EXOTIC CLOSED SUBIDEALS OF ALGEBRAS OF BOUNDED OPERATORS

HANS-OLAV TYLLI AND HENRIK WIRZENIUS

ABSTRACT. We exhibit a Banach space Z failing the approximation property, for which there is an uncountable family \mathscr{F} of closed subideals contained in the Banach algebra $\mathcal{K}(Z)$ of the compact operators on Z, such that the subideals in \mathscr{F} are mutually isomorphic as Banach algebras. This contrasts with the behaviour of closed ideals of the algebras $\mathcal{L}(X)$ of bounded operators on X, where closed ideals $\mathcal{I} \neq \mathcal{J}$ are never isomorphic as Banach algebras. We also construct families of non-trivial closed subideals contained in the strictly singular operators $\mathcal{S}(X)$ for classical spaces such as $X = L^p$ with $p \neq 2$, where pairwise isomorphic as well as pairwise non-isomorphic subideals occur.

1. INTRODUCTION

Let X be a Banach space and $\mathcal{L}(X)$ be the Banach algebra of bounded linear operators $X \to X$. It was pointed out in [11, Added in Proof] that if \mathcal{I} and \mathcal{J} are closed ideals of $\mathcal{L}(X)$ for which there is a Banach algebra isomorphism $\theta : \mathcal{I} \to \mathcal{J}$, then $\mathcal{I} = \mathcal{J}$. In other words, distinct closed ideals of $\mathcal{L}(X)$ are never isomorphic as Banach algebras.

We will show that, surprisingly enough, the above property fails in general for closed subideals of $\mathcal{L}(X)$. We will adhere to the terminology suggested by Patnaik and Weiss [16], [17], and say that \mathcal{J} is an \mathcal{I} -subideal of $\mathcal{L}(X)$, if $\mathcal{J} \subset \mathcal{I}$, where \mathcal{I} is an ideal of $\mathcal{L}(X)$ and \mathcal{J} is an ideal of \mathcal{I} . We are only concerned with *closed linear* subideals, that is, $\mathcal{J} \subset \mathcal{I}$ are closed linear subspaces of $\mathcal{L}(X)$, such that $US \in \mathcal{J}$ and $SU \in \mathcal{J}$ whenever $S \in \mathcal{J}$ and $U \in \mathcal{I}$ (and similarly for $\mathcal{I} \subset \mathcal{L}(X)$). It will be convenient to say here that \mathcal{J} is a *non-trivial* subideal of $\mathcal{L}(X)$ if \mathcal{J} is not an ideal of $\mathcal{L}(X)$. (Note that subideals \mathcal{J} depend on the intermediary ideal \mathcal{I} , but we will occasionally suppress its role.) Subideals of $\mathcal{L}(H)$ for Hilbert spaces H were first considered by Fong and Radjavi in [8]. In particular, they obtained examples of non-trivial singly generated (but non-closed) $\mathcal{K}(H)$ -subideals \mathcal{J} of $\mathcal{L}(H)$, see e.g. [8, Theorem 1] or [16, Example 1.3].

Our main result is based on an example constructed in [24, Theorem 4.5] for different purposes. This produces a family $\{\mathcal{I}_A : \emptyset \neq A \subsetneq \mathbb{N}\}$ having the size of the continuum of non-trivial closed $\mathcal{K}(Z)$ -subideals, for which the subideals \mathcal{I}_A are mutually isomorphic as Banach algebras. Here $\mathcal{K}(Z)$ denotes the closed ideal of $\mathcal{L}(Z)$ of the compact operators $Z \to Z$, where the above Banach space Z fails to have the approximation property (abbreviated A.P.). In Section 3 we obtain, by different methods, families of pairwise non-isomorphic as well as isomorphic non-trivial closed $\mathcal{S}(X)$ -subideals of $\mathcal{L}(X)$ for classical Banach spaces including $X = L^p(0, 1)$, where $1 \leq p < \infty$ and $p \neq 2$. Above $\mathcal{S}(X)$ is the closed ideal of the strictly singular

²⁰²⁰ Mathematics Subject Classification. Primary 46H10, 46B28, 47L10.

operators $X \to X$. Our results demonstrate that the closed subideals of $\mathcal{L}(X)$ behave quite differently compared with closed ideals.

References [1], [12] and [13] will be our standard sources for undefined concepts related to Banach spaces, and [4] for notions related to Banach algebras. We use $X \approx Y$ to indicate linearly isomorphic Banach spaces, and $\mathcal{A} \cong \mathcal{B}$ for isomorphic Banach algebras (that is, there is a Banach algebra isomorphism $\theta : \mathcal{A} \to \mathcal{B}$). Recall that these notions can differ for spaces of operators, as for instance $\mathcal{L}(L^p)$ and $\mathcal{L}(\ell^p)$ are linearly isomorphic as Banach spaces for $1 and <math>p \neq 2$ by [2], but they are not isomorphic as Banach algebras by Eidelheit's theorem (see below).

2. Closed subideals of $\mathcal{L}(X)$ which are isomorphic as Banach algebras

Let X and Y be Banach spaces. It is a classical result of Eidelheit [7] (see also [4, Theorem 2.5.7]) that if $\theta : \mathcal{L}(X) \to \mathcal{L}(Y)$ is a Banach algebra isomorphism, then there is a linear isomorphism $U \in \mathcal{L}(X, Y)$ such that $\theta(S) = USU^{-1}$ for all $S \in \mathcal{L}(X)$. Chernoff [3, Corollary 3.2] (see also [15, Section 1.7.15]) established the following extension: Suppose that $\mathcal{A} \subset \mathcal{L}(X)$ and $\mathcal{B} \subset \mathcal{L}(Y)$ are subalgebras such that the bounded finite rank operators $\mathcal{F}(X) \subset \mathcal{A}$ and $\mathcal{F}(Y) \subset \mathcal{B}$. If $\theta : \mathcal{A} \to \mathcal{B}$ is a bijective algebra homomorphism, then there is a linear isomorphism $U \in \mathcal{L}(X, Y)$ such that $\theta(S) = USU^{-1}$ for all $S \in \mathcal{A}$. As a consequence, if $\mathcal{I}, \mathcal{J} \subset \mathcal{L}(X)$ are closed ideals for which there is a Banach algebra isomorphism $\theta : \mathcal{I} \to \mathcal{J}$, then $\mathcal{I} = \mathcal{J}$ (cf. also Remarks 2.5.(ii)). The purpose of this section is to exhibit Banach spaces Z, where the above consequence fails very dramatically within a large class of closed $\mathcal{K}(Z)$ -subideals.

Let $\mathcal{A}(X,Y) = \overline{\mathcal{F}(X,Y)}$ denote the class of the approximable operators $X \to Y$, where the closure is taken in the uniform operator norm. We note for reference that

$$(2.1) \qquad \qquad \mathcal{A}(X) \subset \mathcal{J}$$

for any non-zero closed \mathcal{I} -subideal \mathcal{J} of $\mathcal{L}(X)$, see e.g. [4, Theorem 2.5.8.(ii)] or [16, Remark 6.1].

We proceed to describe the Banach spaces and the closed subideals from [24]. Let (X, Y) be a pair of Banach spaces such that

(2.2)
$$X$$
 has the A.P., and $\mathcal{A}(X,Y) \subsetneq \mathcal{K}(X,Y)$.

We recall that $\mathcal{A}(X,Y) \subsetneq \mathcal{K}(X,Y)$ for some Banach space Y if and only if the dual space X^* fails the A.P., see e.g. [12, Theorem 1.e.5]. Moreover, there are spaces X such that X has the A.P., but X^* fails to have the A.P., see e.g. [12, Theorem 1.e.7].

Fix 1 . For any pair <math>(X, Y) that satisfies condition (2.2) we consider the direct sum

(2.3)
$$Z_p := \left(\bigoplus_{j=0}^{\infty} X_j \right)_{\ell^p},$$

where we put $X_0 = Y$ and $X_j = X$ for $j \ge 1$ for unity of notation. Bounded operators $S \in \mathcal{L}(Z_p)$ can be represented as operator matrices $S = (S_{m,n})$ with $S_{m,n} = P_m S J_n$, where $P_m : Z_p \to X_m$ and $J_n : X_n \to Z_p$ are the natural projections and inclusions associated to the component spaces of Z_p for $m, n \in \mathbb{N} \cup \{0\}$. For any subset $\emptyset \neq A \subsetneq \mathbb{N}$ define

(2.4)
$$\mathcal{I}_A := \{ S = (S_{m,n}) \in \mathcal{K}(Z_p) : S_{0,0} \in \mathcal{A}(Y), S_{0,k} \in \mathcal{A}(X,Y) \text{ for all } k \in A \}.$$

3

It is shown in [24, Theorem 4.5] that the family

(2.5) $\mathscr{F} := \{ \mathcal{I}_A : \emptyset \neq A \subsetneq \mathbb{N} \}$

has the following properties:

- (i) \mathcal{I}_A is a closed ideal of $\mathcal{K}(Z_p)$, and $\mathcal{A}(Z_p) \subsetneq \mathcal{I}_A \subsetneq \mathcal{K}(Z_p)$ for $\emptyset \neq A \subsetneq \mathbb{N}$.
- (ii) \mathcal{I}_A is a left ideal of $\mathcal{L}(Z_p)$ but not a right ideal of $\mathcal{L}(Z_p)$ for $\emptyset \neq A \subsetneq \mathbb{N}$, see [24, Remark 4.8] and [26, Remarks 6.2]. In particular, \mathcal{I}_A is a non-trivial closed $\mathcal{K}(Z_p)$ -subideal of $\mathcal{L}(Z_p)$ for $\emptyset \neq A \subsetneq \mathbb{N}$.
- (iii) if $A \subset B$, then $\mathcal{I}_B \subset \mathcal{I}_A$, and $\mathcal{I}_A \neq \mathcal{I}_B$ whenever $A \neq B$.

