.66 79.29% ± 0.66

P53 Mutants
(𝐾 = 3)-NN (𝐾 = 5)-NN

Standard 56.42% ± 0.60 54.99% ± 0.48
WLD-reg [7] 56.29% ± 0.36 54.86% ± 0.46
Ours (0.1) 57.88% ± 0.46 56.18% ± 0.59
Ours (0.05) 56.17% ± 0.46 55.39% ± 1.09
Ours (0.01) 57.22% ± 0.50 55.65% ± 0.46
Ours (0.005) 56.83% ± 0.41 55.92% ± 0.46

dataset [14]. It contains grayscale images with resolution of 28 × 28
pixels, which are vectorized to form 784-dimensional vectors. The
dataset is split in 50,000 training and 10,000 test images.

For the autoencoder model, we use a simple architecture. The
encoder is composed of two fully-connected layers composed of 256 and
128 units, respectively. The final output of the encoder is composed of 𝑑
units, where 𝑑 is the size of the bottleneck. Similarly, the decoder part
takes the encoder’s output, maps it to an intermediate layer of 128 units,
then 256 units, and outputs a 784-vector. In all the layers, we use ReLU
activation except for the final layer, where sigmoid activation is used.

For training, we use the Adam optimizer with a learning rate of
10−2 and the mean square loss as the standard training loss 𝐿. We
train using 80% of the images in the original training set and hold
the remaining 20% of the images as a validation set. During training,
the model with the lowest mean square error on the validation set
is saved and used in the test phase. We repeat each experiment five
times and report the mean and standard deviation of the root-mean-
square error (RMSE) errors, the peak signal-to-noise ratio (PSNR), and
structural index similarity (SSIM) scores on the test set for the different
approaches. We experiment with two different bottleneck sizes, i.e., 𝑑 =
256 and 𝑑 = 64. The results for different bottleneck sizes are reported
in Table 4.

We note that the proposed approach consistently improves perfor-
mance compared to training with the standard loss, i.e., it leads to
lower RMSE values and higher PSNR and SSMI scores. For 𝑑 = 256, the

Table 4
RMSE, PSNR, and SSIM on the MNIST dataset (average and standard deviation over 5
repetitions).

RMSE ↓ PSNR ↑ SSIM ↑

784 → 256

Standard 0.0518 ± 0.0005 0.9631 ± 0.0016 26.43 ± 0.09
Ours (0.1) 0.0508 ± 0.0005 0.9641 ± 0.0010 26.57 ± 0.11
Ours (0.05) 0.0508 ± 0.0005 0.9636 ± 0.0007 26.58 ± 0.08
Ours (0.01) 0.0513 ± 0.0005 0.9647 ± 0.0013 26.49 ± 0.09
Ours (0.005) 0.0506 ± 0.0007 0.9635 ± 0.0012 26.61 ± 0.10

784 → 64

Standard 0.0596 ± 0.0021 0.9597 ± 0.0022 25.25 ± 0.29
Ours (0.1) 0.0584 ± 0.0010 0.9607 ± 0.0012 25.42 ± 0.16
Ours (0.05) 0.0588 ± 0.0018 0.9604 ± 0.0017 25.38 ± 0.25
Ours (0.01) 0.0593 ± 0.0010 0.9599 ± 0.0012 25.30 ± 0.15
Ours (0.005) 0.0588 ± 0.0009 0.9602 ± 0.0013 25.35 ± 0.13

Fig. 3. Visualization of digits reconstructed by an AE trained by using the standard
and the proposed training approaches. The first row contains the original inputs. Their
reconstructed versions corresponding to the standard approach are shown in the second
row, and the proposed approach in the third row.

lowest RMSE value is achieved using 𝛼 = 0.005, and the highest PSNR
and SSMI scores are obtained using 𝛼 = 0.01 and 𝛼 = 0.005, respectively.
For 𝑑 = 64, using 𝛼 = 0.1 leads to the best performance across all the
metrics. Fig. 3 provides visualization results of images reconstructed
from the representations learned using our approach for 𝑑 = 64. We
note that using the proposed augmented loss to train the AE leads to
reconstructed inputs with lower distortion.

We also evaluate our approach on the image compression task with
a more challenging dataset, namely the CIFAR10 Dataset [15]. The
dataset contains 32 × 32-pixel color images, which are vectorized to
form 3,072-dimensional vectors. For the model topology, we use two
hidden layers with 512 and 256 units and ReLU activation. For the
bottleneck size 𝑑, we experiment with two configurations, 𝑑 = 128
and 𝑑 = 256. All the models are trained with Adam optimizer with
a 10−2 learning rate and a batch size of 128 for 50 epochs. The average
and standard deviation of the different metrics over 10 random seeds
are provided in Table 5. Similar to the results on the MNIST dataset,
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Table 5
RMSE, PSNR, and SSIM on the CIFAR10 dataset (average and standard deviation over
5 repetitions).

RMSE ↓ PSNR ↑ SSIM ↑

3072 → 256

Standard 0.0888 ± 0.0022 0.6601 ± 0.0068 21.5547 ± 0.2470
Ours (0.01) 0.0882 ± 0.0012 0.6637 ± 0.0064 21.6168 ± 0.1314
Ours (0.005) 0.0882 ± 0.0006 0.6628 ± 0.0060 21.6271 ± 0.0593
Ours (0.001) 0.0882 ± 0.0011 0.6613 ± 0.0068 21.6347 ± 0.1154
Ours (0.0005) 0.0877 ± 0.0011 0.6642 ± 0.0078 21.6829 ± 0.1156
Ours (0.0001) 0.0885 ± 0.0014 0.6610 ± 0.0060 21.5927 ± 0.1518

3072 → 128

Standard 0.0929 ± 0.0015 0.6151 ± 0.0100 21.2830 ± 0.1455
ours (0.01) 0.0920 ± 0.0010 0.6210 ± 0.0078 21.3765 ± 0.0920
ours (0.005) 0.0927 ± 0.0014 0.6144 ± 0.0089 21.3093 ± 0.1280
ours (0.001) 0.0917 ± 0.0009 0.6246 ± 0.0054 21.4150 ± 0.0888
ours (0.0005) 0.0923 ± 0.0016 0.6190 ± 0.0130 21.3436 ± 0.1527
ours (0.0001) 0.0926 ± 0.0019 0.6182 ± 0.0072 21.3184 ± 0.2070

Fig. 4. Original samples from the fashion MNIST dataset (top), and their noisy versions
using 𝛽 = 0.2 (bottom).

we note that the proposed approach consistently leads to performance
improvements. For 𝑑 = 256, the best performance is achieved by
using 𝛼 = 0.0005, whereas for 𝑑 = 128, 𝛼 = 0.001 leads to the best
performance.

