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a b s t r a c t

Recent progress in our understanding of cancer mostly relies on the systematic profiling of patient samples 
with high-throughput techniques like transcriptomics. With this approach, one can find gene signatures 
and networks underlying cancer aggressiveness and therapy resistance. However, omics data alone cannot 
generate insights into the spatiotemporal aspects of tumor progression. Here, multi-level computational 
modeling is a promising approach that would benefit from protocols to integrate the data generated by the 
high-throughput profiling of patient samples. We present a computational workflow to integrate tran-
scriptomics data from tumor patients into hybrid, multi-scale cancer models. In the method, we conduct 
transcriptomics analysis to select key differentially regulated pathways in therapy responders and non- 
responders and link them to agent-based model parameters. We then determine global and local sensitivity 
through systematic model simulations that assess the relevance of parameter variations in triggering 
therapy resistance. We illustrate the methodology with a de novo generated agent-based model accounting 
for the interplay between tumor and immune cells in a melanoma micrometastasis. The application of the 
workflow identifies three distinct scenarios of therapy resistance.

© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY license (http://creative-

commons.org/licenses/by/4.0/).

1. Introduction

In the last decade, the understanding of cancer pathogenesis and 
metastasis has progressed remarkably and improved our ability to 
diagnose, stratify and treat metastatic tumors. One hallmark of 
cancer is the ability of cancer cells to evade immune control [12]. The 
elucidation of this mechanism was vital to develop therapies such as 
immune checkpoint inhibitors (ICI), which have been successful 
with aggressive tumors like metastatic melanoma [19,42]. Much of 
this progress in cancer research is due to the characterization of 
tissue samples from large cohorts of patients through genomics, 
transcriptomics, proteomics and/or epigenomics analysis. These 
techniques give access to quantitative data describing the activation 
and expression of (all) genes in cancer. This data provides the 

necessary foundation to investigate the genetic landscape of cancer 
progression [2] and to reconstruct and dissect the gene regulatory 
networks underlying cancer pathogenesis and therapy response 
[43,7]. However, omics data alone cannot account for some levels of 
(de)regulation linked to spatiotemporal variations in the tumor’s 
molecular and cellular composition, as well as to the existence of 
nonlinear regulatory structures like feedback and feedforward 
loops [18].

In this context, mathematical modeling, in particular multi-level 
spatial computational models, is a viable method to investigate the 
dynamic behavior of the tumor microenvironment (TME) and to 
evaluate therapeutic strategies [25]. In these models, equations and 
other mathematical entities encode the cellular and molecular in-
teractions between the cell types making up the tumor. One cali-
brates the values of the parameters in the equations utilizing 
biomedical knowledge and quantitative data from experiments. The 
parametrized models are then utilized to perform time-course si-
mulations. In these simulations, one perturbs the amount of cancer 
cells in the tumor or the values of given model parameters, and si-
mulates the dynamics of the tumor under these circumstances. 
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These models can describe and predict the dynamics of cancer-de-
regulated intracellular gene circuits [16]. They can also integrate 
genes and gene circuits activity into tissue-scale models of cell-to- 
cell interactions [38,41].

One type of multi-level spatial computational models are the 
agent-based models (ABM). In these models the tumor and immune 
cells are represented as discrete individuals that interact according 
to a pre-defined set of rules encoding their (patho)physiological 
behavior [29]. There are some challenges to devising these compu-
tational models in the context of cancer. First, there is a trade-off 
between detailed modeling of biological features with different 
scales occurring in cancer progression and keeping the model simple 
enough to allow interpretability and reasonable computing effort. 
Second, these models include a large amount of model parameters, 
and the calibration of their values requires diverse quantitative data. 
In the case of tissue modeling, many parameters can only be cali-
brated indirectly, as the experimental modalities to observe single 
cell behavior in vivo are missing. In line with this, quantitative 
characterization of 3D culture systems might enhance the cap-
abilities to observe cellular interactions in tissues and cancer [10,3].

When performing computational simulations representative of 
the pathophysiology of cancer, one has to carefully select which 
model parameter subset to analyze. One objective is to obtain 
computer simulations representative of the pathophysiological 
phenomenon of interest; a second, usually conflicting objective is to 
ensure that the simulations can be performed within a reasonable 
timeframe and computing effort. This parameter selection requires 
domain knowledge. Our idea is that transcriptomics data analysis 
can be employed to make this selection of relevant model para-
meters unbiased and systematic.

In this paper, we describe a methodology to decide the features 
of agent-based model simulations based on transcriptomics data 
analysis. In the methodology, one analyzes transcriptomics data to 
rank and select key gene sets underlying a condition of interest. We 
next link the gene sets to model parameters, and utilize this in-
formation to prioritize parameters for investigation of the model 
behavior. The influence of these prioritized parameters is in-
vestigated via global sensitivity analysis and large-scale, systematic 
model simulations. We exemplify the use of the method for a case 
study on melanoma metastasis and immunotherapy resistance. To 
this end, we built an agent-based model accounting for the interplay 
between tumor and immune cells in a micrometastasis.

