

Niilo Viheriäranta

CO-SIMULATION USING PYTHON AND
SIMULINK

Bachelor’s thesis
Faculty of Engineering and

Natural Sciences
Examiner: Mohammad Heravi

1/2024

i

ABSTRACT

Niilo Viheriäranta: Co-simulation using Python and Simulink
Bachelor’s thesis
Tampere University
Teknisten tieteiden kandidaatin tutkinto-ohjelma
January 2024

Co-simulation is a methodology of computer analysis and simulation. This technique involves
different kinds of specialized simulation programs interacting and working simultaneously to reach
more comprehensive results regarding complex systems. It is an approach that is very beneficial
for multidisciplinary experiments that include various subsystems of a model that require distinct
areas of expertise or simulation approaches.
 This thesis studies co-simulation using Python and Simulink. The thesis starts with a short
literature review where different methods of communication between Python and Simulink are
discovered and their suitability for co-simulation is discussed. In addition, some prior research on
the topic is presented. Co-simulation using these two platforms is quite a new technology so the
research available was limited. Out of the methods discovered in the literature review four were
chosen as most suitable for co-simulation. The chosen methods were MATLAB Engine API, Py-
thon code in Simulink, TCP/IP (Transmission control protocol/internet protocol), and extracting a
model from Simulink to C-code and embedding it in Python.
 Each method was used to perform a simulation and the process of conducting the simu-
lation was explained. For the MATLAB Engine API, a computational cost experiment was con-
ducted because it could be used in two different ways. The results showed that one way is more
suitable for simple simulations and the other for more complex simulations. The other methods
were found to have their own benefits and limitations as well. Embedded C-code was very fast
but only works for discrete systems. Python classes can be used to control Simulink models, but
the Simulation needs to be run from a script and requires precise setup steps. TCP/IP is the most
suitable for parallel processing but could prove difficult to use with very complex data. Finally, co-
simulation was used to train a reinforcement learning agent to play a dice game. The experiment
was successful, and it showcased the possible real-life utility of co-simulation.

Keywords: Co-simulation, Python, Simulink, reinforcement learning

The originality of this thesis has been checked using the Turnitin Originality Check service.

ii

TIIVISTELMÄ

Niilo Viheriäranta: Yhteissimulaatio Pythonia ja Simulinkiä käyttäen
Kandidaatintyö
Tampereen yliopisto
Teknisten tieteiden kandidaatin tutkinto-ohjelma
Tammikuu 2024

Yhteissimulaatio on tietokoneanalyysin tekniikka, jossa kahta tai useampaa simulaatioalustaa
hyödynnetään yhtaikaisesti monimutkaisten ongelmien ratkaisemiseen. Sen avulla pystytään
saavuttamaan kattavampia tuloksia ongelmissa, joissa systeemin eri osat vaativat erilaisia
mallinnuskyvykkyyksiä. Yhteissimulaation hyötyjä ovat esimerkiksi laajemmat
ratkaisijavaihtoehdot, rinnakkaisprosessointi ja immateriaalioikeuksien suojaaminen.
 Tässä kandidaatintyössä tutkitaan yhteissimulaation toteuttamista Pythonin ja Simulinkin
avulla. Alussa on toteutettu lyhyt kirjallisuuskatsaus, jossa ensin tutkitaan erilaisia tapoja siirtää
dataa sekä toiminnallisuutta alustojen välillä ja sitten etsitään aiempaa tutkimusta
yhteisimulaatiosta. Koska yhteissimulaatio näitä kahta alustaa käyttäen on melko uusi aihe,
tutkimuksia löytyi suhteellisen vähän. Kirjallisuuskatsauksessa löydetyistä metodeista valittiin
neljä parhaimmin yhteissimulaatioon sopivinta tapaa tutkittavaksi. Nämä ovat Python koodin
käyttö Simulinkissä, MATLAB Engine API, mallin muuttaminen C-koodiksi ja sen sulauttaminen
Pythoniin sekä TCP/IP-yhteyden (Transmission control protocol / internet protocol) käyttäminen.

Jokaisen tavan toteuttaminen esiteltiin ja niitä kaikkia käytettiin simulaation ajamiseen.
Lisäksi MATLAB Engine API:lla pystyi toteuttamaan simulaation kahdella eri tyylillä, joten tyylien
resurssivaatimukset mitattiin ja data esiteltiin. Huomattiin, että toinen tyyli sopii paremmin lyhyisiin
yksinkertaisiin simulaatioihin ja toinen taas paremmin pidempiin monimutkaisiin simulaatioihin.
Muistakin tavoista huomattiin erilaisia hyötyjä ja haittoja. Sulautettu C-koodi on nopein, mutta se
toimii vain diskreeteillä systeemeillä. Python-koodia pystytään käyttämään Simulinkissä niin että
molempien hyödyt saadaan käyttöön, mutta valmistelut vaativat tarkkoja määreitä. TCP/IP-yhteys
sopii parhaiten rinnakkaisprosessointiin mutta monimutkaisen datan siirtäminen voi muuttua
vaikeaksi. Lopuksi esitellään käytännön esimerkki, jossa vahvistusoppimisen avulla koulutetaan
toimija pelaamaan erästä noppapeliä mahdollisimman tehokkaasti. Toimija oli tehokkaampi kuin
satunnaisesti valitseva toimija, mikä osoitti yhteissimulaation hyödyllisyyden esimerkiksi
koneoppimisessa.

Avainsanat: Yhteissimulaatio, Python, Simulink, vahvistusoppiminen

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin Originality Check –ohjelmalla.

iii

PREFACE

I want to thank Mohammad Heravi for his guidance in making this thesis. Our weekly

meetings were always constructive and helpful. He also provided me with useful re-

sources to aid in research as well as in writing the thesis.