6. Experiments on image denoising

In this section, we consider the image denoising task using an
autoencoder. We test the proposed approach using the fashion MNIST
dataset [16], which is an image dataset composed of 10 classes. Each
sample is a 28 × 28 gray-scale image. The dataset has a total of 60,000
training samples and 10,000 test samples. To construct a noisy dataset,
we add a random noise from the normal distribution 𝛽× (0, 1), where
𝛽 is a hyper-parameter controlling the noise rate. In Fig. 4, we provide
examples of original images and their noisy versions.

As the autoencoder model, we use a simple CNN-based architecture.
The encoder is composed of two convolutional layers, each of which has
16 and 4 filters, respectively, with kernel size 3 × 3. Symmetrically, the
decoder is composed of two transposed convolutional layers of sizes
4 and 16 and a final convolutional layer with one filter with kernel
size 3 × 3. All the layers have ReLU activation function except for the
last layer where we use a sigmoid activation. Each model is trained for
50 epochs using the mean square error loss and Adam optimizer. We
repeat each experiment five times and report the mean and standard
deviation of RMSE, PSNR, and SSMI scores for different noise rates.

In Table 6, we report the experimental results for three different
noise rates, i.e., 𝛽 = 0.1, 𝛽 = 0.2, and 𝛽 = 0.4. Except for the hyper-
parameter 𝛼 = 0.01 with noise rates 𝛽 = 0.2 and 𝛽 = 0.4, we note
that our approach by explicitly minimizing the redundancy constantly
outperforms the standard approach across all metrics. For the noise rate
𝛽 = 0.1, the lowest RMSE value and the highest SSMI score are achieved
using our approach with 𝛼 = 0.05, while the best PSNR is achieved with
𝛼 = 0.005. For 𝛽 = 0.2, the best scores across all metrics correspond to
𝛼 = 0.005. For the extreme level of noise case, i.e., 𝛽 = 0.4, our approach

Table 6
RMSE, PSNR, and SSIM on the fashion MNIST dataset (average and standard deviation
over 5 repetitions).

RMSE ↓ PSNR ↑ SSIM ↑

𝛽 = 0.1

Standard 0.0796 ± 0.0016 0.7980 ± 0.0061 22.51 ± 0.19
Ours (0.1) 0.0786 ± 0.0009 0.8018 ± 0.0024 22.64 ± 0.13
Ours (0.05) 0.0772 ± 0.0018 0.8049 ± 0.0062 22.84 ± 0.25
Ours (0.01) 0.0779 ± 0.0019 0.8047 ± 0.0066 22.77 ± 0.27
Ours (0.005) 0.0774 ± 0.0012 0.8058 ± 0.0044 22.82 ± 0.18

𝛽 = 0.2

Standard 0.0941 ± 0.0026 0.7283 ± 0.0110 20.95 ± 0.25
Ours (0.1) 0.0934 ± 0.0021 0.7301 ± 0.0102 21.03 ± 0.19
Ours (0.05) 0.0933 ± 0.0020 0.7290 ± 0.0079 21.04 ± 0.19
Ours (0.01) 0.0975 ± 0.0034 0.7143 ± 0.1276 20.63 ± 0.31
Ours (0.005) 0.0922 ± 0.0012 0.7357 ± 0.0058 21.14 ± 0.13

𝛽 = 0.4

Standard 0.1262 ± 0.0021 0.5901 ± 0.0089 18.27 ± 0.16
Ours (0.1) 0.1258 ± 0.0021 0.5954 ± 0.0095 18.30 ± 0.15
Ours (0.05) 0.1260 ± 0.0016 0.5946 ± 0.0067 18.28 ± 0.12
Ours (0.01) 0.1266 ± 0.0014 0.5865 ± 0.0070 18.22 ± 0.09
Ours (0.005) 0.1260 ± 0.0017 0.5911 ± 0.0085 18.28 ± 0.13

Fig. 5. Visualization of images denoised by AEs trained by using the standard and the
proposed training approaches. The first row contains the original inputs. Their denoised
versions corresponding to the standard approach are shown in the second row and the
proposed approach in the third row. The last row contains the ground truth.

with 𝛼 = 0.1 achieves the best performance across the three metrics.
In Fig. 5, we present visual outputs for our approach. As shown, our
approach learns to efficiently discard the noise from the input images.

Next, we evaluate the performance of the proposed approach in
image denoising with a more challenging dataset, i.e., CIFAR10. We
use the same model topology and experimental protocol used for this
dataset in Section 5. We experiment with two levels of noise 𝛽 =
0.1 and 𝛽 = 0.2. The results over 10 random seeds are presented in
Table 7. As can be seen in Table 7, reducing features’ redundancy in
the bottleneck improves the performance of AE for both noise levels.
For 𝛽 = 0.1, using the augmented loss with 𝑎𝑙𝑝ℎ𝑎 = 0.005 achieved
the best performance, while for the high noise rate, i.e., 𝛽 = 0.2,
𝛼 = 0.0001 led to the best performance across the three metrics. With
the same hardware configuration, the standard autoencoder average
training time is on average 1, 297.7 milliseconds per epoch, whereas
using our approach takes on average 1, 301.9 milliseconds per epoch.
So adding our regularizer leads to performance improvement with less
than 0.33% additional time cost.

7. Conclusion

In this paper, we proposed a scheme for modeling redundancies
at the bottleneck of an autoencoder. We proposed to complement
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Table 7
RMSE, PSNR, and SSIM on the CIFAR10 dataset (average and standard deviation over
5 repetitions).

RMSE ↓ PSNR ↑ SSIM ↑

𝛽 = 0.1

Standard 0.0954 ± 0.0019 0.6098 ± 0.0121 20.9243 ± 0.1734
Ours (0.01) 0.0948 ± 0.0016 0.6172 ± 0.0093 20.9703 ± 0.1550
Ours (0.005) 0.0940 ± 0.0010 0.6227 ± 0.0056 21.0411 ± 0.1021
Ours (0.001) 0.0952 ± 0.0018 0.6129 ± 0.0116 20.9325 ± 0.1651
Ours (0.0005) 0.0943 ± 0.0012 0.6190 ± 0.0085 21.0238 ± 0.1097
Ours (0.0001) 0.09489 ± 0.0012 0.6157 ± 0.0072 20.9644 ± 0.1102

𝛽 = 0.2

Standard 0.1001 ± 0.0012 0.5798 ± 0.0081 20.4497 ± 0.0972
Ours (0.01) 0.0996 ± 0.0013 0.5846 ± 0.0089 20.4900 ± 0.1155
Ours (0.005) 0.1000 ± 0.0015 0.5806 ± 0.0104 20.4597 ± 0.1118
Ours (0.001) 0.0999 ± 0.0014 0.5824 ± 0.0090 20.4626 ± 0.1118
Ours (0.0005) 0.0997 ± 0.0015 0.5814 ± 0.0111 20.4881 ± 0.1206
Ours (0.0001) 0.0992 ± 0.0015 0.5884 ± 0.0081 20.5186 ± 0.1370

the training loss with an extra regularization term, which explicitly
penalizes the pairwise covariances of the units at the encoder’s output
and, thus, forces it to learn more diverse and compact representations
for the input samples. The proposed approach can be interpreted as an
unsupervised regularizer on top of the encoder and can be integrated
into any autoencoder-based model in a plug-and-play manner. We em-
pirically demonstrated the effectiveness of our approach across multiple
tasks, namely dimensionality reduction, compression, and denoising.
We showed that it improves performance compared to the standard
approach, with minimal training time cost increase. Even though the
proposed regularizer consistently improves the performance of au-
toencoders, its key limitation is the marginal improvement in certain
tasks, as shown in the results, e.g., Table 2. Future directions include
proposing more efficient redundancy modeling techniques to further
improve the performance of autoencoders and exploring redundancy
reduction strategies for variational autoencoders.