We stress that above (i)-(iii) hold for the spaces Z_p in (2.3) which are obtained from any pair (X, Y) that satisfies (2.2). We will later impose further conditions on X or Y, and in our main result it is assumed that X also satisfies

(2.6)
$$(\oplus_{n=1}^{\infty} X)_{\ell p} \approx X,$$

whence also $X \oplus X \approx X$. A typical way to achieve this is as follows: if X_0 is any space such that X_0 has the A.P., but X_0^* fails the A.P., then $\mathcal{A}(X_0, Y) \subsetneq \mathcal{K}(X_0, Y)$ holds for some space Y by [12, Theorem 1.e.5]. Let $X = (\bigoplus_{n=1}^{\infty} X_0)_{\ell^p}$. It is not difficult to check that X has the A.P. and $\mathcal{A}(X,Y) \subsetneq \mathcal{K}(X,Y)$, and in addition that $X \approx (\bigoplus_{n=1}^{\infty} X)_{\ell^p}$ holds.

Our main result highlights surprising features of the non-trivial closed $\mathcal{K}(Z_p)$ -subideals from the above family \mathscr{F} . This answers a query of Gideon Schechtman (private communication).

Theorem 2.1. Fix $1 , and let <math>Z_p$ be as in (2.3), where the pair (X, Y) satisfies (2.2) and X satisfies (2.6). Then all the non-trivial closed subideals from the family \mathscr{F} defined by (2.5) are mutually isomorphic as Banach algebras, that is,

$$\mathcal{I}_A \cong \mathcal{I}_B \quad for \ all \ \emptyset \neq A, B \subsetneq \mathbb{N}.$$

Before the proof we comment on the form of Banach algebra isomorphisms between closed subideals. Let X be any Banach space and suppose that $\mathcal{I}, \mathcal{J} \subset \mathcal{L}(X)$ are non-zero closed subideals. Recall from (2.1) that non-trivial closed subideals of $\mathcal{L}(X)$ are closed subalgebras that contain the approximable operators $\mathcal{A}(X)$. Hence, if $\theta: \mathcal{I} \to \mathcal{J}$ is a Banach algebra isomorphism, then by [3, Corollary 3.2] there is a linear isomorphism $U \in \mathcal{L}(X)$, such that the restriction to \mathcal{I} of the inner automorphism

$$\psi(S) = USU^{-1}, \quad S \in \mathcal{L}(X),$$

equals $\theta: \mathcal{I} \to \mathcal{J}$. In the proof of Theorem 2.1 we will construct inner automorphisms ψ of $\mathcal{L}(Z_p)$ for which $\psi(\mathcal{I}_A) = \mathcal{I}_B$. The novel feature is that such a phenomenon is possible among non-trivial closed subideals of $\mathcal{L}(Z_p)$, whereas it is impossible for the smaller class of the closed ideals of $\mathcal{L}(X)$ for any X.

The argument will be split into auxiliary steps, where we first construct Banach algebra isomorphisms $\mathcal{I}_A \cong \mathcal{I}_B$ for various basic combinations of the cardinalities of A and $A^c = \mathbb{N} \setminus A$, respectively of B and B^c . In the final step we deduce Theorem 2.1 from these lemmas. Let $|A| \in \mathbb{N} \cup \{\infty\}$ denote the cardinality of the non-empty set $A \subset \mathbb{N}$. The spaces X and Y are as in the definition of Z_p .

Lemma 2.2. Suppose that $\emptyset \neq A, B \subsetneq \mathbb{N}$ are subsets for which there is a permutation $\sigma : \mathbb{N} \to \mathbb{N}$ such that $\sigma(A) = B$. Then

$$\mathcal{I}_A \cong \mathcal{I}_B.$$

The assumption is satisfied if (and only if) $|A| = |B| \in \mathbb{N} \cup \{\infty\}$ and $|A^c| = |B^c| \in \mathbb{N} \cup \{\infty\}$.

Proof. Define the linear isometry $U \in \mathcal{L}(Z_p)$ by

$$U(y, x_1, x_2, \ldots) = (y, x_{\sigma(1)}, x_{\sigma(2)}, \ldots), \quad (y, x_1, x_2, \ldots) \in Z_p.$$

Clearly U is a linear isomorphism $Z_p \to Z_p$, whose inverse U^{-1} satisfies

$$U^{-1}(y, x_1, x_2, \ldots) = (y, x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, \ldots), \quad (y, x_1, x_2, \ldots) \in Z_p.$$

Let $\theta(S) = USU^{-1}$ for $S \in \mathcal{L}(Z_p)$. It follows that θ is a Banach algebra isomorphism $\mathcal{L}(Z_p) \to \mathcal{L}(Z_p)$, as well as $\mathcal{K}(Z_p) \to \mathcal{K}(Z_p)$. Its inverse θ^{-1} on $\mathcal{L}(Z_p)$ has the form $\theta^{-1}(T) = U^{-1}TU$ for $T \in \mathcal{L}(Z_p)$. It will be enough to verify the following

<u>Claim</u>. $\theta(\mathcal{I}_A) \subset \mathcal{I}_B$ and $\theta^{-1}(\mathcal{I}_B) \subset \mathcal{I}_A$.

Namely, in this event the restriction of θ to \mathcal{I}_A will be a Banach algebra isomorphism $\mathcal{I}_A \to \mathcal{I}_B$: for any $T \in \mathcal{I}_B$ one has $T = \theta(\theta^{-1}(T))$, where $\theta^{-1}(T) \in \mathcal{I}_A$, so that $\theta(\mathcal{I}_A) = \mathcal{I}_B$.

Towards $\theta(\mathcal{I}_A) \subset \mathcal{I}_B$ we will verify that for any $S \in \mathcal{I}_A$ we have $P_0(USU^{-1})J_0 \in \mathcal{A}(Y)$ and $P_0(USU^{-1})J_r \in \mathcal{A}(X,Y)$ for any $r \in B$. Suppose that $y \in Y$ is arbitrary. In this case

$$SU^{-1}J_0y = SU^{-1}(y,0,0,\ldots) = S(y,0,0,\ldots) = (S_{0,0}y,S_{1,0}y,\ldots),$$

so that $P_0(USU^{-1})J_0 = S_{0,0} \in \mathcal{A}(Y)$ since $P_0U = P_0$.

Next, let $r = \sigma(k) \in B = \sigma(A)$, where $k = \sigma^{-1}(r) \in A$. If $x_r \in X_r$, then $SU^{-1}J_rx_r = SJ_kx_r$, so that

$$SU^{-1}J_rx_r = (S_{0,k}x_r, S_{1,k}x_r, \ldots).$$

It follows that $P_0(USU^{-1})J_r = S_{0,k} \in \mathcal{A}(X,Y)$, because $S \in \mathcal{I}_A$ and $k \in A$.

The second inclusion $\theta^{-1}(\mathcal{I}_B) \subset \mathcal{I}_A$ can be deduced from the symmetry. Namely, the inverse permutation σ^{-1} , for which $\sigma^{-1}(B) = A$, corresponds to the Banach algebra isomorphism $\psi(S) = U^{-1}SU$ for $S \in \mathcal{L}(\mathbb{Z}_p)$. The first part of the Claim implies that $\psi(\mathcal{I}_B) \subset \mathcal{I}_A$, where $\psi = \theta^{-1}$.

Finally, if $|A| = |B| \in \mathbb{N} \cup \{\infty\}$ and $|A^c| = |B^c| \in \mathbb{N} \cup \{\infty\}$, then there is a permutation $\sigma : \mathbb{N} \to \mathbb{N}$ such that $\sigma(A) = B$ (and $\sigma(A^c) = B^c$).

Put $[r] = \{1, \ldots, r\}$ for $r \in \mathbb{N}$.

Lemma 2.3. Suppose that $X \oplus X \approx X$. Then for all $r, s \in \mathbb{N}$ the following hold:

(a)
$$\mathcal{I}_{[r]} \cong \mathcal{I}_{[s]}$$

(b) $\mathcal{I}_{[r]^c} \cong \mathcal{I}_{[s]^c}$.

Proof. Let $V: X \to X \oplus X$ be a linear isomorphism.

(a) It will be enough to show that $\mathcal{I}_{[r]} \cong \mathcal{I}_{[r+1]}$ for all $r \in \mathbb{N}$. Namely, if r < s, then $\mathcal{I}_{[r]} \cong \mathcal{I}_{[s]}$ follows by transitivity.

