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ABSTRACT 

Niilo Viheriäranta: Co-simulation using Python and Simulink 
Bachelor’s thesis 
Tampere University 
Teknisten tieteiden kandidaatin tutkinto-ohjelma 
January 2024 
 

Co-simulation is a methodology of computer analysis and simulation. This technique involves 
different kinds of specialized simulation programs interacting and working simultaneously to reach 
more comprehensive results regarding complex systems. It is an approach that is very beneficial 
for multidisciplinary experiments that include various subsystems of a model that require distinct 
areas of expertise or simulation approaches. 
 This thesis studies co-simulation using Python and Simulink. The thesis starts with a short 
literature review where different methods of communication between Python and Simulink are 
discovered and their suitability for co-simulation is discussed. In addition, some prior research on 
the topic is presented. Co-simulation using these two platforms is quite a new technology so the 
research available was limited. Out of the methods discovered in the literature review four were 
chosen as most suitable for co-simulation. The chosen methods were MATLAB Engine API, Py-
thon code in Simulink, TCP/IP (Transmission control protocol/internet protocol), and extracting a 
model from Simulink to C-code and embedding it in Python. 
 Each method was used to perform a simulation and the process of conducting the simu-
lation was explained. For the MATLAB Engine API, a computational cost experiment was con-
ducted because it could be used in two different ways. The results showed that one way is more 
suitable for simple simulations and the other for more complex simulations. The other methods 
were found to have their own benefits and limitations as well. Embedded C-code was very fast 
but only works for discrete systems. Python classes can be used to control Simulink models, but 
the Simulation needs to be run from a script and requires precise setup steps. TCP/IP is the most 
suitable for parallel processing but could prove difficult to use with very complex data. Finally, co-
simulation was used to train a reinforcement learning agent to play a dice game. The experiment 
was successful, and it showcased the possible real-life utility of co-simulation.  
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TIIVISTELMÄ 

Niilo Viheriäranta: Yhteissimulaatio Pythonia ja Simulinkiä käyttäen 
Kandidaatintyö 
Tampereen yliopisto 
Teknisten tieteiden kandidaatin tutkinto-ohjelma 
Tammikuu 2024 
 

Yhteissimulaatio on tietokoneanalyysin tekniikka, jossa kahta tai useampaa simulaatioalustaa 
hyödynnetään yhtaikaisesti monimutkaisten ongelmien ratkaisemiseen. Sen avulla pystytään 
saavuttamaan kattavampia tuloksia ongelmissa, joissa systeemin eri osat vaativat erilaisia 
mallinnuskyvykkyyksiä. Yhteissimulaation hyötyjä ovat esimerkiksi laajemmat 
ratkaisijavaihtoehdot, rinnakkaisprosessointi ja immateriaalioikeuksien suojaaminen. 
 Tässä kandidaatintyössä tutkitaan yhteissimulaation toteuttamista Pythonin ja Simulinkin 
avulla. Alussa on toteutettu lyhyt kirjallisuuskatsaus, jossa ensin tutkitaan erilaisia tapoja siirtää 
dataa sekä toiminnallisuutta alustojen välillä ja sitten etsitään aiempaa tutkimusta 
yhteisimulaatiosta. Koska yhteissimulaatio näitä kahta alustaa käyttäen on melko uusi aihe, 
tutkimuksia löytyi suhteellisen vähän. Kirjallisuuskatsauksessa löydetyistä metodeista valittiin 
neljä parhaimmin yhteissimulaatioon sopivinta tapaa tutkittavaksi. Nämä ovat Python koodin 
käyttö Simulinkissä, MATLAB Engine API, mallin muuttaminen C-koodiksi ja sen sulauttaminen 
Pythoniin sekä TCP/IP-yhteyden (Transmission control protocol / internet protocol) käyttäminen.  

Jokaisen tavan toteuttaminen esiteltiin ja niitä kaikkia käytettiin simulaation ajamiseen. 
Lisäksi MATLAB Engine API:lla pystyi toteuttamaan simulaation kahdella eri tyylillä, joten tyylien 
resurssivaatimukset mitattiin ja data esiteltiin. Huomattiin, että toinen tyyli sopii paremmin lyhyisiin 
yksinkertaisiin simulaatioihin ja toinen taas paremmin pidempiin monimutkaisiin simulaatioihin. 
Muistakin tavoista huomattiin erilaisia hyötyjä ja haittoja. Sulautettu C-koodi on nopein, mutta se 
toimii vain diskreeteillä systeemeillä. Python-koodia pystytään käyttämään Simulinkissä niin että 
molempien hyödyt saadaan käyttöön, mutta valmistelut vaativat tarkkoja määreitä. TCP/IP-yhteys 
sopii parhaiten rinnakkaisprosessointiin mutta monimutkaisen datan siirtäminen voi muuttua 
vaikeaksi. Lopuksi esitellään käytännön esimerkki, jossa vahvistusoppimisen avulla koulutetaan 
toimija pelaamaan erästä noppapeliä mahdollisimman tehokkaasti. Toimija oli tehokkaampi kuin 
satunnaisesti valitseva toimija, mikä osoitti yhteissimulaation hyödyllisyyden esimerkiksi 
koneoppimisessa. 

 
 
 

Avainsanat: Yhteissimulaatio, Python, Simulink, vahvistusoppiminen 
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1. INTRODUCTION 

This thesis studies co-simulation using two different platforms MATLAB’s Simulink and 

Python. Co-simulation is a methodology of computer analysis and simulation. This tech-

nique involves different kinds of specialized simulation programs interacting and working 

simultaneously to reach more comprehensive results regarding complex systems. It is 

an approach that is very beneficial for multidisciplinary experiments that include various 

subsystems of a model which require distinct areas of expertise or simulation ap-

proaches.  

