

Kalle Paasio

APPLICATION OF RADAR SENSING IN
KOVILTA OY SENSOR FRAMEWORK

Master’s thesis
Faculty of Information Technology and Communication Sciences

Jukka Vanhala
Karri Palovuori
January 2024

ABSTRACT

Kalle Paasio: Application of radar sensing in Kovilta oy sensor framework
Master’s thesis
Tampere University
Electrical Engineering
January 2024

This work explores radar sensing for sensor fusion applications with a camera. It addresses

the fundamentals of radar, sensor fusion, and filtering. These fundamentals are put into practice
in the implementation phase, where a physical system is constructed. The purpose of this work
is to explore for Kovilta Oy a previously uncharted territory of radar sensing. The demonstration
platform provides a real-world view into data formats, algorithms, radio-frequency related phe-
nomena, and communication interfaces. It also serves as a basis for further in-house develop-
ment being the first, and thus a foundational element, of Kovilta Oy’s radar environment.

The implemented system is capable of tracking multiple humans in a room while continu-
ously calculating their speed and position vectors. When applied to vehicular tracking, it can
distinguish people, cars, cyclists and stop signs. In the conducted tests, the system was able to
track cars from a distance of up to 50 meters. The novel sensor fusion algorithm also has the
ability to scale its reliability with better radar platforms and with increasing computation power.
Systems like this can be used as guidance for simultaneous localization and mapping, advanced
driver assistance, or as standalone object-level monitoring systems. In particular, Kovilta Oy is
interested in applying these systems to autonomous vehicles such as agricultural drones and
self-driving cars.

In the final chapters, avenues for further exploration are presented including alternative ap-
proaches for sensor fusion, new radar modulation schemes, and ways to utilize machine learning
on radar data. The proceedings of this work are made Open Source and are available on the
author’s GitHub under the MIT license.

Keywords: Radar, camera, sensor fusion, projection-based, ADAS, SLAM

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

TIIVISTELMÄ

Kalle Paasio: Katsaus tutkan käyttömahdollisuuksiin Kovilta oy:n sensoriympäristössä
Maisterin tutkinto
Tampereen yliopisto
Sähkötekniikka
Tammikuu 2024

Tämä työ tutkii tutka havainnointia sekä tutkan yhteensopivuutta sensorifuusioon kameran
kanssa. Työssä käydään läpi tutkan, sensori fuusion sekä filtteröinnin perusteet. Tutkimuksen
ohessa rakennetaan laite, jolla tekniikoita havainnoidaan. Tämän työn tavoite on selvittää Ko-
vilta Oy:lle aikaisemmin tutkimatonta sensori ratkaisua. Rakennetun laitteen tarkoitus on ohjata
kehitystä esille tuomalla systeemin toteutuskohtaisia ominaisuuksia, kuten data formaatteja, al-
goritmeja, radio etenemisen vaikutuksia sekä kommunikaatio rajapintoja. Koska työ on ensim-
mäinen Kovilta Oy:n tutka implementaatio, toimii se myös pohjana tulevaisuuden tutka kehityk-
selle.

Toteutettu laite voi saman aikaisesti seurata useita ihmisiä toimisto-olosuhteissa laskien hei-
dän paikka- ja nopeusvektorinsa. Ajoneuvo ympäristössä laite erottaa toisistaan autot, ihmiset,
pyöräilijät ja stop-merkit. Suoritetuissa mittauksissa laiteella voitiin seurata autoa 50 metrin
etäisyyteen asti. Työssä muodostettu sensori fuusio algoritmi kykenee lisäksi kasvattamaan luo-
tettavuuttaan sekä suorituskykyään, kun sille annetaan suorituskykyisempiä sensoreita tai pro-
sessoreita. Tämän kaltaisia laitteita voidaan käyttää apuna autonomisessa navigoinnissa, kuljet-
taja-avustus järjestelmissä tai erillisissä seuranta tarkoituksissa. Erityisesti Kovilta Oy on kiinnos-
tunut laitteen käytettävyydestä maatalous droonien sekä itse ajavien autojen osa-alueilla.

Tulosten esittämisen jälkeen työ käy läpi tulevaisuuden kehitys mahdollisuuksia sensori fuu-
sion, tutka modulaation ja teko älyn hyödyntämisen osa-alueilla. Työn tulokset jaetaan avoimen
lähdekoodin periaatteiden mukaan GitHub:ssa MIT lisenssin alaisina.

Avainsanat: Tutka, kamera, sensori fuusio, projektio, tekoäly

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.

PREFACE

I would like to thank Kovilta Oy for the chance to conduct this hands-on exploratory survey of

this previously uncharted sensor configuration.

Special thanks go to Eero Lehtonen who was influential in figuring out projection mathematics.

This work was performed autonomously by the author with guidance regarding next milestones

from Kovilta Oy. The work had an exploratory nature due to the lack of previous knowledge

about radar and had therefore a very wide scope. Eero Lehtonen and Mika Laiho directed this

work. They gave goals that were to be completed before moving to next goals. We called these

milestones, and I directed my work efforts with them. A total of 4 milestones were achieved.

The university did not interfere with the work and gave only final remarks on the writing. As the

only coder and newly made radar expert, I had a strong influence also on setting the milestones.

The mathematics of projection were the only large part in which I had to ask for help. The idea

of using projection as a basis of fusion was also from Eero. All code, filtering, hardware, mechan-

icals, research, and measurements were done by the author.

Tampere, 3.1.2024

Kalle Paasio

CONTENTS

1. INTRODUCTION ..1

2. THEORY ..2

2.1 FMCW MIMO Radar ...2

2.2 Frequency Modulated Continuous Wave ..4

2.3 Continuous False Alarm Rate ...13

2.4 Angle of arrival ...15

2.5 Sensor fusion ...18

2.6 Kalman filtering ..21

2.7 Simultaneous Localization And Mapping ...26

2.7.1 Function of SLAM in vehicle context ...26
2.7.2 How SLAM systems work ..27
2.7.3 Challenges of SLAM ...29
2.7.4 Examples of SLAM systems ...30

3. PLATFORM ...31

3.1 Architecture of radar SoC ..31

3.2 Code resources ..32

3.2.1 Embedded system code ..32
3.2.2 PC side code ..35

4. IMPLEMENTATION ...37

4.1 Dense data ...37

4.2 Sparse data ..43

4.3 Object detection, tracking, and sensor fusion ...46

4.4 3D representation using complementary sensor aspects ..49

5. RESULTS ...56

5.1 System performance ..56

5.2 Sensor fusion ...57

5.3 Kalman filtering ..62

5.4 Calibration ...65

5.5 Vehicular tracking ..67

5.6 Inherent features of radar sensing ..70

6. WHAT COULD BE IMPROVED ...74

6.1 Optimization of chirp parameters..74

6.2 Alternative fusion approach ..74

6.3 Digital Code Modulation ..76

6.4 Radar based classification ..78

6.5 Attention ..79

6.6 Adaptive waveform ...80

7. CONCLUSIONS ..82

8. REFERENCES ...84

LIST OF SYMBOLS AND ABBREVIATIONS

ADAS Advanced Driver-Assistance System
ADC Analog to digital converter
AI Artificial intelligence
AoA Angle of arrival
AOP Antennas on package
API Application programming interface
ASCII American Standard Code for Information Interchange
BEV Bird's eye view
CAN Controller Area Network
CCS Code composer studio
CEO Chief executive officer
CFAR Constant false alarm rate
CLI Command line interface
COCO Common objects in context
COM Communication
CPU Central processing unit
DCM Digital code modulation
DPC Data path chain
DPM Data path manager
DSP Digital signal processor
DSS DSP subsystem
EDMA Enhanced direct memory access
EKF Extended Kalman filter
EVM Evaluation module
FFT Fast Fourier transform
FIFO First in first out
FMCW Frequency modulated continuous wave
FoV Field of view
fps Frames per second
FW Front view
GPS Global positioning system
GPU Graphics processing unit
HCR High Contrast Resolution
HWA Hardware accelerator
ID Identification
IDE Integrated development environment
IEEE Institute of Electrical and Electronics Engineers
IF Intermediate frequency
IPC Interprocess communication
I-Q In-phase - quadrature modulation
IR Infra-red
ISF Interference Susceptibility Factor
LIDAR Light Detection and Ranging
LoC Lines of code
LVDS Low voltage differential signaling
MIMO Multiple input multiple output
ML Machine learning
MSS Master subsystem
ORB Oriented fast and rotated brief

PA Power amplifier
PC Personal computer
PCB Printed circuit board
PLA Polylactic acid
PMCW Phase modulated continuous wave
RF Radiofrequency
RGB Red-green-blue pixeled camera
RGBD Red-greed-blue-depth camera
RX Receiver
SDK Software development kit
SIFT Scale-invariant feature transform
SLAM simultaneous localization and mapping
SOC System on a chip
STFT Short-time Fourier transform
SURF Speeded up robust features
TI Texas instruments
TLV Type Length Value
TX Transmitter
UART Universal asynchronous receiver-transmitter
UKF Unscented Kalman Filter
USB Universal serial bus
YOLO You only look once

1

1. INTRODUCTION

Radar sensing is becoming more prominent in the automotive industry by the year. The number

of radar sensors installed on vehicles is expected to rise to cover more than just adaptive cruise

control, short-range collision avoidance, and automatic emergency braking applications em-

ployed in many systems today. The charm of radar has to do with its robustness to adverse

weather conditions. Where camera and lidar sensors can be covered by heavy rain, snow, or fog,

radar will see through these light barriers and continue to produce reliable data. Radar is there-

fore often used to provide sensor redundancy. Radar measurements inherently associate both

range and velocity components which separates it from lidar in which only the range is meas-

ured. This allows more measurement inputs to be fed to the following state approximation fil-

ters and thus makes the system more observable.

In this work, we cover first the theoretical operation of the subsystems associated with the im-

plementation. We then take a look at the hardware, software, and physical resources used in

the making of the system. The decision process leading to the design choices is explained in

detail. With the platform locked in the work moves to the implementation phase which was split

into 4 milestones that made incremental improvements to the overall system performance and

understanding of both sensor fusion algorithms and radar as a sensor. The results section covers

the performance, accuracy, and successfulness of the different parts implemented in this sys-

tem. At the end of this section, the author addresses the often-silent form of knowledge ob-

tained by working with the chosen radar sensor. After the results obtained inside the scope of

this master’s thesis, the work proposes avenues of further exploration that address the newest

approaches and algorithms employed in state-of-the-art radar systems.

2

2. THEORY

In this section, we have a look at the constituent parts needed to make sense of the system

implemented later on. The subchapters cover the main physics, algorithms, and ways to think

about the underlying problems found in radar-to-camera fusion. The intent is to provide enough

information for the reader to comprehend the basics of the sensors used and the intended end

application.

2.1 FMCW MIMO Radar

Radar is a sensor that can measure the distance to an object as well as its velocity perpendicular

to the sensor. It achieves this by calculating the time-of-flight that it takes a signal to propagate

from the transmit antenna to the object and back to the receive antenna. In automotive radar

applications, the transmitter and receiver are often in close proximity to one another. The speed

of the wave traveling in the medium of air with a dielectric constant of 1.0006 is approximated

well with the speed of light in a vacuum. The roundtrip of the propagation is equal to 2 times

the length of the trip and thus the time-of-flight can be calculated as

 𝜏 =
2𝑑

𝑐
, (1)

where d is the distance to the target and c is the speed of light in vacuum [1].

The signal used in transmission is often a sine wave pulse of known frequency. When the pulse

bounces back from a stationary subject the pulse shape returning from the subject is the same

and allows only the calculation of distance. When the subject is moving in a direction perpen-

dicular to the transmitter however the pulse shape will have a phase shift due to the Doppler

effect. The perceived frequency at the receiver will be

 𝑓 = (
𝑐 + 𝑣𝑡

𝑐 + 𝑣𝑠
) 𝑓0, (2)

where 𝑣𝑡 is the velocity of the receiver relative to the medium, 𝑣𝑠 is the velocity of the source,

and 𝑓0 is the transmit frequency. The movement of the subject is therefore encoded in the mod-

ulation of frequency and can be determined. For speeds that are small compared to the speed

of light, we can approximate the speed of the transmitter relative to the receiver as

 ∆𝑓 = 𝑓 − 𝑓0 ≈ (
∆𝑣

𝑐
) 𝑓0, (3)

3

where ∆𝑣 = 𝑣𝑡 − 𝑣𝑠. [2] Solving this equation, we get the speed of the radar relative to the

subject as

 ∆𝑣 ≈ ∆𝑓 ∙
𝑐

𝑓0
, (4)

where the only unknown quantity is the frequency shift, ∆𝑓 that is measured at the receiver.

Thus, the radar sensor in its most basic form encompasses two separate measurements: the

range and the velocity. This output format is also commonly referred to as the range-Doppler

dimension. It must be noted that the radar sensor can only measure the component of motion

radial to the sensor. The tangential speed component seen as sideways motion is ambiguous

which makes the total ground speed of the detected object nondeterminable. The radar meas-

urement gives the minimum ground speed, but no upper limit can be obtained as the second

component of the speed vector cannot be measured. [3]

The frequencies at which a radar operates are divided into separate bands meant for different

applications. The longer wavelength radar reaches further distances without attenuation as in-

dicated in the free space radio frequency (RF) signal path loss function

 𝑃𝑎𝑡ℎ𝐿𝑜𝑠𝑠(𝑟) = 20𝑙𝑜𝑔 (
4𝜋𝑟

𝜆
), (5)

where r is the distance traveled by the wave, 𝜆 is the wavelength of the signal, and path loss is

measured in decibels [4]. Therefore, longer wavelengths are used for longer-range radar. The

shorter wavelengths are used for short-range radars and their benefit is that they can utilize

more bandwidth as more band is available in the higher frequencies. The common operational

radar frequency bands are described in table 1.

Table 1 Radar frequency bands [5].

Name Frequency (GHz) Wavelength (cm)

Millimeter 40–100 0.75–0.3

Ka 26.5–40 1.1–0.75

K 18–26.5 1.7–1.1

Ku 12.5–18 2.4–1.7

X 8–12.5 3.75–2.4

C 4–8 7.5–3.75

S 2–4 15–7.5

L 1–2 30–15

UHF 0.3–1 100–30

The wavelength dictates the length of the antennas and shorter wavelengths are deemed more

useful in commercial use cases due to less required space and lesser material usage. The choice

4

of operation band also affects the Doppler frequency shift as formulated above. This is due to

the choice of 𝑓0 in formula (3). Large antennas for long distances are utilized for example in

over-the-horizon radars whereas the higher frequency bands are used in targeting radars for

aircraft. [5]

The formulas defined in the next chapter regarding FMCW modulation are equations for Multi-

ple Input Multiple Output (MiMo) radar. The advantage of MiMo is that by keeping transmitted

signals separate from each other we can later on in the receiver discern the different transmit-

ters used to send them. For example, when 4 receive antennas each can determine 3 transmit

antennas from their receive signal we can make a virtual antenna array of size 12. This allows

the resolution to rise above the number of real antennas in a multiplicative fashion. The principle

of MiMo is often mixed with the concept of beamforming. In beamforming, the goal is to use

many antennas to transmit not many, but a single strengthened and directed beam [6] [7].

Beamforming can be applied also on the receiver side and can be used to change the radiation

pattern of the antenna group. Beamforming techniques can be used at the same time as MiMo

techniques [7]. This work focuses on MiMo radar and thus wants the antenna group to transmit

separate MiMo signals instead of a single directed beam. While this work doesn’t implement

beamforming, it can be added to the system later on.

2.2 Frequency Modulated Continuous Wave

In automotive applications, the radar functionality is often implemented with a frequency-mod-

ulated continuous-wave modulation (FMCW). The longest distances viewable from the perspec-

tive of a sensor mounted in the bumper of a vehicle are in the range of 150 meters. For this

shorter-range radar, the millimeter band is often utilized together with the FMCW modulation

in the range of 76 to 81 GHz to achieve a maximum resolution as small as a fraction of a milli-

meter [1].§

The FMCW modulation differs from a standard pulsed radar in that it transmits a signal contin-

uously as opposed to in pulses. Radar systems implementing FMCW also frequently employ

more than 1 antenna for transmit and receive creating a multiple input multiple output (MiMo)

transmit system. The addition of MiMo allows FMCW systems to detect the angle of arrival (AoA)

of a reflected pulse. With additional processing and antenna placements, the AoA can also be

split into separate azimuth and elevation angles to provide what is regarded in marketing as 4D-

radar, encompassing in its output format the range, Doppler, azimuth, and elevation [8].

5

The signal used in FMCW changes its frequency linearly with time. The ramping of the frequency

is displayed in figure 1 as a function of time. The resulting time domain signal is shown in figure

2. The signal format is referred to as a chirp because of the resemblance of the frequency re-

sponse to the sound of birds chirping. The characteristics of the chirp are defined by the start

frequency 𝑓𝑐, bandwidth B, slope S, and duration 𝑇𝑐 illustrated in figure 1.

Figure 1 Frequency of the chirp signal as a function of time [1].

Figure 2 Amplitude of the chirp signal as a function of time [1].

To understand the function of the chirp in the system context we need to look at the constituent

parts of the system and their functions. A simplified block diagram of the radar frequency (RF)

subsystem is shown in figure 3.

6

Figure 3 Simplified block diagram of the RF processing chain in an FMCW radar [1].

The radar operates by creating a chirp signal in the synthesizer. This chirp signal is transmitted

to space via the transmit (TX) antenna. An object in the space to which the signal was sent re-

flects the signal back to the system. The receive (RX) antenna picks up this signal. The received

signal is mixed together with the transmitted signal in order to obtain a lower intermediate fre-

quency (IF) signal.

The mixer is an analog component that implements the time domain multiplication operation.

The IF frequency created by the mixer can be represented by a sine wave with a frequency equal

to the difference between the two inputs of the mixer. Mathematically this is due to trigono-

metric identity for sine wave multiplication

 sin(𝑎) ∙ sin(𝑏) =
sin(𝑎 + 𝑏) + sin (𝑎 − 𝑏)

2
, (6)

where we neglect the summation frequency and take only the difference frequency [9]. The

neglecting of the summation frequency is implemented with low pass filtering. The filtering is

trivial because the difference frequencies are orders of magnitude smaller in frequency than the

summation frequencies. For two sine wave inputs of the form

 𝑥1 = sin (𝜔1𝑡 + 𝜙1) (7)

 𝑥2 = sin (𝜔2𝑡 + 𝜙2), (8)

where 𝜔1 and 𝜔2 represent the angular frequencies of the signals and 𝜙1 and 𝜙2 the phase of

the sine waves, we get as the output of the mixer-lowpass sub-block a signal represented as

 𝑥𝑜𝑢𝑡 = sin[(𝜔1 − 𝜔2)t + (𝜙1 − 𝜙2)]. (9)

When we couple equation (9) with knowledge of the input signals of the mixer we can visually

represent the output of the mixer as shown in figure 4. The inputs of the mixer are again the TX

chirp and the received delayed chirp that has a delay time equal to the time-of-flight between

the object and the radar. In the illustration, we see that for a stationary object, the IF signal will

7

be a constant frequency sine wave. The frequency of the IF signal can be calculated from the

slope, distance to the object, and speed of light as

 𝑓0 =
𝑆2𝑑

𝑐
. (10)

The frequency difference amounting to 𝑓0 is illustrated as 𝑆𝜏 in figure 4 to avoid confusion be-

tween the signals.

Figure 4 Mixer output (below) calculated as the difference of the mixer inputs (above) as-
suming a singular static object placed in front of the radar [1].

It must be noted that the IF signal is not valid after the duration, 𝑇𝑐 of the chirp. This is because

the mixer input from the synthesizer will go out of the desired chirp range after 𝑇𝑐 and issue a

reset. The IF signal is also valid only after 𝜏 seconds from the beginning of the chirp, which ac-

counts for the time the signal took in time-of-flight. Figure 4 focused on the frequency of the

signal. In addition to this, the resulting sine wave also has phase difference resulting from mixing.

The phase can be derived from the start frequency and the time-of-flight as

 𝜙0 = 2𝜋𝑓𝑐𝜏, (11)

and can be made to a useable approximation of the distance when the slope and distance are

sufficiently small as

 𝜙0 ≈
4𝜋𝑑

𝜆
. (12)

For a radar with only one object in front of it, the total IF signal can then be represented as

 𝑥𝐼𝐹(𝑡) = 𝐴𝑠𝑖𝑛(2𝜋𝑓0𝑡 + 𝜙0), (13)

where A is the amplitude of the signal. The calculation of distance can now be made from either

the frequency in equation (10) or the phase in equation (12). The frequency option is often

8

used as it can be performed with a simple FFT. The distance can thus be calculated from the IF

signal with all other variables being constant as

 𝑑 =
𝑐𝑓0

2𝑆
. (14)

This concludes the function of the RF chain before moving to the digital domain via an analog to

digital conversion (ADC) for a simple radar path where only a single object exists in front of the

radar. This configuration however is nearly a corner case of real-world conditions as multiple

objects often reside in the radar's field of view (FoV). In figure 5 three different objects are

placed in front of the radar at different depths. The objects result in 3 separate IF tones, the

frequency of which correspond to the distance of the objects in question. The IF signal contain-

ing these 3 tones is then fed to the ADC.

Figure 5 Three objects reflecting the TX chirp simultaneously result in 3 separate IF tones in
the receiver [1].