Let $r \in \mathbb{N}$ and define the bounded linear isomorphism $U \in \mathcal{L}(Z_p)$ by

$$U(y, x_1, x_2, \ldots) = (y, x_1, \ldots, x_{r-1}, V(x_r), x_{r+1}, \ldots), \quad (y, x_1, x_2, \ldots) \in Z_p,$$

whose inverse map is

$$U^{-1}(y, x_1, x_2, \ldots) = (y, x_1, \ldots, x_{r-1}, V^{-1}(x_r, x_{r+1}), x_{r+2}, \ldots), \quad (y, x_1, \ldots) \in Z_p.$$

Let $\tilde{J}_k : X \to X \oplus X$ denote the inclusion maps and \tilde{P}_k the corresponding projections for k = 1, 2 (relative to $X \oplus X$). Observe that

(2.7)
$$UJ_{k} = \begin{cases} J_{k} & \text{if } k \leq r-1 \\ J_{r}\widetilde{P}_{1}V + J_{r+1}\widetilde{P}_{2}V & \text{if } k = r, \\ J_{k+1} & \text{if } k > r, \end{cases}$$

(2.8)
$$U^{-1}J_{k} = \begin{cases} J_{k} & \text{if } k \leq r-1, \\ J_{r}V^{-1}\widetilde{J}_{1} & \text{if } k = r, \\ J_{r}V^{-1}\widetilde{J}_{2} & \text{if } k = r+1, \\ J_{k-1} & \text{if } k > r+1. \end{cases}$$

Moreover, $P_0U = P_0U^{-1} = P_0$, since the 0:th component of Z_p is not affected by U or U^{-1} .

Let $\theta(S) = USU^{-1}$ for $S \in \mathcal{L}(Z_p)$, so that $\theta^{-1}(S) = U^{-1}SU$ for $S \in \mathcal{L}(Z_p)$. It will suffice to verify, as explained in the proof of Lemma 2.2, the

<u>Claim</u>. $\theta(\mathcal{I}_{[r]}) \subset \mathcal{I}_{[r+1]}$ and $\theta^{-1}(\mathcal{I}_{[r+1]}) \subset \mathcal{I}_{[r]}$.

(i) We verify that $\theta(T) = UTU^{-1} \in \mathcal{I}_{[r+1]}$ for any $T \in \mathcal{I}_{[r]}$. Note first that $P_0UTU^{-1}J_0 = P_0TJ_0 \in \mathcal{A}(Y)$. Assume that $k \in [r+1]$. If $k \leq r-1$, then

$$P_0 U T U^{-1} J_k = P_0 T J_k \in \mathcal{A}(X, Y)$$

since $U^{-1}J_k = J_k$ by (2.8). If k = r, then again by (2.8) we have

$$P_0UTU^{-1}J_r = P_0TJ_rV^{-1}J_1 \in \mathcal{A}(X,Y),$$

since $P_0TJ_r \in \mathcal{A}(X,Y)$ by assumption. Finally, if k = r + 1, then similarly

$$P_0 UTU^{-1} J_{r+1} = P_0 T J_r V^{-1} \widetilde{J}_2 \in \mathcal{A}(X, Y).$$

(ii) We next verify that $\theta^{-1}(T) = U^{-1}TU \in \mathcal{I}_{[r]}$ for any $T \in \mathcal{I}_{[r+1]}$. As above $P_0U^{-1}TUJ_0 = P_0TJ_0 \in \mathcal{A}(Y)$. Let $k \in [r]$. If $k \leq r-1$, then since $UJ_k = J_k$ by (2.7) we get that

$$P_0 U^{-1} T U J_k = P_0 T J_k \in \mathcal{A}(X, Y)$$

by assumption. If k = r, then from (2.7) we get that

$$P_0 U^{-1} T U J_r = P_0 T (J_r \widetilde{P}_1 V + J_{r+1} \widetilde{P}_2 V) \in \mathcal{A}(X, Y),$$

since $T \in \mathcal{I}_{[r+1]}$ implies that P_0TJ_r and P_0TJ_{r+1} belong to $\mathcal{A}(X,Y)$.

(b) Let $U \in \mathcal{L}(Z_p)$ be the linear isomorphism from part (a), and let $\theta(S) = USU^{-1}$ be the corresponding inner automorphism $\mathcal{L}(Z_p) \to \mathcal{L}(Z_p)$. We claim that also here

$$\theta(\mathcal{I}_{[r]^c}) \subset \mathcal{I}_{[r+1]^c}$$
 and $\theta^{-1}(\mathcal{I}_{[r+1]^c}) \subset \mathcal{I}_{[r]^c}$.

As in part (a) we get that $P_0(\theta(S))J_0 = P_0SJ_0 \in \mathcal{A}(Y)$ and $P_0(\theta^{-1}(T))J_0 = P_0TJ_0 \in \mathcal{A}(Y)$ for any $S \in \mathcal{I}_{[r]^c}$ and $T \in \mathcal{I}_{[r+1]^c}$.

(iii) Suppose that $S \in \mathcal{I}_{[r]^c}$ and $s \ge r+2$. From (2.8) we have

$$P_0(USU^{-1})J_s = P_0USJ_{s-1} = P_0SJ_{s-1} \in \mathcal{A}(Y)$$

as $s-1 \ge r+1$ and $S \in \mathcal{I}_{[r]^c}$.

(iv) Suppose next that $T \in \mathcal{I}_{[r+1]^c}$ and $s \ge r+1$. From (2.7) we get that

$$P_0(U^{-1}TU)J_s = P_0U^{-1}TJ_{s+1} = P_0TJ_{s+1} \in \mathcal{A}(Y)$$

as $s+1 \ge r+2$ and $T \in \mathcal{I}_{[r+1]^c}$.

This completes the proof of part (b).

Condition (2.6) on X enables us to find Banach algebra isomorphisms $\mathcal{I}_A \to \mathcal{I}_B$ for sets A and B of very unequal size. We first isolate two particular cases.

Lemma 2.4. Suppose that X satisfies condition (2.6). Then the following hold:

(a) $\mathcal{I}_{\{1\}} \cong \mathcal{I}_{\{2,3,4,\ldots\}}$. (b) $\mathcal{I}_{\{2,3,4,\ldots\}} \cong \mathcal{I}_{\{2,4,6,\ldots\}}$.

Proof. Let $V: X \to (\bigoplus_{n=1}^{\infty} X)_{\ell^p}$ be a linear isomorphism. (a) We define $U: Z_p \to Z_p$ by

$$U(y, x_1, x_2, \ldots) = (y, V^{-1}(x_2, x_3, \ldots), V(x_1)), \quad (y, x_1, x_2, \ldots) \in Z_p,$$

where $V^{-1}(x_2, x_3, ...)$ sits in the first component of Z_p . Clearly $U \in \mathcal{L}(Z_p)$ is a linear isomorphism for which $U^{-1} = U$. Let $\psi : \mathcal{L}(Z_p) \to \mathcal{L}(Z_p)$ be the Banach algebra isomorphism $\psi(S) = USU$, for which $\psi^{-1} = \psi$. Put $B = \{1\}^c$.

<u>Claim</u>. $\psi(\mathcal{I}_{\{1\}}) \subset \mathcal{I}_B$ and $\psi(\mathcal{I}_B) \subset \mathcal{I}_{\{1\}}$.

(i) Suppose first that $S \in \mathcal{I}_{\{1\}}$, so that $S_{0,0}$ and $S_{0,1}$ are approximable operators. Clearly $P_0(USU)J_0 = S_{0,0} \in \mathcal{A}(Y)$. Next, let $r \geq 2$ and $x_r \in X_r$ be arbitrary. Then

 $SUJ_rx_r = SU(0, 0, \dots, 0, x_r, 0, \dots) = S(0, z, 0, \dots) = (S_{0,1}z, S_{1,1}z, \dots),$

where $z = V^{-1} \widetilde{J}_{r-1} x_r$ and \widetilde{J}_k is the inclusion $X \to (\bigoplus_{n=1}^{\infty} X)_{\ell^p}$ into the k:th position of the right-hand direct sum. Deduce that

$$P_0(USU)J_r = S_{0,1}V^{-1}J_{r-1} \in \mathcal{A}(X,Y),$$

since $S \in \mathcal{I}_{\{1\}}$ and $P_0 U = P_0$.

(ii) We next claim that $P_0(UTU)J_1 \in \mathcal{A}(X,Y)$ for any $T \in \mathcal{I}_B$. For this purpose observe that $\sum_{k=0}^n TJ_kP_k \to T$ as $n \to \infty$ in the operator norm by the proof of [24, Lemma 4.6], since $T \in \mathcal{K}(Z_p)$ and 1 . It follows that

$$\left\|\sum_{k=0}^{n} P_0 U(TJ_k P_k) UJ_1 - P_0 UTUJ_1\right\| \to 0 \text{ as } n \to \infty$$

By approximation it will suffice to verify that $P_0U(TJ_kP_k)UJ_1 \in \mathcal{A}(X,Y)$ for all $k \geq 0$, that is, $P_0TJ_kP_kUJ_1 \in \mathcal{A}(X,Y)$ for all $k \geq 0$ (since $P_0U = P_0$). Towards this observe that $P_0TJ_k \in \mathcal{A}(X,Y)$ for k = 0 and for k > 1 since $T \in \mathcal{I}_B$. Moreover, $P_1UJ_1 = 0$ for k = 1. Thus $\psi(\mathcal{I}_B) \subset \mathcal{I}_{\{1\}}$, which completes the proof of part (a).