2. Materials and methods

Workflow. Fig. 1 depicts the workflow we followed in this study. 
It includes the following steps: 

1. Derivation of the agent-based model: we collected knowledge 
on metastatic melanoma from publications, databases and pub-
lished models to select the key cell types and biological processes 
involved in the interaction between cancer cells and the immune 
system. We encoded this information into the agents, rules and 
equations making up the model.

2. Model calibration: we combined manual curation of the litera-
ture to extract quantitative data with explorative model simula-
tions to assign their nominal values to the model parameters.

3. Transcriptomics data analysis and selection of key model 
parameters: we collected and processed relevant tran-
scriptomics datasets from tumor samples from ICI therapy re-
sponders and non-responders and performed differential 
expression analysis. Next, we performed gene set enrichment 
analysis to detect differentially regulated processes between re-
sponders and non-responders, and linked these processes to the 
computational model parameters. This information is employed 
to select model parameters of interest for sensitivity analysis.

4. Sensitivity analysis and in silico detection of phenotypes: we 
sampled the selected parameter space and performed systematic 
model simulations accounting for the reaction of the tumor mi-
crometastasis to ICI therapy. To find sensitive parameter sub-
spaces, we trained a decision tree. We quantified the parameter 
sensitivities utilizing partial rank correlation and feature im-
portance derived from the decision tree. As target variable, we 
chose the cancer cell population at the simulation endpoint.

In the following, one can find a detailed explanation of the in-
dividual steps in the workflow.

2.1. Multi-level melanoma immunology model

The general modeling concept we used is to create a spatial 
agent-based model of the TME that interacts with a systemic com-
partment. This is a modeling approach that has been suggested in 
recent reviews [25,29] and was followed in other multiscale models 
as well [11,33]. We built our model based on knowledge of tumor 
immunology and signaling in cancer and melanoma [1,24]. The 
model contains immune and tumor cells in the melanoma TME and 
their interactions, which can be either based on cell-cell contact or 
on intercellular communication through cytokines and other soluble 
factors.

The model accounts for parts of the innate and adaptive im-
munity to tumors including immunosurveillance without con-
sidering memory and long-term immunity. For the 
immunosurveillance we assumed that the tumor antigens are not 
yet detected by the adaptive immune system. A sketch of the model 
and in particular the considered cell interactions are shown in Fig. 2. 
Specifically, the immune cells accounted for are cytotoxic T lym-
phocytes (CTLs), T helper cells (Th), B cells, regulatory T cells (Tregs), 
dendritic cells (DCs), macrophages and myeloid-derived suppressor 
cells (MDSCs).

We assumed that the communication between immune cells is 
mediated by cytokines and chemokines. The cell behavior is mod-
eled as logical rules. Further, our model includes helper cells and 
suppressor cells as abstract cell types that account for immune cells 
that primarily have a regulatory role, such as CD4 + T cells, B cells 
and MDSCs. These cells influence the immune response via secreting 
cytokines.

We labeled the involved cytokines based on whether they have a 
primarily immunoenhancing or immunosuppressive effect and 
modeled two abstract surrogate cytokines accordingly: im-
munoenhancing (ENH) and immunosuppressive cytokine (SUP). 
ENH accounts for cytokines that increase the effectiveness of cyto-
toxic mechanisms like IFN-γ, as well as for chemoattractants for 
cytotoxic cells such as CCL3, CCL4, CCL5, CXCL9 or CXCL10. Examples 
for molecular species that have immunosuppressive effects are IL-10, 
TGF-β and IDO. The surrogate cytokines keep the model simpler by 
assuming that the cytokines do not have pleiotropic effects, although 
it has been shown that some cytokines may trigger both im-
munosuppressive and immunoenhancing effects [6]. For instance, 
IFN-γ, a key regulator of the adaptive immune response, can trigger 
both the expression of major histocompatibility complex I (MHC-I) 
and of PD-L1. The former increases the recognition of cancer cells by 
T cells, while the latter inhibits the effector mechanism of T cells.

2.1.1. Cytokine diffusion
Cytokines are modeled using a continuum model that tracks 

cytokine concentrations rather than discrete molecules. Their dif-
fusion is described by Fick’s second law

= +c
D c f

t
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with the compounds’ concentrations c, the diffusion constants D, 
and a term f accounting for secretion and degradation. Cytokine 
diffusion is solved using a finite difference method with the Euler 
forward method.