Co-simulation has many benefits compared to using single-platform simulation. Some 

models include subsystems that have very different physical behaviours and time scales. 

With these systems, it could prove difficult to develop a dynamic formulation that repre-

sents every phenomenon involved with the system. Co-simulation allows for assigning a 

specific solver to each subsystem meaning its equations and implementation can be 

tailored to represent its real-life counterpart more realistically.  

In addition, using single-platform simulation sometimes requires sacrificing intellectual 

property in order to reach an accurate result. This problem arises because every sub-

system and its details need to be accessible to the system solver. In some industrial 

applications safeguarding at least some of the information regarding the system is very 

important. Co-simulation allows for determining a particular interface of data that is 

shared between the solvers and the rest can remain private.  

Furthermore, co-simulation allows for parallel processing of heavy models. Simulating 

very heavy systems could result in increasingly high simulation times making the work 

inefficient, with co-simulation the computational workload can be shared between two or 

more different processing units. This could increase efficiency in many applications. 

This thesis specifies on co-simulation with Python and Simulink. Simulink is an extension 

application of MATLAB provided by MathWorks. It allows users to model a large variety 

of different scenarios. It provides toolboxes for almost all fields of industry and is widely 

used in companies. However, Simulink also has limitations for example in its machine 

learning capabilities. [1] In comparison, Python is an open-source coding language that 

has a wide range of libraries that could be used to address some of the limitations of 

Simulink. This is why it would be very beneficial to find approaches to co-simulation be-
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tween these two platforms. Furthermore, many companies have legacy models in Sim-

ulink and because Python is free to use, they could harness it without enduring any extra 

costs.  

The objective of this paper is to find approaches to co-simulation with the two platforms 

presented above. In addition, the benefits and limitations of each approach will be pre-

sented and their effects on usefulness will be assessed. Finally, a use case will be de-

fined and through it the benefits of co-simulation will be presented.  
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2. LITERATURE REVIEW 

This chapter focuses on previous research around Python, Simulink and their integration 

in terms of co-simulation. In addition, studies that use the two platforms in similar tasks 

are considered to gain an insight into the advantages and disadvantages of each plat-

form. Exploration of the research will enable better understanding of different ways to 

use Simulink and Python as complimentary tools to each other. Finally, some studies 

that have implemented co-simulation with the two platforms will be explore. 

2.1 Different methods of communication between MATLAB 
and Python 

MathWorks presents three different ways to directly communicate between MATLAB and 

Python. The first of these is calling Python directly in MATLAB. Python modules can be 

called in MATLAB by using the “py” prefix followed by a period and the module’s name 

after which the inputs are entered in brackets. The version and default interpreter can be 

changed by running the command “pyenv” and editing the fields of the resulting MATLAB 

struct to match the desired properties of Python. The user is able to call self-created 

modules and third-party libraries in addition to the standard libraries of Python. This re-

quires all the needed libraries to be installed and the modules to be located in the active 

folder in MATLAB. [2] One way this way of communication can be utilized with Simulink 

is to create a custom MATLAB function that takes inputs from Simulink then calls Python 

inside the function and returns the outputs to Simulink. This can be achieved as Simulink 

allows custom functions to be added to the models as blocks.  

The second way presented is to call MATLAB functions from Python using the MATLAB 

Engine API offered by MathWorks. The engine can be imported from the Python libraries 

and then needs to be started by calling the appropriate method. Once the process is 

running the user is free to call functions from MATLAB as well as run any user-created 

scripts.  This way uses MATLAB directly as a computational engine and so requires an 

active license. [3] Both of the ways mentioned above are easy and quick to set up and 

use. However, they have a disadvantage in that they do not support exchanging 

MATLAB tables as noted by Haider et al. [4]. 

The third direct way of communication is creating a custom blockset in Simulink. The 

Simulink blockset [5] designer offers a feature called Python Importer. The Importer wiz-

ard can be given a single file of Python code or a directory of several files. It scans the 
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files and recognizes functions in them. After that, the user can choose which functions 

will be created as Simulink blocks and then check the types and sizes of the inputs and 

outputs. When the process is complete the user will have a custom blockset that they 

can use in Simulink models. [5] 

There are also several ways of indirect communication between the platforms. Most of 

these are also provided by MathWorks themselves. From Simulink, models can be ex-

tracted using the Embedded Coder. The coder can compile a shared library of C-code 

to be used directly in Python or it can generate raw C/C++ -code.[6] Python has a library 

called Ctypes that provides methods and datatypes for Python to interface directly with 

shared libraries written in C-code. Integrating the platforms in this way could provide very 

useful as already compiled C-code is greatly faster than either Python or MATLAB are 

even individually.  

The MATLAB Compiler SDK was released in 2015. This allows for compiling programs 

into packages that can be inserted into the Python code. The compiler works for Simulink 

models as well. However, Simulink models are exported using the Functional Mock-up 

Interface standard (FMI) when they are needed for co-simulation. [7] MATLAB also al-

lows for the importing of Deep learning models through the Open Neural Network Ex-

change (ONNX) format [8]. However, for the purposes of this study, this is not very useful 

as it only works for pre-trained models thus Simulink would not be able to be used in the 

training of the model.  

Another way of indirect communication is using different types of files to store data and 

transfer it across platforms. Keshavarz and Mojra [9] save data from MATLAB into Py-

thon files and return results from Python as txt files. MathWorks [8] suggests using Par-

quet files to transfer data in a tabular format. Most simulation models save data as vec-

tors in Simulink so transferring tabular data is not very relevant for this study.  