(b) Define $U: Z_p \to Z_p$ by

$$U(y, x_1, x_2, \ldots) = (y, (Vx_1)_1, x_2, (Vx_1)_2, x_3, \ldots), \quad (y, x_1, x_2, \ldots) \in Z_p,$$

where $(Vx_1)_k$ denotes the k:th component of Vx_1 in the direct sum $\left(\bigoplus_{n=1}^{\infty} X\right)_{\ell^p}$. Then $U \in \mathcal{L}(Z_p)$ is a linear isomorphism, whose inverse $U^{-1}: Z_p \to Z_p$ is defined by

$$U^{-1}(y, x_1, x_2, \ldots) = (y, V^{-1}(x_1, x_3, \ldots), x_2, x_4, \ldots), \quad (y, x_1, x_2, \ldots) \in Z_p$$

(iii) We first claim that $U^{-1}SU \in \mathcal{I}_{\{2,3,4,\ldots\}}$ for any $S \in \mathcal{I}_{\{2,4,6,\ldots\}}$. Towards this, note that $P_0U^{-1} = P_0$ and $UJ_0 = J_0$. Thus

$$P_0 U^{-1} S U J_0 = P_0 S J_0 \in \mathcal{A}(Y).$$

Suppose next that $r \geq 2$. Observe that $UJ_r = J_{2r-2}$, and thus

$$P_0U^{-1}SUJ_r = P_0SJ_{2r-2} \in \mathcal{A}(X,Y).$$

(iv) We next claim that $USU^{-1} \in \mathcal{I}_{\{2,4,6,\ldots\}}$ for any $S \in \mathcal{I}_{\{2,3,4,\ldots\}}$. For this, note again that $P_0U = P_0$ and $U^{-1}J_0 = J_0$, so that $P_0USU^{-1}J_0 \in \mathcal{A}(Y)$. Let $2n \in \{2,4,6,\ldots\}$. In this event $U^{-1}J_{2n} = J_{n+1}$, so that

$$P_0USU^{-1}J_{2n} = P_0SJ_{n+1} \in \mathcal{A}(X,Y).$$

Put $\chi(S) := USU^{-1}$ for $S \in \mathcal{L}(\mathbb{Z}_p)$. By combining parts (iii) and (iv) we deduce that $\chi(\mathcal{I}_{\{2,3,4,\ldots\}}) = \mathcal{I}_{\{2,4,6,\ldots\}}$, so χ yields a Banach algebra isomorphism $\mathcal{I}_{\{2,3,4,\ldots\}} \to \mathcal{I}_{\{2,4,6,\ldots\}}$.

We are now in position to complete the argument of the main result.

Proof of Theorem 2.1. By transitivity and symmetry it suffices to show that $\mathcal{I}_A \cong \mathcal{I}_{\{1\}}$ for any subset $\emptyset \neq A \subsetneq \mathbb{N}$. We consider the cases $|A| < \infty$, $|A^c| < \infty$ and $|A| = |A^c| = \infty$ separately:

<u>Case 1</u>. Suppose that $|A| = s < \infty$. From Lemmas 2.2 and 2.3.(a) we get that

$$\mathcal{I}_A \cong \mathcal{I}_{[s]} \cong \mathcal{I}_{\{1\}}.$$

<u>Case 2</u>. Suppose that $|A^c| = r < \infty$. From Lemmas 2.2, 2.3.(b) and 2.4.(a) we get that

$$\mathcal{I}_A \cong \mathcal{I}_{[r]^c} \cong \mathcal{I}_{\{1\}^c} \cong \mathcal{I}_{\{1\}^c}$$

<u>Case 3</u>. Suppose that $|A| = |A^c| = \infty$. According to the assumption there is a permutation $\sigma : \mathbb{N} \to \mathbb{N}$ such that $\sigma(A) = \{2, 4, 6, \ldots\}$. Hence we find that

$$\mathcal{I}_A \cong \mathcal{I}_{\{2,4,6,\ldots\}} \cong \mathcal{I}_{\{2,3,4,\ldots\}} \cong \mathcal{I}_{\{1\}}$$

from Lemmas 2.2, 2.4.(b) and 2.4.(a).

Remarks 2.5. (i) If $\mathcal{K}(Z_p)$ is separable in Theorem 2.1, then it can be verified that $\mathcal{K}(Z_p)$ has at most continuum many closed subspaces (as well as non-trivial $\mathcal{K}(Z_p)$ -subideals). Hence the size of the family \mathscr{F} from (2.5) is as large as possible.

The pair (X, Y) satisfying (2.2) and (2.6) can be chosen so that $\mathcal{K}(Z_p)$ is separable. Recall first that $\mathcal{K}(Z_p)$ is separable if and only if Z_p^* is separable, see e.g. [23, page 272]. Secondly, if X^* and Y^* are separable, then in (2.3) the dual $Z_p^* = \left(\bigoplus_{j=0}^{\infty} X_j^* \right)_{\ell^{p'}}$ is separable. Here $X_0^* = Y^*$ as well as $X_j^* = X^*$ for $j \ge 1$, and p' is the dual exponent of $p \in (1, \infty)$. Next, to choose X we follow the argument of [12, Theorem 1.e.7.(b)]. For this purpose let U be a separable reflexive space such that U^* fails the A.P. By [12, Theorem 1.d.3] there is a Banach space W such that W^{**} has a Schauder basis and $W^{**}/W \approx U$. It follows that $X = W^{**}$ has the A.P., but $X^* \approx W^* \oplus U^*$ is separable and fails the A.P. Apply [12, Theorem 1.e.5] to pick a Banach space Y_0 and $S_0 \in \mathcal{K}(X, Y_0) \setminus \mathcal{A}(X, Y_0)$. By Terzioğlu's compact factorization theorem [22] there is a closed subspace $Y \subset c_0$ and a factorization $S_0 = BS$ with $S \in \mathcal{K}(X, Y)$. Here $S \notin \mathcal{A}(X, Y)$ and Y^* is separable.

(ii) A variant of the fact in [11, Added in Proof] implies that the non-trivial subideals $\mathcal{I}_A \in \mathscr{F}$ in Theorem 2.1 are not isomorphic as Banach algebras to either $\mathcal{A}(\mathbb{Z}_p)$ or $\mathcal{K}(\mathbb{Z}_p)$: Suppose that X is a Banach space, let \mathcal{I} be a closed ideal of $\mathcal{L}(X)$ and \mathcal{J} be a closed subalgebra of $\mathcal{L}(X)$ such that $\mathcal{A}(X) \subset \mathcal{J}$. If $\theta : \mathcal{I} \to \mathcal{J}$ is a Banach algebra isomorphism, then $\mathcal{I} = \mathcal{J}$. In particular, if \mathcal{J} is a non-trivial closed subideal of $\mathcal{L}(X)$, then \mathcal{I} and \mathcal{J} are not isomorphic as Banach algebras.

To see this fact, by [3, Corollary 3.2] there is a linear isomorphism $U \in \mathcal{L}(X)$ so that $\theta(S) = USU^{-1}$ for $S \in \mathcal{I}$. If $T \in \mathcal{J}$, then there is $S \in \mathcal{I}$ such that $T = USU^{-1}$, where $USU^{-1} \in \mathcal{I}$ as \mathcal{I} is an ideal of $\mathcal{L}(X)$. Thus $\mathcal{J} \subset \mathcal{I}$. Conversely, if $S \in \mathcal{I}$ then $U^{-1}SU \in \mathcal{I}$, so that $S = \theta(U^{-1}SU) \in \mathcal{J}$. This yields $\mathcal{I} = \mathcal{J}$.

Thomas Schlumprecht asked whether it is possible to identify the closed ideal $[\mathcal{I}_A]$ of $\mathcal{L}(Z_p)$ generated by the subideal $\mathcal{I}_A \in \mathscr{F}$ for $\emptyset \neq A \subsetneq \mathbb{N}$. It turns out that \mathcal{I}_A generate the same closed ideal of $\mathcal{L}(Z_p)$. We first record another general consequence of Chernoff's result.

Lemma 2.6. Let X be a Banach space and suppose that $\mathcal{A} \subset \mathcal{L}(X)$, $\mathcal{B} \subset \mathcal{L}(X)$ are closed subalgebras that contain $\mathcal{F}(X)$, for which $\mathcal{A} \cong \mathcal{B}$. Then the subalgebras \mathcal{A} and \mathcal{B} generate the same closed ideal of $\mathcal{L}(X)$, that is,

 $[\mathcal{A}] = [\mathcal{B}].$

Proof. Let $\theta : \mathcal{A} \to \mathcal{B}$ be a Banach algebra isomorphism. By [3, Corollary 3.2] there is a linear isomorphism $U \in \mathcal{L}(X)$ such that $\theta(S) = USU^{-1}$ for $S \in \mathcal{A}$. If $S \in \mathcal{A}$ is arbitrary, then $\theta(S) = USU^{-1} \in \mathcal{B}$, so that $S = U^{-1}\theta(S)U \in [\mathcal{B}]$. Deduce that $[\mathcal{A}] \subset [\mathcal{B}]$, and by symmetry that $[\mathcal{B}] \subset [\mathcal{A}]$.

Lemma 2.6 together with Theorem 2.1 imply that $[\mathcal{I}_A] = [\mathcal{I}_B]$ holds for all nontrivial closed subideals $\mathcal{I}_A, \mathcal{I}_B \in \mathscr{F}$, where \mathscr{F} is given by (2.5). For this application one requires that the pair (X, Y) of component spaces of Z_p satisfies (2.2) and that Xsatisfies (2.6). Actually the resulting closed ideal of $\mathcal{L}(Z_p)$ can be identified explicitly, and condition (2.6) on X can even be removed.