The signal now enters the digital domain where a fast Fourier transform (FFT) is calculated. This

FFT aims to gain access to the frequency information that the RF frontend decoded the distance

data into. The resolution of an FFT is dependent on how long the FFT window is. The resolution

of the FFT will in turn dictate the resolution for the measurement of range. The range resolution

is defined as the smallest distance that two objects can be apart so that they can still be detected

as two different objects. While the theoretical resolution limit is determined by radar parame-

ters, the digitization must make enough samples of the signals for the resulting FFT bin sizes to

be smaller or equal to the resolution if no information is to be lost. Fourier theory states that in

order to increase the resolution (make more, but smaller bins), the duration of the chirp, 𝑇𝑐 must

be increased. According to Fourier, the bin width is the reciprocal of the sample time and there-

fore the frequency resolution of FFT can be defined as

9

 ∆𝑓 >
1

𝑇𝑐
, (15)

where 𝑇𝑐 is the observation interval. In order to relate the Fourier parameters to the chirp pa-

rameters we note that the observation interval and chirp duration both constitute the same 𝑇𝑐.

Given the slope we can then calculate the bandwidth of the chirp as

 𝐵 = 𝑆𝑇𝑐 . (16)

When we feed equations (10) and (16) into equation (15) we obtain the two different forms

of the range resolution formula

 𝑑𝑟𝑒𝑠 >
𝑐

2𝑆𝑇𝑐
=

𝑐

2𝐵
. (17)

We observe from these formulas that the only way to get better range resolution is to increase

the bandwidth used by the radar. This formula gives rise to the different radar band use cases

that were described in section 2.1. For a millimeter band radar working in a bandwidth of 4 GHz

the maximum range resolution will be 3.75cm. [1]

Next, we derive the speed of the detected object from the IF data. In order to do this a second

chirp needs to be sent out. The FFT is once again computed. The distance of the object may have

been enough to switch from one FFT bin to another indicating a fast rate of speed but more

commonly the peaks of the FFT will remain in the same spot. Here the reader is reminded that

FFT produces as its output not a real number but a complex number instead with both amplitude

and phase information. It turns out that even a smaller rate of speed of an object can be deter-

mined by looking at the phase difference between two peaks of consecutive FFT calculations.

The two-chirp velocity measurement is illustrated in figure 6.

Figure 6 Consecutive chirps can be processed to the FFT domain, and the phase of the peaks
compared to each other [1].

The phase difference between these two peaks is

10

 ∆𝜙 =
4𝜋𝑣𝑇𝑐

𝜆
, (18)

from which we can solve the velocity of the object, 𝑣 using the chirp duration and wavelength

of the 𝑓0 frequency as

 𝑣 =
𝜆∆𝜙

4𝜋𝑇𝑐
. (19)

As the velocity measurement is made using phase information which is periodical with a period

of 2𝜋, we must constrain the phase difference to |∆𝜙| < 𝜋 in order to make the velocity meas-

urement unambiguous. When this condition is applied to equation (19), we obtain the maxi-

mum relative speed that we can distinguish by sending 2 frames 𝑇𝑐 apart from each other as

 𝑣𝑚𝑎𝑥 >
𝜆

4𝑇𝑐
. (20)

Again, we have now calculated the results for a singular item in the view of the radar. In case

there are multiple objects in front of the radar, moving at different speeds but at the same dis-

tance as shown in figure 7a, we need to resort to using more than two chirps. A total number of

N chirps are collected to form a chirp frame. The range FFT is calculated for each chirp resulting

in peaks in the exact same location. The phases of the chirps are rotating as per the velocity of

the objects. We can now perform a second FFT on the results of the first FFT:s which we refer

to as the Doppler FFT to indicate that this is done in order to resolve the speed. From complex

input FFT theory, we remark that two input peaks with different phase rotation speeds will result

in two peaks in the output. The input and output of the Doppler FFT are illustrated in figure 7b.

Figure 7a) The input scenario. b) The formation of N range FFT results into the input of the
Doppler FFT calculation and the resulting amplitude output in Doppler space [1].

11

The velocities of the two moving bodies can now be determined from the location of the peaks

of the Doppler FFT amplitude spectrum as

 𝑣1 =
𝜆𝜔1

4𝜋𝑇𝑐
 (21)

𝑣2 =

𝜆𝜔2

4𝜋𝑇𝑐
,

(22)

where 𝜔1 and 𝜔2 correspond to the angular frequencies of the peaks. Again, the nature of the

FFT calculation creates discrete bins, the size of which depends on the length of the input. The

input size now is the number of chirps in a chirp frame, and this makes the bin size of the Doppler

FFT ∆𝜔 =
2𝜋

𝑁
. Formula (18) which originally applied only for 2 chirps also applies for the case of

N frames when we extend the time period to the whole of the frame period 𝑇𝑓 = 𝑁𝑇𝑐. Doing

this allows us to find the Doppler FFT bin size in the unit of speed. This is also referred to as the

velocity resolution and is represented as

 𝑣𝑟𝑒𝑠 =
𝜆

2𝑇𝑓
. (23)

This is the smallest change in speed that the Doppler FFT can discern. The speed resolution can

be made better by increasing the frame time by sending more frames.

With the speed and velocity measurements now complete we move to the final measurement

a radar sensor provides. The angle of arrival (AoA) is determined as the horizontal rotation angle

between the centerline of the radar and the point of reflection. The angle of arrival in the hori-

zontal plane is illustrated in figure 8.

Figure 8 Horizontal angle of arrival. Sign of angle 𝜽 separates left and right [1].

In order to make the AoA calculation at least two antennas are needed. The angle of arrival can

be obtained from the phase shift observed between two or more receiving antennas separated

from each other by a distance of l. This is due to the length of the path a signal has to take. The

length will increase by ∆𝑑 by going to antenna 2 instead of antenna 1 as illustrated in figure 9.

12

Figure 9 Geometry of the signal propagation with multiple receive antennas [1].

The phase shift generated by an extra distance of ∆𝑑 is

 ∆𝜙 =
2𝜋∆𝑑

𝜆
. (24)

We can assume the incoming wavefront is a plane wave and thus the straight arrow propagation

also depicted in figure 9 holds. We can then use geometry to express the excess propagation

length as ∆𝑑 = 𝑙 ∙ sin (𝜃), where 𝜃 is the angle of arrival. Equation (24) can then be substituted

with the alternate definition of ∆𝑑 to obtain the angle of arrival by using only measured and

previously known quantities as

 𝜃 = sin-1 (
𝜆∆𝜙

2𝜋𝑙
), (25)

which unlike the other radar outputs is inherently nonlinear. In some scenarios, we may want

to approximate the nonlinearity using the small angle approximation sin(𝑥)≈𝑥. This approxima-

tion will have more error the bigger we make 𝑥. For 𝑥 < 1 the approximation error remains

under 20% [10]. Therefore, the equation used in practical devices becomes

 𝜃 =
𝜆∆𝜙

2𝜋𝑙
, (26)

where we keep in mind that the detections at the edge of the field of view are distorted. Just

like in previous measurements the phase shift must be limited to |∆𝜙| < 𝜋 in order for the

measurement to remain unambiguous. This restriction coupled with equation (26) gives us the

expression for the maximum obtainable angle of arrival

 𝜃𝑚𝑎𝑥 = sin-1 (
𝜆

2𝑙
), (27)

which was also illustrated in figure 8. The largest obtainable field of view of ±90° is achieved

with an antenna spacing of 𝑙 =
𝜆
2
. [1]

13

The angular resolution of a radar system depends on the number of virtual receive antennas, N.

A virtual antenna can be made by combining multiple transmit antennas. For a singular antenna,

the formula of angular resolution becomes

 𝜃𝑟𝑒𝑠 >
𝜆

𝑁𝑑 ∙ cos 𝜃
, (28)

where the presence of 𝜃 indicates that the angular resolution is worse at the edges of the beam

and best at 𝜃 = 0° also referred to as boresight direction. For antennas spaced at 𝑙 =
𝜆
2
 and the

beam at boresight, the angular resolution becomes dependent only on the number of virtual

antennas as

 𝜃𝑟𝑒𝑠 >
2

𝑁
, (29)

from which we can make out that in order to improve angular resolution the system needs more

antennas. [11]

In this radar section, we have used a fundamentals-based approach to radar equations. For a

more mathematical approach see [12]. With these equations, we can form the dense data rep-

resentation. Next, we look at what can be done for this raw data in order to find and locate the

real-world objects within.

2.3 Continuous False Alarm Rate

Continuous false alarm rate (CFAR) is an algorithm that is used to find peaks in a spectrum using

a variable threshold. An illustration of the algorithm is presented in figure 10. The CFAR algo-

rithm can be compared to the radar equivalent of feature detection in a computer vision con-

text. In the radar application, the input data is the range FFT slice of the radar cube which is an

array of complex numbers. The aim of CFAR is to separate objects reflecting radar waves from

the noise floor. Together with angle of arrival (AoA) calculation, this algorithm turns the complex

number radar cube into the form of an (x,y,z,v) point cloud, where the coordinates are measured

from the radar sensor origin and speed is the radial component of the object in front of the

radar.

14

Figure 10 CFAR algorithm, in which the signal input, the algorithm-determined threshold,
and the true false output mask are shown [13].

The CFAR algorithm determines its output by thresholding. The thresholding operation gives a

true/false answer and the range bin index in which the positive occurred then gives the radial

depth. An adaptive threshold is calculated in the range domain that ensures that the rate of false

positive detections remains under a specified value. CFAR utilizes a window of the chosen size

under which it operates. The threshold is calculated on a per-bin basis in a window around each

range bin separately. Two common variations for threshold calculation exist. The cell average

approach (CA-CFAR) takes the average of the window and uses that as a threshold, whereas the

order statistic (OS-CFAR) approach sorts the values inside the window into ascending order after

which one is chosen. The n:th number that is to be chosen from the sorted list is referred to as

the order of the OS-CFAR algorithm. The output of both calculation methods is then multiplied

by a constant 𝑇𝑂𝑆 which sets the false alarm rate. [13] The false alarm rate is a user-tweakable

parameter that often fit on a use-case basis.

The CA-CFAR algorithm is highly dependent on the choice of window size, n because of the av-

eraging. OS-CFAR does not have such a high dependency on window size. CA-CFAR is also known

for masking nearby peaks because peaks in the same window will raise the threshold value and

mask each other. OS-CFAR is, therefore, better suited for multiple object detection, but it also

comes with higher computational costs. [13] There also exist other alternatives to fill the role of

CFAR in a peak detection task such as DRD and RPDNet. These algorithms, although more com-

plex, can offer more detections with also a higher accuracy. [14]

The purpose of the CFAR algorithm, or any other peak detection algorithm, is to decipher peaks

emanating from real-world reflections from the radar clutter around them. The thresholding

operation however discards large parts of the inherent semantical information from such reflec-

tions [15] [14]. With the help of machine learning, more information such as object classification

15

and confidence maps for the classified objects can also be attained from the raw RF data, also

sometimes referred to as the radar tensor [14]. This can be done by not processing all data with

CFAR and by leaving the raw data for a later stage. A 3D convolutional neural network based on

an hourglass architecture with skip connections called RODNet is presented in [16]. It can

achieve 86% average precision and 88% average recall for the CRUW dataset, in which, it sepa-

rates pedestrians from cyclists and cars. In using a machine learning-based approach, special

sensor-specific knowledge such as type of reflection and Doppler semantics can be extracted.

This allows radar sensing to extract more classification information about the reflection than

would be possible from a point cloud provided by Lidar [16]. This is crucial as the point cloud

density made by CFAR processing is very sparse in comparison to Lidar sensing [14] [17]. Radar

detections with CFAR do not scan the whole environment but instead, result only from places

that reflect back radar waves. The average points per second with the CFAR algorithm is often

under 1000, whereas other more advanced radar methods such as [18] can achieve 50 000+

points per second. As points do not emanate from all directions and the speed of their occur-

rence is slower than lidar or other feature detectors I refer to the CFAR data as being sparse.

The sparse nature of the CFAR output is good for communication bandwidth, computational

load, and memory footprint, but it discards the semantic information of the points.

NVIDIA CEO Jensen Huang claims in Computex 2023 that all information has an inherent struc-

ture that can be learned like a language [19]. The language of radar can be learned by imple-

menting machine learning algorithms. We can then translate the language into other modalities

such as classification and detection tasks. The language of radar is more complex than Lidar

because of the inherent velocity associated with measurement and may therefore give a more

robust description of the object. With AI having increased computer graphics performance a

1000-fold in just 5 years due to better AI hardware accelerators the idea of running AI for the

massive amounts of raw data directly on the sensor is becoming a feasible option. [19]

2.4 Angle of arrival

Once potential objects are detected with the CFAR algorithm in the range-space the next step

of radar processing is to calculate the point cloud. This is done via angle of arrival (AoA) calcula-

tions. In essence, this operation depicts moving the data from a spherical 3D space into an Eu-

clidean 3D space. This is a general operation but here I will focus on the implementation specific

to the hardware-accelerated AoA in the AWR1843AOP device used in this work. The implemen-

tation-specific AoA approach is depicted in figure 11.

16

Figure 11 Angle of arrival calculation in the AWR1843AOP device [20].

The AoA calculation takes the range FFT and CFAR output as its inputs and calculates Doppler

FFT only for the slices of range FFT that contain a CFAR detection. Receive channel phase and

gain compensation are then performed. The compensation is done via pre-measured calibration

values given to the device via a configuration file. The compensation aims to calibrate the phases

and gains so that AoA output values have no rotation or translation compared to the 3D space

they are fit into. Doppler compensation is also run which aims to adjust the gain of 2D-FFT sym-

bols to increase output levels of weak targets.

Angle-FFT is then calculated in both azimuth and elevation direction. On this 2D plane, a new

run of CFAR peak detection is performed. As an output, we have a 2D True-False map. On this

map, we run peak grouping. Peak grouping uses a 5x5 kernel to go through the space and select

only the center of the object. The result of peak grouping gives us object-specific dots on the

azimuth-elevation plane. Each dot corresponds to the center of the incoming reflection. Each

peak-grouped point is regarded as a detection.

For each detection, we then run x/y/z estimation which means calculating the cartesian coordi-

nate of this detection. In the case of AWR1843AOP, we do this by using geometry. The coordi-

nate geometry in regard to the virtual and physical antenna configuration is defined in figure 12.

17

Figure 12 Coordinate geometry of AWR1843AOP in relation to the used physical and virtual
antenna configuration [20]. The virtual array pattern is determined by the convolution of the
physical transmit and receive antenna patterns [21].

From this geometry, we can decipher the formula for each coordinate as

 𝑥 = 𝑅𝑐𝑜𝑠(ϕ)sin(θ) (30)

 𝑧 = 𝑅sin(ϕ) (31)

 𝑦 = √𝑅2 − 𝑥2 − 𝑦2, (32)

where x,y, and z are the Euclidean coordinates, R is the range, θ the azimuth, and ϕ the eleva-

tion. Note that in this work we use the x-z-plane as the sensor plane and y-coordinate as the

distance away from the plane. Inside the device, this calculation is done using indexes of the FFT

bins. We have now arrived at the point cloud representation of radar data which is the final data

format used in most radar applications.

Other methods for determining the angle of arrival of a radar beam also exist such as Bartlett

beamforming, maximum-likelihood, MVDR, MUSIC, ESPRIT, min-norm, compressive sensing,

and machine learning-based models of estimation [12], [22]. Radar data can also be prepro-

cessed in order to remove unwanted components. A simple but very important preprocessing

step called static clutter removal is used extensively in the following work. The static clutter

removal algorithm calculates the mean value of samples for each range bin per antenna and

subtracts it from the samples.

18

2.5 Sensor fusion

Sensor fusion means taking information from many sensor modalities and combining them to-

gether into a single representation. The motivation for this is that we can gain more detailed

information by using many sensors. Using multiple sensors also brings with it redundancy and

the ability to use more modality-dependent data representations to gather information about

the environment. For example, cameras are great at sensing motion in their 2D image plane but

lack depth information. Radar deals inherently in-depth and velocities. Mixing these two modal-

ities can give richer knowledge of the world at hand. The sensors can also be used to cross-

validate each other. The camera can be occluded by snow, fog, or rain in adverse weather con-

ditions, which leads to camera data becoming degraded. Radar however is resilient to adverse

weather conditions. In addition to these motivations, the radar-to-camera sensor fusion is of

particular interest because of the cheap price of the sensor combination. Compared to lidar

sensing this sensor combination can be an order of magnitude cheaper and still lead to compa-

rable and sometimes even better end results [23] [17].

A key function in autonomous driving is planning. The more time a car has to observe and plan

its actions the safer the safer its passage. The problem with cameras is that they cannot see

objects that are far away. [15] Present-day radar sensors can however sense cars from a distance

further than 350m and pedestrians from over 100m even if they are occluded from the direct

line of sight [18]. Radar sensing thus gives the system more time to plan around dangerous sit-

uations. Now that the question of why sensor fusion is useful is answered we move to look at

ways to implement radar-to-camera fusion. To illustrate the coming discussion, figure 13 is pro-

vided in advance of the discussion to aid in visualization.

Figure 13 Core aspects of radar-camera fusion [15].

19

The first design question regards data. In what form do we gather the data from sensor modali-

ties? On the camera side, standard RGB cameras are the cheap option. Their main design pa-

rameters include shutter speed, frames per second (fps), dynamic range, field of view, and noise.

Infra-red (IR) cameras can also be used to gather camera data even in darkness. This may require

an illumination source based on the IR wavelength used. In addition to these standard cameras,

RGBD cameras also exist which give additional information about the depth (-D) of objects such

as in [24]. The depth information is often gathered by employing multiple camera sensors in a

single package. An event camera can also be utilized to simultaneously increase the fps to more

than 1000 and to gain insight into the spatiotemporal changes of the scene. Event cameras such

as the ones developed by [25] can give huge advantages for camera sensing because of their fast

reaction time and frame rate. In this work, we utilize a standard RBG camera.

On the radar side, the AWR18430AOP data packets come in the form of point clouds defined in

the previous chapters. Additionally, we can also output the whole radar cube with the dimen-

sions being range, radial velocity, and azimuth (elevation is added in the case of 4D radar, but

the form of data is still referred to as a radar cube). This radar cube is often sliced into rage-

azimuth and range-velocity slices. This is because a 2D slice is a common form that most neural

networks intended for image data already accept. It is also common to take the velocity meas-

urement from many consecutive frames by doing short-time Fourier transforms (STFT) on range

slices of the radar cube [15]. This reveals what are called micro-Doppler signatures, which are

temporal movement patterns. These dense data formats are mostly intended for machine learn-

ing approaches.

Next, we must decide which view system we are going to be using. There are two main view-

points a fusion algorithm can use. The two approaches, Front view (FW) and Bird's eye view

(BEV), were illustrated in figure 13. The front view is best approached as a 2D plane that is ori-

ented perpendicular to the direction of movement. The BEV approach is also a 2D plane but

looking at the vehicle from the top down. FW is often easy to integrate with present-day com-

puter vision algorithms whereas BEV is good for mapping around the whole vehicle in SLAM

applications and when using many sensors facing in different directions around the vehicle. [15]

Next on the path to fusion, you must choose when to fuse the data. There are many levels in a

data hierarchy for fusion starting from low-level RF symbols for radar all the way to object-level

detections. Figure 14 illustrates the different points at which the camera and radar modalities

can be fused together. The level definitions arise from how much processing has been done to

the data in its own branch before mixing it together with the second branch. As most modern-

20

day fusion approaches employ Machine learning for feature extraction and classification the

stages are often referred to as layers.

Figure 14 Levels of fusion indicated by the processing stage at which the fusion operation
is applied [15].

The richest information is at the data level, but the computational load is also the greatest. It is

common to extract features such as point clouds from the raw RF images at the edge node be-

fore communicating them to a fusion controller. This feature-level data is more compact but has

lost some of its meaning. In object-level fusion, both sensor modalities work on their own until

they have made sense of the features comprising entire objects. The objects are big real-world

objects such as entire cars. Matching objects to one another is often easier due to there being

only a handful of objects in view when compared to features of which there can be thousands

in a picture. Mixed-level fusion combines data which are at different levels. This can mean for

example combining an RGB image with a range-azimuth slice. Next, we look into what it takes

to fuse data.

In order to make sense of the data, we must temporally align the data into a single dimension.

The sensors may operate at different fps, have offsets in the sample time, or have a long latency

from request to data readiness. The alignment can be done by calibration, buffering, latency

prediction, or hardware synchronization. After temporal alignment, the data must be spatially

aligned. This means searching for correspondences between the modalities. Spatial alignment

can be done utilizing a target-based approach in which a known target such as a checkerboard

pattern with a corner reflector for radar is used. Targetless approaches can also be used to cali-

brate the camera to radar point-to-point matching. Machine learning is often employed in a

21

targetless approach to re-calibrate the system on the go without having to bring out the special-

ized targets. From the point correspondences found with these approaches a transformation

matrix can be established with the help of computer vision algorithms such as linear point-to-

point, Perspective-n-Point, or Ransac.

