
Teemu Mökkönen

AUTONOMOUS PALLET PICKING USING ROS2

Master of Science Thesis

Faculty of Engineering and Natural Sciences

Examiners: Reza Ghabcheloo

Jukka Yrjänäinen

January 2024

i

ABSTRACT

Teemu Mökkönen: Autonomous pallet picking using ROS2
Master of Science Thesis
Tampere University
Degree Programme in Automation Engineering, MSc.
January 2024

In industrial use cases, heavy-duty mobile machines are commonly used for agriculture and
earth-moving. Automating these machines can be a complex task that can introduce many dif-
ferent architectural problems given the use case, the level of automation, and the environment.
Many navigation and control paradigms can be followed when designing autonomous units, such
as reactive, deliberative, behavior-based, and hybrid.

This thesis explores implementing a hybrid control architecture in the use case of pallet picking.
The aim is to recognize the different components of the navigation system and divide them into a
hybrid navigation system in the form of a layered architecture that can employ a decision-making
layer for generalized mission deployment. Decision-making could be used with many tools, such
as petri-nets and finite state machines. One such thing that has emerged more recently, called
behavior trees, has been deployed in recent years from the gaming industry to try to increase the
re-usability of the developed system components by utilizing minimal transition rules and states
between the nodes in the tree structure.

The thesis aims to deploy the system using ROS2 as a middleware solution to distribute feed-
back and commands through the ROS2 platform application. The aim is also to recognize the
algorithm packages and frameworks from the large ecosystem of different solutions in the ROS2
that can make deploying autonomous heavy-duty mobile machine systems faster and easier.

In conjunction with the layered architecture design, ROS2, and behavior trees, it is possible
to recognize the machine primitives and actions and bind them to functionalities of the machine
so that employing more complex task deployment such as pallet picking is possible with simple
behaviors in the behavior tree, with the layered architecture. The machine controllers expose
interfaces that the behavior tree nodes can utilize to fulfill the primitives of the action.

Finally, in the thesis, there is an evaluation of the performance of critical components for suc-
cessful pallet picking in the realized system architecture. Since the application mainly depends
on the performance of the path following, localization, state estimation, and manipulator trajectory
tracking, they are under evaluation. In the end, there were successful attempts at the pallet-picking
system, given the architecture and system deployment in the distributed control system in the tar-
get machine. However, the RCLPY implementation showed performance bottlenecks and poor
scalability in the CPU performance, given the higher rate topics in the system.

Keywords: ROS2, pallet-picking, Behavior trees, navigation architectures, heavy-duty mobile ma-
chines

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Teemu Mökkönen: Autonomous pallet picking using ROS2
Tampereen yliopisto

Automaatiotekniikan DI-ohjelma
Tammikuu 2024

Teollisissa käyttötarkoituksissa raskaita liikkuvia koneita käytetään yleisesti metsätaloudessa,
maataloudessa ja maansiirtotöissä. Näiden koneiden automatisointi voi olla monimutkainen tehtä-
vä, joka voi tuoda mukanaan monia erilaisia arkkitehtonisia ongelmia käyttötapahtuman, automaa-
tion tason ja ympäristön mukaan. Autonomaattisten yksiköiden suunnittelussa voidaan noudattaa
monia erilaisia navigointi- ja ohjausparadigmoja, kuten reaktiivinen, harkittu, käyttäytymisperus-
tainen ja hybridimalli.

Tämä opinnäytetyö tutkii hybridiohjausarkkitehtuurin toteutusta palkkien poimintakäyttötapauk-
sessa. Tavoitteena on tunnistaa navigointijärjestelmän eri komponentit ja jakaa ne hybridinavigoin-
tijärjestelmään kerrosarkkitehtuurin muodossa, joka voi hyödyntää päätöksenteon kerrosta yleiste-
tyn tehtävän suorittamiseksi. Päätöksenteko voidaan toteuttaa monilla erilaisilla työkaluilla, kuten
Petri-verkoilla ja äärellisillä tilakoneilla. Yksi viime aikoina esiin noussut, niin kutsuttu käyttäyty-
mispuu, on peräisin peliteollisuudesta ja pyrkii lisäämään kehitettyjen järjestelmäkomponenttien
uudelleenkäytettävyyttä hyödyntämällä minimaalisia siirtymäsääntöjä ja tiloja puurakenteen sol-
mujen välillä.

Opinnäytetyössä tavoitteena on käyttää ROS2:ta väliohjelmistona palautteen ja komentojen ja-
kamiseen ROS2-alustasovelluksen kautta. Tavoitteena on myös tunnistaa algoritmi-paketit ja ke-
hykset ROS2:n laajasta ratkaisuekosysteemista, jotka voivat nopeuttaa ja helpottaa autonomisten
raskaiden liikkuvien koneiden järjestelmien käyttöönottoa.

Kerrosarkkitehtuurin suunnittelun, ROS2:n ja käyttäytymispuiden yhdistelmällä voidaan tunnis-
taa koneen primitiivit ja toiminnot ja kytkeä ne koneen toimintoihin, jotta monimutkaisempien teh-
tävien, kuten kuormalavojen poiminnan, toteuttaminen on mahdollista yksinkertaisilla käyttäytymi-
sillä käyttäytymispuussa kerrosarkkitehtuurin avulla. Koneen ohjaimet tarjoavat rajapintoja, joita
käyttäytymispuiden solmut voivat käyttää täyttääkseen toiminnon primitiivit.

Viimeiseksi opinnäytetyössä suoritetaan arviointi avainkomponenttien suorituskyvystä onnistu-
neen palkkien poiminnan saavuttamiseksi toteutetussa järjestelmäarkkitehtuurissa. Koska sovel-
lus on suurelta osin riippuvainen polun seuraamisen, paikannuksen, tila-arvion ja manipulaattorin
trajektorian seurannan suorituskyvystä, ne ovat arvioinnin kohteena. Lopulta palkkien poiminta-
järjestelmässä saavutettiin menestyksekkäitä tuloksia ottaen huomioon arkkitehtuuri ja järjestel-
män käyttöönotto todellisessa kohdekoneessa hajautetussa ohjausjärjestelmässä, vaikka RCLPY-
toteutus osoitti suorituskykyongelmia ja heikkoa skaalautuvuutta CPU-suorituskyvylle ottaen huo-
mioon järjestelmän korkean taajuuden kommunikaatioaiheet.

Avainsanat: ROS2, kuormalavojen poiminta, behavior trees, navigaatio arkkitehtuurit, raskaat työ-
koneet

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

iii

PREFACE

I would like to express my gratitude to Reza Ghabcheloo and Jukka Yrjänäinen for offering

me a chance to do my master’s thesis on an interesting and challenging topic under their

guidance and supervision.

Additionally, I would like to thank everyone who has worked with me on related topics and

projects to achieve the current state of the work on the autonomous machine. Finally, I

would also like to thank everyone with whom I worked and met during my studies; many

of the goals were achieved together with you all.

This thesis has been done under the PEAMS (Platform Economy of Autonomous Mobile

Machines Software Development) in the Autonomous Mobile Machine Group at Tampere

University.

, 29th January 2024

Teemu Mökkönen

iv

CONTENTS

1. Introduction . 1

2. Autonomous heavy-duty mobile machinery 4

2.1 Levels of automation . 5

2.2 Autonomous HDMM architecture 7

3. Layered architecture and task planning 9

3.1 Functional layer . 10

3.2 Executive layer. 12

3.3 Decision layer . 13

3.3.1 Behavior trees . 14

3.3.2 Finite state machines 18

4. Robot operating system 2 . 20

4.1 ROS2 communication and middleware concepts 21

4.1.1 Nodes and Topics . 21

4.1.2 Services and Actions 22

4.2 Developer tools . 23

4.3 Frameworks . 24

4.3.1 TF2 and transformation trees 24

4.3.2 Robot localization . 26

4.3.3 Navigation2 . 27

4.3.4 Moveit2 . 28

5. Pallet-picking system for heavy-duty mobile machine 29

5.1 Pallet-picking as reactive layer problem 31

5.2 Distributed control system for autonomous HDMM. 33

5.3 Behavior tree for pallet-picking using ROS2 34

5.4 Architecture for autonomous heavy-duty mobile machine 40

6. Experiments . 43

6.1 Pallet picking test setup . 43

6.1.1 Pallet-picking simulation results 44

6.1.2 Pallet-picking real machine results 45

6.2 ROS2 performance overhead test setup. 49

6.2.1 ROS2 performance overhead evaluations results 52

7. Analysis of the autonomous HDMM architecture for pallet-picking 56

7.1 Modularity, extensibility, hardware portability, and overhead 58

7.2 Reliability, robustness, reactivity, and run-time flexibility. 62

v

7.3 Summary of the evaluation . 64

8. Conclusion . 67

vi

LIST OF SYMBOLS AND ABBREVIATIONS

API Application Programming Interface

BT Behavior Tree

CAN Control Area Network

CARMEN Carnegie Mellon Robot Navigation Toolkit

CPU Central Processing Unit

DDS Data Distributed services

DEDS Discrete Event Dynamic System

EKF Extended Kalman Filter

FCL Fast Collision Library

FSM Finite state machine

GNSS Global Navigation Satellite system

HDMM Heavy-duty mobile machine

HFSM Hierarchical Finite state machine

IDL Interactive Data Language

IMU Inertial Measurement Unit

KDL Kinematics and Dynamics Library

LCM Lightweight Communication and Marshalling

LIDAR Light Detection and Ranging

LoA Levels of Automation

OMPL The Open Motion Planning Library

RCL ROS Client Library

RCLCPP ROS Client Library for C++

RCLPY ROS Client Library for Python

REP ROS enhancement proposals

RMW ROS Middleware

ROS Robot operating system

ROS2 Robot operating system 2

vii

RTK Real Time Kinematic

Rviz2 ROS Visualization 2

SLAM Simultaneous Localization And Mapping

TCP Transmission Control Protocol

UDP User Datagram Protocol

UKF Unscented Kalman Filter

XML Extensible Markup Language

YARP Yet Another Robotics Platform

1

1. INTRODUCTION

Heavy-duty mobile machines (HDMMs) can be used for multiple applications, from stor-

age houses to farming. Automating these machines would allow repetitive tasks to be

performed without human intervention. Different use cases vary according to the environ-

ment and the machine, but many places do or could utilize automation. Not all machines

need to be fully automated, but even operator assistance in some operations can be

considered automation [1].

Autonomous mobile robots and heavy-duty machines are widely used systems capable of

planning their way between multiple goal points and tasks in their designed environments.

These systems usually need to be able to define answers to the following questions be-

fore being systems that can perform actions autonomously: "Where am I?", "Where do I

go?", and "How do I go there?" [2]. This means that the system needs to be aware of its

location, surroundings, goal position in the designed environment, and how it will reach

that position. In general, the question of how to reach the goal also means getting to

the goal without colliding with the surrounding environment. This leads to a more compli-

cated definition of navigation and control architecture division in the system in the partly

observed environment. There will be erroneous situations in the partly observed environ-

ments, like blocked generated paths. These situations are nearly impossible to avoid in

dynamic environments. In addition to the system being able to avoid these situations, it

should be able to recover from them by itself.