As can be seen from the research done above there are many ways to transfer data and 

functionality from MATLAB to Python and vice versa. The direct ways allow for the use 

of both platforms simultaneously whereas the indirect ways use the platforms in turns for 

different tasks. Excluding the MATLAB Compiler SDK which builds the wanted model as 

a Python package that can be run in the Python code.  

2.2 Prior research 

There is a limited amount of previous research on the possible uses of integrating the 

two platforms in terms of simulation. Tshiani and Umenne [10] used the approach of 

calling Python directly from a MATLAB function and then incorporating that function block 
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into the Simulink model. Their work shows that using the two platforms together can be 

beneficial to a multitude of industries that already rely heavily on Simulink to model pro-

cesses. Another use-case proposed concerning models that have their properties heav-

ily change as the process advances is to build multiple models for different phases of the 

process and use Python as an intermediate to convey data from one model to another 

as proposed by Mehlhase [11]. This sort of modular system could be very useful in the 

chemical industry in the study of buffer solutions for example. The approach is less rel-

evant to this study as the ways of including Python functionality into the simulation itself 

are studied in this thesis. Their method uses Python to initialize the next model with the 

results of the previous one in the modular design which is not co-simulation but rather 

simulating multiple models in succession. From the lack of prior research, the need for 

further research can be seen quite clearly.   

2.3 Conclusions from the literature review  

From the literature review, it can be concluded that there are several different methods 

to communicate between the two platforms. Some of them are more suitable for co-

simulation than others which is to be expected. However, even with multiple methods 

available, there is very little prior research regarding the topic. Some studies were found 

where co-simulation was utilized to answer a different research question, but it was not 

the main topic of research.  

The aim of this thesis is to provide some more insight into co-simulation with the two 

chosen platforms. Next, some of the methods discovered that were more suitable for co-

simulation will be explored more thoroughly. Some concrete examples will be shown with 

experimental data as well. Finally, a use case will be presented to showcase the capa-

bilities of co-simulation that could be utilized in real-life problems. 



6 
 

3. DIFFERENT METHODS OF CO-SIMULATION 

WITH PYTHON AND SIMULINK  

This chapter presents how the different ways of communication discovered in Chapter 2 

could be utilized in co-simulation. Not all of the ways are discussed but the ones that 

were found to be best suited for co-simulation purposes. The technical details of 

conducting a simulation will be discussed and for some methods, experimental data on 

computational cost is also presented. 

3.1 Using Python in Simulink 

In the following chapter, the usage of Python code in MATLAB with Simulink is dis-

cussed. An approach to co-simulate using this approach is presented as well as its ben-

efits and limitations. Like it is discussed in Chapter 2 when a compatible interpreter is 

installed on the machine MATLAB can run Python code. After starting the Python envi-

ronment in MATLAB, the user needs to make sure that all of the locations of the modules 

they want to use are included in the Python search path. Once the needed module loca-

tions are in the search path their classes and functions can be used with the following 

syntax: “py.moduleName.functionName(arguments)”.  

In this thesis, the focus was on using a Python class as the controller of a Simulink model. 

With this in mind, one of the limitations of this approach is that it was found that an 

instance of a Python class cannot be used as an input or output of a Simulink user-

defined function because the model compiler is not able to determine its size in advance. 

This means that a MATLAB script is needed to run the simulation. The script saves the 

input into the workspace which the Simulink model accesses and then one timestep is 

simulated and the model saves the outputs into the workspace as well. From there the 

script uses the latest output to get the control from an instance of the Python class. This 

procedure is then repeated until the simulation has reached its end. The script for running 

the simulation can be seen below in Program 1. 
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6 
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8 
9 
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12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

mld = "python_from_simulink_example"; 
simIn = Simulink.SimulationInput(mld); 
simIn = setModelParameter(simIn,"SaveFinalState","on"); 
simIn = setModelParameter(simIn,"SaveOperatingPoint","on"); 
 
time_span = 1:1:100; 
x = sin(time_span * 0.04); 
y = zeros(1, length(time_span)); 
py.importlib.import_module("pi_control"); 
ctrl = py.pi_control.PiController(); 
 
c = 0; 
ref = 10 
 
for i = time_span 
 
    u = x(i) + c; 
    simIn = simIn.setModelParameter("StopTime",num2str(i * 
0.1)); 
    out = sim(simIn); 
    vdpOP = out.xFinal; 
    simIn = simIn.setInitialState(vdpOP); 
    y(i) = out.simout(2); 
 
    c = double(ctrl.control(ref-y(i))); 
end 
 
plot(time_span, y) 

Program 1: MATLAB script for running a simulation with a Pi-controller imple-
mented in Python. 

On line 10 the Python-module which contains the controller is imported into the MATLAB 

session and then on line 11 an instance of the controller class is called and saved to a 

variable. After this we can use its method on line 25 to retrieve the appropriate control 

from the controller. The code in “pi_control.py” can be seen below in Program 2. 

 



8 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
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12 

class PiController: 
    def __init__(self): 
        self.y = 0 
        self.e_sum = 0 
        self.u = 0 
 
    def control(self, e): 
 
        self.e_sum += e 
        self.u = 1 * e + 0.001 * self.e_sum 
 
        return self.u 
 

Program 2: Pi-controller implementation in Python. 

In this paper the Python program is a Pi-controller however there are many possibilities 

of what types of programs could be used. For example, different sorts of filters or 

machine learning modules could be utilized this way to see their compatibility with an 

existing Simulink model. The communication with Python does not slow down the 

simulation noticeably at least with this simple controller algorithm however with more 

complex Python programs a larger running time is to be expected. 