With the calibrations now done, the data is mathematically put together into a single frame. The

next stage in the network is often a machine learning stage so the frame must be in a form

compatible with neural networks. The most basic fusion operation is concatenation. Concatena-

tion entails making the N and M dimensional data into N+M dimensions by putting the data of

radar after the data of the camera. This makes for a large input dimension and is therefore com-

putationally hard. Addition, multiplication, average, and mean operations are also commonly

used to put the data into the same frame. By performing these elementwise operations, the

data from both modalities remains in the final frame but it is weighted differently based on the

operation. In element-wise operations, the dimensions of the data are fixed which means the

dimensions don’t grow. This means however that the modalities must be brought to the same

dimensions by interpolation before the element-wise operations can take place. The last oper-

ation of bringing data into the same frame of reference is transformation. This can mean taking

3D radar points in world coordinates and bringing them into a 2D image plane. It can also mean

transforming image features into 3D world coordinates. As an end result, all the operations lead

to a representation where data from both modalities is now in the same reference frame. [15]

2.6 Kalman filtering

Kalman filter is an algorithm that smooths out noise from sensors. It is a form of Bayesian filter-

ing under the subcategory of g-h filters. It refines data by incorporating information from two

sources: the input measurement and a prediction of the system's new state based on the previ-

ous state of the system. The Kalman filter then chooses its output value to be in between these

two guesses. The Kalman filter chooses which source to trust based on the perceived error or

the two sources. The data source with less error is given more trust. The result of filtering is that

we get an estimate of the system state with less measurement noise. [26]

The Kalman filtering consists of two distinct operations: The prediction of the next state and the

update of state information based on new measurements. These steps also consist of smaller

sub-operations. The sub-operations of Kalman filtering are represented in the pseudocode pre-

sented in figure 15. The predict-update cycle is repeated for each incoming data point in a re-

cursive fashion.

22

Figure 15 Pseudo code for Kalman filter implementation [26].

The system state is represented as 𝒙 = [𝑥1 𝑥2]𝑇, where the state variables can be for example

place, speed, acceleration, temperature, color or any other unit of measurement. In addition to

defining 𝒙 as the state we must represent whether this is the pre-measurement state or the

state that has been mixed with the measurement. The state before incorporation of measure-

ment data is referred to as the a priori state and is represented with line notation �̅� =

[𝑥1 𝑥2]𝑇, whereas the state after measurement incorporation is referred to as the a posteriori

state already presented as 𝒙. The state variables can be split into observed variables that are

measured directly or hidden variables if no measurement is made and the state is purely based

on prediction. Hidden variables are determined by models such as Newtons laws for motion.

Hidden variables are used to better represent system dynamics and to allow the Kalman filter

to make predictions that are of the same order (number of derivatives) as the system under

measurement. [26]

Kalman filtering uses Gaussian distributions as its internal data representation, which allows the

use of only two variables: mean and variance, to describe a whole distribution. This is in stark

contrast to discrete Bayes filters where each discrete value is assigned its own probability. In the

state vector defined above, the variables represent the means of the distributions. The state

variables also have corresponding variances expressed in the state covariance matrix 𝑷.

For the Kalman filter to choose trust between a prediction and measurement, a model of the

system must be formulated. This model is used to make the prediction. The Kalman filter uses a

23

state-based discrete-time model to make estimates of the new state. However, instead of de-

fining a system dynamics matrix, 𝑨 often used in control theory, which works in the transfer

function �̇� = 𝑨𝒙 + 𝑩𝒖, the Kalman filter instead uses a state transition function 𝑭, which de-

fines how a new state forms from the old state after time ∆𝒕 has passed. The evolving of the

system state with time is expressed as

 �̅� = 𝑭𝒙 + 𝑩𝒖, (33)

where 𝑩 is the control function and 𝒖 the control input. Small letters indicate vectors and capital

letters indicate matrices. Now that the a priori state mean has been found, the algorithm calcu-

lates covariance for this state as

 �̅� = 𝑭𝑷𝑭𝑻 + 𝑸, (34)

where 𝑸 is the covariance matrix of the process. With the mean and covariance of the state now

predicted, the prediction step is now done. It is noted that the prediction step has the effect of

making the covariances larger, which means that after a series of predictions without measure-

ments in between we will be less certain of the actual system state. Incorporation of the meas-

urement in the upcoming update step has the effect of making the estimate accurate again and

therefore making the state variance 𝑷 smaller.

The update step begins after a new measurement, 𝒛 has been made with sensors. From this

measurement, we calculate the residual as

 𝒚 = 𝒛 − 𝑯�̅�, (35)

where 𝑯 is the measurement function. The residual tells how much the state estimate differs

from the measurement. Next, the algorithm decides whether we should give more trust to the

estimate or the measurement. This is done by calculating Kalman gain as

 𝑲 = �̅�𝑯𝑻(𝑯�̅�𝑯𝑻 + 𝑹)
−𝟏

, (36)

where 𝑹 is the measurement covariance associated with mean found in 𝒛. The Kalman gain is

always in the range of 0 to 1 with 1 signifying all trust going to the measurement and 0 that the

trust should be placed on the prediction instead. From the equations we observe that the Kal-

man gain is calculated by comparing measurement variance against prediction variance. With

the amount of trust now decided we can produce the filtered a posteriori state as

 𝒙 = �̅� + 𝑲𝒚, (37)

after which we have to update also the a posteriori covariance for the state as

24

 𝑷 = (𝑰 − 𝑲𝑯)�̅�, (38)

where 𝑰 is the identity matrix. This concludes the update step. The results of filtering are found

in the mean state vector 𝒙 and the state covariance matrix 𝑷 tells us the confidence ellipse. With

the math now settled we move to discuss filter implementation.

In order to get the correct behavior from the filter the designer needs to know a model that can

be used for prediction of the next state. This is represented by the 𝑭 matrix. For this process

model the designer needs to design a covariance matrix 𝑸 which represents information loss in

the process due to time passing without measurement. The effect of 𝑸 is evident when the

predict function is used without the update function following it, which happens in cases where

no measurement can be made of the system under occlusion or measurement faults. The 𝑭

matrix is often chosen as a motion model defined by Newton's equations for kinematics. Some-

times this model is simplified by the Euler method for ∆𝑡, after which only the first order of the

terms of ∆𝑡 exist in the model [26]. In the motion model this cuts off effects such as acceleration

𝑥 =
1

2
𝑎 ∙ ∆𝑡2. The 𝑸 matrix is often chosen based on noise models such as the continuous white

noise or piecewise white noise. These noise models take into account the ∆𝑡 between measure-

ments to determine the expected variance of the state. The 𝑸 matrix can be approximated by

including only the lowest ∆𝑡 orders in the matrix, as the higher powers of ∆𝑡 become increasingly

smaller.

Next, the designer must implement the measurement matrix 𝑯 and associated measurement

covariance 𝑹. The 𝑯 matrix transforms data from state space into the measurement space and

is therefore the primary place where sensor fusion is implemented. Oftentimes the way to rep-

resent data transformation between the spaces contains nonlinearities. This happens for exam-

ple if a radar produces its output as a range-azimuth point. For example the equation to trans-

form from x,y state space to a radar azimuth measurement is 𝛼 = 𝑡𝑎𝑛−1 𝑦𝑡𝑎𝑟𝑔𝑒𝑡−𝑦𝑟𝑎𝑑𝑎𝑟

𝑥𝑡𝑎𝑟𝑔𝑒𝑡−𝑥𝑟𝑎𝑑𝑎𝑟
, which is

a nonlinear operation. When we use sensor fusion to associate data from multiple modalities,

we might have sensors with different accuracies. We can represent the knowledge of sensor

accuracy in the measurement covariance matrix 𝑹. In it, the covariance between sensors is often

chosen as 0. The choice of values for 𝑹 must be relative in value to the process noise matrix 𝑸.

Too big values for 𝑹 will cause the filter to trust only the predictions and too low values cause it

to disregard the prediction in favor of noisy measurement. The fitting of the covariances is often

done by hand by making simulated scenarios of known states and behavior with measurement

noise or by fitting to a real-world dataset of measurement data. [26]

25

In the Kalman filter, we decide what we model based on real-world system dynamics. The best

approach is to match the order of the dynamics. Some dynamics cannot be taken into account,

and they are referred to as noise. Tire slip, nonlinear behavior, wind gusts, and cars suddenly

breaking are all considered noise in the Kalman filter context, where every influence on the pro-

cess not defined in the process model is considered noise. The design of the filter includes a step

of defining what we expect the system to do and what we leave out and consider as noise. [26]

Because the internal data representation of Kalman is a Gaussian, the filter works optimally only

for Gaussian-distributed input variables and unimodal distributions. The Kalman filter is a linear

algorithm which means that nonlinearities in processes can cause the algorithm not to converge

on the real system state. The use of Gaussians means that the memory and computation re-

quirements of Kalman filtering are lesser as compared to other discrete Bayes filters. [26]

The bad response of the Kalman filter to nonlinear functions can be dealt with by using a varia-

tion of the Kalman filter referred to as the unscented Kalman filter (UKF). This version of the

Kalman filter uses N number of samples instead of a single computation to take into account the

effects of nonlinearities. Instead of a Gaussian the input to this algorithm is rather a number of

points sampled from the input Gaussian. These points are chosen with specific algorithms such

as Merwe scaled sigma points which aim to represent the whole input space with samples. The

points have individual weights associated with them which are used in assembling the final out-

put from the separate samples. The output of a nonlinear function is rarely a Gaussian. In the

UKF approach, the non-Gaussian output distribution is calculated as a mean and a variance and

then approximated as a Gaussian. In the next cycle the second UKF iteration samples its delta

points from this Gaussian state the loop continues. In the UKF approach the measurement func-

tion, h, and the state transition function, f are turned into functions that can be given nonlinear

implementations. The functions can no longer be interpreted as matrices because matrices only

work with linear algebra. The UKF is considered by [26] to be superior to the Extended Kalman

Filter (EKF) often used in modern systems. This is because the UKF deals with a Monte Carlo-

based sampling approach to solving nonlinear equations whereas the EKF bases itself on linear-

ization of the nonlinear function near its state, which is a laborious and often only a local solution

to the problem.

26

A radar-specific problem associated with Kalman filters is that a Kalman filter is designed to track

the state of a single object. If we want to track multiple objects, we need to initialize multiple

Kalman filters. One for each object. This is because different objects have differing states. In

radar applications multi-path propagation often exists which can make a single object seem like

multiple objects at different depths. If the multi-path reflections are allowed to be fed into the

Kalman filter as measurements, the filter may never converge on the real state of the object

because of the false measurements.

2.7 Simultaneous Localization And Mapping

Simultaneous localization and mapping (SLAM) is a possible end-application for the system we

are going to develop in the ensuing chapters. In this chapter, we first discuss what is the function

of SLAM in the vehicle platform context. We then go on to study its challenges and approaches

to solve them. Afterwards, some examples of SLAM systems are presented.

2.7.1 Function of SLAM in vehicle context

There are two things we want a vehicle to do in its environment. The first consists of the vehicle

avoiding collisions by focusing on other vehicles, pedestrians, and their inherent motions. This

is often referred to as an advanced driver-assistance system (ADAS) and includes systems such

as collision avoidance, adaptive cruise control, lane change assist, and automatic emergency

braking [15]. The second function we want autonomous vehicles to achieve is to be able to nav-

igate the environment around them autonomously by figuring out the environment and how

the vehicle is positioned relative to the mapped environment (SLAM) [27]. These two applica-

tions have distinct features that differentiate them from each other.

In an ADAS context, the system is interested in the dynamic objects in its field of view, mainly

cars and pedestrians in order to avoid collisions with them. The static background holds interest

only in cases of low-hanging bridges and road walls that the vehicle must avoid colliding with. In

contrast to this, systems incorporating SLAM are interested in mapping, which needs key points

called landmarks, which are points of interest in the environment that can be regarded as static.

These static landmarks can be used to guide the vehicle in its quest to localize itself and find out

its orientation. Where a radar signature from a car is desired in the ADAS context to avoid the

dynamic object it is unwanted in the viewpoint of SLAM algorithms. This is because the car blocks

the view of the sensor disabling its ability to locate the static landmarks it relies on to fulfill its

localization task. The two subsystems of the autonomous vehicle algorithms can thus be divided

27

into ADAS, the function of which is to focus on dynamic objects, and SLAM which focuses on

static objects. The meaning of static is used to refer to world coordinates instead of car coordi-

nates, as a car traveling the same speed as our radar would appear to us as a stationary object

instead of one in motion.

Having distinguished the two different functions of an autonomous vehicle we note that these

categories are often strongly linked with each other. For example, we do not want an imaging

radar used for mapping to exclude information about possible debris on the road surface just

because its function is not ADAS-based. The two functions are thus often best implemented in

parallel. When SLAM is implemented, the created maps also allow for path planning and obsta-

cle avoidance to use this information to their advantage. The map allows the vehicle to under-

stand the environment around it and to make informed decisions on how to act. [28]

Radar is impervious for the safety of the vehicle. In ADAS systems and in SLAM the other modal-

ities of sensing e.g., the camera and Lidar may be occluded and even fail totally because of en-

vironmental hardship. Radar with its lower carrier frequency operation does not suffer from this

possible blinding of sensors. It is noted in [29] that for SLAM in bad weather conditions, only the

radar-based SLAM approaches kept track of the vehicle motion. Both the vision and Lidar-based

systems failed to either keep track of the vehicle position during the whole dataset or failed to

initialize completely due to the camera or lidar sensor being occluded with snow, fog, or water.

[29] It is also noteworthy that the proper functioning of the camera and Lidar systems are

strongly correlated. In an environment where a camera fails, a Lidar is also likely to fail [15].

These conditions include fog, snow, and raindrops on the sensors. These adverse conditions

leave radar as the only robust sensor.

2.7.2 How SLAM systems work

SLAM systems take in sensory input and history values of known places, sometimes even prede-

termined maps. With the sensor data, the first task of SLAM is to localize the sensors into the

world coordinate system. This can be thought of as finding the translation and rotation of the

system with regard to an agreed-upon origin in a world coordinate system. Often the world co-

ordinates are chosen to be cartesian as the curvature of the earth seldom comes into question

in systems utilizing SLAM. The second task is the creation of the map itself. [27] The map can

take on many different forms. The most common forms of maps are presented in figure 16.

28

Figure 16 Common map representations in SLAM systems [27].

A point cloud approach is a sparse map consisting of points of interest often referred to as land-

marks. Landmarks in the visual domain are often found with feature detectors such as ORB,

SURF, or SIFT -features. In the radar domain, the landmarks are a lot more sparse and are often

found by peak detection algorithms from the reflection data with the CFAR algorithm. Lidar sys-

tems also inherently produce point clouds, but their point cloud information consists of more

points with better accuracy. In contrast to the sparse nature of points, we can also approach the

map in a grid-like fashion often referred to as pixels or voxels in 3D space. Every voxel in the map

has a value so the information is dense. The representation is akin to the way the rodent brain

is found to carry information about the world around it in grids [30]. This brain-inspired ap-

proach can be efficient if the grid size is appropriate so as not to waste space. We can also tran-

sition from a point cloud to a grid by sampling the number of points that appear inside a voxel

[27].

With the map, the position of the vehicle can be estimated by comparing the present map to

previous maps while keeping track of the path the vehicle itself has traveled (dead reckoning).

In order to receive more localization information, the vehicle must move and discover more of

the environment so that it can compare its history values with it. One way of localizing the vehi-

cle from a known map is called the particle filter approach. In it, random samples are put into

an already complete map. The observation from the sensors is then compared against the map.

If what the sensor perceives is intelligible for the random spot, then that spot, also referred to

as a particle survives. More iterations are performed as the vehicle moves. Every time the pre-

viously possible particles are filtered for possible locations and new randomized guesses are

made around the already estimated place and orientation of the device. When the device has

29

traveled far enough, there exists only one particle cluster. This is the estimated device location.

[31] The particle filter approach of randomly guessing the localization and checking whether this

could be a valid guess is utilized in a popular algorithm called FastSLAM [32]. The filter attribute

of the name refers to the fact that the algorithm is run on the go, without all the data being

present [31].

A problem inherent in both the localization and mapping is error accumulation. Errors in meas-

urements cause the maps not to look exactly like the ones in memory. This can lead to algorithms

wrongly interpreting to be localized somewhere else than the real location. The bigger problem

however is that the localization errors accumulate. Wrong localization causes the map to be

written from a wrongly estimated position which causes the map itself to also be wrong. Thus,

both the localization and mapping fail if error correction can’t be applied. [31]

The most popular form of error correction is called pose graph optimization in which the device

periodically looks into the historical data to see if the vehicle is now somewhere where it has

been before. It looks to see if the vehicle has made a loop and the calculation of this occurrence

is referred to as looking for loop closure. Pose graph optimization is a smoothing operation

which means that at the time of running the algorithm, we have access to all the places the

vehicle has been to. The vehicle translation and rotation state, otherwise known as pose, is in-

terpreted as a graph with recorded localizations as nodes and traveled distances as edges. The

pose graph optimization intends to make the beginning and the end nodes the same. To do this

the edge distances and angles are given flexibility. The result of the calculation is that the accu-

mulated historical errors can be smoothed out and the states that the vehicle was previously in

are now better known. For a moment the vehicle is also in a well-localized state. There exists

however a pitfall, that false loop closures will permanently bend the map into an erroneous

form. The threshold for loop closures must be kept high in order to avoid false closures, as errors

imprinted onto maps often can’t be fixed and will cause trouble in the future. [31]

2.7.3 Challenges of SLAM

In addition to error accumulation, sensor failure and erroneous loop closure leading to map cor-

ruption SLAM also suffers from the same basic challenges discussed in the sensor fusion chapter.

Namely the time and place synchronization of sensors in addition to sensor calibration. [27] As

SLAM is run on a vehicle-wide level it will have many sources of data coming in. How this data is

incorporated and what data is trusted more often has to be decided with knowledge of the ex-

ternal environment state. When camera and lidar fail in adverse weather conditions, trust must

30

be taken off them. However, when conditions are good, it would be foolish to trust radar alone,

as it is a low-resolution form of sensing. Trust based on knowledge of the system state is of a

higher order than what can be achieved with Kalman filter-based trust discussed in previous

chapters and therefore a trust system must be implemented.

Computational cost is also a factor in SLAM. A central controller that receives raw data from all

sensors will also have hard real-time constraints put on it, as the system is in control of the lives

of its passengers. Together with the fast sensor communication channels it has to upkeep, a

central controller will have to be extremely powerful. A distributed approach can help to relieve

the computation and communication requirements. This means moving to higher levels of fu-

sion like the feature- or object-level approaches discussed in previous chapters.

2.7.4 Examples of SLAM systems

SLAM algorithms are often divided into front- and back-end methods. Frontend deals with sen-

sor data interpretation and making motion- and obstacle estimations for the perceived objects.

This is also referred to as sensor-dependent processing whereas the backend deals inde-

pendently from sensors. Backend algorithms often focus on map upkeep. The front- and

backend processes are separable into their own threads of execution which again eases compu-

tational load by division into smaller parts using parallelism. [27]

As new SLAM algorithms are constantly made, I choose to direct attention to approaches with

the most use in 2023. These approaches are listed in table 2 and are adapted from [33] by sum-

marization. Online SLAM refers to a system that focuses calculation to its current state. Offline

or full SLAM systems calculate the entire path the vehicle has traveled inside the map. This is

often more computationally expensive. All of the approaches make compromises in some cate-

gory. It is up to the system designer to decide which part of the system can be compromised.

Table 2 Most common SLAM approaches in 2023. Adapted from [33].

Name Pro Con

EKF SLAM Mature Memory

IF SLAM Stable Linearization errors

CEKF SLAM Cost-effective Map linkages

Fast SLAM Robust to noise Accuracy

Graph SLAM Accurate No online SLAM

iSAM2 Fast Complexity as graph becomes dense

SLAM++ Fastest Complexity as observations increase

31

3. PLATFORM

The AWR1843AOPEVM mmWave sensor from Texas Instruments (TI) was chosen for the frame-

work of this master’s thesis and for the radar demonstration platform used in Kovilta Oy based

on multiple beneficial factors. The most time-saving and productivity-improving factor was the

good support, documentation, and out-of-the-box demo software coupled with a software de-

velopment kit, debugger, and large use of application programming interfaces in the codebase

of the radar system on a chip (SOC). Inside the mmWave platform, multiple devices were also

available to choose from. The mmWave category is split in half into industrial and automotive-

focused products of which the automotive side was chosen. Then the selection came down to

what subsystems were needed inside the radar SOC. As this work focuses on finding out the

capabilities of the platform and the end product aims to be as fast and reliable as possible the

device family with both an internal digital signal processor (DSP) and a hardware accelerator

(HWA) was chosen. After these choices, the final choice was to decide between an antenna con-

figuration drawn onto the PCB or an antenna on the package (AOP). As the PCB antenna would

take up large space on the PCB and lead to additional calibration needs because of PCB parasitics

it was chosen that the AOP configuration located atop the silicon in a ready-made array would

be the best option. The inbuilt antennas also entail that no antenna designers need to be hired

if Kovilta Oy were to append this device into their products.

3.1 Architecture of radar SoC

The functional block diagram of the AWR1843AOPEVM device is shown in figure 17. In it, we can

discern 2 cores and a radar frontend. The radar front end is autonomous from the other cores

and is addressed via an interface referred to as mmWaveLib. The front end is self-monitoring

and -calibrating and its output, the ADC buffer, is connected to the DSP. The DSP unit also houses

the hardware accelerator. The DSP-HWA block is the computation platform and the Cortex R4F

processor acts as a controller of this computation. The Cortex microprocessor is also in control

of the communications with the outside world. [34]

32

Figure 17 Functional block diagram of the AWR1843AOP system on a chip [35].