Autonomous units with an increasing number of components also bring complexity into

the design of the systems. This complexity comes from algorithms and components that

need to be combined to enable multiple actions, operations, and error handling of the

autonomous system. Coordinating the autonomous actions of navigation and manipu-

lation while modeling the environment and perceiving the key points in the environment

brings complexity to the system, which needs to be solved and coordinated. Addition-

ally, complexity can introduce many different challenges to the implementation of the end

product for the autonomous units that can be hard to handle or extend later on. Smart

architecture design and implementation can help sort the system’s complexity into logical

components in a structured manner so that it is easier to maintain and extend later on

during the system’s development lifecycle. In the autonomous system architecture, one

of the design points would also be considering decision-making given the high-level appli-

2

cation, use case, and coordination of the system to low-level actions. The system should

be extendable to execute many different tasks than one single task and be robust and

reliable so that system faults can be resolved autonomously.

Many software architectures or frameworks have emerged offering solutions to simplify

autonomous system development and decrease programming repetition by offering gen-

eral abstract interfaces, middleware solutions, and algorithms. One of these frameworks

is ROS2 (Robot Operating System 2), which offers accessible real-time communication

for robot systems [3]. ROS2 and its utilities can be combined to make a navigation ar-

chitecture to plan its route to the objective point and complete pre-defined tasks such as

pallet picking. ROS2 offers collections of algorithms and frameworks for state estimation,

navigation and control like TF2, navigation2, moveIt2, and robot localization, which were

in key roles while developing the pallet-picking use case [3][4][5][6][7].

Research questions were set to support the research of autonomous system architec-

ture and decision-making design while evaluating ROS2 as a middleware solution. The

research questions are as follows.

• What kind of control paradigm could be used to implement a high automation level

application for pallet picking, given the initial uncertain estimation of pallet location?

• How could one such paradigm make decision-making in the context of pallet picking

with ROS2?

• What implementations of frameworks and algorithms does ROS2 offer that support

achieving autonomous pallet-picking tasks easier or faster?

• How does the implemented architecture perform on the given task, and what are

the key points for a successful pallet picking and autonomous architecture?

The research methodology used is the design science methodology, where the problem

to be solved is how to design the pallet picking architecture [8]. The objective of the

architecture is to have a modular ROS2 architecture that meets the requirements set

for the application. The realized system is then evaluated in contrast to the architecture

design properties and experiments that measure systems capabilities in the given task

and the system load overhead with the tools used in the system.

This thesis guides the reader through the general navigation and control architecture

and how it can be designed using ROS2 as an intermediate communication platform or

middleware. This current chapter (1) provides the reader with a general overview of the

thesis, research questions, and relevant topics. The second chapter (2) introduces the

reader to what an automated heavy-duty mobile machine is, what the levels of automation

in HDMMs are, and what kind of system architecture components are required for a high

level of automation. Chapter three (3) goes through layered architecture that can be

utilized to make one navigation and control paradigm that recognizes the decision layer

3

as one of the layers to perform autonomous navigation with decision-making and system

coordination. This chapter aims to provide background to the second research question

from the point of view of the control architecture while introducing the tools that could be

used for decision-making. Chapter four (4) introduces the ROS2 middleware component

for the architecture and the tools used in the work that the ROS2 ecosystem provides

for developers, which answers the third research question. Chapter five (5) contains the

details for the work done with heavy-duty wheel mobile machine pallet picking, with the

done behavior tree, while introducing the details, features, and requirements for the pallet-

picking application. The sixth (6) chapter introduces the experiments, environment, and

test results done in the thesis. This provides an answer to evaluating the performance

of the implemented architecture. The seventh (7) chapter evaluates the realized pallet-

picking architecture given the architecture design properties or attributes learned through

the experiences and experiments with the architecture. Chapter eight (8) is the conclusion

for the work, the presented ideas, and any future works that could be done based on this

work.

4

2. AUTONOMOUS HEAVY-DUTY MOBILE MACHINERY

The purpose of this chapter is to provide an introduction to heavy-duty mobile machines

the architectural design required for machines to be automated, and what are the au-

tomation levels. Capabilities of self-driving machines are often represented in levels of

automation [9]. The aim is to introduce automating these machines as a problem that

requires careful planning, even at the architectural level. This chapter provides some

background on autonomous heavy-duty mobile machine (HDMM) systems relevant to the

thesis while giving motivation to the other topics discussed in the thesis.

Heavy-duty mobile machines have been used for a long time in industrial use cases such

as foresting, earth moving, and farming [1]. In figure 2.1, the common heavy-duty mobile

machine systems used in the industry can be seen for different purposes.

Figure 2.1. Common HDMMs types used in the industry [10]

These machines require experienced operators [1]. The need for experienced operators

can be mitigated with automation in the HDMM system [11], which can help master the

machine’s use faster. Automation and autonomy can be considered at multiple different

levels of automation (LoA) [9] [1]. Automation can already be experienced in many ma-

chines in many other parts and systems. HDMMs implement two high-level tasks that

can be automated: navigation and manipulation. Implementing operator assistance can

be a simple task to bring a low level of automation into the system. Automation can affect

5

only one part of the system, which can be seen, for example, in the cruise control of the

machine.

High automation level applications can execute numerous different tasks without human

intervention. Managing such a system requires numerous different components so that all

the system algorithms and tools work together to achieve a common goal. This combina-

tion of various components can be complicated to manage and implement. To accomplish

this common task, there comes a need to understand the needs for the HDMMs that were

introduced in the chapter 1 as three sentences that form a basis for many robotics appli-

cations: "Where am I?", "Where should I be?", and "How do I get there?". At the same

time, these sentences describe the needs for many robotics applications required for au-

tonomous operations. Reaching a higher level of automation requires considering the

system architecture, where the system’s needs could be defined based on the target use

case requirements and the capabilities of the robot platform itself.

2.1 Levels of automation

There are standards and legislation to define a taxonomy for autonomous vehicles that

aim to divide the levels of automation. In SAE J3016, the levels of automation have been

divided into six levels ranging from zero automation to fully autonomous unit [12]. The

scope of this standard includes motor driving automation systems that partly or entirely

perform driving actions in the system [12]. As previously stated, the HDMMs consist of

two autonomous tasks: navigation and manipulation. This standard defines the taxonomy

only for navigation tasks.

To describe the levels of automation more accurately for autonomous HDMMs, there have

been efforts to standardize the taxonomy [1]. Machado et al. (2021) divide the levels of

automation into a 6x6 matrix, as can be seen from figure 2.2, where one axis represents

the machine’s autonomous driving and other manipulation capabilities.

6

Figure 2.2. Levels of automation matrix [1]

In the matrix, the levels go as follows in the table 2.1, which is adapted from Machado et

al. (2021)[1]:

Level Navigation Manipulation

0 The operator is responsible for perception, planning, and

control.

The operator controls all manipulator joints separately.

1 One driving assistance functionality at a time. Human is controlling end-effector in Cartesian space.

2 The machine can control at least two different driving

functionalities the operator assigns.

Machine implements simple trajectory following predefined

trajectories that require activation sequence.

3 Can execute the specified task with a predefined path

while being able to execute obstacle avoidance and

emergency stop while perceiving environment.

Can perform tasks on its own if the conditions are met. It

needs authorization from the operator to execute actions

while perceiving the environment.

4 Able to perform decision-making and SLAM (Simultaneous

Localization and Mapping) in structured environments.

Can recover from e-stop or avoid obstacles dynamically.

The machine performs high-level tasks with a high percep-

tion of the environment and decision-making. The system

can gather and generate world models from the sensor

data.

Extension on level 3, while being able to plan and execute

collision-free, while being able to request human inter-

vention if the conditions for the execution are poor. The

machine executes high-level tasks with a high perception

of the environment and decision-making. The system can

gather and generate world models from the sensor data.

5 Active localization and mapping. The system can exe-

cute high-level decision-making like path generation and

obstacle avoidance. It can operate in space with other

autonomous units and all weather conditions. Ability to

operate under any conditions autonomously.

Able to perform in any conditions while communicating

and coordinating with other machines around it and oper-

ating with external materials. Able to operate under any

conditions autonomously.

Table 2.1. Levels of automation in navigation and manipulation[1]

As seen from the list, the lower levels of automation implement simple operator assis-

tance applications. Still, when going to the higher levels like from 4 and 5, the machine

is required to have higher-level decision-making and task deconstruction to be able to

perform in the given high-level missions in addition to simple navigation and manipulation

tasks with additional reliable and robust scenario handling, where the system can recover

7

from edge cases under which it could be operating in. This higher-level automation brings

more system components and applications, which, in turn, need to be built, maintained,

and extended, increasing the system’s complexity [13].

2.2 Autonomous HDMM architecture

Autonomous HDMM architecture requires integrating multiple system components to op-

erate autonomously without the human operator’s external aid. The taxonomy of the com-

ponents differs from one source to another from the division of the components into three

[14][15] to five [16] different parts. The division of three, where system components are

divided into perception, planning, and control, fits the fundamental questions mentioned

previously [15][14].

"Where am I?" is a metaphor for the perception part of the system, where the system

needs to be able to perceive where it is and the surrounding environment, which can

include environmental modeling based on the sensor data. Representation of the envi-

ronmental modeling ranges from high-level symbolic representation to the more accurate

semantic categorization of the data to understand the world more accurately by defin-

ing obstacles, roads, and traffic signs, to name a few [15]. This categorization can also

include modeling the manipulation target in the HDMMs workspace.

"Where should I be?" and "How do I get there?" together form a metaphor for the plan-

ning and control parts where the planning consists of mission level plan to the motion plan

level to achieve the higher primitives in the robotics applications and route them to com-

pound actions of the system [15][17]. In this context, the primitives represent high-level

task definitions such as a "Pick a pallet," and compounds are less abstracted actions or

instructions that still need to be refined to actual commands to the machine platform, such

as a path to be followed. A path does not tell the platform how fast it should be driven or

steered, but it gives the guidelines for how the machine should act. Hence, it offers an

instruction set that should be refined to actual commands to the platform. Control refers

to forming the compounds to commands in the robotics platform that can be executed by

the platform into actions of the machine. Actions are physical phenomena executed by

the machine to the environment. Combining these components can develop architectural

problems in the navigation and control system where there are many subproblems on

their own. Combination can appear in the figure 2.3.

In the figure, the perception component gathers relevant world information that could

include world model and vehicle pose to name a few. Perceived information is then fed

to the machine’s planning interface. The planning interface collects the goal, state, and

world representation. Compounds are then formed and sent to the control, which uses the

compounds to form commands for the robot platform. The platform turns the commands

to physical actions in the environment [17][15].

8

Figure 2.3. Combining the different parts to autonomous application

The components in an autonomous machine must be fitted with each other so that the

system can utilize the gathered data to form concise actions to accomplish the given task.

Two of the major roles of architectural design in many applications are to increase the

flexibility and adaption in the given task [18]. Adaptation of the robot can be implemented

in multiple levels of the robot architecture. In high-level planning, adaptation can mean

changing the mission definition according to the changes in the dynamic world or the

machine’s state. Adaptation can be done in the lower level part of the control system

where the existing compounds constitute the action-decision methodology [18].

