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Abstract. The Visual Object Tracking challenge VOT2022 is the tenth
annual tracker benchmarking activity organized by the VOT initiative.
Results of 93 entries are presented; many are state-of-the-art trackers
published at major computer vision conferences or in journals in recent
years. The VOT2022 challenge was composed of seven sub-challenges fo-
cusing on different tracking domains: (i) VOT-STs2022 challenge focused
on short-term tracking in RGB by segmentation, (ii) VOT-STb2022 chal-
lenge focused on short-term tracking in RGB by bounding boxes, (iii)
VOT-RTs2022 challenge focused on “real-time” short-term tracking in
RGB by segmentation, (iv) VOT-RTb2022 challenge focused on “real-
time” short-term tracking in RGB by bounding boxes, (v) VOT-LT2022
focused on long-term tracking, namely coping with target disappearance
and reappearance, (vi) VOT-RGBD2022 challenge focused on short-term
tracking in RGB and depth imagery, and (vii) VOT-D2022 challenge fo-
cused on short-term tracking in depth-only imagery. New datasets were
introduced in VOT-LT2022 and VOT-RGBD2022, VOT-ST2022 dataset
was refreshed, and a training dataset was introduced for VOT-LT2022.
The source code for most of the trackers, the datasets, the evaluation kit
and the results are publicly available at the challenge website56.

Keywords: Visual object tracking challenge, VOT, short-term tracking,
long-term tracking, performance evaluation.

1 Introduction

A decade ago, the Visual Object Tracking (VOT) initiative was founded in re-
sponse to the lack of standardised performance evaluation in visual object track-
ing. To facilitate the development of this highly active computer vision field,
the first VOT2013 challenge [35] was organized in conjunction with ICCV2013.
Encouraged by the strong interest of the emerging community, eight VOT chal-
lenges have been organized since, with the results presented at the accompanying
workshops at major computer vision conferences: ECCV2014 (VOT2014 [36]),
ICCV2015 (VOT2015 [34]), ECCV2016 (VOT2016 [32]), ICCV2017
(VOT2017 [31]), ECCV2018 (VOT2018 [30]), ICCV2019 (VOT2019 [28]),
ECCV2020 (VOT2020 [29]), ICCV2021 (VOT2021 [33]). The VOT challenge is
now the main annual tracking performance evaluation event in computer vision.

The primary mission of the VOT initiative has been the promotion of the de-
velopment of general trackers for single-camera, single-target, model-free, causal
tracking. For nearly a decade the VOT has thus been a community-driven forum
for gradual development and in-situ testing of performance evaluation proto-
cols, dataset development and exploration of the tracking challenges landscape.
The VOT2013 [35] started with a single short-term tracking challenge; VOT-
ST. In VOT2014 [36] the VOT-TIR challenge was added to explore tracking
in thermal imagery. In VOT2017 [31] the real-time tracking challenge VOT-RT
was established to promote tracking speed and computational efficiency in par-
allel to robustness. Long-term tracking challenge VOT-LT was introduced in

56 http://votchallenge.net
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VOT2018 [30] and a year later in VOT2019 [28], multi-modal (RGB+thermal
and RGB+depth) tracking challenges VOT-RGBT and VOT-RGBD were intro-
duced.

Particular attention has been put on the development of informative perfor-
mance evaluation measures. Two basic weakly correlated performance measures
were introduced in VOT2013 [35] to evaluate the tracking accuracy and robust-
ness of short-term trackers. A ranking-based methodology to identify the top
performers was also proposed but was abandoned in VOT2015 [34] in favor of
a more principled and interpretable combination of the primary scores in form
of the expected average overlap score EAO. For the first seven VOT challenges,
the measures were calculated under a reset-based protocol, in which a tracker is
reset upon drifting off the target. This protocol was replaced in VOT2020 [29]
by the anchor-based evaluation protocol that produces the most stable perfor-
mance evaluation results compared to related protocols, yet inherits the benefits
from the reset-based protocol. Similarly, a performance evaluation protocol and
measures tailored for long-term tracking have been developed [41] and applied
first in VOT2018 [30]. These measures have consistently shown good evaluation
capabilities for long-term trackers.

Several datasets have been developed over the years. A dataset creation and
maintenance protocol has been established for the main short-term tracking
challenge to produce datasets which are sufficiently small for practical evaluation
yet include a variety of challenging tracking situations for in-depth analysis. In
VOT2017 [31], a sequestered dataset for identification of the short-term tracking
challenge winner was introduced. This dataset has been refreshed along with
the public versions over the years. Alongside, datasets specialized for long-term
tracking, RGB+thermal and RGBD tracking were constructed and gradually
updated.

In most of the VOT challenges, the trackers are required to report the tar-
get position as an axis-aligned bounding box. While this is a reasonable tar-
get state encoding, the VOT short-term tracking challenge gradually explored
more detailed pose encodings to push the bar on tracking accuracy and ex-
pand the range of applications. Thus rotated bounding boxes were introduced
in VOT2014 [36]. To reduce human annotation bias, VOT2016 [32] introduced
fitting rotated bounding boxes to semi-automatically segmented objects in each
frame. In VOT2020 [29] bounding boxes were abandoned and the short-term
trackers are required to provide full target segmentation (the VOT-ST dataset
was accordingly re-annotated to ensure high ground truth accuracy) – with this
move, the VOT short-term tracking challenge has started narrowing the gap
between visual object tracking and the related field of video object segmenta-
tion. The remaining challenges (VOT-LT, VOT-RGBD, VOT-RGBT) maintain
axis-aligned target annotation.

This paper presents the tenth edition of the VOT challenges – the VOT2022
challenge. After two years of virtual editions due to the global Covid19 pandemic,
the 10th anniversary of VOT was organized in a mixed form with in-person and
online attendance, in conjunction with the ECCV2022 Visual Object Tracking
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VOT2022 Workshop. In the following, we overview the challenge and participa-
tion requirements.

1.1 The VOT2022 challenge

The evaluation toolkit and the datasets are provided by the VOT2022 organizers.
The challenges opened in the first week of April and closed on May 3rd. The
winners of individual challenges were identified in late June, but not publicly
disclosed. The results were presented at the ECCV2022 VOT2022 workshop on
24th October. The VOT2022 challenge contained seven challenges:

1. VOT-STs2022 challenge addressed short-term tracking by target segmen-
tation in RGB images.

2. VOT-STb2022 challenge addressed short-term tracking by bounding boxes
in RGB images.

3. VOT-RTs2022 challenge addressed the same class of trackers as VOT-
STs2022, except that the trackers had to process the sequences in real-time.

4. VOT-RTb2022 challenge addressed the same class of trackers as VOT-
STb2022, except that the trackers had to process the sequences in real-time.

5. VOT-LT2022 challenge addressed long-term tracking by bounding boxes
in RGB images.

6. VOT-RGBD2022 challenge addressed short-term tracking by bounding
boxes in RGB+depth (RGBD) imagery.

7. VOT-D2022 challenge addressed short-term tracking by bounding boxes
in depth map images.

The authors participating in the challenge were required to integrate their
tracker into the VOT2022 evaluation kit, which automatically performed a set of
standardized experiments. The results were analyzed according to the VOT2022
evaluation methodology.

Participants were encouraged to submit their own new or previously pub-
lished trackers as well as modified versions of third-party trackers. In the latter
case, modifications had to be significant enough for acceptance. Participants
were expected to submit a single set of results per tracker If a participant coau-
thored several submissions with a similar design, only the top performer from
this cluster was considered to compete in the final top-performer ranking and
winner identification.

Each submission was accompanied by a short abstract describing the tracker,
which was used for the short tracker descriptions in Appendix 5 – the authors
were asked to provide a clear description useful to the readers of the VOT2022
results report. In addition, participants filled out a questionnaire on the VOT
submission page to categorize their tracker according to various design prop-
erties. Authors were encouraged to submit their tracker integrated into a Sin-
gularity container provided by VOT, which allows result reproduction and aids
potential further evaluation. The participants with sufficiently well-performing
submissions who contributed to the text for this paper and agreed to make their
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tracker code publicly available from the VOT page (or upon request) were of-
fered co-authorship of this results paper. The committee reserved the right to
disqualify any tracker that, by their judgement, attempted to cheat the evalua-
tion protocols or failed in the post-hoc evaluation.

Methods considered for prizes in the VOT2022 challenge were not allowed to
be trained on certain datasets (OTB, VOT, ALOV, UAV123, NUSPRO, Temple-
Color and RGBT234), except for VOT-LT2022, where the VOT-LT2021 dataset
was allowed. For GOT10k, a list of 1k prohibited sequences was created in
VOT2019, while the remaining 9k+ sequences were allowed for learning. The
reason was that part of the GOT10k was used in the VOT-ST2022 dataset.

The use of class labels specific to VOT was not allowed (i.e., identifying a
target class in each sequence and applying pre-trained class-specific trackers was
not allowed). The organizers of VOT2022 were allowed to participate in the
challenge but were not eligible to win. Further details are available from the
challenge homepage57.

VOT2022 goes beyond previous challenges by updating the datasets
in VOT-ST2022 and VOT-RT2022, introducing a training dataset as well as a
sequestered dataset in the VOT-RGBD2022 challenge, introducing a depth-only
tracking challenge VOT-D2022 and a new challenging VOT-LT2022 tracking
dataset. The Python VOT evaluation toolkit was updated as well.

The remainder of this report is structured as follows. Section 2 describes the
performance evaluation protocols, Section 3 describes the individual challenges,
Section 4.5 overviews the results and conclusions are drawn in Section 5. Short
descriptions of the tested trackers are available in Appendix 5.

2 Performance evaluation protocol

Since VOT2018, the VOT challenges adopt the following definitions from [41] to
distinguish between short-term and long-term trackers:

– Short-term tracker (ST0). The target position is reported at each frame.
The tracker does not implement target re-detection and does not explicitly
detect occlusion.

– Short-term tracker with conservative updating (ST1). The target po-
sition is reported at each frame. Target re-detection is not implemented, but
tracking robustness is increased by selectively updating the visual model
depending on a tracking confidence estimation mechanism.

– Pseudo long-term tracker (LT0). The target position is not reported
in frames when the target is predicted not visible. The tracker does not
implement explicit target re-detection but uses an internal mechanism to
identify and report tracking failure.

– Re-detecting long-term tracker (LT1). The target position is not re-
ported in frames when the target is predicted not visible. The tracker detects
tracking failure and implements explicit target re-detection.

57 http://www.votchallenge.net/vot2022/participation.html
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Since the two classes of trackers make distinct assumptions on target pres-
ence, separate performance measures and evaluation protocols were designed in
VOT to probe the tracking properties.

2.1 The short-term evaluation protocols

The short-term performance evaluation protocol entails initializing the tracker
at several frames in the sequence, called the anchor points, which are spaced
approximately 50 frames apart. The tracker is run from each anchor - in the
first half of the sequences in the forward direction, for anchors in the second half
backwards, till the first frame. Performance is evaluated by two basic measures
accuracy (A) and robustness (R).

Accuracy is the average overlap on frames before tracking failure, averaged
over all sub-sequences. Robustness is the percentage of successfully tracked sub-
sequence frames, averaged over all sub-sequences. Tracking failure is defined as
the frame at which the overlap between the ground truth and predicted target
position dropped below 0.1 and did not increase above this during the next 10
frames. This definition allows short-term failure recovery in short-term trackers.
The primary performance measure is the expected average overlap EAO, which
is a principled combination of tracking accuracy and robustness. Please see [29]
for further details on the VOT short-term tracking performance measures.

2.2 The long-term evaluation protocol

The long-term performance evaluation protocol follows the protocol proposed
in [41] and entails initializing the tracker in the first frame of the sequence and
running it until the end of the sequence. The tracker is required to report the
target position in each frame along with a score that reflects the certainty that
the target is present at that position. Performance is measured by two basic
measures called the tracking precision (Pr) and the tracking recall (Re), while
the overall performance is summarized by the tracking F -measure.

The performance measures depend on the target presence certainty thresh-
old, thus the performance can be visualized by the tracking precision-recall and
tracking F -measure plots obtained by computing these scores for all thresholds.
The final values of Pr, Re and F -measure are obtained by selecting the certainty
threshold that maximizes tracker-specific F -measure. This avoids all manually-
set thresholds in the primary performance measures.

3 Description of individual challenges

3.1 VOT-ST2022 challenge outline

This challenge addressed RGB tracking in a short-term tracking setup. The ini-
tial VOT challenges required target prediction in form of bounding boxes, while
a transition to segmentation output requirement has been made in VOT2020.
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Nevertheless, to support the very much active community that develops bound-
ing box prediction trackers, the bounding box challenge is re-introduced in
VOT2022. Thus the VOT-ST2022 ran two subchallenges: the main segmentation-
based short-term tracking challenge VOT-STs2022, and the legacy bounding-
box-based short-term tracking challenge VOT-STb2022.

The dataset. Results of the VOT2021 showed that the dataset was not satu-
rated [33], thus the public dataset has been only refreshed by the addition of two
sequences which include new challenging scenarios not present in previous VOT
datasets: (i) a transparent deforming object and (ii) a flat object with significant
out of plane rotations (see Figure 1). The sequestered dataset has been updated
with two sequences matching the public dataset extension.

tennis

bubble

Fig. 1. Two sequences with new challenging scenarios were added to the VOT-ST2022
public dataset. In the sequence ‘bubble’ the bubble has to be tracked, while in the
sequence ‘tennis’ the racquet is the target object.

The new sequences were frame-by-frame semi-automatically segmented to
provide the segmentation ground truth for the main VOT-STs2022 subchallenge.
For the legacy VOT-STb2022 subchallenge, the target position was annotated in
all sequences by fitting axis-aligned bounding boxes to the target segmentation
masks. Per-frame visual attributes were semi-automatically assigned to the new
sequences following the VOT attribute annotation protocol. In particular, each
frame was annotated by the following visual attributes: (i) occlusion, (ii) illumi-
nation change, (iii) motion change, (iv) size change, (v) camera motion.

Winner identification protocol. The VOT-STs2022 winner was identified
as follows. Trackers were ranked according to the EAO measure on the public
dataset. The top five ranked trackers were then re-run by the VOT2022 com-
mittee on the sequestered dataset. The top-ranked tracker on the sequestered
dataset not submitted by the VOT2022 committee members is the winner. The
same protocol was used to identify the winner of the legacy short-term challenge
VOT-STb2022.
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3.2 VOT-RT2022 challenge outline

This challenge addressed real-time RGB tracking in a short-term tracking setup.
The dataset was the same as in the VOT-ST2022 challenge, but the evaluation
protocol was modified to emphasize the real-time component in tracking perfor-
mance. In particular, the VOT-RT2022 challenge requires predisetcting bound-
ing boxes faster or equal to the video frame rate. The toolkit sends images to
the tracker via the Trax protocol [54] at 20fps. If the tracker does not respond in
time, the last reported bounding box is assumed as the reported tracker output
at the available frame (zero-order hold dynamic model). The same performance
evaluation protocol as in VOT-ST2022 is then applied. As in VOT-ST2022, two
realtime subchallenges were considered: the main segmentation-based realtime
subchallenge VOT-RTs2022 and the legacy bounding-box-based realtime sub-
challenge VOT-RTb2022.
Winner identification protocol. All trackers are ranked on the public RGB
short-term tracking dataset with respect to the EAO measure. The winner of
the main VOT-RTs2022 subchallenge was identified as the top-ranked tracker
not submitted by the VOT2022 committee members. The same methodology
was applied to identify the winner of the VOT-RTb2022 challenge.