The external RF calibration mentioned in the angle of arrival chapter is named compRangeBia-

sAndRxChanPhase. It can be performed by placing a corner reflector at boresight at a known

distance measured by tape measure in an otherwise anechoic space. As a result, we obtain gain

and phase offsets for every single virtual antenna, which are used to correct deviations in angles

of arrival. These values are stored in the DSP subsystem and are calibrated out after the radar

ADC results are done. The phase shift circuits and power amplifiers (PA) in the front end have

nothing to do with the calibration. [36]

3.2 Code resources

The system in this work is a mix of two different computation platforms: the embedded system

integrating the radar SoC and the PC which interprets the data from the sensor and controls its

operation via serial command line interface. As the codebases are separate, in different lan-

guages, and utilize different integrated development environments (IDE) we separate the in-

spection of these resources into their own chapters.

3.2.1 Embedded system code

Most of the embedded functionality is provided access to via the configuration file given to the

SoC via the command line interface (CLI) serial port. In this work, the behavior of the SoC is

configured via available switches and parameters rather than hardcoded into the SoC source

33

code. While it is important to understand the embedded side processing, this chapter focuses

only on the top-level functionality of the SoC and its development environment.

The source code for the platform is given in MMWave SDK provided by Texas Instruments. It

contains part-specific drivers, implementations of different algorithms on different hardware

configurations, build tools, documentation, and demos. Most importantly the SDK is open

source. Texas Instruments allows redistribution of both source codes and binaries with or with-

out modification as long as the header disclaimers put in place by TI are not deleted and the

name of TI is not used in the promotion of derived products without prior written permission.

[34]

The bulk of the platform code review and writing is done in a TI-provided IDE called Code Com-

poser Studio (CCS). This is due to software support for hardware-level debugging using the UART

connection. CCS also gives apt developer help tools such as “Go to declaration”, “Go to refer-

ence” and “Explore macro expansion”. The TI Resource Explorer also provides the user with the

option to make a modified copy of the outOfBoxDemo that works in a separate project from the

original demo.

The outOfBoxDemo that our codebase is founded upon is split into two different languages for

the two different domains of execution. While the embedded system containing the SoC runs

on C, the TI-provided Demo Visualizer program that interprets the data packets streamed from

the sensor is handled by JavaScript.

The C project constitutes approximately 50 000 lines of code (LoC), C libraries 340 000 LoC, while

the JavaScript covers 85 000 LoC with all comment-like lines taken out. Texas Instruments pro-

vides documentation in the form of Doxygen websites for the C codes. The JavaScript is however

documented only using comments. In C-code TI chooses to define some system variables in the

compilation string given to gcc rather than in the source code itself. Therefore, debugging needs

to take into account variables defined at compile time.

The embedded programs run on the 2 separate cores and have their own source code. Both the

cores run TI RTOS, a real-time operating system capable of multithreading. The ARM Cortex R4F

processor is referred to as the master subsystem (MSS) and the C674x is referred to as the DSP

subsystem (DSS). Both systems run multithreaded and use inter-process communication to sig-

nal and synchronize messages between the cores. The threads and their processes are shown in

table 3.

34

Table 3 Concurrently running threads of execution on the main processors.

Processor Task name

MSS MmwDemo_initTask

MSS CLI_task

MSS MmwDemo_mmWaveCtrlTask

MSS MmwDemo_mssDPMTask

DSS MmwDemo_initTask

DSS MmwDemo_DPC_ObjectDetection_dpmTask

Let’s first take a look at the MSS subsystem. The MmwDemo_initTask is the entry point of the

program. It is run only once. Its function is to initialize component drivers, RF frontend commu-

nication channel, datapath communication, UART communication line, and ADC. After success-

ful initialization, the thread will set up the other remaining threads in the MSS subsystem.

The first task to be created in the initialization is MmwDemo_mmWaveCtrlTask. This task is run-

ning an API for RF frontend communication. The task runs in a continuous loop with its schedul-

ing based on priority. The priority of this thread is set to 5.

The second task is MmwDemo_mssDPMTask. The data path manager (DPM) is an API in charge

of handling data transactions and inter-process communication (IPC) between cores. The system

is run in Remote Domains -mode which sets the MSS subsystem to be in control of the transac-

tions. The DSS subsystem in turn runs the DPC that this DPM task gets its data from. The task

runs in a continuous loop with a thread priority of 4.

The final task running on the MSS subsystem is the CLI_task. The command line interface (CLI)

provides a shell-like interface towards the UART line. This allows the MSS to communicate to an

external computer via a USB. Using this CLI the user can configure the radar front-end parame-

ters, communicate them via USB, and have the CLI take care of parsing the message and calling

the appropriate API functions. The chirp parameters discussed in the FMCW chapter are set up

via the CLI interface. The CLI task runs in a continuous loop with a thread priority of 3.

Next, we turn our attention to the DSS subsystem. Just like the MSS, the entry point of the DSS

also lies in the initialization task MmwDemo_initTask. The task is run only once and is unique to

this processor even though it shares the same name with its MSS counterpart. In the function,

the system initializes component drivers including data path-related drivers for the hardware

35

accelerator (HWA) and the enhanced direct memory access controller (EDMA). The DPM module

in control of running the aforementioned DPC is also initialized.

The last but also largest task is the MmwDemo_DPC_ObjectDetection_dpmTask run on the DSS.

This task is in control of all computation. The object detection runs on this thread which imple-

ments a DPC that the master subsystem can share results with using the DPM API. The thread

utilizes hardware accelerator resources and works on the DSP processor running a higher clock

rate than the master subsystem. This thread handles the real-time calculation of range, Doppler,

and angle of arrival from raw ADC results. The processing is done in a continuous loop with pri-

ority of 5.

3.2.2 PC side code

As the author is building a system meant for use in the company framework the JavaScript code

given by TI in the mmwaveDemo was deemed too inefficient to interpret and to integrate into

the environment. This was because of the sheer size of the project and its cleanliness. More

work would have to be put into understanding the JavaScript than would be to produce our own

implementation. Discussions with the code division at Kovilta oy led us to choose Python as the

PC-side packet interpreter and system platform. Using Python enables us to use libraries vital

for SLAM including OpenCV. PyCharm community editor was chosen for the IDE as it has seam-

less integration with virtual environments which we manage with Anaconda.

Next, we take a look at the code libraries utilized in this work and the resources they provided

us with. NumPy is our first import and gives us access to modern datatypes such as ndarray and

optimized arithmetic operations written with integrated c. Numpy functions as a base for nearly

all modern computer vision algorithms.

Matplotlib is utilized for the visualization of the first milestone and the 3D plot of the fourth

milestone. OpenCV is used in other milestones because of its camera integration, performance,

and drawing capabilities. OpenCV also has feature detectors for camera applications that could

be used to change the level of fusion of the system.

Pyserial was chosen for serial communication. For delays in serial communication and for fram-

erate upkeep we used the library Time.

For the heavy lifting, we utilize You Only Look Once (YOLOv8), a state-of-the-art machine learn-

ing library by Ultralytics. This single-shot detector can identify objects by class, draw a bounding

box over the object, and even segment the instance into either instance masks or polygons. On

36

top of the YOLOv8, an instance of BoT-SORT is seamlessly integrated by the Ultralytics team.

BoT-SORT is a tracking library used to identify and keep track of object instances discovered by

YOLOv8. The BoT-SORT algorithm is not fully integrated into the YOLOv8 framework as of yet.

The re-identification task is still left undone by the authors at Ultralytics, the host company of

the YOLOv8 library. The tracking algorithm is still found to work well.

Pyfilter is used to implement linear Kalman filtering and unscented Kalman filtering. Having done

the introduction, we now move on to the implementation. The PC-side code is made open

source by the author and is hosted in GitHub, where the reader can look at the code in more

detail [37]. The code approaches used in this work are discussed on a high level, whereas the

GitHub repository serves as the low-level information source.

37

4. IMPLEMENTATION

The work done in this thesis was done iteratively and is split into milestones with definite goals.

With a new understanding of the sensor, the algorithms, the code resources, and the capabilities

of data utilization new goals were set as the work continued and milestones were added to the

pile. Next, we go through the phases of development in a time-ordered fashion.

4.1 Dense data

The first goal was to gather an RGBD image as many SLAM algorithms such as ORB-SLAM natively

use an RGBD image as input. The D in the name refers to depth. RGBD images are normally

obtained by using stereo vision cameras or time-of-flight based approaches [38]. In this chapter,

we explore an approach using radar (which is a time-of-flight based sensor) to RGBD image cre-

ation. Together with the fused image, the data was to be examined and key observations made

about its nature.

To get the radar data into the PC environment a device driver is needed. While the author did

find implementations of TI mmWave device drivers such as [20] written in Python and [39] writ-

ten in C, they both lacked the azimuthHeatmap decoding and visualization functionality that was

deemed important for the map-making process in SLAM. By implementing a self-made driver,

the data formats could also be explored more thoroughly. Therefore, a new device driver was

written by the author from the basis of knowledge gathered from the JavaScript code on the PC

side coupled together with the embedded system side C codes.

When all PC drivers are loaded and the EVM is setup in DCA1000 mode this exposes the PC to 2

separate UART channels coming from the device. These UART channels are driven by the MSS

processor which controls the peripherals. The channels have their own COM ports, first of which

implements the two-way command line interface and the second of which is used for one-way

data streaming from the EVM to the PC. The first COM port is named the User/Application Port

and implements an ASCII character-based command line interface much like a Linux command

prompt. The device is configured via this port, and it can be queried for information during

runtime if needed. The second port named Auxiliary Data port does not present the data in ASCII

form but rather in bytes. The incoming data on this line is represented as type-length-value (TLV)

frames.

38

The data channel has a little-endian byte ordering, and the order of items seems to follow the

declaration order in c, although compiler optimizations can be seen to have an effect if optimi-

zation is allowed. The data transmission always starts with a magicWord =

x”0102030405060708”. This magic word can be listened to or searched from a buffer to find the

beginning of a packet. The top-level packet then contains a header. In the header, information

such as version number and frame number are represented. After the header comes the con-

tents of the transmission. The list of packet types provided by the outOfBoxDemo is presented

in table 4 together with its contents. The CLI port runs at a baud rate of 115200 baud/s while

the data port uses a faster transmission speed of 921600 baud/s. In this milestone, we look

specifically into the contents of AZIMUT_ELEVATION_STATIC_HEAT_MAP, which contains the

zero-Doppler slice of the radar cube.

Table 4 Output data format types of the AWR18430AOP out-of-box demo.

Packet type as defined in C Content of the packet

DETECTED_POINTS DPIF_PointCloudCartesian * numObjOut

RANGE_PROFILE uint16_t * numRangeBins

NOISE_PROFILE uint16_t * numRangeBins

AZIMUT_STATIC_HEAT_MAP azimuthStaticHeatMapSize * cmplx16ImRe_t

RANGE_DOPPLER_HEAT_MAP numRangeBins * numDopplerBins * uint16_t

STATS 6 * uint32_t

DETECTED_POINTS_SIDE_INFO DPIF_PointCloudSideInfo * numObjOut

AZIMUT_ELEVATION_STATIC_HEAT_MAP azimuthStaticHeatMapSize * cmplx16ImRe_t

TEMPERATURE_STATS 10* rlInt16_t + rlUInt32_t + int32_t

The radar scan needs to be calibrated with the camera in order for the system to work as a

whole. For this, the camera and radar need to be fixed with a known relation to one another.

This was achieved by modeling and 3D-printing a case out of PLA plastic shown in figure 18. The

modeling software employed was FreeCAD. The camera and radar are put atop one another. An

additional access hole is put on the top in the location of the reset button of mmwaveicboost-

board.

39

Figure 18 Housing for the radar and camera.

As we cannot put the sensors directly atop one another we have to define how the sensors relate

to each other in 3D space. This is normally done by using a transformation matrix. A transfor-

mation consists of rotation and translation. The rotation is fixed to zero, so it is represented

mathematically as an identity matrix. The translation matrix between the radar sensor and cam-

era sensor middle points is defined as

 𝒕 = [
0

0.005
0.055

], (39)

where the coordinates are presented in the form of x,y, and z in radar coordinates. The units

represent the displacement of the image axis from the radar axis in meters. From the rotation

and translation matrices, we can construct the whole transformation matrix. With this matrix

we can translate 3D world coordinates perceived by the radar sensor into the coordinates of the

camera. This is useful if we are to produce points of interest with the radar and try to relate

them to the world map held by a SLAM system. For now, however, we choose to ignore the

translation as its magnitude (5,5cm) is small in relation to the distances measured (10m). We

discuss the validity of this approximation in the results section.

In this work, the radar system is used indoors. In the end application, the system will however

be mounted on a vehicle. The end application mounting was first considered to be front-facing

at bumper level. This would serve a good ADAS function as a collision avoidance radar. For SLAM,

however, the sensor is better mounted in a place with high visibility to the static environment

such as on the roof of the car. Many radars can also be used. A common approach is to put

radars on all corners of a vehicle. In this approach, the sensor rotations will be nonzero. The

40

translation matrix method presented above will still hold but will have to be appended with the

individual rotations of all the sensors.

To make the RGBD frame we need to translate the radar data from polar coordinates into the

corresponding pixel locations in the image sensor. This is a common problem in computer vision

and the geometry of the situation is shown in figure 19 where the depth D and angle 𝜙 are

known and x is the coordinate on the x-axis that interest us. By using trigonometric definitions

and by noting that the angle 𝜙 is constant between the two triangles, two congruent triangles

are formed. The comparison between the sides of these triangles leads to an equation, from

which the x coordinate is found.

Figure 19 Definition of geometry in 2D. This figure extends the definitions of radar coordi-
nates in figure 12 by adding the image plane and naming conventions.

The x dimension then needs to be fit into the pixel environment by discretizing it to pixel values.

From this equation, singular pixel placements on the camera's image plane will be acquired.

However, as the radar image is much smaller in size than the camera image in pixels, we need

to use interpolation in order to cover the blank spaces left without a value. The camera image is

of size 480x640 pixels whereas the radar azimuth slice is 12x256 pixels. The number 12 comes

from the number of virtual antennas and 256 is the NUM_ANGLE_BINS. In the JavaScript ap-

proach, TI interpolates the result by padding the azimuth-FFT by zeros. Interpolation allows the

system to represent values between the beam width sizes. TI presents its results in a 64x256

format which accounts to 433% more pixels.

The projection is done by finding the focal length equivalent, f described in figure 19. This pa-

rameter is found by performing an experiment. Radar points are hand matched to image coor-

dinates by measuring a strong corner reflector outside in anechoic conditions. The 3D point and

41

the corresponding 2D image point corresponding to the center of the reflector are stored in

Excel. We can then find the linear coefficient f from the geometry definition in figure 19 as

 𝑃𝑥 = 𝑓 ∙
𝑋

𝑌
, (40)

where 𝑃𝑥 corresponds to the x-coordinate of the measured 2D image centered at the origin and

𝑋 and 𝑌 correspond to parts in the chosen radar point. This will produce a linear regression we

can solve with the least squares approach. The results are presented in chapter 5.

Using this approach, some radar points were found to translate to pixels outside the desired

camera frame. The camera thus had a lower FoV than the radar. The out-of-FoV data could be

used to predict objects coming into the frame before the camera has a chance to capture the

object. For now, however, we choose to ignore all detections outside the FoV of the camera.

In the data gathered, strange false reflections were found to be present. Their intensity was

often higher than real objects and they were present even when aiming the radar sensor directly

toward the sky where no reflection sources exist. The strangely large and static reflection values

were found largely in the close-range bins. The observable falseness of the data was lesser in

the bins far away from the sensor. It is probable that the false data is due to RF-power leakage

from the transmit circuitry to the receiver. Leakage of the TX signal straight to the receiver with-

out a delay would make for a close to zero mixer output and thus produce the perceived 0-depth

clutter. This leakage is relatively static and can be calibrated out by taking a measurement of an

empty scene with no reflections. The values in this calibration image result only from leakage.

This calibration image can be subtracted from the incoming signal which results in cancellation

of the digital value of the leakage. A concern of the author is that the assumption of static leak-

age might not hold under changing circumstances such as temperature changes, aging, or volt-

age fluctuations on the power lines. The calibration procedure for averaging out a number of

the closest bins and down the line subtracting the previously measured bias from all further data

is called calibDcRangeSig-calibration. The results of this calibration are explored in the results

section.

The demonstration given by the author to the code division for the end of the first milestone

contained live video and dense range-azimuth feed in polar coordinates of which a snapshot is

given in figure 20. On top of the image frame, an interpolation of the projection of a polar-form

radar frame is presented as 1D lines. The idea of the lines was to get a first verification of the

projection used to fuse radar data to camera frames. In the image we can see the intensity value

maximums shown in green align with the circular metallic reflectors, indicating that the value of

f, the focal length equivalent previously calculated by the Excel experiment, is indeed correct. In

42

addition to reflection strength, the depth at which the reflection maximums were observed is

plotted in red.

Figure 20 Range-azimuth radar frame (left) fused onto an image (right) after DC-calibra-
tion. The intensity of the green line indicates the strength of the reflected signal, and the in-
tensity of the red line indicates the range of the maximum reflection. A brighter color indicates
larger values. The x-axis of the radar frame corresponds to the angle, the y-axis to the range,
and color to the received signal amplitude.

In this dense data representation, the temporal data alignment was handled by assuming radar

to be the slower sensor. When a camera frame is taken directly after the radar frame the time

instances are close enough to be regarded as the same. The spatial alignment was done via

measurement where f was found. The focal length equivalent f, when used in projection, aligns

the data of the sensor modalities into the same reference system, the system being pixels in the

image plane.

The large communication bandwidth required by this dense range-azimuth slice limits the sys-

tem fps to 1. The limit is due to EVM specific implementation which is itself limited by the USB

speed. The slowness of the dense data format made the author question its effectiveness and

explore the use of a CFAR feature detector to move into a sparser feature-representation-based

data format instead. This was also due to the TI demo platform’s promise of achieving up to 30

fps with this data format change. The full source code of the first milestone code can be found

on GitHub as get_input.py [37].

43

4.2 Sparse data

A second milestone was set after additional design space exploration to get over the bottlenecks

of the first milestone. The goal was to make the detections more accurate, reduce the need for

further processing, reduce the amount of communication, and move to a 3D world coordinate

system, thus moving to use full capabilities of the 4D radar instead of bare slices of the radar

cube. This would entail putting to use all the virtual antennas. These design goals were ap-

proached by starting a move from the range-azimuth format into the point cloud data format.

In the exploration phase, an open-source library [20] was found that contained a different ap-

proach to device drivers. It also implemented an extraction model for point cloud data packets.

The library functioned as the basis of the following code as it was found a better idea to use

buffers and magic word searches rather than to listen for incoming data until the magic word

appeared. The driver implementation was optimized by removing all expensive array copying.

Temporal data alignment was also changed so that the driver returns all buffered data upon

request instead of the last one in a FIFO manner. This allowed us not to lose any radar data

points even if other system components were limiting performance. This meant that the tem-

poral signature of a radar sweep was purposely lost and instead the system-level information

gave us a system-fps limited delta-time inside of which we interpret all the detections as having

occurred.

The point cloud is made by CFAR detection and AoA processing on the range-Doppler plane.

Unlike the dense data, this sparse data now takes into account all the Doppler dimensions in-

stead of just the 0th bin. An object recognition task is implemented on-sensor in the demo. It

groups the detected points in range, Doppler, or both of these directions. The grouping means

that fewer points need to be sent through the communication channel making the communica-

tion more efficient. We can compensate for the reduced number of points by thinking of the

detected objects as larger objects than the singular point. This can be accomplished later in the

radar to image data fusion. While the grouping algorithm lessens the number of points on the

point cloud, it can’t make a weak signal not appear at all. It only suppresses the number of points

emanating from larger objects. Therefore, the grouping is not dangerous in terms of missing

potential detections. TI refers to this process as peak grouping.

The detection accuracy was assessed by looking at the range spectrum together with the points

output by the CFAR and peak grouping algorithm. A worry arose that the peaks that objects

produce were hardly noticeable from the noise floor by human inspection and that the noise

44

floor itself was not flat. Test setup consisting of moving objects was then made by either a hu-

man moving in front of the sensor or by moving the sensor around in a room with 2 radar reflec-

tors. From tests, it was confirmed that the CFAR algorithm also often failed to find real objects

among all the clutter. To this end, an algorithm called static clutter removal was trialed, which

made it so only objects in motion or motion of the camera itself produced peaks on which the

CFAR algorithm was run. The static clutter removal is therefore a pre-processing step for the

CFAR algorithm which helps it find peaks better. The results were a significant increase in true

object detection from among the clutter and visibly better peaks for the CFAR algorithm to run

on. The range spectrum in a test scenario of radar moving toward two radar reflectors is shown

in figure 21 with no pre-processing and together with the static clutter removal algorithm.

Figure 21 a) Range-power slice with CFAR results as orange points b) Range spectrum with
static clutter removal pre-processing. Both measurements are made from the same environ-
ment. In b) the sensor had to be moved slightly and the measurement made during movement.
This is because the static clutter algorithm only observes objects in motion and will detect a
flat spectrum for a stationary scene.

