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Abstract. We consider a PDE-ODE model of a flexible satellite that is com-

posed of two identical flexible solar panels and a center rigid body. We prove

that the satellite model is exponentially stable in the sense that the energy
of the solutions decays to zero exponentially. In addition, we construct two

internal model based controllers, a passive controller and an observer based

controller, such that the linear and angular velocities of the center rigid body
converge to the given sinusoidal signals asymptotically. A numerical simulation

is presented to compare the performances of the two controllers.

1. Introduction. In this paper, we consider output tracking and disturbance re-
jection problem for a flexible satellite that is composed of two identical flexible solar
panels and a center rigid body (Figure 1). Modeling the satellite panels as viscously
damped Euler-Bernoulli beams of length 1, the satellite system we study is given
by (similar models can be found in [6], [13])
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Figure 1. Satellite with flexible solar panels

ρaẅl(ξ, t) + EIw′′′′
l (ξ, t) + γẇl(ξ, t) = bd1(ξ)wd1(t), −1 < ξ < 0, t > 0,

ρaẅr(ξ, t) + EIw′′′′
r (ξ, t) + γẇr(ξ, t) = bd2(ξ)wd2(t), 0 < ξ < 1, t > 0,

mẅc(t) = EIw′′′
l (0, t)− EIw′′′

r (0, t) + u1(t) + wd3(t),

Imθ̈c(t) = −EIw′′
l (0, t) + EIw′′

r (0, t) + u2(t) + wd4(t),

w′′
l (−1, t) = 0, w′′′

l (−1, t) = 0,

w′′
r (1, t) = 0, w′′′

r (1, t) = 0,

ẇl(0, t) = ẇr(0, t) = ẇc(t),

ẇ′
l(0, t) = ẇ′

r(0, t) = θ̇c(t),

(1)

where wl(ξ, t) and wr(ξ, t) are the transverse displacements of the left and the
right beam, respectively, ẇl(ξ, t) and w′

l(ξ, t) denote time and spatial derivatives
of wl(ξ, t), respectively, wc(t) and θc(t) are the linear and angular displacements
of the rigid body, respectively, u1(t) and u2(t) are external control inputs of the
satellite model, wd1(t), wd2(t), wd3(t) and wd4(t) are external disturbances in the
satellite model, bd1(·) ∈ L2(−1, 0) and bd2(·) ∈ L2(0, 1) are real-valued functions.

Here ẇc(t) = ẇl(ξ, t)|ξ=0 = ẇr(ξ, t)|ξ=0 and θ̇c(t) = ẇ′
l(ξ, t)|ξ=0 = ẇ′

r(ξ, t)|ξ=0 are
linear and angular velocities of the rigid body, respectively. The parameters a, ρ,
E, I and γ are cross sectional area, linear density, Young’s modulus of elasticity,
second moment of area of the cross section and the viscous damping coefficient of
the beams, respectively, and m and Im denote the mass and the mass moment of
inertia of the center rigid body. Measurements that are the outputs of the model
are taken on the center rigid body and are given by,

y1(t) = ẇc(t), y2(t) = θ̇c(t). (2)

The main control objective is to construct a dynamic error feedback controller
such that the outputs, the linear and the angular velocities of the center rigid body,
track given reference signals yref (t) asymptotically. i.e.,

∥y(t)− yref (t)∥ → 0 as t→ ∞,

where y(t) = (y1(t), y2(t))
T is the output of the satellite model. In addition, the

proposed controller is required to be robust in the sense that it achieves output
tracking despite perturbations, disturbances and uncertainties in the satellite sys-
tem.

As the first main contribution of this paper, we present a detailed proof of uni-
form exponential stability of the satellite model in the sense that the energy of the
solutions decay exponentially to zero. The stability proof is based on the results
from C0-semigroup theory. We write the satellite system as a coupled system of a
PDE (two beams are combined into a single system) and an ODE (rigid body) via
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a power preserving interconnection. The main proof is divided naturally into two
steps. In the first step, we show that the imaginary axis is included in the resol-
vent set of the satellite system operator. In the second step, we derive an explicit
expression for the resolvent operator and show that it is uniformly bounded on the
imaginary axis. The stability proof is challenging because the input and the output
operators of the PDE are not admissible and its transfer function is not well-posed
(in the sense that the input-output map of the PDE is unbounded).

As the second main contribution of this paper, we construct two robust con-
trollers, a passive controller [20], [18] and an observer based controller [12], [17], for
the robust output tracking of the satellite model. The proposed controller designs
are based on the internal model principle [9], [10], [12], [17], [19]. Finally, simulation
results testing the effectiveness of the controllers are presented.

There are several studies in the literature investigating control problems of satel-
lite models. In [6], the stabilization problem of a flexible spacecraft has been inves-
tigated using frequency domain approach. In [13], dynamic modeling and vibration
control of a flexible satellite has been considered and vibrations of the solar panels
have been suppressed using the single-point control input on the center body. In
[1], modeling and control of a rotating flexible spacecraft has been considered, a
Proportional Derivative controller and a nonlinear controller have been presented
to suppress elastic vibrations of the satellite model. References [13] and [1] use Lya-
punov methods to prove the stability of the models. To the best of our knowledge,
robust output tracking problem for flexible satellites has not been considered in the
literature.

Stability of coupled PDE-ODE systems can often be obtained using controllabil-
ity and observability results. In [24], controllability and observability results of a
well-posed and strictly proper linear system coupled with a finite-dimensional linear
system with an invertible first component in its feedthrough matrix were presented.
In [25], using results from [24], strong stability of coupled impedance passive sys-
tems was shown and the results were applied to the SCOLE model to show that the
SCOLE model coupled with tuned mass damper system is strongly stable. More-
over, the SCOLE model is not exactly controllable in the natural energy state space
([22, Sec. 1]) but it was shown in [22] that the SCOLE model is exactly controllable
in a smoother state space. In [23], it was shown that a coupled system consisting
of a well-posed and impedance passive linear system and an internal model based
controller in a feedback connection is strongly stable. In our case, since the beam
system in the satellite model is not well-posed on the natural energy state space
and the rigid center body has no feedthrough term, the results of [24], [25] cannot
be utilized in showing the exponential stability of the satellite system. Moreover,
since our aim is to achieve exponential stability of the closed-loop system and one
of the proposed controllers is infinite-dimensional, the results in [22], [24], [25] and
[23] are not applicable in showing the exponential stability of the closed-loop system
consisting of the satellite system and the controller. The results in the above men-
tioned references have unstable infinite-dimensional part and therefore only strong
stability of the coupled system was obtained. In this work, since the beam system
is exponentially stable due to the distributed damping, we are able to prove the
exponential stability of the satellite system.

A preliminary version of these results has been presented in IFACWorld Congress
2020 [11]. As the main novelty of this version with respect to [11], we present a
detailed proof of the exponential stability of the satellite system. We present a
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passive controller and an observer based controller which also achieve the robust
output tracking of the satellite model and reject external disturbances. In addition,
simulation results showing the performances of the controllers are presented.

The paper is organized as follows. In Section 2, we present the abstract formu-
lation of the satellite model. In Section 3, we present some technical lemmas and
prove the exponential stability of the satellite model. In Section 4, we present the
tracking problem, the reference signal to be tracked by the satellite model and the
disturbance signals to be rejected. We present two internal model based controllers
for the robust output tracking of the satellite model. In addition, simulation results
are presented for particular choices of reference and disturbance signals. In Section
5, we conclude our results.

1.1. Notation. For normed linear spaces X and Y , L(X,Y ) denotes the set of
bounded linear operators from X to Y . For a linear operator A, D(A),R(A) and
N (A) denote domain, range and kernel of A, respectively. The resolvent and the
spectrum of A are denoted by ρ(A) and σ(A), respectively. The resolvent operator
is denoted by R(λ,A) = (λ − A)−1, λ ∈ ρ(A). We denote by X−1 the completion
of X with respect to the norm ∥x∥−1 = ∥(βI − A)−1x∥, x ∈ X, β ∈ ρ(A) and by
A−1 ∈ L(X,X−1), the extension of A to X−1. For functions f, g : I ⊂ R → R+ and
fk, gk ≥ 0, we denote f(x) ≲ g(x) and fk ≲ gk if there exist M1,M2 > 0 such that
f(x) ≤M1g(x) and fk ≤M2gk for all values of x ∈ I and k ∈ J ⊂ N.

2. Abstract Formulation of the Satellite Model. In this section, we write our
satellite model (1)-(2) in the state space form

ẋ(t) = Ax(t) +Bu(t) +Bdwd(t), x(0) = x0,

y(t) = Cx(t)
(3)

where x(t) ∈ X is the state variable and X is a Hilbert space, u(t) ∈ U = R2 is
the control input, wd(t) ∈ Ud = R4 is the external disturbance and y(t) ∈ Y = R2

is the output. The operator A : D(A) ⊂ X → X generates a strongly continuous
semigroup on X and the operators B ∈ L(U,X), Bd ∈ L(Ud, X) and C ∈ L(X,Y )
are bounded. The formulation (3) will be used in Section 4 in the construction of
controllers for robust output regulation.

In order to write the satellite model (1)-(2) in the state space form, we decompose
the satellite system into a PDE system (the two beams combined into a single sys-
tem) coupled with an ODE system (center rigid body) where PDE interacts with
ODE via boundary controls and boundary observations called “virtual boundary
inputs” and “virtual boundary outputs”, respectively. Figure 2 shows the bound-
ary interconnections between the beams and the center rigid body. This type of
decomposition has been considered, for example, in [22] for SCOLE model. As

Left Beam Rigid Body Right Beam

[
−EIw′′′

l (0, t)
EIw′′

l (0, t)

]
[
ẇc(t)

θ̇c(t)

]
[
EIw′′′

r (0, t)
−EIw′′

r (0, t)

]
[
ẇc(t)

θ̇c(t)

]

Figure 2. Coupling of the beams with the rigid body

the first step towards state space formulation, we write the PDE as an impedance
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passive abstract boundary control and observation system given by the following
definitions.

Definition 2.1 (Boundary Control and Observation System [8, Def. 3.3.2], [14,

Ch. 11]). Let X̂, Û and Ŷ be Hilbert spaces. Consider the system

˙̂x(t) = Âx̂(t), x̂(0) = x̂0, (4a)

B̂x̂(t) = û(t), (4b)

ŷ(t) = Ĉx̂(t) (4c)

where Â : D(Â) ⊂ X̂ → X̂, B̂ : D(B̂) ⊂ X̂ → Û and Ĉ : D(Â) → Ŷ are linear

operators and D(Â) ⊂ D(B̂). Then (4) is a boundary control and observation
system if the following hold.