Proposition 2.7. Suppose that $1 , and let <math>Z_p$ be defined by (2.3), where (X, Y) satisfies (2.2). Then

$$(2.9) \qquad \qquad [\mathcal{I}_A] = [\mathcal{I}]$$

for all $\emptyset \neq A \subsetneq \mathbb{N}$, where $\mathcal{I} := \{T \in \mathcal{K}(Z_p) \mid P_0 T J_0 \in \mathcal{A}(Y)\}.$

Proof. Let $\emptyset \neq A \subsetneq \mathbb{N}$ be arbitrary. Since $\mathcal{I}_A \subset \mathcal{I}$ it will suffice to verify that $\mathcal{I} \subset [\mathcal{I}_A]$. Let $T \in \mathcal{I}$. Since $T \in \mathcal{K}(\mathbb{Z}_p)$ and 1 we know that

(2.10)
$$||\sum_{k=0}^{\prime} TJ_kP_k - T|| \to 0 \text{ as } r \to \infty$$

(see e.g. the proof of [24, Lemma 4.6]). Thus, in order to show that $T \in [\mathcal{I}_A]$, it will be enough by (2.10) to verify that $TJ_kP_k \in [\mathcal{I}_A]$ for all $k \geq 0$. We need to consider the following mutually exclusive cases.

<u>Case k = 0</u>. We know that $P_0(TJ_0P_0)J_0 = P_0TJ_0 \in \mathcal{A}(Y)$ by assumption. Moreover, for any $r \in A$ we get that $P_0(TJ_0P_0)J_r = 0$ since $P_0J_r = 0$. Thus $TJ_0P_0 \in \mathcal{I}_A$. <u>Case $k \in A^c$ </u>. Here $TJ_kP_k \in \mathcal{I}_A$ since $P_0(TJ_kP_k)J_s = 0$ for any $s \in A \cup \{0\}$. <u>Case $k \in A$ </u>. Pick $r \in A^c$ and let $J_{r,k} : X_r \to X_k$ and $J_{k,r} : X_k \to X_r$ denote the identity operator on $X = X_r = X_k$. Clearly $J_{r,k}P_rJ_rJ_{k,r}$ is the identity operator $X_k \to X_k$, so that

$$TJ_kP_k = (TJ_kJ_{r,k}P_r)(J_rJ_{k,r}P_k).$$

We claim that $TJ_kJ_{r,k}P_r \in \mathcal{I}_A$, so that $TJ_kP_k \in [\mathcal{I}_A]$. In fact, for any $s \in A \cup \{0\}$ we have $P_rJ_s = 0$, and thus $P_0(TJ_kJ_{r,k}P_r)J_s = 0$.

Remark 2.8. In Proposition 2.7 there are pairs (X, Y) satisfying (2.2), for which \mathcal{I} is a non-trivial closed $\mathcal{K}(Z_p)$ -subideal of $\mathcal{L}(Z_p)$. Hence the closed ideal $[\mathcal{I}]$ of $\mathcal{L}(Z_p)$ is required on the right-hand side of (2.9) instead of \mathcal{I} .

In fact, if X has the A.P. and X^* fails this property, then first apply [12, Theorem 1.e.5] to pick Y_0 and $S_0 \in \mathcal{K}(X, Y_0) \setminus \mathcal{A}(X, Y_0)$. Let $Y = Y_0 \oplus X$. Then (X, Y) satisfies (2.2), since $Sx = (S_0x, 0)$ for $x \in X$ defines a compact, non-approximable operator $X \to Y$. Moreover, U(y, x) = x for $(y, x) \in Y$ is a non-compact operator $U: Y \to X$ for which $SU: Y \to Y$ is compact and non-approximable. Fix $r \in \mathbb{N}$ and define $V \in \mathcal{L}(Z_p)$ and $T \in \mathcal{I}$ by $V = J_r U P_0$, respectively $T = J_0 S P_r$. Then

$$P_0(TV)J_0 = P_0(J_0SP_rJ_rUP_0)J_0 = SU \notin \mathcal{A}(Y),$$

that is, $TV \notin \mathcal{I}$.

3. Non-trivial closed $\mathcal{S}(X)$ -subideals

It is a natural question whether $\mathcal{L}(X)$ contains non-trivial closed subideals for classical Banach spaces X. Recall that $\mathcal{S}(X)$, the class of the strictly singular operators $X \to X$, is a closed ideal of $\mathcal{L}(X)$ that satisfies $\mathcal{K}(X) \subset \mathcal{S}(X)$ for any X. Here we describe large families of non-trivial closed $\mathcal{S}(X)$ -subideals of $\mathcal{L}(X)$ for many classical Banach spaces X, including $L^p := L^p(0,1)$ with $p \neq 2$. We first briefly discuss closed subideals of Banach algebras.

Let \mathcal{A} be a Banach algebra, and suppose that $\mathcal{J} \subset \mathcal{I} \subset \mathcal{A}$. We say that \mathcal{J} is a closed \mathcal{I} -subideal of \mathcal{A} if \mathcal{I} is a closed ideal of \mathcal{A} and \mathcal{J} is a closed ideal of \mathcal{I} . This setting reveals that the existence of non-trivial closed \mathcal{I} -subideals is related to the absence of approximate identities for \mathcal{I} . Recall that the net $(e_{\alpha}) \subset \mathcal{I}$ is a left approximate identity (LAI) of \mathcal{I} if $y = \lim_{\alpha} e_{\alpha} y$ for all $y \in \mathcal{I}$. Right approximate identities (RAI) of \mathcal{I} are defined analogously. The following fact is a variant and reformulation of [4, Proposition 2.9.4].

Lemma 3.1. Suppose that $\mathcal{J} \subset \mathcal{I} \subset \mathcal{A}$, where \mathcal{I} is a closed ideal of \mathcal{A} and \mathcal{J} is a closed \mathcal{I} -subideal of \mathcal{A} .

(i) If \mathcal{I} or \mathcal{J} has a RAI, then \mathcal{J} is a right ideal of \mathcal{A} .

(ii) If \mathcal{I} or \mathcal{J} has a LAI, then \mathcal{J} is a left ideal of \mathcal{A} .

Proof. (i) Suppose that (e_{α}) is a RAI for \mathcal{I} , and let $x \in \mathcal{J}$ and $z \in \mathcal{A}$ be arbitrary. It follows that

$$xz = \lim_{\alpha} (xe_{\alpha})z = \lim_{\alpha} x(e_{\alpha}z) \in \mathcal{J},$$

since $e_{\alpha}z \in \mathcal{I}$ for all α and \mathcal{J} is a closed ideal of \mathcal{I} . The other cases are similar. \Box

Remarks 3.2. (i) By Lemma 3.1 there are Banach algebras without non-trivial closed subideals. Let \mathcal{A} be a C^* -algebra and $\mathcal{I} \subset \mathcal{A}$ a closed ideal. It is known that there is a bounded net $(e_{\alpha}) \subset \mathcal{I}$ which is a LAI as well as a RAI for \mathcal{I} , see e.g. [5, Proposition 1.8.5] or [4, Theorem 3.2.21]. Moreover, $\mathcal{L}(X)$ fails to have non-trivial

closed subideals by (2.1) for $X = \ell^p$ with $1 \le p < \infty$ or $X = c_0$, since here $\mathcal{K}(X)$ is the unique proper closed ideal of $\mathcal{L}(X)$, see e.g. [19, sections 5.1–5.2].

(ii) If X has the A.P., then $\mathcal{K}(X) = \mathcal{A}(X)$, so by (2.1) there are no non-trivial closed $\mathcal{K}(X)$ -subideals. The existence of a LAI or a RAI in $\mathcal{K}(X)$ is related to the compact approximation property, see [6, Theorem 2.7] and [27, Proposition 7].

(iii) Let Z_p be the Banach space in (2.3), where 1 . Lemma 3.1 impliesthat $\mathcal{K}(Z_p)$ cannot have a RAI. Namely, for any $\emptyset \neq A \subsetneq \mathbb{N}$ the closed $\mathcal{K}(Z_p)$ -subideal \mathcal{I}_A is not a right ideal of $\mathcal{L}(Z_p)$ by property (ii) following (2.5).

For classical spaces X that have the A.P., including L^p for $1 \le p < \infty$ or C(0,1), the algebra $\mathcal{L}(X)$ does not contain any non-trivial closed $\mathcal{K}(X)$ -subideals, see Remarks 3.2.(ii). The following elementary observation will lead to large families of non-trivial closed $\mathcal{S}(X)$ -subideals of $\mathcal{L}(X)$, where the conditions apply to many classical Banach spaces (see Proposition 3.6).

Proposition 3.3. Suppose that X is a Banach space such that

(3.1)
$$\dim(\mathcal{S}(X)/\mathcal{K}(X)) \ge 2,$$

$$(3.2) UV \in \mathcal{K}(X) \text{ for any } U, V \in \mathcal{S}(X).$$

(i) If $\mathcal{K}(X) \subseteq M \subseteq \mathcal{S}(X)$ is any closed linear subspace, then M is a closed $\mathcal{S}(X)$ subideal of $\mathcal{L}(X)$.

(ii) Let $\mathcal{K}(X) \subsetneq M_1, M_2 \subsetneq \mathcal{S}(X)$ be closed linear subspaces. Then the subideals $M_1 \cong M_2$ if and only if $M_2 = UM_1U^{-1}$ for some linear isomorphism $U \in \mathcal{L}(X)$.

Proof. (i) If $S \in M$ and $U \in \mathcal{S}(X)$, then $US \in M$ and $SU \in M$ by (3.2).