The benefit of this approach is that the Python module can use all of the various libraries 

of Python which gives an abundance of flexibility in terms of what sort of attributes can 

be implemented into the simulation. In addition, all of the superior modeling capabilities 

of Simulink can be used. This is very important because Simulink has a lot of exclusive 

toolboxes for modelling complex systems and its interface is very easy to use. 

Companies that already have existing Simulink models regarding their products can 

utilize this to implement different useful Python programs as a part of the simulations 

quite easily using this method. One inconvenience of the method is that every time 

MATLAB is started the user needs to manually add the Python program’s location into 

the Python search path.   

3.2 MATLAB Engine API  

As already discussed in chapter 2 the MATLAB engine provides a library of methods for 

the user to call MATLAB functions directly from Python. The engine starts a session of 

MATLAB which will be used to carry out the computations of the functions. The functions 

that can be carried out include performing Simulink simulations with changing the inputs 

from Python as well as extracting the outputs.  
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For the user to start the use of the engine the MATLAB Python library needs to be in-

stalled on the user’s machine. The installation can be executed using the Python pack-

age installer(pip) from the terminal when a version of Python is already installed. After 

that the user is able to import the library like any other Python library with the “import”-

command when writing the program. With the library imported a MATLAB session can 

be started by calling the method connect_matlab. When saved into a variable this var-

iable is an object representation of the MATLAB session and MATLAB functions can be 

called as methods of the object.  

This paper presents two methods of running a simulation using the engine and intro-

duces experimental data regarding the computational cost of each method. The first of 

the methods is accessing the status of the simulation using the set_param and 

get_param functions of the engine. These functions can start, pause, continue, and see 

if the simulation has ended when given the correct arguments. The former of the func-

tions takes an odd number of arguments. The first argument is the name of the model or 

a path to its specific block that is to be modified then the next two arguments specify the 

attribute that is to be changed and its new value. The function can take more than one 

of these attribute-value pairs and they are executed from left to right, but all the pairs 

must affect the same part of the model. This can be used to set the input of the model 

by changing the value of a constant block in the Simulink model. The latter function of 

the two is called similarly it only loses the final argument so the value of the attribute 

because that is the function’s return value. All of the values associated with these func-

tions must be of type string which means the arguments of both functions and the return 

value of get_param. Finally, the outputs of the simulations need to be saved into the 

workspace in the Simulink model and then can be accessed with the engine as one of 

its attributes is the workspace and a specific output can be accessed using the syntax of 

a Python dictionary with the key being the output variables name. The interactions be-

tween MATLAB Engine and Python can be seen below in a sequence diagram in Figure 

1. 
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Figure 1: Sequence diagram of the first method of conducting a simulation with 
MATLAB Engine. 

The second method of conducting a simulation using the MATLAB Engine is to create a 

SimulationInput -object. This object allows the user to edit the Simulink model’s param-

eters such as the stop time. Using this method, the input and output are accessed 

through the workspace, and the operating point of the model is saved after each timestep 

and used as the initial state of the next timestep. The operating point is a data object that 

contains all the necessary information about the simulation. The simulation of one 

timestep is conducted by setting the stop time equal to the timestep with the help of the 

SimulationInput -object. The interactions between the two platforms using this method 

can be seen below in Figure 2. 
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Figure 2: Sequence diagram of conducting a simulation using the second 
method with MATLAB Engine. 

Each of these two methods was simulated ten times with two different Simulink models. 

One of the models is very simple and the other is more complex with the difference in 

computational cost around the order of ten. The Simulink model complexity comparison 

was done with Simulink’s built-in model profiler. During the simulations, each function 

that communicates with the MATLAB Engine was timed as well as the time for one 

timestep of the simulation. The results of the timing can be seen in the tables below. 

First, the results for the simpler model are shown for each method in Tables 1 and 2 

respectively. 
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Table 1: Times to run each communication with MATLAB for the first method 
with a simple. 

Action (s) 
Run 
1 (s) 

Run 
2 (s) 

Run 
3 (s) 

Run 
4 (s) 

Run 
5 (s) 

Run 
6 (s) 

Run 
7 (s) 

Run 
8 (s) 

Run 
9 (s) 

Run 
10 (s) 

connect_to_
matlab 

28,0
8983 

17,1
6702 

14,8
5229 

15,1
4788 

14,5
5788 

14,3
4156 

13,9
8869 

15,5
9587 

14,1
9086 

14,38
254 

set_param_in
put 

0,00
236 

0,00
230 

0,00
221 

0,00
218 

0,00
217 

0,00
216 

0,00
214 

0,00
209 

0,00
208 

0,002
54 

set_param_si
m 

0,02
096 

0,01
899 

0,01
813 

0,01
751 

0,01
771 

0,01
693 

0,01
744 

0,01
667 

0,01
659 

0,019
02 

eng.workspac
e[‘output’] 

0,00
486 

0,00
471 

0,00
438 

0,00
459 

0,00
429 

0,00
453 

0,00
438 

0,00
431 

0,00
429 

0,004
97 

while loop (1 
loop) 

0,03
029 

0,02
802 

0,02
637 

0,02
620 

0,02
590 

0,02
540 

0,02
562 

0,02
475 

0,02
473 

0,028
59 

 

Table 2: Times to run each communication with MATLAB for the second method 
with a simple model. 