1. The operator Â : D(Â) → X̂ with D(Â) = D(Â) ∩ N (B̂) and Âx̂ = Âx̂ for

x̂ ∈ D(Â) is the infinitesimal generator of a C0-semigroup (T̂ (t))t≥0 on X̂.

2. There exists an operator Ĥ ∈ L(Û , X̂) such that for all û ∈ Û we have

Ĥû ∈ D(Â), ÂĤ ∈ L(Û , X̂) and B̂Ĥû = û, û ∈ Û .

Remark 1. Let (Â, B̂) be a boundary control system. Then according to [21, Ch.

10], there exists a unique B̂ ∈ L(Û , X̂−1) such that Â = Â−1 + B̂B̂ on D(Â) and
therefore (4a) and (4b) can be written as

˙̂x(t) = Â−1x̂(t) + B̂û(t), x̂(0) = x̂0.

Definition 2.2 (Impedance Passive System). The system (Â, B̂, Ĉ) is called imped-
ance passive if the solutions of (4) satisfy

1

2

d

dt
∥x̂(t)∥2

X̂
≤ Re ⟨û(t), ŷ(t)⟩Û,Ŷ , t > 0.

We note that the above definition holds also for the systems in the state space
form. Since we are interested in controlling velocities of the center rigid body, we
use energy state space [14] instead of natural state space in order to write the PDE
as an abstract system.

2.1. Abstract Formulation of the Beams. The left beam system that we ex-
tract from the the satellite system is described by,

ẅl(ξ, t) +
EI

ρa
w′′′′

l (ξ, t) +
γ

ρa
ẇl(ξ, t) = 0, (5a)

ẇl(0, t) = ul1(t), ẇ
′
l(0, t) = ul2(t), (5b)

w′′
l (−1, t) = 0, w′′′

l (−1, t) = 0, (5c)

yl1(t) = −EIw′′′
l (0, t), yl2(t) = EIw′′

l (0, t). (5d)

where −1 < ξ < 0, t > 0 and ul1(t), ul2(t) are the virtual boundary inputs and
yl1(t), yl2(t) are the virtual boundary outputs of the left beam (see Figure 2),
respectively.

By choosing the state variable

xl(t) =

[
ρaẇl(·, t)
w′′

l (·, t)

]
,
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where ẇl(·, t) and w′′
l (·, t) are the velocity and the bending moment of the left beam,

respectively, (5) can be written in boundary control and observation form on the
state space Xl = L2([−1, 0];R2) as

ẋl(t) = Alxl(t), (6a)

Blxl(t) = ul(t), (6b)

yl(t) = Clxl(t), (6c)

where

Alxl(t) =

[
−γ(ρa)−1 −EI∂ξξ
(ρa)

−1
∂ξξ 0

] [
ρaẇl(·, t)
w′′

l (·, t)

]
,

with

D(Al) = {xl ∈ Xl | Hlxl ∈ H2([−1, 0];R2), xl2(−1) = x′l2(−1) = 0},

Hl =

[
(ρa)

−1
0

0 EI

]
, Blxl(t) =

[
ẇl(0, t)
ẇ′

l(0, t)

]
and Clxl(t) =

[
−EIw′′′

l (0, t)
EIw′′

l (0, t)

]
.

The operators Bl : D(Al) → Ul and Cl : D(Al) → Yl are the virtual control and
observation operators with Ul = R2 and Yl = R2. Here, it is noted that the equations
(6a), (6b), (6c) and D(Al) corresponds to (5a), (5b), (5d) and (5c), respectively.
The space Xl is a Hilbert space equipped with the energy norm

∥xl∥2Xl
:= ⟨xl,Hlxl⟩L2 , xl ∈ Xl.

Here 1
2∥xl∥

2
Xl

is the sum of the kinetic and potential energies of the left beam. The
above choice of the state variable corresponds to the port-Hamiltonian formulation
of the Euler Bernoulli beam. More details can be found, for example, in [5], [3], and
[4].

In the same way, the right beam can be written in boundary control and observa-
tion form on the Hilbert space Xr = L2([0, 1];R2) with ur1(t) = ẇr(0, t), ur2(t) =
ẇ′

r(0, t) as virtual boundary inputs and yr1(t) = EIw′′′
r (0, t), yr2(t) = −EIw′′

r (0, t)
as virtual outputs. We denote the input and output spaces of the right beam by Ur =

R2 and Yr = R2, respectively. Choosing the state variable xr(t) =

[
ρaẇr(·, t)
w′′

r (·, t)

]
, we

have
ẋr(t) = Arxr(t),

Brxr(t) = ur(t),

yr(t) = Crxr(t),
(7)

where

Ar =

[
−γ(ρa)−1 −EI∂ξξ
(ρa)

−1
∂ξξ 0

]
,Brxr(t) =

[
ẇr(0, t)
ẇ′

r(0, t)

]
, Crxr(t) =

[
EIw′′′

r (0, t)
−EIw′′

r (0, t)

]
and D(Ar) = {xr ∈ Xr | Hrxr ∈ H2([0, 1];R2), xr2(1) = x′r2(1) = 0},

Hr =

[
(ρa)

−1
0

0 EI

]
. The space Xr is equipped with the energy norm ∥xr∥2Xr

:=

⟨xr,Hrxr⟩L2 , xr ∈ Xr.
Next, we combine the two beam systems (6) and (7) into a single open loop

system on the Hilbert space Xb = Xl ×Xr as follows. From the above formulation
and from the boundary conditions in (1), it is clear that ul(t) = ur(t). Now, in order
to have the coupling between the beam system and the rigid body as in Figure 2,
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the input and the output of the combined beam system are chosen such that the
output of the combined beam system is equal to the addition of the outputs of the
left and the right beam systems and the input of the combined beam system is equal
to the inputs of the left and the right beam systems. Therefore, denoting the input
and output spaces of the combined system by Ub and Yb, respectively, let us define
a new virtual output function

yb(t) =
[
Cl Cr

] [xl(t)
xr(t)

]
and a virtual input function

ub(t) =
[
1
2Bl

1
2Br

] [xl(t)
xr(t)

]
.

Then the combined system can be written as

ẋb(t) = Abxb(t), Bbxb(t) = ub(t), Cbxb(t) = yb(t) (8)

where

xb(t) =

[
xl(t)
xr(t)

]
, Ab =

[
Al 0
0 Ar

]
, Bb =

[
1
2Bl

1
2Br

]
, Cb =

[
Cl Cr

]
,

and D(Ab) = {(xl, xr) ∈ D(Al)×D(Ar) : Blxl = Brxr}.

Lemma 2.3. The beam system (Ab,Bb, Cb) in (8) is an impedance passive system
on (Xb, Ub, Yb).

Proof. From [11, Sec. 2.1], we have that the left beam (Al,Bl, Cl) and the right beam
(Ar,Br, Cr) are impedance passive systems. Now, using the boundary condition
ul(t) = ur(t), we obtain

1

2

d

dt
∥xb(t)∥2Xb

=
1

2

d

dt
∥xl(t)∥2Xl

+
1

2

d

dt
∥xr(t)∥2Xr

,

≤ ⟨ul(t), yl(t)⟩Ul,Yl
+ ⟨ur(t), yr(t)⟩Ur,Yr

= ⟨ub(t), yb(t)⟩Ub,Yb
,

where xb(t), t > 0 are solutions of (8). Therefore, (8) is an impedance passive
system.

Remark 2. The impedance passivity of the systems (Al,Bl, Cl), (Ar,Br, Cr) and
(Ab,Bb, Cb) imply that Al = Al|N (Bl), Ar = Ar|N (Br) and Ab = Ab|N (Bb) generate
C0-semigroups of contractions Tl(t), Tr(t) and Tb(t) on Xl, Xr and Xb, respectively.
Therefore, (Al,Bl, Cl), (Ar,Br, Cr) and (Ab,Bb, Cb) are boundary control and obser-
vation systems [15, Sec. 4.2]. This implies from Remark 1 that there exist unique
operators Bl ∈ L(Ul, Xl−1

), Br ∈ L(Ur, Xr−1
) and Bb ∈ L(Ub, Xb−1

) such that
Al = Al−1

+ BlBl on D(Al), Ar = Ar−1
+ BrBr on D(Ar) and Ab = Ab−1

+ BbBb

on D(Ab), respectively.

2.2. The Rigid Body. Without external inputs, the center rigid body that we
extract from the satellite system is given by

mẅc(t) = uc1(t),

Imθ̈c(t) = uc2(t),

yc1(t) = ẇc(t),

yc2(t) = θ̇c(t),

(9)
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where uc1(t), uc2(t) are the virtual inputs and yc1(t), yc2(t) are the outputs of the
rigid body (see Figure 2), respectively. The state, input and output spaces of the
rigid body are given by Xc = R2, Uc = R2 and Yc = R2, respectively. Then, with

the state variable xc(t) =

[
ẇc(t)

θ̇c(t)

]
, the rigid body (9) on the Hilbert space Xc can

be written as,

ẋc(t) = Acxc(t) +Bcuc(t),

yc(t) = Ccxc(t),
(10)

where,

Ac = 0, Bc =

[
1
m 0
0 1

Im

]
, Cc =

[
1 0
0 1

]
, and uc(t) =

[
uc1(t)
uc2(t)

]
.

The space Xc is equipped with the energy norm

∥xc∥2Xc
= x∗cHcxc, where Hc =

[
m 0
0 Im

]
.

It is straightforward to see that the rigid body is an impedance passive system on
Xc (see [11, Sec. 2.3]). More details on the energy state space formulation of finite-
dimensional systems can be found in [14, Ch. 2.3].

2.3. The Satellite System as a Coupled PDE-ODE System. From the equa-
tions (8) and (10), we are now ready to write our satellite system (1)-(2) as an ab-
stract PDE-ODE system with the power-preserving interconnection ub(t) = yc(t),
uc(t) = −yb(t) (see Figure 3) on the state space X = Xb ×Xc as[

ẋb(t)
ẋc(t)

]
=

[
Ab 0

−BcCb 0

] [
xb(t)
xc(t)

]
+

[
0
Bc

]
u(t) +

[
Bd0 0
0 Bc

]
wd(t),

y(t) =
[
0 Cc

] [xb(t)
xc(t)

]
,

(11)

where u(t) =

[
u1(t)
u2(t)

]
, y(t) =

[
y1(t)
y2(t)

]
, wd(t) =

[
wd1(t) wd2(t) wd3(t) wd4(t)

]T
and Bd0 =


bd1(·) 0
0 0
0 bd2(·)
0 0

.