2.1.2. In situ cell populations
2.1.2.1. Cancer cells. A cancer cell population of 125 cells is seeded at 
the lattice center at the beginning of a simulation. As the tumor cells 
migrate and divide, they will spread over the tissue in the course of a 
simulation.

Cell motility is implemented as a random walk, allowing a cell to 
move to neighboring lattice positions with a probability pmigration. If 
the chosen position is already occupied by another cell, the cells 
either swap places or stay at their positions with equal probability. 
In general, it is assumed that cancer cells are less motile than im-
mune cells.

Cancer cells can die with a probability pdeath, which leads to their 
removal from the lattice. Dead cancer cells will leave debris that can 
be collected by dendritic cells and facilitate an immune response.

Cancer cells are considered to have uncontrolled replication po-
tential and will attempt to divide after a fixed length of time 
tproliferation has passed, which accounts for cell growth and cycle 
duration. Dividing cells are temporarily immobile for the time step 
where the cell division occurs. Cell division can only take place if 
there is a vacant neighboring position that a daughter cell can 

occupy. This rule implicitly models cell contact inhibition, a trait that 
cancerous cells usually lose [12]. However, this assumption is in line 
with previous studies that use lattice-based models (e.g., [40]). It 
simplifies the modeling of cell mechanics, and evades calculations 
such as equilibria of forces between cells and the consequential 
possibility of cells pushing each other away.

Cancer cells may present one or multiple tumor-specific antigens 
depending on their mutations. We modeled only passenger muta-
tions, meaning if a cancer cell mutates, it may start to present an-
other antigen. This can induce an adaptive immune response specific 
to that antigen. Cancer cells mutate at each time step with a prob-
ability pmutation. The mutations that are modeled are non-driver 
mutations, as they only affect the antigen pool that a particular 
cancer cell presents, which influences its susceptibility towards 
clearance by CTLs: more mutations lead to a larger antigen pool and 
recognition by different CTL clones. The mutations are modeled as a 
finite allele model, with 32 possible mutations. This allows to track 
the individual mutations, but has the disadvantage that it is not 
realistic compared to the near-infinite mutations possible in a real 
human genome, potentially leading to artifacts, e.g., through the 
possibility of reverse mutations.

2.1.2.2. Cytotoxic T lymphocytes. Cytotoxic T lymphocytes patrol the 
tumor site and are able to induce apoptosis in cancer cells upon 
contact. A cell is considered to be in contact with another if it is 

Fig. 1. Workflow of the study. On the left are labels of the four overarching steps, on the right is a brief list of the central materials and methods used in each step. We first 
created the model and set a nominal parameter configuration. Then we linked expression data to model parameters to narrow a selection of parameters whose influence we 
analyzed in more depth.
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present in its Moore neighborhood (i.e., adjacent cell including 
diagonal adjacency). A CTL recognizes an antigen that is specific to 
its receptor and kills cancer cells presenting the antigen. It probes its 
neighborhood for a recognizable cancer cell in random order. The 
randomness is introduced to avoid a direction bias that might lead to 
simulation artifacts. If the CTL recognizes a cancer cell, it kills it with 
a probability modeled as

= +p p p e e(( (1 )(1 )) )g
kill base base

[ENH] [SUP]ENH SUP

that depends on a base killing probability pbase, the local 
concentrations of SUP [SUP] and ENH [ENH], respective rate 
constants SUP and ENH, and the influence of anti PD1 checkpoint 
inhibitor therapy g . The probability is modeled in such a way that 
killing of tumor cells by CTLs becomes more effective in the presence 

Fig. 2. Structure of the agent-based model. A: overview. On the cellular level, an agent-based model is used, where cell physiology is described as cell type specific rules. This is 
coupled on the level of the tumor-microenvironment with the cytokine diffusion solver and the recruitment model of immune cells. B: biological processes included in the 
model. Cancer cell debris is detected by DCs which will attract CTLs, suppressors and helpers after a delay. CTLs that contact cancer cells switch to an activated state and can kill 
the cancer cell. The killing probability is influenced by cytokines and applied anti-PD1 therapy. Abbreviations: ENH: immunoenhancing cytokine, SUP: immunosuppressive 
cytokine, DC: dendritic cell, MΦ: macrophage, CTL: cytotoxic T lymphocyte.
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of ENH and less effective in the presence of SUP. Anti PD1 therapy is 
modeled as a power law influence [37] and is set to 1 (no therapy) 
and can be toggled to 0.1 during a simulation (application of 
therapy). At this abstraction level of the model, it is indifferent 
whether the drug targets PD1 which may be expressed by CTLs or its 
ligand PDL1 which may be expressed by the cancer cells, as it only 
influences the killing mechanism on contact. The killing has a 
duration tkill, in which the CTL becomes immobile and unable to 
kill other neighboring cancer cells.