3.3 VOT-LT2022 challenge outline

This challenge addressed RGB tracking in a long-term tracking setup and is a
continuation of the VOT-LT2021 challenge. We adopt the definitions from[41],
which are used to position the trackers on the short-term/long-term spectrum. A
long-term performance evaluation protocol and measures from Section 2.2 were
used to evaluate tracking performance on VOT-LT2022. Compared to VOT-
LT2021, a significant change is a new dataset described in the following.
The dataset. The new VOT-LT dataset contains 50 sequences, carefully se-
lected to obtain a dataset with long sequences containing many target disap-
pearances. The LTB50 [41], which was used in VOT-LT2021, is the training set
this year. The new VOT-LT dataset contains 50 challenging sequences of diverse
objects (persons, cars, motorcycles, bicycles, boats, animals, etc.) with a total
length of 168,282 frames. The sequence resolution is 1280 × 720. Each sequence
contains on average 10 long-term target disappearances, each lasting on average
52 frames. An overview of the dataset is shown in Figure 2.

The targets are annotated by axis-aligned bounding boxes. Sequences are
annotated by the following visual attributes: (i) full occlusion, (ii) out-of-view,
(iii) partial occlusion, (iv) camera motion, (v) fast motion, (vi) scale change, (vii)
aspect ratio change, (viii) viewpoint change, (ix) similar objects. Note this is per-
sequence, not per-frame annotation and a sequence can be annotated by several
attributes. Compared with LTB50,the new VOT-LT dataset is more challenging
in small objects, similar objects, fast motion, and full/partial occlusions.
Winner identification protocol. The VOT-LT2022 winner was identified as
follows. Trackers were ranked according to the tracking F-score on the new LT
dataset (no sequestered dataset available). The top-ranked tracker on the dataset



10 M. Kristan et al.

Airplane (3609) Bag (2834) Bicycle (4305) Boat (3991) Bottle (1393)

Bus (8087) Car (4077) Car Chase (10699) Cat (2409) Coin (3612)

Dancing Shoe (5451) Diabolo (3621) Diving (1765) Dog1 (3581) Dog2 (3287)

Drone (5211) Duck (3234) Elephant (1549) F1 (3568) Flag (3780)

Flyboard (1823) Fox (1809) Goldfish (4520) Guineapig (1699) Hand (1830)

O F A V P C F IV C S A O V FP

V P C I V C F W O V P C I O P F S I O P A

O P A I V F P C S I V P F A F S

O P S V P C P C A S I S A

O P S V P F A O P A I V P F A O P F A I

W

Parrot (5413) Rabbit (1816) Rhino (4062) Robot (2714) Rollerman (2368)

Run (1712) Sailing (1812) Seagull (3511) Shark (1554) Skiing (3057)

Squirrel (2715) Surfing (3396) Turkey (1819) Volleyball (978) Zebra (1823)

S A V I V C S V P A V C S

V P I C W I V I P A O V P C I

V P S O F A P S A V F PO S A

Helicopter (2964) House Riding (3565) Kangaroo (2842) Kit (2703) Lantern (5773)

License Plate (9198) Motorcycle (2678) Panda (1471) Parachute (1475) Parkour (2433)

O P O P I P F S S W

V P C S I O V P C O V VA C A V P C F S I

Fig. 2. The new VOT-LT dataset – a frame selected from each sequence. Name and
length (top), visual attributes (bottom left): (O) full occlusion, (V) out-of-view, (P)
partial occlusion, (C) camera motion, (F) fast motion, (S) scale change, (A) aspect
ratio change, (W) viewpoint change, (I) similar objects. The dataset is highly diverse
in attributes and target types and contains many target disappearances.

not submitted by the VOT2022 committee members is the winner of the VOT-
LT2022 challenge.
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3.4 VOT-RGBD2022 challenge outline

The first RGBD (RGB and Depth) challenge was introduced to VOT 2019 and
the two first challenges were based on the same public dataset, CDTB [38], which
consists of 80 sequences where the target momentarily disappears or is fully
occluded. In VOT 2021, the CDTB dataset was replaced with new sequences
captured with an Intel RealSense 415 RGBD camera that provides spatially
aligned RGB and depth frames. The 2021 dataset contained 80 public and 50
sequestered test sequences. The main motivation for the new dataset was to make
it more challenging in the sense that sometimes depth cue is more informative
and sometimes RGB. Moreover, separate training and test sequences were pro-
vided to allow method fine-tuning with dataset-specific data. More details about
the dataset and its properties can be found from [62]. The two major changes
as compared to the previous years’ RGBD tracks are that 1) the challenge is
now a short-term (ST) tracking challenge and 2) the challenge is divided into
RGBD and depth-only (D) tracks in order to better understand how much depth
contributes to RGBD tracking, i.e. complementarity of the two modalities.

The main motivation to switch from the long-term evaluation to short-term
evaluation is that in the long-term setting the target disappearance played an
important role and many of the proposed RGBD trackers used the depth channel
to assist in occlusion detection, but otherwise the cue was omitted. Now, the two
tracks, RGBD and D, provide information about the complementary properties
of color texture and depth. It is noteworthy that the RGBD and D challenges
use otherwise exactly the same data.
The dataset. Inspired by the recent work on depth-only tracking [63], we con-
verted the long-term sequences from the CDTB dataset used in the first two
VOT-RGBD challenges and DepthTrack used in the latest challenge, to short-
term sequences. We converted all 80 sequences from CDTB and 50 test sequences
of DepthTrack. Since the DepthTrack training sequences were not used they can
be used in training learning-based trackers. The short-term sequences were man-
ually checked and sequences with poor depth information or other errors were
removed. Finally, 127 sequences were selected and published on the VOT Web
site. See Figure 3 for example frames.

Fig. 3. Samples from the RGBD and D challenge sequences. The first two from the
left are from the CDTB sequences and the next two from DepthTrack-test sequences.
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VOT-D2022. The data for the VOT-D2022 challenge is exactly the same as
for VOT-RGBD except that the RGB frames are removed.
Winner identification protocol. The VOT-RGBD2022 and VOT-D2022 win-
ners were identified as follows. Trackers were ranked according to the EAO mea-
sure on the public dataset and the top-ranked tracker on the public dataset
not submitted by the VOT2022 committee members is the winner. The same
protocol was used to identify the winners of both the VOT-RGBD and VOT-D
challenges.

4 The VOT2022 challenge results

This section summarizes the trackers submitted, results analysis and winner
identification for each of the VOT2022 challenges.

4.1 The VOT-STs2022 challenge results

The VOT-STs2022 challenge tested 31 trackers, including the baselines con-
tributed by the VOT committee. Each submission included the binaries or source
code that allowed verification of the results if required. In the following, we
briefly overview the entries and provide the references to original papers in the
Appendix A where available.

Of the participating trackers, 13 trackers (42%) were categorized as ST0,
14 trackers ( 45%) as ST1, and 4 (13%) as LT0. 81% applied discriminative and
19% applied generative models. Most trackers (81%) used a holistic model, while
19% of the participating trackers used part-based models. Most trackers (75%)
applied an equally probably displacement within a region centered at the current
position58 or a random walk dynamic model (25%). 42% of trackers localized the
target in a single stage, while the rest applied several stages, typically involving
approximate target localization and position refinement. Most of the trackers
(84%) use deep features. The majority of the submissions (72%) localized the
target by segmentation, while the rest reported a bounding box.

The trackers were based on various tracking principles. 11 trackers were based
on classical or deep discriminative correlation filters (RTS A.8, ATOM AR A.18,
DiMP AR A.19, KYS AR A.20, PrDiMP AR A.21, CSRDCF A.24, D3Sv2 A.25,
SuperDiMP AR A.22, KCF A.26, LWL A.28, LWL-B2S A.29), 2 trackers were
based purely on Siamese correlation (SiamFC A.30, SiamUSCMix A.9), 14 track-
ers were based on transformers (DAMT A.1, DAMTMask A.2, DGformer A.3,
Linker A.4, MixFormerM A.5, MS AOT A.6, OSTrackSTS A.7, SwinT A.11,
SRATransTS A.10, TransLL A.12, TransT A.13, transt ar A.14, TransT M A.15,
and TRASFUSTm A.16), two were deformable parts trackers (ANT A.17 and
LGT A.27), a meanshift tracker (ASMS A.23), and a video-object segmentation
method adapted to tracking (STM A.31).

58 The target was sought in a window centered at its estimated position in the previous
frame. This is the simplest dynamic model that assumes all positions within a search
region containing the target have an equal prior probability.
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In summary, we observe a significant increase in a new class of trackers iden-
tified in VOT2021 – the transformers. In fact, 47% of trackers are now from this
class, 41% of trackers apply discriminative correlation filters, while 6% apply
classical siamese correlation networks.

Results The results are summarized in the AR-raw plots and EAO plots in
Figure 4 and in Table 10. The top ten trackers according to the primary EAO
measure (Figure 4) are MS AOT A.6, DAMTMask A.2, MixFormerM A.5, OS-
TrackSTS A.7, Linker A.4, SRATransTS A.10, TransT M A.15, DGformer A.3,
TransLL A.12 and LWL-B2S A.29. Nine of the top trackers apply transform-
ers as the core tracking methodology and one applied deep DCFs. Seven apply
a two-stage target localization, meaning that they first localize the target by
a bounding box and the segment the target withing the bounding box with a
separate network (two of these apply Alpha-Refine [61] – the winner of VOT-
RT2020 challenge). Three of the top 10 trackers are single-stage, meaning that
they directly segment the target. Four of the trackers are apply elements (or are
extensions) of MixFormers [10], four extend TransT [8] and three apply ViT [16].

The top tracker on the public set according to EAO is MS AOT A.6, which is
based on the recent transformer-based video object segmentation AOT [65]. For
normal-sized objects, the tracker acts as a single-stage segmentation method.
For tiny objects, the tracker works in a two-stage regime in which the object
is first localized by bounding box using MixFormer [10] and then segmented by
the AOT.

The second-best tracker is DAMTMask A.2, which is build on top of Mix-
Former [10] and SuperDiMP [3], and applied a two-stage target localization and
segmentation approach. The target location is predicted by RepPoints [64] and
a MixFormer-like head is implemented to predict the segmentation mask.

The third-best tracker is MixFormerM A.5, a two-stage tracker which uses
a new mixed attention module for simultaneous feature extraction and target
information fusion.

The three top performers in EAO are among the top three performers in ac-
curacy (A) and robustness (R) measures as well (Table 10). While these trackers
are comparable in target localization accuracy, MS AOT stands out by its re-
markable robustness (Figure 4).

CM IC OC SC MC

Accuracy 0.62 0.62 0.52 0.64 0.63
Robustness 0.79 0.75 0.68 0.78 0.76

Table 1. VOT-STs2022 tracking difficulty with respect to the following visual at-
tributes: camera motion (CM), illumination change (IC), motion change (MC), occlu-
sion (OC) and size change (SC).

Three of the tested trackers have been published in major computer vision
journals and conferences in the last two years (2021/2022). These trackers are
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Fig. 4. The VOT-STs2022 AR-raw plots generated by sequence pooling (left) and EAO
curves (center) and the VOT-STs2022 expected average overlap graph with trackers
ranked from right to left. The right-most tracker is the top-performing according to
the VOT-STs2022 expected average overlap values. The dashed horizontal line denotes
the average performance of three state-of-the-art trackers published in 2021/2022 at
major computer vision venues. These trackers are denoted by gray circle in the bottom
part of the graph. See Table 10 for the tracker labels.

indicated in Figure 4, along with their average performance (EAO=0.504), which
constitutes the VOT2022 state-of-the-art bound. Approximately 32% of the sub-
missions exceed this bound.

The per-attribute robustness analysis is shown in Figure 5 for individual
trackers. The overall top performers remain at the top of per-attribute ranks as
well. MS AOT achieves top robustness in all attributes. According to the median
failure over each attribute (Table 1) the most challenging attribute remains
occlusion. The drop on this attribute is consistent for all trackers (Figure 5).
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Fig. 5. Robustness with respect to the visual attributes in VOT-STs2022 challenge
(left) and in the VOT-STb2022 challenge (right). See Table 10 and Table 12 for VOT-
STs2022 and VOT-STb2022 tracker labels, respectively.

The VOT-STs2022 challenge winner The top five trackers from the base-
line experiment (Table 10) were re-run on the sequestered dataset. Their scores
obtained on the sequestered dataset are shown in Table 2. The top tracker ac-
cording to the EAO is MS AOT A.6 and is thus the VOT-STs2022 challenge
winner.
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Tracker EAO A R

1. MS AOT 0.565 0.823 0.906
2. DAMTMask 0.513 0.846 0.830
3. OSTrackSTS 0.500 0.822 0.845
4. MixFormerM 0.497 0.844 0.819
5. Linker 0.492 0.829 0.830

Table 2. The top five trackers from Table 10 re-ranked on the VOT-STs2022 se-
questered dataset.

4.2 The VOT-STb2022 challenge results

The VOT-STb2022 challenge tested 41 trackers, including the baselines con-
tributed by the VOT committee. Each submission included the binaries or source
code that allowed verification of the results if required. In the following, we briefly
overview the entries and provide the references to original papers in the Ap-
pendix B where available. The trackers were based on various tracking principles.
13 trackers were based on classical or deep discriminative correlation filters (Su-
perFus B.20, TCLCFcpp B.22, KCF B.36, D3Sv2 B.34, DiMP B.35, ATOM B.32,
CSRDCF B.33, SuperDiMP B.41, PrDiMP B.39, FSC2F B.7, oceancycle B.13,
DeepTCLCF B.5, KYS B.37), 4 trackers were based purely on Siamese cor-
relation (NfS B.12, SiamUSCMix B.17, SiamVGGpp B.18, SiamFC B.40), 19
trackers were based on transformers (TransT M B.26, TransT B.25, ADOT-
stb B.1, GOANET B.8, DAMT B.4, tomp B.23, TransLL B.24, APMT MR B.2,
APMT RT B.3, DGformer B.6, Linker B B.9, MixFormer B.10, ViTCRT B.28,
MixFormerL B.11, OSTrackSTB B.14, SRATransT B.19, vittrack B.29, Swin-
Track B.21, SBT B.16), one ensamble-based (TRASFUST B.27), one was based
on meta-learning (ReptileFPN B.15), one was scale-adaptive mean-shift tracker
(ASMS B.31), and two were part-based generative trackers (ANT B.30 and
LGT B.38).

Results The results are summarized in the AR-raw plots and EAO plots in
Figure 6, and in Table 12. The top ten trackers according to the primary
EAO measure (Figure 6) are DAMT B.4, MixFormerL B.11, OSTrackSTB B.14,
APMT MR B.2, MixFormer B.10, APMT RT B.3, ADOTstb B.1,
SRATransT B.19, Linker B B.9, TransT M B.26. Like in the segmentation track-
ing challenge VOT-STs2022, all top ten trackers apply transformers. In fact,
seven of the top trackers are modifications of segmentation-based counterparts,
ranked among the top ten trackers on the VOT-STs2022: MixFormerL, DAMT,
OSTrackSTB, MixFormer, SRATransT, Linker, TransT.

All three top-ranked trackers on the public dataset according to EAO, are
counterparts of the top-ranked trackers on the main segmentation challenge
VOT-STs2022. The two top performers, with equal EAO are MixFormerL B.11
and DAMT B.4. MixFormerL B.11, is a counterpart of the tracker ranked third
on VOT-STs2022, while DAMT B.4 is a counterpart of the second-ranked tracker
on VOT-STs2022. The two trackers excel in different tracking properties. DAMT
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is more robust than MixFormerL, while MixformerL is delivers a more accurate
target estimation than DAMT. The third-best ranked tracker is OSTrackSTB is
a counterpart of the fourth-best ranked tracker on VOT-STs2022.