With the static clutter removal algorithm in place, the radar started to pick up on smaller objects

and reacted also to smaller motions. Where previously a moving metal corner reflector could be

missed the radar could now detect even the slightest motion of a human without any reflectors.

The radar cross-section difference of these objects is 4 orders of magnitude [40]. The addition

of static clutter removal was the single most influential choice in this work. The point cloud was

now also better in terms that it only contained points of interest. What interests us in radar are

things that move. If a car doesn’t move relative to you, it can’t hit you. Therefore, no points are

needed from those static objects. From a SLAM context, it is also true that a map maker cannot

obtain any more information by standing still. Motion is inherent in the map-making process as

45

the observer has to move around the map in order to discover it. No crucial information is there-

fore lost by putting the radar in a mode where it sees nothing if there are no changes. Only

changes have information. The static clutter removal algorithm also massively improves the ef-

fects of antenna crosstalk as it is also regarded as clutter by the algorithm and therefore re-

moved. This allows the device to detect objects in the previously signal-congested space in the

near vicinity of the radar in the 0 to 1 m range previously congested with noise.

The visualization library was also changed to OpenCV. This was done to accommodate the higher

new system fps which was previously radar-limited but had now become software-limited. With

Matplotlib the average was 2 fps, whereas OpenCV delivers 10 fps. The end deliverable con-

tained a live feed demo of which figure 22 is a snapshot.

Figure 22 Point cloud objects and their projection onto the image frame. A sign of bad
calibration is evident in reflections not perfectly aligning with the cylinders. This can be fixed
with compRangeBiasAndRxChanPhase or by physically adjusting radar alignment, which may
have slightly changed due to loose connectors.

This demo contained the move to the new data representation together with projection, 3D

plotting, and the effectiveness of the static clutter removal algorithm. The second milestone

provided the basis for further implementation of data fusion to finally begin in an object-level

context.

46

4.3 Object detection, tracking, and sensor fusion

The third milestone was to include target identification and tracking into the system. With the

camera track and radar point cloud, a sensor fusion was to be made. This sensor fusion was

deemed very lucrative as the two sensing modalities are complementary to each other. A cam-

era sees light coming in as rays but does not know how far the object is. Only the relative offsets

from the image center are observed. This results in perspective distortions as the camera cannot

decipher a small object near it from a large object far away. Radar however is an absolute meas-

urement device. By fusing the camera ray with a radar point we can in essence cut the ray of the

camera and therefore lose the ambiguity of perspective. This allows the fused data to have bet-

ter accuracy compared to the standalone sensors. This is done by using the radar which has

better depth accuracy. Radar however lacks angular resolution, but thankfully the camera is

complementary to it in this instance too. The sensors complement each other’s weaknesses. The

same pros and cons of sensor modalities also hold for the velocity measurement: Radar is good

in radial measurement whereas the camera wins in axial measurements.

For object detection the latest version of a well-known single shot detector machine learning

model YOLOv8 was chosen. On top of YOLOv8, an implementation of BotSort tracking algorithm

utilizing Kalman filtering is used to keep track of the camera detections. The YOLO detector is

used with pre-trained weights. The model was chosen as the smallest model with the least layers

for efficiency reasons. It was found to produce very good results in human tracking and can

simultaneously track multiple humans in an office environment. The detector is trained on the

COCO dataset which allows us to generalize our algorithms to all of the object instances in it

such as cars, bicycles and stop signs. The machine learning algorithms are run on the graphical

processing unit (GPU) to achieve an inference time of 20ms for a single frame with tracking

which corresponds to a theoretical maximum speed of 50 fps. The system is no longer bottle-

necked by CPU processing speeds. The web camera fps is the smallest averaging around 10 fps

whereas the radar can achieve an fps of 30.

The differing speeds of the sensors call for temporal alignment [27]. In this milestone, the cam-

era is first read which calls the radar sensor to take a snapshot. Radar data is read from a buffer

acquired during the delta time, which makes it fast because it does not have to wait for sensor

execution. The machine learning is image-based and does not need radar data to function. It can

be run directly after a camera frame is captured. The implementation however is polling, which

makes us wait for the results instead of being able to do calculations on the CPU while the GPU

calculates the outcome. In this milestone, we extend the delta time to stop only after the ML

task has finished. Thus, radar detections during the computation of object detection are counted

47

to be inside this processing frame. This approach to temporal alignment is referred to as asyn-

chronous. This is because we do not have a constant sampling period. This approach was taken

due to the varying fps of the host systems. This system when run on a laptop achieves consider-

ably lower performance than is required to read data in real time. Temporal alignment of a 30fps

radar to a 10fps camera running on a 3fps laptop is thus reduced to 3fps time frames. The bot-

tleneck is the laptop's lack of an Nvidia GPU for neural network processing.

For the sensor fusion, an intuitive approach was used. First, YOLO finds and segments all the

objects in the frame. BotSort then assigns ID:s and ID-specific position and velocity tracks for the

objects. BotSort uses re-identification which aims to keep the same ID for an object that was

previously lost due to occlusion or going off the image area. The radar point cloud is then pro-

jected onto the image. If a radar point lies inside the object segmentation mask then it belongs

to this ID. Most of the time not one, but many radar points hit the tracked object. It remains the

job of the sensor fusion to decide how to pick the point, average of points, or any other combi-

nation that will produce the most robust, noise-free, and non-divergent output as the final

measurement for the depth and speed of this object.

At first, the median of the incoming points was chosen as the final measurement. This was cho-

sen because a median will pick one of the measurements instead of mixing together data from

multiple different reflections. Later it was deemed that this might lead to excessive discarding

of data and the inclusion of measurement noise into the output. This is because the delta time

might be long and there might be 10s of measurements to choose from. Picking one will surely

not leverage the full potential of all the 10 measurements because their information is not in-

cluded in the output. A measurement also always contains noise and by picking a non-filtered

measurement we include this noise. A change was then made to pick the point using the aver-

age. This resulted in less noise.

48

There was however a problem in both approaches. A radar echo does not always come from the

object itself but may be bounced from objects around it on the forward or the return trip. This

makes the path look longer. This may also give the illusion that an object has multiple objects

lurking behind it. Thankfully, the fusion approach of fusing a camera to this radar measurement

mitigates some of the multi-path propagation issues. This is because a multipath beam will be

seen as emanating from the place of reflection and not the object sending it. For example, a

person may have a radar “shadow” next to him when he goes near a wall. The camera segmen-

tation mask is genius in that it will segment only the line-of-sight path to the object as seen by

the camera. This lessens the inclusion of multi-path reflections, but sometimes the mask is not

perfect and reflections that are not in the line of sight are counted in. An important observation

was made that the line of sight is always the shortest path to the object. Therefore, we would

want to try and choose our point based on the minimum observed distance. This is the third

approach used in this work. Minimum filtering enforces physical propagation path limits and

gives us more robust and accurate information.

In testing, it was observed that sometimes we will also have zero radar points or only multi-path

reflections hitting the object. In these cases, the result given by any of the 3 algorithms will fail.

Thinking that a multi-path reflection is the actual object may change the object’s distance by

over 5 meters. This results in very noisy output data from the fusion stage. To this end, a time

window was trialed. Previous fusion outputs were put into a window and another run with one

of the 3 point-picking algorithms was run. Different window sizes were explored. Their effects

were to lessen the radical errors created by a few erroneous measurements by incorporating

previous temporal information. The effects of windowing and the use of the 3 different ap-

proaches to point picking are discussed in the results section.

With the system in this state, we can track multiple humans at once and know their radial dis-

tance and velocity. The third milestone was demonstrated working at 10 fps due to the slow

capture rate of the web camera. A remake of the scene was run on a laptop with 2 fps and is

shown in figure 23.

49

Figure 23 YOLOv8 combined with BotSort is able to track multiple objects at multiple dis-
tances. Object depth is illustrated with color. Object ID:s are printed on the top left corner of
the mask.

In this demonstration, it is visible that a track can be kept from multiple people at multiple dis-

tances. The re-identification works for occlusion but going off-screen often tricks it into giving

the same person a new ID. This is because the re-id feature of BotSort is not yet fully incorpo-

rated into YOLOv8. The system is later modified to track other objects from the COCO dataset

including cars, bicycles, and motorcycles by changing the class-variable of the segmentation

model for the YOLOv8 object detector.

4.4 3D representation using complementary sensor aspects

So far, the true speed vector has been unattainable as radar only measures radial velocity and

disregards tangential velocity. The true speed is also not possible to be ascertained from a pic-

ture alone as the camera has a 2D viewing plane. The fourth milestone was set to fuse the two

modalities into a true motion vector and to do so using the information from the more capable

modality.

The implementation focused again on the idea of “cutting the light ray”. Because the depth is

crucial to the idea of ray cutting resulting in a correct measurement, we want to get rid of meas-

50

urement noise and disregard spurious outlier points from measurements. To this end, we im-

plemented both a linear Kalman filter and an unscented Kalman filter and compared them to

one another. To get the Kalman filter working in this context many decisions were made, the

first of which was time-related.

The Kalman filter uses a constant ∆𝑡 as the time between the previous and current measure-

ment-predict cycles and embeds it in the calculation of its matrices. The Kalman also assumes a

single measurement per timestep. This is why our fusion approach in the previous chapter fo-

cused on delivering a single output per timestep. The fusion approach taken accommodates a

Kalman filter seamlessly. There was however a different approach that was never implemented

but remains a curious take on fusion and filtering. Where our approach feeds the Kalman data

at a fixed rate, ∆𝑡 in doing so it must use a point collapse function like mean, average, or mini-

mum to take an n number of points down to a single measurement. This reduces the information

content. We could however choose not to discard any data and feed all the data to the Kalman.

In the current work, the Kalman update is run once in a measurement cycle. In the second ap-

proach, the Kalman update would be called as many times as we got data. Every single data

point would be included instead of most of the data being thrown out. This entails splitting the

∆𝑡 into n equisized time slices and then running the Kalman update multiple times. The problem

with this approach is that a change in Kalman ∆𝑡 entails we have to recalculate the F and Q

matrices. This would have to be redone for every single measurement frame, which would raise

the computational cost. This is also against standard Kalman filter mathematics and a variating

∆𝑡 approach to Kalman filtering is thus seldom discussed in literature. The second approach

would however allow us to incorporate not only the best but all the data. In the end, the stand-

ard approach of constant ∆𝑡 was deemed safer and more computationally efficient.

Next, we make a world model that the Kalman filter uses to predict the future state of the object.

In [26] it is argued that the best model has the same order as the object it is trying to measure.

The equations chosen to represent our model were the Newtonian motion models of place,

speed, and acceleration. Euler integration approximation of the acceleration was also explored.

An additional data association method was added in this stage to determine outliers from real

measurements in the fusion step. This was able to be done because with the advent of Kalman

filtering we now have memory and a trust estimate of where our object is located in space to-

gether with motion models expressing where it could be in the next time instant. With this in-

formation, we can deduce that measurements outside the range of possible places given by the

motion model are false measurements. The false measurements can be discarded. This process

is referred to as gating. In this work, 2 gating methods were explored. The square gate compares

51

the system state and the knowledge of state covariance to the measurement by using two if

statements. If the measurement is within 3 standard deviations of the expected range and within

3 standard deviations of the expected speed, then the measurement is assumed correct. The

second gate was implemented with Mahalanobis distance, which is a way to calculate the dis-

tance of a point from a distribution. Only a single if clause is needed for Mahalanobis gating, but

the arithmetic for calculating the distance has more computational cost.

The process- and measurement noise were fit manually and tested on multiple sets of real-world

measurement data. The convergence, variance, and residual were used visually in the determi-

nation of these parameters. For the Linear filter parameters, we chose the following matrices

represented in table 5. We chose the continuous white noise representation for process noise

as switching to discrete noise had little effect.

Table 5 Linear Kalman filter matrices.

x, state vector [
𝑥
𝑣

]

F, state transition matrix [
1 ∆𝑡
0 1

]

H, measurement matrix [
1 0
0 1

]

R, measurement noise matrix [0.22 0
0 0.42]

Q, process noise matrix

2 ∙ [

1

3
∆𝑡3

1

2
∆𝑡2

1

2
∆𝑡2 ∆𝑡

]

In the above table, the effect of ∆𝑡 on the matrix calculation can be seen. To tie this into system

context this means that a platform with higher fps will have less noise in its process while the

measurement noise holds constant. The fps of the system will thus affect the Kalman filter trust

balance of measurement vs prediction, giving more trust to the prediction the higher the fps

becomes. This is because the time over which we predict is shortened with higher fps.

The test data, visualization, gating, windowing, and point-picking algorithms are all available in

the project GitHub repository under the file fitKalmanFilter_radar.py [37]. This file enables a

quick verification platform for any future filtering approaches. The effects of these approaches

on sensor fusion and filtering are discussed in the results section.

Now that the object-specific radar measurement has been filtered, we can move on to calculate

the true position. This is done utilizing the same equations used inside the radar SoC, namely,

equations (30)-(32), but this time the angles θ and ϕ are calculated from camera pixels using

52

the value of f attained in milestone 2. This way the better angular resolution of the camera is

used for θ and ϕ and the range is left for the radar.

As calculations of angles using trigonometric functions such as sin, cos, and tan are computa-

tionally expensive operations we want to avoid them. This can be done by defining them by

using the congruency of triangles and the Pythagorean theorem as

 𝑐𝑜𝑠(ϕ) =
𝑓

√𝑓2 + 𝑃𝑥2
 (41)

𝑠𝑖𝑛(ϕ) =

𝑃𝑥

√𝑓2 + 𝑃𝑥2

(42)

𝑐𝑜𝑠(θ) =

𝑓

√𝑓2 + 𝑃𝑦2

(43)

𝑠𝑖𝑛(θ) =

𝑃𝑦

√𝑓2 + 𝑃𝑦2
,

(44)

where the notation follows the one presented in figure 19. Having now given the equations for

true position we now move to the determination of true velocity.

The first approach to true velocity is to take the derivative of the true position. This works, but

determination by position alone disregards information. This is because the inherent speed

measurement given by radar is not used when we only calculate the derivative of position. This

approach was implemented but later discarded as the idea of losing information by choice was

not a good design approach.

Our approach to encompassing all speed information starts by noting the radar's inability to

measure tangential speed and the camera's inability to measure depth. The vectors presented

to the Kalman filter also have to align in direction in order for the Kalman filter to be able to sum

them up. The speed vectors on the image frame and from radar naturally face in different direc-

tions for all but the boresight case. This calls for vector alignment as our Kalman filter uses only

the magnitude portion of depth instead of directional vectors.

The first approach to alignment was to take only the y-axis component of radar speed and fill

the x-z motion in from the camera. This approach however suffered a fatal flaw referred to as

the cosine effect [41]. The cosine effect causes us to get a speed measure that gets smaller as

the angle of the object gets further off-center. This is due to the components of the true speed

aligning with the tangential part of the ray the radar cannot measure. The cosine effect is illus-

trated in figure 24.

53

Figure 24 Illustration of the cosine effect. The larger the angle the beam (green) has to
make to the object having a true speed (blue), the more of the components of speed align with
the tangential direction of the beam (red).

As a result of the cosine effect, this approach to true speed was dropped. The other way to align

speed is to use radial speed instead of the Euclidean y-component.

The radar sensor gives its results in Euclidean form as (x, y, z, radial speed) -tuples. In the Euclid-

ean approach, we took the y-component of radial speed and gave it to the Kalman filter. The

second option is to calculate the radial range from x,y, and z and combine that with radial speed.

This way the vectors given to the Kalman filter face the same direction and can be used in arith-

metics.

In the radial approach, we have to modify the camera speed to be tangential to the radar beam

and to the radial radar speed vector �̅�. This can be done by taking the beam direction, �̅� as the

position vector of the detection. The radial component can then be made a unit vector, �̂� by

dividing by its length. To take away the radial speed components from the camera speed vector,

𝑐̅ and turn it into the tangential speed, 𝑡̅ we can use the dot product between the camera speed

and radial speed to get the length that needs to be removed, multiply that by the radial unit

vector, and remove the component by subtraction. This can be expressed as

 𝑡̅ = 𝑐̅ − (𝑐̅ ∙ �̂�)�̂�, (45)

which gives us the camera motion component in a 90-degree relation to the radar beam. This is

equal to determining the red arrow in figure 24 using the camera to fill in the information the

radar can’t perceive. The tangential component formed by the camera and the radial compo-

nent formed by the radar can now be added together to form the total true speed vector as

 �̅� = �̅� + 𝑡̅, (46)

which now incorporates both the radar speed measurements and the velocity of object centers

on camera. We know �̅� as the Kalman filtered radar result, but we now have to find a way to

measure the speed of objects on the camera frame, 𝑐̅.

54

A camera speed measurement natively exists inside the BotSort tracker utilizing Kalman filtering

with speed in the x, and z-plane as hidden variables. The implementation is however terrible for

speed estimation as the library implementation of the Kalman filter does not take into account

the frame rate of the system and assumes fps = 1. This causes speed not to be sensible. Two

approaches to camera speed estimation are explored: Kalman filtering of the center point of

BotSort tracked objects having speed as a hidden variable and a direct approach of taking deri-

vate of the object centers from frame to frame. The best approach for camera speed measure-

ment is discussed in the results section.

We now have object-level position and speed estimates in 3D space. These estimates are drawn

into a 3D coordinate system in order to visually verify their correctness. Exponential smoothing

is also applied to the speed vector to slow down its jittery nature. The first deliverable of tracking

3D objects represented as dots with their corresponding velocity vectors represented as arrows

pointing away from the points is represented in figure 25.

Figure 25 Two people traveling in opposite directions. Lines indicate the true speed vectors
of the objects.

This object-level picture is a representation of the state of the fusion and tracking system at a

certain time. A better demonstration was later made by integrating the object-level results into

images. With this approach, we can demonstrate the motion vector of people. We can see the

final deliverable of the fourth milestone in figure 26.

55

Figure 26 Demonstration of the true motion vector stemming from the true position of the
calculated object center projected onto the image plane. To illustrate a 3D vector projection
in the 2D image we encode motion towards the sensor with red and motion away from the
sensor with blue.

In addition to the function of the system, focus was later placed on performance. The demo

platform is limited by its communication bandwidth via USB 2.0 and is intended for demonstra-

tions only. As described by TI, true applications should instead use LVDS or CAN-bus interfaces

for communication. We can optimize the most out of the present channel by limiting the amount

of redundant data. We do this by filtering out radar detections that are outside the view of the

camera and thus can’t have an effect on the fusion. This is done experimentally by guessing the

maximum view angle of the camera, drawing the resulting box onscreen, and iterating the

guessed value until the box barely fills the full image. This gives us the camera FoV. The radar

also allows us to select an FoV outside of which points are not communicated. This lessens the

need for communication bandwidth. The radar also sends additional point information by de-

fault, which contains point-specific signal-to-noise ratio and noise level information from the

CFAR processing stage. This function can be disabled to save more bandwidth.

The motion model is also trialed in vehicular tracking. To this end, the radar parameters have to

be adapted to allow for further range, sensitivity, and speed. This is done by sacrificing resolu-

tion. The results of vehicle detection expressed in milestone 3 combined with this motion esti-

mation are presented in the ensuing chapters.

56

5. RESULTS

In this chapter, we look into the achieved system performance, effectiveness of the fusion ap-

proach, filtering results, bottlenecks, and observed secondary effects of radar sensing. In the

final portion, we examine the silent knowledge -type of information that was learned by using

the AWR1843AOPEVM sensor.

5.1 System performance

The system in its present state after milestone 4 can achieve a performance of 30 fps running

on a PC with Intel Core i9 10900k and an NVIDIA GeForce RTX 2080 Ti GPU. This is bottlenecked

by web camera fps and communication bandwidth of radar SoC. The radar point cloud was read

from the device with a speed of 25 fps. The SoC could achieve the promised communication

speed of 30 fps, but this often crashed the demo because of the limited bandwidth of the com-

munication channel. By moving away from USB to LVDS, this bottleneck can be fixed, and a

higher radar measurement interval can be achieved. The implemented code is system agnostic

and can scale its performance with both added computational power from stronger GPU:s and

by using other radar sensors with more capable sensors. There is no limiting factor for the num-

ber of radar points, resolution, or number of detected objects.

The radars part in the system context can best be explored by looking at the limits of its capa-

bilities. The radar sensor maximum capabilities are represented in table 6. These maximum num-

bers are specific to the AWR1843AOP device and are not achievable at the same time. Rather,

these numbers represent the possibilities of the sensor if all other aspects are compromised to

achieve them.

Table 6 Maximum performance of the AWR1843AOP device [36].

Frame rate 30 fps

Range resolution 3.9 cm

Speed resolution 0.144 kmh

Max range 50 m

Max speed 56 kmh

Compromises are made between these parameters when setting up modulation schemes for

the radar. This affects system performance and therefore two independent radar configurations

are explored later on. The first configuration addresses short range radar in an office environ-

ment and the second pertains to longer-range vehicular tracking.

57

5.2 Sensor fusion

The goal of this work was to explore the use of radar sensing. As a part of this goal, we introduced

a feature projection-based sensor fusion approach in which we project radar reflections to the

camera domain. This allows us to associate neural network segmentation masks with the radar

detections in order to fuse radar features onto image objects. This combines the two modalities

allowing us to re-define the object speed and position by combining accurate depth information

from the radar together with the good angular resolution of the camera.