CTLs undergo apoptosis after a fixed lifespan tlife,CTL . Note that 
CTL expiration accounts for different cell fates including exhaustion, 
apoptosis or leaving the TME. We do not model CTL proliferation in 
the TME, although it has been reported in cases of combination 
therapy [36]. Unlike cancer cells, a CTL follows its migration rule at 
every time step unless it is in an immobile state. Therefore, its 
motility depends only on the cell density in its vicinity. It is capable 
of performing both random walk and chemotactic migration, fol-
lowing the ENH gradient. By default, CTLs perform random walk and 
they change to chemotactic migration if the concentration of sur-
rounding ENH cytokines exceeds a threshold. We modeled this 
threshold to prevent the CTLs from being sensitive to very low ENH 
concentrations. The CTLs moving in the chemotactic mode are in an 
activated state. The activated CTLs secrete ENH cytokines with a 
fixed rate rENH. ENH cytokines increase their cytotoxic capabilities 
and attract other CTLs to their vicinity, allowing fast finding and 
clearance of cancer cell colonies.

2.1.2.3. Dendritic cells. DCs are antigen-presenting cells to immune 
effector cells such as T cells. In the model, DCs function as probes for 
tumor cells, and they move inside the lattice at each simulation step 
if a vacant position in the vicinity is available. We did not consider 
apoptosis of DCs in the TME, as we assume that DCs are either 
tissue-resident or filtrated through the TME during their lifetime. A 
DC will collect all cancer cell debris it encounters. It then starts to 
present the antigens it processed. Furthermore, it becomes activated 
and leaves the tumor site. Once a DC has left the tumor site, it 
increases a signal that leads to a delayed recruitment of CTLs that are 
specific to the antigens it now presents. This way we implicitly 
modeled the homing of DCs to the tumor-draining lymph node. We 
assume homeostasis of the DC population, and for every DC that 
leaves the tumor microenvironment, a new DC will be recruited.

2.1.2.4. Helper and suppressor cells. Helper cells account for 
CD4 + helper T cells as well as tumor infiltrating B cells. They 
constantly secrete ENH cytokines (rENH). Suppressor cells primarily 
account for regulatory T cells (Treg) and myeloid derived suppressor 
cells (MDSCs). Analog to helper cells, they constantly secrete SUP 
cytokines. Both helper and suppressor cells perform a random walk 
during their lifetime, which is fixed to tlife,helper and tlife,suppressor, 
respectively.

2.1.2.5. Macrophages. Macrophages have cytotoxic capabilities, and 
can secrete both ENH and SUP cytokines. Similar to CTLs, their 
cytotoxicity is influenced by cytokines. Their cytokine secretion rates 
depend on the ratio of the concentrations of local SUP and ENH 
cytokines:

=
+

r r
[SUP]

[SUP] [ENH]SUP cytokine

and

=
+

r r
[ENH]

[SUP] [ENH]ENH cytokine

The equations result in positive feedback loops, making the se-
cretion rates of SUP and ENH by macrophages positively correlate 

with their own concentrations. The feedback loops imitate an en-
vironment-dependent phenotype plasticity that resembles M1 and 
M2 phenotype activation described in the literature [15].

2.1.3. Cell recruitment
Newly recruited cells appear on a free position at the border of 

the TME lattice based on the assumption that recruited cells enter 
from nearby blood vessels. The cell types recruited to the TME are 
CTLs, DCs, macrophages, helper and suppressor cells.

The recruitment of CTLs is preceded by DC-induced clonal ex-
pansion and differentiation in the lymphatic tissues, which in-
troduces a delayed response. Therefore, CTLs are recruited to the 
TME with an antigen specific rate rCTL that depends on delayed tumor 
detection of DCs.

The delay is modeled as a queue with a fixed size tdelay for each 
antigen. At each simulation step, the oldest value will be dequeued 
and leads to recruitment of CTLs, while a new value will be en-
queued and initialized to zero. Every DC presenting the respective 
antigen that leaves the tumor site at the simulation step will add a 
number to the new value in the queue, leading to immune cell re-
cruitment in the future. Helper cells are recruited alongside CTLs 
with a fixed ratio of 1:1, which approximates reported data 
(Hernberg 1996).

Recruitment of suppressor cells and macrophages depend on CTL 
recruitment with fixed ratios q celltype , that is

=r q r .macrophage macrophage CTL

2.2. Model environment, simulation and parameterization

The lattice is modeled with cubic cells with a side length of 
µ10 m, with × ×100 100 100 cells, representing a volume of 1 mm3. 