There are many design properties to consider when designing the control and navigation

architecture to be considered: reliability, generalization, modularity, autonomy, extensibil-

ity, reactivity, and run-time flexibility [13][19][20], which also overlap highly with the soft-

ware architectural design properties. Modularity refers to the possible interchangeable

components of the system, whereas in a highly modular system, components should be

interchangeable with different components. Extensibility refers to the ability of the system

to be extended and the effort to perform the extension to the system or machine. Auton-

omy in the design refers to how well the system should perform alone in the given tasks

without human intervention. Generalization, run-time flexibility, robustness, and reactiv-

ity together are designed according to the needs of the system to react with imperfect

inputs to the system, such as broken or faulty sensor data, respond to different states

of the system in known and unknown situations, and to the performance of the system

to reconfigure the during the task execution. When making the intelligent design of the

system architecture, these questions can be answered, and the system’s complexity and

management can be easier to handle and extend. These design properties are often

considered through the needs of the robot platform and application requirements, where

specific system compositions have certain advantages over others in the robotics designs

[20].

9

3. LAYERED ARCHITECTURE AND TASK PLANNING

Large robotics application tasks like mobile manipulation consist of multiple tasks that

robots must execute in parallel, such as perception, planning, control, and monitoring.

There are general control navigation architectures and paradigms for robotics applications

such as deliberative, reactive, behavior-based, and hybrid [13][21][2]. The hybrid control

architecture is a common one that implements high automation level applications that

generally follow the formulation in the previous chapter 2.2[16]. Figure 3.1 shows the

graph behind the hybrid control system.

Figure 3.1. Hybrid control architecture example

Hybrid architectures aim to reduce the problems with reactive and deliberative layers in

the system and create architecture that can operate under incomplete data and react fast

to changes in the environment [22, p. 43][23][16, p. 309]. Since the deliberative and

reactive layers most often operate under different time constraints, the decision-hybrid

layer coordinates the layers to function together to provide the cohesive output of the

system [16, p. 309][2, p. 11].

Designing a robotics software architecture comes with a need to divide the system into

logical parts that can be separated. This is where some have adopted the layered ar-

chitecture, which divides the system control logic into three different layers as the name

suggests [24][25]. The three layers are named decision, executive, and functional

layers. Layered architecture is a common way to design and implement hybrid control

[24][25]. This layered architecture employs the coordination layer to coordinate the hybrid

10

architecture’s functional and executive layers, which operate similarly to the deliberative

and reactive architectures [13]. This coordination layer can also be utilized for mission-

level task planning, where the layer’s components can be coordinated according to the

needs of the goal or mission. Other intermediate layers are used in large robotics ap-

plications like the middleware and hardware layer [26], which can encapsulate high-level

architectural components, such as system components in layered architecture.

Task planning is an act of having a high-level goal or primitive for the system that needs

to be divided into lower-level actions or compounds that the system can handle [16, p.

284]. These low-level tasks can be, in some cases, considered as skills for the robot

where the skill is represented in a symbolic level and motion level [27][24][25]. Tasks like

moving pallets from pose A to pose B are easy for humans to understand and divide into

logical small actions. This is where the task planning comes in for autonomous units to

coordinate the system execution and decision-making.

The layered architecture allows for many design principles in the architecture of au-

tonomous robotics systems, such as modularity, extensibility, reactivity, generalization,

and even autonomy. Given the proper implementation and distribution of the modules in

the system, the modules should be modular and extendable. The correct formulation of

the functional and reactive layers enables the system to be general for different HDMMs,

where the decision layer employs case-related functionalities and coordination. In con-

trast, the deliberation layer handles solely the world representation parsing to compound

actions, while the reactive layer refines these compounds. Correctly formed architecture

should end with a modular product that can perform the given tasks. Still, it should also

be extendable to other applications and use cases without the need to refactor the whole

base architecture.

This chapter looks at layered architectures and how they are designed in robotics appli-

cations. This includes defining the layers and their tasks in the architecture. After this,

there will be a more detailed look into the common tools to generate the decision layer for

the coordination layer of the architecture. Although the mission description can be divided

into two subgroups, logical languages and discrete event dynamic system specification

languages, this thesis will handle the dynamic system specification languages (DEDS)

specifically [24]. The main DEDS specification languages that arose from literature for

mission planning were behavior trees (BT), finite state machines (FSM), and Petri nets

[24].

3.1 Functional layer

The functional layer is between the machine-specific hardware and the executive layer

[28]. This layer creates interfaces between sensors and actuators and provides this data

to all modules in the system according to the predefined interface provider. The func-

11

tional layer transfers the sensor data to a common interface format so other layers can

use the information later. On the actuator level, the functional layer provides a way to

turn higher-level instructions into commands like movement on the actuator level [16, p.

289][24]. The functional layer can be quite large and contain multiple submodules or con-

trollers, as shown in figure 3.2, which shows one reactive architecture called subsumption

architecture. The functional layer provides an interface from something high-level, like a

path following the hardware level, like actuators, which can have multiple controller mod-

ules in between in this one layer. Since the functional layer acts as a bridge between the

common system interface and the control system, this layer can be very machine-specific

and hard to generalize to multiple machines. Unless the sensors and low-level actuators

are very similar, and in many cases, the abstraction of the interfaces is more challenging

to maintain the lower in the architecture we are. This means that the lower the system

the algorithm is in the system architecture, the harder it is to be interchangeable between

robotics platforms due to the platform’s needs. Traditionally, the functional layer can take

high-level commands such as acceleration or velocity input of the machine in the body

frame and convert them to actuator-level commands such as torque or voltage.

Subsumption architecture can be described as layered control where each layer level can

override the previous layer according to information from the environment that the robot

receives. Subsumption architecture could implement part of the functional layer. Figure

3.2 shows how subsumption is layered where the lower levels can override higher ones.

Figure 3.2. Subsumption example architecture for path following control

In a path following control scenario, the same figure 3.2 can be a three-layer subsumption

12

architecture. The first layer could be a simple path following the control layer, and the

second could be an obstacle avoidance layer, as seen in figure 3.2. In this case, the path

following controller would pass some control input to the mobile machine. At any point,

the obstacle avoidance could override the command according to the sensor data and

make its safe command to follow the path without collision [22, p. 93]. Then, the last

layer, the software-level emergency stop, could be an extra component that could read

human input to the system and see if an emergency stop would be enabled. However,

this component would not usually be implemented at the software level. This means

that obstacle avoidance would be prioritized over path-following commands during the

operation, and the emergency stop would have the highest priority. There could also be

more layers that have different purposes in the navigation. In the example, each layer can

run at a different rate during the navigation, and usually, the control frequency increases

closer to the robot platform we go.

In the context of the control architectures, the functional layer would implement the reac-

tive layer, a fast layer with non-blocking actions and access to the sensor data layer that

provides immediate feedback [25]. The reactive layer could implement a subsumption

architecture that would follow the path following commands while monitoring and avoid-

ing obstacles. This layer is also responsible for monitoring the feasibility of the given task.

This layer must inform if the assigned task is not feasible to achieve from the current state.

This information needs to be readable from the decision layer to resolve the issue [16, p.

289]. This means that during the control sequence in a functional layer, in the event of the

machine deviating too far from the given instruction set or path or the given path being

blocked, the functional layer would be able to signal this to the decision layer.

The functional layer should implement simple high-level command interfaces that accept

the compounds in the form of, for example, paths or trajectories for navigation and ma-

nipulation separately or together, depending on the architecture. This increases the ex-

tensibility to other tasks when the high-level components instruct the functional layer to

implement specific compound actions. There should be two-way communication where

the functional layer provides feedback to the higher-level layers to offer more robust be-

havior in case of erroneous situations.

3.2 Executive layer

The executive layer takes high-level commands from the decision layer and, in turn, gener-

ates abstract solutions to these tasks. The executive layer is also responsible for convert-

ing the gathered world information to compound instructions set as paths, for example, to

the lower-level components. This higher-level plan with the world model is often reusable

in the many use cases, given that the system dynamics and kinematics are relatively the

same. This means that the executive layer is responsible for checking that realizing the

13

task goal is possible from the current state [24]. In an actual application or software stack,

the part of the executive layer could be a path planner for a mobile robot that generates

a path or trajectory from the current location to the goal state. Suppose it is impossible

to create a path according to the gathered world information like a map. This will be in-

formed to the higher decision layer, which can create additional recovery tasks. These

tasks could include informing the remote operator that the mission cannot be executed

due to an external issue.

This layer acts as a deliberative layer in the control architecture and can have lower time

constraints compared to the functional layer [25]. In an autonomous system, this layer can

dynamically create new paths or trajectories during runtime asynchronously or optionally

generate a new trajectory when the current path or plan cannot be executed fully or is

required in case of a unique external event. The executive layer is also responsible for

parsing world models to actual compound actions for the system to execute according

to the perception system. For example, perception data could be represented as a grid-

based map or voxel grid [29]. This layer should have access to the perception output of

the sensing system while being able to understand it and utilize it for planning the next

mission.

The deliberative layer is helpful in long-term navigation where the environment is com-

plicated, and there could be multiple local minima where robots could get stuck by only

reading the current sensor information from the environment as it would in the functional

or reactive layer [22][30]. This deliberative layer in the system tries to answer with long-

term plans, while it can be slow to respond to environmental changes. Deliberation, as

the name suggests, also helps monitor the system since deliberative plans and actions

can usually be visualized in the form of paths.

3.3 Decision layer

The decision layer is responsible for task planning and allocating the tasks to the correct

components in the system. This layer provides the hybrid layer into the system, com-

bining the reactive and deliberative layers. In a regular collaboration between a robot

and a human, this layer would be handled by a human providing some commands to the

robot with a user interface. Still, this layer can also be programmed to handle error states

and provide a connection between different behaviors [24]. The secondary target for the

decision layer is to maintain the system state so that the system can recover from the in-

correct state in case of erroneous data or system error, increasing the system robustness

and reliability [24]. In the case of mobile robot manipulation, this can mean, for example,

replanting the path in case the original path is invalid or managing resetting the system

state if it is not valid. As stated before, the decision layer is not responsible for keeping

track of the erroneous situations in the system but only coordinates the recovery of the

14

system components if these events happen.

The decision layer could also be utilized to provide higher mission-level programming of

the robot if the "skills" of the robot are generalized into the decision layer representation

[24]. Given the abstract skills of the robot, such as "detect target item" and "move arm

to target," the usage of the machine can be generalized, and the machine’s skills are

reusable in tasks other than the original primitive.

Generally, this means that the decision layer encodes the mission description instead of

forming it; this means that the decision layer does not include the task or mission de-

scription and break it down to motion primitives, but it encodes the task primitives for the

decision layer to perform and coordinate the mission. This means that mission decon-

struction is still broken down in some form into the decision layer, which is coordinated to

the lower-level layers according to the logical instruction set. Forming the mission or task

definition is done by humans. It has also been implemented by reinforcement learning

and evolutionary algorithms to adapt to specific tasks [24].

There are many ways to design this layer. Still, this section will look into a couple of

those implemented in robotics applications like behavior trees and finite state machines

and could be targeted to enable modular design with ROS2. Behavior trees and state

machines have been used previously to implement the hybrid layer to the system in mobile

manipulation tasks [24]. In the following two sections, we will present the properties of

the behavior trees and finite state machines.