0.0 0.2 0.4 0.6 0.8 1.0
Robustness

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0 100 200 300 400 500 600 700
frames

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pe

ct
ed

 a
ve

ra
ge

 o
ve

rl
ap

16111621263136
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

EA
O

Fig. 6. The VOT-STb2022 AR-raw plots generated by sequence pooling (left) and
EAO curves (center) and the VOT-STb2022 expected average overlap graph with track-
ers ranked from right to left. The right-most tracker is the top-performing according to
the VOT-STs2022 expected average overlap values. The dashed horizontal line denotes
the average performance of ten state-of-the-art trackers published in 2021/2022 at ma-
jor computer vision venues. These trackers are denoted by gray circle in the bottom
part of the graph. See Table 12 the tracker labels.

Seven of the tested trackers have been published in major computer vision
journals and conferences in the last two years (2021/2022). These trackers are
indicated in Figure 6, along with their average performance (EAO=0.484), which
constitutes the VOT2022 state-of-the-art bound. Approximately 43.9% of the
submissions exceed this bound.

The per-attribute robustness analysis is shown in Figure 5 for individual
trackers. The overall top performers remain at the top of per-attribute ranks
as well, however, none of the trackers consistently outperforms the rest in all
attributes. According to the median failure over each attribute (Table 3) the most
challenging attribute remains occlusion. The drop on this attribute is consistent
for all trackers (Figure 5).

CM IC OC SC MC

Accuracy 0.68 0.63 0.55 0.66 0.65
Robustness 0.79 0.74 0.69 0.77 0.74

Table 3. VOT-STb2022 tracking difficulty with respect to the following visual at-
tributes: camera motion (CM), illumination change (IC), motion change (MC), occlu-
sion (OC) and size change (SC).
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The VOT-STb2022 challenge winner Top trackers from the baseline ex-
periment (Table 12) were re-run on the sequestered dataset. Since some of the
top trackers were variations of the same tracker, the VOT committee selected
only the top-performing variant as a representative to be run on the sequestered
dataset. Note that there are several ways to specify the ground truth against
which the predicted bounding boxes from the trackers can be evaluated. The
most straight-forward way is to fit bounding boxes to the ground truth masks
(as done in the public evaluation). However, the most accurate ground truth
target location specification is actually a segmentation mask and the predicted
bounding box from the tracker can be considered as its parametric approxima-
tion. We thus inspected the tracker performance for winner identification along
the bounding box ground truth specification and along the segmentation mask
ground truth specification.

The scores using the bounding box ground truth are shown in Table 4, while
the scores using the segmentation mask ground truth are shown in Table 5. We
observe that the tracker ranks remain the same across the two ground truth
specifications, except from the top two, who switch ranks. For this reason, both
top-performers are determined as the winners of the VOT-STb2022 challenge,
each in its category. The winner of the VOT-STb2022 challenge in the bound-
ing box ground truth category is OSTrackSTB B.14, while the winner in the
segmentation mask ground truth category is APMT MR B.2.

Tracker EAO A R

1. OSTrackSTB 0.523 0.800 0.881
2. APMT MR 0.508 0.800 0.862
3. MixFormerL 0.500 0.837 0.825
4. ADOTstb 0.499 0.812 0.840
5. DAMT 0.479 0.804 0.826

Table 4. The top five trackers from Table 12 re-ranked on the VOT-STb2022 se-
questered dataset using the bounding box ground truth.

Tracker EAO A R

1. APMT MR 0.322 0.528 0.845
2. OSTrackSTB 0.309 0.517 0.839
3. MixFormerL 0.306 0.542 0.803
4. ADOTstb 0.301 0.532 0.806
5. DAMT 0.289 0.503 0.807

Table 5. The top five trackers from Table 12 re-ranked on the VOT-STb2022 se-
questered dataset using the segmentation masks as ground truth.
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4.3 The VOT-RTs2022 challenge results

The trackers that entered the VOT-STs2022 challenge were also run on the VOT-
RTs2022 challenge. Thus the statistics of submitted trackers were the same as
in VOT-ST2022. For details please see Section 4.2 and Appendix A.

Results The EAO scores and AR-raw plots for the trackers participating in
the VOT-RTs2022 challenge are shown in Figure 7 and Table 10. The top ten
segmentation-based real-time trackers are MS AOT A.6, OSTrackSTS A.7, SRA-
TransTS A.10, TransT M A.15, DGformer A.3, MixFormerM A.5, TransLL A.12,
TransT A.13 and Linker A.4 and RTS A.8.

Nine of the top ten trackers are based on transformers. Nine trackers are
ranked among to top 10 on the VOT-STs2022 challenge: MS AOT, OSTrackSTS,
SRATransTS, TransT M, DGformer, MixFormerM, TransLL, Linker and rts,
while TransT is a variation of TransT M. The top-ranked tracker on realtime
challenge according to EAO is MS AOT, which is also the top-performer on the
VOT-STs2022 public datast, the second-best is OSTrackSTS, which ranks fourth
on VOT-STs2022 and the third is SRATransTS, which ranks seventh on VOT-
STs2022. This indicates significant advancement in the field of visual object
tracking since the inception of the VOT realtime challenges, indicating that the
speed limitation of modern robust trackers has been confidently breached by
transformers.

Three of the tested trackers have been published in major computer vision
journals and conferences in the last two years (2021/2022). These trackers are
indicated in Figure 7, along with their average performance (EAO=0.422), which
constitutes the VOT2022 state-of-the-art bound. Approximately 45.2% of the
submissions exceed this bound.
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Fig. 7. The VOT-RTs2022 AR plot (left), the EAO curves (center) and the EAO plot
(right). The dashed horizontal line denotes the average performance of seven state-
of-the-art trackers published in 2021/2022 at major computer vision venues. These
trackers are denoted by gray circle in the bottom part of the graph.
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The VOT-RTs2022 challenge winner According to the EAO results in Ta-
ble 10, the top performer and the winner of the segmentation-based real-time
tracking challenge VOT-RTs2022 is MS AOT( A.6).

4.4 The VOT-RTb2022 challenge results

The trackers that entered the VOT-STb2022 challenge were also run on the
VOT-RTb2022 challenge. Thus the statistics of submitted trackers were the same
as in VOT-STb2022. For details please see Section 4.1 and Appendix B.

Results The EAO scores and AR-raw plots for the trackers participating in
the VOT-RTb2022 challenge are shown in Figure 8 and Table 12. The top ten
bounding-box-based real-time trackers are OSTrackSTB B.14, APMT RT B.3,
MixFormer B.10, APMT MR B.2, SRATransT B.19, DAMT B.4, TransT M B.26,
vittrack, SBT B.16, TransT B.25. All of these are based on transformers. Seven
are among the top ten performers on the public dataset in VOT-STb2022: OS-
TrackSTB, APMT RT, MixFormer,APMT MR, SRATransT, DAMT and
TransT M. Thus, similarly to VOT-RTs2022, results here show that performance
is minimally compromised if at all on account of speed in transformer-based
tracking.

The top-performer according to the EAO on the public dataset is OSTrack-
STB, which is based on the recent OSTrack [68] and uses a ViT [16] backbone.
This tracker is ranked third on VOT-STb2022. The second and the third-best
trackers on VOT-RTb2022 are APMT RT and MixFormer, which are ranked
fourth and fifth on VOT-STb2022.

Note that 7 of the tested trackers have been published in major computer
vision journals and conferences in the last two years (2021/2022). These trackers
are indicated in Figure 8, along with their average performance (EAO=0.421),
which constitutes the VOT2022 state-of-the-art bound. Approximately 53.7% of
the submissions exceed this bound.
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Fig. 8. The VOT-RTb2022 AR plot (left), the EAO curves (center) and the EAO plot
(right). The dashed horizontal line denotes the average performance of ten state-of-the-
art trackers published in 2021/2022 at major computer vision venues. These trackers
are denoted by gray circle in the bottom part of the graph.
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The VOT-RTb2022 challenge winner According to the EAO results in
Table 12, the top performer and the winner of the bounding-box-based real-time
tracking challenge VOT-RTb2022 is OSTrackSTB (B.14).

4.5 The VOT-LT2022 challenge results

Trackers submitted The VOT-LT2022 challenge received 7 valid entries. The
VOT2022 committee contributed additional trackers SuperDiMP and KeepTrack
as baselines; thus 9 trackers were considered in the challenge. In the following,
we briefly overview the entries and provide the references to original papers in
Appendix C where available.

All participating trackers were categorized as ST1 according to the ST-LT
taxonomy from Section 2 in that they implemented explicit target re-detection.
All trackers were based on convolutional neural networks. Four trackers ap-
plied Transformer architecture akin to STARK [60] for target localization (Co-
CoLoT C.2, mixLT C.5, mlpLT C.6, and VITKT M C.8). Particularly,
VITKT M C.8 is based purely on a Transformer-backbone [52] for feature ex-
traction. Four trackers applied SuperDiMP structure [3] as their basic tracker
(ADiMPLT C.1, mixLT C.5, mlpLT C.6, SuperDiMP C.9). Three trackers se-
lected KeepTrack [46] as their auxiliary tracker due to its robustness to dis-
tractors (CoCoLoT C.2, VITKT M C.8, KeepTrack C.10). One tracker is based
on MixFormer [10] to design a long-term tracker that focuses on target recap-
ture (HuntFormer C.4). One tracker extends the D3Sv2 [42] short-term tracker
with long-term capabilities (D3SLT C.3). Four trackers combined different track-
ing methods and switched them based on their tracking scores (CoCoLoT C.2,
D3SLT C.3, mixLT C.5, mlpLT C.6, VITKT M C.8). Among them, two trackers
use an online real-time MDNet-based [48] verifier to determine the tracking score
(CoCoLoT C.2, D3SLT C.3).

Tracker Pr Re F-Score Year

VITKT M 0.629 1 0.604 2 0.617 1 2022

mixLT 0.608 2 0.592 3 0.600 2 2022

HuntFormer 0.586 0.610 1 0.598 3 2022

CoCoLoT 0.591 3 0.577 0.584 2022

mlpLT 0.568 0.562 0.565 2022

KeepTrack 0.572 0.550 0.561 2022

D3SLT 0.520 0.516 0.518 2022

Super DiMP 0.510 0.496 0.503 2022

ADiMPLT 0.489 0.514 0.501 2022
Table 6. List of trackers that participated in the VOT-LT2022 challenge along with
their performance scores (Pr, Re, F-score) and ST/LT categorization.
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Results The overall performance is summarized in Figure 9 and Table 6. The
top-three performers are VITKT M C.8, mixLT LT C.5 and HuntFormer C.4.
VITKT M obtains the highest F-score (0.617) in 2022, while last year winner
(mlpLT) obtains 0.565. Since the new VOT-LT dataset is more challenging, it
should be noted that the average F-Score of these trackers decreased by 11.4%
than last year. All the results are based on the submitted numbers, but these
were verified by running the codes multiple times. The VITKT M is composed
of a Transformer-based tracker VitTrack, an auxiliary tracker KeepTrack and
a motion module. Specifically, the master tracker VitTrack is a Transformer-
based tracker composed of a backbone network, a corner prediction head and a
classification head. Besides, a simple motion module is used to predict the target
current state according to the temporal trajector. When scores of VitTrack and
KeepTrack are all lower than a threshold, and the target moves abnormally, this
motion module is triggered to predict the current state.

The mixLT architecture is a progressive fusion of multiple trackers, mainly
STARK [60] and SuperDiMP. Specifically, it first fuses the results of two trackers,
STARK-ST50 and STARK-ST101. The states of two trackers are then corrected
based on the fusion resuls. SuperDiMP controlled by meta-updater is introduced
for further fusion between dissimilar trackers, in order to improve the robustness
of long-term tracking. The final tracking result is determined according to the
confidences of the trackers over several frames, and another tracker correction is
performed.

Based on MixFormer, the tracker HuntFormer propose an effective motion
prediction model that provides a reliable search region for the tracker to recap-
ture the target. Meanwhile, we propose a novel soft-threshold-based dynamic
memory update model, which keeps a set of reliable target templates in the
memory that can be used to match the target position in the search region. The
two modules cooperate with each other, which greatly improves the recapture
ability of the tracker.

The VITKT M achieves an overall best F-score and significantly surpasses
mixLT (by 1.7%) and MixFormer (by 1.9%). All of these methods are based
on Transformer. Two similar trackers, VITKT M C.8 and VITKT C.7 were
submitted by one team. The only difference is that the VITKT is a more concise
version than VITKT M without the motion module. When ablating the motion
module (VITKT C.7), the F-score decreases by 1.2%. Since VITKT C.7 is a
minor variant of VITKT M, we only keep VITKT M in our ranking.

The VOT-LT2022 challenge winner According to the F-score in Table 6,
the top-performing tracker is VITKT M, closely followed by mixLT and Hunt-
Former. Thus the winner of the VOT-LT 2021 challenge is VITKT M C.8.

4.6 The VOT-RGBD2022 challenge results

Eight trackers were submitted to the 2022 RGBD challenge: DMTracker (D.1)
keep track (D.2), MixForRGBD (D.3), OSTrack (D.4), ProMix (D.5), SAMF
(D.6), SBT RGBD (D.7) and SPT (D.8).
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Fig. 9. VOT-LT2022 challenge average tracking precision-recall curves (left) and the
corresponding F-score curves (right). Tracker labels are sorted according to maximum
of the F-score (see Table 6).

All trackers are based on the popular deep learning-based tracker architec-
tures that have performed well in the previous years VOT RGB challenges. The
new deep architecture for this year is MixFormer [10] that is in multiple sub-
missions (MixForRGBD, ProMix and SAMF). The main difference between the
submitted trackers is how they fuse the two modalities, depth and RGB, and
in their training prodedures. Some teams submitted multiple trackers, but since
their architectures are different they were all accepted.

Results The Expected Average Overlap (EAO), Accuracy (A) and Robustness
(R) metrics of the submitted and a number of additional trackers are shown
in Table 7. The two best performing trackers, MixForRGBD and SAMF, are
distinctively better than the next ones. The six best performing trackers are this
year submissions while the DepthTrack database baseline, DeT DiMP50 Max,
is the seventh. The two RGB trackers perform the worst as was expected.
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Fig. 10. The VOT-RGBD2022 AR plot (left) and the EAO curves (right).
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Tracker EAO A R

1. MixForRGBD 0.779 1 0.816 0.946

2. SAMF 0.762 2 0.807 0.936

3. OSTrack 0.729 3 0.808 0.894

4. ProMix 0.722 0.798 0.900

5. SBT RGBD 0.708 0.809 0.864

6. DMTracker 0.658 0.758 0.851

7. DeT DiMP50 Max 0.657 0.760 0.845

8. SPT 0.651 0.798 0.851

9. STARK RGBD 0.647 0.803 0.798

10. keep track 0.606 0.753 0.797

11. DRefine 0.592 0.775 0.760

12. ATCAIS 0.559 0.761 0.739

13. DiMP 0.534 0.703 0.731

14. ATOM 0.505 0.698 0.688
Table 7. Results for the eight submitted VOT-RGBD2022 trackers. For comparison,
the table also includes the results for the three best performing RGBD trackers from
VOT2020 (ATCAIS) and VOT2021 (STARK RGBD and DRefine), two strong baseline
RGB trackers from the previous years (DiMP and ATOM) and the baseline RGBD
tracker from the DepthTrack dataset (DeT DiMP50 Max [62]).

The VOT-RGBD2022 challenge winner The results in Figure 10 show that
MixForRGBD and SAMF perform very similarly and are clearly better than the
rest. Still, MixForRGBD obtains the best EAO score and is thus the winner of
the VOT-RGBD2022 challenge.