We set =t 10 min for the duration of a simulation step, which is 
taken from a similar model by Gong et al. [11]. The fastest action a 
cell undertakes and that is affected by the step size is cell movement. 
The time step and cell length correspond with a maximum cell speed 
of µ3 m/min. The maximum cell speed is therefore about 10 times 
slower than the speed of neutrophils performing chemotaxis in a 
microfluidic device and about 5 times faster than H69 small cell lung 
cancer cells [26]. We assume this depicts cell motion with an ade-
quate speed assuming that leukocytes move more slowly in tissue 
than in a microfluidic device. Simulations start with a small homo-
geneous population of 125 cancer cells at the center of the lattice 
and random uniformly distributed populations of DCs and macro-
phages. We run simulations for a period of 100 days or 8401 steps, 
respectively. This period is chosen on the assumption that a suc-
cessful immune response will clear the metastasis within 50 days, as 
is indicated for adaptive immune responses [1]. We doubled the 
simulation time to investigate the model progression of small re-
sidual cancer cell populations that many simulations showed at day 
50. Further, a simulation will abort earlier if the cancer cell popu-
lation grows larger than 800,000. This abortion condition is chosen 
to limit the computational effort of the simulations. We consider it 
justified as 80% of the lattice spaces will be occupied by cancer cells, 
effectively simulating a tumor expansion beyond the model space.

We used published experimental data to calibrate as many 
parameters as possible, whose annotation and nominal values are 
listed in supplementary Table S1. To determine the maximum re-
cruitment rates, we use ratios of cell types that are described in 
literature, leaving but one recruitment rate uncharacterized. With 
this modeling choice we achieve that the simulated immune in-
filtrate resembles an infiltrate found in experiments over the course 
of a simulation.

Running a single simulation took about 1 h and 20 min on our 
hardware (4 Intel Xeon E5–4660, 256 GB RAM), requiring about 10 
MB RAM. For the sensitivity analyses, we ran up to 64 simulations in 
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parallel. We implemented our model in c+ +17, using HDF5 and json 
data formats for I/O. To account for the stochasticity in the model, 
we repeated each simulation multiple times with different seeds for 
the random number generator. To decide on a number of replicas to 
make for each simulation, we ran simulations with the nominal 
parameter configuration both with and without application of ICI 
therapy and compared the 95% confidence intervals of the expected 
cancer cell populations after 3 and 100 replications. Following this 
procedure, we found that using a low number of replications is ac-
ceptable for our analysis (Supplementary Fig. S1). For the local 
sensitivity we repeated each simulation 10 times, and for the global 
sensitivity analysis 3 times.

2.3. Linking differential regulation to model parameters

For computationally expensive model simulations, global sensi-
tivity analysis is only feasible for a small subset of model parameters. 
Here we propose to base the selection on parameters linked to 
biologically relevant gene sets using a workflow as depicted in Fig. 3. 
We performed a gene set enrichment analysis to identify and char-
acterize a subset of them that is related to response to anti-PD1 
treatment. First, we downloaded and processed the transcriptome 
data of pre-treatment melanomas undergoing anti-PD1 checkpoint 
inhibition therapy (GSE78220). Second, we identified differentially 
expressed genes between responders and non-responders. Third, we 
performed a gene set enrichment analysis using the differentially 
expressed genes and identified gene sets in which the genes are 
involved. We assumed that the identified enriched gene sets are 
crucial for the pathogenesis and progression of melanoma, and 
therefore we manually annotated them with corresponding model 
parameters.

For the gene set enrichment analysis, we used the R package 
fgsea [35] that tested the enrichment of the identified differentially 
expressed genes using the MSigDB hallmark gene set collection [21]
and cancer hallmark genes (CHG) [44]. The fgsea algorithm searches 
for gene sets where highly ranked genes are enriched. It is given a 
ranked list of genes and a list of gene sets. We calculated gene ranks 
based on differential expression as

=s C psign(logF ) ( log )i i i10

with the binary logarithmic fold change ClogF i and the p-Value pi. To 
explore the enrichment, we examined the Benjamini-Hochberg ad-
justed p-value and listed the significantly regulated gene set. These 
were manually annotated with model parameters they relate to, 
excluding those that could not be related (e.g., because of their 
generality or association to processes that are not modeled).

Next, we selected parameters for global sensitivity analysis based 
on the gene set enrichment and the local sensitivity analysis. In our 
case, we could afford to run a global sensitivity analysis for 5 para-
meters, while 6 parameters were identified with the gene set en-
richment. To exclude one parameter from this selection, we 
performed a local sensitivity analysis (i.e., one at a time perturba-
tion) and excluded the least influential parameter.

2.4. Sensitivity analysis and decision tree-based phenotype grouping

We selected five model parameters of interest for sensitivity 
analysis, which we set up in a quasi-Monte Carlo fashion where we 
sample the selected parameter space using the Sobol’ sampling se-
quence implementation of chaospy [9]. As boundaries for the para-
meter space we set (0, 2) times the nominal value. Assuming that 
about five simulations per parameter are needed to sufficiently cover 
the parameter space, we sample =5 31255 parameter sets. As the 
model includes stochastic processes such as killing or moving 
probabilities, we repeat each simulation 3 times, leading to a total 
number of 9375 simulations for the sensitivity analysis.