CRediT authorship contribution statement

Firas Laakom: Conceptualization, Methodology, Writing – original
draft. Jenni Raitoharju: Supervision, Writing – review & editing.
Alexandros Iosifidis: Supervision, Writing – review & editing. Moncef
Gabbouj: Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work has been supported by the Academy of Finland Awcha
project DN 334566 and NSF-Business Finland Center for Big Learning
project AMALIA. The work of Jenni Raitoharju was supported by the
Academy of Finland (projects 324475 and 333497).

References

[1] I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep Learning, MIT Press,
2016.

[2] F. Zhuang, X. Cheng, P. Luo, S.J. Pan, Q. He, Supervised representation learning:
Transfer learning with deep autoencoders, in: Twenty-Fourth International Joint
Conference on Artificial Intelligence, 2015.

[3] C. Zhou, R.C. Paffenroth, Anomaly detection with robust deep autoencoders, in:
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2017.

[4] S. Petscharnig, M. Lux, S. Chatzichristofis, Dimensionality reduction for image
features using deep learning and autoencoders, in: The 15th International
Workshop on Content-Based Multimedia Indexing, 2017.

[5] L. Theis, W. Shi, A. Cunningham, F. Huszár, Lossy image compression with
compressive autoencoders, 2017, arXiv preprint arXiv:1703.00395.

[6] G.D. Cavalcanti, L.S. Oliveira, T.J. Moura, G.V. Carvalho, Combining diversity
measures for ensemble pruning, Pattern Recognit. Lett. (2016).

[7] F. Laakom, J. Raitoharju, A. Iosifidis, M. Gabbouj, WLD-reg: A data-dependent
within-layer diversity regularizer, in: the 37th AAAI Conference on Artificial
Intelligence, 2023.

[8] M. Cogswell, F. Ahmed, R.B. Girshick, L. Zitnick, D. Batra, Reducing overfitting
in deep networks by decorrelating representations, in: International Conference
on Learning Representations, 2016.

[9] F. Laakom, J. Raitoharju, A. Iosifidis, M. Gabbouj, On feature diversity in
energy-based models, in: Energy Based Models Workshop-ICLR, 2021.

[10] H. Ide, T. Kobayashi, K. Watanabe, T. Kurita, Robust pruning for efficient CNNs,
Pattern Recognit. Lett. (2020).

[11] I. Guyon, Madelon, 2008, UCI Machine Learning Repository.
[12] R. Cole, M. Fanty, ISOLET, 1994, UCI Machine Learning Repository.
[13] R. Lathrop, p53 Mutants, 2010, UCI Machine Learning Repository.
[14] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to

document recognition, Proc. IEEE (1998).
[15] A. Krizhevsky, G. Hinton, et al., Learning multiple layers of features from tiny

images, Technical report, University of Toronto, 2009.
[16] H. Xiao, K. Rasul, R. Vollgraf, Fashion-mnist: a novel image dataset for

benchmarking machine learning algorithms, 2017, arXiv preprint arXiv:1708.
07747.

[17] J. Guo, X. Yuan, P. Xu, H. Bai, B. Liu, Improved image clustering with deep
semantic embedding, Pattern Recognit. Lett. (2020).

[18] Y. Sang, J. Sang, M.S. Alam, Image encryption based on logistic chaotic systems
and deep autoencoder, Pattern Recognit. Lett. (2022).

[19] A. Golinski, R. Pourreza, Y. Yang, G. Sautiere, T.S. Cohen, Feedback recurrent
autoencoder for video compression, in: Asian Conference on Computer Vision,
2020.

[20] X. Ye, L. Wang, H. Xing, L. Huang, Denoising hybrid noises in image with
stacked autoencoder, in: 2015 IEEE International Conference on Information and
Automation, IEEE, 2015.

[21] L. Gondara, Medical image denoising using convolutional denoising autoen-
coders, in: 2016 IEEE 16th International Conference on Data Mining Workshops,
ICDMW, IEEE, 2016.

[22] M. Patacchiola, P. Fox-Roberts, E. Rosten, Y-autoencoders: Disentangling latent
representations via sequential encoding, Pattern Recognit. Lett. (2020).

[23] J. Deng, Z. Zhang, E. Marchi, B. Schuller, Sparse autoencoder-based feature
transfer learning for speech emotion recognition, in: Humaine Association
Conference on Affective Computing and Intelligent Interaction, 2013.

[24] P. Baldi, Autoencoders, unsupervised learning, and deep architectures, in:
ICML Workshop on Unsupervised and Transfer Learning, JMLR Workshop and
Conference Proceedings, 2012.

[25] A. Jeffares, T. Liu, J. Crabbé, F. Imrie, M. van der Schaar, TANGOS: Regularizing
tabular neural networks through gradient orthogonalization and specialization,
2023, arXiv preprint arXiv:2303.05506.

[26] J. Zbontar, L. Jing, I. Misra, Y. LeCun, S. Deny, Barlow twins: Self-supervised
learning via redundancy reduction, in: The 38th International Conference on
Machine Learning, 2021.

[27] F. Laakom, J. Raitoharju, A. Iosifidis, M. Gabbouj, Efficient CNN with uncorre-
lated bag of features pooling, in: 2022 IEEE Symposium Series on Computational
Intelligence, SSCI, IEEE, 2022.

[28] A. Bardes, J. Ponce, Y. LeCun, Vicreg: Variance-invariance-covariance reg-
ularization for self-supervised learning, 2021, arXiv preprint arXiv:2105.
04906.

[29] F. Laakom, J. Raitoharju, A. Iosifidis, M. Gabbouj, Learning distinct features
helps, provably, in: Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, Springer, 2023.

[30] W. Zhao, R. Chellappa, P.J. Phillips, Subspace Linear Discriminant Analysis for
Face Recognition, Citeseer, 1999.