4.7 The VOT-D2022 challenge results

The VOT-D2022 challenge uses the same 127 short-time tracking sequences as
the above RGBD2022 challenge, but in the D (depth-only) challenge the trackers
are provided only the depth map frames. This challenge was added as it was
intriguing to study how much RGB adds to the depth cue and what is the
complementary power of the two modalities.

The total of six trackers were submitted to the depth-only challenge. The
submitted trackers are: CoDeT (E.1), MixFormerD (E.2), OSTrack D (E.3), RS-
DiMP (E.4), SBT Depth (E.5) and UpDoT (E.6).

Not surprisingly the D-only challenge attracted submissions from the same
groups that also participated the RGBD challenge. For example, CoDeT is a
D-only version of DMTRacker, MixFormerD of MixForRGBD, OSTrack D of
OSTrack, and SBT Depth of SBT RGB. RSDiMP is from the same group as
the SPT RGBD tracker, but the two architectures are different. The authors
of CoDeT also submitted UpDoT which corresponds to standard DiMP trained
with two different versions of depth data.
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Results The computed performance metrics for the D (depth-only) trackers are
in Table 8 and the corresponding graphs in Figure 11. From the results we can see
that the depth-only variants of the best performing RGBD trackers also perform
well in the D-only challenge (MixFormerRGBD → MixFormerD and OSTrack
→ OSTrack D). The only dedicated D-only tracker submitted to the D-only
challenge and which does not have an RGBD counterpart, RSDiMP, obtains the
second best EAO score. Overall the three best methods, MixFormerD, RSDiMP
and OSTrack D, perform almost on par and are distinctively better than the
rest. Therefore, these three trackers are good starting points to understand how
to effectively use the depth channel in tracking.

Notably, there is a clear difference between the D-only and RGBD results on
the same data (Table 7 vs. Table 8). That confirms that the both modalities,
D and RGB, are beneficial for object tracking. For example, the RGB DiMP in
Table 7 is clearly better than the depth-only DiMP in Table 8 (EAO 0.534 vs.
0.336), but inferior to the best D-only tracker (MixFormerD 0.600).

Tracker EAO A R

1. MixFormerD 0.600 1 0.758 0.806

2. RSDiMP 0.573 2 0.734 0.759

3. OSTrack D 0.568 3 0.735 0.774

4. DOT 0.469 0.672 0.673

5. SBT Depth 0.462 0.756 0.571

6. UpDoT 0.439 0.652 0.627

7. CoDeT 0.372 0.597 0.594

8. DiMP 0.336 0.623 0.496
Table 8. Results for the six submitted VOT-D2022 trackers. For comparison, the
table also includes the results for the recent dept-only tracker DOT [63] and RGB
DiMP that was trained with RGB but tested with colormap converted depth images.

The VOT-D2022 challenge winner The three best depth-only trackers, Mix-
FormerD, RSDiMP and OSTrack D, perform on par, but since MixFormerD
obtains the best EAO score, it is selected as the winner.

5 Conclusions

Results of the VOT2022 challenge were presented. The challenge is composed
of the following challenges focusing on various tracking aspects and domains:
(i) the segmentation-based short-term RGB tracking challenge (VOT-STs2022),
(ii) the legacy bounding-box-based short-term RGB tracking challenge (VOT-
STb2022), (iii) the realtime counterpart of VOT-STs2022 (VOT-RTs2022), (iv)
the realtime countrepart of VOT-STb2022 (VOT-RTb2022), (v) the VOT2022
long-term RGB tracking challenge (VOT-LT2021), (vi) the VOT2022 short-term



The Tenth Visual Object Tracking VOT2022 Challenge Results 25

0.0 0.2 0.4 0.6 0.8 1.0
Robustness

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0 100 200 300 400 500 600 700
frames

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pe

ct
ed

 a
ve

ra
ge

 o
ve

rl
ap

Fig. 11. The VOT-D2022 AR plot (left) and the EAO curves (right).

RGB and depth (D) tracking challenge (VOT-RGBD2022) and its variation (vii)
the VOT2022 short-term depth-only tracking challenge (VOT-D2022).

In this VOT edition, new VOT-LT2022, VOT-RGBD2022 and VOT-D2022
datasets were introduced, a legacy bounding-box-based tracking challenge VOT-
STb2022 was reintroduced, the VOT-ST2022 public and sequestered datasets
were refreshed, and a training dataset has been introduced for VOT-LT2022.

A methodological shift, which was indicated already in the VOT2021 [33],
has been made even more aparent this year. Nearly half of the trackers partic-
ipating in VOT-STs2022 challenge were based on transformers, approximately
40% were using discriminative correlation filters, while only few were based on
Siamese correlation trackers (a methodology highly popular in VOT2021). All of
the top 9 trackers were based on transformers. Apart from being robust, these
trackers are also very fast – 9 of top VOT-STs2022 trackers are among the top
trackers on VOT-RTs2022 challenge. Variations of the segmentation trackers
were submitted to the legacy bounding-box tracking challenge VOT-STb2022.
Seven of the top ten trackers on VOT-STb2022 were modifications of the trackers
ranked among the top ten on VOT-STs2022. The winner of the VOT-STs2022
challenge is MS AOT A.6, while the winner of the VOT-STb2022 challenge in the
bounding box ground truth category is OSTrackSTB B.14 and the winner in the
segmentation mask ground truth category is APMT MR B.2. The winner of the
VOT-RTs2022 challenge is MS AOT A.6 and the winner of the VOT-RTb2022
challenge is OSTrackSTB B.14.

The VOT-LT2022 challenge’s top-three performers all apply Transformer-
based tracker structure for short-term localization and long-term re-detection.
Among all submitted trackers, the dominant methodologies are SuperDiMP [3],
STARK [60], KeepTrack [46], and MixFormer [10]. The top perfomer and the
winner of the VOT-LT2022 is VITKT M C.8, which ensembles the results of
VitTrack and KeepTrack. This tracker obtains a significantly better performance
than the second-best tracker.
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In the VOT-RGBD2022 and VOT-D2022 challenges, the same tracker archi-
tecture obtained the best results in all tracking metrics. There are two interesting
points in this this submission that possibly explain its success as compared to
others. At first, the tracker is based on the recent Convolutional Visual Trans-
former (CvT) model and, secondly, the both RGB and depth representations are
learned from data. Since there are no depth-only tracking datasets that are suf-
ficiently large for network training, the existing RGB datasets were converted to
pseudo depth map datasets using a monocular depth estimation method. These
design choices turned out to be the winning ones this year, and therefore the
same authors won the VOT-RGBD2022 and VOT-D2022 challenges with their
two trackers adopting the same architecture, MixForRGBD and MixFormerD.

For the last decade, the primary objective of VOT has been to establish a
platform for discussion of tracking performance evaluation and contributing to
the tracking community with verified annotated datasets, performance measures
and evaluation toolkits. The VOT2022 was the tenth effort toward this, follow-
ing the very successful VOT2013, VOT2014, VOT2015, VOT2016, VOT2017,
VOT2018, VOT2019, VOT2020 and VOT2021. Since its beginning, the VOT
has successfully identified modern milestone tracking methodologies at their in-
ception, spanning discriminative correlation filters, Siamese trackers and most
recently the transformer-based architectures. By pushing the boundaries, pre-
senting ever challenging sequences and opening new challenges, the VOT has
been successfully fulfilling its service to community. The effort, however, is joint
with the tracking community who continually raises to the challenges and is the
one generating the fast pace of tracker architecture development. We thank the
community for their collaboration and look forward to future developments in
this exciting scientific field.
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baseline realtime unsupervised

EAO AR EAO AR Avg. acc.

Tracker EAO A R EAO A R AUC

MS AOT 0.673 1 0.781 3 0.944 1 0.610 1 0.751 3 0.921 1 0.734 2

DAMTMask 0.624 2 0.796 2 0.891 2 0.369 0.623 0.756 0.765 1

MixFormerM 0.589 3 0.799 1 0.878 3 0.521 0.778 1 0.834 0.722 3

OSTrackSTS 0.581 0.775 0.867 0.569 2 0.766 2 0.860 0.665

Linker 0.559 0.772 0.861 0.467 0.709 0.811 0.697

SRATransTS 0.547 0.743 0.866 0.547 3 0.743 0.866 2 0.673

TransT M 0.542 0.743 0.865 0.542 0.742 0.865 3 0.667

DGformer 0.538 0.744 0.861 0.527 0.744 0.850 0.668

TransLL 0.530 0.735 0.861 0.509 0.733 0.846 0.649

LWL B2S 0.516 0.736 0.831 0.458 0.715 0.800 0.616

rts 0.502 0.710 0.843 0.450 0.698 0.802 0.592

TransT 0.500 0.749 0.815 0.500 0.749 0.815 0.611

D3Sv2 0.497 0.713 0.827 0.307 0.648 0.627 0.553

TRASFUSTm 0.491 0.740 0.805 0.342 0.631 0.705 0.616

SuperDiMP AR 0.468 0.734 0.773 0.426 0.711 0.746 0.580

LWL 0.461 0.721 0.798 0.406 0.699 0.763 0.582

SiamUSCMix 0.449 0.702 0.776 0.449 0.702 0.776 0.502

KYS AR 0.445 0.722 0.749 0.397 0.702 0.708 0.574

DiMP AR 0.426 0.723 0.719 0.422 0.718 0.724 0.547

PrDiMP AR 0.422 0.723 0.724 0.400 0.707 0.706 0.581

ATOM AR 0.398 0.699 0.691 0.380 0.695 0.681 0.505

DAMT 0.339 0.459 0.861 0.315 0.447 0.841 0.434

transt ar 0.315 0.474 0.809 0.315 0.474 0.809 0.397

STM 0.308 0.745 0.589 0.288 0.703 0.577 0.455

SwinT 0.247 0.452 0.679 0.243 0.440 0.680 0.369

ASMS 0.193 0.419 0.565 0.192 0.419 0.561 0.256

CSRDCF 0.184 0.406 0.550 0.183 0.406 0.548 0.236

SiamFC 0.174 0.417 0.502 0.165 0.423 0.462 0.232

ANT 0.169 0.399 0.482 0.142 0.386 0.407 0.224

KCF 0.165 0.423 0.487 0.165 0.423 0.486 0.162

LGT 0.137 0.345 0.451 0.102 0.335 0.331 0.162

Table 10. Results for VOT-STs2022 and VOTs-RT2022 challenges. Expected average
overlap (EAO), accuracy and robustness are shown. For reference, a no-reset average
overlap AO [58] is shown under Unsupervised.
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baseline realtime unsupervised

EAO AR EAO AR Avg. acc.

Tracker EAO A R EAO A R AUC

MixFormerL 0.602 1 0.831 1 0.859 0.512 0.792 2 0.814 0.708

DAMT 0.602 2 0.776 0.887 1 0.554 0.752 0.866 0.716 3

OSTrackSTB 0.591 3 0.790 0.869 0.591 1 0.790 0.869 0.680

APMT MR 0.591 0.787 0.877 3 0.560 0.768 0.871 3 0.686

MixFormer 0.587 0.797 2 0.874 0.580 3 0.796 1 0.872 2 0.696

APMT RT 0.581 0.787 0.877 2 0.581 2 0.787 0.877 1 0.721 2

ADOTstb 0.569 0.775 0.862 0.282 0.672 0.533 0.735 1

SRATransT 0.560 0.764 0.864 0.560 0.764 0.864 0.670

Linker B 0.560 0.789 0.844 0.510 0.766 0.823 0.684

TransT M 0.537 0.765 0.849 0.537 0.765 0.849 0.639

vittrack 0.536 0.789 0.818 0.536 0.789 0.818 0.679

SuperFus 0.534 0.763 0.828 0.481 0.760 0.782 0.629

SwinTrack 0.524 0.788 0.803 0.503 0.783 0.791 0.626

SBT 0.522 0.791 3 0.813 0.523 0.791 3 0.814 0.641

TRASFUST 0.514 0.754 0.833 0.401 0.704 0.734 0.674

TransT 0.512 0.781 0.800 0.513 0.781 0.800 0.641

tomp 0.511 0.752 0.818 0.478 0.728 0.796 0.628

oceancycle 0.487 0.702 0.825 0.332 0.658 0.629 0.556

GOANET 0.481 0.759 0.772 0.478 0.758 0.768 0.654

SuperDiMP 0.478 0.742 0.788 0.478 0.736 0.798 0.606

KYS 0.461 0.688 0.797 0.446 0.690 0.784 0.576

SiamUSCMix 0.444 0.702 0.773 0.444 0.702 0.773 0.556

PrDiMP 0.437 0.725 0.755 0.435 0.723 0.751 0.564

ViTCRT 0.433 0.774 0.711 0.434 0.774 0.711 0.609

DiMP 0.430 0.689 0.760 0.434 0.689 0.761 0.546

SiamVGGpp 0.399 0.719 0.690 0.399 0.719 0.690 0.486

ATOM 0.386 0.668 0.716 0.391 0.672 0.728 0.505

NfS 0.384 0.688 0.681 0.384 0.688 0.681 0.456

TransLL 0.367 0.516 0.859 0.353 0.514 0.842 0.473

D3Sv2 0.356 0.521 0.811 0.242 0.486 0.637 0.414

DGformer 0.337 0.497 0.831 0.332 0.497 0.824 0.462

ReptileFPN 0.295 0.572 0.644 0.180 0.526 0.395 0.393

FSC2F 0.279 0.554 0.621 0.263 0.557 0.586 0.327

DeepTCLCF 0.274 0.550 0.601 0.274 0.550 0.601 0.331

TCLCFcpp 0.267 0.550 0.598 0.267 0.550 0.598 0.329

ASMS 0.255 0.526 0.599 0.254 0.526 0.594 0.317

SiamFC 0.255 0.562 0.543 0.243 0.565 0.505 0.308

CSRDCF 0.251 0.519 0.580 0.250 0.518 0.577 0.300

KCF 0.239 0.542 0.532 0.240 0.541 0.533 0.234

ANT 0.209 0.492 0.484 0.172 0.471 0.414 0.226

LGT 0.195 0.461 0.486 0.148 0.422 0.366 0.231

Table 12. Results for VOT-STb2022 and VOTb-RT2022 challenges. Expected average
overlap (EAO), accuracy and robustness are shown. For reference, a no-reset average
overlap AO [58] is shown under Unsupervised.
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A VOT-STs2022 and VOT-RTs2022 submissions

This appendix provides a short summary of trackers considered in the VOT-
ST2022 and VOT-RT2022 tracking by segmentation challenges VOT-STs2022
and VOT-RTs2022.

A.1 DAMT (DAMT)

Z. Fu, L. Wang, J. Sun, X. Li, Q. Deng, D. Du, M. Zheng
{fuzhihong.2022, wangliangliang.makalo, sunjingna, lixiao.dlut, dengqili,
dukang.daniel, zhengmin.666}@bytedance.com

We propose a distractor-aware multi-head tracker, called DAMTMask. The
tracker is built on top of MixFormer [10], adopting the online classifier of Su-
perDiMP [3] to coarsely localize targets. Besides, inspired by the excellent object
detector RepPoint [64], we design a high-precision head named as RepHead for
target state estimation. Furthermore, a distractor-aware strategy is proposed to
determine whether there are distractors in the current frame. If distractors ex-
ist, we use target bounding boxes outputted by RepHead to generate training
samples and update the classifier.

A.2 DAMTMask (DAMTMask)

L. Wang, Z. Fu, G. Chen, W. Xu, Q. Deng, D. Du, M. Zheng
{wangliangliang.makalo, fuzhihong.2022}@bytedance.com, chenguangqi@bupt.cn,
{xuwei.cv, dengqili, dukang.daniel, zhengmin.666}@bytedance.com

This tracker is based on tracker DAMT (A.1). We extend it by using object
segmentation to predict target masks.