To analyze the sensitivity of our parameter selection, we trained 
a decision tree as a meta-model, intending to find sensitive para-
meter subspaces on the simulation outcome [13,31,32]. A similar 
approach has been followed in an earlier work [34]. To quantify the 
parameter sensitivities, we used partial rank correlation and feature 
importance derived from the decision tree [23]. As target variable we 
chose the cancer cell population at the end of the simulation, la-
beling the simulation results either as emerging metastasis 
(> 700,000), complete remission (0) or else residual disease. This 
gives an indication of how good the immune response is in elim-
inating the emerging metastasis. There are some limitations though, 

Fig. 3. Method of linking expression data to model parameters. Besides performing a local sensitivity analysis to preselect a set of parameters for global analysis, we propose to 
enrich expression data of different conditions to link them to parameters of potential biological relevance.
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as we can generally not assume that a simulation will reach a steady- 
state by its end.

Decision trees have the advantage that they can reproduce 
nonlinear and non-monotonous behavior, which is useful as we 
cannot assume a linear model behavior a priori. We use the scikit- 
learn implementation, which also calculates normalized parameter 
importance on the regression splits [30]. As an optimization cri-
terion we chose the Gini impurity. The simulations were randomly 
split into a training and test data set (80:20) and 5-fold cross-vali-
dation was carried out on the training set yielding a mean accuracy 
of 0.9 and a standard deviation of 0.004. To avoid overfitting and to 
keep the decision tree easily human-interpretable we constrain it to 
a depth of 5 and a minimum split size of 3.3%.

3. Results

Our research aim was to utilize systematic simulations of an 
agent-based model to detect in silico phenotypes linked to the re-
sistance of metastatic melanoma to ICI therapy. To this end, we 
derived and calibrated an agent-based model describing the inter-
play between cancer and immune cells in a tumor micrometastasis. 
The selection of model parameters perturbed in the simulations is 
critical as a trade-off between biomedical meaningfulness and 
computing effort. To tackle this, we developed a computational 
methodology to make an unbiased selection of model parameters 
based on transcriptomics data analysis.

3.1. Model derivation and selection of the nominal model configuration

We developed an agent-based model of the immune reaction to 
melanoma that considers the core cellular mechanisms influenced 
by the cytokine milieu. The TME is set up to simulate a newly seeded 
micrometastasis, where a cancer cell colony a) grows, b) is detected 
by immunosurveillance and c) is challenged by both innate and CTL- 
mediated adaptive immune responses (see Material and Methods for 
details).

We calibrated most model parameters to data estimates from the 
literature (Supplementary Table S1). For three parameters, we did 
not find data. To address this issue, we explored their parameter 
space to find a sensitive parameter set, which we fixed as nominal 
values (Supplementary Fig. S2). In Fig. 4 we show simulations of the 
nominal parameter configuration and a configuration with reduced 
recruitment of immune cells with and without ICI treatment. The 
design of the simulations is motivated by findings indicating that 
immune cell infiltration, in particular CTL infiltration, correlates with 
ICI treatment outcome [17,20,28,8]. In the simulations, we randomly 
perturbed the model parameter values within the range of + /- 25% 
of their nominal values to account for patient diversity. For the 
nominal parameter configuration, simulations without ICI lead to 
emerging metastases in almost every case. However, simulations 
with low CTL infiltration and application of ICI lead to remission in 
76/100 and to residual disease in 24/100 simulations. Finally, si-
mulations with ICI and the nominal (high) CTL infiltration led to 
complete removal of cancer cells in 99/100 simulated cases and re-
sidual disease in one case. Taken together, the selection of parameter 
values for the nominal model configuration renders results that 
qualitatively match clinical evidence of patient response with high 
and low CTL infiltration ([20], see Fig. 4 C).

3.2. Transcriptomics data-driven selection of therapy-response related 
gene sets and their connection to model parameters

To find molecular differences between responders and non-re-
sponders to ICI therapy, we downloaded and processed the tran-
scriptome data of pre-treatment melanomas from patients 
undergoing anti-PD1 checkpoint inhibition therapy (GSE78220). 

Gene set enrichment analysis using differential gene expression 
(anti-PD1 responders versus non-responders) resulted in 24 sig-
nificantly differentially regulated gene sets (Benjamini-Hochberg 
adjusted p-value < = 0.05). Fig. 5 illustrates how we used this data to 
identify relevant model parameters, which we selected for the 
computationally expensive global analysis. For the parameter se-
lection we considered the significantly differentially regulated gene 
sets. We annotated and mapped these genes sets to the corre-
sponding model parameters. We excluded 14 gene sets that could 
not be linked to any model parameter because they are generic, 
disease-specific, or not directly related to any modeled mechanism.