Tampere, 14 January 2024

Niilo Viheriäranta

iv

CONTENTS

1. INTRODUCTION .. 1

2. LITERATURE REVIEW ... 3

2.1 Different methods of communication between MATLAB and Python 3

2.2 Prior research ... 4

2.3 Conclusions from literature review .. 5

3. DIFFERENT METHODS OF CO-SIMULATION WITH PYTHON AND SIMULINK 6

3.1 Using Python in Simulink .. 6

3.2 MATLAB Engine API .. 8

3.3 Using a shared library of C-code .. 16

3.4 TCP/IP connection .. 18

4. USE-CASE AND ANALYSIS ... 20

4.1 The dice game .. 20

4.2 Co-simulation integration and reinforcement learning algorithm 21

4.3 Testing using TCP/IP connection .. 23

5. CONCLUSIONS .. 25

REFERENCES ... 28

v

LIST OF FIGURES

Program 1: MATLAB script for running a simulation with a Pi-controller
implemented in Python. .. 7

Program 2: Pi-controller implementation in Python. .. 8
Figure 1: Sequence diagram of the first method of conducting a simulation with

MATLAB Engine. ... 10
Figure 2: Sequence diagram of conducting a simulation using the second method

with MATLAB Engine. .. 11
Table 1: Times to run each communication with MATLAB for the first method with

a simple. .. 12
Table 2: Times to run each communication with MATLAB for the second method

with a simple model.. 12
Table 3: Mean values corresponding to the data in table 1. .. 13
Table 4: Mean values corresponding to the data in table 2. .. 13
Table 5: The times of conducting a simulation using the first method with the

complex model. .. 14
Table 6: The times of conducting a simulation using the second method with the

complex model. .. 14
Table 7: Mean values corresponding to the data in table 5. .. 15
Table 8: Mean values corresponding to the data in table 6. .. 15
Picture 1: The settings needed for exporting the model and integrating it in

Python. .. 16
Figure 3: Plot of the simulation produced by co-simulation. .. 17
Figure 4: Plot of the simulation using only Simulink. ... 18
Figure 5: The communication structure between Python and Simulink with

TCP/IP ... 19
Table 9: The different sides of the dice used in the game. .. 20
Picture 2: The Simulink architecture of the dice game. ... 21
Table 10: Policy determined by the reinforcement learning agent. 22
Table 11: Comparison of using the reinforcement learning policy to a random

policy. .. 23
Table 12: Summary of benefits and limitations of each method 26

1

1. INTRODUCTION

This thesis studies co-simulation using two different platforms MATLAB’s Simulink and

Python. Co-simulation is a methodology of computer analysis and simulation. This tech-

nique involves different kinds of specialized simulation programs interacting and working

simultaneously to reach more comprehensive results regarding complex systems. It is

an approach that is very beneficial for multidisciplinary experiments that include various

subsystems of a model which require distinct areas of expertise or simulation ap-

proaches.

Co-simulation has many benefits compared to using single-platform simulation. Some

models include subsystems that have very different physical behaviours and time scales.

With these systems, it could prove difficult to develop a dynamic formulation that repre-

sents every phenomenon involved with the system. Co-simulation allows for assigning a

specific solver to each subsystem meaning its equations and implementation can be

tailored to represent its real-life counterpart more realistically.

In addition, using single-platform simulation sometimes requires sacrificing intellectual

property in order to reach an accurate result. This problem arises because every sub-

system and its details need to be accessible to the system solver. In some industrial

applications safeguarding at least some of the information regarding the system is very

important. Co-simulation allows for determining a particular interface of data that is

shared between the solvers and the rest can remain private.

Furthermore, co-simulation allows for parallel processing of heavy models. Simulating

very heavy systems could result in increasingly high simulation times making the work

inefficient, with co-simulation the computational workload can be shared between two or

more different processing units. This could increase efficiency in many applications.

This thesis specifies on co-simulation with Python and Simulink. Simulink is an extension

application of MATLAB provided by MathWorks. It allows users to model a large variety

of different scenarios. It provides toolboxes for almost all fields of industry and is widely

used in companies. However, Simulink also has limitations for example in its machine

learning capabilities. [1] In comparison, Python is an open-source coding language that

has a wide range of libraries that could be used to address some of the limitations of

Simulink. This is why it would be very beneficial to find approaches to co-simulation be-

2

tween these two platforms. Furthermore, many companies have legacy models in Sim-

ulink and because Python is free to use, they could harness it without enduring any extra

costs.

The objective of this paper is to find approaches to co-simulation with the two platforms

presented above. In addition, the benefits and limitations of each approach will be pre-

sented and their effects on usefulness will be assessed. Finally, a use case will be de-

fined and through it the benefits of co-simulation will be presented.

3

2. LITERATURE REVIEW

This chapter focuses on previous research around Python, Simulink and their integration

in terms of co-simulation. In addition, studies that use the two platforms in similar tasks

are considered to gain an insight into the advantages and disadvantages of each plat-

form. Exploration of the research will enable better understanding of different ways to

use Simulink and Python as complimentary tools to each other. Finally, some studies

that have implemented co-simulation with the two platforms will be explore.

2.1 Different methods of communication between MATLAB
and Python

MathWorks presents three different ways to directly communicate between MATLAB and

Python. The first of these is calling Python directly in MATLAB. Python modules can be

called in MATLAB by using the “py” prefix followed by a period and the module’s name

after which the inputs are entered in brackets. The version and default interpreter can be

changed by running the command “pyenv” and editing the fields of the resulting MATLAB

struct to match the desired properties of Python. The user is able to call self-created

modules and third-party libraries in addition to the standard libraries of Python. This re-

quires all the needed libraries to be installed and the modules to be located in the active

folder in MATLAB. [2] One way this way of communication can be utilized with Simulink

is to create a custom MATLAB function that takes inputs from Simulink then calls Python

inside the function and returns the outputs to Simulink. This can be achieved as Simulink

allows custom functions to be added to the models as blocks.

The second way presented is to call MATLAB functions from Python using the MATLAB

Engine API offered by MathWorks. The engine can be imported from the Python libraries

and then needs to be started by calling the appropriate method. Once the process is

running the user is free to call functions from MATLAB as well as run any user-created

scripts. This way uses MATLAB directly as a computational engine and so requires an

active license. [3] Both of the ways mentioned above are easy and quick to set up and

use. However, they have a disadvantage in that they do not support exchanging

MATLAB tables as noted by Haider et al. [4].