3.3.1 Behavior trees

Behavior trees are modular tools for creating policy or control over robots or other actors

like NPC (Non-Playable Characters) in games. Behavior trees originate from computer

games, but later on, they were adopted by robotics and AI due to high modularity and

re-usability [31]. The idea behind behavior trees is to represent actors’ behavioral models

as a tree, where each branch is its action that the actor can take if the conditions of the

actor and environment are correct [32]. Behavior trees offer high modularity since each

branch and leaf are easily interchangeable depending on the application.

Generally, six different node types are used in behavior trees. In table 3.1 can be seen

all general node types and their uses [32][31]. This table follows the same format as table

1.1. in [31].environment

15

Node Succeeds Fails Running Number of children

Sequence One child node must succeed All children fail If one child is running [1 - N]

Fallback All children node succeed One child fails If one child is running 2

Parallel If ≥ M children succeed If > N - M children fail Else [1 - N]

Action When action is successful When action fails While the action is not done 0

Condition If true If false Never 0

decorator Custom Custom Custom Custom

Table 3.1. Behavior tree nodes

By defining a small amount of interfacing between nodes, you can increase the system’s

modularity by creating easy-to-combine small components. As can be seen in Table 3.1,

there are virtually three different states that each node can return: success, failure, and

running.

Applying these six simple nodes in behavior trees can take on complex assignments.

The flow of the tree is controlled by sequence, fallback, and parallel nodes, which are also

referred to as control nodes of the tree structure. Real-world actions or commands taken

by the robot are handled by the action nodes, which commence command when specific

criteria are met. Condition nodes are the ones that decide if actions are to be taken and

can be set freely by the user. For example, the condition could be “Is_battery_empty“ to

check the battery status before giving instructions to start navigating. Decorator nodes

are usually custom nodes that change the outcome of the tree in some way. For example,

the decorator could tick the child node continuously at a specific rate. Figure 3.3 can be

seen as an example of a tree representation of the behavior tree.

16

Figure 3.3. Simple example of BT

Figure 3.3 represents a simple example of behavior trees. This example consists of a

navigation problem from pose to pose where the goal is to grab an object. This behavior

combination has been simplified a fair amount and usually requires a lot of background

processing from the other layers of the system. Tree execution begins from the tree’s root,

the purple circle on top. The first blue node in the graph after the root node is a fallback

node, which will be called in case the sequence returns failure and executes the action

”AskHelp”, which would need to be getting human attention to the task. The second blue

block is the sequence node, which will tick all its children from left to right if N−1 children

return to state as success. If all went successfully, from left to right, the flow of the tree

would go as follows: first, the decorator ”RepeatNode” would be called, which will repeat

planning until the path has been successfully generated or until the number of tries has

been exceeded. Next would be initiated the ”GoToPose”, which tries to make the robot

move to a planned pose. Next is condition node ”IsTargetThere” which will try to check for

the target and decide if the target is in the correct position. If the target is found, the robot

or actor will grab it with the action ”GrapTarget”. From this simple example, it can be seen

that it is pretty simple to generate behavior models for rather complex systems by using

behavior trees.

As seen from 3.1, behavior trees can return ”success”, ”failure”, and ”running”, which

are three different states. Using simple return states, this method allows behavior trees

to be modular [31]. However, an additional component is needed to handle information

transmission between the tree nodes due to limited information flow in the tree structure.

17

This additional component can also keep track of the internal state representation of the

machine at the cost of increased coupling between the behaviors in the tree structure.

Behavior trees generally implement different "platforms" for dealing with information. This

usually means something called blackboard. Blackboard implements a virtual key-entry

storage that keeps track of external inputs and outputs to each tree node [32]. In conven-

tional programming languages like Python or C++ and many others, blackboard could be

described as a global dictionary that can be accessed anywhere from the tree structure.

This means that each entry in the blackboard is a key-value pair, where the blackboard

saves a value behind a particular key, which all of the behavior tree nodes have access

to. Figure (3.4) is a simple example of how blackboard communication looks in the tree

representation. Many of the behavior tree libraries offer this blackboard functionality. Still,

most often, the blackboard cannot be localized between specific functions, and all entries

are available to all nodes in the tree, which can cause issues with unintentional name

clashing when the BT grows larger [33].

Figure 3.4. Example of behavior node writing an entry behind key in blackboard dictionary
that is accessed by another behavior node

Figure 3.4 could be part of the simple behavior tree example 3.3 from the lower left corner.

The communication between nodes can be seen here when it is needed. ’PlanToPose”

will generate a plan that consists of a tuple containing a list of pose information ([x], [y],

[yaw]) and save it behind the key value ”plan_id” to the blackboard. After this ”GoToPose”

will read the value behind the key and start navigating according to the information on the

blackboard.

18

3.3.2 Finite state machines

Finite state machines are mathematical representations of the states, originating from the

gaming industry, that have transitions between them [31, p. 23][34, p. 2][35, p. 55]. Finite

state machines have been applied to many different robotics applications, from manipula-

tion tasks to bipedal robots[34, p. 2]. Finite state machines assume that the system could

be in a limited number of states and that these states have a limited number of transitions

between each other. State machines offer flexibility in designing robotics architectures by

providing a way to maintain simple abstract states and create state transitions between

states.

There are advantages and disadvantages to using FSMs. Simple FSMs are easy to

implement and understand initially, and many FSMs use standard structure [31, p. 23].

Although these systems are easy to understand initially when the number of states in

the system increases, so does the number of transitions. When the system needs to be

reactive, there must be many states and transitions, which can hinder the modularity of

these systems, due to the high coupling between the modules. When inspecting large

FSM and there is a need to add a new state to the system, there is a large job to gather

all states that can transit into the new state, which hinders the scalability and re-usability

of the FSMs largely [31, p. 24].

Since decreasing modularity is common in large FSM, a hierarchical finite state machine

(HFSM) answers the complexity issue by adding behaviors or states that can contain

sub-states and transitions. This means that on a high level, HFSMs can have high-level

states like ”follow path”, which can consist of multiple sub-states. This decreases the state

transition between high-level and low-level states, which lessens the need to reprogram

state transition if there is a need to increase the number of states as the system grows

larger. Although the number of transitions is lower than before, there is still a need to

keep track of multiple states and transitions, which can be cumbersome when the state

machine graphs in the high or low-level increase [31, p. 25].

In the figure 3.5 can be seen the same task decomposition as for the behavior tree in the

image 3.3 adopted from example [33].

19

Figure 3.5. Simple example of FSM

The colors of each state and transition in the image represent the same rule set as in the

behavior tree. For example, the Fallback transition is handled as a state in the represen-

tation where the system state transits, given the sequence pipeline’s failure. The retry

loop is set inside the composite state, which handles the retrying of the path generation,

given the failure in the generation.

Some state machines adopt similar functionality to the blackboard called UserData that

allows identical communication between the states in the system [33]. UserData im-

plements a local input-output communication between the system states that have the

key-value functionality [33]. This allows the communication to stay between the states,

which avoids the global namespace clashing in small and large applications.

20

4. ROBOT OPERATING SYSTEM 2

Multiple software platforms have desired to create a modular robot design, program-

ming, and communication framework. To name such a few, there were LCM (Lightweight

Communications and Marshalling), YARP (Yet another Robotics Platform), and CARMEN

(Carnegie Mellon Robot Navigation Toolkit) [3]. One of the newer and more active ones

solving this problem is the Robot Operating System or ROS, which Willow Garage re-

leased in 2007 [3, p. 1]. ROS tries to decrease the repetition of programming gen-

eral parts required for robotics applications, including communication and packaging of

the system. ROS provides stable communication middleware-tailored protocol built on

TCP/UDP (Transmission Control Protocol/User Datagram Protocol). There were some

issues with ROS. For example, network topology and security were immature, so a new

framework for robot programming called Robot Operating System 2 was built to be the

successor of ROS [3]. ROS2 took a different approach by integrating Data Distributed

Services (DDS), which aims to solve problems regarding network security, real-time op-

erations, multi-robot communication, and communication in non-ideal network situations

[3]. The first version of ROS2 Ardent Apalone was released in 2017 [36].

ROS2 is a framework for robot programming that is under an Apache 2.0 license, which

makes ROS2 an open-source framework and can be broadly modified and distributed

according to the projects’ personal needs and distributed according to the needs of the

project, without contributing to the ROS2 framework [3][37]. ROS2 can be divided into

three different parts as a software ecosystem according to the [3]: middleware, developer

tools, and algorithms.

The middleware part of ROS2 has been designed with security and reliability in mind

[3]. This means that they have adopted DDS communication as their middleware, which

brings more mature network topology, security, and quality of service (QoS) options to

the developers [3]. What DDS also brings to the table is the ability to perform real-time

communication [3], which can be considered as an advantage over ROS, which did not

officially have the capabilities of real-time communication.

21

4.1 ROS2 communication and middleware concepts

ROS2 is divided into multiple concepts that can be used to create complex systems that

can interface with robots, and sensors send communication messages over distributed

systems and act as middleware for multiple components in the system. These concepts

include, for example, nodes, topics, services, and actions. These concepts help to create

modular and robust systems that can be used to develop easily replaceable components

for each system.

4.1.1 Nodes and Topics

ROS2 handles all of its features as nodes. Usually, the node is an entity that should

create one logical part of a complex system and communicate over the communication

network with other nodes [38]. Together, all nodes form, for example, a complex control

system for different types of robots. The number of nodes in each system depends on

the implementation and the system’s needs. As mentioned, each node can and should

implement some logical part of the system; this can include, for example, reading sensor

data and filtering it and sending it to other parts of the system, path following, path gener-

ation, or localization. The system developer needs to define each node themselves and

divide them into logical parts. If this division is done correctly, there could, for example,

be multiple nodes that each do the same task, but they could change in the manner of

moments just by re-configuring new nodes to use the same interfaces. To abstract and

make the communication between system components, ROS2 uses interface definition

and language mapping (IDL) to define the communication type between different com-

ponents, which has also been in other middleware communication systems before [16,

p. 290]. These message interface definitions must be used and defined for each type of

ROS2 communication primitives.

The most basic communication nodes used to share information is over topics. This

communication method uses the DDS standard to send abstracted messages over the

publisher-subscriber method [38] [3, p. 3]. This method means that a node sends infor-

mation continuously to the ROS2 network, and multiple nodes could receive or subscribe

to it. Since ROS2 utilizes DDS standards, all nodes can discover nodes they need without

a centralized communication host, also called peer-to-peer communication [3, p. 3]. Gen-

erally, this communication scheme is widespread in different middleware systems [16]. At

the same time, the components that publish this information often also can read other

sources of the information [16, p. 290]. ROS2 publisher is usually responsible for defining

when the data is available for other components in the system. This means that the pub-

lishing node can read information from the sensor and process it, and when this process

is done, the information is broadcast to the system.

22

Due to the capabilities of the DDS enabling the quality of service settings, users can de-

fine the behavior of this publisher-subscriber method. For example, the user can specify

the sensor data to be broadcast only once and never sent again after that. This allows

the data to be transmitted fast in the network but does not account for a lossy connection

that can prevent the subscriber from receiving anything. Similarly, the QoS settings can

be defined so that the broadcasted messages are re-transmitted if some packets have

been lost during the transmission [39]. The downside of QoS settings is that the target

participants in the communication networks must have compatible QoS settings enabled

to enable communication between them [39].