(ii) Let $\theta: M_1 \to M_2$ be a Banach algebra isomorphism. Use [3, Corollary 3.2] to find a linear isomorphism $U \in \mathcal{L}(X)$ for which $\theta(S) = USU^{-1} \in M_2$ for $S \in \mathcal{M}_1$, so that $UM_1U^{-1} \subset M_2$. The inner automorphism $\theta : \mathcal{L}(X) \to \mathcal{L}(X)$ has the unique inverse θ^{-1} given by $\theta^{-1}(T) = U^{-1}TU$ for $T \in \mathcal{L}(X)$. If $T \in M_2$ is arbitrary, then

$$T = U(U^{-1}TU)U^{-1} = U(\theta^{-1}(T))U^{-1} \in UM_1U^{-1}$$

as $\theta^{-1}(T) \in M_1$. Conclude that $M_2 = UM_1U^{-1}$. Conversely, suppose that $M_2 = UM_1U^{-1}$ for some linear isomorphism $U \in \mathcal{L}(X)$. Then the restriction of the inner automorphism $S \mapsto \theta(S) = USU^{-1}$ on $\mathcal{L}(X)$ is a Banach algebra isomorphism $M_1 \to M_2$. \square

Recall that Tarbard [21] constructed a Banach space X_2 , for which (3.2) holds and $dim(\mathcal{S}(X_2)/\mathcal{K}(X_2)) = 1$. We next provide examples in the above setting of closed linear subspaces M, such that M is not an ideal of $\mathcal{L}(X)$ and $UMU^{-1} \neq M$ for some linear isomorphism U. It will be convenient to work on $X \oplus X$, but the spaces X listed below in Proposition 3.6 satisfy $X \oplus X \approx X$. Note from Eidelheit's theorem that if $V: X \oplus X \to X$ is a linear isomorphism, then $S \mapsto \psi(S) = VSV^{-1}$ is a Banach algebra isomorphism $\mathcal{L}(X \oplus X) \to \mathcal{L}(X)$. Moreover, $\psi(\mathcal{K}(X \oplus X)) = \mathcal{K}(X)$ and $\psi(\mathcal{S}(X \oplus X)) = \mathcal{S}(X)$, so that a non-trivial closed $\mathcal{S}(X \oplus X)$ -subideal \mathcal{I} transfers to a non-trivial closed $\mathcal{S}(X)$ -subideal $\psi(\mathcal{I})$ of $\mathcal{L}(X)$. We will often write operators $U \in \mathcal{L}(X \oplus X)$ as $U = \begin{bmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{bmatrix}$, where $U_{kl} = P_k U J_l \in \mathcal{L}(X)$ for k, l = 1, 2. Here P_k and J_l are the canonical projections and inclusions associated to $X \oplus X$. Given closed linear subspaces $M_{ij} \subset \mathcal{L}(X)$ for i, j = 1, 2 we denote

$$\begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix} = \Big\{ U = \begin{bmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{bmatrix} \in \mathcal{L}(X \oplus X) : U_{ij} \in M_{ij} \text{ for } i, j = 1, 2 \Big\}.$$

We write $\mathcal{A} \ncong \mathcal{B}$ to indicate non-isomorphic Banach algebras \mathcal{A} and \mathcal{B} .

Theorem 3.4. Suppose that X is a Banach space that satisfies (3.2) and

(3.3)
$$S(X)/\mathcal{K}(X)$$
 is infinite-dimensional.

(i) For any closed linear subspace $\mathcal{K}(X) \subsetneq M \subsetneq \mathcal{S}(X)$ put

(3.4)
$$\mathcal{I}(M) = \begin{bmatrix} M & \mathcal{K}(X) \\ \mathcal{K}(X) & \mathcal{K}(X) \end{bmatrix}.$$

Let $U \in \mathcal{L}(X \oplus X)$ be the isomorphism U(x, y) = (y, x) for $(x, y) \in X \oplus X$, and $\theta(S) = USU^{-1}$ for $S \in \mathcal{L}(X \oplus X)$. Then $\mathcal{I}(M)$ is a non-trivial closed $\mathcal{S}(X \oplus X)$ -subideal of $\mathcal{L}(X \oplus X)$, and $\mathcal{J}(M) := \theta(\mathcal{I}(M))$ is also a non-trivial closed $\mathcal{S}(X \oplus X)$ -subideal, for which $\mathcal{J}(M) \cong \mathcal{I}(M)$ and $\mathcal{J}(M) \neq \mathcal{I}(M)$.

(ii) Let $(T_k) \subset \mathcal{S}(X)$ be a linearly independent sequence modulo $\mathcal{K}(X)$, and let $M_n \subset \mathcal{S}(X)$ be the closed linear subspace spanned by $\{T_j : 1 \leq j \leq n\} \cup \mathcal{K}(X)$ for $n \in \mathbb{N}$. Then $\{\mathcal{I}(M_n) : n \in \mathbb{N}\}$ is an increasing sequence of non-trivial closed $\mathcal{S}(X \oplus X)$ -subideals of $\mathcal{L}(X \oplus X)$, such that $\mathcal{I}(M_n) \ncong \mathcal{I}(M_k)$ for any $n \neq k$.

(iii) Suppose that $\mathcal{K}(X) \subsetneq \mathcal{J}_1, \mathcal{J}_2 \subsetneq \mathcal{S}(X)$ are closed ideals of $\mathcal{L}(X)$ such that $\mathcal{J}_1 \neq \mathcal{J}_2$. Then $\mathcal{I}(\mathcal{J}_1)$ and $\mathcal{I}(\mathcal{J}_2)$ are non-trivial closed $\mathcal{S}(X \oplus X)$ -subideals for which $\mathcal{I}(\mathcal{J}_1) \ncong \mathcal{I}(\mathcal{J}_2)$.

Proof. (i) $\mathcal{I}(M)$ is a closed $\mathcal{S}(X \oplus X)$ -subideal of $\mathcal{L}(X \oplus X)$ by part (i) of Proposition 3.3. Fix $T \in M \setminus \mathcal{K}(X)$, let $S = \begin{bmatrix} T & 0 \\ 0 & 0 \end{bmatrix} \in \mathcal{I}(M)$ and $V = \begin{bmatrix} 0 & 0 \\ I_X & 0 \end{bmatrix}$. It follows that $VS = \begin{bmatrix} 0 & 0 \\ T & 0 \end{bmatrix} \notin \mathcal{I}(M)$, so that $\mathcal{I}(M)$ is a non-trivial subideal.

The above θ defines an inner automorphism θ on $\mathcal{L}(X \oplus X)$, so that $\mathcal{J}(M) = \theta(\mathcal{I}(M)) \cong \mathcal{I}(M)$. It is not difficult to check that

$$\mathcal{J}(M) = \begin{bmatrix} \mathcal{K}(X) & \mathcal{K}(X) \\ \mathcal{K}(X) & M \end{bmatrix} \neq \mathcal{I}(M),$$

since $U = \begin{bmatrix} 0 & I_X \\ I_X & 0 \end{bmatrix}$. As above $\mathcal{J}(M)$ is not an ideal of $\mathcal{L}(X \oplus X)$.

(ii) The linear span $M_n = span(\{T_j : 1 \leq j \leq n\} \cup \mathcal{K}(X))$ is a closed linear subspace that satisfies $\mathcal{K}(X) \subsetneq M_n \subsetneq \mathcal{S}(X)$ for all $n \in \mathbb{N}$. Hence $\mathcal{I}(M_n) \subsetneq \mathcal{I}(M_{n+1})$ are non-trivial closed $\mathcal{S}(X \oplus X)$ -subideals of $\mathcal{L}(X \oplus X)$ for $n \in \mathbb{N}$ by part (i).

Suppose to the contrary that k < n and $\theta : \mathcal{I}(M_n) \to \mathcal{I}(M_k)$ is a Banach algebra isomorphism. By [3, Corollary 3.2] pick a linear isomorphism $U \in \mathcal{L}(X \oplus X)$, such that $\theta(T) = UTU^{-1}$ for all $T \in \mathcal{I}(M_n)$. Since θ is a Banach algebra isomorphism of $\mathcal{L}(X \oplus X)$ for which $\theta(\mathcal{K}(X \oplus X)) = \mathcal{K}(X \oplus X)$, there is an induced linear isomorphism $\mathcal{I}(M_n)/\mathcal{K}(X \oplus X) \to \mathcal{I}(M_k)/\mathcal{K}(X \oplus X)$. This cannot happen since $\mathcal{I}(M_r)/\mathcal{K}(X \oplus X)$ is *r*-dimensional for $r \in \mathbb{N}$. (iii) $\mathcal{I}(\mathcal{J}_1)$ and $\mathcal{I}(\mathcal{J}_2)$ are non-trivial closed subideals of $\mathcal{L}(X \oplus X)$ by part (i). Suppose that $\theta : \mathcal{I}(\mathcal{J}_2) \to \mathcal{I}(\mathcal{J}_1)$ is a Banach algebra isomorphism. We claim that $\mathcal{J}_1 \subset \mathcal{J}_2$, so that $\mathcal{J}_1 = \mathcal{J}_2$ by symmetry.