The third direct way of communication is creating a custom blockset in Simulink. The

Simulink blockset [5] designer offers a feature called Python Importer. The Importer wiz-

ard can be given a single file of Python code or a directory of several files. It scans the

4

files and recognizes functions in them. After that, the user can choose which functions

will be created as Simulink blocks and then check the types and sizes of the inputs and

outputs. When the process is complete the user will have a custom blockset that they

can use in Simulink models. [5]

There are also several ways of indirect communication between the platforms. Most of

these are also provided by MathWorks themselves. From Simulink, models can be ex-

tracted using the Embedded Coder. The coder can compile a shared library of C-code

to be used directly in Python or it can generate raw C/C++ -code.[6] Python has a library

called Ctypes that provides methods and datatypes for Python to interface directly with

shared libraries written in C-code. Integrating the platforms in this way could provide very

useful as already compiled C-code is greatly faster than either Python or MATLAB are

even individually.

The MATLAB Compiler SDK was released in 2015. This allows for compiling programs

into packages that can be inserted into the Python code. The compiler works for Simulink

models as well. However, Simulink models are exported using the Functional Mock-up

Interface standard (FMI) when they are needed for co-simulation. [7] MATLAB also al-

lows for the importing of Deep learning models through the Open Neural Network Ex-

change (ONNX) format [8]. However, for the purposes of this study, this is not very useful

as it only works for pre-trained models thus Simulink would not be able to be used in the

training of the model.

Another way of indirect communication is using different types of files to store data and

transfer it across platforms. Keshavarz and Mojra [9] save data from MATLAB into Py-

thon files and return results from Python as txt files. MathWorks [8] suggests using Par-

quet files to transfer data in a tabular format. Most simulation models save data as vec-

tors in Simulink so transferring tabular data is not very relevant for this study.

As can be seen from the research done above there are many ways to transfer data and

functionality from MATLAB to Python and vice versa. The direct ways allow for the use

of both platforms simultaneously whereas the indirect ways use the platforms in turns for

different tasks. Excluding the MATLAB Compiler SDK which builds the wanted model as

a Python package that can be run in the Python code.

2.2 Prior research

There is a limited amount of previous research on the possible uses of integrating the

two platforms in terms of simulation. Tshiani and Umenne [10] used the approach of

calling Python directly from a MATLAB function and then incorporating that function block

5

into the Simulink model. Their work shows that using the two platforms together can be

beneficial to a multitude of industries that already rely heavily on Simulink to model pro-

cesses. Another use-case proposed concerning models that have their properties heav-

ily change as the process advances is to build multiple models for different phases of the

process and use Python as an intermediate to convey data from one model to another

as proposed by Mehlhase [11]. This sort of modular system could be very useful in the

chemical industry in the study of buffer solutions for example. The approach is less rel-

evant to this study as the ways of including Python functionality into the simulation itself

are studied in this thesis. Their method uses Python to initialize the next model with the

results of the previous one in the modular design which is not co-simulation but rather

simulating multiple models in succession. From the lack of prior research, the need for

further research can be seen quite clearly.

2.3 Conclusions from the literature review

From the literature review, it can be concluded that there are several different methods

to communicate between the two platforms. Some of them are more suitable for co-

simulation than others which is to be expected. However, even with multiple methods

available, there is very little prior research regarding the topic. Some studies were found

where co-simulation was utilized to answer a different research question, but it was not

the main topic of research.

The aim of this thesis is to provide some more insight into co-simulation with the two

chosen platforms. Next, some of the methods discovered that were more suitable for co-

simulation will be explored more thoroughly. Some concrete examples will be shown with

experimental data as well. Finally, a use case will be presented to showcase the capa-

bilities of co-simulation that could be utilized in real-life problems.

6

3. DIFFERENT METHODS OF CO-SIMULATION

WITH PYTHON AND SIMULINK

This chapter presents how the different ways of communication discovered in Chapter 2

could be utilized in co-simulation. Not all of the ways are discussed but the ones that

were found to be best suited for co-simulation purposes. The technical details of

conducting a simulation will be discussed and for some methods, experimental data on

computational cost is also presented.

3.1 Using Python in Simulink

In the following chapter, the usage of Python code in MATLAB with Simulink is dis-

cussed. An approach to co-simulate using this approach is presented as well as its ben-

efits and limitations. Like it is discussed in Chapter 2 when a compatible interpreter is

installed on the machine MATLAB can run Python code. After starting the Python envi-

ronment in MATLAB, the user needs to make sure that all of the locations of the modules

they want to use are included in the Python search path. Once the needed module loca-

tions are in the search path their classes and functions can be used with the following

syntax: “py.moduleName.functionName(arguments)”.

In this thesis, the focus was on using a Python class as the controller of a Simulink model.

With this in mind, one of the limitations of this approach is that it was found that an

instance of a Python class cannot be used as an input or output of a Simulink user-

defined function because the model compiler is not able to determine its size in advance.

This means that a MATLAB script is needed to run the simulation. The script saves the

input into the workspace which the Simulink model accesses and then one timestep is

simulated and the model saves the outputs into the workspace as well. From there the

script uses the latest output to get the control from an instance of the Python class. This

procedure is then repeated until the simulation has reached its end. The script for running

the simulation can be seen below in Program 1.

7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

mld = "python_from_simulink_example";
simIn = Simulink.SimulationInput(mld);
simIn = setModelParameter(simIn,"SaveFinalState","on");
simIn = setModelParameter(simIn,"SaveOperatingPoint","on");

time_span = 1:1:100;
x = sin(time_span * 0.04);
y = zeros(1, length(time_span));
py.importlib.import_module("pi_control");
ctrl = py.pi_control.PiController();

c = 0;
ref = 10

for i = time_span

 u = x(i) + c;
 simIn = simIn.setModelParameter("StopTime",num2str(i *
0.1));
 out = sim(simIn);
 vdpOP = out.xFinal;
 simIn = simIn.setInitialState(vdpOP);
 y(i) = out.simout(2);

 c = double(ctrl.control(ref-y(i)));
end

plot(time_span, y)

Program 1: MATLAB script for running a simulation with a Pi-controller imple-
mented in Python.

On line 10 the Python-module which contains the controller is imported into the MATLAB

session and then on line 11 an instance of the controller class is called and saved to a

variable. After this we can use its method on line 25 to retrieve the appropriate control

from the controller. The code in “pi_control.py” can be seen below in Program 2.