A.3 Distance Guided Accurate Transformer Tracking (DGformer)

C. Zhang
chunhui.zhang@sjtu.edu.cn

This model is the extension of the TransT tracker [8]. Inspired by recent
UAV tracking model [69], we introduce a distance constraint to smooth target
localization changes during tracking. We also use the bounding box to refine the
object segmentation mask.

A.4 Link Two Frames - Segmentation (Linker)

S. Di, Z. Xun, S. Liu
{dishangzhe, xunzz, liusi}@buaa.edu.cn

We adopt ViT-based [16] as our backbone, which 1) locates the target by
associating the current frame with a previous one, and 2) alleviates propagation
of uncertainty by reference to the initial template. Besides, we adopt a score
branch to measure the tracking accuracy and update the previous frame once its
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score is above a threshold. We use the Candidate Elimination mechanism from
OSTrack to eliminate non-target tokens, we adopt the FCN head from OSTrack,
which outputs a classification score map, a local offset map, and a box size map
and finally we use AlphaRefine [61] to output the tracking mask. To measure
the tracking accuracy we use a score branch similar to MixFormer [10].

A.5 MixFormer-ViT-Base-Seg: End-to-End Tracking and
Segmentation with Iterative Mixed Attention (MixFormerM)

C. Jiang, Y. Cui, G. Wu, L. Wang
{mg1933027, cuiyutao}@smail.nju.edu.cn, {gswu, lmwang}@nju.edu.cn

MixFormer-ViT-Base-Seg (MixFormerM) consists of two stages which per-
form MixFormer-based tracking and segmentation respectively. Our core design
is to utilize the flexibility of attention operations, and propose a Mixed Atten-
tion Module (MAM) for simultaneous feature extraction and target information
integration. Based on MAM, we build our MixFormer tracking framework sim-
ply by stacking multiple MAMs with progressive patch embedding and placing a
corner head and segmentation head on top. We devise an asymmetric attention
scheme in MAM to reduce computational cost, and propose an effective score
prediction module to select high-quality templates. MixFormer-ViT-Base-Seg is
constructed based on ViT-Base pertained with MAE.

A.6 MS-AOT: Associating Objects with Multi-scale Transformers
for Video Object Segmentation (MS AOT)

Z. Yang, Y. Cheng, Y. Xu, C. Sun, Y. Yang, Y. Zhuang
{yangzongxin, 22151080}@zju.edu.cn, yuanyouxu@outlook.com, {c sun,
yangyics, yzhuang}@zju.edu.cn

The MS-AOT tracker is built based on AOT [66,65,67], a transformer-based
video object segmentation method, by applying transformers in multiple fea-
ture scales. AOT applies the long short-term transformer (LSTT) [66], which is
responsible for propagating the object masks from past frames to the current
frame, in the feature scale with a stride of 16. MS-AOT additionally applies
LSTT in a finer feature scale with a stride of 8, leading to better performance
on small objects. The backbone of MS-AOT is ResNet-50 pre-trained on Ima-
geNet, and we trained MS-AOT on COCO, YouTube-VOS [59], and VIPSeg [47].
MS-AOT has two inference manners. For most of the objects, MS-AOT tracks
and segments the objects in an end-to-end way by propagating objects’ masks.
For a tiny object smaller than 1/900 of the frame size, Mixformer [10] is used
to track the object in the current frame and predict a coarse location. Then,
a local region surrounding the coarse prediction is cropped and forwarded to
MS-AOT for segmenting an accurate segmentation result. Finally, we update
the internal template/memory of MixFormer/MS-AOT regarding the segmenta-
tion. Besides, the backbone of MixFormer is CvT [57], and we used the official
MixFormer checkpoint (https://github.com/MCG-NJU/MixFormer).

https://github.com/MCG-NJU/MixFormer
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A.7 One-stream tracker with online template updating for
segmentation (OSTrackSTS)

B. Ye, H. Chang, B. Ma, S. Shan, X. Chen
botao.ye@vipl.ict.ac.cn, changhong@ict.ac.cn, bpma@ucas.ac.cn,
{sgshan, xlchen}@ict.ac.cn

OSTrackSTS is based on the one-stream tracker OSTrack [68], which employs
a ViT-Base model for joint feature learning and relation modeling. Compared
to the original OSTrackOSTrack [68], we have made several changes. First, we
change the input resolution of the search region to 320. Then, a target confidence
prediction head is added, which consists of two Transformer layers and an MLP
for predicting the target confidence score. We update an online template once
the target confidence score is greater than a given threshold β and the main lobe
area of the classification graph is smaller than γ. This design tackles the problem
of target appearance change. To generate segmentation masks, AlphaRefine [61]
is used as a post-processing network. In contrast to the original model, we use
a model trained with additional pseudo-mask labels, which was generated by
running the original AlphaRefine model on LaSOT and GOT-10K.

A.8 Robust Visual Tracking by Segmentation (RTS)

M. Paul, M. Danelljan, C. Mayer, L. Van Gool
{paulma, damartin, chmayer, vangool}@vision.ee.ethz.ch

RTS [50] is a unified tracking architecture capable of predicting accurate
segmentation masks. To design a segmentation-centric approach, we take inspi-
ration from the VOS method LWL [5]. However, to achieve robust and accurate
segmentation on tracking datasets, we propose several new components. In par-
ticular, we propose an instance localization branch that is trained to predict a
target appearance model, which allows the detection of occlusions and to identify
the correct target even in cluttered scenes. The output of the instance localiza-
tion branch is further used to condition the high dimensional mask encoding.
This enables the segmentation decoder to focus on the localized target, leading
to a more robust mask prediction. Since, our proposed method contains a seg-
mentation and instance memory that needs to be updated with previous tracking
results, we design a memory management module. This module first assesses the
prediction quality, decides whether the sample should enter into the memory and
triggers the tracking model if it should be updated. See [50] for more details.

A.9 Uncertainty-aware Semantic Consistency Siamese Tracker via
Mixed Cross Correlation (SiamUSCMix)

J. Ma, B. Zhong, X. Lan, R. Ji, X. Li
majie@stu.hqu.edu.cn, bnzhong@gxnu.edu.cn, xiangyuanlan@life.hkbu.edu.hk,
rrji@xmu.edu.cn, lixx@gxnu.edu.cn

We propose a novel offline tracker (named SiamUSCMix), which consists of
a Mixed Cross Correlation module and an Uncertainty-aware Semantic Con-
sistency Siamese Tracker (SiamUSC). Mixed Cross Correlation module aims to
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explore the perception abilities based on Siamese trackers. As such, we design a
mixed feature extractor that fuses template and search features in three diverse
approaches. Moreover, D3S is employed to produce a mask prediction as the
output.

A.10 Search Region Aware Transformer Tracking for Short-term
Segmentation Tracking (SRATransTS)

J. Zhu, X. Chen, S. Lai, D. Wang, H. Lu
{jiawen, chenxin3131, laisimiao}@mail.dlut.edu.cn,
{wdice, lhchuan}@dlut.edn.cn

SRATransTS uses search region aware module (SRA) to obtain a rectified
search region for frame-level online tracking. The idea is mainly from SRRT [72],
and TransT M [7] is employed as our basetracker. SRA is a siamese-style match-
ing network, consists of a ResNet-34 backbone network, and a search region
classification head. It takes template and X6 search region crop as the inputs
and predicts the minimum search region size containing object. The predicted
search region size, iou score and location from previous frame are as a compre-
hensive basis for whether zoom and offset the current frame’s search region. The
rectified search area can better adapt to the complex motion state of the target
to a certain extent. Then the segmentation branch generates the segmentation
result of the object. Finally, all the models used are speed up to achieve real-time
speed by ONNX (https://github.com/onnx/onnx).

A.11 Swin Transformer Tracking (SwinT)

Q. Gu
736446296@qq.com

Based on TransT, we replace the feature extraction and fusion layer with
Swin-Transformer-based layers. Furthermore, the feature fusion layer is imple-
mented by a nested Swin Transformer layer called swincross which can combine
the feature map of templete and search area in a sliding window way. Specifi-
cally, we split the template and the search region into small windows, calculate
the attention value of the corresponding window through Swin Transformer, and
then shift the pixels of sreach region and repeat the above steps.

A.12 Transformer Tracking with Light-weight Large Receptive
Convolution Module (TransLL)

H. Yu, W. Yu, K. He, X. Chen, J. Wu, Y. Huang, L. Wang
{hongyuan.yu, weichen.yu, keji.he}@cripac.ia.ac.cn, chenxiuyi2017@ia.ac.cn,
{jinlin.wu, yhuang, wangliang}@nlpr.ia.ac.cn

In order to ensure a sufficiently large receptive field while reducing compu-
tation cost, we introduce a novel light-weight large receptive convolution mod-
ule (LLconv) by using bilinear sampling on the input feature map to downsam-
ple/upsample the input size. To alleviate information loss, we utilize an extra

https://github.com/onnx/onnx
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bypassed 1 x 1 convolution module to perform as a high-resolution preserving
residue. Thus, the input feature map is connected to the end of an zoomed convo-
lution to preserve the high-resolution of the input. Our LLconv not only guaran-
tees the speed, but also ensures the accuracy. On the basis of TransT [8], we use
LLconv to build a segmentation branch. In addition, following ATOM [13], we
also add the iou prediction branch to further improve the tracking performance.
Our tracker works similarly to the ATOM family methods [13,3,8], please refer
to them for more details.

A.13 Transformer Tracking (TransT)

X. Chen, B. Yan, J. Zhu, D. Wang, H. Lu, X. Yang
{chenxin3131, yan bin, jiawen}@mail.dlut.edu.cn, {wdice, lhchuan}@dlut.edu.cn,
xyang@remarkholdings.com

Transformer Tracking presents a transformer-based feature fusion network,
which effectively combines the template and the search region features using
attention mechanism. TransT [8] consists of three components: the siamese-like
feature extraction backbone (ResNet50), the designed feature fusion network,
and the prediction head. We extend our transformer tracking framework with
a segmentation branch to generate an accurate mask. The segmentation branch
fuses the output features of the feature fusion network with the low-level features
of the backbone in the FPN style. For more details about TransT, the reader is
referred to [8].

A.14 transt ar (transt ar)

K. Ben
kierkers@mail.dlut.edu.cn

The tracker takes TransT as the baseline, and adds some prediction heads
to improve the accuracy and robustness of the tracker. In addition, it also adds
some post-processing and Alpha Refine to further improve the performance of
the tracker.

A.15 Multi-Template Transformer Tracking (TransT M)

X. Chen, J. Zhu, B. Yan, D. Wang, H. Lu, X. Yang
{chenxin3131, jiawen, yan bin}@mail.dlut.edu.cn,
{wdice, lhchuan}@dlut.edu.cn, xyang@remarkholdings.com

TransT M [7] is a variant of TransT [8]. We add a segmentation branch, a
Multi-Template design, and an IoU prediction head on TransT, forming an end-
to-end framework. We concatenate two templates in the spatial dimension and
input them into the template branch of TransT. IoU prediction head is a three-
layer perceptron to predict the bounding box’s IoU and control the updating of
the template.
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A.16 Tracking by Student FUSing Teachers and
AlphaRefine (TRASFUSTm)

M. Dunnhofer, N. Martinel, C. Micheloni
{matteo.dunnhofer, niki.martinel, christian.micheloni}@uniud.it

The tracker TRASFUSTm is the combination of the TRASFUST bounding-
box tracker refsec:tr:vot-ST-B-TRASFUST with the target-dependent segmen-
tation generation method AlphaRefine [61]. After the bounding-box given by
TRASFUST, AlphaRefine is run to obtain the segmentation mask of the target.

A.17 ANT (ANT)

Submitted by VOT Committee
The ANT tracker is a conceptual increment to the idea of multi-layer ap-

pearance representation that is first described in [53]. The tracker addresses
the problem of self-supervised estimation of a large number of parameters by
introducing controlled graduation in estimation of the free parameters. The ap-
pearance of the object is decomposed into several sub-models, each describing
the target at a different level of detail. The sub models interact during target
localization and, depending on the visual uncertainty, serve for cross-sub-model
supervised updating. The reader is referred to [55] for details.

A.18 Accurate Tracking by Overlap Maximization (ATOM AR)

Submitted by VOT Committee
This tracker employs the standard ATOM [13] for predicting bounding boxes.

The AlphaRefine [61] network is then employed to predict the final mask as a
post-processing step.

A.19 Learning Discriminative Model Prediction for
Tracking (DiMP AR)

G. Bhat, M. Danelljan, L. Van Gool, R. Timofte
{goutam.bhat, martin.danelljan, vangool, timofter}@vision.ee.ethz.ch This tracker
employs the standard DiMP [3] for predicting bounding boxes. The AlphaRe-
fine [61] network is then employed to predict the final mask as a post-processing
step.

A.20 Know your surroundings tracker with Alpha refine
post-processing step (KYS AR)

Submitted by VOT Committee
This tracker employs the standard KYS [4] for predicting bounding boxes.

The AlphaRefine [61] network is then employed to predict the final mask as a
post-processing step.
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A.21 PrDiMP50 tracker with Alpha refine post-processing
step (PrDiMP-50 AR)

Submitted by VOT Committee
This tracker employs the standard PrDiMP50 [14] for predicting bounding

boxes. The AlphaRefine [61] network is then employed to predict the final mask
as a post-processing step.

A.22 SuperDiMP50 tracker with Alpha refine post-processing
step (SuperDiMP-50 AR)

Submitted by VOT Committee
This tracker employs the standard SuperDiMP50 [3,14,21,22] for predicting

bounding boxes. The AlphaRefine [61] network is then employed to predict the
final mask as a post-processing step.

A.23 Scale adaptive mean shift (ASMS)

Submitted by VOT Committee
The mean-shift tracker optimizes the Hellinger distance between template

histogram and target candidate in the image. This optimization is done by a
gradient descend. ASMS [56] addresses the problem of scale adaptation and
presents a novel theoretically justified scale estimation mechanism which re-
lies solely on the mean-shift procedure for the Hellinger distance. ASMS also
introduces two improvements of the mean-shift tracker that make the scale es-
timation more robust in the presence of background clutter – a novel histogram
colour weighting and a forward-backward consistency check. Code available at
https://github.com/vojirt/asms.

A.24 Discriminative Correlation Filter with Channel and Spatial
Reliability (CSRDCF)

Submitted by VOT Committee
The CSR-DCF [40] improves discriminative correlation filter trackers by in-

troducing the two concepts: spatial reliability and channel reliability. It uses
color segmentation as spatial reliability to adjust the filter support to the part
of the object suitable for tracking. The channel reliability reflects the discrimi-
native power of each filter channel. The tracker uses only HoG and colornames
features. This is the C++ openCv implementation.

A.25 Discriminative Sing-Shot Segmentation Tracker v2 (D3Sv2)

A. Lukežič, J. Matas, M. Kristan
alan.lukezic@fri.uni-lj.si, matas@cmp.felk.cvut.cz, matej.kristan@fri.uni-lj.si

D3Sv2 is an extended version of the D3S [39]. The original method is extended
in the following aspects: (i) a better backbone, (ii) channel attention mechanism

https://github.com/vojirt/asms
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in the upscaling modules in GIM, (iii) trainable MLP-based similarity compu-
tation in GIM, which replaces the ‘handcrafted’ top-K average operation and
(iv) the new scale estimation module used for robust target size estimation.

A.26 Kernelized Correlation Filter (KCF)

Submitted by VOT Committee

This tracker is a C++ implementation of Kernelized Correlation Filter [24]
operating on simple HOG features and Colour Names. The KCF tracker is equiv-
alent to a Kernel Ridge Regression trained with thousands of sample patches
around the object at different translations. It implements multi-thread multi-
scale support, sub-cell peak estimation and replacing the model update by linear
interpolation with a more robust update scheme. Code available at
https://github.com/vojirt/kcf.