4.1.2 Services and Actions

There are scenarios where a node could need information or processing from another

node, and it would not make sense to broadcast this information through the whole net-

work. There is another interface called service which allows two-way communication be-

tween nodes [40][3, p. 3]. This interface is designed to implement one-time client-server

or point-to-point communication where the client requests a server for some service to be

executed [16, p. 290]. One service can have multiple client nodes that can request infor-

mation when they require it. The communication model in services is simple. The client

node sends the request over the service topic to the service node for requesting service

with some prerequisite data if needed, after which the server will reply immediately when

the service is done.

Since services were meant to implement one-time service API calls for simple actions and

topics and are designed to provide a continuous flow of information from the node, there

is the implementation for the third type of interface called to the action server [41][3, p.

3]. This server is designed to implement long-time operations like path following or trajec-

tory execution. Similar to other communication methods, actions are also asynchronous.

Figure 4.1 shows the communication architecture of the action server and client.

23

Figure 4.1. “Understanding Actions” by Open Robotics is licensed under CC BY 4.0. [41]

Actions are built upon three different states: goal, feedback, and results. If we inspect

actions servers closer, we can see that it contains a service call for starting action, a pub-

lisher to send feedback to the client during the action, and a service call to get results from

actions. As with service, actions require the user to define an abstract message interface

that consists of the three previously mentioned states. Action servers, for example, initi-

ate longer actions in the system that are wanted to be executed. This could mean path

following. In the path following mission, the message definition could be the path that is

wanted to be followed, feedback could be the path progress in meters or percentiles, and

the goal be if the path following were successful.

4.2 Developer tools

The second of the earlier mentioned categories that ROS2 offers for developers and users

is developer tools. There are many tools in this category, but the most notable are different

tools for simulation, visualization, package management and building, debugging, launch,

and configuration tools [3].

Simulation tools are essential when making large robotics applications since the simula-

tion can considered a proving ground for the developed algorithm or application before

implementing it with the real machine [42]. Developing the application in the simulated

environment offers other benefits like generating data sets fast with different algorithms,

a safe and controllable environment where nothing can break, and the possibility of re-

duced development and design lifecycle [42]. Gazebo offers a simulation environment to

simulate the physics and kinematics of the robot, sensors, and environments [43]. The

out-of-the-box integration with ROS2 with controllers and sensor simulations offers a way

to make simulated machines that act similarly to real machines. In this thesis, the gazebo

was also used to develop the base system and verify the concept before moving to the

24

actual machine.

On the other hand, Rviz2 (ROS visualization 2) can be used to visualize and see the

underlying states of the system and visualize different objects, maps, and sensor data

for the system either from the actual or simulated robot [44]. Visualizing the sensor data

like lidar (Light Detection and Ranging) point clouds, generated paths, and the robot is

usually needed. This all can be done in the Rviz2. These integrated tools save time by

enabling the debugging of the system and testing immediately without the need to develop

software for each application.

4.3 Frameworks

As mentioned before, ROS2 could be divided into three different categories, and algo-

rithms were one of these categories. ROS2 has many frameworks that try to answer

general problems that many robot systems have introduced in the form of questions in

the chapter 1.

Frameworks in this section try to answer these problems. Even though many different

frameworks try to answer the same questions in various manners, the ones selected to

be introduced in this thesis were utilized at some level to generate some parts of the target

machine architecture or used to generate parts of the pallet-picking application. Many of

these architectures are designed to be general and applicable to many robot models.

4.3.1 TF2 and transformation trees

Transformation trees are an essential part of robotics applications. This importance

comes from the need to know the correlation between different joints and sensors com-

pared to each other. This information can be utilized in many applications, but the most

notable ones using these transformations are control algorithms for joints and sensor fu-

sion algorithms for sensors. This section will introduce the ROS2 tool for easily keeping

track of these transformations.

This is where the ROS2 geometric transformation system called TF2 steps into the pic-

ture. This library is designed to calculate these geometric correlations between the

tracked frames inside the system in question [45, p. 65]. These frame transformations

are usually required in every robotics system and must be implemented using some linear

algebra library. By utilizing this library, users can avoid errors in self-made calculations

and avoid writing complex frame-tracking systems [7]. This library does not create any

complexity to the previously defined interfaces that belong to the basic concept of ROS2.

They use the simple publisher-subscriber scheme to keep track of frames using special-

ized TFMessage that users can use to populate the transformation trees in their system.

25

In ROS2, TF2 transformations are divided into two different subcategories called dynamic

and static transformations [7][45, p. 66]. As the category names imply, these differ in a

way that dynamic transformations can change over time, and static ones remain the same

over time. Static transformation assumes that the static vertices exist and are published

only once in the system. This can make the load in the transformation tree lighter since

there are fewer transformations to keep track of and update while listening to all of the

frames in the system. Then, Dynamic transformations are designed to keep track of

moving parts in the system like manipulator joint angles[45, p. 66].

A transformation tree can be expressed as a graph. In this graph, all tracked coordinate

frames can be considered nodes or vertices, and the geometric correlation is the edge

of the link between those nodes. Due to the need for the transformation tree to be a fast

operation when calculating the correlation between two connected nodes, the graph has

been limited to the tree, or an undirected graph has been decided when designing the

TF2 library [7]. This means that each node can have multiple child nodes, but there must

be only one parent for each node.

When there is a need to calculate the correlation between two frames or the current

frame’s position in another, TF2 provides an easy API to calculate these. This not only

calculates the frames with the last known correlation but also the library can calculate the

transformations at some point in time and interpolate between known states to find as

accurate a transformation as possible at any given time frame.

To better understand the transformation trees in the ROS2 application, we can take an

example application with these sensor dependencies on the robot’s base and different

joints that can move. The figure 4.2 shows a simple Turtlebot3 transformation tree.

Figure 4.2. Simulated robot in gazebo and Rviz2 showing the transformation tree
frames in from simple Turtlebot3, showing ”odom” and ”lidar_scan” frames about the
”base_footprint” frame of the robot

The figure shows a simulated Turtlebot3 burger in a gazebo environment and part of its

26

transformation tree in the Rviz2 environment [46]. To demonstrate the transformation

trees, it is necessary that even a tiny robot with a small number of joints can have multiple

joints and sensors to track. In the figure, To transform the data from each sensor to the

robot base frame like the 2D scan of the lidar, it is necessary to know the link between the

robot base and the lidar, which usually are static transformations in the rigid robot body;

hence, they are also static transformations in the transformation tree. The joint states

are dynamic transformations in the transformation tree since these can update very fast

depending on the sampling rate from the encoders on the wheels. Other transforms do

not necessarily exist on the robot’s body but tell where the robot is located compared to

its starting position in the world and where the robot is in the world. In the image, the axis

called ”odom” shows where the robot started moving and the displacement between the

robot’s body and the starting position of the movement.

This library has been used heavily in this work context to continuously transform frames

and paths from one frame to another and keep track of the system states during the

pallet-picking application. Although these functionalities could have been implemented

by hand, it is less error-prone to use verified working libraries for this.

4.3.2 Robot localization

Robot localization is a framework for ROS2, designed to combine multiple sources of

sensor data and provide stable 3D localization for mobile robots. This package aims to

answer the previously mentioned question ”Where am I?”, which is critical to answer-

ing the other two questions. Robot localization can be divided into three different parts:

ekf_localization, ukf_localization, and navsat_transform [4]. Robot localization uses dif-

ferent Kalman filter implementations to fuse multiple sources of data, such as extended

Kalman filter (EKF) or unscented Kalman filter (UKF) [4]. The extended Kalman filter is

a filter for estimating nonlinear systems by using several measurements and statistical

noise to generate an estimate of the state [4].

The extended Kalman filter consists of two steps: prediction and update phases. During

the prediction phase, the filter integrates the state of the estimation with the given sensor

input to the system with a nonlinear state transition function in the equation. In the robot

localization package, the motion model is an omnidirectional motion model. Estimation

also has some uncertainty or covariance. During the prediction phase, the uncertainty

of the estimation gets worse over time. To mitigate the uncertainty, the filter has the

update phase, where the correction data from different sensors can feed the correction

to the filter. This update comes from the measure or sensor that can measure the state,

like the GNSS unit. The update phase corrects the filter estimation while decreasing the

uncertainty.

Previously mentioned TF2 has also been used in the robot localization package. This

27

package transforms different sources of information into the target frame for localization.

For example, GNSS information from the GNSS receiver needs to be transformed to the

frame the system is localizing to avoid introducing additional errors to the localization.

The second utilization of the TF2 is to represent the localization in two frames if the sys-

tem wants to be fed update phase data: map and odom [47]. This formulation divides the

localization processing into two filters: local and global. The local filter continuously cal-

culates the movement from the starting position, utilizing only the prediction phase of the

EKF filter. The local filter will drift over time. Global filter estimates of the transformation

from map frame to base link while utilizing the prediction and update phases to provide

accurate estimation that does not drift, but this estimation is prone to "jumping" discretely.

Although the global filter estimates the map’s transformation to the base link, it is applied

to the map’s transformation to odom frame. This means that the starting place of the

machine is moved during the navigation to keep the global estimation accurate while al-

lowing the local estimation to be continuous without the previously mentioned jumps in

the estimation. This way of calculating the localization in two frames is defined in the

design documents of ROS enhancement proposals (REP) [48].

4.3.3 Navigation2

Navigation2 stack is, as the name suggests, a framework that implements navigation

and control stack for holonomic and nonholonomic robots [5]. Navigation2 stack aims to

answer "How do I get there?" by generating and following paths. Navigation2 stack com-

ponents are composed of multiple ROS2 servers that implement different functionalities

like planning, control, and recovery [5]. Navigation2 aims to provide safe and reliable

collision-free indoor and outdoor navigation [5]. Every server has been implemented as

a plugin to make the system configurable and modular. Each server can be configured to

use multiple plugins for different robot types. Navigation2 also provides sensor informa-

tion processing and saving in global and local costmaps that keep track of the static and

dynamic obstacles that local and global planners avoid. For the control of the informa-

tion flow and task management, behavior trees have also been as task-level management

tools in the architecture [5]. Navigation2 stack supports many kinds of robot models, most

notably differential, omnidirectional, legged, and Ackermann type of machines [49].

Navigation2 utilizes heavily other algorithms to enable the integration to the user’s robot

applications. Navigation2 recommends users use previously mentioned existing ROS2

packages like robot localization and TF2 to provide fast integration to their system. There

are other tools that should be used during the integration process, like the SLAM toolbox,

which is a toolbox for mapping the environment.

The most notable restriction of the navigation2 stack is that the planning is restricted in

the 2D plane. This stack cannot be used for the machine’s manipulator without major

28

modifications to the base system and may not be sufficient navigation in uneven terrains.

Although many robot models were supported in the library, it does not support some

common types in heavy-duty mobile machines like articulated frame steering [50], which

in this target system could mean non-optimal path generation and path following.

Although in this application, there could have been heavy utilization of the navigation2

stack from the behavior trees to the control, There was a decision to implement the

behavior tree stack from the beginning and only use the navigation2 stack to generate

obstacle-free paths for the functional layer of the control system. Since the mapping had

been done already and an existing localization system had been implemented, there was

no need to use any other parts from navigation2 other than the planners and costmap

tools.