8

1
2
3
4
5
6
7
8
9
10
11
12

class PiController:
 def __init__(self):
 self.y = 0
 self.e_sum = 0
 self.u = 0

 def control(self, e):

 self.e_sum += e
 self.u = 1 * e + 0.001 * self.e_sum

 return self.u

Program 2: Pi-controller implementation in Python.

In this paper the Python program is a Pi-controller however there are many possibilities

of what types of programs could be used. For example, different sorts of filters or

machine learning modules could be utilized this way to see their compatibility with an

existing Simulink model. The communication with Python does not slow down the

simulation noticeably at least with this simple controller algorithm however with more

complex Python programs a larger running time is to be expected.

The benefit of this approach is that the Python module can use all of the various libraries

of Python which gives an abundance of flexibility in terms of what sort of attributes can

be implemented into the simulation. In addition, all of the superior modeling capabilities

of Simulink can be used. This is very important because Simulink has a lot of exclusive

toolboxes for modelling complex systems and its interface is very easy to use.

Companies that already have existing Simulink models regarding their products can

utilize this to implement different useful Python programs as a part of the simulations

quite easily using this method. One inconvenience of the method is that every time

MATLAB is started the user needs to manually add the Python program’s location into

the Python search path.

3.2 MATLAB Engine API

As already discussed in chapter 2 the MATLAB engine provides a library of methods for

the user to call MATLAB functions directly from Python. The engine starts a session of

MATLAB which will be used to carry out the computations of the functions. The functions

that can be carried out include performing Simulink simulations with changing the inputs

from Python as well as extracting the outputs.

9

For the user to start the use of the engine the MATLAB Python library needs to be in-

stalled on the user’s machine. The installation can be executed using the Python pack-

age installer(pip) from the terminal when a version of Python is already installed. After

that the user is able to import the library like any other Python library with the “import”-

command when writing the program. With the library imported a MATLAB session can

be started by calling the method connect_matlab. When saved into a variable this var-

iable is an object representation of the MATLAB session and MATLAB functions can be

called as methods of the object.

This paper presents two methods of running a simulation using the engine and intro-

duces experimental data regarding the computational cost of each method. The first of

the methods is accessing the status of the simulation using the set_param and

get_param functions of the engine. These functions can start, pause, continue, and see

if the simulation has ended when given the correct arguments. The former of the func-

tions takes an odd number of arguments. The first argument is the name of the model or

a path to its specific block that is to be modified then the next two arguments specify the

attribute that is to be changed and its new value. The function can take more than one

of these attribute-value pairs and they are executed from left to right, but all the pairs

must affect the same part of the model. This can be used to set the input of the model

by changing the value of a constant block in the Simulink model. The latter function of

the two is called similarly it only loses the final argument so the value of the attribute

because that is the function’s return value. All of the values associated with these func-

tions must be of type string which means the arguments of both functions and the return

value of get_param. Finally, the outputs of the simulations need to be saved into the

workspace in the Simulink model and then can be accessed with the engine as one of

its attributes is the workspace and a specific output can be accessed using the syntax of

a Python dictionary with the key being the output variables name. The interactions be-

tween MATLAB Engine and Python can be seen below in a sequence diagram in Figure

1.

10

Figure 1: Sequence diagram of the first method of conducting a simulation with
MATLAB Engine.

The second method of conducting a simulation using the MATLAB Engine is to create a

SimulationInput -object. This object allows the user to edit the Simulink model’s param-

eters such as the stop time. Using this method, the input and output are accessed

through the workspace, and the operating point of the model is saved after each timestep

and used as the initial state of the next timestep. The operating point is a data object that

contains all the necessary information about the simulation. The simulation of one

timestep is conducted by setting the stop time equal to the timestep with the help of the

SimulationInput -object. The interactions between the two platforms using this method

can be seen below in Figure 2.

11

Figure 2: Sequence diagram of conducting a simulation using the second
method with MATLAB Engine.

Each of these two methods was simulated ten times with two different Simulink models.

One of the models is very simple and the other is more complex with the difference in

computational cost around the order of ten. The Simulink model complexity comparison

was done with Simulink’s built-in model profiler. During the simulations, each function

that communicates with the MATLAB Engine was timed as well as the time for one

timestep of the simulation. The results of the timing can be seen in the tables below.

First, the results for the simpler model are shown for each method in Tables 1 and 2

respectively.

12

Table 1: Times to run each communication with MATLAB for the first method
with a simple.

Action (s)
Run
1 (s)

Run
2 (s)

Run
3 (s)

Run
4 (s)

Run
5 (s)

Run
6 (s)

Run
7 (s)

Run
8 (s)

Run
9 (s)

Run
10 (s)

connect_to_
matlab

28,0
8983

17,1
6702

14,8
5229

15,1
4788

14,5
5788

14,3
4156

13,9
8869

15,5
9587

14,1
9086

14,38
254

set_param_in
put

0,00
236

0,00
230

0,00
221

0,00
218

0,00
217

0,00
216

0,00
214

0,00
209

0,00
208

0,002
54

set_param_si
m

0,02
096

0,01
899

0,01
813

0,01
751

0,01
771

0,01
693

0,01
744

0,01
667

0,01
659

0,019
02

eng.workspac
e[‘output’]

0,00
486

0,00
471

0,00
438

0,00
459

0,00
429

0,00
453

0,00
438

0,00
431

0,00
429

0,004
97

while loop (1
loop)

0,03
029

0,02
802

0,02
637

0,02
620

0,02
590

0,02
540

0,02
562

0,02
475

0,02
473

0,028
59

Table 2: Times to run each communication with MATLAB for the second method
with a simple model.