A.27 Local-Global Tracking tracker (LGT)

Submitted by VOT Committee

The core element of LGT is a coupled-layer visual model that combines the
target global and local appearance by interlacing two layers. By this coupled
constraint paradigm between the adaptation of the global and the local layer,
a more robust tracking through significant appearance changes is achieved. The
reader is referred to [53] for details.

A.28 Learning What to Learn for Video Object Segmentation (LWL)

G. Bhat, F. Järemo Lawin, M. Danelljan, A. Robinson, M. Felsberg, L. Van
Gool, R. Timofte
goutam.bhat@vision.ee.ethz.ch, felix.jaremo-lawin@liu.se,
martin.danelljan@vision.ee.ethz.ch, {andreas.robinson, michael.felsberg}@liu.se,
{vangool, timofter}@vision.ee.ethz.ch

LWTL [5] is an end-to-end trainable video object segmentation VOS architec-
ture which captures the current target object information in a compact paramet-
ric model. It integrates a differentiable few-shot learner module, which predicts
the target model parameters using the first frame annotation. The learner is
designed to explicitly optimize an error between target model prediction and a
ground truth label, which ensures a powerful model of the target object. Given
a new frame, the target model predicts an intermediate representation of the
target mask, which is input to the offline trained segmentation decoder to gen-
erate the final segmentation mask. In order to guide the learner to focus on the
most crucial aspect of the target, a network module is trained to predict spatial
importance weights for different elements in the few-shot learning loss. See [5]
for more details.

https://github.com/vojirt/kcf
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A.29 Learning what to learn tracker with Box2Seg (LWL-B2S)

Submitted by VOT Committee
This is the standard Learning What to Learn (LWL) [5] (A.28) video object

segmentation and tracking approach, trained with the annotations generated by
the approach [70]. That is, in addition to the YouTubeVOS and DAVIS training
datasets, [70] is used to generate masks from bounding box annotated sequences
in LaSOT and GOT10k. We then finetune LWL on the combined data. The same
inference settings is used as in the standard LWL [5].

A.30 SiameseFC-AlexNet (SiamFc)

Submitted by VOT Committee
SiamFC [2] applies a fully-convolutional Siamese network [9] trained to locate

an exemplar image within a larger search image. The architecture is fully con-
volutional with respect to the search image: dense and efficient sliding-window
evaluation is achieved with a bilinear layer that computes the cross-correlation of
two inputs. The deep convnet is first trained offline on the large ILSVRC15 [51]
video dataset to address a general similarity learning problem, and then this
function is evaluated during testing by a simplistic tracker. SiamFc incorporates
elementary temporal constraints: the object search is done within a region of
approximately four times its previous size, and a cosine window is added to the
score map to penalize large displacements. SiamFc also processes several scaled
versions of the search image, any change in scale is penalised and damping is
applied to the scale factor.

A.31 VOS SOTA method (STM)

Submitted by VOT Committee
STM [49] is a VOS method employing a space-time memory module combined

with a dot-product attention layer. Please see the original paper for details [49].

B VOT-STb2022 and VOT-RTb2022 submissions

This appendix provides a short summary of trackers considered in the VOT-
ST2022 and VOT-RT2022 tracking by bounding box tracking challenges VOT-
STb2022 and VOT-RTb2022.

B.1 Backward Tracking for Robust Template-update (ADOTstb)

D. Lee, S. Lee, Y. Chen, H. Lee, C. Park, S. Pan, J. Yu, Q. Wang
{dw23.lee, seoh.lee, yiwei.chen, hyem.lee, cb0372.park, siyang1.pan, jiaqian.yu,
qiang.w}@samsung.com

The proposed object tracker consists of three parts: (i) main tracker, (ii) re-
finement module, and (iii) template updater. First, we utilized STARK [60] as
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our main framework for the object-tracking task. The backbone network is re-
placed by Swin Transformer [37]. Alpha-Refine [61] is applied for each of the
bounding box output to improve the box estimation quality of the tracker. We
proposed Backward Tracking for the robust template update without any addi-
tional network weights/training. We evaluate the quality of the new candidate
template by backward tracking. The new candidate template is re-initialized by
the current tracking result. Then we track backward to the previous frames with
new candidate template. By quantifying the difference of the forward/backward
tracking as a confidence value, we could update the template at appropriate
timing without any additional network weights/training.

B.2 Adaptive Part Mining Tracker with Multi-Region (APMT MR)

Y. Ma, D. Yang, Q. Yu, J. He, F. Wang, W. Li, T. Zhang
{imyc, yangdawei, sa21010105, hejf, wangfei91, lwklwk}@mail.ustc.edu.cn,
tzzhang@ustc.edu.cn

Tracker APMT MR is based on tracker APMT RT B.3. APMT RT crops
single search region for tracking, which is cropped five times the side length from
the center coordinate of the target in the previous frame. Differently, APMT MR
crops three search regions for tracking, including base region, motion region and
scale region. The base region is same as the search region used in APMT RT.
The center of the motion region is derive by the displacement of the target
between the last two frames. The side length of the scale region is determined
by the speed of the target. Furthermore, we design an IoU head to estimate the
IoU between the predict bounding box and the ground truth bounding box. If
the tracking results of the three search region overlap highly, the box with the
highest IoU score is taken as the tracking result, otherwise, the box with the
highest confidence score is taken as the tracking result.

B.3 Adaptive Part Mining Tracker (APMT RT)

Y. Ma, D. Yang, Q. Yu, J. He, F. Wang, W. Li, T. Zhang
{imyc, yangdawei, sa21010105, hejf, wangfei91, lwklwk}@mail.ustc.edu.cn,
tzzhang@ustc.edu.cn

We propose an adaptive part mining tracker called APMT RT that is com-
posed of a feature extraction backbone, a feature fusion encoder, two decoders
(adaptive part mining and object state estimation) and two heads (confidence
score and distractor). Swin Transformer-Base [37] is used for feature extraction
and a feature fusion encoder is used for spatio-temporal feature fusion. The adap-
tive part mining decoder is designed for object part division via a cross-attention
mechanism. In the object state estimation decoder, each part feature predicts a
keypoint, and we derive the bounding box from the mean value and the standard
deviation of these keypoints. A confidence score head evaluates the quality of
the predicted bounding box to control template update and a distractor head
predicts whether distractors exist in the search region. If distractors exist, the
drift of the target box is limited to avoid tracking failures. APMT RT adaptively
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adjusts the size of the search region based on the speed of the target. We use
ONNX (https://github.com/onnx/onnx) to speed up APMT RT for real-time
speed.

B.4 DAMT (DAMT)

Z. Fu, L. Wang, J. Sun, X. Li, Q. Deng, D. Du, M. Zheng
{fuzhihong.2022, wangliangliang.makalo, sunjingna, lixiao.dlut, dengqili,
dukang.daniel, zhengmin.666}@bytedance.com

We propose a distractor-aware multi-head tracker, called DAMTMask. The
tracker is built on top of MixFormer [10], adopting the online classifier of Su-
perDiMP [3] to coarsely localize targets. Besides, inspired by the excellent object
detector RepPoint [64], we design a high-precision head named as RepHead for
target state estimation. Furthermore, a distractor-aware strategy is proposed to
determine whether there are distractors in the current frame. If distractors ex-
ist, we use target bounding boxes outputted by RepHead to generate training
samples and update the classifier.

B.5 TCLCF tracker with deep CNN features (DeepTCLCF)

C. Tsai
chiyi tsai@gms.tku.edu.tw

DeepTCLCF is the TCLCF tracker combined with a deep convolutional neu-
ral network. In the current implementation, we use the first six layers of Dark-
net19 pretrained model to extract deep features of the tracking target. More-
over, we use three different correlation filters to cooperatively track the same
target. DeepTCLCF tracker requires GPU acceleration to achieve real-time per-
formance. Here, we use Nvidia Geforce 1080ti GPU.

B.6 Distance Guided Accurate Transformer Tracking (DGformer)

C. Zhang
chunhui.zhang@sjtu.edu.cn

This model is the extension of the TransT tracker [8]. Inspired by recent
UAV tracking model [69], we introduce a distance constraint to smooth target
localization changes during tracking. We also use the bounding box to refine the
object segmentation mask.

B.7 Fast Saliency-guided Continuous Correlation Filter-based
tracker (FSC2F)

A. Memarmoghadam, P. Moallem
{a.memarmoghadam, p moallem}@eng.ui.ac.ir

The recently proposed ECOhc approach [12] discriminatively tracks the tar-
get object via an efficient continuous correlation filter jointly learned over a

https://github.com/onnx/onnx
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compact historical sample set of the tracked object described by low-dimensional
features. To improve its robustness, we equip the baseline ECOhc with a fast
spatio-temporal saliency map constructed by the PQFT approach [20]. The
PQFT model utilizes intensity, color, and motion features for quaternion repre-
sentation of the search image context around the previous pose of the tracked
object. Therefore, attentional regions in the coarse saliency map can constrain
target confidence peaks. Moreover, to maintain the computational complexity in
a reasonable range for real-time tracking, we propose a faster scale estimation
algorithm by enhancing the fDSST method [15] via jointly learning the sparsely
sampled scale-spaces.

B.8 Generic Occlusion Aware Network for Tracking (GOANET)

M. Dasari, R. Gorthi
{ee18d001, rkg}@iittp.ac.in

This network formulate occlusion status as a binary classification problem.
It learns occlusion status at the frame level during offline training and estimate
the same during online tracking. It uses the labels available in LaSOT [19] and
VID datasets [51].

B.9 Link Two Frames (Box) (Linker B)

S. Di, Z. Xun, S. Liu
{dishangzhe, xunzz, liusi}@buaa.edu.cn

This tracker is similar to the tracker Linker A.4. The difference lies on the
refinement process: While Linker uses AlphaRefine [61] to output the tracking
mask, Linker B uses AlphaRefine [61] to output the bounding box.

B.10 MixFormer-ViT-Base: End-to-End Tracking with Iterative
Mixed Attention (MixFormer)

Y. Cui, Y. Yang, T. Song, C. Jiang, G. Wu, L. Wang
{cuiyutao, 181220064, 191098194, mg1933027}@smail.nju.edu.cn,
{gswu, lmwang}@nju.edu.cn

This tracker is based on tracker MixFormerM (A.5). While MixFormerM is a
two stage performing MixFormer-based tracking and segmentation, MixFormer
is a one-stage tracker based on ViT-Base/16.

B.11 MixFormer-ViT-Large: End-to-End Tracking with Iterative
Mixed Attention (MixFormerL)

Y. Cui, T. Song, Y. Yang, C. Jiang, G. Wu, L. Wang
{cuiyutao, 191098194, 181220064, mg1933027}@smail.nju.edu.cn,
{gswu, lmwang}@nju.edu.cn

This tracker is based on tracker MixFormerM (A.5). While MixFormerM is a
two stage performing MixFormer-based tracking and segmentation, MixFormerL
is a one-stage tracker based on ViT-Large/16.
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B.12 Normalization free Siamese Network for Object
Tracking (NfS)

H. Gupta, D. Jangid, O. P. Verma, L. Rout, D. Dhar
{guptah.nitj, ee.deepak.jangid}@gmail.com, vermaop@nitj.ac.in,
{lr, deb}@sac.isro.gov.in

The NfS Tracker adopts the Normalization Free ResNet (NFNet) architec-
ture as backbone while it utilizes the head of SiamFC++. Additionally, the two
networks have been made compatible by introducing a connecting sub-module
network. The features have been extracted by NFNet whereas, SiamFC++ per-
forms feature matching by measuring the correlation between the search space
and the target. The head structure has classification and regression branches
that have been responsible for classification between the one positive or negative
patch and refinement of the predicted bounding box respectively. The NfS has
been trained on various large scale datasets (GOT10K59, COCO, ImageNET
VID, DET, LaSOT and TrackingNet). The network has been trained for 50
epochs with the learning policy of cosine annealing. The maximum EAO (0.384)
has been achieved at the 49th epoch.

B.13 Neighbor ocean with cycle consistency (oceancycle)

Y. Chen
franktpmvu@iis.sinica.edu.tw

We propose a new method to simultaneously track the targets and the ob-
jects near the targets called NeighborTrack. If the target is occluded by the
neighbors, the chance of wrong matching is reduced because the neighbors will
tend to match with the neighbor trajectory rather than the target trajectory.
Our method includes two steps. First, we calculate the average IoU between the
historical trajectories of neighbors and targets. The neighbor is defined as the
target which confidence score is higher than a threshold. The historical trajec-
tory of the neighbor is obtained by tracking the neighbor in the reverse time axis
and the historical trajectory of the target is obtained from the tracking result of
each historical frame. Second, we apply the Hungarian algorithm to find the best
matches of the neighbors and targets. The neighbor trajectories will continue to
be used as historical trajectories in the trajectory matching process until there
are no new neighbors being matched. The two steps will repeat until the trace
is complete.

B.14 One-stream tracker with online template
updating (OSTrackSTB)

B. Ye, H. Chang, B. Ma, S. Shan, X. Chen
botao.ye@vipl.ict.ac.cn, changhong@ict.ac.cn, bpma@ucas.ac.cn,
{sgshan, xlchen}@ict.ac.cn

59 GOT10k does not use the prohibited 1k sequences and the training dataset follows
all the given regulations on the website.
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OSTrackT is the same as OSTrackTM A.7, except that the segmentation
phase is removed.

B.15 ReptileFPN Meta-Tracker (ReptileFPN)

C. Tsai
chiyi tsai@gms.tku.edu.tw

ReptileFPN is a tracker based on FPN model and a meta-learning technique
called Reptile. Inspired by Reptile Meta-Tracker, we trained a deep learning net-
work offline by repeatedly sampling different tasks. The resulting network can
quickly adapt to any domain without the need to train multi-domain branches
like MDNet. The original architecture from Reptile Meta-Tracker used VGG like
backbone, here we modified it using FPN to further improve the feature extrac-
tion ability. During online initialization, the ReptileFPN tracker only requires a
few training examples from the first frame and a few steps of optimization to
perform well in online tracking. See [25] for more details.

B.16 Correlation-Aware Deep Tracking: Single Branch Transformer
Tracking-base (SBT)

F. Xie
jaffe0319@gmail.com

We propose a novel target-dependent feature network inspired by the self-
cross-attention scheme. In contrast to the Siamese-like feature extraction, our
network deeply embeds cross-image feature correlation in multiple layers of the
feature network. By extensively matching the features of the two images through
multiple layers, it is able to suppress non-target features, resulting in instance
varying feature extraction. The output features of the search image can be di-
rectly used for predicting target locations without extra correlation step. More-
over, our model can be flexibly pre-trained on abundant unpaired images, leading
to notably faster convergence than the existing methods.