Beam System

Rigid Body

ub(t) −yb(t)

yc(t) uc(t)

Figure 3. The interconnection between the beams and the rigid
body
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Equation (11) is in the form (3) with A =

[
Ab 0

−BcCb 0

]
, B =

[
0
Bc

]
, C =

[
0 Cc

]
,

Bd =

[
Bd0 0
0 Bc

]
and x(t) =

[
xb(t)
xc(t)

]
. The domain of A is given by

D(A) = {(xb, xc) ∈ D(Ab)×Xc : Bbxb = Ccxc}.

The norm on X is defined as∥∥∥∥[xbxc
]∥∥∥∥2

X

= ∥xb∥2Xb
+ ∥xc∥2Xc

, xb ∈ Xb, xc ∈ Xc.

Remark 3. The operator A is dissipative, since using the power preserving inter-
connection, we obtain

1

2

d

dt

∥∥∥∥ [xb(t)xc(t)

] ∥∥∥∥2
X

≤ 0.

Therefore, by [4, Theorem 3.5], A generates a C0-semigroup of contractions on X.

3. Stability of the Satellite Model. In this section, we will show the exponential
stability of the satellite system in the sense that the operator A defined in Section
2.3 generates an exponentially stable semigroup T (t). Let us recall the operator A

A =

[
Ab 0

−BcCb 0

]
,

D(A) = {(xb, xc) ∈ D(Ab)×Xc : Bbxb = Ccxc}.
(12)

Theorem 3.1. The semigroup T (t) generated by A in (12) is exponentially stable.

We prove the theorem by using frequency domain criteria [16, Cor. 3.36] which
states that the semigroup T (t) generated by A is exponentially stable if and only
if iR ⊂ ρ(A) and supω∈R ∥R(iω,A)∥ < ∞. We complete the proof in the following
steps. Since the satellite system is a coupled system of the beam system and the
center rigid body, we will first show that iR ⊂ ρ(Ab) and supω∈R ∥R(iω,Ab)∥ < ∞
where Ab = Ab|N (Bb). As the second step, we will show that iR ⊂ ρ(A). In this
step, we will obtain an expression for the resolvent operator R(iω,A). Next, we will
estimate upper bounds of the operators which appear in the resolvent expression.
Finally, we will show that R(iω,A) is uniformly bounded.

Lemma 3.2. The operator Ab defined in Remark 2 satisfies iR ⊂ ρ(Ab) and
supω∈R ∥R(iω,Ab)∥ <∞.

Proof. We show that the semigroup Tb(t) generated by Ab is exponentially stable
which guarantees iR ⊂ ρ(Ab) and uniform boundedness of the resolvent R(iω,Ab).
First we claim that the operator Ar = Ar|N (Br) corresponding to the right beam
system (7) generates an exponentially stable semigroup Tr(t), t ≥ 0. We use [7,
Main Theorem 1]. We write Ar as Ar = A0 +B0 where

A0 =

[
0 −EI∂ξξ

(ρa)
−1
∂ξξ 0

]
, B0 =

[
−γ(ρa)−1 0

0 0

]
and D(A0) = D(Ar). We will show that the operators A0 and B0 satisfy the
following conditions.

(c1) The operator A0 is skew-adjoint and it has compact resolvent.
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(c2) The spectrum of A0 satisfies the gap property

inf {|λj − λk| |j, k = 1, 2, 3, · · · , j ̸= k} > 0.

(c3) The operator B0 is dissipative.
(c4) If any sequence {(xrn) ∈ Xr, n = 1, 2, · · · } satisfies

lim
n→∞

Re ⟨B0xrn , xrn⟩Xr
= 0,

then limn→∞∥B0xrn∥Xr
= 0.

(c5) There exists δ > 0 such that ∥B0ϕk∥Xr
≥ δ, where ϕk, k ∈ Z is an orthonor-

mal eigenvector of A0.

We have Re ⟨A0xr, xr⟩ = 0, xr ∈ D(A0). Therefore, by [5, Thm. 2.3], A0 has
compact resolvent. This implies that the operator A0 is skew-adjoint.

By a direct computation, we can obtain eigenvalues iλk of A0 and orthonormal
basis ϕk = (fk, gk)

T , k ∈ Z consisting of eigenvectors of A0. The eigenvalues and
the eigenvectors are given by

iλk = i

√
EI

ρa
[π(k − 1

2
) +O(e−π(k− 1

2 ))]2,

fk(ξ) = βk[(cosh (µk) + cos (µk))(cosh (µkξ)− cos (µkξ))

− (sinh (µk)− sin (µk))(sinh (µkξ)− sin (µkξ))],

gk(ξ) =
βk

i
√
ρaEI

[(cosh (µk) + cos (µk))(cosh (µkξ) + cos (µkξ))

− (sinh (µk)− sin (µk))(sinh (µkξ) + sin (µkξ))],

(13)

where µk = ( ρa
EI )

1
4

√
λk are the solutions of cosh (µk) cos (µk) + 1 = 0 and βk > 0

are chosen such that ∥ϕk∥Xr
= 1. It is clear that the condition (c2) is satisfied since

the gap between two successive eigenvalues satisfies |λk − λk+1| → ∞ as k → ∞.
The operator B0 is dissipative since

Re ⟨B0xr, xr⟩Xr
= −γ(ρa)−2∥xr1∥2L2 ≤ 0.

Also, −Re ⟨B0xr, xr⟩Xr
= γ−1ρa∥B0xr∥2Xr

holds. This implies that the conditions

(c3) and (c4) are satisfied.
Next, we show that the condition (c5) is satisfied. The formulas for fk and gk in

(13) can be used to show that

lim
|k|→∞

∥gk∥L2

∥fk∥L2

=
1√
ρaEI

. (14)

Here we note that fk ̸= 0, ∀k ∈ Z, since (fk, gk)
T are eigenvectors and fk = 0

would imply gk = (ρa)−1

iλk
f ′′k = 0. The equation (14) implies that for all ϵ > 0, there

exists N ∈ N such that for all k ∈ Z with |k| ≥ N , we have∣∣∣∣∥gk∥L2

∥fk∥L2

∣∣∣∣ ≤ ϵ+
1√
ρaEI

.

Thus

∥gk∥L2

∥fk∥L2

≤ C ′
√
ρaEI

, ∀ k ∈ Z,

where C ′ = max{1 + ϵ
√
ρaEI,

√
ρaEImax|k|<N

∥gk∥L2

∥fk∥L2
}. Now we obtain

∥B0ϕk∥2Xr
= γ2(ρa)−3∥fk∥2L2 ,
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≥ 1

2
γ2(ρa)−3(∥fk∥2L2 +

ρaEI

C ′2 ∥gk∥2L2),

≥ 1

2C ′2 γ
2(ρa)−2∥ϕk∥2Xr

,

=
1

2C ′2 γ
2(ρa)−2 ≥ δ2 > 0, ∀k ∈ Z.

Now all the conditions (c1)-(c5) are satisfied. Hence by [7, Main Theorem 1], we
have that Ar generates an exponentially stable semigroup Tr(t).

Analogously, we have that Al = Al|N (Bl) generates an exponentially stable semi-
group Tl(t), t > 0. Thus Ab generates an exponentially stable semigroup Tb(t)
which completes the proof.

Lemma 3.3. Let Pb(·) = CbR(·, Ab−1
)Bb and Pc(·) = CcR(·, Ac)Bc be the transfer

functions of the beam system (Ab,Bb, Cb) and the center rigid body (Ac, Bc, Cc),
respectively. Assume that Pb(0) and I + Pb(iω)Pc(iω), ω ∈ R\{0} are nonsingular.
Then the operator A in (12) satisfies iR ⊂ ρ(A).

Proof. We will show that the operator iω − A is bijective. Let ω ∈ R be arbitrary.
We start by proving iω − A is injective. Let (xb, xc)

T ∈ D(A) = {(xb, xc) ∈
D(Ab) ×Xc : Bbxb = Ccxc} be such that (iω − A)(xb, xc)

T = 0. Then by using
the structure of A, we obtain [

(iω −Ab)xb
BcCbxb + iωxc

]
= 0.

We have from Lemma 3.2 that iR ⊂ ρ(Ab). By using Remark 2, solving the above
equation, we obtain

xb = R(iω,Ab−1)BbCcxc,

[iωIXc
+BcPb(iω)Cc]xc = 0.

(15)

We have that Bc, Cc are nonsingular and Pb(0) and I + Pb(iω)Pc(iω) are assumed
to be nonsingular. Therefore, the function

S(iω) =

{
1
iω + 1

ω2BcPb(iω)(I + Pb(iω)Pc(iω))
−1Cc, ω ∈ R\{0},

(BcPb(0)Cc)
−1, ω = 0

(16)

is well-defined for all ω ∈ R. A direct computation shows that S(iω) = [iωIXc +
BcPb(iω)Cc]

−1 for all ω ∈ R. This implies by (15) that (xb, xc) = 0. Thus, the
operator iω −A is injective.

Now it remains to prove that iω − A is surjective. For all fb ∈ Xb and fc ∈ Xc,
our aim is to find (xb, xc)

T ∈ D(A) such that[
fb
fc

]
= (iω −A)

[
xb
xc

]
=

[
(iω −Ab)xb
BcCbxb + iωxc

]
. (17)

Since iR ⊂ ρ(Ab), using Remark 2, the solution of (17) is given by

xb = [R(iω,Ab)−R(iω,Ab−1)BbCcS(iω)BcCbR(iω,Ab)]fb

+R(iω,Ab−1
)BbCcS(iω)fc

xc = −S(iω)BcCbR(iω,Ab)fb + S(iω)fc

(18)

where Cb = Cb|N (Bb). Moreover, for (xb, xc) ∈ D(Ab)×Xc, we have[
Bb −Cc

] [xb
xc

]
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= BbR(iω,Ab)fb − BbR(iω,Ab−1)BbCcS(iω)BcCbR(iω,Ab)fb

+ BbR(iω,Ab−1
)BbCcS(iω)fc + CcS(iω)BcCbR(iω,Ab)fb − CcS(iω)fc

= 0

since BbR(iω,Ab−1
)Bb = I [14, Prop. 10.1.2] and R(R(iω,Ab)) ⊂ D(Ab). Thus

(xb, xc)
T ∈ D(A). This implies that the operator iω − A is surjective. Thus iω −

A, ω ∈ R has a bounded inverse, which completes the proof.