Action  
Run 
1 (s) 

Run 
2 (s) 

Run 
3 (s) 

Run 
4 (s) 

Run 
5 (s) 

Run 
6 (s) 

Run 
7 (s) 

Run 
8 (s) 

Run 
9 (s) 

Run 
10 (s) 

start_matlab 
4,79
301 

5,25
251 

5,62
030 

5,44
484 

5,01
799 

5,13
013 

4,87
337 

5,45
661 

5,11
198 

5,034
94 

SimulationIn
put 

2,71
804 

2,75
303 

2,75
685 

2,70
729 

2,66
346 

2,66
646 

2,67
936 

2,73
686 

2,70
340 

2,676
92 

setModelPar
ameter 

SaveFinalStat
e 

0,05
334 

0,05
200 

0,05
413 

0,05
651 

0,05
401 

0,05
252 

0,05
401 

0,05
601 

0,05
300 

0,058
00 

eng.sim 
0,22
515 

0,22
275 

0,22
683 

0,22
036 

0,22
220 

0,22
318 

0,22
021 

0,22
734 

0,22
026 

0,224
37 

setInitialstate 
0,06
789 

0,06
865 

0,06
962 

0,06
742 

0,06
815 

0,06
872 

0,06
772 

0,06
948 

0,06
779 

0,068
18 

setModelPar
ameter 

'SaveOperati
ngPoint' 

0,02
100 

0,02
045 

0,02
000 

0,02
200 

0,01
951 

0,02
000 

0,01
952 

0,01
951 

0,02
202 

0,021
00 

setModelPar
ameter 

'StopTime' 

0,03
775 

0,03
843 

0,03
911 

0,03
788 

0,03
845 

0,03
873 

0,03
801 

0,03
878 

0,03
798 

0,038
19 

eng.workspac
e['input'] 

0,00
158 

0,00
166 

0,00
164 

0,00
155 

0,00
157 

0,00
164 

0,00
167 

0,00
160 

0,00
162 

0,001
64 

for loop (1 
iteration) 

0,33
501 

0,33
403 

0,33
979 

0,32
983 

0,33
298 

0,33
480 

0,33
016 

0,33
975 

0,33
020 

0,334
94 

 

The tables show times for each communication made with MATLAB during the simulation 

as well as finally the time for executing one timestep of the simulation fully. The actions 
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carry similar names to those in the sequence diagrams above. From this data, the means 

for each timed unit were calculated and can be seen below in Tables 3 and 4.  

 

Table 3: Mean values corresponding to the data in Table 1. 

Action Mean (s) 

connect_to_matlab 16,231442 

set_param_input 0,002223 

set_param_sim 0,017995 

eng.workspace[‘output’] 0,004531 

while loop (1 iteration) 0,026587 
 

Table 4: Mean values corresponding to the data in Table 2. 

Action Mean (s) 

start_matlab 5,17357 

SimulationInput 2,70617 

setModelParameter 'SaveFinalState' 0,05435 

eng.sim 0,22327 

setInitialstate 0,06836 

setModelParameter 'SaveOperatingPoint' 0,02050 

setModelParameter 'StopTime' 0,03833 

eng.workspace['input'] 0,00162 

for loop (1 iteration) 0,33415 

 As can be seen from the mean values above for each method the most time-consuming 

step is the initial connection to MATLAB. Compared to the time it takes for the connection 

the other steps in each method are significantly faster. However, it can be seen that the 

first method takes longer to initialize the simulation than the second but is then faster in 

running the simulation. This could be useful to know when running longer simulations as 

the longer time to run a timestep with the second method could result in unnecessarily 

long simulations.  
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Next, the heavier Simulink model was timed in terms of the same functions as the simpler 

model the Python codes stayed constant only the name of the model needed to be 

changed. This assured a fair comparison of how the co-simulations react to a more com-

plex Simulink model in terms of efficiency. The results for the timing of the heavier model 

using the two methods can be seen below in Tables 5 and 6. 

Table 5: The times of conducting a simulation using the first method with the 
complex model. 

Action 
Run 
1 (s) 

Run 
2 (s) 

Run 
3 (s) 

Run 
4 (s) 

Run 
5 (s) 

Run 
6 (s) 

Run 
7 (s) 

Run 
8 (s) 

Run 
9 (s) 

Run 
10 (s) 

connect_matl
ab 

21,3
1984 

19,1
3692 

19,8
2316 

19,0
4033 

20,3
5102 

19,4
9312 

18,8
4882 

20,3
2681 

18,8
4342 

19,39
703 

set_param_in
put 

0,00
224 

0,00
214 

0,00
248 

0,00
216 

0,00
225 

0,00
205 

0,00
210 

0,00
209 

0,00
212 

0,002
27 

set_param_si
m 

0,01
836 

0,01
772 

0,01
695 

0,01
781 

0,01
906 

0,01
735 

0,01
725 

0,01
755 

0,01
765 

0,017
94 

eng.workspac
e[‘output’] 

0,00
460 

0,00
430 

0,00
421 

0,00
447 

0,00
470 

0,00
431 

0,00
425 

0,00
433 

0,00
437 

0,004
68 

while loop (1 
loop) 

0,02
698 

0,02
598 

0,02
530 

0,02
618 

0,02
781 

0,02
542 

0,02
529 

0,02
580 

0,02
586 

0,027
03 

 
Table 6: The times of conducting a simulation using the second method with the 

complex model. 