4.3.4 Moveit2

Navigation2 was trying to solve the planning and control problem in the mobile robot plat-

forms, but in our case, we also have a manipulator attached to the HDMM. A robotics

manipulation platform for ROS2 exists called moveIt2. MoveIt2 solves general problems

in the robotics manipulation field, including kinematics, motion planning, perception, and

control [51][6]. The platform itself is robot-agnostic and uses the described kinematic

chains to perform different calculations for motion planning and kinematic control, utiliz-

ing many other libraries to implement kinematics, collision, and planning such as KDL

(Kinematics and Dynamics Library), FCL (Fast Collision Library), and OMPL (The Open

Motion Planning Library) [51][6].

Similarly to navigation2, moveIt2 is also implemented as a plugin-based architecture so

that the system components, like motion planners, can be changed easily. The function-

ality of MoveIt2 centralizes to the move_group node, which implements interfaces to the

base functionalities of the platform for different APIs like C++, python, and ROS2 APIs

and coordinates the execution of functionalities. The platform can make plans in joint

space and Cartesian space to reach the target pose for the end-effector. Many of the

internal planners of MoveIt2 utilize sampling-based planners that make the trajectories

unique and sometimes unintuitive in each control iteration, even though the initial and

goal pose stay the same [51].

To keep track of the environment, MoveIt2 also implements a Planning scene that tracks

the relevant objects and obstacles in the environment based on static obstacles and per-

ceived information. This data is later utilized in the trajectory generation to make an

obstacle-free motion for the manipulator [51].

29

5. PALLET-PICKING SYSTEM FOR HEAVY-DUTY

MOBILE MACHINE

An autonomous heavy-duty mobile machine system needs to perform autonomous pallet-

picking, given the rough estimation of the pallet position in the mapped environment.

While the initial position of the pallet is uncertain, the pallet should be picked without

replanning. The target platform for this application was highly modified Avant 635 at

Tampere University, which can be seen in Figure 5.1.

Figure 5.1. Target machine for the pallet-picking application

This target application leads to the following system features and requirements for the

target application that are required for the machine to operate autonomously in the given

task:

• Generate a plan to the given target pose.

– The path shall be obstacle-free.

– The path shall account for the physical constraints of the machine.

30

• Detect the pallet.

– Detection shall be done with lidar.

– Detection shall be represented in the system as a part of the transformation

tree.

• Manipulator is used to pick and lift the pallet.

– Given the target pose, there shall be an obstacle-free trajectory and move-

ment to be done.

• System follows the plan to the given pose.

– System shall stay on the path inside the acceptable limit.

– The following unit shall provide feedback to the system from the status of the

path following.

– Given path shall be moved given the initial pallet pose was incorrect.

• System shall have state estimation and localization during the operation.

– Localization shall be implemented with an extended Kalman filter with the

following sensors: IMU (Inertial Measurement Unit), wheel odometry, and

GNSS-RTK (Global Navigation Satellite System - Real Time Kinematic).

– State estimation for the manipulator and articulated angle shall be done with

IMUs and resolvers.

• System shall have common communication middleware between system compo-

nents.

– Low-level system communication shall be done with CAN (Control Area Net-

work).

– High-level communication shall be done with ROS2 common interfaces such

as topics, services, and actions.

The target system can move autonomously with ROS2 as a base interface. This allows

any ROS2 system architecture for manipulator control or path following utilizing the ROS2

to be integrated with the base architecture by defining the communication topics to match

the base system. Given the machine operations, such as navigation and manipulation,

and system features and requirements, the compound actions for the behavior tree are

easy to define. Pallet-picking as an application can be broken down into at least the fol-

lowing high-level behaviors for the system, system components, and behavior tree nodes:

• Define the target pose of the pallet or drop-off location.

• Generate a path for the mobile machine.

• Follow the path.

31

• Generate a trajectory for the manipulator.

• Follow the trajectory for the manipulator.

• Recognize the target pallet.

• Reconfigure the transformation trees when the pallet is not in the correct spot.

To break down the mission into task definitions and coordinate with the base system, a

behavior tree will be implemented to handle the system components’ decision-making

and coordination. The tree will act as a decision layer in the layered architecture where

each compound action recognized will be tied into a behavior tree node that can interact

with the base system. In this chapter, the behavior tree used to enable pallet-picking will

be introduced, and how the system has been tied to the base functionality of the Avant

machine will also be shown.

To enable the system to detect pallets, a solid-state lidar has been installed on the fork of

the machine that publishes the point cloud from which the pallet is seen on the run time.

This information is then applied to the transformation tree of the system using the TF2.

5.1 Pallet-picking as reactive layer problem

As stated in the item list in chapter 5, one of the required actions was to be able to re-

configure the transformation trees when the pallet is not in the correct position according

to the base map and detection. This means that sometimes the pallet’s target location is

incorrect, and even a small deviation could lead to poor performance in pallet picking. In

the real-world application, this could mean that the pallet location stored in the manage-

ment system has moved due to some external effect, such as a human operator moving

it, which causes uncertainty in the pallet location and initial position. This deviation and

its solution can be divided into two different problems: deliberative-layer problems and

reactive-layer problems. In the deliberative-layer problem, when the deviation of the pallet

pose is detected, there is a need to detect the new pallet pose and plan a new path to it

so that the machine can dock into the pockets of the pallet. The reactive problem again

utilizes the state representation of the machine and pallet and shifts the path with the

pallet pose, given the deviation from the estimation. This will lead the path following the

algorithm to fix the error in the initial estimation. Path following implementation itself does

not see the movement of the path. Still, it sees the change in the localization of the robot,

which moves according to the transformation of the pallet location. The latter method

naturally requires the system to detect pallets from far enough to have time to converge

back to the path after the pallet is detected.

To handle the uncertain initial estimation of the pallet frame, we need to represent much

of the required frame information, such as the base of the machine and paths in the pallet

frame, during the navigation. This representation allows moving the pallet frame in the

32

map coordinate system while allowing moving of the path without replanning during the

navigation. To understand this, we need to define some of the transformations in the

base system and show what is represented in what frame. Figure 5.2 shows some of the

relevant transformations for the navigation problem.

Figure 5.2. Representation of shifting the pallet and path in the map frame after the
detection of the pallet

The figure shows that the root transformation for the system is the ”map” frame, which has

children tree nodes ”pallet” and ”odom”. The pallet frame is the position of the pallet’s front

side in the map coordinate system. Similarly, the odom frame represents the motion in the

map frame from the starting position of the machine. The transparent pallet represents

the pallet location in the ”map” frame after the user inputs it into the system. Frame odom

represents where the machine started operation after the turn-on. Traditionally operation

or path following the robot’s displacement or odometry is either represented in the map

33

frame or the odometry frame. In this application, though, the machine base link frame

odometry is represented in the pallet frame. The position of the machine in the map of

the environment can be represented in the following form in the equation 5.1

mapξbase =
mapξodom

odomξbase. (5.1)

The manipulator end effector state takes the representation from the equation 5.2

baseξforks =
baseξboom

boomξtelescope
telescopeξforks. (5.2)

and the complete state estimation in the pallet frame follows the form in the equation 5.3

where the mapξpallet is the transformation of the pallet in the map frame

palletξforks =
mapξpallet

mapξbase
baseξforks. (5.3)

Since the path planning is generated based on the map frame, we need to first transform

the path from the global map frame to the pallet frame so that the final point in the path

is at the origin of the pallet frame when the machine detects that the pallet is not in the

given goal position it sends a request to move the pallet to the correct position according

to its localization in the map frame. The position fix of the pallet follows the following form

in the equation 5.4, where the ξ is the homogeneous transformation matrix.

mapξpallet =
mapξbase

baseξforks
forksξlidar

lidarξpallet. (5.4)

When the pallet frame is shifted, it also automatically corrects the path representation

and the machine representation to the correct locations since these are referenced in the

pallet frame. This can be seen in figure 5.2 where the path continuous line and pallet have

been shifted from the dotted lined pallet and path after the pallet detection is complete.

After this sift, the machine is not longer on the path to the path following and has to

minimize the error to the target goal since this pallet movement is now handled as a shift

in the localization according to the odometry. In this application, it is assumed that the

pallet is detected early enough that the machine has time to minimize the error in the path

before the pallet for successful docking to the pallet.

5.2 Distributed control system for autonomous HDMM

Combining the base implementation of the autonomous HDMM and the behavior tree

implementation to the distributed control system, it is divided into three different PC units.

Communication between the PCs and internal components is handled with ROS2, which

34

allows peer-to-peer communication between the machines. The system load is divided

according to the figure 5.3

Figure 5.3. Architecture division in the physical PC setup in target platform

The system load is divided into three different PCs that all have different purposes in the

architecture. Hurricane PC is responsible for parsing the sensor data and abstract ROS2

messages so that they are routed to the target platform correctly during the task execution.

Nvidia Jetson AGX orin handles the state estimation, localization, and perception during

the runtime and passes this information to Nvidia Jetson Xavier NX for the decision-

making in the BT, and planning in the executive layer algorithms.

5.3 Behavior tree for pallet-picking using ROS2

From the architectural point of view, there are a couple of ways to implement the behavior

trees into the base system architecture, using ROS2 and DDS as middleware for machine-

to-machine communication. This means that when implementing the behavior trees, there

can be very simple behavior tree nodes that just implement previously introduced ROS2

action and service clients and only interface with the underlying functional layers in the

system. In the figure 5.4 can be seen both versions.

35

Figure 5.4. Behavior trees component interacting in the layered architecture

On the right side of the figure is a simple interface that only requests an underlying ma-

nipulator planner interface to plan a trajectory from the current pose to the target pose,

and the behavior tree node would only provide the target pose. The second way would

be to make the behaviors implement these underlying functionalities like trajectory gen-

eration, and following that, it would directly communicate with the executive layer, where

the behavior tree action node would implement the functional layer of the system.

To integrate this implementation into the base system shown in figure 5.10, there was

a need to connect the system to the existing interfaces of the system and create some

interfaces that would provide certain interfaces that were not in the system yet. Figure 5.5

shows how the behavior tree binds to the ROS2 interfaces in the base system software

stacks.

36

Figure 5.5. Behavior tree integration to the base system architecture

Due to the existence of the underlying components, interfaces, nature of the behavior

trees, and ROS2’s design of trying to increase the re-usability of the code, the first version

was selected. This architecture also allows later integration of other tools and function-

alities to the base system or integration of the behavior trees with other target systems.

Also, the first variation would resemble more of the layered architecture where each layer

in the component stack would have certain tasks in the hybrid system implementation,

which also provides increased modularity in case the system needs to be increased.

Odometry for the path follower is also transformed. Odometry is provided in the pallet

frame, which is constructed from the global odometry, detection from the pallet detector,

and the information in the current transformation tree, which is estimated in the machine

fork frame.

Some of the introduced requirements are implemented as behavior tree nodes, but the

features are hidden in the base architecture as active ROS2 nodes that provide informa-

tion to the base system. Since behavior trees are designed to work as a branching tree

format, we need some way to logically read this visually constructed tree in the figure 5.6.

This means that reading the tree starts from the root node in the top left corner of the tree.