Remark 4. From the equation (18) in Lemma 3.3, the resolvent operator R(iω,A)
has the form

R(iω,A) =

[
R11(iω) R12(iω)
R21(iω) R22(iω)

]
(19)

where
R11(iω) = R(iω,Ab)−R(iω,Ab−1)BbCcS(iω)BcCbR(iω,Ab),

R12(iω) = R(iω,Ab−1)BbCcS(iω),

R21(iω) = −S(iω)BcCbR(iω,Ab),

R22(iω) = S(iω).

(20)

In the following we derive an upper bound for the transfer function Pb(iω) and up-
per bounds for the operators R(iω,Ab−1

)Bb, CbR(iω,Ab) and (I+Pb(iω)Pc(iω))
−1.

Lemma 3.4. Let Pb(·) be the transfer function of the beam system (Ab,Bb, Cb).
Then there exists M > 0 such that ∥Pb(iω)∥ ≤M(|ω|+1) for all ω ∈ R. Moreover,
Pb(0) is nonsingular.

Proof. For ub ∈ Ub, the transfer function of the beam system (Ab,Bb, Cb) is given
by

Pb(iω)ub = Pl(iω)ul + Pr(iω)ur, ω ∈ R,

where Pl(iω) and Pr(iω) are the transfer functions of the left and the right beam
systems, respectively, and we will now derive an explicit expression for them. For
ur ∈ Ur, the transfer function Pr(iω) of the right beam system (Ar,Br, Cr) can be
obtained as the unique solution of

(iω −Ar)xr = 0,

Brxr = ur

Pr(iω)ur = Crxr
with xr ∈ D(Ar) = {xr = (fr, gr)

T ∈ Xr | Hrxr ∈ H2([0, 1];R2), gr(1) = g′r(1) =
0} ([14, Thm. 12.1.3]). Replacing the operators with the corresponding expressions,
the above equations can be written as

(iω + γ(ρa)−1)fr + EIg′′r = 0,

−(ρa)−1f ′′r + iωgr = 0,

fr(0) = ρa ur1, f
′
r(0) = ρa ur2,

EIgr(1) = 0, EIg′r(1) = 0,

Pr(iω)ur = EI

[
g′r(0)
−gr(0)

]
.

(21)

We consider the case ω = 0 separately. Solving (21) for ω = 0, we obtain

fr(ξ) = ρa(ur1 + ξur2),
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gr(ξ) =
γ

EI

[(
−ξ2

2
+ ξ − 1

2

)
ur1 +

(
−ξ3

6
+
ξ

2
− 1

3

)
ur2

]
and therefore Pr(0) is given by

Pr(0)ur = EI

[
g′r(0)
−gr(0)

]
= γ

[
1 1

2
1
2

1
3

] [
ur1
ur2

]
.

Similarly, we obtain that Pl(0) is given by

Pl(0)ul = EI

[
−g′l(0)
gl(0)

]
= γ

[
1 −1

2−1
2

1
3

] [
ul1
ul2

]
.

Now using the boundary conditions ul1 = ur1, ul2 = ur2, the transfer function of
the combined beam system is given by,

Pb(0)ub = EI

[
g′r(0)− g′l(0)
−gr(0) + gl(0)

]
= γ

[
2 0
0 2

3

]
ub. (22)

Thus Pb(0) is indeed nonsingular. For ω ∈ R\{0}, solving (21), we obtain

fr(ξ) = ρa

[
(C1,ωur1 −

C3,ω

α(ω)
ur2)f1(ξ) + (C2,ωur1 +

C4,ω

α(ω)
ur2)f2(ξ)

+ cos (α(ω)ξ)ur1 +
sin (α(ω)ξ)

α(ω)
ur2

]
,

gr(ξ) =
α(ω)2

iω

[
(C1,ωur1 −

C3,ω

α(ω)
ur2)g1(ξ) + (C2,ωur1 +

C4,ω

α(ω)
ur2)g2(ξ)

− cos (α(ω)ξ)ur1 −
sin (α(ω)ξ)

α(ω)
ur2

]
,

where

C1,ω =
C1(ω)

C2(ω)
, C2,ω =

C2(ω) cos (α(ω))− C1(ω)C5(ω)

C2(ω)C3(ω)
,

C3,ω =
C4(ω)

C2(ω)
, C4,ω =

C2(ω) sin (α(ω)) + C4(ω)C5(ω)

C2(ω)C3(ω)
,

(23)

f1(ξ) = cosh (α(ω)ξ)− cos (α(ω)ξ), f2(ξ) = sinh (α(ω)ξ)− sin (α(ω)ξ),

g1(ξ) = cosh (α(ω)ξ) + cos (α(ω)ξ), g2(ξ) = sinh (α(ω)ξ) + sin (α(ω)ξ)

and

C1(ω) = 1 + cos (α(ω)) cosh (α(ω)) + sin (α(ω)) sinh (α(ω)),

C2(ω) = 2 + 2 cosh (α(ω)) cos (α(ω)),

C3(ω) = sinh (α(ω)) + sin (α(ω)),

C4(ω) = cos (α(ω)) sinh (α(ω))− sin (α(ω)) cosh (α(ω)),

C5(ω) = cosh (α(ω)) + cos (α(ω)),

α(ω) =

(
ρa

EI

) 1
4

(ω2 − iγ(ρa)−1ω)
1
4 .

Therefore, the transfer function of the right beam can be written as,

Pr(iω)ur = EI

[
g′r(0)
−gr(0)

]
, ω ∈ R\{0}
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where

g′r(0) = 2
α(ω)

3

iω
C2,ωur1 +

α(ω)
2

iω
(2C4,ω − 1)ur2,

gr(0) =
α(ω)

2

iω
(2C1,ω − 1)ur1 − 2

α(ω)

iω
C3,ωur2.

In the same way, we can obtain the transfer function of the left beam which is given
by,

Pl(iω)ul = EI

[
−g′l(0)
gl(0)

]
, ω ∈ R\{0}

where

g′l(0) = −2
α(ω)

3

iω
C2,ωul1 +

α(ω)
2

iω
(2C4,ω − 1)ul2,

gl(0) =
α(ω)

2

iω
(2C1,ω − 1)ul1 + 2

α(ω)

iω
C3,ωul2.

Thus, the transfer function of the combined beam system is given by,

Pb(iω)ub = 4EI
α(ω)

iω

[
α(ω)2C2,ω 0

0 C3,ω

]
ub, ω ∈ R\{0}. (24)

Now, let us estimate the absolute values of C2,ω and C3,ω which contain trigono-
metric and hyperbolic terms. Writing α(ω) in terms of its real and imaginary parts,
we obtain

α(ω) =

(
ρa

EI

) 1
4

(ω2 − iγ(ρa)−1ω)
1
4 ,

= |α(ω)|
(
cos

(
θ(ω) + 2πk

4

)
+ i sin

(
θ(ω) + 2πk

4

))
, k = 0, 1, 2, 3,

(25)

where

|α(ω)| =
(
ρa

EI
|ω|

√
ω2 + γ2(ρa)−2

) 1
4

,

θ(ω) = tan−1

(
−γ(ρa)−1

ω

)
.

We have

Re(α(ω)) = ±|α(ω)| cos
(
θ(ω)

4

)
or Re(α(ω)) = ∓|α(ω)| sin

(
θ(ω)

4

)
,

Im(α(ω)) = ±|α(ω)| sin
(
θ(ω)

4

)
or Im(α(ω)) = ±|α(ω)| cos

(
θ(ω)

4

)
.

In addition, there exists ω1 ≥ γ(ρa)−1 > 0 such that tan−1(γ(ρa)
−1

|ω| ) ≤ γ(ρa)−1

|ω| for

all |ω| > ω1. Therefore, there exist M1,M2,M3,M4 > 0 and ω2 > ω1 such that

M1

√
|ω| ≤ |α(ω)|

∣∣∣∣ cos(θ(ω)4

)∣∣∣∣ ≤M2

√
|ω|

M3
1√
|ω|

≤ |α(ω)|
∣∣∣∣ sin(θ(ω)4

)∣∣∣∣ ≤M4
1√
|ω|
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for all |ω| ≥ ω2. Denoting xω = Re(α(ω)) and yω = Im(α(ω)), the above estimates

imply that when |xω| grows at a rate of
√

|ω|, |yω| decays at a rate of 1√
|ω|

or the

other way around. Since |C2,ω| and |C3,ω| have similar terms for all the four roots
of α(ω), we restrict our analysis to the principal branch of the fourth root of α(ω)
and note that the other branches can be treated similarly.

The definition of α(ω) and straightforward estimates can be used to verify that
|cosh(α(ω)) cos(α(ω))| → ∞ as |ω| → ∞. Therefore, there exists ω0 > ω2 such that

| coshα(ω) cosα(ω)| ≥ 2 (26)

for all |ω| ≥ ω0 and this further implies that∣∣∣∣ sin (α(ω)) sinh (α(ω))

1 + cos (α(ω)) cosh (α(ω))

∣∣∣∣ ≤ |sin (α(ω)) sinh (α(ω))|
|cos (α(ω)) cosh (α(ω))| − 1

≤ 2|tan (α(ω))||tanh (α(ω))|
≤ 2(|coth (yω)|+ |tanh (yω)|)

(|tanh (xω)|+ |coth (xω)|)

(27)

where the last inequality is obtained by separating real and imaginary parts of
the second inequality and using straightforward estimates. Here we note that
|tanh (xω)|, |coth (xω)| and |tanh (yω)| are all uniformly bounded for |ω| ≥ ω0 and
since |yω| decays at a rate of 1√

|ω|
, using Taylor series, we can estimate, there exists

M ′
0 > 0 such that

| coth (yω)| =
∣∣∣∣y−1

ω +
yω
3

− y3ω
45

+ · · ·
∣∣∣∣ ≤M ′

0

√
|ω|

for |ω| ≥ ω0. Therefore, from (27), we obtain∣∣∣∣ sinh (α(ω)) sin (α(ω))

1 + cosh (α(ω)) cos (α(ω))