B.17 Uncertainty-aware Semantic Consistency Siamese Tracker via
Mixed Cross Correlation (SiamUSCMix)

J. Ma, B. Zhong, X. Lan, R. Ji, X. Li
majie@stu.hqu.edu.cn, bnzhong@gxnu.edu.cn, lanxy@pcl.ac.cn,
rrji@xmu.edu.cn, lixx@gxnu.edu.cn

We propose a novel offline tracker (named SiamUSCMix), which consists of
a Mixed Cross Correlation module and an Uncertainty-aware Semantic Con-
sistency Siamese Tracker (SiamUSC). Mixed Cross Correlation module aims to
explore the perception abilities based on Siamese trackers. As such, we design a
mixed feature extractor that fuses template and search features in three diverse
approaches.
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B.18 VGG-16 based Siamese Tracker (SiamVGGpp)

H. Gupta, D. Jangid, O. P. Verma, L. Rout, D. Dhar
{guptah.nitj, ee.deepak.jangid}@gmail.com, vermaop@nitj.ac.in,
{lr, deb}@sac.isro.gov.in

SiamVGGpp data pipeline consists of two subnetworks: the first one (i.e.
backbone) is responsible for feature extraction and a modified VGG-16 has been
employed. The second subnetwork (i.e. head) is responsible for feature matching
and it utilizes 3 convolution layers with kernel size of 3x3 to perform the correla-
tion operation between the search area and exemplar. The head structure has a
classification branch for classification between the one positive or negative patch.
It also has a regression branch for the refinement of the predicted bounding box.
SiamVGGpp tracker was trained on GOT10k60, COCO, ImageNET VID, DET,
LaSOT and TrackingNet. The network was trained on 40 epochs in total and the
adopted learning rate policy was cosine annealing. The maximum EAO (0.399)
has been achieved at the 36th epoch.

B.19 Search Region Aware Transformer Tracking for Short-term
Bounding-box Tracking (SRATransT)

J. Zhu, X. Chen, S. Lai, D. Wang, H. Lu
{jiawen, chenxin3131, laisimiao}@mail.dlut.edu.cn,
{wdice, lhchuan}@dlut.edn.cn

SRATransT uses search region aware module (SRA) to obtain a rectified
search region for frame-level online tracking. The idea is mainly from SRRT [72],
and TransT M [7] is employed as our basetracker. SRA is a siamese-style match-
ing network consisting of a ResNet-34 backbone network and a search region
classification head. It takes template and X6 search region crop as the inputs
and predicts the minimum search region size containing the target. The rectified
search area can better adapt to the complex motion state of the target to a cer-
tain extent. After obtaining the prediction results of the base tracker, we used
Alpha-Refine [61] to improve the accuracy of low scoring boxes. Specifically, we
replace the results of boxes whose IoU score is lower than a given threshold γ
with the prediction results of Alpha-Refine [61]. Finally, all the used models are
speed up using ONNX (https://github.com/onnx/onnx) to achieve real-time
speed.

B.20 A Decision-level Fusion of Multiple Discriminative
Trackers (SuperFus)

S. Zhao, J. Chen, Z. Tang, X. Zhu, T. Xu, X. Wu, J. Kittler, H. Li, X. Li, K.
Ze
7201905026@stu.jiangnan.edu.cn, jamescjy98@gmail.com,

60 GOT10k does not use the prohibited 1k sequences and the training dataset follows
all the given regulations on the website.

https://github.com/onnx/onnx
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{zhangyong tang jnu, xuefeng zhu95, tianyang xu, xiaojun wu jnu}@163.com,
j.kittler@surrey.ac.uk, lihui.cv@jiangnan.edu.cn, xilizju@zju.edu.cn,
6213113073@stu.jiangnan.edu.cn

For the outputs of the STARK are top-left and bottom-right response maps,
we first transform the top-left and bottom-right response maps to center response
map. Then, to align the semantics between SuperDiMP and STARK, responses
from two algorithms are interpolated to pixel-level heatmaps. After padding
to the same size with the pixel-level heatmap of SuperDiMP, the heatmap of
STARK is fused with SuperDiMP with a hyper-parameter weight. Finally, the
fused response is obtained by interpolating the pixel-level heatmap to response-
level.

B.21 SwinTrack-Base (SwinTrack)

L. Lin, H. Fan, Z. Zhang, Y. Xu, H. Ling
l.lt@mail.scut.edu.cn, heng.fan@unt.edu, zhangzhipeng2017@ia.ac.cn,
yxu@scut.edu.cn, hling@cs.stonybrook.edu

We provide the official results of SwinTrack. SwinTrack is based on the
Siamese network architecture. Four main components comprise our fully atten-
tional tracker: the Swin-Transformer backbone, the attentional encoder-decoder
network, positional encoding, and the head network. During tracking, the back-
bone network extracts the features of the template image patch and the search
region image patch separately with shared weights, the encoder network (self-
attention based) fuse the feature tokens from the template image and the search
image by concatenation, and enhances the concatenated tokens layer-by-layer
by attention mechanism, positional encoding helps the model to distinguish the
tokens from the different source and the different position, the decoder net-
work (cross-attention based) generates the final feature map of the search image
and feeds it to the head network to obtain the IoU-Aware classification response
map and bounding box estimation map.

B.22 Ensemble correlation filter tracking based on temporal
confidence learning (TCLCFcpp)

C. Tsai
chiyi tsai@gms.tku.edu.tw

TCLCF is a real-time ensemble correlation filter tracker based on temporal
confidence learning. In the current implementation, we use two different corre-
lation filters to cooperatively track the same target. TCLCF tracker is a high-
speed and robust generic object tracker that does not require GPU acceleration.
Therefore, it can be implemented on embedded platforms with limited comput-
ing resources.
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B.23 Transforming Model Prediction for Tracking (tomp)

C. Mayer, M. Danelljan, G. Bhat, M. Paul, D. Paudel, F. Yu, L. Van Gool
{chmayer, martin.danelljan, goutam.bhat, paulma, paudel}@vision.ee.ethz.ch,
fisheryu@ethz.ch, vangool@vision.ee.ethz.ch

We propose a tracker architecture employing a Transformer-based model pre-
diction module. Transformers capture global relations with little inductive bias,
allowing it to learn the prediction of more powerful target models. We further ex-
tend the model predictor to estimate a second set of weights that are applied for
accurate bounding box regression. The resulting tracker tomp relies on training
and on test frame information in order to predict all weights transductively. We
train the proposed tracker end-to-end and validate its performance by conduct-
ing comprehensive experiments on multiple tracking datasets. For more details
please see [45].

B.24 Transformer Tracking with Light-weight Large Receptive
Convolution Module (TransLL)

H. Yu, W. Yu, K. He, X. Chen, J. Wu, Y. Huang, L. Wang
{hongyuan.yu, weichen.yu, keji.he}@cripac.ia.ac.cn, chenxiuyi2017@ia.ac.cn,
jinlin.wu@nlpr.ia.ac.cn, {yhuang, wangliang}@nlpr.ia.ac.cn

In order to ensure a sufficiently large receptive field while reducing compu-
tation cost, we introduce a novel light-weight large receptive convolution mod-
ule (LLconv) by using bilinear sampling on the input feature map to downsam-
ple/upsample the input size. To alleviate information loss, we utilize an extra
bypassed 1 x 1 convolution module to perform as a high-resolution preserving
residue. Thus, the input feature map is connected to the end of an zoomed convo-
lution to preserve the high-resolution of the input. Our LLconv not only guaran-
tees the speed, but also ensures the accuracy. On the basis of TransT [8], we use
LLconv to build a segmentation branch. In addition, following ATOM [13], we
also add the iou prediction branch to further improve the tracking performance.
Our tracker works similarly to the ATOM family methods [13,3,8], please refer
to them for more details.

B.25 Transformer Tracking (TransT)

X. Chen, B. Yan, J. Zhu, D. Wang, H. Lu, X. Yang
{chenxin3131, yan bin, jiawen}@mail.dlut.edu.cn,
{wdice, lhchuan}@dlut.edu.cn, xyang@remarkholdings.com

Transformer Tracking presents a transformer-based feature fusion network,
which effectively combines the template and the search region features using
attention mechanism. TransT [8] consists of three components: the siamese-like
feature extraction backbone (ResNet50), the designed feature fusion network,
and the prediction head. For more details about TransT, the reader is referred
to [8].



46 M. Kristan et al.

B.26 Multi-Template Transformer Tracking (TransT M)

X. Chen, J. Zhu, B. Yan, D. Wang, H. Lu, X. Yang
{chenxin3131, jiawen, yan bin}@mail.dlut.edu.cn,
{wdice, lhchuan}@dlut.edu.cn, xyang@remarkholdings.com

TransT M [7] is a variant of TransT [8]. We add a Multi-Template design,
and an IoU prediction head on TransT, forming an end-to-end framework. We
concatenate two templates in the spatial dimension and input them into the
template branch of TransT. IoU prediction head is a three-layer perceptron to
predict the bounding box’s IoU and control the updating of the template.

B.27 Tracking by Student FUSing Teachers (TRASFUST)

M. Dunnhofer, N. Martinel, C. Micheloni
{matteo.dunnhofer, niki.martinel, christian.micheloni}@uniud.it

The TRASFUST tracker [17] consists of two components: (i) a fast process-
ing CNN-based model called the Student; (ii) a pool of off-the-shelf trackers,
i.e. the Teachers. The Student, which has the form of a deep regression tracker,
is trained offline based on a learning scheme which combines knowledge dis-
tillation (KD) and reinforcement learning (RL). Relevant tracking knowledge
is acquired through KD from multiple trackers considered as Teachers. After
learning, at every frame of a video, the Student is capable of evaluating and
selecting the most accurate target localization (as a bounding-box) predicted by
the teachers in the pool. In this way, fusion of the underlying teacher trackers is
achieved. In this submission, the SuperDiMP [3] and Stark [60] trackers compose
the pool of Teachers.

B.28 Tracking Vision Transformer With Class and Regression
Tokens (ViTCRT)

E. Di Nardo, A. Ciaramella
{emanuel.dinardo, angelo.ciaramella}@uniparthenope.it

ViTCRT is a Siamese tracking. The tracker uses a ResNet50 as backbone for
feature extraction (pre-trained on ImageNet) extracting the features from the
3rd layer and adjusting the output feature space using sub-sampling. Features
are flattened, concatenated and passed to a Vision Transformer (ViT) [16] ar-
chitecture. Differently from ViT, ViTCRT uses a second token for bounding box
regression. At the end a separate MLP is used for each token in order to give
an appropriate specialization on a specific task (i.e. classification/regression).
Due to the nature of the tokens, that are a unique representation of the inputs,
they are augmented following the methodology proposed in STARK [60]. Dif-
ferently from STARK the importance is given to the tokens. Regression follows
the Alpha-Refine [61] method. Foreground/Background classification allows the
network to learn a similar representation.
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B.29 Visual Object Tracking via Vision Transformer (vittrack)

X. Chen, J. Zhao, H. Peng, D. Wang, H. Lu
{chenxin3131, zj982853200}@mail.dlut.edu.cn, Houwen.Peng@microsoft.com,
{wdice, lhchuan}@dlut.edu.cn

Vittrack is composed with a ViT backbone network and a corner prediction
head. We concatenate the template and the search region in spatial channel after
patch embedding. Then using ViT to extract the features and using the corner
prediction head to predict the bounding box. We use the MAE [23] pre-trained
parameters of ViT, and fine-tune them on tracking dataset.

B.30 ANT (ANT)

Submitted by VOT Committee
The reader is referred to A.17 for details.

B.31 Scale adaptive mean shift (ASMS)

Submitted by VOT Committee
The reader is referred to A.23 for details.

B.32 Accurate Tracking by Overlap Maximization (ATOM)

Submitted by VOT Committee
The reader is referred to A.18 for details.

B.33 Discriminative Correlation Filter with Channel and Spatial
Reliability (CSRDCF)

Submitted by VOT Committee
The reader is referred to A.24 for details.
The CSR-DCF [40] improves discriminative correlation filter trackers by in-

troducing the two concepts: spatial reliability and channel reliability. It uses
color segmentation as spatial reliability to adjust the filter support to the part
of the object suitable for tracking. The channel reliability reflects the discrimi-
native power of each filter channel. The tracker uses only HoG and colornames
features. This is the C++ openCv implementation.

B.34 Discriminative Sing-Shot Segmentation Tracker v2 (D3Sv2)

A. Lukežič, J. Matas, M. Kristan
alan.lukezic@fri.uni-lj.si, matas@cmp.felk.cvut.cz, matej.kristan@fri.uni-lj.si

D3Sv2 [43] is an extended version of the D3S [39]. The original method is
extended in the following aspects: (i) a better backbone, (ii) channel attention
mechanism in the upscaling modules in GIM, (iii) trainable MLP-based similarity
computation in GIM, which replaces the handcrafted’ top-K average operation
and (iv) the new scale estimation module used for robust target size estimation.
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B.35 Learning Discriminative Model Prediction for
Tracking (DiMP)

G. Bhat, M. Danelljan, L. Van Gool, R. Timofte
{goutam.bhat, martin.danelljan, vangool, timofter}@vision.ee.ethz.ch

DiMP is an end-to-end tracking architecture, capable of fully exploiting both
target and background appearance information for target model prediction. The
target model here constitutes the weights of a convolution layer which performs
the target-background classification. The weights of this convolution layer are
predicted by the target model prediction network, which is derived from a dis-
criminative learning loss by applying an iterative optimization procedure. The
model prediction network employs a steepest descent based methodology that
computes an optimal step length in each iteration to provide fast convergence.
The model predictor also includes an initializer network that efficiently pro-
vides an initial estimate of the model weights. The online learned target model
is applied in each frame to perform target-background classification. The final
bounding box is then estimated using the overlap maximization approach as
in [13]. See [3] for more details about the tracker.

B.36 KCF (KCF)

Submitted by VOT Committee
The reader is referred to A.26 for details.

B.37 Know your surroundings tracker with Alpha refine
post-processing step (KYS)

Submitted by VOT Committee
The reader is referred to A.20 for details.

B.38 LGT (LGT)

Submitted by VOT Committee
The reader is referred to A.27 for details.

B.39 PrDiMP50 tracker (PrDiMP)

Submitted by VOT Committee
The reader is referred to A.21 for details.

B.40 SiamFC (SiamFC)

Submitted by VOT Committee
The reader is referred to A.30 for details.
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B.41 SuperDiMP50 tracker (SuperDiMP)

Submitted by VOT Committee

The reader is referred to A.22 for details.

C VOT-LT2022 submissions

This appendix provides a short summary of trackers considered in the VOT-
LT2022 challenge.

C.1 Adaptive DiMP with Dynamic Sample Selection (ADiMPLT)

M. Kiran, L. Nguyen-Meidine, R. Menelau-Cruz, E. Granger
madhu-kiran.madhu-kiran.1@ens.etsmtl.ca, nmlethanh91@gmail.com,
{rafael.menelau-cruz, eric.granger}@etsmtl.ca

ADiMP [27] treats online learning in tracking as a concept drift problem.
It relies on the DiMP tracker model and entropy maximization sampling, along
with change detection to adapt to the appearance changes of the target during
online tracking. In particular, the new method performs dynamic sample selec-
tion and memory replay, to prevent tracking drift and catastrophic forgetting
over time and corrupting the tracking model. Our change detection mechanism
is proposed to detect gradual changes in object appearance, and select the cor-
responding samples for online adaption. In addition, abrupt changes allows to
manage occlusion, and thereby track objects for a longer time frame. Our en-
tropy maximization sampling strategy allows to maintain a diversified auxiliary
buffer for memory replay.

C.2 Combining Complementary Trackers in Long-Term Visual
Tracking (CoCoLoT)

M. Dunnhofer, C. Micheloni
{matteo.dunnhofer, christian.micheloni}@uniud.it

The CoCoLoT tracker generalizes mlpLT [33]. It implements a strategy that
combines the complementary behaviors of Stark [60] and KeepTrack [46] trackers.
The combination of these trackers is managed by a decision strategy based on an
online learned target verifier akin to MDNet [48]. At every frame, the trackers
are run in parallel to predict their target localizations. Based on the evaluation
of the target localization, the decision strategy selects the output for the current
frame and to correct the tracker that performed worse. Additional strategies
such as the computation of adaptive search areas and the avoidance of wrong
target size estimations, have been implemented to the baseline trackers in order
to make their localizations more consistent. The details of CoCoLoT are given
in [18].
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C.3 A Long Term Discriminative Single Shot Segmentation
Tracker (D3SLT)

B. Džubur, M. Kristan, A. Lukežič
bd5830@student.uni-lj.si, {matej.kristan, Alan.Lukezic}@fri.uni-lj.si

The proposed tracker extends the D3Sv2 [42] short-term tracker with long-
term capabilities. When the target is lost, the deep DCF module, combined
with a motion model uncertainty is used for global re-detection, similarly as in
FCLT [44]. Tracking confidence of the patch containing the segmentation output,
is determined by the online verifier [26]. The tracker includes additional strategies
for robust conflict resolution: (i) First, we perform periodic back-tracking of the
re-detected target and the object is briefly tracked backwards in time to verify
the validity of the re-detection. (ii) Second, a global search for targets, which
are more likely to be the true target, is performed periodically during short-term
tracking to revert from false positive tracks.