Action Run 
1 (s) 

Run 
2 (s) 

Run 
3 (s) 

Run 
4 (s) 

Run 
5 (s) 

Run 
6 (s) 

Run 
7 (s) 

Run 
8 (s) 

Run 
9 (s) 

Run 
10 (s) 

start_matlab 9,33
926 

5,88
936 

4,82
640 

5,47
434 

7,80
838 

5,19
396 

5,36
976 

5,34
137 

4,95
820 

5,335
53 

SimulationIn
put 

8,37
110 

2,92
150 

2,61
677 

2,64
511 

4,95
042 

2,83
598 

2,78
225 

2,73
057 

2,67
012 

2,679
28 

SetModelPar
ameter 

SaveFinalStat
e 

0,06
751 

0,05
500 

0,05
200 

0,05
252 

0,05
732 

0,05
501 

0,05
400 

0,05
400 

0,05
152 

0,051
52 

eng.sim 0,51
324 

0,46
355 

0,45
551 

0,46
211 

0,49
717 

0,48
909 

0,47
175 

0,46
601 

0,46
132 

0,465
97 

setInitialstate 0,14
615 

0,14
555 

0,14
523 

0,14
513 

0,14
632 

0,15
225 

0,14
722 

0,14
876 

0,14
550 

0,146
39 

setModelPar
ameter 

SaveOperatin
gPoint 

0,56
866 

0,02
341 

0,02
010 

0,02
035 

0,38
809 

0,02
052 

0,02
252 

0,02
000 

0,02
000 

0,023
46 

setModelPar
ameter 

StopTime 

0,07
707 

0,07
703 

0,07
640 

0,07
666 

0,07
786 

0,08
050 

0,07
771 

0,07
867 

0,07
701 

0,077
40 

eng.workspac
e['input'] 

0,00
156 

0,00
165 

0,00
171 

0,00
158 

0,00
168 

0,00
168 

0,00
165 

0,00
167 

0,00
164 

0,001
65 

for loop (1 
iteration) 

0,74
120 

0,69
087 

0,68
196 

0,68
860 

0,72
605 

0,72
686 

0,70
145 

0,69
831 

0,68
864 

0,694
52 
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From these values, the means were calculated just like with the simpler model. These 

mean values can be seen in Tables 7 and 8 respectively.  

 

Table 7: Mean values corresponding to the data in Table 5. 

Action Mean 

connect_matlab 19,658047 

set_param_input 0,00219 

set_param_sim 0,01776 

eng.workspace[’output’] 0,00442 

while loop (1 loop) 0,02617 
 

Table 8: Mean values corresponding to the data in Table 6. 

Action Mean 

start_matlab 5,95366 

SimulationInput 3,52031 

setModelParameter 'SaveFinalState' 0,05504 

eng.sim 0,474572 

setInitialstate 0,14685 

setModelParameter 'SaveOperatingPoint' 0,11271 

setModelParameter 'StopTime' 0,077631 

eng.workspace['input'] 0,001647 

for loop (1 iteration) 0,703846 

This data shows some interesting results. Firstly, for the first method, the times are very 

similar which indicates that using this method the complexity of the model has only small 

effects on the speed of the simulation. However, for the second method, some of the 

times have nearly doubled. This result indicates the different functions that are affected 

by the complexity of the Simulink model. Affected functions are the one that simulates a 

timestep, the one that saves the operating point, and the one that sets the last operating 

point as the initial state for the next step. It does seem logical that these functions are 

affected because simulating a more complex timestep will take longer and the rest of the 
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functions interact with the operating point and in a more complex model the operating 

point includes a larger amount of data thus making the functions slower.  

From the results above it can be concluded that the second method is more useful when 

dealing with simpler models and smaller simulation times because it has a smaller con-

nection time and is easier to write in code. However, when more complex models are 

used, or simulation times are very long the first method proves to be a more competent 

tool. Despite its longer connection time, this method is faster in simulating one timestep 

and suffers only small performance losses when used with more complex Simulink mod-

els. 

3.3 Using a shared library of C-code 

The next approach to using a Simulink model in Python code is to use the Embedded 

coder extension of Simulink to compile the model as a shared library of C-code. The 

Embedded coder allows the user to select beneficial settings for compilation and then 

compiles the model as either only the code files or the user can choose a shared library. 

This will in addition to the code files generate a dynamic shared library which the user 

can then access from Python. For the Python integration, the most important settings are 

shown in picture 1 below. 

 

Picture 1: The settings needed for exporting the model and integrating it in Py-
thon. 

In Python, the integration of the shared library is done using a library called Ctypes. This 

library contains data types that make it possible to use types compatible with C-code in 

Python. The user then needs to duplicate some of the data structures in the generated 

code to be able to call all needed functions with appropriate syntax. With the settings 

shown above the C-code will have three functions that allow the user to interact with the 

simulation. Those three functions are initialize, step, and terminate. Initialize takes as 

arguments pointers to the real-time model structure as well as all inputs and outputs. 
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Step is similar in calling convention but all of the pointers to inputs are replaced with the 

actual values of the inputs. Terminate only takes the real-time model structure pointer as 

an argument. Integration requires carefulness because the data structures in the C-code 

need to be duplicated exactly for the simulation to be able to be ran. 

After successfully integrating the system in Python a test was conducted to see if this 

approach could produce accurate results. The model was simulated using both co-sim-

ulation and only Simulink with identical inputs. The plots of the simulations were recorded 

and are shown below in Figures 3 and 4.  

 

Figure 3: Plot of the simulation produced by co-simulation. 
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Figure 4: Plot of the simulation using only Simulink. 

As can be seen from the plots the results are nearly identical. From this, it can be de-

duced that this approach is a viable method of co-simulation.  

The benefit of this approach is that it is very fast. Code written in C is generally faster 

than that written in Python. The reason is that C-code is compiled whereas Python code 

is interpreted which means it is run line by line, so memory is not used as efficiently as it 

is used in C-code. This means that the only speed limitations of this approach are from 

the Python side. Another benefit is that after the system is extracted from Simulink to C, 

an active MATLAB license is no longer required. One large limitation of the generated 

code is that only discrete models can be integrated into Python. This is because some 

of the datatypes used in the generated code with continuous solvers cannot be accessed 

in Python even with the Ctypes library. However, with discrete models, this approach is 

the best to use because of its superior performance. 