In the navigation architecture, the execution of the tree starts only after the pallet picking

pose and the placement pose have been fed to the system via ROS2 topics. While testing

37

the software stack, the target location of the pallet was placed into the Rviz2 visualization

of the environment map beforehand.

Some requirements for the pallet picking application were stated earlier at the beginning

of the chapter 5. To fulfill these requirements, there was implemented a behavior tree

implementation that can be divided into logical subtrees in the following way in figures 5.6

5.7 5.8 5.9 to enable the system to navigate and pick the pallet autonomously. Figure 5.6

is the main tree in the structure that initializes the pallet position and moves the manipu-

lator to such a pose that the lidar connected to the boom can observe the pallet location

during the navigation.

Figure 5.6. Main Behavior tree designed in the work

Figure 5.7 is the tree structure for navigating to the given pallet pose and picking it with

the given detection pose. Figure also shows the color coding of the different tree nodes

in the behavior tree structures used in the tree and subtrees. This includes generating a

plan for the pallet pose, setting it to the path follower, and picking it up while navigating.

38

Figure 5.7. Subtree for pallet-picking

After successful pallet-picking action in the pick subtree, the machine has two options to

initiate according to the subtree structures. Either take in the second pose given by the

operator and move the pallet to the new location in the given environmental pose or move

the pallet back to the starting position where the initial plan started. Figure 5.8 will take a

new pose argument to move the pallet there and place the pallet on the ground.

39

Figure 5.8. Subtree for planning and moving the pallet to designated location

Figure 5.9 will move the pallet back to the starting position and place the pallet on the

ground.

Figure 5.9. Subtree for moving pallet back to starting position

A couple of notes are to be taken in the trees: All blackboards in the images are the same

40

global blackboard that is initialized after the drop pose and pick poses for the pallet are

assigned. If the planning fails in the navigation2 plan algorithm, there is a fallback function

that tries to clear the cost map in the global or map frame, and this process is done the

number of times that it is registered to the blackboard. Blackboard also distributes and

handles many of the internal parameters in the tree structure so that there are fewer

redundant ROS2 topics in the network that are broadcasted rarely.

This layering of the tree functionalities also allows the ROS2 architecture to follow the

hybrid navigation architecture paradigm division. Path following could be extended to a

reactive layered architecture where the reactive layer would follow figures 3.2 architecture

containing an obstacle avoidance layer, where the velocity commands would flow in the

ROS2 network. If, in the current implementation of the lower level control stack, there

was something like software level emergency stop, it could be possible to implement

new behavior and fallback to the main tree, which would tick the e-stop to active in case

some major node would fail inside the tree logic. This behavior could be done if, for

some reason, the path following deviates too much from the path, the pallet is not in the

designed locations, or path generation is not possible.

Behavior tree implementation has one additional feature to enable the machine to initiate

actions other than pallet picking. The trees implemented in the system are not static in

the code. The trees are constructed on the runtime from, for example, a simple XML

(Extensible Markup Language) file that states the node order and which node uses which

kind of blackboard information. This means that in case of needing multiple different

behaviors or tasks, the user could send a request to the behavior tree layer of the system

to download a new behavior tree for the system in case the old tree is not suitable for

the new task and all this could happen without the need to restart the whole system.

Since the trees live as configuration files in the storage of the base system, it also means

that many of the behaviors needed for new tasks can be constructed without the need to

update the whole system architecture and components in the suitable atomic behaviors

are implemented to the base implementation of the behavior tree already.

5.4 Architecture for autonomous heavy-duty mobile machine

The base ROS2 architecture of the implementation is in the target machine. The target

machine was able to follow paths in the robot’s map frame, create trajectories, and follow

those for the manipulator in the base frame. Figure 5.10 shows the base system’s infor-

mation flow and relevant components. In the figure, the system has also been divided

into functional, and executive layers. In the figure 5.5, the decision layer connects to the

figures 5.10 functional layer. As can also be seen, these layers have been encapsulated

by the middleware layer or the ROS2 RMW (ROS middleware) for DDS that handles the

data transmission between the components and the layers. As the general in the layered

41

architectures in this one as well, the abstraction of the communication decreases as we

get closer to the hardware layer where the high-level task definitions, such as trajectories

or paths, turn into actuator-level commands, and the hardware commences these actions

as a movement in the machine.

Figure 5.10. Avant base navigation and control architecture with ROS2

Figure 5.10 shows that the configuration requires many sensors to provide accurate state

estimation for the manipulator and machine. Most sensors are integrated into the sys-

tem through the CAN (Control Area Network) bus interface that communicates to the

distributed base controller system. To enable ROS2 to be a viable option for navigation

stacks in the target machine, there needs to be a standard interface for ROS2 topics

and control interfaces. Most of the sensor interfaces are basic ROS2 interfaces providing

corresponding information to the topic like ”Imu”, ”NavSatFix”, and ”Odometry”, which by

state estimation nodes are turned to ”JointStates” and ”Odometry” messages in different

frames to give the current state of the machine continuously to other components in the

system. CAN interface also accepts valve commands for the hydraulics actuators, which

are fed to the internal distributed control system of the machine to control the hydraulic

actuators.

Many of the nodes in the architecture hide some of the required data and functionalities

behind the dependency of the transformation tree data, which is distributed through the

static transformations during the launch time of the system and through the dynamic

interfaces for the center joint of the machine, state estimation, and localization. This data

is then gathered and subscribed through the internal TF buffer in the nodes that require

this information to look up or transform data from the transformation tree.

To provide functionality for the manipulator planning, an existing integration to the moveIt2

software stack allows motion planning and control for the manipulator. Motion control for

42

manipulation is the separate implementation integrated into moveit2 through the plugin

interfaces, which allows the integration of the planning interfaces to the hydraulic actu-

ator control of the machine. These base systems were utilized to implement the base

functionalities or skills of the system for different manipulation tasks. Interfacing with the

moveit2 stack is done through the moveit2 move group interface, which allows interfacing

with the motion planning and control through the ROS2 service and actions [52].

The manipulator state estimation machine has a collection of state estimation nodes con-

taining 2D and 3D complementary filters, estimating the orientation of the front axle,

boom, and bucket, respectively, which are used to estimate the entire state of the end

effector of the machine in the application. This information is also fed to the moveit2

framework to provide the initial state for the planning interface and feedback to the con-

troller.

The figure shows the localization using the ROS2 robot localization stack. It accepts IMU,

odometry, and GNSS data from the low-level ROS2 sensor drivers. In the base system,

there is a continuous feed of sensor data fed into the localization system to provide ac-

curate positioning. For the prediction phase of the filter, there is a feed from the wheel

odometry and IMU for the system. To provide the update phase, there is a feed from

dual antenna GNSS-RTK [53]. GNSS-RTK antennas can provide 1 cm accuracy in ver-

tical and horizontal positioning [54]. It also provides an accurate heading for the system

due to the dual antenna configuration. The GNSS positioning has been referenced to

a local map of the environment to provide local transformation of the GNSS to the local

area pivot point, which allows utilization of the prerecorded map for path generation in the

environment.

The Navigation2 stack has been used with the environment map for obstacle-free path

generation. The map contains the information of the static layer of the obstacles, which

are then inflated with the nav2 inflation layer costmap to show unsafe regions next to

obstacles for the planner [5]. Due to navigation2 not supporting the articulated frame

steering type of machines, the planner assumes the system will follow Ackermann’s steer-

ing geometry. The generated path is then given to the path follower software stack as a

discrete path, which waits for permission to commence with the path following from the

decision layer after it has been set for the target path.

43

6. EXPERIMENTS

In this chapter, the experiments will be concluded to measure the system performance

in the pallet-picking application. Part of the system is to review how the target platform

performs in the base actions coordinated into it since the pallet-picking, in this case, is

highly dependant on the base systems functionalities like state estimation, path following,

and manipulator trajectory following and the accuracy of each implementation. Naturally,

this dependency on the base functionalities leads to the inspection of the behaviors of

the components during the operation and pallet-picking application. While the system is

dependent on these functionalities, many of them are coordinated by the behavior tree

during the run time or are affected by the coordination.

While the accuracy of the base components is crucially important, so is the software

and hardware performance. Even if the application can perform in the restricted test

environment but not in the distributed control system of the platform, the task will fail.

This leads to the evaluation of how the ROS2 and software stack of the system perform

in the control system and if the given resources are enough to handle the communica-

tion and algorithms in the system. Many of the components have been implemented in

Python, leading to the evaluation of the RCLPY (ROS Client library for Python), which

is the Python implementation of the ROS2 that implements the simple interfaces for the

nodes.

6.1 Pallet picking test setup

Tests include the application executing the defined application task of pallet picking in the

test site. Very similar to the figure 6.1, there is a similar setup to the real world. Machine

and target pallet starts from some predefined location in the local world coordinates. As

stated before, there is a map of the target site the application is designed to work in.

The location of the target machine is referred to in the localization of the map frame.

After the setup, a command sequence needs to be sent to the behavior tree application

from the Rviz2 view on the right in figure 6.1. Command sequence needs to define the

rough position of the pallet in the map frame and where the pallet should be brought

after the pick-up. After the behavior tree application accepts the command sequence, the

execution of the application starts. This execution is then saved from the start to the pallet

44

picking using ROS2 bags that monitor the communication and the system states.

Figure 6.1. Illustration of corresponding pallet-picking test setup in simulation

Tests have been done in the mobile lab of the Tampere University using the target ma-

chine described in the figure 5.1. The target machine and the testing ground were pro-

vided by the Autonomous Mobile Machine Group at Tampere University. The whole sys-

tem architecture had been divided into the three different PCs that can be seen in the table

6.1. During the pallet-picking tests, the software distribution in the hardware followed the

figure 5.3.

6.1.1 Pallet-picking simulation results

The system was first tested in a simulated environment with a simulated version of the

machine and environment. These tests included only functional tests to verify that the re-

alized system architecture can converge to the pallet given the uncertain initial estimation

of the pallet location and the above behavior tree implementation in figure 5.6.

The simulation architecture is similar to the real machine introduced in the chapter 5.

The expectation for the real machine is that the hardware layer and interfaces have been

replaced with the simulated environment and machine in the Gazebo with the same ROS2

interfaces.

45

Figure 6.2. Pallet picking results in the simulation environment

The top left corner image shows the location of the manipulator fork in the pallet frame.

The top right shows the heading and pitch in the pallet frame for the forks. The roll is not

followed since it is not controllable degree of freedom in the machine. The trajectory of

the moveit2 framework after the detection and lifting is in the lower left image. Finally, the

system base twist command and response to it are in the lower right image.

Figure 6.2 shows that the machine can follow the input velocity responses from the path

follower application. The pallet-picking system’s reactive layer successfully fixes the pallet

position estimation, which leads to a small jump in the localization seen in the top left

image at roughly. At this time, the machine recognized the pallet location and fixed the

transformation of it in the map frame. These results lead to the system being able to

converge to the pallet, which leads to the BT formulation being able to commence the

pallet-picking application in the real machine tests.

6.1.2 Pallet-picking real machine results

Results contain the data collected from the successful pallet-picking task missions as de-

scribed in the beginning experiments chapter 6. In the review, there are key points for

the application under review and their performance under the pallet-picking application.