[31] Y. Koren, L. Carmel, Robust linear dimensionality reduction, IEEE Trans. Vis.
Comput. Graph. (2004).

[32] F. Laakom, J. Raitoharju, N. Passalis, A. Iosifidis, M. Gabbouj, Graph embedding
with data uncertainty, IEEE Access (2022).

[33] D. DeMers, G.W. Cottrell, Non-linear dimensionality reduction, in: Advances in
Neural Information Processing Systems, Citeseer, 1993.

[34] Y.-R. Yeh, S.-Y. Huang, Y.-J. Lee, Nonlinear dimension reduction with kernel
sliced inverse regression, IEEE Trans. Knowl. Data Eng. (2008).

[35] L. Van der Maaten, G. Hinton, Visualizing data using t-SNE, J. Mach. Learn. Res.
(2008).

[36] L. McInnes, J. Healy, J. Melville, Umap: Uniform manifold approximation and
projection for dimension reduction, 2018, arXiv preprint arXiv:1802.03426.



Pattern Recognition Letters 178 (2024) 202–208

208

F. Laakom et al.

[37] A. Iosifidis, A. Tefas, I. Pitas, On the optimal class representation in linear
discriminant analysis, IEEE Trans. Neural Netw. Learn. Syst. (2013).

[38] A.C. Kumar, Analysis of unsupervised dimensionality reduction techniques,
Comput. Sci. Inf. Syst. (2009).

[39] S. Wold, K. Esbensen, P. Geladi, Principal component analysis, Chemometr. Intell.
Laboratory Syst. (1987).

[40] S.A. Thomas, A.M. Race, R.T. Steven, I.S. Gilmore, J. Bunch, Dimensionality
reduction of mass spectrometry imaging data using autoencoders, in: IEEE
Symposium Series on Computational Intelligence, SSCI, 2016.

[41] G. Toderici, D. Vincent, N. Johnston, S. Jin Hwang, D. Minnen, J. Shor, M.
Covell, Full resolution image compression with recurrent neural networks, in:
IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[42] J. Ballé, V. Laparra, E.P. Simoncelli, End-to-end optimization of nonlinear
transform codes for perceptual quality, in: 2016 Picture Coding Symposium, PCS,
IEEE, 2016.

[43] K. Gupta, S. Gupta, Image denoising techniques-a review paper, IJITEE (2013).
[44] C. Tian, L. Fei, W. Zheng, Y. Xu, W. Zuo, C.-W. Lin, Deep learning on image

denoising: An overview, Neural Netw. (2020).
[45] J. Garcia-Gonzalez, J.M. Ortiz-de Lazcano-Lobato, R.M. Luque-Baena, M.A.

Molina-Cabello, E. López-Rubio, Foreground detection by probabilistic modeling
of the features discovered by stacked denoising autoencoders in noisy video
sequences, Pattern Recognit. Lett. (2019).





PUBLICATION
V

On Feature Diversity in Energy-based models
F. Laakom, J. Raitoharju, A. Iosifidis and M. Gabbouj

Energy Based Models Workshop-ICLR2021

© 2021 . Publication reprinted with the permission of the
copyright holders





Energy-Based Models Workshop ICLR 2021

ON FEATURE DIVERSITY IN ENERGY-BASED MODELS

Firas Laakom
Faculty of Information Technology
Tampere University
Tampere, Finland
firas.laakom@tuni.fi

Jenni Raitoharju
Programme for Environmental Information
Finnish Environment Institute
Jyväskylä, Finland
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ABSTRACT

Energy-based learning is a powerful learning paradigm that encapsulates various
discriminative and generative approaches. An energy-based model (EBM) is typ-
ically formed of one (or many) inner-models which learn a combination of the
different features to generate an energy mapping for each input configuration. In
this paper, we focus on the diversity of the produced feature set. We extend the
probably approximately correct (PAC) theory of EBMs and analyze the effect of
the diversity on the performance of EBMs. We derive generalization bounds for
various learning contexts, i.e., regression, classification, and implicit regression,
with different energy functions and we show that indeed increasing the diversity
of the feature set can consistently decrease the gap between the true and empirical
expectation of the energy and boosts the performance of the model.

1 INTRODUCTION

The energy-based learning paradigm was first proposed by LeCun et al. (2006) as an alternative to
probabilistic graphical models (Koller & Friedman, 2009). As their name suggests, energy-based
models (EBMs) map each input ‘configuration’ to a single scalar, called the ‘energy’. In the learning
phase, the parameters of the model are optimized to associate the desired configurations with small
energy values and the undesired ones with higher energy values (Kumar et al., 2019; Song & Ermon,
2019; Yu et al., 2020; Nash & Durkan, 2019; Meng et al., 2020; Arbel et al., 2021). In the inference
phase, given an incomplete input configuration, the energy surface is explored to find the remaining
variables which yield the lowest energy. EBMs encapsulate solutions to several supervised (LeCun
et al., 2006; Fang & Liu, 2016) and unsupervised learning problems (Ranzato et al., 2007b; Haarnoja
et al., 2017; Parshakova et al., 2019; Deng et al., 2020; Bakhtin et al., 2021) and provide a common
theoretical framework for many learning models, including traditional discriminative (Zhai et al.,
2016; Grathwohl et al., 2019; Li et al., 2020; LeCun et al., 2006; Teh et al., 2003) and generative
(Zhao et al., 2016; Dai et al., 2017; Ranzato et al., 2007a; Che et al., 2020; Khalifa et al., 2020;
Arbel et al., 2021) approaches.

Formally, let us denote the energy function by E(W,X,Y ), where W represents the model pa-
rameters to be optimized during training and X,Y are sets of variables. Figure 1 illustrates how
classification, regression, and implicit regression can be expressed as EBMs. In Figure 1 (a), a re-
gression scenario is presented. The input X , e.g., an image, is transformed using an inner model
GW (X) and its distance, D, to the second input Y is computed yielding the energy function. A
valid energy function in this case can be the L1 or the L2 distance. In the binary classification case
(Figure 1 (b)), the energy can be defined as E(W,X,Y ) = −Y GW (X). In the inference phase,
given an input X , the label Y ∗ can be obtained by solving the following optimization problem:

Y ∗ = arg min
Y

E(W,X,Y ). (1)
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Figure 1: An illustration of energy-based models used to solve (a) a regression problem (b) a binary
classification problem (c) an implicit regression problem.

An EBM typically relies on an inner model, i.e., Gw(X), to generate the desired energy landscape
(LeCun et al., 2006). Depending on the problem at hand, this function can be constructed as a linear
projection, a kernel method, or a neural network and its parameters are optimized in a data-driven
manner in the training phase. Formally, Gw(X) can be written as

GW (X) =

D∑

i

wiφi(X), (2)

where {φ1(·), · · · , φD(·)} is the feature set, which can be hand-crafted, separately trained from
unlabeled data (Zhang & LeCun, 2017), or modeled by a neural network and optimized in the
training phase of the EBM model (Du & Mordatch, 2019). In the rest of the paper, we assume
that the inner models GW defined in the energy-based learning system (Figure 1) are obtained as a
weighted sum of different features as expressed in equation 2.