By [3, Corollary 3.2] there is a linear isomorphism $V \in \mathcal{L}(X \oplus X)$, such that $\theta(T) = VTV^{-1}$ for all $T \in \mathcal{I}(\mathcal{J}_2)$. Let $S_0 \in \mathcal{J}_1$ be arbitrary. Since $S = J_1S_0P_1 \in \mathcal{I}(\mathcal{J}_1)$, there is $T \in \mathcal{I}(\mathcal{J}_2)$ with $S = VTV^{-1}$. Write $T = \begin{bmatrix} T_{11} & 0 \\ 0 & 0 \end{bmatrix} + R$, where $T_{11} \in \mathcal{J}_2$ and $R \in \mathcal{K}(X \oplus X)$. We get that

$$S_0 = P_1 S J_1 = (P_1 V J_1) T_{11} (P_1 V^{-1} J_1) + P_1 (V R V^{-1}) J_1 \in \mathcal{J}_2,$$

since \mathcal{J}_2 is an ideal of $\mathcal{L}(X)$.

Remarks 3.5. (i) Conditions (3.2) and (3.3) imply that $\mathcal{S}(X)$ has neither a LAI nor a RAI. There are also versions of Proposition 3.3 and Theorem 3.4 for certain other pairs of closed ideals $\mathcal{J} \subset \mathcal{I} \subset \mathcal{L}(X)$, but we do not pursue this here.

(ii) No examples of non-trivial closed $\mathcal{K}(X)$ -subideals are available along the line of Theorem 3.4, since it is unknown whether there is a Banach space X such that $\mathcal{K}(X)/\mathcal{A}(X)$ is non-zero and 2-nilpotent, see e.g. [24, Remarks 5.4.(ii)].

We briefly recall some classical Banach spaces X to which Theorem 3.4 applies. The spaces listed here are known to satisfy $X \oplus X \approx X$.

Proposition 3.6. Conditions (3.2) and (3.3) are satisfied by $X = L^p$ with $1 \le p < \infty$ and $p \ne 2$, C(0,1), ℓ^{∞} , as well as $\ell^p \oplus \ell^q$ and $\ell^p \oplus c_0$ with $1 \le p < q < \infty$.

Proof. We first make a preliminary observation towards (3.3). Fix a partition $\{A_j : j \in \mathbb{N}\}$ of \mathbb{N} into infinite subsets, and suppose that $1 \leq p < q < \infty$. Put $a = \chi_A \in \ell^{\infty}$ for $A \subset \mathbb{N}$ and let $D_a : \ell^p \to \ell^q$ be the corresponding diagonal operator. Here $D_a \in \mathcal{S}(\ell^p, \ell^q)$ by the total incomparability of ℓ^p and ℓ^q , see e.g. [12, Proposition 2.a.2].

<u>Claim.</u> The family $\{D_{a_j} : j \in \mathbb{N}\}$ is linearly independent modulo $\mathcal{K}(\ell^p, \ell^q)$.

Namely, let c_1, \ldots, c_m be scalars for some $m \in \mathbb{N}$, and let (e_k) be the unit vector basis in ℓ^p . If $c_j \neq 0$ for some $j \in \{1, \ldots, m\}$, then $\sum_{r=1}^m c_r D_{a_r} \notin \mathcal{K}(\ell^p, \ell^q)$. In fact, for $k \in A_j$ one has

$$\sum_{r=1}^m c_r D_{a_r} e_k = c_j e_k,$$

which fails to have any norm-convergent subsequences. An analogous claim also holds for $\{D_{a_j} : j \in \mathbb{N}\} \subset \mathcal{S}(\ell^p, c_0)$, with a similar argument.

Suppose that $X = L^p$ with $1 \le p < \infty$ and $p \ne 2$. Recall that if $p \ne 1$, then ℓ^p and ℓ^2 are isomorphic to complemented subspaces of L^p . For p > 2 let $P : L^p \to \ell^2$ be a surjection and $J : \ell^p \to L^p$ a linear embedding. Deduce from the above Claim that $\{JD_{a_j}P : j \in \mathbb{N}\} \subset \mathcal{S}(X)$ is linearly independent modulo $\mathcal{K}(X)$. For 1reverse the roles of 2 and p, and for <math>p = 1 use the facts that ℓ^1 is complemented in L^1 and ℓ^2 embeds isomorphically into L^1 .

Simple modifications yield (3.3) in the other cases. For $X = \ell^p \oplus \ell^q$, where $1 \leq p < q < \infty$, it suffices to consider $\{D_{a_j} : j \in \mathbb{N}\} \subset \mathcal{S}(\ell^p, \ell^q) \subset \mathcal{S}(\ell^p \oplus \ell^q)$, and analogously for $X = \ell^p \oplus c_0$. Finally, [20, Proposition 1.3] and standard duality imply that ℓ^2 is a quotient space of both C(0, 1) and ℓ^∞ . Since ℓ^p embeds isometrically into C(0, 1) and ℓ^∞ for p > 2, we may again proceed as above.

Milman [14, Teorema 7] showed that (3.2) holds for $X = L^p$ with $1 and <math>p \neq 2$. For p = 1 it was shown by Pełczynski [18, Theorem II.1] that $\mathcal{S}(L^1)$ equals the class of weakly compact operators on L^1 , so that (3.2) follows from the Dunford-Pettis property of L^1 , see e.g. [1, Theorem 5.4.5.(i)]. The same argument also applies to X = C(0, 1) and $X = \ell^{\infty}$ in view of [18, Theorem I.1] and [1, Theorem 5.4.5.(ii)]. Finally, the identification of the component ideals of $\mathcal{S}(\ell^p \oplus \ell^q)$ and $\mathcal{S}(\ell^p \oplus c_0)$, see e.g. [19, Theorem 5.3.2], easily yields (3.2) for $\ell^p \oplus \ell^q$ and $\ell^p \oplus c_0$.

Part (iii) of Theorem 3.4 can be improved e.g. for L^p , with $1 , <math>p \neq 2$, by using the existence of specific large families of closed ideals of $\mathcal{L}(L^p)$.

Theorem 3.7. (i) Let X be L^p with $1 and <math>p \neq 2$, $\ell^p \oplus \ell^q$ with $1 \le p < q < \infty$ or $\ell^p \oplus c_0$ with $1 . Then there are <math>2^{\mathfrak{c}}$ non-trivial closed $\mathcal{S}(X)$ -subideals of $\mathcal{L}(X)$ that are pairwise non-isomorphic as Banach algebras.

(ii) For $1 and <math>p \neq 2$ there is a family $\{\mathcal{I}_{\alpha} : \alpha \in \mathcal{C}\}$ of the size of the continuum of singly generated non-trivial closed $\mathcal{S}(L^p)$ -subideals of $\mathcal{L}(L^p)$ that are pairwise non-isomorphic as Banach algebras, but linearly isomorphic as Banach spaces.

Proof. (i) Johnson and Schechtman [11, Remark 4.4] proved that there are 2^c different closed ideals \mathcal{J} of $\mathcal{L}(L^p)$ which satisfy $\mathcal{K}(L^p) \subset \mathcal{J} \subset \mathcal{S}(L^p)$. The claim then follows from part (iii) of Theorem 3.4, and the facts that $L^p \approx L^p \oplus L^p$ and that $\mathcal{S}(L^p)$ has at most 2^c closed subspaces, see e.g. [11, p. 107]. Analogous results about closed ideals of $\mathcal{L}(\ell^p \oplus \ell^q)$ and of $\mathcal{L}(\ell^p \oplus c_0)$ were shown by Freeman, Schlumprecht and Zsák [9, Corollary 9] (see also its preceding Remark and the Remark on p. 17 of [9]).

(ii) Let \mathcal{C} be a continuum of infinite subsets of \mathbb{N} such that $|\alpha \cap \beta| < \infty$ for all $\alpha, \beta \in \mathcal{C}$, and let 1 . By [11, Remarks 4.3 and 4.4], there is a closed $complemented subspace <math>X \subset L^p$ together with operators $U, P, T_\alpha \in \mathcal{L}(X)$ for $\alpha \in \mathcal{C}$, such that the following properties hold:

(3.5)
$$T_{\alpha}UP \in \mathcal{S}(X) \setminus \mathcal{K}(X) \text{ for all } \alpha \in \mathcal{C},$$

(3.6)
$$T_{\beta}UP \notin [T_{\alpha}UP]$$
 for any $\alpha, \beta \in \mathcal{C}, \alpha \neq \beta$

Here $[T_{\alpha}UP]$ denotes the closed ideal of $\mathcal{L}(X)$ generated by $T_{\alpha}UP$. Write $L^p = X \oplus M$ and for $\alpha \in \mathcal{C}$ consider the operators

(3.7)
$$R_{\alpha} = \begin{bmatrix} T_{\alpha}UP & 0\\ 0 & 0 \end{bmatrix} \in \mathcal{S}(L^p) \setminus \mathcal{K}(L^p), \quad S_{\alpha} = \begin{bmatrix} R_{\alpha} & 0\\ 0 & 0 \end{bmatrix} \in \mathcal{S}(L^p \oplus L^p).$$

For $\alpha \in \mathcal{C}$ consider the closed subspace

$$M_{\alpha} = \{\lambda R_{\alpha} + R \mid \lambda \in \mathbb{K} \text{ and } R \in \mathcal{K}(L^p)\} \subset \mathcal{S}(L^p)$$

and let

 $\mathcal{I}_{\alpha} := \mathcal{I}(M_{\alpha}) = \{ \lambda S_{\alpha} + R \mid \lambda \in \mathbb{K} \text{ and } R \in \mathcal{K}(L^{p} \oplus L^{p}) \}$

be as in (3.4). By part (i) of Theorem 3.4 the family $\{\mathcal{I}_{\alpha} : \alpha \in \mathcal{C}\}$ consists of non-trivial closed $\mathcal{S}(L^p \oplus L^p)$ -subideals of $\mathcal{L}(L^p \oplus L^p)$. Here \mathcal{I}_{α} is a singly generated ideal of $\mathcal{S}(L^p \oplus L^p)$ according to (2.1), since L^p has a Schauder basis. It is clear that $\mathcal{I}_{\alpha} \approx \mathcal{I}_{\beta}$ for all $\alpha, \beta \in \mathcal{C}$, as the subideals \mathcal{I}_{α} for $\alpha \in \mathcal{C}$ are one-dimensional extensions of $\mathcal{K}(L^p \oplus L^p)$.