We linked the gene set “genome instability and mutation” to the 
mutation probability (pmutation). We linked “epithelial-mesenchymal 
transition” to cancer cell motility (pmigration). We connected three 
gene sets to the cell cycle time (tproliferation), and one to the influence 
of suppressive cytokines ( SUP.). We linked two gene sets to the CTL 
recruitment rate (rCTL). Finally, we connected two other gene sets to 
the influence of enhancing cytokines ( ENH).

3.3. Parameter sensitivity analysis indicates multiple mechanisms of 
therapy resistance

To account for limited computational power encountered in 
large-scale ABM, we constrained the global sensitivity analysis to 
five parameters. We excluded the enriched parameter pmutation be-
cause it is the least influential of the selected parameters in the local 
sensitivity analysis performed (cf. supplementary Fig. S3). Global 
sensitivity analysis showed that a large proportion of simulations 
ended either with an emerging metastasis or complete remission 
(Fig. 6 A). Based on these results, we assigned each simulation to one 
of the categories “emerging metastasis”, “residual disease” and “com-
plete remission”. Fig. 6 B/C shows the influence of the selected 
parameters. We quantified this influence utilizing the partial rank 
correlation coefficients (prccs) and the parameter importance of the 
decision tree (Fig. 6. B/C). The results with both metrics suggest that 
cancer cell cycle duration and motility are more influential than the 
CTL recruitment rate and the cytokine-associated parameters. The 
signs of the prccs can be interpreted intuitively: simulations with 
long cell cycle times, high CTL recruitment rates and high influence 
of enhancing cytokines ENH lead to better removal of cancer cells. 
However, in simulations with higher cancer cell motility and higher 
influence of suppressive cytokines SUP the removal of cancer cells is 
compromised.

The decision tree indicates that the simulated ICI therapy is ef-
fective in multiple conditions of the TME. However, it also reveals 
different mechanisms of therapy resistance (Fig. 6. D, Supplementary 
Fig. 4). In case of the ICI therapy-resistant decision tree regions, we 
include in Fig. 6 a model sketch with the model processes whose 
parameters are modified in color. In the decision tree-based classi-
fication of the model simulations, the tumor tends to be resistant to 
ICI therapy in the following cases: i) aggressive tumors with short 
replication time and at least moderate motility, ii) tumors with 
longer replication time but high motility and smaller CTL recruit-
ment, and iii) tumors with higher CTL recruitment and longer cell 
replication time, but high influence of suppressive cytokines SUP 
and high cancer cell motility. These findings suggest that the diffi-
culty in predicting ICI therapy response [27] may be due to a spec-
trum of existing counter-balancing mechanisms that influence ICI 
therapy effectiveness.

4. Discussion

Our aim was to develop an approach to integrate transcriptomic 
data into computational models of cell-to-cell interactions in cancer. 
There is abundant scientific literature exploring the use of un-
supervised and supervised machine-learning models and omics data 
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Fig. 4. Simulations of the nominal parameter configuration with and without ICI therapy. A: comparison of the cell lattices over the course of a simulation. Only cancer cells 
(blue) and CTLs (orange) are shown for clarity. B: cancer cell populations of 100 simulations per condition with randomly perturbed model parameters (+/- 25%). High immune 
infiltration marks the nominal configuration, low immune infiltration simulations have a 3-fold reduced immune cell recruitment rate. The simulations with ICI are designated 
“responders” or “non-responders” depending on their final cancer cell population. C: qualitative comparison of the conditions with fractions of anti-PD1 responders and non- 
responders with high and low CD8 infiltrates respectively (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article).
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to classify cancer patient samples [4,6]. However, few studies have 
explored the integration of these data with tissue-level mechanistic 
computational models. This combination allows for computer 
model-supported interpretation of patient data. To this end, we 
implemented a hybrid, agent-based model describing the interplay 
between cancer and immune cells in melanoma micrometastasis. To 
build and characterize the model, we used knowledge of melanoma 
immunology and publicly available quantitative data describing the 
behavior of the melanoma cells and different immune cells in-
filtrating the TME.

There are similar cancer models proposed in the literature. Wang 
et al. [40] developed an agent-based melanoma model accounting 
for cytokine-mediated angiogenesis. Hatzikirou et al. [14] modeled 
tumor invasion with a lattice gas cellular automaton. Gong et al. [11]
modeled the tumor immune response to PD-1/PD-L1 inhibition. 
They identified tumor mutational burden and antigen strength as 
critical factors that influence the recruitment of immune cells. They 
simulate therapy with checkpoint inhibition by changing a model 
parameter (probability of T cell suppression) at a set time point 
during a simulation, the same approach we use to model therapy. 