3.4 TCP/IP connection 

A final way is using the transmission control protocol/internet protocol (TCP/IP) to send 

data between the two platforms. The connection transfers data through the local network 

using a client-server policy. For connection an IP address needs to be specified and a 

specific port assigned to be used by the client and the server.  
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Establishing the connection between the platforms is done by using the “socket”-library 

of Python and the “Instrument Control Toolbox” in Simulink. The specific identifiers of the 

connection need to match for the data to be sent. In Simulink, the toolbox provides spe-

cific blocks for both sending and receiving data using a TCP/IP connection. Because of 

using this connection, the data transforms into a package of bytes, thus in Python the 

received data needed to be unpacked using the “struct”-library, and also data to be sent 

back needed to be packed into a package of bytes. In Simulink, the blocks do this auto-

matically. The utilization of this method is explained further in the next chapter. However, 

the basic communication structure can be seen in Figure 5 below. 

 

Figure 5: The communication structure between Python and Simulink with 
TCP/IP 

In the figure in Simulink, the client’s host and port number need to match the ones Python 

is listening on after that the simulation can be started. Python starts processing the data 

once it receives data through the connection. After processing it sends the new input to 

Simulink through the same established connection and the loop starts again until the 

simulation finishes. The loop could also work in the other direction as well. 

This approach also has benefits regarding its speed. In addition, for use cases that would 

benefit from parallel processing, this connection would be ideal. It allows the workloads 

of Python and Simulink to be split for two different processing units very easily as each 

task can be executed on one unit and a local network connects the units. In this thesis, 

the connection was used to send single values between the platforms. Sending more 

complicated data could prove to be unnecessarily complex and thus provide limitations 

in terms of usefulness.  
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4. USE-CASE AND ANALYSIS 

4.1 The dice game 

This chapter presents how the different approaches of co-simulation could be utilized 

through a use-case. The example system is a dice game where the player has a choice 

of five dice and is given a starting number between one and twenty. The player needs to 

reach zero from the starting number with the least number of die throws where the result 

of each throw is deducted from their number. Each die is different in terms of the numbers 

on its six sides. The dice used in this use-case are shown in Table 9 below.  

Table 9: The different sides of the dice used in the game. 

  Side number 

Die 1 1 1 1 5 5 8 

Die 2 2 2 3 3 6 6 

Die 3 1 4 4 4 5 7 

Die 4 2 2 6 6 7 8 

Die 5 3 4 5 7 8 8 

  

So, when playing the game, the player needs to make logical decision based on how far 

away their sum of results is from the target. If the player goes over zero their score is 

updated to be as much away from the target as they went over the target. For example, 

a player’s number is 2 and they throw a six that means their score goes four over zero 

which means their new number is updated to 4. In this use-case one approach of co-

simulation is used to train a reinforcement learning agent to have the best possible policy 

to play this game. Then another approach of co-simulation is used to test this policy 

against an agent doing random choices between the dice.  

First the model of the game was decided to be exported from Simulink using a shared 

library of C-code because that was found to be the fastest approach and this game is 

completely discrete so that did not limit the choice. The models architecture can be seen 

in Picture 2 below. 
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Picture 2: The Simulink architecture of the dice game. 

The subsystem “roll and recalculate” rolls a random side of the die that is indicated by 

the input choice. The input “target” indicates how far away the player is from zero and 

the result of the die roll is deducted from this and the result’s absolute value is taken 

which is the output of the subsystem named “new target”. The output of the system 

named “Observation” indicates that value and the output named “IsDone” indicates if the 

game has finished. The final output named “Reward” indicates the penalty endured for 

each throw it takes for the agent to finish the game.  

4.2 Co-simulation integration and reinforcement learning al-
gorithm 

To integrate the model into Python the same procedure was followed that was used in 

Chapter 3.3. The presence of multiple outputs does not complicate the integration 

process it just means all the additional outputs need to be declared in the Python code 

just like they are declared in the generated code. In addition, the calling conventions of 

the functions that interact with the model should be checked so that all the arguments 

are correct as either values, references, or pointers.  

Once the model was integrated into Python the reinforcement learning algorithm needed 

to be implemented. In this paper, an Epsilon greedy Monte Carlo method was used 

adapted from Sezer [12]. This method starts with determining a random policy then it 

plays the game according to that policy and records the returns received from doing an 

action from a specific state of the game. The method also sometimes deviates from the 

policy to promote more exploration and the frequency of this is determined by a 

probability set by the user. In this example, the agent follows the policy with a 92.5% 
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probability. This means the agent is greedy as mentioned in the name. A greedy agent 

will favour the fastest possible solution instead of exploration. An agent that favours more 

exploration might achieve more accurate results, however it needs more repetitions to 

reach those results which could prove unnecessarily time consuming. Once the algorithm 

has played one game and recorded the results and penalties endured, it will calculate 

quality values (Q-values) for each action from each state. Then a new policy is 

determined based on the Q-values. The action that has the highest Q-value from a 

specific state is chosen as the action in the new policy. Finally, the process is repeated 

a large number of times to achieve a more reliable policy.  

In this example, ten thousand repetitions were used in the training of the model. From 

this the final policy was extracted and it can be seen in Table 10 below. 

Table 10: Policy determined by the reinforcement learning agent. 

Policy 

State Choice 

20 3 

19 5 

18 5 

17 5 

16 3 

15 5 

14 3 

13 5 

12 5 

11 3 

10 4 

9 5 

8 4 

7 3 

6 2 

5 1 

4 2 

3 1 

2 1 

1 1 

In this table, state refers to how far away the player is from zero and choice refers to the 

number of the die the agent has decided to throw at that state. The policy was also saved 

to a text file for further usage. 
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4.3 Testing using TCP/IP connection 

Next this policy was tested in terms of if it produced a result that would be more effective 

than choosing at random between the dice. The TCP/IP connection was chosen to show-

case its utility. The connection was established as explained in Chapter 3.4. For the 

usage of this testing only one value at a time would need to be send. So, the rolling of 

the dice was done in Simulink and the target was updated. This target was then sent to 

Python where the policy was read from the text file mentioned above and a choice was 

made according to the policy and then sent back to Simulink.  