In (Zhang, 2013), it was shown that simply minimizing the empirical energy over the training data
does not theoretically guarantee the minimization of the expected value of the true energy. Thus,
developing and motivating novel regularization techniques is required (Zhang & LeCun, 2017). We
argue that the quality of this feature set, i.e., {φ1(·), · · · , φD(·)}, plays a critical role in the overall
performance of the global model. In this work, we extend the theoretical analysis of (Zhang, 2013)
and focus on the ‘diversity’ of this set and its effect on the generalization ability of the EBM models.
Intuitively, it is clear that a less correlated set of intermediate representations is richer and thus able
to capture more complex patterns in the input. Thus, it is important to avoid redundant features for
achieving a better performance. However, a theoretical analysis is missing. We start by quantifying
the diversity of a set. To this end, we introduce ϑ-diversity:
Definition 1. (ϑ-diversity) A set of feature functions, {φ1(·), · · · , φD(·)} is called ϑ-diverse, if there
exists a constant ϑ ∈ R, such that for every input X we have

D∑

i6=j
(φi(X)− φj(X))2 > ϑ (3)

with a high probability τ .

Intuitively, if two feature maps φi(·) and φj(·) are different, then with high probability they have
different outputs for the same input. However, if for example the features are extracted using a neural
network with a ReLU activation function, then there is a high probability that some of the features
associated with the input will be zero. Thus, defining a lower bound for the pair-wise diversity
directly is impractical. To this end, we quantify diversity as the lower-bound over the sum of the
pair-wise distances of the feature maps as expressed in equation 3. ϑ measures the diversity of a set.

In machine learning context, diversity has been explored in ensemble learning (Li et al., 2012; Yu
et al., 2011), sampling (Derezinski et al., 2019; Bıyık et al., 2019; Gartrell et al., 2019), ranking
(Yang et al., 2019; Gan et al., 2020), pruning (Kondo & Yamauchi, 2014; He et al., 2019; Singh
et al., 2020; Lee et al., 2020), and neural networks (Xie et al., 2015; 2017). In Xie et al. (2015;
2017), it was shown theoretically and experimentally that employing a diversity strategy over the
weights of a neural network using the mutual angles improves the generalization ability of the
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model. In this work, we explore a new line of research, where diversity is defined over the feature
maps directly, using the ϑ-diversity, in the context of energy-based learning. We theoretically study
the generalization ability of EBMs in different learning contexts, i.e., regression, classification,
implicit regression, and we derive new generalization bounds using the ϑ-diversity providing
theoretical guarantees that a diverse set of features indeed improves the generalization ability of the
model. The contributions of this paper can be summarized as follows:

• We explore a new line of research, where diversity is defined over the features representing
the input data and not over the model’s parameters. To this end, we introduce ϑ-diversity
as a quantification of the diversity of a given feature set.

• We extend the theoretical analysis (Zhang, 2013) and study the effect of the diversity of the
feature set on the generalization of the energy-based models (EBMs).

• We derive approximation bounds for the expectation of the true energy in different learn-
ing contexts, i.e., regression, classification, and implicit regression, using different energy
functions. Our analysis consistently shows that increasing the diversity of the feature set
can boost the performance of an energy based model.

2 PAC-LEARNING OF EBMS WITH ϑ-DIVERSITY

In this section, we derive a qualitative justification for ϑ-diversity using probably approximately
correct (PAC) learning (Valiant, 1984). The PAC-based theory for standard energy based models has
been established in (Zhang, 2013). Based on the Rademacher complexity (Bartlett & Mendelson,
2002), several EBMs learning guarantees have been shown. In Lemma 1, we present the principal
PAC-learning bound for energy functions with finite outputs.
Definition 2. (Bartlett & Mendelson, 2002) For a given dataset with m samples S = {xi, yi}mi=1
generated by a distribution D and for a model space F : X → R with a single dimensional output,
the empirical Rademacher complexityRm(F) of the set F is defined as follows:

Rm(F) = Eσ
[

sup
f∈F

1

m

N∑

i=1

σif(xi)

]
, (4)

where the Rademacher variables σ = {σ1, · · · , σN} are independent uniform random variables in
{−1, 1}.
Lemma 1. (Zhang, 2013) For a well-defined energy function E(h,x,y) over hypothesis class H,
input set X and output set Y (LeCun et al., 2006), the following holds for all h in H with a proba-
bility of at least 1− δ

E(x,y)∼D[E(h,x,y)] ≤ 1

m

∑

(x,y)∈S
E(h,x,y) + 2Rm(E) +M

√
log(2/δ)

2m
, (5)

where E is the energy function class defined as E = {E(h,x,y)|h ∈ H},Rm(E) is its Rademacher
complexity, and M is the upper bound of E .

Lemma 1 provides a generalization bound for energy-based models with well-defined (non-negative)
and bounded energy. The expected energy is bounded using the sum of three terms: The first
term is the empirical expectation of energy over the training data, the second term depends on the
Rademacher complexity of the energy class, and the third term involves the number of the training
data m and the upper-bound of the energy function M . This shows that merely minimizing the
empirical expectation of energy, i.e., the first term, may not yield a good approximation of the true
expectation. In (Zhang & LeCun, 2017), it has been shown that regularization using unlabeled data
reduces the second and third terms, thus, leading to better generalization. In this work, we express
these two terms using the ϑ-diversity and show that employing a diversity strategy may also decrease
the gap between the true and empirical expectation of the energy. In Section 2.1, we consider the
special case of regression and derive two bounds relative to two energy functions based on L1 and
L2 distances. In Section 2.2, we derive the bound relative to the binary classification task using as
energy function E(W ,x, y) = −yGW (x) (LeCun et al., 2006). In Section 2.3, we consider the
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case of implicit regression, which encapsulates different learning problems such as metric learning,
generative models, and denoising (LeCun et al., 2006). For this case, we use theL2 distance between
the inner models as the energy function.