In projection-based fusion, it was found that calibration is of much importance. Points from the

camera must align with the radar in order to be fused. If there remains rotation or scaling error

the points may not align with the masks resulting in wrong or no points being included in the

object. This is sometimes addressed by enlarging the masks or by using more elaborate nearest

neighbor or fuzzy logic matching. In a demonstration, a mask enlarging was trialed by making

far away objects have an increased area. This was not found helpful in an office environment

however as increasing the mask size might make two masks overlap. This will result in data as-

sociation giving the data to the wrong object which produces entirely false measurements.

The area from which points are associated as belonging to this object was first chosen as the

bounding box provided by Yolov8. In the latter work, a move was made to the segmentation

masks. The effect this had was that fewer outliers made it past fusion. This is to be expected.

Radar detection gives a valid range only for objects in the line of sight. The bounding box allowed

non-line-of-sight reflections to also be associated with the object. The segmentation mask was

also smaller in pixel count and a tighter representation of the line-of-sight path to the object.

Some multipath reflections still made it beyond even the segmentation mask. This is evident in

figure 27 where the movement of a person is followed by three “ghosts” at distances 10cm,

50cm, and 150cm caused by multipath propagation echoes of radar coinciding with the segmen-

tation mask. Purple points represent all the points hitting the segmentation mask of this object.

58

Figure 27 Effect of multipath propagation on sensor fusion. Only one subject is observed,
but several echoes are present behind them.

The masking is regarded as the first stage of fusion. The above picture represents the input stage

of the point-picking part of sensor fusion. Many avenues were explored in deciding a single

measurement given multiple radar points hitting an object. The approaches were first explored

inside a single frame. Approaches of median, average, and minimum-based dimension reduction

were explored. The output of different reduction techniques is shown in figure 28, where blue

points correspond to the points chosen by the given algorithms. From the figures we observe

the advantage of minimum filtering over the other methods in that it retains the closest track of

the object and does so with the least noise.

59

Figure 28 Filtering of points using median, average, and minimum filtering approaches.

60

Gating was also employed in the form of square and Mahalanobis-based distance metrics. The

use of gating first requires the system to understand its state. This is given by the Kalman filter.

In figure 29 we illustrate the Kalman state as an orange line with yellow bands illustrating the

state covariance, P calculated into 1 standard deviation long bands. The gating throws out points

outside these bands. Referred to as the gate size, a good length after which points are thrown

out is argued in [26] to be approximately 5 standard deviations. In figure 29 minimum filtering

is used with a linear Kalman filter. The gated points are shown in red. The minimum filtering

allows us to use a tighter gate which is illustrated in the figure by dropping the gate size to 3

standard deviations.

Figure 29 Comparison of gating techniques. Both gates have a size of 3 standard deviations.

61

From the figure, we can see that with the same gate size the square gate lets in more points.

This is because its rectangular surface area is larger than the ellipse produced by Mahalanobis.

A problem with gating is that in some cases the results may not converge on the correct track.

This is very evident when multipath detections are present. The Kalman may converge on the

multipath values instead of the true object path and because of gating it will regard the true

measurement as false. The author advises that the minimum point-picking algorithm be used

alone and that gating not be used at all.

Minimum filtering shows the most promise as it incorporates information about the propagation

path length into the picking algorithm, whereas the mean and average are swayed by multipath

propagation. As minimum filtering already disregards multipath propagation a further need for

gating does not exist.

The addition of time into the fusion was performed by using a window of previously chosen

points. This required a second use of the point-picking algorithm, this time in the time- rather

than the space domain. Minimum filtering was chosen also for the base algorithm. In figure 30

we can see the effect of expanding the time view to windows instead of delta times. In it, differ-

ent window sizes are compared to each other.

Figure 30 Window size comparison on data fusion output.

62

From the figure, we observe that the longer the window the fewer outliers make it past the

fusion stage. This comes however at the price of a delay in objects moving away from us. The

minimum filtering inside a window keeps the minimum value for the length of the window, so

the length of the window affects the response time of the filter when values are rising. On a

laptop with a frame rate of 3 fps a window of size 3 will result in a delay of 1 second. On a

desktop PC with 20 fps, the same window will result in just 0.15 seconds of delay. This delay is

however of no interest to ADAS applications. This is because rising values with added delay cor-

respond to objects moving away from us. An object moving away from us can’t collide with us.

The objects of interest which are the ones moving toward us have no associated delay resulting

from minimum filtering in the time domain. Minimum filtering is thus deemed appropriate for

the time domain too.

In other works based on projection, it is sometimes a custom that the projection be made to a

third independent domain instead of on the top of one of the sensor domains. This allows for

sensor autonomy which is deemed the key selling point of radar in ADAS. Works such as these

use feature level fusion instead of the mixed level feature-to-object level approach used in this

work. In those works, the data association is made by point grouping in 3D space instead of on

top of the 2D image. Sensor autonomy is desirable because radar is often used as a redundancy

sensor for harsh environmental conditions. If the sensors cannot autonomously produce object

level detections, then occlusion or failure of even one of the sensors might lead to loss of func-

tion of the whole system. Because our system associates points from the radar to the camera

instead of associating any point from any sensor to an object, it does not have sensor autonomy.

This is why the object detection and tracking system in this work best serves as a standalone

detector that assists rather than fully defines the sensing for an ADAS application.

5.3 Kalman filtering

The most time-intensive part of fitting a Kalman filter is finding out the user parameters R, and

Q which dictate how the filter gives out trust to measurements and predictions. We explored

the fitting of the measurement noise matrix, R by performing experiments.

The first experiment was to look at the raw measurements coming into the sensor fusion stage

from the projection. As no ground truth for human motion exists and conditions change a lot

depending on the room and size of the target, the standard deviation of the measurement was

63

approximated by hand by drawing lines inside of which one standard deviation (63%) of points

would fit. The first experiment looks into radar error.

The next experiment was performed for the output data of the sensor fusion with a minimum

filtered window of 3. This was to reflect the effect that minimum filtering has on reducing the

radar measurement error and to look at what the Kalman filter input will likely see as its vari-

ance. From both the experiments the worst-case scenario for measurement error was found for

the python/scatter_20fps.cfg sensor configuration. The errors before and after the point col-

lapse part of sensor fusion are shown in table 7. The measurements are done on sensor data

and thus lack information about biases compared to real-world distances and velocities. The

tests were run on the GPU-equipped machine as the long frame times of a laptop would drasti-

cally affect the results before filtering.

Table 7 Worst-case standard deviation of radar measurement before and after filtering.

 Before filtering After filtering

𝑆𝑇𝐷𝑑𝑒𝑝𝑡ℎ 1 m 0.1 m

𝑆𝑇𝐷𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 0.3 m/s 0.2 m/s

From these tests, we deduce that radar error can be large if the results are not filtered properly.

The worst-case errors were found when multi-path propagation occurred. The minimum filter-

ing acts to fix the multi-path problem. An interesting observation can be made about the errors

of depth vs velocity. When unfiltered, the velocity appears to have less error. From the shortest

propagation path of waves we can however deduce a minimum filtering logic which when ap-

plied will make the depth estimate more accurate than the velocity. It must also be noted that

while the velocity error seems good in this format, when compared to the maximum velocity its

problem becomes evident. With a maximum velocity of 0.63 m/s, the standard deviation even

after filtering fills more than 30% of the entire range with ambiguity. In comparison, only 1.7%

of the 12 m maximum range is filled with ambiguity in the filtered range measurement. The

range measurement is thus a lot more trustworthy than the velocity measurement, and this

should be taken into account in the measurement noise matrix R. Compared to the RF parame-

ters for range and velocity resolution of this radar configuration, it is safe to say the true error

is likely 2-3 times the theoretical resolution.

The linear filter approach was compared to nonlinear Monte Carlo sampling Unscented Kalman

Filter by output comparison of filter state. No significant improvement was however noticed in

moving to this approach. This is likely because the system that we are modeling, eg. an object in

motion under Newton's laws, is inherently linear. It is stated in [26] that the linear filter is indeed

64

a perfect fit for a linear system and that the nonlinear approach of the UKF has nothing to add

to the accuracy or convergence of the system.

Noise matrix was chosen as continuous white noise because no observable difference was made

between it and the piecewise white noise in terms of filter convergence. The world model for a

human in motion was best fit with a first-order Newtonian which assumes constant speed be-

tween sampling times. A second-order acceleration model was tested with both a full motion

model and an Euler integration-based acceleration model. None of the acceleration models

were found to accurately capture the acceleration of objects even under moments of speed

direction reversal. What was worse however was that the addition of second-order terms into

the model changed the model assumptions to assume a constant acceleration during breaks

between samples. This led to large convergence issues. The issues were exacerbated on the lap-

top platform due to longer time intervals of assumed constant acceleration. This led us to con-

clude that a human is best modeled as a first-order motion model and to adjust our Kalman state

accordingly.

A Kalman filter was also proposed by the BOTSort tracking algorithm for filtering the camera-

produced motion vector. For this, BOTSort proposed a world model consisting of x,y,w,h, and

their derivates, where the state consists of the coordinates on the image plane together with

the width and height of the bounding box of the object. In total 8 states were introduced half of

which were hidden states. The model worked on an assumption of a constant sampling rate of

1 Hz. After testing, the proposed model was rejected because velocity measurements did not

correspond to real-world speeds likely due to the sampling rate assumption which did not hold.

A Kalman filter of our own was then fit for the camera. The world model was chosen to be a 2-

dimensional first-degree Newtonian model. From the camera domain, we want to obtain a

smooth position with a responsive speed estimate. This means we need to give more trust to

the measured position instead of the calculated position. Using these parameters, the Kalman

was then compared to a naïve approach of simply determining speed as the derivative of posi-

tion that we obtained from the BOTSort algorithm. The derivative was all but equivalent to the

Kalman filter output. Thus, a derivative of the BOTSort position result suffices on its own. No

extra Kalman is needed for camera motion estimation.

65

5.4 Calibration

In the first milestone, we find that system calibration can remove interference in the first 32

range bins as shown in figure 31. In addition to this calibDcRangeSig-calibration option, the com-

pRangeBiasAndRxChanPhase-calibration was also run. Although hard to notice from the figure

below, the compRangeBiasAndRxChanPhase-calibration will shift the azimuth bins so that the

center bin aligns with the beam emanating from the sensor center. The DC-removal calibration

was found useful only for dense data, as the use of a clutter removal algorithm has the same

effect of mitigating crosstalk between Tx and Rx. The effect of phase compensation was small,

but the alignment function it fulfills is critical to the fusion, where both camera and radar must

face the exact same way.

Figure 31 Effect of calibDcRangeSig-calibration on dense data.

The point-to-point matching sequence to find f, the focal length equivalent transform from me-

ters to pixels was performed by using a radar reflector outside in an empty field, where no other

echoes were present. The results of the point-to-point matching run through the projection

function (40) are represented in figure 32, where the radar z-axis (image y-axis) is negated in

an effort to align the coordinate directions of the camera and radar.

66

Figure 32 Point-to-point matching results for finding the slope of the line, which corre-
sponds to f. Orange points have been regarded as outliers and excluded from linear regression.

The average of the azimuth and elevation measurements was calculated to finally arrive at a

value of 𝑓 = 493 𝑝𝑖𝑥/𝑚. In the projection-based approach of comparing the center point of an

object to its calculated 3D-to-2D projection calculated by equations (30) to (32), we found that

f is actually closer to 900 𝑝𝑖𝑥/𝑚. This number given to f will project a point in 3-dimensional

space to its image plane starting point without error. The projection approach is correct, and

the spreadsheet approach is found to be lacking. The reason for the different outcomes is found

from the range of the sampled angles. The point-to-point measurements taken were not far

enough from the centerline to find that f is actually larger. The effects of a larger f become evi-

dent only on the very edges of the image. The error made using f from point-to-point measure-

ments was so small in implementation that nearly all points fit correctly inside the bounding

boxes given by YOLOv8. The effects of bad calibration for f are thus deemed not that important.

The FoV of the camera was also found by projection from 3D-to-2D space. An azimuth view angle

of θ = ±20° and an elevation view angle of ϕ = ±15° were found to fit the whole image frame.

These results are useful in relieving the demo sensors' largest bottleneck, the communication

bandwidth, by filtering away points not seen by the camera.

The assumption that the radar and camera sensor origins align was determined to have very

little effect and therefore no additional computation was needed. They can be compensated by

adding the translation vector between the sensor origins to the coordinates. The error made is

only the size of the translation vector defined previously as 𝒕 in milestone 1. The 5.5cm vertical

offset and 0.5cm depth offset are thwarted by the radar sensor resolution.

67

5.5 Vehicular tracking

We can equip the system with a radar configuration file presented in table 8 and set the camera

object detection to detect cars instead of humans. With this configuration, we take a look into

porting the implementation to vehicle motion and position tracking.

Table 8 Radar parameters optimized for detecting small radar cross-sections at long ranges
at the cost of resolution.

Range resolution 0.434 m

Maximum unambiguous Range 50 m

Maximum radial velocity 11.73 m/s

Radial velocity resolution 0.37 m/s

The approach of asynchronous sensor readout and delta times that were found to work well for

human tracking did not work well for vehicular tracking. In speed measurements of vehicles, the

varying fps of the system coupled with an assumption of constant fps for Kalman matrices some-

times caused the radar speed measurement to not agree with the velocity calculated from po-

sition and delta time length. This is illustrated in figure 34 where the Kalman filter calculates a

different speed using range information than what the radar is claiming the speed to be by using

doppler shift.

A laptop was chosen as the PC platform for mobility purposes. The laptop limited the system fps

to 3 and might have contributed to the accuracy of detections because of the longer frame times

associated with slower processing speeds. In the measurements, the maximum number of cars

tracked at the same time was limited to 3. The maximum range from which a car was detected

was 50m which accounts for the maximum range of the radar subsystem.

The limiting factor of detection was found to be camera-to-radar calibration and radar cross-

section of targets. Calibration errors resulted in the projected radar points being slightly to the

side of objects instead of on top of them as shown in figure 33. This leads to the masking stage

of sensor fusion to discard the radar measurement. The problem is exacerbated because of the

large distance between the camera and the object which means that the object mask occupies

only a small number of pixels. This problem is sometimes avoided by using a vertical column

instead of a mask in the data association step [42]. This however allows multipath propagation

to corrupt results. The effects of bad calibration could also be mitigated by using fuzzy logic,

nearest neighbor, or other more robust data-association algorithm to fuse the points to the ob-

jects.

68

The radar cross-section problem was addressed by changing the RF modulation to prefer sensi-

tivity to resolution. The relatively small sensitivity means that a small car at 50 meters produces

only 1-to-3 point cloud dots.

Figure 33 The Distant car is masked correctly but the radar data is not accurately calibrated
to hit the car at a distance.

Because of these limitations, fewer points make it past data association, and therefore the out-

put of sensor fusion can be sparse when compared to previous human tracking results. An ex-

ample dataset of a car going past the sensor in a 40 kmh zone is shown in figure 34. In total 20

cars were measured with an average of 10.1 associations per vehicle during the 50m range of

the radar. The speed limit of this road is 40 kmh and the radar measured a max speed for this

vehicle of 9.9 m/s = 35 km/h. This vehicle had 11 associations which should be enough for the

calculation of speed through the range. It is however evident that the direct measurement and

filtered results are in opposition to each other. This could be due to the speed measurement

being at the limits of its workable range. In this situation, the Kalman-filtered result is more

trustworthy.

69

Figure 34 Example reflections from a car. The raw speed measurement differs from calcu-
lation through range leading to Kalman not agreeing with radar measurement.

In the mobile setup, the system performance is limited by PC processing power. With increased

power, the system could run a more sophisticated neural network with more accuracy together

with a faster frame rate which helps in tracking. Currently, the system uses a pre-trained YOLOv8

model called YOLOv8n-seg which is the lowest accuracy but highest performance network of all

the available ones. For example, by moving to the high-accuracy network of YOLOv8x-seg the

provider of the library estimates a 40% increase in the mean average precision of mask coverage

compared to the current network. A network architecture change may also help in raising the

total number of objects perceived at one time.

In conclusion, the system is shown to be adaptable to the vehicular context. In particular, cars

were used for the measurement targets, which required changing the RF parameters to accom-

modate higher top speed and higher sensitivity. Bicycles and stop signs can also be selected as

targets if desired. A longer detection range brought up the need for tighter calibration between

the radar and the camera. A greater points/second speed from the radar would also be benefi-

cial as that would make detection more probable. By moving to a larger neural network, the

camera object detection could also be improved.

70

5.6 Inherent features of radar sensing

A goal of this work is to explore for Kovilta Oy, what are the ins and outs of radar sensing. This

chapter addresses the practical knowledge obtained by working with the MIMO radar sensor

from TI. This chapter addresses data. Comments are made on the form of the observed data,

how the data can be manipulated, and what it takes to make this data.

The first observation of interest was made in the first milestone regarding the dense radar data.

The range azimuth slices of the radar cube are cluttered with continuously present signals. These

signals persist even if the sensor is pointed to the sky where no signal can reflect back to the

receiver. The clutter is found to be the strongest in the first few range bins. The 0-range clutter

was found to be due to antenna leakage from the transmit to the receive path. The 0-delay signal

when mixed with the ramp signal produces a low frequency IF that is perceived in our sensing

as a very nearby echo. Clutter signals also exist in higher frequencies as was evident in figure 20.

A possible cause for the high-frequency clutter could be nonlinearities in the RF subsystem. The

clutter makes detection of objects hard. The only way to decipher true objects from clutter is to

look at changes instead of absolutes. The clutter signals remain stationary whereas signals com-

ing from objects change when the sensor or object is moving. The CFAR algorithm will often fail

to find actual objects from the scene if clutter removal is not used.

A problem inherent to radar, lidar, and self-illuminated camera systems is the doubled path

length the light has to take to get to the sensor. In these systems, the photons need to get from

the transmitter to the object and then back. This will cause a drop in power of
1

𝑟4 relative to the

distance of the object [21]. This limits the effective range of a radar system because of the di-

minishing returns that can be obtained solely by raising the transmit power of the system. In the

AWR1843 the power is also transmitted to the whole view angle. The system has no beam. It

also does not scan. It receives echoes from all directions at the same time and deciphers the

angle of objects based on MIMO principles rather than from the direction of its antennas. This

allows the system to observe its whole environment but reduces the power available for any

single angle.

In comparison to our radar with an angular resolution of 30°, Lidar systems in 2020 already

boasted angular resolutions of 0.1° or less [43]. We also get better resolutions on the camera

side of sensing. An intel Realsense depth camera can produce a depth image of resolution

1280x720 at an FOV of 87° × 58° [24]. This accounts to an angular resolution of 0.068° × 0.08°.

Our AVR1830 system is not however a top-of-the-line product and by employing more antennas

71

by coupling together 4 AWR1243 sensors the newer mmWave radars from TI achieve a resolu-

tion of 1° [40]. In order to achieve the 0.1° resolution of common lidar systems a total of 1146

virtual antennas are needed in plane as calculated with equation (29). Even at the top of the

mmWave band, at antenna spacing of 𝑙 =
𝜆
2

= 3.75𝑚𝑚 this accounts to a receiver length of 4.3

meters. This is not suitable for a car and demonstrates that radar sensors at mmWave band

utilizing only basic MIMO can never have as good an angular resolution using this technology as

lidar and camera. The problem of poor angular resolution in radar is still present in 2023 and

was mentioned even in some of the publications of the IEEE Radar Conference 2023 [44].

Even with the 30° beam width, the TI system still allows very fine angular movements even at

distances up to 50 meters to be distinguished. This is seen by the author to be due to the inter-

polation done by 0-padding of angle FFT:s. The resulting FFT has more bins for the angle and can

thus provide the following DSP stages with enhanced precision. The interpolation is deemed a

very successful approach by results obtained in the vehicular tracking chapter. Objects within

the 30° beam can be followed throughout their motion in the beam with more than a singular

angle detection. This wouldn’t be possible without the interpolation.

Having made notes about the resolution of the radar it must be noted that while the resolution

is important in order to distinguish two objects close to each other, this task is often fulfilled

with the range-Doppler view instead. Thus, ADAS systems do not inherently need a high-resolu-

tion radar. Where resolution is important is in mapping and localization. In this context, we want

to find features at high resolution and use them in order to better localize the vehicle onto a

road surface. As other sensors such as GPS can achieve a localization within 1 meter accuracy

the task we set out to achieve with SLAM is to further reduce the ambiguity. This can best be

performed with sensors with higher accuracy. The radar resolution is therefore more important

for SLAM than ADAS.

The main selling point of radar is its consistency in adverse weather conditions where the other

modalities of sensing cannot be utilized reliably [17] [29] [45] [46]. Radar sensing is often em-

ployed as a reliability and robustness enhancer due to the lesser correlation of sensor failures

occurring in this modality at the same time as other sensors. In comparison to camera and lidar

which both fail at similar environmental conditions such as occlusion, rain, fog, and snow the

radar fails at different environmental conditions. This gives the system redundancy. In order to

make use of this redundancy however an additive approach to sensor fusion must be made in-

stead of a multiplicative one. In additive fusion approaches the sensors independently produce

data into an observation dimension. The robustness of a radar can however be compromised

72

under certain conditions. These conditions are mostly interference related. The problem arises

when up to 6 radars are fit on a single vehicle and hundreds of vehicles are placed on a road in

close proximity to each other. From the FMCW modulation scheme, we can deduce that an in-

terferer will produce false detections at arbitrary range bins. This can be hard for ADAS systems

because a sudden false detection of an incoming collision at 10cm from the vehicle's bumper

may prompt the system to employ emergency breaking leading to safety concerns. The interfer-

ence susceptibility of FMCW radar was not tested in this work but its existence leads one to

desire other modulation schemes for safety-critical applications working under severe interfer-

ence conditions.