Compared to the model proposed in this work, we do not model CTL 
proliferation at the TME (compare with section 2.1.2). Instead, our 
model considered a greater extent of cell types, including DCs, 
helper and suppressor cells, and variability in tumor antigens. While 
this increases the complexity of the model, it hypothetically allows 
for a more detailed projection of the differential regulation data into 
the model. The model’s limitations arise from abstraction and sim-
plification, but they are also due to incomplete knowledge on the 
cellular mechanisms. For instance, the finite allele mutation model 
does not replicate the significance of mutational burden on the 
prognosis of ICI [27].

Here we combined gene set enrichment analysis of cancer im-
munotherapy response data and global sensitivity analysis of sys-
tematic model simulations to focus the investigation on selected 
model parameters. The motivation for this is that in large multi-level 
computational models, one cannot analyze the parameter space 
exhaustively due to limitations in computational power. In our case, 
the systematic exploration of the entire parameter space would re-
quire about 528 simulations. However, the proposed method reduced 
the effort to 9375 simulations and about 175 h of computation. 

Fig. 5. Selection of model parameters that are related to differential regulation in therapy responders vs. non-responders. Top: significantly differentially regulated gene 
sets in melanoma sample of different ICI treatment response that could be linked to model parameters. See full list in supplementary Table 2. Bottom left: list of the identified 
parameters connected to the selected gene sets. Bottom right: volcano plot of the adjusted p value against the normalized enrichment score. Gene sets accounting for parameters 
are marked with corresponding colors.
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Fig. 6. Decision tree-based sensitivity analysis. A: distribution of final cancer cell populations. B: partial rank correlation coefficients. C: parameter importance of the decision 
tree. D: decision tree for the final cancer cell population. Each node predicts a simulation outcome for a region of the sampled parameter space. At a branch parent node, the 
parameter space is split along a threshold for a split parameter. The numbers in the parents refer to split parameters: 0: cell cycle time of cancer cells tproliferation , 1: influence of 
immunosuppressive cytokines , 3: CTL recruitment rate rCTL , 4: migration probability of cancer cells pmigration . The color saturation indicates node impurity. Model drafts are 
shown for highlighted ICI resistant parameter subspaces with color indicating model components influenced by parameter deviations from the nominal configuration (blue: lower 
values; red: higher values). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Previous approaches utilized hypothesis-driven parameter selection 
for deciding model simulations, but our method performs parameter 
selection in an unbiased, omics-data-driven fashion.

Based on our analysis, we suggest a causal relationship between 
given differentially regulated gene sets and cellular phenotypes as-
sociated with selected cell types in the TME. In the case of our 
model, the investigation of the designated parameters identified 
three different mechanisms of ICI treatment resistance. Distinctively 
activated cellular processes in these resistance mechanisms are: a) 
cancer cell motility, previously suggested as a mechanism of re-
sistance [7]; b) CTL infiltration, known to play a role in dis-
criminating the immune "hot" and "cold" tumors [22]; and c) 
suppressing immune signals, which can be mediated by TGFβ [45], 
IDO [4] and others.

A limitation of the method is that the linkage between para-
meters and gene sets remains a manual curation step and depends 
on the expert knowledge of the modelers. Further, the enrichment 
analysis could, in principle, detect gene sets not linked to any 
parameter in the current instance of the model. In this case, one can 
utilize our approach to perform a data-driven, systematic model 
expansion. For example, our analysis found three gene sets related to 
cellular metabolism differentially regulated between responders and 
non-responders. One can utilize this information to expand the 
model with equations accounting for cancer and immune cell me-
tabolism and the diffusion of nutrients in the TME.

Our data-parameter linkage approach is based solely on gene set 
enrichment analysis and remains a qualitative step, yielding a ca-
tegorical classification of parameters. A quantitative differentiation 
of parameters would enable us to deduce parameter perturbations 
directly from the data. In this regard, one can expand the method to 
generate a quantitative link of transcriptomic data to parameters. To 
this end, one would calculate the magnitude of the differential 
regulation and map it as a perturbation level to the respective 
parameters relative to their nominal calibration. However, this re-
quires annotation of all parameters with their associated gene sets. 
This task is currently intensive in manual work but could be alle-
viated by automated methods such as text mining.

We think that the combination of enrichment analysis of tran-
scriptomics data and global sensitivity analysis can be applied gen-
erally to agent-based or ODE models reflecting cell-to-cell and tissue 
interactions in cancer and other pathologies (cf. Fig. 3). To this end, it 
is necessary to have a significant amount of annotated tran-
scriptomics data reflecting the investigated conditions or progres-
sion of the disease. When selecting the number of parameters to be 
explored, one has to consider a trade-off between sufficient sam-
pling of the chosen sub-parameter space and keeping the required 
computational load in control.
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