2.1 REGRESSION TASK

Regression can be formulated as an energy-based learning problem (Figure 1 (a)) using the inner
model GW (x) =

∑D
i=1 wiφi(x) = wTΦ(x). We also suppose that the feature set is well-defined

over the input domain X , i.e., ∀x ∈ X ||Φ(x)||2 ≤ A. The two valid energy functions which can
be used for regression are: E2(W ,x, y) = 1

2 ||GW (x)− y||22 and E1(W ,x, y) = ||GW (x)− y||1
(LeCun et al., 2006). Theorem 1 and Theorem 2 express the special cases of Lemma 1 using the
ϑ-diversity of the feature set {φ1(·), · · · , φD(·)}.
Theorem 1. For the energy function E(h,x,y) = 1

2 ||GW (x) − y||22, over the input set X ∈ RN ,
hypothesis class H = {GW (x) =

∑D
i=1 wiφi(x) = wTΦ(x) | Φ ∈ F , ∀x ||Φ(x)||2 ≤ A}, and

output set Y ⊂ R, if the feature set {φ1(·), · · · , φD(·)} is ϑ-diverse with a probability τ , then with
a probability of at least (1− δ)τ , the following holds for all h inH

E(x,y)∼D[E(h,x,y)] ≤ 1

m

∑

(x,y)∈S
E(h,x,y) + 8D||w||∞(||w||∞

√
DA2 − ϑ2 +B)Rm(F)

+ (||w||∞
√
DA2 − ϑ2 +B)2

√
log(2/δ)

2m
, (6)

where B is the upper-bound of Y , i.e., y ≤ B, ∀y ∈ Y .
Theorem 2. For the energy function E(h,x,y) = ||GW (x) − y||1, over the input set X ∈ RN ,
hypothesis class H = {GW (x) =

∑D
i=1 wiφi(x) = wTΦ(x) | Φ ∈ F , ∀x ||Φ(x)||2 ≤ A}, and

output set Y ⊂ R, if the feature set {φ1(·), · · · , φD(·)} is ϑ-diverse with a probability τ , then with
a probability of at least (1− δ)τ , the following holds for all h inH

E(x,y)∼D[E(h,x,y)] ≤ 1

m

∑

(x,y)∈S
E(h,x,y) + 4D||w||∞Rm(F)

+ 2(||w||∞
√
DA2 − ϑ2 +B)

√
log(2/δ)

2m
, (7)

where B is the upper-bound of Y , i.e., y ≤ B, ∀y ∈ Y .

The proofs are available in the Appendix. We note that, in Theorem 1 and Theorem 2, we consis-
tently find that the bound of the true expectation of the energy is a decreasing function with respect
to ϑ. This proves that that for the regression task employing a diversity strategy can improve the
generalization performance of the energy-based model.

2.2 TWO-CLASS CLASSIFIER

Here, we consider the problem of binary classification, as illustrated in Figure 1 (b). Using the same
assumption as in regression for the inner model, i.e., GW (x) =

∑D
i=1 wiφi(x) = wTΦ(x), energy

function ofE(W ,x, y) = −yGW (x) (LeCun et al., 2006), and the ϑ-diversity of the feature set,we
express Lemma 1 for this specific configuration in Theorem 3.
Theorem 3. For the energy function E(h,x,y) = −yGW (x), over the input set X ∈ RN , hy-
pothesis class H = {GW (x) =

∑D
i=1 wiφi(x) = wTΦ(x) | Φ ∈ F , ∀x ||Φ(x)||2 ≤ A}, and

output set Y ⊂ R, if the feature set {φ1(·), · · · , φD(·)} is ϑ-diverse with a probability τ , then with
a probability of at least (1− δ)τ , the following holds for all h inH

E(x,y)∼D[E(h,x,y)] ≤ 1

m

∑

(x,y)∈S
E(h,x,y) + 4D||w||∞Rm(F)

+ ||w||∞
√
DA2 − ϑ2

√
log(2/δ)

2m
, (8)
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The proof is available in the Appendix. Similar to the regression task, we note that the upper-bound
of the true expectation is a decreasing function with respect to the diversity term. Thus, a more
diverse feature set, i.e., higher ϑ, has a lower upper-bound for the true energy.

2.3 IMPLICIT REGRESSION

In this section, we consider the problem of implicit regression. This is a general formulation of
a different set of problems such as metric learning, where the goal is to learn a distance function
between two domains, image denoising, or object detection as illustrated in (LeCun et al., 2006).
This form of EBM (Figure 1 (c)) has two inner models, G1

W (·) and G2
W (·), which can be equal or

different according to the problem at hand. Here, we consider the general case, where the two models
correspond to two different combinations of different features, i.e., G1

W (x) =
∑D(1)

i=1 w1
i φ

1
i (x) and

G
(2)
W (y) =

∑D(2)

i=1 w2
i φ

2
i (y). Thus, we have a different ϑ-diversity term for each set. The final result

is presented in Theorem 4.

Theorem 4. For the energy function E(h,x,y) = 1
2 ||G

(1)
W (x) − G

(2)
W (y)||22, over the input set

X ∈ RN , hypothesis class H = {G(1)
W (x) =

∑D(1)

i=1 w
(1)
i φ

(1)
i (x) = w(1)T Φ(1)(x), G

(2)
W (y) =

∑D(2)

i=1 w
(2)
i φ

(2)
i (y) = w(2)T Φ(2)(y) | Φ(1) ∈ F1, Φ(2) ∈ F2, ∀x ||Φ(1)(x)||2 ≤

A(1), ∀y ||Φ(2)(y)||2 ≤ A(2)}, and output set Y ⊂ RN , if the feature set {φ(1)1 (·), · · · , φ(1)
D(1)(·)} is

ϑ(1)-diverse with a probability τ1 and the feature set {φ(2)1 (·), · · · , φ(2)
D(2)(·)} is ϑ(2)-diverse with a

probability τ2, then with a probability of at least (1− δ)τ1τ2, the following holds for all h inH

E(x,y)∼D[E(h,x,y)] ≤ 1

m

∑

(x,y)∈S
E(h,x,y)

+ 8(
√
J1 +

√
J2)
(
D(1)||w(1)||∞Rm(F1) +D(2)||w(2)||∞Rm(F2)

)

+ 2
(
J1 + J2

)
√

log(2/δ)

2m
, (9)

where J1 = ||w(1)||2∞
(
D(1)A(1)2 − ϑ(1)2

)
and J2 = ||w(2)||2∞

(
D(2)A(2)2 − ϑ(2)2

)
.

The proof of Theorem 4 is available in the Appendix. The upper-bound of the energy model depends
on the diversity variable of both feature sets. Moreover, we note that the bound for the implicit
regression decreases proportionally to ϑ2, as opposed to the classification case for example, where
the bound is proportional to ϑ.

We note that the theory developed in our paper (Theorems 1 to 4) is agnostic to the loss function
(LeCun et al., 2006) or the optimization strategy used (Kumar et al., 2019; Song & Ermon, 2019; Yu
et al., 2020). We show that increasing the diversity of the features consistently decreases the upper-
bound of the true expectation of the energy and, thus, can boost the generalization performance of
the energy-based model. We note that our analysis is independent of how the features are obtained,
e.g., handcrafted or optimized. In fact, in the recent state-of-the-art EBMs (Khalifa et al., 2020;
Bakhtin et al., 2021; Nash & Durkan, 2019; Yu et al., 2020), the features are typically parameterized
using a deep learning model and optimized during the training. Thus, our theory suggests the use
of a diversity strategy, for example in the form of a regularization as in (Cogswell et al., 2016), to
avoid learning redundant features can improve the performance of the model and decrease the gap
between the expectation of the true and the empirical energy.