The radar point cloud generated from the radar cube by CFAR detection and AoA calculation is

sparse in comparison to lidar or camera features [17]. Where a lidar will receive a point in the

point cloud for each beam sent, radar won’t receive detection from every place its beam hits.

Instead, the radar point cloud emanates from positions where strong reflections come from.

This means that instead of grid-like scan patterns of lidar or camera a radar will produce data in

a less dense format. If a radar frame was thought of as a camera frame, most of the pixels would

be empty and have no value. This is a good feature to have for communication bandwidth but

bad for mapping. Sometimes point grouping algorithms are also run to further lessen the

amount of data in the point cloud. This aims at object-level data analysis but loses out on fea-

tures that could be used in classification tasks. If more points per point cloud are desired one

can lower the threshold of the CFAR detector which brings in more points. This will however

increase the number of false positives.

As a part of the first milestone, a dense depth map was made out of the range-azimuth heatmap.

This was done to demonstrate how the radar cube data format functions. It was noted that it is

inaccurate to try and measure depth at every beam angle. In principle, the maximum reflectance

value in a beam angle should correspond to an object in the direct line of sight of the radar.

When experimented on, the maximum values inside an angle bin almost always corresponded

instead to clutter. This led us to the conclusion that looking at the range-azimuth dimension

alone is useless. Instead, we need to know what is clutter and remove that before the data has

real-world meaning.

Radar detections come with an associated measurement of radial speed. Every point on the

point cloud has an individual speed associated with it which is calculated by sending many chirps

inside a frame and calculating FFT over the chirps. The speed resolution can be tuned by chang-

ing the number of chirps transmitted before the FFT is made over all of them. In contrast to the

73

camera and lidar, the velocity is therefore already calculated inside the sensor. This is done be-

cause the velocity is needed in order to correct a skew in the depth measurement which comes

from the Doppler shift. It is also possible to send just a single chirp instead of a frame of chirps.

This way the measurement rate of depth is increased. This however means that speed is no

longer measured. Depth corrections can also no longer be made which leads to unreliable sens-

ing. Therefore, it is advisable that even in the pursuit of fast measurement rates, enough chirps

are put into a frame so that Doppler correction to depth can be made accurately. These are

features of the FMCW modulation employed in radar. FMCW modulation can also be employed

in Lidar sensing where the modulation correspondingly gives lidar scans an associated speed

estimate of the object it is hitting [47].

Radar can see multiple objects within the same beam if they are at different distances. This

means that even a large beam with a bad angle resolution keeps its accuracy in the range direc-

tion. Our MIMO radar in the dense data format has 256 range bins which makes depth the most

sampled dimension of the system. In comparison to the camera and Lidar the width of the radar

beam is what allows the radar to see multiple objects inside one beam. This is in effect caused

by the larger sampling area of the beam compared to small laser dots of Lidar systems.

The frame rate of a sensor determines its effectiveness in reacting to fast threats on the road.

The radar in this work produces data at a maximum fps of 30, which is slow compared to RGBD

cameras such as the Intel Realsense depth camera which can offer a performance of 90 fps [24].

For comparison the fastest Lidar systems from PreAct technologies achieve an fps of 125 [48].

When it comes to radar sensing our sensor with an fps of 30 represents the high end of the fps

spectrum for automotive radars. The highest fps of a commercial automotive radar is produced

by Uhnder and is claimed to be at least 50 fps [49]. From these numbers, we conclude that radar

data is produced in a slow fashion. Compared to multi-thousand fps cameras with fast reaction

times the radar is better suited to the task of adding robustness.

74

6. WHAT COULD BE IMPROVED

This section introduces the reader to better alternatives, future developments, and propositions

for radar platform development that are however out of the scope of a master’s thesis. It shortly

explores the proceedings of radar conferences and new commercial products in the field of ra-

dar sensing.

6.1 Optimization of chirp parameters

The system was evaluated and fit on the chirp configuration found in python/radar_configura-

tions/scatter_20fps.cfg which targeted human perception in an office environment. Later py-

thon/radar_configurations/scatter_20fps_max_radar_crossection_sensitivity.cfg was used for

automotive measurements which focused on increasing the observation distance. Some explo-

ration of chirp parameters was performed but more complex chirp frames were left out from

the analysis. The complex options for chirp frame design allowed for by the SDK could entail

programming different phase shifts of chirps inside the frame. With this, an implementation of

beamforming or other more complex transmission types could be achieved. Especially beam-

forming could add region of interest type sensing into the radar system by directing the trans-

mitted energy into the direction of interest.

6.2 Alternative fusion approach

In order to make the system more robust to sensor failure and occlusion, we need to perform

the data association task in another way. In the current approach, the radar point cloud is asso-

ciated with an image object using masks given by a deep learning segmentation network. As the

radar data is projected onto the image directly both sensors need a good view of the object in

order to make associations. In [15] we find examples of projection that take features from both

camera and radar and instead of projecting them on top of each other, the results are projected

into a third coordinate space, into which all sensors can independently produce features. In that

new measurement space point grouping algorithms can then be run to extract object-level in-

formation which is sensor independent. Other approaches to sensor independent fusion than

the projection approach used in this work include mapping raw RF images to RGB values and

imposing them on top of the camera image, pseudo image generators that generate images

75

based on radar point clouds, voxel networks, cross-supervised-based learning, and BEV methods

[15]. A 2023 summary of different state-of-the-art fusion algorithms is illustrated in figure 35. In

this figure, the names of the algorithms, and the levels of data fusion on which they operate are

listed in a time ordered fashion.

Figure 35 Timeline of camera-radar fusion algorithms as of 08/2023 [15]

From the summarizing figure, we perceive that research efforts primarily focus on feature-level

fusion approaches [14] [15]. This shows that companies and academics are giving more thought

to the high-level end application, which has to put all of the data together in the end. Data level

fusion, although regarded as the most expressible form of fusion, would entail huge computa-

tion and communication resources. Feature-level fusion retains most of the benefits of data-

level fusion but relaxes hardware resources needed on the side of the domain controller.

A goal of this work was to explore the use of radar sensing. As a part of this goal, sensor fusion

was explored, and an implementation made to further the depth of exploration efforts. The im-

plemented fusion approach can be utilized for example in the CHIPS-JU (formerly AGRARSENSE)

EU-project as a helper system to detect civilians entering into the harvesting zone of forester

machines. The radar-camera sensor fusion also has merit to be used in safety critical applications

if certain modifications are made to the fusion approach. With the knowledge gained from the

work, the direction of a sensor autonomous approach improving the reliability in both ADAS and

SLAM can now be presented.

As Kovilta oy focuses on sparse data representations, power-efficient design, and especially

event-driven approaches the feature level fusion utilized in most research today is also a good

fit for Kovilta allowing it to utilize the newest algorithms on the market. Feature extractors exist

for both frame-based and event-driven cameras and such algorithms can serve as the image side

processing. They are expected to provide their feature point cloud in 3D to match the capabili-

ties of the 4D radar. The CFAR processing employed in the current FMCW radar can be used as

the radar side feature extractor.

76

Next, the 3D spaces are to be combined in an independent, third, space. This third space is the

fusion space. The best operation for combination is via the addition operand. Addition allows

both sensors to produce results independently even if the other sensor produces a 0-output.

The fusion space can be implemented as a grid map or a point cloud-based representation such

as described previously in the chapter regarding SLAM. In the fusion space, point grouping and

object segmentation tasks can be run. These algorithms can produce 3D bounding boxes, the

size of which can help in the object classification task.

In this way a more robust detection platform can be formed. In essence, the sensor autonomy

this approach provides is due to the additive nature of data combination. Additivity allows sen-

sors to independently produce their output. This way no one sensor can hinder the performance

of other sensors. This added robustness would allow the system to be used also in safety critical

applications.

6.3 Digital Code Modulation

In its 2022 press release, a company under the name of Uhnder brought to the market a new

digital approach to radar modulation. Compared with the analog FMCW modulation used in this

work the new PMCW radar shifts most of the complexity of modulation and RF performance

into the domain of high-speed data converters and DSP [50]. The press release boasts 16x reso-

lution and 30x better contrast compared to the analog FMCW radar counterparts [51]. The sys-

tem claims an angular resolution of 1.5° and a range resolution down to 30cm. The implemen-

tation is single chip based, contains 192 virtual antennas, and claims to require less space than

standard FMCW radar implementations. With the new system, vehicles can be detected over

300 meters away with pedestrian tracking available up to 150m away. [49]

In its whitepaper about the new modulation technique, Uhnder refers to the technique as Digital

Code Modulation (DCM). To highlight more the achievements of this new type of modulation

Uhnder introduces 2 new figures of merit: High Contrast Resolution (HCR) measures the ability

of the radar to distinguish small objects next to larger ones. Need for this merit is found in traffic

situations where pedestrians are in traffic next to large cars or cyclists need to be found even

when a truck is masking them. Next, the Interference Susceptibility Factor (ISF) characterizes the

resilience of the radar to cross- and self-interference. ISF factor is very important as the number

of radar vehicles on the road rises [12] [21]. The radars must not cause other radars to lose their

function. The Uhnder radar is less susceptible to interference than the previous technologies

and has also a better HCR.

77

PMCW modulation scheme sends out a pseudorandom string of bits that is unique to the trans-

mitter. The information is encoded as a phase shift of either 0 for a 0-bit or 180° for a 1-bit. The

receiver calculates the correlation between the sent and the received string to decipher the

time-of-flight of the signal. The correlation operation produces very sharp peaks in its response

which are easier to interpret than the FFT peaks produced by FMCW. This gives the DCM radar

better high contrast resolution compared to FMCW. The PMCW modulation scheme is shown in

figure 36. Speed can also be measured by sending out multiple strings one after another. The

idea of this is akin to a chirp frame. Doppler shift effect on this modulation is to rotate the phase

of the return signal around the I-Q origin. This forces the DCM to have a DAC with higher bit

count to correctly perceive the Doppler shift information. [52]

Figure 36 PMCW modulation scheme of Uhnder DCM [52]

The ISF for DCM is higher than its FMCW contenders because the information is represented in

a code division multiplex fashion, where each receiver is only listening for a known code and

won’t be as interfered by other radars not using this particular code. The problem with DCM is

that it requires ADC and DSP operations in the order of Ghz as compared to the 10Mhz range in

FMCW radars. This digital modulation approach has only been used in military applications until

2020 when Uhnder first published a whitepaper on the subject. [52]

The Uhnder 4D imaging radar was deemed more suitable for the work due to its technical capa-

bilities. It was however determined that it is more important for Kovilta to first get to know radar

in its current development phase before moving to these forefront of technology approaches.

The novelty of this platform would have also required establishing a communication between

Kovilta and Uhnder to get the needed access into resources and documentation as this infor-

mation was not public knowledge but rather industry secrets. These reasons lead to the FMCW

radar being chosen over the superior PMCW radar in this work with a limited scope. For people

looking to expand the scope of this work, the Uhnder radar could be of high interest. This is

because it has superior interference mitigation, resolution capability, and contains a simpler RF

chain. The simpler RF frontend leads to better yield and fewer non-idealities in circuit perfor-

mance.

78

6.4 Radar based classification

In this work, the radar data is preprocessed into a point cloud. By moving to this feature-level

information, we have discarded rich semantic information present in the raw RF symbols. This

information does not relate directly to the speed or depth measure of an object but rather to

the qualities of the reflective surface. The common way to mine this deeper semantical infor-

mation is with the help of machine learning [15]. Many networks have been implemented that

can discern extra details about the object such as the type of reflective surface (metal or flesh),

size of the object, micro-Doppler signature, and road surface type [53]. The state of the object

can also be understood. The output of the system can then be a classification such as “This is a

person in fast running motion” or “This is a cyclist at rest”. These labels and the size information

can be fed to further tracking and path planning stages which use them in object motion predic-

tions.

An interesting point about semantic information mining from radar data is to look at the ADC

bit depth. For example, Uhnder’s PMCW modulation chooses to use 8-bit I and Q channels,

which may be more than what is required by the Doppler shift observation task. Overfitting of

ADCs would entail that the added data is used to make a richer RF image, which in turn can be

fed to a neural network in order to find previously hidden state information about the environ-

ment and the objects within. Additional ADC bits could therefore aid in the classification task.

The classification task is implemented widely in present-day radar applications. This means that

machine learning has become in large part entangled with the radar environment. Rarely any

networks accept point clouds as input and the preferred modalities for radar data representa-

tion are different slices of the radar cube. In addition, much semantic information is found by

making a short-time Fourier transformation (STFT) on the Doppler data to acquire the micro-

Doppler signatures of objects.

The training of the machine learning models is a problem that needs lots of labeled data. To this

end [15] proposes that transfer learning, domain adaptation, semi-supervised learning, and life-

long learning be applied in the training process of the networks. Transfer learning can be used

to transfer the information learned by other networks into a new network. This is often done by

reusing the feature extractor parts of previously trained networks that have already found the

best features to extract from this sensing modality. [54] Datasets and pre-trained networks for

radar-camera fusion are readily available online. The most common dataset is the nuScenes da-

taset. In April of 2023, the best-performing radar-camera perception system for the nuScenes

dataset is CRN [55], which outperforms lidar and camera-based approaches [15].

79

6.5 Attention

In sensor fusion, the different sensor modalities cannot always be expected to produce the best

information content possible. Weather conditions can create data that is unreliable and should

not be trusted. The idea of attention is to focus the trust we put in sensors to the modality that

produces information in the most reliable way. This is often done in the algorithmic context by

implementing an attention matrix that implements weights for trusting the different sensing

modalities. [15] Attention is a key driver in the safety of automotive travel as trusting faulty data

leads to a garbage in garbage out situation.

The attention approach can also be used to direct sensing into regions of interest in order to

reduce the computation of unimportant sections of the environment. In a vehicle context, this

is best achieved by radar detecting far-away objects and passing clues to the camera to look into

a specific portion of the frame to visually classify that object. In this way, the camera doesn’t

need to run expensive neural computations on full frames all the time but can instead use its

computation resources only on regions of interest. Radar detection is well suited for the region

proposal task as the depth resolution and range of the sensor are better than the ones provided

by stereo cameras. In the case a sensor becomes occluded, the attention can also be shifted to

favor sensors which are not compromised [17].

Attention has become a widespread approach to machine learning since the advent of large

language models (LLM) such as ChatGPT. These systems use attention in their building blocks,

the transformers. [56] As LLM adoption increases, new hardware accelerators for this task be-

come available. The attention task is therefore of growing interest and its implementation is

growing to be cheaper and faster. Applying attention to radar sensing would allow the sensor to

increase its effectiveness compared to cameras. This is because radar provides its own illumina-

tion. Compared to a camera the radar can direct illumination into parts of the world it deems

more important whereas a camera relies on passive illumination. This can be achieved by using

beamforming to direct transmission power to the attention hotspots.

80

6.6 Adaptive waveform

A company called Oculii has developed a hand-in-hand AI-to-adaptive waveform radar that

brings the perception capabilities of radar further than all competitors. The company changes

the traditional edge computation approach to radar sensing and instead transmits all radar data

to a central domain controller. The domain controller acts as the brains of the system. The con-

troller runs an AI algorithm that keeps track of a map. The radar hardware can change its wave-

form on the fly by command of the controller which is aware of its surroundings. An intelligent

design arises from an observation that not all information has to be measured directly from a

received radar echo. Instead, by having a map of what we think is where we can derive infor-

mation also from the part of the radar echo that did not return. The missing data can thus act

as data. By adapting the waveform of the radar, we can control the part of signal that is expected

to go missing. [57] More information can thus be extracted from the adaptive waveform trans-

mission, while utilizing large parts of the mature FMCW radars hardware implementation. The

adaptation of the waveform sets the radar system into feedback mode. Where a normal radar

only receives, the Oculii system closes the loop by controlling the transmission too.

The end result of this intelligent waveform control is huge. Oculii claims an enhancement of

angular resolution up to 100x. The current flagship model EAGLE boasts an azimuth resolution

of 0.5°, 5W power consumption, 350+ m range, 0.16m range resolution. It also completely turns

on its head the notion of radar data being sparse by producing 50 000 points per second. These

industry-leading specs are however not the most notable feature of the system. It is instead the

future scalability.

By using the adaptive waveform together with AI, Oculii achieves orders of magnitude better

resolution with fewer antennas than predicted by MIMO antenna configuration equations like (

29). The resolution performance also scales with the number of antennas in a more than linear

fashion as depicted in figure 37.

81

Figure 37 Performance of Oculii systems vs traditional MIMO radar [18]

With the scalability in mind, the Oculii system while being at the top of the resolution perfor-

mance now will be a clear leader if the predicted performance scaling comes to fruition. Where

the Oculii and Uhnder radars have resorted to changing the RF modulation itself, some super-

resolution techniques using the old FMCW modulation also exist for reaching similar perfor-

mance to these systems but without the scalability or interference mitigation provided by the

new approaches [12]. The most exciting super-resolution technique for FMCW MIMO was pro-

posed in [58] achieving a resolution of 0.5° using only 12 antennas.

82

7. CONCLUSIONS

This work explored the basics of radar sensing, sensor fusion, filtering, ADAS, and SLAM. A demo

platform was constructed which can track an unlimited number of cars, pedestrians, cyclists,

stop signs, and other instances of the COCO dataset. The radar sensing extends to 50 meters

and to speeds of up to 56 kmh. The tracking and sensor fusion algorithms used in the platform

are sensor agnostic and can scale their performance with better cameras and radars. An inno-

vative way to combine the most accurate parts of a sensing modality into a true velocity estimate

was developed. It uses the radial motion components from radar and combines them with axial

motion captured from the camera. This combines angular resolution of the camera with the

depth resolution of the radar achieving not only 3D perception with classification, but also esti-

mates that are more accurate than those predictable by the sensors separately.

Real world measurements of the system with tuned parameters for camera to radar calibration

were performed for both an indoor office environment involving human tracking and for out-

door tracking of vehicles. The outdoor application was more demanding due to the longer prop-

agation length which makes detection harder. The resolution also plays a role in longer range

detection as objects further away occupy a smaller incoming angle. From literature, a future

challenge for radar was also found. Although not evident in any of the measurements of this

work, the interference of multiple radars between each other is set to increase as the number

of radar-equipped vehicles on the road keeps increasing. Answers to all of these problems were

discussed in the section labelled “What could be improved”. In it, new modulation schemes with

increased resolution, beam forming capability, code division multiplexing, interference mitiga-

tion, and better scalability with antenna area are discussed.

The use of radar in SLAM and ADAS systems is often as a redundancy and path planning aid. The

redundancy arises from radar seeing through occlusion such as rain, snow, and fog. Other sens-

ing modalities, such as camera and lidar, are very susceptible to these environmental conditions

and tend to both fail at the same time. Radar avoids this by using light with a lower frequency

which does not scatter as easily from occlusion. This allows the radar to see through the snow

cover. The path planning and safety applications arise from the radars ability to detect targets

from further ranges than the camera. At 350+ meters of range capability, the newest radars can

give the system time to react to changes in the environment not afforded by other modes of

sensing. More reaction time translates to better chance of accident avoidance.

83

The information presented in this master’s thesis is made fully available to the public by releas-

ing the project as open source on GitHub under the MIT license. The files can be found at [37].

Kovilta Oy and the author have agreed to this under the pretense that no official support is to

be offered and that the author is representative of himself only and not to be affiliated with the

company he is in relations with.

84

8. REFERENCES

[1] C. Iovescu, S. Rao, “The fundamentals of millimeter wave radar sensors (Rev. A)”, Texas
instruments, July 2020. [Online]. Available:
https://www.ti.com/lit/wp/spyy005a/spyy005a.pdf?ts=1657531632660&ref_url=https
%253A%252F%252Fwww.ti.com%252Fproduct%252FAWR2243 [Accessed: Dec. 30,
2023].

[2] M. Chowdhury, L. Deka, “Transportation Cyber-Physical Systems”, Elsevier, 2018.

[3] C. Wolff, “Radar basics - Radial Speed”, radartutorial.eu. [Online]. Available:
https://www.radartutorial.eu/11.coherent/Radial%20Speed.en.html [Accessed: Dec.
30, 2023].

[4] CAS dataloggers, “THE BASICS OF SIGNAL ATTENUATION”. [Online]. Available:
https://www.dataloggerinc.com/wp-content/uploads/2016/11/16_Basics_of_sig-
nal_attenuation.pdf [Accessed: Dec. 30, 2023].

[5] M. Parker, “Digital Signal Processing 101: Everything You Need to Know to Get Started.
2nd edition”, Oxford: Elsevier Science, 2017.

[6] C. Powell, “Technical Analysis: Beamforming vs. MIMO Antennas”, Radio Frequency
systems, March 2014. [Online]. Available:
https://www.rfsworld.com/userfiles/white_papers/2014/Ooredoo_White%20Pa-
per_Mar14.pdf [Accessed: Dec. 30, 2023].