∣∣∣∣ ≲ √
|ω| (28)

for |ω| ≥ ω0. Moreover, | sin (xω) cosh (yω)
sinh (xω) cos (yω) | → 0 as |ω| → ∞. This implies that there

exists M ′′
0 > 0 such that

|sinh (α(ω)) + sin (α(ω))| ≥ |Re(sinh (α(ω)) + sin (α(ω)))|
= |sinh (xω) cos (yω) + sin (xω) cosh (yω)|

= |sinh (xω) cos (yω)|
∣∣∣∣1 + sin (xω) cosh (yω)

sinh (xω) cos (yω)

∣∣∣∣
≥M ′′

0 |sinh (xω) cos (yω)|

for |ω| ≥ ω0. Since | cos (α(ω))| and | tan (yω)| are uniformly bounded for |ω| ≥ ω0,
the above estimate implies that there exist M ′

1 > 0 and M ′′
1 > 0 such that∣∣∣∣ cos (α(ω))

sinh (α(ω)) + sin (α(ω))

∣∣∣∣ ≤M ′
1 and (29)

∣∣∣∣ cosh (α(ω))

sinh (α(ω)) + sin (α(ω))

∣∣∣∣ ≤ 1

M ′′
0

∣∣∣∣cosh (xω) cos (yω) + i sinh (xω) sin (yω)

sinh (xω) cos (yω)

∣∣∣∣
≤ 1

M ′′
0

[| coth (xω)|+ | tan (yω)|] ≤M ′′
1

(30)
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for |ω| ≥ ω0. We note that |coth (xω)| is uniformly bounded for |ω| ≥ ω0. Using
the estimates (28), (29) and (30), from (23), we obtain

|C2,ω| ≤
∣∣∣∣ cos (α(ω))

sinh (α(ω)) + sin (α(ω))

∣∣∣∣
+

∣∣∣∣12 +
sin (α(ω)) sinh (α(ω))

2 + 2 cosh (α(ω)) cos (α(ω))

∣∣∣∣∣∣∣∣cosh (α(ω)) + cos (α(ω))

sinh (α(ω)) + sin (α(ω))

∣∣∣∣
≲

√
|ω|

(31)

for |ω| ≥ ω0. Again using (26), from (23), we can estimate

|C3,ω| =
∣∣∣∣cos (α(ω)) sinh (α(ω))− sin (α(ω)) cosh (α(ω))

2 + 2 cosh (α(ω)) cos (α(ω))

∣∣∣∣
≤

∣∣∣∣cos (α(ω)) sinh (α(ω))− sin (α(ω)) cosh (α(ω))

cosh (α(ω)) cos (α(ω))

∣∣∣∣
≤ | tanh (α(ω))|+ | tan (α(ω))|
≤ |tanh (xω)|+ |coth (xω)|+ |coth (yω)|+ |tanh (yω)|.

Since |tanh (xω)|, |coth (xω)| and |tanh (yω)| are uniformly bounded and |coth (yω)| ≤
M ′

0

√
|ω| for |ω| ≥ ω0, we have

|C3,ω| ≲
√
|ω| (32)

for |ω| ≥ ω0. Finally, from the estimates (31), (32) and from equation (24) we
obtain

∥Pb(iω)ub∥2 ≲ 16(EI)2
[
|α(ω)|6

|ω|2
|ω||ub1|2 +

|α(ω)|2

|ω|2
|ω||ub2|2

]
,

≲ (|ω|+ 1)2|ub|2

for |ω| ≥ ω0. Hence ∥Pb(iω)∥ ≲ |ω| + 1 for all |ω| ≥ ω0. Finally, by the continuity
of the transfer function Pb(·) on iR, we conclude that ∥Pb(iω)∥ ≲ |ω| + 1 for all
ω ∈ R.

Lemma 3.5. There exists C ′ > 0 such that ∥R(iω,Ab−1
)Bb∥ ≤ C ′

√
|ω|+ 1 for all

ω ∈ R. Moreover, I + Pb(iω)Pc(iω) is nonsingular for all ω ∈ R\{0}.

Proof. By using [21, Rem. 10.1.5], we have that for every ub ∈ Ub, iω ∈ ρ(Ab−1
),

xb = R(iω,Ab−1
)Bbub =

[
R(iω,Al−1)Bl

R(iω,Ar−1
)Br

]
ub ∈ D(Ab)

where Bl, Br and Bb are defined in Remark 2, is the unique solution of the abstract
elliptic problem

(iω −Ab)xb = 0,

Bbxb = ub.

Assume that |ω| ≥ 1. Let us start by estimating the norm of xr = R(iω,Ar−1)Brub
which is the unique solution of (iω −Ar)xr = 0, Brxr = ub. If xr = (fr, gr)

T , then
using the expression for Ar, we have

(iω + γ(ρa)−1)fr + EIg′′r = 0, (33)

−(ρa)−1f ′′r + iωgr = 0, (34)

fr(0) = ρa ub1, f
′
r(0) = ρa ub2, (35)
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EIgr(1) = 0, EIg′r(1) = 0. (36)

Taking L2 inner product of (33) with (ρa)−1fr and L2 inner product of (34) with
EIgr, respectively, we obtain

(ρa)−1(iω + γ(ρa)−1)∥fr∥2L2 − EI(ρa)−1(ρa)g′r(0)ub1

−EI(ρa)−1

∫ 1

0

g′rf̄r
′
dξ = 0.

(37)

EIḡr(0)ub2 + EI(ρa)−1

∫ 1

0

f ′r ḡr
′dξ + iEIω∥gr∥2L2 = 0. (38)

Adding complex conjugate of (38) to (37), we obtain

(ρa)−1(iω + γ(ρa)−1)∥fr∥2L2 − iEIω∥gr∥2L2 = ⟨yr, ub⟩ . (39)

Equating real and imaginary parts and using the Cauchy-Schwartz inequality, we
obtain

γ(ρa)−2∥fr∥2L2 ≤ ∥Pr(iω)ub∥∥ub∥

EI∥gr∥2L2 ≤
(
ρa

γ
+

1

|ω|

)
∥Pr(iω)ub∥∥ub∥,

where Pr(·) is the transfer function of the right beam system. Therefore,

∥xr∥2Xr
= (ρa)−1∥fr∥2L2 + EI∥gr∥2L2 ,

≤ ρa

γ
∥Pr(iω)ub∥∥ub∥+

(
ρa

γ
+

1

|ω|

)
∥Pr(iω)ub∥∥ub∥,

≤
(
2ρa

γ
+ 1

)
∥Pr(iω)ub∥∥ub∥.

Since we have from Lemma 3.4 that ∥Pr(iω)∥ can grow at most linearly, the above
estimate implies that there exists C1 > 0 such that ∥xr∥ = ∥R(iω,Ar−1

)Brub∥ ≤
C1

√
|ω|+ 1∥ub∥, |ω| ≥ 1. We can analogously show that there exists C2 > 0 such

that ∥R(iω,Al−1
)Blub∥ ≤ C2

√
|ω|+ 1∥ub∥, |ω| ≥ 1. Combining these estimates, we

can see that ∥R(iω,Ab−1
)Bb∥ ≲

√
|ω|+ 1 for all |ω| ≥ 1. Finally, by continuity of

R(iω,Ab−1)Bb with respect to iω on iR, we have that ∥R(iω,Ab−1)Bb∥ ≲
√
|ω|+ 1

for all ω ∈ R.
From equation (39), we observe that RePr(iω) > 0, ω ∈ R. Indeed, from (39)

we have

Re ⟨yr, ub⟩ = Re ⟨Pr(iω)ub, ub⟩ = γ(ρa)−2∥fr∥2L2 .

Analogously, we have that RePl(iω) > 0, ω ∈ R. This implies that RePb(iω) >
0, ω ∈ R. In addition, from the transfer function

Pc(iω) =
1

iω

[
1
m 0
0 1

Im

]
, ω ∈ R\{0} (40)

of the rigid body, we see that RePc(iω) = 0, ω ∈ R\{0}. Consequently, we have
that I + Pb(iω)Pc(iω) is nonsingular for all ω ∈ R\{0}.

Lemma 3.6. There exists C ′′ > 0 such that ∥CbR(iω,Ab)∥ ≤ C ′′
√
|ω|+ 1 for all

ω ∈ R.
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Proof. First let us prove that ∥CrR(iω,Ar)∥, where Ar = Ar|N (Br), Cr = Cr|N (Br),

grows at most at a rate of
√
|ω|, ω ∈ R. Let us write Ar as bounded perturbation

of a skew-adjoint operator. i.e., Ar = A0 + B0 where A0 and B0 are given as in
Lemma 3.2 and A∗

0 = −A0, D(A∗
0) = D(A0) and B∗

0 = B0. Now, for the system
(A0, Br, Cr), using duality between D(A∗

0) and Xr−1 (see [21, Sec. 2.10]), we have
B∗

r ∈ L(D(A∗
0), Ur) is the adjoint of Br ∈ L(Ur, Xr−1

) in the sense that

⟨xr, Brur⟩D(A∗
0),Xr−1

= ⟨B∗
rxr, ur⟩Ur

, xr ∈ D(A∗
0), ur ∈ Ur

and A0−1 is the adjoint of A∗
0 in the sense that〈

ψr, A0−1xr
〉
D(A∗

0),Xr−1

= ⟨A∗
0ψr, xr⟩Xr

, ψr ∈ D(A∗
0), xr ∈ Xr.

Moreover, using [21, Rem.10.1.6], we have

⟨Brxr, B
∗
rψr⟩Ur

= ⟨A0xr, ψr⟩Xr
− ⟨xr, A∗

0ψr⟩Xr
, ψr ∈ D(A∗

0), xr ∈ D(A0)

and by direct computation using integration by parts we obtain B∗
rxr = Crxr for

xr ∈ D(A0). Therefore, for all xr ∈ D(A0), ur ∈ Ur and iω ∈ ρ(A0) ∩ iR, we have〈
xr, R(iω,A0−1)Brur

〉
Xr

=
〈
R(iω,A∗

0)xr, Brur
〉
D(A∗

0),Xr−1

=
〈
B∗

rR(iω,A
∗
0)xr, ur

〉
Ur
,

= −⟨CrR(iω,A0)xr, ur⟩Ur
.