Action
Run
1 (s)

Run
2 (s)

Run
3 (s)

Run
4 (s)

Run
5 (s)

Run
6 (s)

Run
7 (s)

Run
8 (s)

Run
9 (s)

Run
10 (s)

start_matlab
4,79
301

5,25
251

5,62
030

5,44
484

5,01
799

5,13
013

4,87
337

5,45
661

5,11
198

5,034
94

SimulationIn
put

2,71
804

2,75
303

2,75
685

2,70
729

2,66
346

2,66
646

2,67
936

2,73
686

2,70
340

2,676
92

setModelPar
ameter

SaveFinalStat
e

0,05
334

0,05
200

0,05
413

0,05
651

0,05
401

0,05
252

0,05
401

0,05
601

0,05
300

0,058
00

eng.sim
0,22
515

0,22
275

0,22
683

0,22
036

0,22
220

0,22
318

0,22
021

0,22
734

0,22
026

0,224
37

setInitialstate
0,06
789

0,06
865

0,06
962

0,06
742

0,06
815

0,06
872

0,06
772

0,06
948

0,06
779

0,068
18

setModelPar
ameter

'SaveOperati
ngPoint'

0,02
100

0,02
045

0,02
000

0,02
200

0,01
951

0,02
000

0,01
952

0,01
951

0,02
202

0,021
00

setModelPar
ameter

'StopTime'

0,03
775

0,03
843

0,03
911

0,03
788

0,03
845

0,03
873

0,03
801

0,03
878

0,03
798

0,038
19

eng.workspac
e['input']

0,00
158

0,00
166

0,00
164

0,00
155

0,00
157

0,00
164

0,00
167

0,00
160

0,00
162

0,001
64

for loop (1
iteration)

0,33
501

0,33
403

0,33
979

0,32
983

0,33
298

0,33
480

0,33
016

0,33
975

0,33
020

0,334
94

The tables show times for each communication made with MATLAB during the simulation

as well as finally the time for executing one timestep of the simulation fully. The actions

13

carry similar names to those in the sequence diagrams above. From this data, the means

for each timed unit were calculated and can be seen below in Tables 3 and 4.

Table 3: Mean values corresponding to the data in Table 1.

Action Mean (s)

connect_to_matlab 16,231442

set_param_input 0,002223

set_param_sim 0,017995

eng.workspace[‘output’] 0,004531

while loop (1 iteration) 0,026587

Table 4: Mean values corresponding to the data in Table 2.

Action Mean (s)

start_matlab 5,17357

SimulationInput 2,70617

setModelParameter 'SaveFinalState' 0,05435

eng.sim 0,22327

setInitialstate 0,06836

setModelParameter 'SaveOperatingPoint' 0,02050

setModelParameter 'StopTime' 0,03833

eng.workspace['input'] 0,00162

for loop (1 iteration) 0,33415

 As can be seen from the mean values above for each method the most time-consuming

step is the initial connection to MATLAB. Compared to the time it takes for the connection

the other steps in each method are significantly faster. However, it can be seen that the

first method takes longer to initialize the simulation than the second but is then faster in

running the simulation. This could be useful to know when running longer simulations as

the longer time to run a timestep with the second method could result in unnecessarily

long simulations.

14

Next, the heavier Simulink model was timed in terms of the same functions as the simpler

model the Python codes stayed constant only the name of the model needed to be

changed. This assured a fair comparison of how the co-simulations react to a more com-

plex Simulink model in terms of efficiency. The results for the timing of the heavier model

using the two methods can be seen below in Tables 5 and 6.

Table 5: The times of conducting a simulation using the first method with the
complex model.

Action
Run
1 (s)

Run
2 (s)

Run
3 (s)

Run
4 (s)

Run
5 (s)

Run
6 (s)

Run
7 (s)

Run
8 (s)

Run
9 (s)

Run
10 (s)

connect_matl
ab

21,3
1984

19,1
3692

19,8
2316

19,0
4033

20,3
5102

19,4
9312

18,8
4882

20,3
2681

18,8
4342

19,39
703

set_param_in
put

0,00
224

0,00
214

0,00
248

0,00
216

0,00
225

0,00
205

0,00
210

0,00
209

0,00
212

0,002
27

set_param_si
m

0,01
836

0,01
772

0,01
695

0,01
781

0,01
906

0,01
735

0,01
725

0,01
755

0,01
765

0,017
94

eng.workspac
e[‘output’]

0,00
460

0,00
430

0,00
421

0,00
447

0,00
470

0,00
431

0,00
425

0,00
433

0,00
437

0,004
68

while loop (1
loop)

0,02
698

0,02
598

0,02
530

0,02
618

0,02
781

0,02
542

0,02
529

0,02
580

0,02
586

0,027
03

Table 6: The times of conducting a simulation using the second method with the

complex model.

Action Run
1 (s)

Run
2 (s)

Run
3 (s)

Run
4 (s)

Run
5 (s)

Run
6 (s)

Run
7 (s)

Run
8 (s)

Run
9 (s)

Run
10 (s)

start_matlab 9,33
926

5,88
936

4,82
640

5,47
434

7,80
838

5,19
396

5,36
976

5,34
137

4,95
820

5,335
53

SimulationIn
put

8,37
110

2,92
150

2,61
677

2,64
511

4,95
042

2,83
598

2,78
225

2,73
057

2,67
012

2,679
28

SetModelPar
ameter

SaveFinalStat
e

0,06
751

0,05
500

0,05
200

0,05
252

0,05
732

0,05
501

0,05
400

0,05
400

0,05
152

0,051
52

eng.sim 0,51
324

0,46
355

0,45
551

0,46
211

0,49
717

0,48
909

0,47
175

0,46
601

0,46
132

0,465
97

setInitialstate 0,14
615

0,14
555

0,14
523

0,14
513

0,14
632

0,15
225

0,14
722

0,14
876

0,14
550

0,146
39

setModelPar
ameter

SaveOperatin
gPoint

0,56
866

0,02
341

0,02
010

0,02
035

0,38
809

0,02
052

0,02
252

0,02
000

0,02
000

0,023
46

setModelPar
ameter

StopTime

0,07
707

0,07
703

0,07
640

0,07
666

0,07
786

0,08
050

0,07
771

0,07
867

0,07
701

0,077
40

eng.workspac
e['input']

0,00
156

0,00
165

0,00
171

0,00
158

0,00
168

0,00
168

0,00
165

0,00
167

0,00
164

0,001
65

for loop (1
iteration)

0,74
120

0,69
087

0,68
196

0,68
860

0,72
605

0,72
686

0,70
145

0,69
831

0,68
864

0,694
52

15

From these values, the means were calculated just like with the simpler model. These

mean values can be seen in Tables 7 and 8 respectively.

Table 7: Mean values corresponding to the data in Table 5.