3 CONCLUSION

The energy-based learning is a powerful learning paradigm that encapsulates various discriminative
and generative systems. An EBM is typically formed of one (or many) inner models which learn a
combination of different features to generate an energy mapping for each input configuration. In this
paper, we introduced the feature diversity concept, i.e., ϑ-diversity, and we used it to extend the PAC
theory of EBMs. We derived different generalization bounds for various learning contexts, i.e., re-
gression, classification, and implicit regression, with different energy functions and we consistently
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found that increasing the diversity of the feature set can improve the approximation error of the true
expectation of the energy function. We also note that our theory is independent of the loss function
or the training strategy used to optimize the parameters of the EBM.

Future directions include developing practical strategies to promote the diversity of the feature set
in case the features are optimized following a data-driven process, like the training phase of a neural
network.
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nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
3001ef257407d5a371a96dcd947c7d93-Paper.pdf.

Yee Whye Teh, Max Welling, Simon Osindero, and Geoffrey E Hinton. Energy-based models for
sparse overcomplete representations. Journal of Machine Learning Research, 4(Dec):1235–1260,
2003.

Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

Michael M Wolf. Mathematical foundations of supervised learning, 2018.

7



Energy-Based Models Workshop ICLR 2021

Bo Xie, Yingyu Liang, and Le Song. Diverse neural network learns true target functions. In Artificial
Intelligence and Statistics, pp. 1216–1224. PMLR, 2017.

Pengtao Xie, Yuntian Deng, and Eric Xing. On the generalization error bounds of neural networks
under diversity-inducing mutual angular regularization. arXiv preprint arXiv:1511.07110, 2015.

Ke Yang, Vasilis Gkatzelis, and Julia Stoyanovich. Balanced ranking with diversity constraints. In
International Joint Conference on Artificial Intelligence, pp. 6035–6042, 2019.

Lantao Yu, Yang Song, Jiaming Song, and Stefano Ermon. Training deep energy-based models with
f-divergence minimization. In International Conference on Machine Learning, pp. 10957–10967.
PMLR, 2020.

Yang Yu, Yu-Feng Li, and Zhi-Hua Zhou. Diversity regularized machine. In International Joint
Conference on Artificial Intelligence, 2011.

Shuangfei Zhai, Yu Cheng, Weining Lu, and Zhongfei Zhang. Deep structured energy based models
for anomaly detection. In International Conference on Machine Learning, pp. 1100–1109. PMLR,
2016.

Xiang Zhang. Pac-learning for energy-based models. PhD thesis, Citeseer, 2013.

Xiang Zhang and Yann LeCun. Universum prescription: Regularization using unlabeled data. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2017.

Junbo Zhao, Michael Mathieu, and Yann LeCun. Energy-based generative adversarial network.
arXiv preprint arXiv:1609.03126, 2016.

8



Energy-Based Models Workshop ICLR 2021

4 APPENDIX

4.1 PROOF OF THEOREM 1

Lemma 2. With a probability of at least τ , we have

sup
x,h
|h(x)| ≤

√
J , (10)

where J = ||w||2∞
(
DA2 − ϑ2

)
and A = supx ||φ(x)||2,

Proof.

h2(x) =

(
D∑

i=1

wiφi(x)

)2

≤
(

D∑

i=1

||w||∞φm(x)

)2

= ||w||2∞
(

D∑

i=1

φi(x)

)2

= ||w||2∞
(∑

i,j

φi(x)φj(x)

)
= ||w||2∞


∑

i

φi(x)
2 +

∑

i 6=j

φi(x)φj(x)


 (11)

We have ||Φ(x)||2 ≤ A. For the first term in equation 11, we have
∑
m φm(x)2 ≤ A2. By using

the identity φm(x)φn(x) = 1
2

(
φm(x)2 + φn(x)2 − (φm(x)− φn(x))2

)
, the second term can be

rewritten as
∑

m6=n
φm(x)φn(x) =

1

2

∑

m6=n

(
φm(x)2 + φn(x)2 −

(
φm(x)− φn(x)

)2
)
. (12)

In addition, we have with a probability τ , 1
2

∑
m6=n ||φm(x)− φn(x)||2 ≥ ϑ. Thus, we have with a

probability at least τ :
∑

m6=n
φm(x)φn(x) ≤ 1

2
(2(D − 1)A2 − 2ϑ2) = (D − 1)A2 − ϑ2. (13)

By putting everything back to equation 11, we have with a probability τ ,

h2(x) ≤ ||w||2∞
(
A2 + (D − 1)A2 − ϑ2

)
= ||w||2∞

(
DA2 − ϑ2

)
= J . (14)

Thus, with a probability τ ,
sup
x,h
|h(x)| ≤

√
sup
x,h

h(x)2 ≤
√
J . (15)

Lemma 3. With a probability of at least τ , we have

sup
x,y,f

|E(h(x), y)| ≤ (
√
J +B)2. (16)

Proof. We have supx,y,h |h(x) − y| ≤ 2 supx,y,h(|h(x)| + |y|) = 2(
√
J + B). Thus

supx,y,h|E(h(x), y)| ≤ (
√
J +B)2.

Lemma 4. With a probability of at least τ , we have

Rm(E) ≤ 4D||w||∞(
√
J +B)Rm(F) (17)

Proof. Using the decomposition property of the Rademacher complexity (if φ is a L-Lipschitz func-
tion, thenRm(φ(A)) ≤ LRm(A)) and given thatE(·, y) = ||.−y||2 isK-Lipschitz with a constant
K = supx,y,h||h(x) − y|| ≤ 2(

√
J + B), we have Rm(E) ≤ KRm(F) ≤ 2(

√
J + B)Rm(H),

where H = {GW (x) =
∑D
i=1 wiφi(x) | ||w||1 ≤ D||w||∞}. Next, similar to the proof of The-

orem 2.10 in (Wolf, 2018), we note that
∑D
i=1 wiφi(x) ∈ (D||w||∞)conv(F + −(F)) := G,

where conv denotes the convex hull and F is the set of φ functions. Thus, Rm(H) ≤ Rm(G) =
D||w||∞Rm(conv(F + (−F)) = D||w||∞Rm(F + (−F)) = 2D||w||∞Rm(F).
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Theorem 1 For the energy function E(h,x,y) = 1
2 ||GW (x) − y||22, over the input set X ∈ RN ,

hypothesis class H = {GW (x) =
∑D
i=1 wiφi(x) = wTΦ(x) | ∀x ||Φ(x)||2 ≤ A}, and output

set Y ⊂ R, if the feature set {φ1(·), · · · , φD(·)} is ϑ-diverse with a probability τ , then with a
probability of at least (1− δ)τ , the following holds for all h inH

E(x,y)∼D[E(h,x,y)] ≤ 1

m

∑

(x,y)∈S
E(h,x,y) + 8D||w||∞(||w||∞

√
DA2 − ϑ2 +B)Rm(F)

+ (||w||∞
√
DA2 − ϑ2 +B)2

√
log(2/δ)

2m
, (18)

where B is the upper-bound of Y , i.e., y ≤ B, ∀y ∈ Y ,

Proof. We replace the variables in Lemma 1 using Lemma 3 and Lemma 4.