[7] Ó. García, “Signal Processing for mmWave MIMO Radar”, Master’s thesis, University of
Gävle, June 2015. [Online]. Available: http://www.diva-por-
tal.se/smash/get/diva2:826028/FULLTEXT01.pdf [Accessed: Jan. 3, 2023].

[8] NXP Semiconductors, “Automotive 4D Imaging Radar Demo from NXP Semiconduc-
tors”. [Online]. Available: https://www.youtube.com/watch?v=Al-
0GgV4mV0&ab_channel=NXPSemiconductors [Accessed: Dec. 30, 2023].

[9] D. Joyce, “Summary of trigonometric identities”, Clark university. [Online]. Available:
https://www2.clarku.edu/faculty/djoyce/trig/identities.html [Accessed: Dec. 30, 2023].

[10] M. DeCross et al., “Small-Angle Approximation”, Brilliant. [Online]. Available:
https://brilliant.org/wiki/small-angle-approximation/ [Accessed: Dec. 30, 2023].

[11] M. Vazquez, “Radar Resolution: How Accurate Can a Radar Be?”, Renesas, March 2022.
[Online]. Available: https://www.renesas.com/us/en/blogs/radar-resolution-how-accu-
rate-can-radar-be [Accessed: Dec. 30, 2023].

[12] J. Fuchs et al., “A Machine Learning Perspective on Automotive Radar Direction of Arri-
val Estimation”, IEEE Access, vol. 10, pp. 6775-6797, Jan 2022, doi: 10.1109/AC-
CESS.2022.3141587.

[13] C. Katzlberger, “Object Detection with Automotive Radar Sensors using CFAR-algo-
rithms”, Johannes Kepler University Linz, Sep 2018. [Online]. Available:

https://www.ti.com/lit/wp/spyy005a/spyy005a.pdf?ts=1657531632660&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FAWR2243
https://www.ti.com/lit/wp/spyy005a/spyy005a.pdf?ts=1657531632660&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FAWR2243
https://www.radartutorial.eu/11.coherent/Radial%20Speed.en.html
https://www.dataloggerinc.com/wp-content/uploads/2016/11/16_Basics_of_signal_attenuation.pdf
https://www.dataloggerinc.com/wp-content/uploads/2016/11/16_Basics_of_signal_attenuation.pdf
https://www.rfsworld.com/userfiles/white_papers/2014/Ooredoo_White%20Paper_Mar14.pdf
https://www.rfsworld.com/userfiles/white_papers/2014/Ooredoo_White%20Paper_Mar14.pdf
http://www.diva-portal.se/smash/get/diva2:826028/FULLTEXT01.pdf
http://www.diva-portal.se/smash/get/diva2:826028/FULLTEXT01.pdf
https://www.youtube.com/watch?v=Al-0GgV4mV0&ab_channel=NXPSemiconductors
https://www.youtube.com/watch?v=Al-0GgV4mV0&ab_channel=NXPSemiconductors
https://www2.clarku.edu/faculty/djoyce/trig/identities.html
https://brilliant.org/wiki/small-angle-approximation/
https://www.renesas.com/us/en/blogs/radar-resolution-how-accurate-can-radar-be
https://www.renesas.com/us/en/blogs/radar-resolution-how-accurate-can-radar-be

85

https://www.jku.at/fileadmin/gruppen/183/Docs/Finished_Theses/Bachelor_The-
sis_Katzlberger_final.pdf [Accessed: Dec. 30, 2023].

[14] Z. Han et al., “4D Millimeter-Wave Radar in Autonomous Driving: A Survey”, arXiv, Jun
2023. [Online]. Available: https://arxiv.org/abs/2306.04242 [Accessed: Dec. 30, 2023].

[15] S. Yao et al., “Radar-Camera Fusion for Object Detection and Semantic Segmentation in
Autonomous Driving: A Comprehensive Review”, IEEE Transactions on Intelligent Vehi-
cles, pp. 1-40, Jan 2023, doi: 10.1109/tiv.2023.3307157.

[16] Y. Wang et al., “RODNet: A Real-Time Radar Object Detection Network Cross-Super-
vised by Camera-Radar Fused Object 3D Localization”, IEEE Journal of Selected Topics
in Signal Processing, vol. 15, no. 4, pp. 954-967, June 2021, doi:
10.1109/JSTSP.2021.3058895.

[17] K. Youngseok, C. Jun Won, K. Dongsuk, “GRIF Net: Gated Region of Interest Fusion Net-
work for Robust 3D Object Detection from Radar Point Cloud and Monocular Image”,
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
doi:10.1109/IROS45743.2020.9341177.

[18] Oculii / Ambarella, [Online]. Available: https://www.oculii.com [Accessed: Dec. 30,
2023].

[19] J. Huang, “The Next AI Moment is Here”, NVIDIA, presented at COMPUTEX 2023, Tai-
pei, Taiwan, May 30 - June 2, 2023. Available: https://www.nvidia.com/en-
us/events/computex/ [Accessed: Dec. 30, 2023].

[20] ibaiGorordo, “AWR1843-Read-Data-Python-MMWAVE-SDK-3-“, GitHub. [Online]. Avail-
able: https://github.com/ibaiGorordo/AWR1843-Read-Data-Python-MMWAVE-SDK-3-
[Accessed: Dec. 30, 2023].

[21] Texas Instruments, “mmWave radar sensors”, video lectures, 2017. [Online]. Available:
https://www.ti.com/video/series/mmwave-training-series.html [Accessed: Jan. 3,
2023].

[22] B. Vogginger et al., “Automotive Radar Processing With Spiking Neural Networks: Con-
cepts and Challenges”, Frontiers in Neuroscience, Vol. 16, April 2022. Available:
https://doi.org/10.3389/fnins.2022.851774 [Accessed: Jan. 3, 2023].

[23] A. Shashua, “Mobileye Under The hood”, Mobileye, Presented at CES 2022, Las Vegas,
Nevada, Jan 5 – 7, 2022. Available: https://www.youtube.com/watch?v=QV7PGBfI49k
[Accessed: Dec. 30, 2023].

[24] Intel, “Intel Realsense Depth Camera D457”. [Online]. Available: https://www.intelre-
alsense.com/depth-camera-d457/ [Accessed: Dec. 30, 2023].

[25] Kovilta, “Technology. Sensor-level Processing”. [Online]. Available: https://ko-
vilta.fi/technology/ [Accessed: Dec. 30, 2023].

[26] R. Labbe, “Kalman and Bayesian Filters in Python”, GitHub, Oct 2020. [Online]. Availa-
ble: https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python [Accessed: Dec.
30, 2023].

https://www.jku.at/fileadmin/gruppen/183/Docs/Finished_Theses/Bachelor_Thesis_Katzlberger_final.pdf
https://www.jku.at/fileadmin/gruppen/183/Docs/Finished_Theses/Bachelor_Thesis_Katzlberger_final.pdf
https://arxiv.org/abs/2306.04242
https://www.oculii.com/
https://www.nvidia.com/en-us/events/computex/
https://www.nvidia.com/en-us/events/computex/
https://github.com/ibaiGorordo/AWR1843-Read-Data-Python-MMWAVE-SDK-3-
https://www.ti.com/video/series/mmwave-training-series.html
https://doi.org/10.3389/fnins.2022.851774
https://www.youtube.com/watch?v=QV7PGBfI49k
https://www.intelrealsense.com/depth-camera-d457/
https://www.intelrealsense.com/depth-camera-d457/
https://kovilta.fi/technology/
https://kovilta.fi/technology/
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

86

[27] MathWorks, “Developing Autonomous Mobile Robots Using MATLAB and Simulink”.
[Online]. Available: https://se.mathworks.com/campaigns/offers/next/autonomous-
mobile-robots.html [Accessed: Dec. 30, 2023].

[28] MatWorks, “What Is SLAM? 3 things you need to know”. [Online]. Available:
https://se.mathworks.com/discovery/slam.html [Accessed: Dec. 30, 2023].

[29] Z. Hong, Y. Petillot, A. Wallace, S. Wang, “Radar SLAM: A Robust SLAM System for All
Weather Conditions”, Edinburgh Centre for Robotics, arXiv, 2021. [Online]. Available:
https://arxiv.org/pdf/2104.05347.pdf [Accessed: Dec. 30, 2023].

[30] D. Ball et al., “OpenRatSLAM: an open source brain-based SLAM system”, Auton Robot
vol. 34, pp. 149–176, 2013. Available https://doi.org/10.1007/s10514-012-9317-9 [Ac-
cessed: Dec. 30, 2023].

[31] Matlab, “Autonomous Navigation”, Aug 2020. [Online]. Available:
https://www.youtube.com/playlist?list=PLn8PRpmsu08rLRGrnF-S6TyGrmcA2X7kg [Ac-
cessed: Dec. 30, 2023].

[32] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, “FastSLAM: A Factored Solution to the
Simultaneous Localization and Mapping Problem”, Proceedings of the AAAI National
Conference on Artificial Intelligence, 2002. Available: http://robots.stanford.edu/pa-
pers/montemerlo.fastslam-tr.pdf [Accessed: Dec. 30, 2023].

[33] Z. Shuran et al., “Simultaneous Localization and Mapping (SLAM) for Autonomous Driv-
ing: Concept and Analysis”, Remote Sensing, Vol. 15, no. 4, pp. 1156. Available:
https://doi.org/10.3390/rs15041156 [Accessed: Dec. 30, 2023].

[34] Texas Instruments, “mmWave software development kit (SDK)”. [Online]. Available:
https://www.ti.com/tool/MMWAVE-SDK [Accessed: Dec. 30, 2023].

[35] Texas Instruments, “AWR1843AOP Single-chip 77- and 79-GHz FMCW mmWave Sensor
Antennas-On-Package (AOP)”. [Online]. Available: https://www.ti.com/lit/ds/sym-
link/awr1843aop.pdf [Accessed: Dec. 30, 2023].

[36] Texas Instruments, “Millimeter Wave (mmw) Demo for XWR18XX”. [Online]. Available:
https://dev.ti.com/gallery/view/mmwave/mmWave_Demo_Visualizer/ver/3.6.0/ [Ac-
cessed: Dec. 30, 2023].

[37] K. Paasio, “AWR1830AOPEVM_camera_sensor_fusion”, GitHub, Jan 2024. [Online].
Available: https://github.com/kulle777/AWR1830AOPEVM_camera_sensor_fusion [Ac-
cessed: Jan. 2, 2023].

[38] P. Kumar, “What are RGBD cameras? Why RGBD cameras are preferred in some em-
bedded vision applications?”, Technology deep dive, May 2022. [Online]. Available:
https://www.e-consystems.com/blog/camera/technology/what-are-rgbd-cameras-
why-rgbd-cameras-are-preferred-in-some-embedded-vision-applications/ [Accessed:
Dec. 30, 2023].

[39] A. Astro and C. Avizzano, “fmcw-RADAR”, Sant'Anna Scuola Universitaria Superiore
Pisa, GitHub, 2021. [Online]. Available: https://github.com/0xastro/fmcw-RADAR [Ac-
cessed: Dec. 30, 2023].

https://se.mathworks.com/campaigns/offers/next/autonomous-mobile-robots.html
https://se.mathworks.com/campaigns/offers/next/autonomous-mobile-robots.html
https://se.mathworks.com/discovery/slam.html
https://arxiv.org/pdf/2104.05347.pdf
https://doi.org/10.1007/s10514-012-9317-9
https://www.youtube.com/playlist?list=PLn8PRpmsu08rLRGrnF-S6TyGrmcA2X7kg
http://robots.stanford.edu/papers/montemerlo.fastslam-tr.pdf
http://robots.stanford.edu/papers/montemerlo.fastslam-tr.pdf
https://doi.org/10.3390/rs15041156
https://www.ti.com/tool/MMWAVE-SDK
https://www.ti.com/lit/ds/symlink/awr1843aop.pdf
https://www.ti.com/lit/ds/symlink/awr1843aop.pdf
https://dev.ti.com/gallery/view/mmwave/mmWave_Demo_Visualizer/ver/3.6.0/
https://github.com/kulle777/AWR1830AOPEVM_camera_sensor_fusion
https://www.e-consystems.com/blog/camera/technology/what-are-rgbd-cameras-why-rgbd-cameras-are-preferred-in-some-embedded-vision-applications/
https://www.e-consystems.com/blog/camera/technology/what-are-rgbd-cameras-why-rgbd-cameras-are-preferred-in-some-embedded-vision-applications/
https://github.com/0xastro/fmcw-RADAR

87

[40] C. Händel, H. Konttaniemi, M. Autioniemi, “State-of-the-Art Review on Automotive Ra-
dars and Passive Radar Reflectors”, Lapin Ammattikorkeakoulu, May 2018. Available:
https://urn.fi/URN:ISBN:978-952-316-223-5 [Accessed: Dec. 30, 2023].

[41] D. Sawicki, “Cosine Effect Error on Radar and Lidar”, Police Radar Information Center,
2016. [Online]. Available: https://copradar.com/chapts/chapt2/ch2d1.html [Accessed:
Dec. 30, 2023].

[42] Y. Zhou, Y. Dong, F. Hou, J. Wu, “Review on Millimeter-Wave Radar and Camera Fusion
Technology”, Sustainability, vol. 14, no. 9, pp. 5114, April 2022. Available:
https://doi.org/10.3390/su14095114 [Accessed: Dec. 30, 2023].

[43] S. Ipek, R. Kapusta, “LIDAR for Autonomous System Design: Object Classification or Ob-
ject Detection?”, Analog Devices, Oct 2020. [Online]. Available: https://www.ana-
log.com/en/analog-dialogue/articles/lidar-for-autonomous-system-design-object-clas-
sification-or-object-detection.html [Accessed: Dec. 30, 2023].

[44] V. Janoudi et al., “Antenna Array Design for Coherent MIMO Radar Networks”, pre-
sented at 2023 IEEE Radar Conference, San Antonio, TX, USA, May 1 - 5, 2023. Availa-
ble: https://ieeexplore.ieee.org/document/10149789 [Accessed: Dec. 30, 2023].

[45] K. Marenko, “Why Hi-Resolution Radar is a Game Changer”, Fierce Electronics, Aug
2018. [Online]. Available: https://www.fierceelectronics.com/components/why-hi-res-
olution-radar-a-game-changer [Accessed: Dec. 30, 2023].

[46] M. Vazquez, “Radar For Automotive: Why Do We Need Radar?”, Semiengineering,
March 2022. [Online]. Available: https://semiengineering.com/radar-for-automotive-
why-do-we-need-radar/ [Accessed: Dec. 30, 2023].

[47] D. Coldewey, “Aeva and NASA want to map the moon with lidar-powered KNaCK pack”,
Techcrunch, April 2022. [Online]. Available: https://techcrunch.com/2022/04/21/aeva-
and-nasa-want-to-map-the-moon-with-lidar-powered-knack-pack/?guccounter=2 [Ac-
cessed: Dec. 30, 2023].

[48] PreAct technologies, “Mojave™ Sensor”. [Online]. Available: https://www.preact-
tech.com/mojave-sensor [Accessed: Dec. 30, 2023].

[49] Magna International, “Magna ICON Digital Radar”, Aug 2021. [Online]. Available:
https://www.youtube.com/watch?v=aFkZefmtruE&t=228s [Accessed: Dec. 30, 2023].

[50] X. Gao et al., “Experiments with mmWave Automotive Radar Test-bed”, 53rd Asilomar
Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 2019, pp. 1-6,
doi: 10.1109/IEEECONF44664.2019.9048939.

[51] E. Walz, “The First 4D Imaging Radar-on-a-Chip Developed by Texas-based Startup
'Uhnder' Will Debut on Vehicles in 2022”, Future Car. [Online]. Available:
https://www.futurecar.com/5253/The-First-4D-Imaging-Radar-on-a-Chip-Developed-
by-Texas-based-Startup-Uhnder-Will-Debut-on-Vehicles-in-2022 [Accessed: Aug 7,
2023].

[52] W. Stark, M. Ali, M. Maher, “DIGITAL CODE MODULATION (DCM) RADAR FOR AUTO-
MOTIVE APPLICATION”, Uhnder, Jan 2020. [Online]. Available:

https://urn.fi/URN:ISBN:978-952-316-223-5
https://copradar.com/chapts/chapt2/ch2d1.html
https://doi.org/10.3390/su14095114
https://www.analog.com/en/analog-dialogue/articles/lidar-for-autonomous-system-design-object-classification-or-object-detection.html
https://www.analog.com/en/analog-dialogue/articles/lidar-for-autonomous-system-design-object-classification-or-object-detection.html
https://www.analog.com/en/analog-dialogue/articles/lidar-for-autonomous-system-design-object-classification-or-object-detection.html
https://ieeexplore.ieee.org/document/10149789
https://www.fierceelectronics.com/components/why-hi-resolution-radar-a-game-changer
https://www.fierceelectronics.com/components/why-hi-resolution-radar-a-game-changer
https://semiengineering.com/radar-for-automotive-why-do-we-need-radar/
https://semiengineering.com/radar-for-automotive-why-do-we-need-radar/
https://techcrunch.com/2022/04/21/aeva-and-nasa-want-to-map-the-moon-with-lidar-powered-knack-pack/?guccounter=2
https://techcrunch.com/2022/04/21/aeva-and-nasa-want-to-map-the-moon-with-lidar-powered-knack-pack/?guccounter=2
https://www.preact-tech.com/mojave-sensor
https://www.preact-tech.com/mojave-sensor
https://www.youtube.com/watch?v=aFkZefmtruE&t=228s
https://www.futurecar.com/5253/The-First-4D-Imaging-Radar-on-a-Chip-Developed-by-Texas-based-Startup-Uhnder-Will-Debut-on-Vehicles-in-2022
https://www.futurecar.com/5253/The-First-4D-Imaging-Radar-on-a-Chip-Developed-by-Texas-based-Startup-Uhnder-Will-Debut-on-Vehicles-in-2022

88

https://www.uhnder.com/images/data/DCM_Radar_for_Automotive_Application_Fi-
nal.pdf [Accessed: Dec. 30, 2023].

[53] S. Sabery et al., “Road Surface Classification Based on Radar Imaging Using Convolu-
tional Neural Network”, IEEE Sensors Journal, vol. 21, no. 17, pp. 18725 - 18732, June
2021, doi: 10.1109/JSEN.2021.3087336.

[54] P. Baheti, “A Newbie-Friendly Guide to Transfer Learning”, Microsoft, Oct 2021.
[Online]. Available: https://www.v7labs.com/blog/transfer-learning-guide [Accessed:
Dec. 30, 2023].

[55] Y. Kim et al., “CRN: Camera Radar Net for Accurate, Robust, Efficient 3D Perception”,
presented at ICCV 2023, Paris, France, Oct 2 – 6, 2023. Available:
https://arxiv.org/abs/2304.00670 [Accessed: Dec. 30, 2023].

[56] Kjung, “Replacing Recurrence with Attention: Improving Large Language Models with
Self-Attention”, Edge Analytics, Oct 2021. [Online]. Available: https://me-
dium.com/edge-analytics/replacing-recurrence-with-attention-improving-large-lan-
guage-models-with-self-attention-6baa95b5e649 [Accessed: Dec. 30, 2023].

[57] S. Ward-Foxton, “AV Radar Moves to Domain Controller for First Time”, EE-times, Jan
2023. [Online]. Available: https://www.eetimes.com/av-radar-moves-to-domain-con-
troller-for-first-time/ [Accessed: Dec. 30, 2023].

[58] R. Sun et al., “A millimeter-wave automotive radar with high angular resolution for
identification of closely spaced on-road obstacles”, Nature, Scientific Reports, vol. 13,
no. 3233, Feb 2023. Available: https://www.nature.com/articles/s41598-023-30406-4
[Accessed: Dec. 30, 2023].

[59] C. Wolff, “Frequency-Modulated Continuous-Wave Radar (FMCW Radar)”, radartuto-
rial.eu, [Online]. Available: https://www.radartutorial.eu/02.basics/Fre-
quency%20Modulated%20Continuous%20Wave%20Radar.en.html [Accessed: Dec. 30,
2023].

[60] C. Liechti, “pySerial”, 2020. [Online]. Available: https://pyserial.readthedocs.io/en/lat-
est/pyserial.html. [Accessed: Dec. 30, 2023].

https://www.uhnder.com/images/data/DCM_Radar_for_Automotive_Application_Final.pdf
https://www.uhnder.com/images/data/DCM_Radar_for_Automotive_Application_Final.pdf
https://www.v7labs.com/blog/transfer-learning-guide
https://arxiv.org/abs/2304.00670
https://medium.com/edge-analytics/replacing-recurrence-with-attention-improving-large-language-models-with-self-attention-6baa95b5e649
https://medium.com/edge-analytics/replacing-recurrence-with-attention-improving-large-language-models-with-self-attention-6baa95b5e649
https://medium.com/edge-analytics/replacing-recurrence-with-attention-improving-large-language-models-with-self-attention-6baa95b5e649
https://www.eetimes.com/av-radar-moves-to-domain-controller-for-first-time/
https://www.eetimes.com/av-radar-moves-to-domain-controller-for-first-time/
https://www.nature.com/articles/s41598-023-30406-4
https://www.radartutorial.eu/02.basics/Frequency%20Modulated%20Continuous%20Wave%20Radar.en.html
https://www.radartutorial.eu/02.basics/Frequency%20Modulated%20Continuous%20Wave%20Radar.en.html
https://pyserial.readthedocs.io/en/latest/pyserial.html
https://pyserial.readthedocs.io/en/latest/pyserial.html