Action Mean

connect_matlab 19,658047

set_param_input 0,00219

set_param_sim 0,01776

eng.workspace[’output’] 0,00442

while loop (1 loop) 0,02617

Table 8: Mean values corresponding to the data in Table 6.

Action Mean

start_matlab 5,95366

SimulationInput 3,52031

setModelParameter 'SaveFinalState' 0,05504

eng.sim 0,474572

setInitialstate 0,14685

setModelParameter 'SaveOperatingPoint' 0,11271

setModelParameter 'StopTime' 0,077631

eng.workspace['input'] 0,001647

for loop (1 iteration) 0,703846

This data shows some interesting results. Firstly, for the first method, the times are very

similar which indicates that using this method the complexity of the model has only small

effects on the speed of the simulation. However, for the second method, some of the

times have nearly doubled. This result indicates the different functions that are affected

by the complexity of the Simulink model. Affected functions are the one that simulates a

timestep, the one that saves the operating point, and the one that sets the last operating

point as the initial state for the next step. It does seem logical that these functions are

affected because simulating a more complex timestep will take longer and the rest of the

16

functions interact with the operating point and in a more complex model the operating

point includes a larger amount of data thus making the functions slower.

From the results above it can be concluded that the second method is more useful when

dealing with simpler models and smaller simulation times because it has a smaller con-

nection time and is easier to write in code. However, when more complex models are

used, or simulation times are very long the first method proves to be a more competent

tool. Despite its longer connection time, this method is faster in simulating one timestep

and suffers only small performance losses when used with more complex Simulink mod-

els.

3.3 Using a shared library of C-code

The next approach to using a Simulink model in Python code is to use the Embedded

coder extension of Simulink to compile the model as a shared library of C-code. The

Embedded coder allows the user to select beneficial settings for compilation and then

compiles the model as either only the code files or the user can choose a shared library.

This will in addition to the code files generate a dynamic shared library which the user

can then access from Python. For the Python integration, the most important settings are

shown in picture 1 below.

Picture 1: The settings needed for exporting the model and integrating it in Py-
thon.

In Python, the integration of the shared library is done using a library called Ctypes. This

library contains data types that make it possible to use types compatible with C-code in

Python. The user then needs to duplicate some of the data structures in the generated

code to be able to call all needed functions with appropriate syntax. With the settings

shown above the C-code will have three functions that allow the user to interact with the

simulation. Those three functions are initialize, step, and terminate. Initialize takes as

arguments pointers to the real-time model structure as well as all inputs and outputs.

17

Step is similar in calling convention but all of the pointers to inputs are replaced with the

actual values of the inputs. Terminate only takes the real-time model structure pointer as

an argument. Integration requires carefulness because the data structures in the C-code

need to be duplicated exactly for the simulation to be able to be ran.

After successfully integrating the system in Python a test was conducted to see if this

approach could produce accurate results. The model was simulated using both co-sim-

ulation and only Simulink with identical inputs. The plots of the simulations were recorded

and are shown below in Figures 3 and 4.

Figure 3: Plot of the simulation produced by co-simulation.

18

Figure 4: Plot of the simulation using only Simulink.

As can be seen from the plots the results are nearly identical. From this, it can be de-

duced that this approach is a viable method of co-simulation.

The benefit of this approach is that it is very fast. Code written in C is generally faster

than that written in Python. The reason is that C-code is compiled whereas Python code

is interpreted which means it is run line by line, so memory is not used as efficiently as it

is used in C-code. This means that the only speed limitations of this approach are from

the Python side. Another benefit is that after the system is extracted from Simulink to C,

an active MATLAB license is no longer required. One large limitation of the generated

code is that only discrete models can be integrated into Python. This is because some

of the datatypes used in the generated code with continuous solvers cannot be accessed

in Python even with the Ctypes library. However, with discrete models, this approach is

the best to use because of its superior performance.

3.4 TCP/IP connection

A final way is using the transmission control protocol/internet protocol (TCP/IP) to send

data between the two platforms. The connection transfers data through the local network

using a client-server policy. For connection an IP address needs to be specified and a

specific port assigned to be used by the client and the server.

19

Establishing the connection between the platforms is done by using the “socket”-library

of Python and the “Instrument Control Toolbox” in Simulink. The specific identifiers of the

connection need to match for the data to be sent. In Simulink, the toolbox provides spe-

cific blocks for both sending and receiving data using a TCP/IP connection. Because of

using this connection, the data transforms into a package of bytes, thus in Python the

received data needed to be unpacked using the “struct”-library, and also data to be sent

back needed to be packed into a package of bytes. In Simulink, the blocks do this auto-

matically. The utilization of this method is explained further in the next chapter. However,

the basic communication structure can be seen in Figure 5 below.

Figure 5: The communication structure between Python and Simulink with
TCP/IP

In the figure in Simulink, the client’s host and port number need to match the ones Python

is listening on after that the simulation can be started. Python starts processing the data

once it receives data through the connection. After processing it sends the new input to

Simulink through the same established connection and the loop starts again until the

simulation finishes. The loop could also work in the other direction as well.

This approach also has benefits regarding its speed. In addition, for use cases that would

benefit from parallel processing, this connection would be ideal. It allows the workloads

of Python and Simulink to be split for two different processing units very easily as each

task can be executed on one unit and a local network connects the units. In this thesis,

the connection was used to send single values between the platforms. Sending more

complicated data could prove to be unnecessarily complex and thus provide limitations

in terms of usefulness.

20

4. USE-CASE AND ANALYSIS

4.1 The dice game

This chapter presents how the different approaches of co-simulation could be utilized

through a use-case. The example system is a dice game where the player has a choice

of five dice and is given a starting number between one and twenty. The player needs to

reach zero from the starting number with the least number of die throws where the result

of each throw is deducted from their number. Each die is different in terms of the numbers

on its six sides. The dice used in this use-case are shown in Table 9 below.

Table 9: The different sides of the dice used in the game.