4.2 PROOF OF THEOREM 2

Lemma 5. With a probability of at least τ , we have

sup
x,y,f

|E(h(x), y)| ≤ 2(
√
J +B). (19)

Proof. We have supx,y,h |h(x)− y| ≤ 2 supx,y,h(|h(x)|+ |y|) = 2(
√
J +B).

Lemma 6. With a probability of at least τ , we have

Rm(E) ≤ 2D||w||∞Rm(F) (20)

Proof. |.| is 1-Lipschitz, ThusRm(E) ≤ Rm(H).

Theorem 2 For the energy function E(h,x,y) = ||GW (x) − y||1, over the input set X ∈ RN ,
hypothesis class H = {GW (x) =

∑D
i=1 wiφi(x) = wTΦ(x) | ∀x ||Φ(x)||2 ≤ A}, and output

set Y ⊂ R, if the feature set {φ1(·), · · · , φD(·)} is ϑ-diverse with a probability τ , then with a
probability of at least (1− δ)τ , the following holds for all h inH

E(x,y)∼D[E(h,x,y)] ≤ 1

m

∑

(x,y)∈S
E(h,x,y) + 4D||w||∞Rm(F)

+ 2(||w||∞
√
DA2 − ϑ2 +B)

√
log(2/δ)

2m
, (21)

Proof. We replace the variables in Lemma 1 using Lemma 5 and Lemma 6.

4.3 PROOF OF THEOREM 3

Lemma 7. With a probability of at least τ , we have

sup
x,y,f

|E(h(x), y)| ≤
√
J (22)

Proof. We have sup− yGW (x) ≤ sup|GW (x)| ≤
√
J

Lemma 8. With a probability of at least τ , we have

Rm(E) ≤ 2D||w||∞Rm(F) (23)

Proof. We note that for y ∈ {−1, 1}, σ and −yσ follow the same distribution. Thus, we have
Rm(E) = Rm(H). Next, we note thatRm(H) ≤ 2D||w||∞Rm(F)
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Theorem 3 For a well-defined energy function E(h,x,y) (LeCun et al., 2006), over hypothesis
class H, input set X and output set Y , if it has upper-bound M, then with a probability of at least
1− δ, the following holds for all h inH

E(x,y)∼D[E(h,x,y)] ≤ 1

m

∑

(x,y)∈S
E(h,x,y) + 4D||w||∞Rm(F)

+ ||w||∞
√
DA2 − ϑ2

√
log(2/δ)

2m
, (24)

Proof. We replace the variables in Lemma 1 using Lemma 7 and Lemma 8.

4.4 PROOF OF THEOREM 4

Lemma 9. With a probability of at least τ1τ2, we have

sup
x,y,f

|E(h(x), y)| ≤ 2
(
J1 + J2

)
(25)

Proof. We have ||G(1)
W (x) − G

(2)
W (y)||22 ≤ 2(||G(1)

W (x)||22 + ||G(2)
W (y)||22). Similar to Theorem

1, we have sup ||G(1)
W (x)||22 ≤ ||w(1)||2∞

(
D(1)A(1)2 − ϑ(1)

2
)

= J1 and sup ||G(2)
W (y)||22 ≤

||w(2)||2∞
(
D(2)A(2)2 − ϑ(2)2

)
= J2

Lemma 10. With a probability of at least τ1τ2, we have

Rm(E) ≤ 4(
√
J1 +

√
J2)
(
D(1)||w(1)||∞Rm(F1) +D(2)||w(2)||∞Rm(F2)

)
(26)

Proof. Let f be the square function, i.e., f(x) = 1
2x

2 and E0 = {G(1)
W (x) − G

(2)
W (y) | x ∈

X , y ∈ Y}. We have E = f(E0 + (−E0)). f is Lipschitz over the input space, with a
constant L bounded by supx,W G

(1)
W (x) + supy,W G

(2)
W (y) ≤ √J1 +

√J2. Thus, we have
Rm(E) ≤ (

√J1 +
√J2)Rm(E0 + (−E0)) ≤ 2(

√J1 +
√J2)Rm(E0). Next, we note that

Rm(E0) = Rm(H1 + (−H2)) = Rm(H1) + Rm(H2). Using same as technique as in Lemma
4, we haveRm(H1) ≤ 2D(1)||w(1)||∞Rm(F1) andRm(H2) ≤ 2D(2)||w(2)||∞Rm(F2)

Theorem 4 For the energy function E(h,x,y) = 1
2 ||G

(1)
W (x) − G

(2)
W (y)||22, over the input set

X ∈ RN , hypothesis class H = {G(1)
W (x) =

∑D(1)

i=1 w
(1)
i φ

(1)
i (x) = w(1)T Φ(1)(x), G

(2)
W (y) =

∑D(2)

i=1 w
(2)
i φ

(2)
i (y) = w(2)T Φ(2)(y) | Φ(1) ∈ F1, Φ(2) ∈ F2, ∀x ||Φ(1)(x)||2 ≤

A(1), ∀y ||Φ(2)(y)||2 ≤ A(2)}, and output set Y ⊂ RN , if the feature set {φ(1)1 (·), · · · , φ(1)
D(1)(·)} is

ϑ(1)-diverse with a probability τ1 and the feature set {φ(2)1 (·), · · · , φ(2)
D(2)(·)} is ϑ(2)-diverse with a

probability τ2, then with a probability of at least (1− δ)τ1τ2, the following holds for all h inH

E(x,y)∼D[E(h,x,y)] ≤ 1

m

∑

(x,y)∈S
E(h,x,y)

+ 8(
√
J1 +

√
J2)
(
D(1)||w(1)||∞Rm(F1) +D(2)||w(2)||∞Rm(F2)

)

+ 2
(
J1 + J2

)
√

log(2/δ)

2m
, (27)

where J1 = ||w(1)||2∞
(
D(1)A(1)2 − ϑ(1)2

)
and J2 = ||w(2)||2∞

(
D(2)A(2)2 − ϑ(2)2

)
.

Proof. We replace the variables in Lemma 1 using Lemma 9 and Lemma 10.
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