Since Ar = A0 +B0 and iR ⊂ ρ(Ar), for iω ∈ ρ(A0) ∩ iR, we obtain〈
xr, R(iω,Ar−1

)Brur
〉
Xr

=
〈
xr, (I −R(iω,A0−1)B0)

−1R(iω,A0−1)Brur
〉
Xr
,

=
〈
(I +B0R(iω,A0))

−1xr, R(iω,A0−1)Brur
〉
Xr
,

= −
〈
CrR(iω,A0)(I +B0R(iω,A0))

−1xr, ur
〉
Ur
,

= −
〈
CrR(iω,Ar)(I + 2B0R(iω,Ar))

−1xr, ur
〉
Ur
.

Since xr ∈ Xr and ur ∈ Ur are arbitrary, we have

CrR(iω,Ar) = −(R(iω,Ar−1
)Br)

∗(I + 2B0R(iω,Ar)), iω ∈ ρ(A0) ∩ iR (41)

where using Lemma 3.2, we have that supω∈R∥I+2B0R(iω,Ar)∥ <∞. Since A0 has
discrete spectrum, the continuity of R(iω,Ar), CrR(iω,Ar) and R(iω,Ar−1)Br with
respect to iω on iR imply that (41) holds for all iω ∈ iR. Now, using Lemma 3.5,

we have that there exists C0 > 0 such that ∥CrR(iω,Ar)∥ ≤ C0

√
|ω|+ 1, ω ∈ R.

We can analogously show that there exists C ′
0 > 0 such that ∥ClR(iω,Al)∥ ≤

C ′
0

√
|ω|+ 1, ω ∈ R. Thus ∥CbR(iω,Ab)∥ ≲

√
|ω|+ 1, ω ∈ R.

Lemma 3.7. Let Pb(·) and Pc(·) be the transfer functions of the beam system

(Ab,Bb, Cb) and the rigid body (Ac, Bc, Cc), respectively. Then there exist ω0, M̃ > 0

such that ∥(I + Pb(iω)Pc(iω))
−1∥ ≤ M̃ for all |ω| ≥ ω0.

Proof. From equation (24) in the proof of Lemma 3.4 and from equation (40) in the
proof of Lemma 3.5, we have

I + Pb(iω)Pc(iω) =

[
Q1(ω) 0

0 Q2(ω)

]
, ω ∈ R\{0},
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where

Q1(ω) = 1− 4EI

m

α(ω)
3

ω2
C2,ω, Q2(ω) = 1− 4EI

Im

α(ω)

ω2
C3,ω,

α(ω) = |α(ω)|
(
cos

(
θ(ω) + 2πk

4

)
+ i sin

(
θ(ω) + 2πk

4

))
, k = 0, 1, 2, 3,

|α(ω)| =
(
ρa

EI
|ω|

√
ω2 + γ2(ρa)−2

) 1
4

, θ(ω) = tan−1(
−γ(ρa)−1

ω
),

and C2,ω and C3,ω are defined in (23). We will show that there exist ω0 > 0 and
c1, c2 > 0 such that |Q1(ω)| > c2 and |Q2(ω)| > c1 for all |ω| ≥ ω0. Since |C2,ω|
and |C3,ω| have similar terms for all the four roots of α(ω), we restrict our analysis
to the principal branch of the fourth root of α(ω) and analogous arguments can be
used to show that the statement is also valid for the other roots of α(ω).

We have from equation (32) that there exists M1, ω0 > 0 such that |C3,ω| ≤
M1

√
|ω| for all |ω| ≥ ω0. Therefore, for |ω| ≥ ω0, we have that

|Q2(ω)− 1| =
∣∣∣∣4EIIm

α(ω)

ω2
C3,ω

∣∣∣∣ ≲ 4
EI

Im
(
ρa

EI
)

1
4
1

|ω|
→ 0

as |ω| → ∞. This implies that there exists c1 > 0 such that |Q2(ω)| > c1 for all
|ω| ≥ ω0.

Now it remains to show that there exists c2 > 0 such that |Q1(ω)| ≥ c2 for all

|ω| ≥ ω0. We begin by showing that if we define f(ω) = 2EIα(ω)3

mω2 and Q̃1(ω) =
1 + f(ω) tan(α(ω)), then

lim
|ω|→∞

|Q1(ω)− Q̃1(ω)| = 0. (42)

This will imply that |Q1(ω)| is uniformly bounded from below for |ω| ≥ ω0 if and

only if the same is true for |Q̃1(ω)|. We have from equation (23) in Lemma 3.4 that

C2,ω =
cos (α(ω))

sinh (α(ω)) + sin (α(ω))
− 1

2
(1 + C5,ω)C6,ω

C5,ω :=
sinh (α(ω)) sin (α(ω))

1 + cosh (α(ω)) cos (α(ω))
, C6,ω :=

cosh (α(ω)) + cos (α(ω))

sinh (α(ω)) + sin (α(ω))
.

We have from equations (29) and (30) that | cos (α(ω))/(sinh (α(ω)) + sin (α(ω)))|
and |C6,ω| are uniformly bounded for |ω| ≥ ω0. Thus for all |ω| ≥ ω0, we have

|Q1(ω)− Q̃1(ω)| = |2f(ω)C2,ω + f(ω) tan(α(ω))|
≲ |f(ω)|+ |f(ω)(C5,ωC6,ω − tan(α(ω)))|
≲ |f(ω)|+ |f(ω)C5,ω(C6,ω − 1)|
+ |f(ω) tan(α(ω))(tanh(α(ω))− 1)|
+ |f(ω)(C5,ω − tanh(α(ω)) tan(α(ω)))|.

Using the definition of α(ω), it is straightforward to show that C6,ω → 1 and
tanh(α(ω)) → 1 as |ω| → ∞. Moreover, as shown in (27) and (28), we have

|C5,ω| ≲
√
|ω| and |tan(α(ω))| ≤ |coth (yω)| + |tanh (yω)| ≲

√
|ω| for |ω| ≥ ω0.

Because of this, |f(ω)C5,ω| and |f(ω) tan(α(ω))| are uniformly bounded for |ω| ≥ ω0,
and therefore |f(ω)C5,ω(C6,ω − 1)| → 0 and |f(ω) tan(α(ω))(tanh(α(ω)) − 1)| → 0

as |ω| → ∞. Finally, the last term in the estimate for |Q1(ω)− Q̃1(ω)| satisfies
|f(ω)(C5,ω − tanh(α(ω)) tan(α(ω)))|
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= |f(ω)|
∣∣∣∣ sinh (α(ω)) sin (α(ω))

1 + cosh (α(ω)) cos (α(ω))
− sinh (α(ω)) sin (α(ω))

cosh (α(ω)) cos (α(ω))

∣∣∣∣
= |f(ω) tanh(α(ω)) tan(α(ω))|

∣∣∣∣ 1

1 + cosh (α(ω)) cos (α(ω))

∣∣∣∣ → 0

as |ω| → ∞, since |f(ω) tanh(α(ω)) tan(α(ω))| is uniformly bounded for |ω| ≥ ω0,
and |cosh(α(ω)) cos(α(ω))| → ∞ as |ω| → ∞. This finally shows that (42) holds.

We claim that there exists c′ > 0 such that |Q̃1(ω)| ≥ c′ for all ω ≥ ω0. The
case where ω is negative can be proved analogously. We will use proof by contra-
diction. To this end we assume that no such c′ > 0 exists. This implies that there
exists a sequence (ωk)k ⊂ R+ such that ωk → ∞ as k → ∞ and |Q̃1(ωk)| → 0

as k → ∞. Separating real and imaginary parts of Q̃1(ωk) and denoting xk =
Reα(ωk), yk = Imα(ωk), R1,k = Re(f(ωk)) sinxk, R2,k = Re(f(ωk)) cosh yk,
I1,k = Im(f(ωk)) cosh yk, I2,k = Im(f(ωk)) sinxk, we obtain

Q̃1(ωk) = 1 +
R1,k cosxk − I1,k sinh yk

cos2 xk + sinh2 yk
+ i

R2,k sinh yk + I2,k coshxk

cos2 xk + sinh2 yk
.

Since we consider the principal branch of the fourth root of α(ωk), we have that
there exist m1,m2,m3,m4 > 0 and N1 ∈ N such that

m1
√
ωk ≤ |xk| ≤ m2

√
ωk

m3√
ωk

≤ |yk| ≤
m4√
ωk

for all k ≥ N1. This implies that there exist m5,m6 > 0 and N2 ≥ N1 such that

m5ω
−1/2
k ≤ | sinh yk| ≤ m6ω

−1/2
k for all k ≥ N2. Since yk → 0, we have cosh yk → 1

as k → ∞, and thus there exist m7,m8,m9,m10 > 0 and N3 ≥ N2 such that

m7ω
−1/2
k ≤ |R2,k| ≤ m8ω

−1/2
k and m9ω

−3/2
k ≤ |I1,k| ≤ m10ω

−3/2
k for all k ≥ N3.

We will first show that |cosxk| → 0 as k → ∞. Indeed, we have

|R1,k cosxk − I1,k sinh yk| ≤ |Re(f(ωk))|+ |Im(f(ωk))||sinh yk||cosh yk|

≲
1

√
ωk

for all k ≥ N3 and since the assumption |Q̃1(ωk)| → 0 implies Re Q̃1(ωk) → 0, we
must have cos2 xk + sinh2 yk → 0 as k → ∞. Thus |cosxk| → 0 as k → ∞, and
consequently also |sinxk| → 1 as k → ∞. This further implies that there exist

m11,m12,m13,m14 > 0 and N4 ≥ N3 such that m11ω
−1/2
k ≤ |R1,k| ≤ m12ω

−1/2
k

and m13ω
−3/2
k ≤ |I2,k| ≤ m14ω

−3/2
k for all k ≥ N4. We consider the following cases.