 Side number

Die 1 1 1 1 5 5 8

Die 2 2 2 3 3 6 6

Die 3 1 4 4 4 5 7

Die 4 2 2 6 6 7 8

Die 5 3 4 5 7 8 8

So, when playing the game, the player needs to make logical decision based on how far

away their sum of results is from the target. If the player goes over zero their score is

updated to be as much away from the target as they went over the target. For example,

a player’s number is 2 and they throw a six that means their score goes four over zero

which means their new number is updated to 4. In this use-case one approach of co-

simulation is used to train a reinforcement learning agent to have the best possible policy

to play this game. Then another approach of co-simulation is used to test this policy

against an agent doing random choices between the dice.

First the model of the game was decided to be exported from Simulink using a shared

library of C-code because that was found to be the fastest approach and this game is

completely discrete so that did not limit the choice. The models architecture can be seen

in Picture 2 below.

21

Picture 2: The Simulink architecture of the dice game.

The subsystem “roll and recalculate” rolls a random side of the die that is indicated by

the input choice. The input “target” indicates how far away the player is from zero and

the result of the die roll is deducted from this and the result’s absolute value is taken

which is the output of the subsystem named “new target”. The output of the system

named “Observation” indicates that value and the output named “IsDone” indicates if the

game has finished. The final output named “Reward” indicates the penalty endured for

each throw it takes for the agent to finish the game.

4.2 Co-simulation integration and reinforcement learning al-
gorithm

To integrate the model into Python the same procedure was followed that was used in

Chapter 3.3. The presence of multiple outputs does not complicate the integration

process it just means all the additional outputs need to be declared in the Python code

just like they are declared in the generated code. In addition, the calling conventions of

the functions that interact with the model should be checked so that all the arguments

are correct as either values, references, or pointers.

Once the model was integrated into Python the reinforcement learning algorithm needed

to be implemented. In this paper, an Epsilon greedy Monte Carlo method was used

adapted from Sezer [12]. This method starts with determining a random policy then it

plays the game according to that policy and records the returns received from doing an

action from a specific state of the game. The method also sometimes deviates from the

policy to promote more exploration and the frequency of this is determined by a

probability set by the user. In this example, the agent follows the policy with a 92.5%

22

probability. This means the agent is greedy as mentioned in the name. A greedy agent

will favour the fastest possible solution instead of exploration. An agent that favours more

exploration might achieve more accurate results, however it needs more repetitions to

reach those results which could prove unnecessarily time consuming. Once the algorithm

has played one game and recorded the results and penalties endured, it will calculate

quality values (Q-values) for each action from each state. Then a new policy is

determined based on the Q-values. The action that has the highest Q-value from a

specific state is chosen as the action in the new policy. Finally, the process is repeated

a large number of times to achieve a more reliable policy.

In this example, ten thousand repetitions were used in the training of the model. From

this the final policy was extracted and it can be seen in Table 10 below.

Table 10: Policy determined by the reinforcement learning agent.

Policy

State Choice

20 3

19 5

18 5

17 5

16 3

15 5

14 3

13 5

12 5

11 3

10 4

9 5

8 4

7 3

6 2

5 1

4 2

3 1

2 1

1 1

In this table, state refers to how far away the player is from zero and choice refers to the

number of the die the agent has decided to throw at that state. The policy was also saved

to a text file for further usage.

23

4.3 Testing using TCP/IP connection

Next this policy was tested in terms of if it produced a result that would be more effective

than choosing at random between the dice. The TCP/IP connection was chosen to show-

case its utility. The connection was established as explained in Chapter 3.4. For the

usage of this testing only one value at a time would need to be send. So, the rolling of

the dice was done in Simulink and the target was updated. This target was then sent to

Python where the policy was read from the text file mentioned above and a choice was

made according to the policy and then sent back to Simulink.

The testing was done in a way where the initial condition was randomized between one

and twenty. Then the game was played until the end and the amount of throws it took to

finish the game was recorded. The results of the testing can be seen below in Table 11.

Table 11: Comparison of using the reinforcement learning policy to a random
policy.

 Iterations

Simulation Policy Random

Run 1 1 2

Run 2 6 6

Run 3 3 7

Run 4 3 4

Run 5 2 7

Run 6 4 4

Run 7 5 2

Run 8 6 7

Run 9 1 3

Run 10 5 5

Mean 3,6 4,7

From the table, it can be seen that for ten rounds of the game using the policy is on

average one throw more efficient than using a random policy to play the game. The dif-

ference is quite modest which might be because there is no correlation between the initial

conditions of the games played on each row of the table. A more drastic difference could

be seen if for each round the two policies would start playing the game from the same

initial condition. However, even with the completely random initial conditions the rein-

forcement learning agent’s policy is more efficient which matches the expected result.

This use-case demonstrated how co-simulation with Python and Simulink could be used

to train a reinforcement learning agent to perform a task more efficiently. In terms of the

dice game the training was successful, and the agent was more efficient than an agent

making choices at random. The approach used in the training of the agent is currently

24

only applicable to discrete systems. However, for continuous systems, the MATLAB En-

gine could be utilized similarly to train the agent. This would take more time but that is a

necessary cost that needs to be endured. This example highlights the usefulness of co-

simulation because it allows for the usage of the benefits of both platforms as well as

legacy models in Simulink without major changes or approximations. It also showed that

different approaches to co-simulation can be used to perform different tasks within a

project.

25

5. CONCLUSIONS

This thesis has studied co-simulation using Python and Simulink. The objectives were to

find different approaches to conduct the co-simulation and outline their benefits and lim-

itations. In addition, a use case was defined to demonstrate the usefulness of co-simu-

lation in a concrete context.

Firstly, a literature review was conducted to get a sense of the different approaches to

co-simulation with the given platforms. Furthermore, the literature review showed the

need for this sort of research as prior research on the topic is very scarce. Based on the

literature review four different approaches were chosen to be presented in this paper

using Python code in Simulink, using the MATLAB Engine, using a shared library of gen-

erated C-code, and using a TCP/IP connection.

To explore the ability to use Python code in Simulink a simple Pi-controller was imple-

mented in Python to be used to control a Simulink model. This approach presents the

limitations that Python objects cannot be used as any input or output in Simulink. Thus,

the simulation was conducted using a MATLAB script and it was successful. Another

inconvenience of the approach is that for every session the user needs to redefine the

location of their Python module into the search path of the Python environment in

MATLAB.