C.4 HuntFormer: Collaborative Dynamic Memory Update and
Motion Prediction for Tracking Target Recapture

Z. Zhang, W. Xue, K. Zhang, C. Zhang, B. Liu, S. Chen
zzbin@stud.tjut.edu.cn, xuewanli@email.tjut.edu.cn, zhkhua@gmail.com,
chenvy@tju.edu.cn, kfliubo@gmail.com, sy@ieee.org

We propose the HuntFormer that focuses on effective target recapture. Our
HuntFormer is based on MixFormer [10]. An effective motion prediction model
provides a reliable search region for the tracker to recapture the target. Mean-
while, we propose a novel soft-threshold-based dynamic memory update model,
which keeps a set of reliable target templates in the memory that can be used
to match the target position in the search region. The two modules cooperate
with each other, which greatly improves the recapture ability of the tracker.

C.5 Progressive Fusion of Similar and Dissimilar Trackers for
Long-term Visual Object Tracking (mixLT)

Y. Jiang, T. Xu, Z. Feng, X. Song
1161099088@qq.com, tianyang xu@163.com, z.feng@surrey.ac.uk,
x.song@jiangnan.edu.cn

Tracker mixLT is a progressive fusion of multiple trackers, mainly STARK [60]
and SuperDiMP [3]. It first fuses the results of two trackers, STARK-ST50 and
STARK-ST101, since they have similar properties and perform well in situations
such as occlusion and object disappearance. The states of two trackers are then
corrected based on the fusion result. SuperDiMP controlled by meta-updater [11]
is introduced for further fusion between dissimilar trackers, in order to improve
the robustness of long-term tracking. The final tracking result is determined
according to the confidences of the trackers over several frames, and another
tracker correction is performed.
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C.6 Fusing Complementary Trackers for Long-term Visual
Tracking (mlpLT)

M. Dunnhofer, K. Simonato, C. Micheloni
matteo.dunnhofer@uniud.it, simonato.kristian@spes.uniud.it,
christian.micheloni@uniud.it

The mlpLT tracker implements a strategy that combines the Stark [60] and
SuperDiMP [3] trackers. Stark was chosen because of its ability in providng
accurate bounding-boxes and in re-detecting the target. SuperDiMP was chosen
for its robustness. The combination of the two is managed by a decision strategy
based on an online learned target verifier. At every frame, the trackers are run
to predict their target positions which are then checked by the verifier. Based
on such evaluations, the decision strategy selects which localization to give as
output. Such an outcome is also employed to correct the worse tracker. mlpLT
resulted the winner of the VOT2021-LT challenge and the details of its working
are given in [18].

C.7 VITKT

J. Zhao, X. Chen, C. Liu, H. Peng, D. Wang, H. Lu
{zj982853200, chenxin3131, njx2019}@mail.dlut.edu.cn,
Houwen.Peng@microsoft.com, {wdice, lhchuan}@dlut.edu.cn

VITKT benefits from the integration of different trackers. Specifically, VITKT
consists of three main components including the master tracker VitTrack (B.29),
the auxiliary tracker KeepTrack [46], and a metric module MetricNet [71]. Vit-
Track (B.29) is a Transformer-based tracker composed of a backbone network
based on ViT-Base model, a corner prediction head and a classification head.
It has a strong ability to handle most challenges. However, we notice that Vit-
Track (B.29) usually fails when distractors appear. The tracker KeepTrack is
employed as an auxiliary tracker. We also employ MetricNet to predict two dif-
ferent distances to evaluate the similarity between the template and the current
state. The final state is determined in terms of both the two distances and con-
fidence scores output by trackers.

C.8 VITKT M

J. Zhao, X. Chen, C. Liu, H. Peng, D. Wang, H. Lu
{zj982853200, chenxin3131, njx2019}@mail.dlut.edu.cn,
Houwen.Peng@microsoft.com, {wdice, lhchuan}@dlut.edu.cn

VITKT M ensembles the results of VitTrack (B.29) and KeepTrack [46].
The ViT-Base model pretrained with MAE is adopted as the backbone, and the
two heads (a corner prediction head and a classification head) are implemented
by MLP (similar to Stark [60]). The search region and the template patch are
concatenated after the patch embedding, and then input to the ViT backbone.
The corner prediction and classification heads are performed to output the fi-
nal state and the corresponding confidence score. We employ KeepTrack as an
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auxiliary tracker to solve the challenge of distractors. Different from the tracker
VITKT C.7, a simple motion module (trained on LaSOT dataset) is imple-
mented to predict the target current state according to the temporal trajectory.
The motion module predicts the target state according to the previous tempo-
ral trajectory information and it will be triggered when the target is considered
moving abnormally.

C.9 (SuperDiMP)

Submitted by VOT Committee
Please see the original paper for details [3].

C.10 KeepTrack (keep track lt)

Submitted by VOT Committee
Please see the original paper for details [46].

D VOT-RGBD2022 submissions

This appendix provides a short summary of trackers considered in the VOT-
RGBD2022 challenge.

D.1 DMTracker

S. Gao and J. Yang and Z. Li and F. Zheng
12132332@mail.sustech.edu.cn, jinyu.yang96@outlook.com,
liz8@mail.sustech.edu.cn, zhengf@sustech.edu.cn

DMTracker is a Dual-fused Modality-aware (DM) Tracker which aims to learn
informative and discriminative representations of the target objects for robust
RGBD tracking. The first fusion module focuses on extracting the shared infor-
mation between modalities based on cross-modal attention. The second fusion
aims at integrating the RGB-specific and depth-specific information to enhance
the fused features. By fusing both the modality-shared and modality-specific
information in a modality-aware scheme, DMTracker can learn discriminative
representations in complex tracking scenes.

D.2 keep track

H. Zheng
zhenghaixia@stu.xjtu.edu.cn

KeepTrack [46] is a tracker that keeps track of distractor objects in order to
continue tracking the target. KeepTrack introduces a learned association network
which allows to propagate the identities of all target candidates from frame to
frame. To tackle the problem of lacking ground-truth correspondences between
distractor objects in visual tracking, the tracker uses a training strategy that
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combines partial annotations with self-supervision. KeepTrack employs super
DiMP as the base tracker in order to extract target candidates and propose
a target candidate association network that we use to identify the target and
distractor across frames. We introduce a novel RGBD tracker (i.e. keep track)
on the top of KeepTrack [46]. We notice that KeepTrack [46] is only a RGB
tracker and we design an extra channel to extract features from depth images
using ResNet50. The features of depth images and RGB images are merged by
element-wise pooling layers to utilise the information in depth as well as we can.

D.3 MixForRGBD

S. Lai and M. Li and J. Zhu and L. Wang and D. Wang and H. Lu
laisimiao@mail.dlut.edu.cn, liming1269521637@dlmu.edu.cn,
jiawen@mail.dlut.edu.cn, ljwang@dlut.edu.cn, wdice@dlut.edu.cn,
lhchuan@dlut.edu.cn

The MixForRGBD is built and based on the tracker MixFormer [10]. Online
templates are updated over fixed intervals and when the predicted confidence is
larger than a pre-set threshold. The raw depth map is colormap encoded. The
colormap encoding is performed by mapping pixels of the normalized depth map
to RGB vectors of a predefined color matrix (JET used in the experiments). Two
same backbones of MixFormer are constructed to extract and fuse the feature of
template and search region between two modalities. An element-wise maximum
operation is conducted to merge the two modalities. The whole model and the
score branch are fine-tuned on the existing RGB benchmarks LaSOT, COCO,
GOT10k and DepthTrack training sets and their generated depth map using the
monocular depth estimation algorithm DenseDepth [1]. We also add a simple
post-process for penalizing large displacement.

D.4 One-stream tracker with online template updating (OSTrack)

B. Ye and H. Chang and B. Ma and S. Shan and X. Chen
botao.ye@vipl.ict.ac.cn, changhong@ict.ac.cn, bpma@ucas.ac.cn,
sgshan@ict.ac.cn, xlchen@ict.ac.cn

OSTrack is the same as OSTrackSTB B.14, no depth information is used.

D.5 ProMix

Z. Li and J. Yang and S. Gao and F. Zheng
liz8@mail.sustech.edu.cn, jinyu.yang96@outlook.com,
12132332@mail.sustech.edu.cn zhengf@sustech.edu.cn

RGBD prompt tracker (ProMixTrack) transfers the RGB and depth modal-
ities to a single modality by the prompt paradigm. By employing the tracking
ability of the pre-trained RGB tracker in the RGB challenge (Mixformer) which
is trained with large scale datasets, ProMixTrack can achieve high-performance
RGBD tracking even without any extra training on RGBD data.
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D.6 SAMF

Z. Fu and J. Sun and L. Wang and Z. Chen and Q. Deng and D.K. Du and M.
Zheng
{fuzhihong.2022, sunjingna, wangliangliang.makalo, chenzhixing.omega,dengqili,
dukang.daniel, zhengmin.666}@bytedance.com

This is an ensemble method combining MixFormer [10] and SA-Gate [6]. Both
the color images and depth maps are used to enhance the power of MixFormer
that is built upon transformers. Specifically, two MixFormer backbones are used
to extract features of color and depth images, respectively. Then, SA-Gate is
adopted to combine the features. It was noticed that this type of combination
of color and depth features influences the results significantly. Compared with
simple fusion methods such as mean, max, etc., SA-Gate is a better for the fusion
of color and depth information in RGBD tracking.

D.7 SBT RGBD

J. Zhai and W. Zhang and F. Xie and W. Yang and C. Ma
{220211980, wkzhang}@seu.edu.cn, jaffe0319@gmail.com,
wkyang@seu.edu.cn, chaoma@sjtu.edu.cn

This is a method combining SBT-base and DepthTrack. SBT-base is a pow-
erful fully transformer-based tracker. It was noticed that the SBT method is not
good at handling the appearance change of the target. To this end, it was com-
bined with the DepthTrack tracker, a powerful online updating tracker. Specif-
ically, when the SBT tracker’s confidence is low or the prediction of SBT sud-
denly strays away, the DepthTrack takes over the tracking process, providing a
steady, appearance adaptive result. When the SBT confidence resumes, tracking
switches back to SBT. Implementation also includes a refinement module similar
to AlphaRefine by modifying the search region of SBT. The refinement module
is applied to the final output of the whole tracking system for further boosting
the quality of bounding box estimation.

D.8 SPT

X.-F. Zhu and T. Xu and Z. Tang and S. Zhao and H. Li and Z. Kang and
X.-J. Wu and X. Li and J. Kittler
xuefeng zhu95@163.com, tianyang.xu@surrey.ac.uk,
zhangyong tang jnu@163.com, 7201905026@stu.jiangnan.edu.cn,
hui li jnu@163.com, 6213113073@stu.jiangnan.edu.cn,
wu xiaojun@jiangnan.edu.cn, xilizju@zju.edu.cn, j.kittler@surrey.ac.uk

In specific, firstly, the search regions and the initial templates of two modal-
ities are input to the ResNet-50 network to extract deep CNN features, re-
spectively. Then, the features of each modality are flattened and concatenated,
following a 6-layer stacked transformer encoder to fuse the template-search ap-
pearance for the specific modality. Regarding the feature fusion module, firstly,
the depth encoder output and the RGB encoder output are concatenated across
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channels. Then an 1d convolutional layer and a transformer encoder stacking 2
encoder layers are adopted to reduce the channel number of the concatenated
features and to further fuse and enhance the features from two modalities, re-
spectively. The rest parts of the framework including the target query, the trans-
former decoder and the target bounding box prediction head are the same as
STARK-S [60].

E VOT-D2022 submissions

This appendix provides a short summary of trackers considered in the depth-only
variant of the VOT-RGBD2022 challenge and referred to as VOT-D2022.

E.1 CoDeT

S. Gao and J. Yang and Z. Li and F. Zheng
12132332@mail.sustech.edu.cn, jinyu.yang96@outlook.com,
liz8@mail.sustech.edu.cn, zhengf@sustech.edu.cn

This is a depth-only tracker formed from the Dual-fused Modality-aware
Tracker (DMTracker) submitted to the RGBD challenge. The depth frames are
converted to depth pseudo colormaps (Co) and depthmaps (De).

E.2 MixFormerD

S. Lai and J. Zhu and L. Wang and D. Wang and H. Lu
{laisimiao, jiawen}@mail.dlut.edu.cn, {ljwang, wdice, lhchuan}@dlut.edu.cn

MixFormerD is a variant of the MixForRGBD that was submitted to the
RGBD challenge by the same authors. The variant replaces RGB input by simply
replicating the D channel three times.

E.3 OSTrack D

B. Ye and H. Chang and B. Ma and S. Shan and X. Chen
botao.ye@vipl.ict.ac.cn, changhong@ict.ac.cn, bpma@ucas.ac.cn,
{sgshan, xlchen}@ict.ac.cn

OSTrack D is the same as (B.14), except that RGB images are replaced by
depth maps (converted to pseudo color maps).

E.4 RSDiMP

Z. Tang and X. Zhu and S. Zhao and T. Xu and J. Chen and Z. Kang and H.
Li and X. Wu and J. Kittler and X. Li
{zhangyong tang jnu, xuefeng zhu95}@163.com,
7201905026@stu.jiangnan.edu.cn, tianyang xu@163.com,
jamescjy98@gmail.com, 6213113073@stu.jiangnan.edu.cn,
{hui li jnu, xiaojun wu jnu}@163.com, j.kittler@surrey.ac.uk, xilizju@zju.edu.cn
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RSDiMP is based on SuperDiMP which combines the classifier from DiMP
with the bounding box regressor from PrDiMP. In order to better fit the depth
data, the third layer of pre-trained ResNet-50 backbone is finetuned and the
classifier and IoUNet are trained on several depth datasets, including the syn-
thetic (GOT10K-Depth and LaSOT-Depth from [62]) and real depth datasets
(training split of DepthTrack as well as a large-scale dataset collected and anno-
tated by ourselves). Besides, based on the distance statistic that the movement
between the adjacent frames is slight, we shrink the scale of search area to a
suitable magnitude. The discriminative classifier is updated when the current
prediction is thought confident.

E.5 SBT Depth

W. Zhang and J. Zhai and F. Xie and W. Yang
{wkzhang, 220211980}@seu.edu.cn, jaffe0319@gmail.com,
wkyang@seu.edu.cn

SBT Depth is a depth-only variant of the SBT RGBD D.7.

E.6 UpDoT

Z. Li and J. Yang and S. Gao and F. Zheng
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12132332@mail.sustech.edu.cn, zhengf@sustech.edu.cn

DepthColormap-DiMP and DepthMap-DiMP are trained from the scratch
with generated data and finetuned with the available small RGBD tracking
datasets. Specifically, when the depth-only DepthColormap-DiMP tracker’s con-
fidence is low or the prediction of it suddenly strays away, the DepthMap-DiMP
will update the DepthColormap-DiMP branch for some frames until the confi-
dence resume.
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