Case 1 (fast decay of |cosxk|): Consider the subsequence of (ωk) consisting
of those elements ωk which satisfy |cosxk| ≤ 1/ωk. Then we have∣∣∣∣R1,k cosxk − I1,k sinh yk

cos2 xk + sinh2 yk

∣∣∣∣ ≤ |R1,k cosxk − I1,k sinh yk|
sinh2 yk

≲
| cosxk|/

√
ωk + 1/ω2

k

1/ωk
≲

1
√
ωk

+
1

ωk

for all k ≥ N4. However, this implies Q̃1(ωk) ̸→ 0 as k → ∞, since Re Q̃1(ωk) →
1. This implies that the subsequence of (ωk)k consisting of elements such that
|cosxk| ≤ 1/ωk must have at most finite number of elements.
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Case 2 (slow decay of |cosxk|): As shown above, we necessarily have there
exist N5 ≥ N4 such that |cosxk| > 1/ωk for all k ≥ N5, and we will now restrict
our attention to this range of the indices k. Then∣∣∣∣R1,k cosxk − I1,k sinh yk

R1,k cosxk

∣∣∣∣ → 1 and

∣∣∣∣R2,k sinh yk + I2,k cosxk
R2,k sinh yk

∣∣∣∣ → 1

as k → ∞. In addition, for k ≥ N5, we have

|Im(Q̃1(wk))| =
|R2,k sinh yk + I2,k cosxk|

cos2 xk + sinh2 yk

=

∣∣∣∣R2,k sinh yk + I2,k cosxk
R2,k sinh yk

∣∣∣∣ · |R2,k sinh yk|
cos2 xk + sinh2 yk

≳
1/ωk

cos2 xk + sinh2 yk

and

|Re(Q̃1(wk))− 1| = |R1,k cosxk − I1,k sinh yk|
cos2 xk + sinh2 yk

=

∣∣∣∣R1,k cosxk − I1,k sinh yk
R1,k cosxk

∣∣∣∣ · |R1,k cosxk|
cos2 xk + sinh2 yk

≳
|cosxk|/

√
ωk

cos2 xk + sinh2 yk
.

Using these estimates, we have that

1

|cosxk|
√
ωk

=
1/ωk

cos2 xk + sinh2 yk
· cos

2 xk + sinh2 yk
|cosxk|/

√
ωk

→ 0

as k → ∞ since |Re Q̃1(ωk) − 1| → 1 and |Im Q̃1(ωk)| → 0 as k → ∞ . Because of
this we also have∣∣∣∣cos2 xk + sinh2 yk

cos2 xk
− 1

∣∣∣∣ = sinh2 yk
cos2 xk

≲
1

(
√
ωk cosxk)2

→ 0

as k → ∞. Finally, using this property we have that for all k ≥ N5∣∣∣∣R1,k cosxk − I1,k sinh yk

cos2 xk + sinh2 yk

∣∣∣∣ = ∣∣∣∣ cos2 xk

cos2 xk + sinh2 yk

∣∣∣∣ · ∣∣∣∣R1,k cosxk − I1,k sinh yk
cos2 xk

∣∣∣∣
≲

1

|cosxk|
√
ωk

+
1/ωk

(cosxk
√
ωk)2

decays to zero as k → ∞. However, this implies that Re Q̃1(ωk) → 1 ̸= 0 as k → ∞
which contradicts the assumption that |Q̃1(ωk)| → 0 as k → ∞. Hence there exists

c′ > 0 such that |Q̃1(ω)| ≥ c′ for all ω ≥ ω0.
Finally, we have that there exist ω0, c1, c2 > 0 such that |Q1(ω)| > c2 and

|Q2(ω)| > c1 for all |ω| ≥ ω0. This implies that ∥(I + Pb(iω)Pc(iω))
−1∥2 ≤ 1

c22
+ 1

c21
for all |ω| ≥ ω0, which completes the proof.

Having the above results, now we are ready to prove the main theorem.

Proof of Theorem 3.1. From Lemmas 3.4 and 3.5, we have that Pb(0) and I +
Pb(iω)Pc(iω), ω ∈ R\{0} are nonsingular. These properties in Lemma 3.3 im-
ply that the resolvent R(iω,A) exists for all ω ∈ R and is given by the equations



22 THAVAMANI GOVINDARAJ AND JUKKA-PEKKA HUMALOJA AND LASSI PAUNONEN

(19), (20) and (16). Therefore

∥R(iω,A)∥2 ≤ ∥R(iω,Ab)−R(iω,Ab−1)BbCcS(iω)BcCbR(iω,Ab)∥2

+ ∥R(iω,Ab−1
)BbCcS(iω)∥2 + ∥S(iω)BcCbR(iω,Ab)∥2 + ∥S(iω)∥2

(43)
where S(iω) = 1

iω + 1
ω2BcPb(iω)(I + Pb(iω)Pc(iω))

−1Cc for ω ∈ R\{0} and S(0) =

(BcPb(0)Cc)
−1.

From Lemma 3.4, we have that there existsM > 0 such that ∥Pb(iω)∥ ≤M(|ω|+
1) for all ω ∈ R. From Lemma 3.7, we have that there exist ω0, M̃ > 0 such that

∥(I + Pb(iω)Pc(iω))
−1∥ ≤ M̃ for all |ω| ≥ ω0. Moreover, from Lemma 3.2, we

have that ∥R(iω,Ab)∥ is uniformly bounded and from Lemmas 3.5 and 3.6, we

have that there exist C ′, C ′′ > 0 such that ∥R(iω,Ab−1
)Bb∥ ≤ C ′

√
|ω|+ 1 and

∥CbR(iω,Ab)∥ ≤ C ′′
√

|ω|+ 1 for all ω ∈ R. These estimates imply that there
exists M1 > 0 such that ∥S(iω)∥ ≤ M1 for all |ω| ≥ ω0 and this further from
equation (43) implies that there exists M0 > 0 such that ∥R(iω,A)∥ ≤ M0 for all
|ω| ≥ ω0. Since from Lemma 3.3 we have iR ⊂ ρ(A), we conclude that R(iω,A) is
uniformly bounded, which completes the proof.

4. Robust Output Regulation of the Satellite Model. In this section, we
present two controllers that solve the robust output regulation problem for the
satellite system. We start by formulating the robust output regulation problem
followed by the controllers that achieve the robust output tracking of the given
reference signals. In addition, we present simulation results demonstrating the
effectiveness of the controllers.

From the previous sections, the satellite system with control and observations on
the rigid body is given by,

ẋ(t) = Ax(t) +Bu(t) +Bdwd(t),

y(t) = Cx(t).
(44)

with A =

[
Ab 0

−BcCb 0

]
, D(A) = {(xb, xc) ∈ D(Ab) × Xc : Bbxb = Ccxc}, B =[

0
Bc

]
, Bd =

[
Bd0 0
0 Bc

]
, C =

[
0 Cc

]
, x(t) =

[
xb(t)
xc(t)

]
. Here the operator A

generates an exponentially stable semigroup.
The reference signals to be tracked and the disturbance signals to be rejected are

of the form

yref (t) = a0 +

q∑
k=1

[ak cos(ωkt) + bk sin(ωkt)], (45)

wd(t) = c0 +

q∑
k=1

[ck cos(ωkt) + dk sin(ωkt)], (46)

where 0 < ω1 < ω2 < · · · < ωq are known frequencies and {ak}qk=0, {bk}
q
k=1,

{ck}qk=0, {dk}
q
k=1 are possibly unknown constant coefficients.

We construct a dynamic error feedback controller of the form

ż(t) = G1z(t) + G2e(t), z(0) = z0,

u(t) = Kz(t)− κe(t),
(47)

on a Hilbert space Z, where e(t) = y(t) − yref (t) is the regulation error, yref (t)
a given reference signal, G1 : D(G1) ⊂ Z → Z generates a strongly continuous
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semigroup on Z, G2 ∈ L(R2, Z), K ∈ L(Z,R2) and κ ∈ R2×2, such that robust
output regulation of the satellite system is achieved with a suitable choice of the
parameters (G1,G2,K, κ).

Let us denoteXe = X×Z to be the extended state space and xe(t) = (x(t), z(t))T

be the extended state. Then the closed-loop system containing the satellite system
(44) and the controller (47) is given by

ẋe(t) = Aexe(t) +Beue(t), xe(0) = xe0,

e(t) = Cexe(t) +Deue(t),
(48)

where Ae =

[
A−BκC BK

G2C G1

]
, Be =

[
Bd Bκ
0 −G2

]
, Ce =

[
C 0

]
, De =

[
0 −IY

]
and ue(t) =

[
wd(t)
yref (t)

]
. The operator Ae generates a strongly continuous semigroup

Te(t) on Xe.
The Robust Output Regulation Problem. Choose the controller parameters

(G1,G2,K, κ) in such a way that

(a) The closed-loop semigroup Te(t) generated by Ae is exponentially stable.
(b) There exists α1 > 0 such that for all initial states xe0 ∈ Xe, for the reference

signal of the form (45) and for the disturbance signal of the form (46), the
regulation error e(t) satisfies

eα1t∥y(t)− yref (t)∥ → 0 as t→ ∞.

(c) If the operators (Ab,Bb, Cb, Ac, Bc, Cc) are perturbed in such a way that the
perturbed closed-loop system is exponentially stable, the perturbed (Ab,Bb, Cb)
is an impedance passive boundary control system and the perturbed (Ac, Bc, Cc)
is an impedance passive systems, then (b) continues to hold for some α̃1 > 0.

Remark 5. In the above, α1 and α̃1 are determined by the stability margins of the
closed-loop system and the perturbed closed-loop system, respectively.

Next, we show that the transfer function P (iω) of the satellite system is nonsin-
gular for all ω ∈ R. Because of this, we can track signals containing components at
all frequencies ω.

Lemma 4.1. On the imaginary axis, the transfer function of the satellite system
(44) has the form P (iω) = CcS(iω)Bc and it is nonsingular for all ω ∈ R.

Proof. The transfer function of (44) on the imaginary axis is given by P (iω) =
CR(iω,A)B, where R(iω,A) is the resolvent in (19) of A. Replacing the operators
by their expressions, we obtain

P (iω) =
[
0 Cc

] [R11(iω) R12(iω)
R21(iω) R22(iω)

] [
0
Bc

]
= CcR22(iω)Bc

= CcS(iω)Bc.

Since Bc, Cc and S(iω), ω ∈ R are nonsingular, we have that P (iω) is nonsingular
for all ω ∈ R.

4.1. Robust Controllers for the Satellite System. In this section, we present
two internal model based controllers for the robust output regulation of the satellite
system.
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4.1.1. A Passive Controller for the Satellite Model. We have that the satellite sys-
tem is (44) an impedance passive system and exponentially stable. Therefore, based
on [20, Thm. 1.2] and [18, Def. 5.1], we can construct a passive controller for
the robust output tracking of the given sinusoidal reference signals. We choose
Z = (R2)2q+1,

G1 = diag(G0, G1, G2, · · · , Gq),

G0 = 0Y , Gk =

[
0 ωkIY

−ωkIY 0

]
, k = 1, 2, · · · , q,

G2 = (Gk
2 )

q
k=0, G

0
2 = −IY , Gk

2 = −c1
[
IY
0

]
, k = 1, 2, · · · , q,

K = −G∗
2 , and κ = c2IY ,

(49)

where c1, c2 > 0 affect the stability properties of the closed-loop system.