It follows that $\mathcal{I}_{\alpha} \not\cong \mathcal{I}_{\beta}$ by a modification of the argument of Theorem 3.4.(iii). In fact, let $\alpha \neq \beta$ and assume that there is a Banach algebra isomorphism $\theta : \mathcal{I}_{\alpha} \to \mathcal{I}_{\beta}$.

Hence there is a linear isomorphism $V \in \mathcal{L}(L^p \oplus L^p)$ such that $\theta(T) = VTV^{-1}$ for $T \in \mathcal{I}_{\alpha}$. Pick $\lambda \in \mathbb{K}$ and $R \in \mathcal{K}(L^p \oplus L^p)$ such that

$$S_{\beta} = \theta(\lambda S_{\alpha} + R) = V(\lambda S_{\alpha} + R)V^{-1} = \lambda V J_0 T_{\alpha} UPP_0 V^{-1} + VRV^{-1},$$

where J_0 is the inclusion map $X \to L^p \oplus L^p$ (into the first copy of L^p), and P_0 is the corresponding projection $L^p \oplus L^p \to X$. Deduce that

(3.8)
$$T_{\beta}UP = P_0 S_{\beta} J_0 = \lambda (P_0 V J_0) T_{\alpha} UP (P_0 V^{-1} J_0) + P_0 V R V^{-1} J_0 \in [T_{\alpha} UP],$$

which contradicts (3.6).

Let $2 < q < \infty$ and p be the dual exponent of q. For $\alpha \in \mathcal{C}$ define

 $\mathcal{J}_{\alpha} = \{ \lambda S_{\alpha}^* + R \mid \lambda \in \mathbb{K} \text{ and } R \in \mathcal{K}(L^q \oplus L^q) \},\$

where S_{α} is given by (3.7). Observe that $S_{\alpha}^* \in \mathcal{S}(L^q \oplus L^q) \setminus \mathcal{K}(L^q \oplus L^q)$ by [25, Corollary 2] or [14, p. 19], so that $\mathcal{J}_{\alpha} \subset \mathcal{S}(L^q \oplus L^q)$ is a non-trivial closed $\mathcal{S}(L^q \oplus L^q)$ subideal of $\mathcal{L}(L^q \oplus L^q)$ for all $\alpha \in \mathcal{C}$. Moreover, $\mathcal{J}_{\alpha} \approx \mathcal{J}_{\beta}$ for all $\alpha, \beta \in \mathcal{C}$.

Finally, suppose that $\alpha \neq \beta$ and assume that there is a Banach algebra isomorphism θ : $\mathcal{J}_{\alpha} \to \mathcal{J}_{\beta}$, where as before $\theta(T) = VTV^{-1}$ for all $T \in \mathcal{J}_{\alpha}$ and some linear isomorphism $V \in \mathcal{L}(L^q \oplus L^q)$. Pick $\lambda \in \mathbb{K}$ and $R \in \mathcal{K}(L^q \oplus L^q)$ such that $S^*_{\beta} = V(\lambda S^*_{\alpha} + R)V^{-1}$. Deduce from reflexivity that $S_{\beta} = (V^*)^{-1}(\lambda S_{\alpha} + R^*)V^*$, which leads to a contradiction as in (3.8).

Remark 3.8. There are versions of part (ii) of Theorem 3.7 for $X = L^1$, C(0, 1) and ℓ^{∞} . For L^1 use the family $\{J_pQ : p \in (2, \infty)\} \subset \mathcal{S}(L^1)$ from [10, p. 701], which has similar properties to (3.5) and (3.6). Analogous results for C(0, 1) are contained in [10, Corollary 3.2], and for L^{∞} in [10, Theorem 4.2 and Corollary 4.4], where $\ell^{\infty} \approx L^{\infty}$ by [1, Theorem 4.3.10]. The details are left to the interested reader.

Acknowledgements. We are indebted to Gideon Schechtman for a query during the conference Functional Analysis in Lille 2022, which motivated Theorem 2.1. We are also grateful to Thomas Schlumprecht for a question during IWOTA 2020 (August, 2021) which inspired Proposition 2.7, and to him and Niels Laustsen for suggestions about the largest possible size of the family of closed $\mathcal{K}(Z_p)$ -subideals (see Remarks 2.5.(i)). We thank the referee for suggestions that improved the presentation. Henrik Wirzenius gratefully acknowledges the financial support of the Magnus Ehrnrooth Foundation.

References

- F. Albiac and N.J. Kalton, *Topics in Banach Space Theory*, Grad. Texts in Math., vol. 233, Springer-Verlag, New York, 2006.
- A. Arias and J.D. Farmer, On the structure of tensor products of ℓ_p-spaces, Pacific J. Math. 175 (1996), 13–37.
- P.R. Chernoff, Representations, Automorphisms and Derivations of Some Operator Algebras, J. Funct. Anal. 12 (1973), 275–289.
- H.G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monogr. (N.S.), vol. 24, Clarendon Press, Oxford, 2000.
- J. Dixmier, Les C^{*}-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964.
- P.G. Dixon, Left approximate identities in algebras of compact operators on Banach spaces, Proc. Roy. Soc. Edinburgh Sect. A 104 (1986), 169–175.
- 7. M. Eidelheit, On isomorphisms of rings of linear operators, Studia Math. 9 (1940), 97-105

- C.K. Fong and H. Radjavi, On ideals and Lie ideals of compact operators, Math. Ann. 262 (1983), 23–28.
- 9. D. Freeman, T. Schlumprecht and A. Zsák, Banach spaces for which the space of operators has 2^c closed ideals, Forum Math. Sigma 9 (2021), Paper No. e27, 20 pp.
- 10. W.B. Johnson, G. Pisier, and G. Schechtman, *Ideals in* $L(L_1)$, Math. Ann. **376** (2020), 693–705.
- 11. W.B. Johnson and G. Schechtman, The number of closed ideals in $L(L_p)$, Acta Math. 227 (2021), 103–113.
- J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces I, Sequence Spaces*, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 92, Springer-Verlag, Berlin, 1977.
- J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces II, Function Spaces*, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 97, Springer-Verlag, Berlin, 1979.
- 14. V.D. Milman, *Operators of class* C_0 and C_0^* (Russian), Teor. Funktsii Funkcional. Anal. i Priložen. **10** (1970), 15–26.
- T.W. Palmer, Banach Algebras and The General Theory of *-algebras. Vol. 1. Algebras and Banach Algebras, Encyclopedia of Mathematics and its Applications, vol. 49, Cambridge University Press, 1994.
- 16. S. Patnaik and G. Weiss, Subideals of operators, J. Operator Theory 70 (2013), 355–373.
- S. Patnaik and G. Weiss, Subideals of operators a survey and introduction to subideal-traces, Operator Theory in Harmonic and Non-commutative Analysis (Cham), Oper. Theory Adv. Appl., vol. 240, Birkhäuser, 2014, pp. 221–234.
- A. Pełczynski, On strictly singular and strictly cosingular operators. I. Strictly singular and strictly cosingular operators in C(S)-spaces. II. Strictly singular and strictly cosingular operators in L(ν)-spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 31–41.
- A. Pietsch, Operator Ideals, North-Holland Mathematical Library vol. 20, North-Holland, Amsterdam, 1980.
- 20. H.P. Rosenthal, On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from $L^{p}(\mu)$ to $L^{r}(\nu)$, J. Funct. Anal. 4 (1969), 176-214.
- M. Tarbard, Hereditarily indecomposable, separable L[∞] Banach spaces with l¹ dual having few but not very few operators, J. Lond. Math. Soc. (2) 85 (2012), 737–764.
- T. Terzioğlu, A characterization of compact linear mappings, Arch. Math. (Basel) 22 (1971), 76–78.
- H-O. Tylli and H. Wirzenius, The quotient algebra of compact-by-approximable operators on Banach spaces failing the approximation property, J. Aust. Math. Soc. 110 (2021), 266–288.
- H-O. Tylli and H. Wirzenius, Closed ideals in the algebra of compact-by-approximable operators, J. Funct. Anal. 282 (2022), Paper No. 109328, 47 pp.
- L. Weis, On perturbations of Fredholm operators in L_p(μ)-spaces, Proc. Amer. Math. Soc. 67 (1977), 287–292.
- H. Wirzenius, Quotient algebras of Banach operator ideals related to non-classical approximation properties, J. Math. Anal. Appl. 517 (2023), Paper No. 126637, 33 pp.
- Y. Zhang, Unbounded approximate identities in algebras of compact operators on Banach spaces, Math. Proc. Camb. Phil. Soc. 134 (2003), 187–192.

Tylli: Department of Mathematics and Statistics, Box 68, FI-00014 University of Helsinki, Finland

Email address: hans-olav.tylli@helsinki.fi

WIRZENIUS: DEPARTMENT OF MATHEMATICS AND STATISTICS, BOX 68, FI-00014 UNIVERSITY OF HELSINKI, FINLAND

Email address: henrik.wirzenius@helsinki.fi