Two different approaches to using Simulink models from Python were presented. First

of these is the MATLAB Engine which could be used to run a simulation through two

different methods. These two methods were benchmarked, and it was found that one

method is more suitable for simpler and shorter simulations and the other is more suita-

ble for more complex and longer simulations. The second approach to using Simulink in

Python is using a shared library of generated C-code. This involved generating a dy-

namic library from a Simulink model according to specific settings so that the simulation

could be accessed from Python. Then the “Ctypes”-library was used to implement the

dynamic library in the Python code for co-simulation. The output of this approach was

compared to the output of simulating an identical model in Simulink by itself and the

results were very close to each other proving that the co-simulation suffered minimal

accuracy losses. The limitation of this approach is that it can only be used for discrete

models.

Table 12 summarizes the benefits and limitations of the different methods explored.

26

Table 12: Summary of benefits and limitations of each method

Method Benefits Limitations

Python in Simulink - Easy to use bene-

fits of both plat-

forms

- No speed loss

- Moderately slow

- Requires meticulous

setup

MATLAB Engine API - Easy to use bene-

fits of both plat-

forms

- Easy to setup and

run simulations

- Intuitive interfacing

- Slowest

- Complex system re-

quire high processing

power

Simulink to C to Python - Fastest

- After C extraction

an active MATLAB

license is not re-

quired

- Only for discrete sys-

tems

- Requires more work to

setup

TCP/IP - Fast

- Works for all types

of systems

- Moderately easy to

setup

- Best for parallel

processing

- Sending complex data

might be difficult

- Requires some

knowledge on how lo-

cal networks are

hosted and how the

data is transported

Finally, the use-case used to present some of the possible capabilities of co-simulation

was defined as a dice game. In the game, the player is given a random number between

one and twenty and their goal is to reach zero in as few throws as possible. This model

was exported using the embedded coder as a shared library of generated code. Then

the exported model was used to train a reinforcement learning agent to find an ideal

27

policy for playing the game. After training the agent a TCP/IP connection was used to

co-simulate its effectiveness against an agent acting randomly, it was found that the co-

simulation was successful in training the agent to be more efficient than completely ran-

dom choices.

In conclusion, it was found that there are multiple approaches to co-simulation using

Simulink and Python that are each useful in different scenarios. Especially useful was

the finding that a co-simulation could be used to unite the ease of modeling in Simulink

and the vast machine-learning capabilities of Python. Further research could be done

into system identification and optimization through co-simulation as well.

28

REFERENCES

[1] MathWorks, “Simulink front page,” MathWorks website. Accessed: Dec.
15, 2023. [Online]. Available:
https://se.mathworks.com/products/simulink.html

[2] MathWorks, “Access Python Modules from MATLAB - Getting Started,”
MathWorks Documentation. Accessed: Oct. 14, 2023. [Online]. Available:
https://se.mathworks.com/help/matlab/matlab_external/create-object-
from-python-class.html

[3] MathWorks, “Get Started with MATLAB Engine API for Python,”
MathWorks Documentation. Accessed: Oct. 15, 2023. [Online]. Available:
https://se.mathworks.com/help/matlab/matlab_external/call-matlab-
functions-from-python.html

[4] L. Haider, M. Baumgartner, D. Hayn, and G. Schreier, “Integration of
Python Modules in a MATLAB-Based Predictive Analytics Toolset for
Healthcare,” in dHealth 2022: Proceedings of the 16th Health Informatics
Meets Digital Conference, G. Schreier, B. Pfeifer, M. Baumgartner, and D.
Hayn, Eds., IOS Press BV, 2022, pp. 197–204. doi: 10.3233/SHTI220369.

[5] MathWorks, “Import Python Code to Simulink Using Python Importer
Wizard,” MathWorks Documentation. Accessed: Dec. 01, 2023. [Online].
Available: https://se.mathworks.com/help/simulink/ug/import-python-code-
using-python-importer.html

[6] MathWorks, “Embedded coder,” MathWorks Documentation. Accessed:
Nov. 27, 2023. [Online]. Available:
https://se.mathworks.com/help/ecoder/index.html?s_tid=CRUX_lftnav

[7] MathWorks, “Simulink compiler,” MathWorks Documentation. Accessed:
Oct. 18, 2023. [Online]. Available:
https://se.mathworks.com/help/slcompiler/index.html?s_tid=CRUX_lftnav

[8] MathWorks, “Using Python with MATLAB,” MathWorks Website.
Accessed: Oct. 17, 2023. [Online]. Available:
https://se.mathworks.com/products/matlab/matlab-and-python.html

[9] M. Keshavarz and A. Mojra, “Geometrical features assessment of liver’s
tumor with application of artificial neural network evolved by imperialist
competitive algorithm,” Int J Numer Method Biomed Eng, vol. 31, no. 5,
pp. e02704-n/a, 2015, doi: 10.1002/cnm.2704.

[10] C. T. Tshiani and P. Umenne, “The Characterization of the Electric
Double-Layer Capacitor (EDLC) Using Python/MATLAB/Simulink (PMS)-
Hybrid Model,” Energies (Basel), vol. 15, no. 14, p. 5193, 2022, doi:
10.3390/en15145193.

[11] A. Mehlhase, “A Python framework to create and simulate models with
variable structure in common simulation environments,” Math Comput
Model Dyn Syst, vol. 20, no. 6, pp. 566–583, 2014, doi:
10.1080/13873954.2013.861854.

[12] Ö. Sezer, “Monte Carlo Epsilon greedy demo,” GitHub. Accessed: Dec.
10, 2023. [Online]. Available:
https://github.com/omerbsezer/Reinforcement_learning_tutorial_with_dem
o/blob/master/monte_carlo_epsilon_greedy_demo.ipynb

29

	1. Introduction
	2. Literature Review
	2.1 Different methods of communication between MATLAB and Python
	2.2 Prior research
	2.3 Conclusions from the literature review

	3. Different Methods of Co-simulation with Python and Simulink
	3.1 Using Python in Simulink
	3.2 MATLAB Engine API
	3.3 Using a shared library of C-code
	3.4 TCP/IP connection

	4. Use-case and analysis
	4.1 The dice game
	4.2 Co-simulation integration and reinforcement learning algorithm
	4.3 Testing using TCP/IP connection

	5. conclusions
	REFERENCES