Theorem 4.2. The controller (47) with the choices of parameters in (49) solves
the robust output regulation problem for the satellite model.

Proof. We have that the satellite system (44) is impedance passive and exponen-
tially stable and the choices of parameters in (49) are adopted from [18, Def. 5.1].
Therefore, by [18, Thm. 5.2], the controller (47), (49) solves the robust output
regulation problem.

We note that the controller (47), (49) is the one given in [20, Thm. 1.2] when c1
and c2 are chosen such that (47), (49) is a minimal realization of

C(s) = −C0 −
q∑

k=−q

IY
s− iωk

, (50)

where C0 ≥ 1
2IY and ω−k = −ωk. The assumption ReP (iωk) is nonsingular for all

k = 0, 1, 2, · · · q in [20, Thm. 1.2] can be relaxed due to the fact that the feedthrough
operator κ of the controller satisfies κ > 0 (see [18, sec. 5] for more details).

4.1.2. An Observer Based Controller for the Satellite Model. Since the input oper-
ator B and the output operator C are bounded, we can construct an observer based
controller based on [12] and [17, Sec. VI] for robust output tracking of the satellite
system as follows.

We choose the state space of the controller as Z = Z0×X, where Z0 = (R2)2q+1.
The controller parameters (G1,G2,K, κ) of the dynamic error feedback controller
(47) are given by,

G1 =

[
G1 0
BK1 A+BK2

]
, G2 =

[
G2

0

]
, K =

[
K1 K2

]
, κ = 0,

where K1 ∈ L(Z0,R2),K2 ∈ L(X,R2). The operators (G1, G2) are defined as

G1 = diag(iω−qIY , · · · iω0IY , · · · , iωqIY ) ∈ L(Z0),

G2 = (Gk
2)

q
k=−q ∈ L(R2, Z0), G

k
2 = IY , k = −q, · · · , q.

We define an operator H ∈ L(X,Z0) by H = (Hk)
q
k=−q which is the solution of

the Sylvester equation G1H = HA +G2C and Hk can be obtained by solving the
system

Hk = Gk
2CR(iωk, A). (51)
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Then we define B1 = HB = (Gk
2P (iωk))

q
k=−q ∈ L(R2, Z0). Finally, we choose

K1 ∈ L(Z0,R2) in such a way that G1 + B1K1 ∈ L(Z0) is Hurwitz and we define
K2 = K1H.

With the above parameters, the controller (47) can be written as,

ż1(t) = G1z1(t) +G2e(t), (52)

ż2(t) = BK1z1(t) + (A+BK2)z2(t), (53)

u(t) = Kz(t). (54)

Here z1(t) ∈ Z0, z2(t) ∈ X(= Xb × Xc). Equation (52) is the servocompensator
on the state space Z0 which contains internal model and it is an ODE system by
construction. Equation (53) is an observer for the satellite system on the state space
X and is given by,

˙̂xl1(ξ, t) = −γ(ρa)−1x̂l1(ξ, t)− EIx̂′′l2(ξ, t), −1 < ξ < 0,

˙̂xl2(ξ, t) = (ρa)−1x̂′′l1(ξ, t), −1 < ξ < 0,

˙̂xr1(ξ, t) = −γ(ρa)−1x̂r1(ξ, t)− EIx̂′′r2(ξ, t), 0 < ξ < 1,

˙̂xr2(ξ, t) = (ρa)−1x̂′′r1(ξ, t), 0 < ξ < 1,

˙̂xc1(t, 0) = EIx̂′l2(ξ, t)|ξ=0 − EIx̂′r2(ξ, t)|ξ=0 + u1(t),

˙̂xc2(t, 0) = −EIx̂l2(ξ, t)|ξ=0 + EIx̂r2(ξ, t)|ξ=0 + u2(t),

x̂r2(1, t) = x̂′r2(1, t) = 0, x̂l2(−1, t) = x̂′l2(−1, t) = 0,

x̂l1(0, t) = x̂r1(0, t) = x̂c1(t), x̂
′
l1(0, t) = x̂′r1(0, t) = x̂c2(t),

where x̂l1(ξ, t), x̂l2(ξ, t), x̂r1(ξ, t), x̂r2(ξ, t), x̂c1(ξ, t) and x̂c2(ξ, t) are the estimates of
xl1(ξ, t), xl2(t), xr1(ξ, t), xr2(ξ, t), xc1(ξ, t) and xc2(ξ, t), respectively, and z2(t) is
given by z2(t) = (x̂l1(·, t), x̂l2(·, t), x̂r1(·, t), x̂r2(·, t), x̂c1(·, t), x̂c2(·, t))T . This shows
that the controller (47) is a PDE-ODE system.

Theorem 4.3. The controller (47) with the above choices of parameters solves the
robust output regulation problem for the satellite system (44).

Proof. Since the construction of the controller (47) with the above choices of pa-
rameters is adopted from [12, Sec. 7] and [17, Sec. VI], based on [17, Thm. 15],
the controller solves the robust output regulation problem for the satellite system
(44).

4.2. Robustness of Closed-loop Stability. In the case of the passive controller,
the controller parameters G2, K and κ depend on the parameters c1, c2 and therefore
the closed-loop stability margin α1 depends on the choice of the parameters c1 and
c2. On the other hand, for the observer based controller the closed-loop stability
margin is determined by the minimum of stability margins of A and G1 + B1K1,
respectively, see the proof of [17, Thm. 15] for more details. The stability margin
of G1 + B1K1 can be affected by adjusting the gain parameter K1. This can be
done for example by linear quadratic regulator design or pole placement.

From Section 4.1 we have that both controllers with suitable choices of param-
eters solve the robust output regulation problem. Therefore, Ae generates an ex-
ponentially stable semigroup Te(t) and there exist α1 > 0 and Me ≥ 1 depending
on the controller and the chosen parameters such that ∥Te(t)∥ ≤ Mee

−α1t. If
∆ ∈ L(Xe) is a perturbation of Ae, where the perturbation is generated by the per-
turbations in (Ab,Bb, Cb, Ac, Bc, Cc), such that ∥∆∥ < α1/Me, then Ae+∆ generates
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Figure 4. The closed-loop stability margin and
∫ 15

0
∥e(t)∥2dt for

the passive controller with c2 = 4
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Figure 5. The closed-loop stability margin and
∫ 15

0
∥e(t)∥2dt for

the passive controller with c1 = 2.5

an exponentially stable semigroup T̃e(t) on Xe and ∥T̃e(t)∥ ≤Mee
(−α1+Me∥∆∥)t for

all t ≥ 0. Therefore the stability margin α̃1 of the perturbed semigroup T̃e(t) satis-
fies α̃1 ≥ α1 −Me∥∆∥. In addition, the semigroup Te(t) may remain exponentially
stable under perturbations with large norms in which cases the decay rates cannot
be estimated explicitly by using the perturbation formula.

4.3. Simulations. Simulations are carried out in Matlab using passive and ob-
server based controllers on the time interval t = [0, 15]. We choose m = 1, Im =
1, E = 1, I = 1, ρ = 1, a = 1 and γ = 5. We track the reference signal yref (t) =[
1 + 3 cos(t) 2− sin(5t) + 1.5 cos(2t)

]T
and reject the disturbance signal wd(t) =[

0 0 10 15
]T

. Thus, the frequencies {ωk}qk=0 with q = 3 are {0, 1, 2, 5}. We
choose the controller initial state as z0 = 0 and the initial state for the satellite

system as x0 =
[
0 4(1 + ξ)2 0 4(1− ξ)2 0 0

]T
. The solutions of the satellite

system are approximated using Legendre spectral Galerkin method [2]. The number
of basis functions used for the approximation is N = 10.

The controller parameters of the passive controller are chosen as in Section 4.1.1.
To maximize the stability margin, ranges of values of the parameters c1 and c2
were tested. The closed-loop stability margin α1 and

∫ 15

0
∥e(t)∥2dt for different

parameter values are plotted in Figures 4 and 5, respectively. The figures indicate
that smaller values of c1 and c2 result in larger closed-loop stability margin and
larger transient errors. By choosing c1 = 2.5 and c2 = 4, the output tracking and
the tracking errors are depicted in Figures 8 and 10, respectively.



ROBUST CONTROLLERS FOR A FLEXIBLE SATELLITE MODEL 27

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

5

10

15

20

25

Figure 6. The closed-loop stability margin and
∫ 15

0
∥e(t)∥2dt for

the observer based controller with R = 0.1I2
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Figure 7. The closed-loop stability margin and
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0
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the observer based controller with Q = 10IZ0
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Figure 8. Output tracking using a passive controller

The components of the observer based controller are chosen as in Section 4.1.2.
The matrix H is obtained by solving the system (51), where we use the approxima-
tions AN and CN in place of A and C, respectively. The gain matrix K1 is obtained
using Matlab lqr function with Q = q0IZ0 , q0 > 0 and R = r0I2, r0 > 0. To maxi-
mize the stability margin, ranges of values of the parameters q0 and r0 were tested.
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Figure 9. Output tracking using an observer based controller
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Figure 10. Tracking errors for passive(above) and observer
based(below) controllers

The closed-loop stability margin α1 and
∫ 15

0
∥e(t)∥2dt for different parameter values

are plotted in Figures 6 and 7, respectively. It is observed that smaller control gains
r0 and larger q0 result in larger closed-loop stability margin and smaller transient
errors. By choosing q0 = 10 and r0 = 0.1, the output tracking and the tracking
errors are depicted in Figures 9 and 10, respectively.

It can be seen from the figures that both controllers achieve tracking of the given
reference signals asymptotically and the tracking error decays to zero at an expo-
nential rate. Moreover, we can see that the observer based controller can achieve
larger closed-loop stability margin and therefore the asymptotic error convergence
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for the observer based controller is faster than that for the passive controller. On
the other hand, it is noted that even though the passive controller is a finite-
dimensional controller and also the controller requires no information about the
satellite system apart from passivity, it still achieves comparable performance to
the infinite-dimensional observer based controller.

5. Conclusion. We investigated robust output tracking problem of a flexible satel-
lite composed of two identical flexible solar panels and a center rigid body. A de-
tailed proof of exponential stability of the model was presented. We constructed two
robust controllers for the robust output tracking of the satellite model. Moreover,
simulation results showing the performances of the controllers were presented.
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