The testing was done in a way where the initial condition was randomized between one 

and twenty. Then the game was played until the end and the amount of throws it took to 

finish the game was recorded. The results of the testing can be seen below in Table 11. 

Table 11: Comparison of using the reinforcement learning policy to a random 
policy. 

  Iterations 

Simulation Policy Random 

Run 1 1 2 

Run 2  6 6 

Run 3 3 7 

Run 4 3 4 

Run 5 2 7 

Run 6 4 4 

Run 7 5 2 

Run 8 6 7 

Run 9 1 3 

Run 10 5 5 

Mean 3,6 4,7 

From the table, it can be seen that for ten rounds of the game using the policy is on 

average one throw more efficient than using a random policy to play the game. The dif-

ference is quite modest which might be because there is no correlation between the initial 

conditions of the games played on each row of the table. A more drastic difference could 

be seen if for each round the two policies would start playing the game from the same 

initial condition. However, even with the completely random initial conditions the rein-

forcement learning agent’s policy is more efficient which matches the expected result.  

This use-case demonstrated how co-simulation with Python and Simulink could be used 

to train a reinforcement learning agent to perform a task more efficiently. In terms of the 

dice game the training was successful, and the agent was more efficient than an agent 

making choices at random. The approach used in the training of the agent is currently 
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only applicable to discrete systems. However, for continuous systems, the MATLAB En-

gine could be utilized similarly to train the agent. This would take more time but that is a 

necessary cost that needs to be endured. This example highlights the usefulness of co-

simulation because it allows for the usage of the benefits of both platforms as well as 

legacy models in Simulink without major changes or approximations. It also showed that 

different approaches to co-simulation can be used to perform different tasks within a 

project.  
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5. CONCLUSIONS 

This thesis has studied co-simulation using Python and Simulink. The objectives were to 

find different approaches to conduct the co-simulation and outline their benefits and lim-

itations. In addition, a use case was defined to demonstrate the usefulness of co-simu-

lation in a concrete context.  

Firstly, a literature review was conducted to get a sense of the different approaches to 

co-simulation with the given platforms. Furthermore, the literature review showed the 

need for this sort of research as prior research on the topic is very scarce. Based on the 

literature review four different approaches were chosen to be presented in this paper 

using Python code in Simulink, using the MATLAB Engine, using a shared library of gen-

erated C-code, and using a TCP/IP connection.  

To explore the ability to use Python code in Simulink a simple Pi-controller was imple-

mented in Python to be used to control a Simulink model. This approach presents the 

limitations that Python objects cannot be used as any input or output in Simulink. Thus, 

the simulation was conducted using a MATLAB script and it was successful. Another 

inconvenience of the approach is that for every session the user needs to redefine the 

location of their Python module into the search path of the Python environment in 

MATLAB.  

Two different approaches to using Simulink models from Python were presented. First 

of these is the MATLAB Engine which could be used to run a simulation through two 

different methods. These two methods were benchmarked, and it was found that one 

method is more suitable for simpler and shorter simulations and the other is more suita-

ble for more complex and longer simulations. The second approach to using Simulink in 

Python is using a shared library of generated C-code. This involved generating a dy-

namic library from a Simulink model according to specific settings so that the simulation 

could be accessed from Python. Then the “Ctypes”-library was used to implement the 

dynamic library in the Python code for co-simulation. The output of this approach was 

compared to the output of simulating an identical model in Simulink by itself and the 

results were very close to each other proving that the co-simulation suffered minimal 

accuracy losses. The limitation of this approach is that it can only be used for discrete 

models.  

Table 12 summarizes the benefits and limitations of the different methods explored. 
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Table 12: Summary of benefits and limitations of each method 

Method Benefits Limitations 

Python in Simulink - Easy to use bene-

fits of both plat-

forms 

- No speed loss 

- Moderately slow 

- Requires meticulous 

setup 

MATLAB Engine API - Easy to use bene-

fits of both plat-

forms 

- Easy to setup and 

run simulations 

- Intuitive interfacing 

- Slowest  

- Complex system re-

quire high processing 

power 

Simulink to C to Python - Fastest 

- After C extraction 

an active MATLAB 

license is not re-

quired 

- Only for discrete sys-

tems 

- Requires more work to 

setup 

TCP/IP - Fast 

- Works for all types 

of systems 

- Moderately easy to 

setup 

- Best for parallel 

processing 

- Sending complex data 

might be difficult 

- Requires some 

knowledge on how lo-

cal networks are 

hosted and how the 

data is transported 

 

Finally, the use-case used to present some of the possible capabilities of co-simulation 

was defined as a dice game. In the game, the player is given a random number between 

one and twenty and their goal is to reach zero in as few throws as possible. This model 

was exported using the embedded coder as a shared library of generated code. Then 

the exported model was used to train a reinforcement learning agent to find an ideal 
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policy for playing the game. After training the agent a TCP/IP connection was used to 

co-simulate its effectiveness against an agent acting randomly, it was found that the co-

simulation was successful in training the agent to be more efficient than completely ran-

dom choices.  

In conclusion, it was found that there are multiple approaches to co-simulation using 

Simulink and Python that are each useful in different scenarios. Especially useful was 

the finding that a co-simulation could be used to unite the ease of modeling in Simulink 

and the vast machine-learning capabilities of Python. Further research could be done 

into system identification and optimization through co-simulation as well. 
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