The application’s key points for successful pallet picking are accurate path following, lo-

calization, state estimation, and manipulator control. Here are the results of four different

successful pallet-picking mission tasks. The machine and pallet started from roughly the

same location each time, and the location estimation of the pallet was set roughly to the

location of the real pallet in the Rviz2 map of the area map. This test composition is

46

similar to the simulation tests, where these measurements are certain.

Figure 6.3 shows how the position error in the pallet frame converges to zero in all axes

while the motion is active.

Figure 6.3. Machine fork position trajectory in the pallet frame

Since the error is plotted in the pallet frame from the manipulator frame, we can see the

rough time of when the pallet location is fixed in the map frame. This happens roughly 2.5

m before the machine is at the pallet, which can be seen as a jump in the error. In these

application cases, the y-direction jump was roughly 0.2 m. z-axis error is small due to the

trajectory that the first action in the behavior tree was to move the manipulator to such a

pose that the lidar connected to it can see the pallet in the ground, which happens to be

very near to the pick-up pose of the pallet. Figure 6.4 shows the heading and pitch error

in the pallet frame.

47

Figure 6.4. Machine fork rotation trajectory in the pallet frame

From figure 6.3 and 6.4 can be seen that the position and rotations converge before the

pallet is successfully picked up, this means that the machine forks have been successfully

docked to the sockets of the pallet. In these attempts, the initial estimation of the pallets’

location was very good, given that the position and rotations do not change aggressively.

Given the situation where the initial estimation was poor, and the pallet was detected very

late, there will be a need for replanning of the path so that the system can respond to the

issue that there is no time to converge back to the path before the aligning with the pallet.

In figure 6.5 can be seen the velocity inputs from the controller and the system response

after reaching the slowdown limit before the control limit is achieved during the slowdown

period.

48

Figure 6.5. Machine front axis velocity commands and response

This includes the commands to the steering and velocity motion control unit without the

manipulator control. As can be seen, the linear velocity input has been set as a ramp

function to the system, and the open loop control response overshoots the set value and

oscillates above it. The path following the controller has been tuned to minimize the lateral

error very aggressively, which causes the angular velocity to oscillate too aggressively in

the tests. In this case, the control and response of the steering commands follow each

other very well, but the target velocity oscillates during the path following the curved path.

Figure 6.6 shows the manipulator trajectory following during the operation. Since the

planning and control of the manipulator is done in the joint space of the manipulator,

the jump of the pallet reconfiguration cannot be seen in the machine’s own configuration

space, but rather, the planning architecture receives the pallet pose in the estimation of

the machine base link.

49

Figure 6.6. Machine manipulator joint trajectory following

At the beginning of the graph, the manipulator is lowered to the pose where the pallet

detection is possible, and when the pallet is detected, the manipulator is then corrected

to the pose of the pallet. After the docking has been successfully executed, the pallet

manipulator lifts the pallet. Similarly to the velocity response figure 6.5 in both figures,

it can be seen that the sudden stop of the machine affects the state estimation of both

manipulator states and also in the velocity estimation, which can be seen as a sudden

spike in the estimation due to the sudden stop of the machine.

In the end, the pallet picking application can pick up the pallet using the behavior tree

structure in figure 5.6 given that the initial estimation was close enough to the correct pal-

let position so that there is no need for replanning of the path. This would be rather simple

to implement into the tree structure if needed. There is a condition node that checks that

if the pallets’ distance to the path is within the given limit, we would not need replanning.

Optionally, there could be continuous replanning in the system, but this could again as-

sert additional computational load to the system during the new path generation loop. As

in the simulation tests, the real machine tests verify that this composition of the ROS2

combined with the BTs in the layered architecture formulation with the decision-making

or coordination layer can execute pallet-picking tasks, with certain limitations given the

implementation of the BT.

6.2 ROS2 performance overhead test setup

This section handles the performance evaluation of the ROS2 in the application. This

evaluation handles mostly the Python implementation of the RCLPY since most of the

50

nodes in the system architecture are implemented in Python, excluding more time-critical

and high-rate nodes like the CAN interface of the system. During the testing of the ar-

chitecture, there was a notice that RCLPY used a lot more resources than expected,

seemingly without any reason, mainly CPU (Central Processing Unit) usage. The reason

for the high usage is due to the investigation here to find what causes this high CPU usage

when the RCLPY implementation of the ROS2 can be used in robotics applications and if

there is additional overhead exerted to the system to other units, such as RAM (Random

Access Memory). In the figure 6.7 can be seen the received topic rate of a couple of

topics and the CPU load of the processor during the pallet-picking application and data

recording.

Figure 6.7. Nvidia Jetson AGX Orin average topic receive rate and CPU load

As could be seen from the image 5.3, this PC unit is responsible for receiving sensor data

and doing state estimation and perception. This unit should have close to a non-changing

CPU load during the navigation since the incoming topics have fixed rates, fed to the

algorithms for perception and state estimation, that should not change. Still, when the

Python-based diagnostic tool was subscribed to the topics during the pallet-picking tasks,

it increased the CPU load significantly in some cases, even though the handling of the

data was minimal. This led to suspicion of high overhead in the RCLPY implementation

of the ROS2.

During the ROS2 test, PCs were communicating according to figure 6.8, which shows

that one of the PCs broadcasts one topic while the other two subscribe to it and measure

the topic rates, bandwidth, CPU load in total, and per core, RAM usage.

51

Figure 6.8. The performance test PC setup for the ROS2 topics

For evaluation of the ROS client Library for Python (RCLPY), the following tests were

conducted. Two different PCs were receiving messages from the third that was sending

topics with different payloads. Payloads range from 120 bytes to 100 kilobytes and fre-

quencies from 5 Hz to 350 Hz. The receiving PC specifications can be seen below in

the table 6.1.

Sending PC PC 1 PC 2

Model Nvidia Jetson Xavier NX Hurricane-QM57 Nvidia Jetson AGX Orin

OS Ubuntu 20.04 LTS Ubuntu 20.04 LTS Ubuntu 20.04 LTS

CPU 6-core NVIDIA Carmel Arm®v8.2 64-bit Intel® Core™ I7 – 610E Arm® Cortex®-A78AE

CPU MAX FREQ 1.9 GHz 2.53 GHz 2.2 GHz

RAM 16 BG LPDDR4x 2 GB DDR3 32 GB LPDDR5

Ethernet speed 1 Gb/s 1 Gb/s 10 Gb/s

ROS2 version Galactic Galactic Galactic

DDS Eclipse Cyclone DDS Eclipse Cyclone DDS Eclipse Cyclone DDS

Table 6.1. PC specifications in the test setup

During the test, the aim is to increase the payload and the transmission frequency to see

what happens to the hardware load during the operation and if the payload affects this.

This leads to the analysis of the ROS2 subscription rate effect on the actual hardware on

two different PCs that are continuously subscribing and measuring the rate and bandwidth

of the topics while monitoring the PC’s hardware states.

52

6.2.1 ROS2 performance overhead evaluations results

In the results, there will be a comparison of the resources used by the ROS2 python

application while subscribing to different rates of messages with different payloads. There

will be a Spearman’s linear correlation analysis done on the measured states from the

system to see if there is a linear correlation between the resources used in the system

and the communication frequency and payload.

Measured results consist of different rates of subscription to different payloads. In figure

6.9, the system rates and CPU load are relatively low payloads, such as 120 bytes and

1000 bytes. The results for the 120 byte broadcasting payload can be seen on the upper

side of the figures, and on the bottom is the 1 kilobyte payload.

53

Figure 6.9. 120 B payload and 1 KB payload results to the system

In these payloads, the system can subscribe to all messages with a given frequency. A

notable issue here that can be seen is that the relationship between CPU core usage and

the subscription rate is almost linear in the Nvidia Jetson platform. The same linearity

does not happen in the Hurricane platform in the lower payload message, but when mov-

ing to 1 kB payload, it also starts to increase the stress on the hurricane system, while in

the Jetson platform, the correlation stays almost the same.

In the latter tests with higher payload in the figures 6.10, it can be seen that the system

fairs well until the CPU load in the Jetson platform reaches maximum utilization, which

54

causes the receiving system communication rate to aggressively oscillate and be too

unreliable for data transmission and subscription. On the other hand, the receiving of the

messages completely stops on the other Hurricane platform.

Figure 6.10. 10 KB payload and 100 KB payload results to the system

The main focal point from the test results is that the subscription rate of the topics has

a high linear correlation to the CPU core usage. In the higher rates of the topics, even

on the low payload topics, the load gets closer to 30 - 50 % region at only 100 Hz,

which is very high usage considering that the data is not deserialized and is discarded

immediately after it was received. Very similarly, from the data, it can be seen that when

55

the system load and the topic frequencies increase, the topic frequency rate becomes

more unstable and starts to oscillate around the frequency of the sent topic. On top of

the heavy subscription payload, the data usually receives some processing, which also

requires computational resources.

Still, given that the load on the system increases as the payload and the frequency in-

crease, the messages can be subscribed to with a certain variance in the rate, but still,

they can be received until the payload limit of the system is reached. Still, it is a good

sign since it allows communication to flow even in restricted systems. These results could

be compared to an implementation with a Real-time kernel to see if the results would

vary greatly from the given results here. Though the CPU load would most likely not be

affected, it could improve the variance of the subscription rate during the higher frequen-

cies.

Overall system performance with ROS2 is manageable since there are many PCs to

divide the resources in the system architecture. From the tests can be seen that the

overhead is also dependent on the hardware performance, since the results vary accord-

ing to the CPU model and performance the overhead also is dependent on this factor in

the hardware architecture. Given the high CPU overhead of the RCLPY layer, the high-

rate topics should be moved to the RCLCPP (ROS Client Library for C++) layer to avoid

the high overhead, especially in resource-limited environments. To avoid the overhead,

the module distribution in the system should also be avoided so that the modules imple-

mented to the architecture implement concise functionalities to the system so that one

functionality would not be distributed to multiple modules.

56

7. ANALYSIS OF THE AUTONOMOUS HDMM

ARCHITECTURE FOR PALLET-PICKING

Central tools for implementing the architecture and its different layers were behavior trees

and ROS2. Combining these layers in the layered architecture implements the system’s

different design properties or attributes mentioned in section 2.2. In many cases, the

various robotics applications are constantly improving, which requires the system archi-

tecture to be modular and extendable. This chapter evaluates how the behavior trees and

ROS2, in conjunction with the layered architectures, implement these properties and if

any of the tools provide significant overhead or design flaws in the base architecture that

restrict the future development of the application and architecture. The scope of the eval-

uation aims to consider how the implemented architecture, with the tools, implements the

design properties. The review also considers and discusses if tools like ROS2 and be-

havior trees offer additional functionalities to support some of the properties that have not

been utilized in the use case. Some of these design properties can also be evaluated and

realized in the levels of automation. These details will also be reviewed in this chapter.

This evaluation includes the related design properties and how they are acknowledged in

the levels of automation individually, which are described in the tables 7.1 and 7.2.

Many of the properties and values are evaluated based on the subjective experiences

and experiments concluded with the architecture and components during the develop-

ment of the architecture. In some cases, such as run-time overhead, actual tests were

concluded to the ROS2 RCLPY layer 6 to verify the run-time overhead provided to the

system. The evaluation includes how the used components support the different design

attributes and whether they have internal mechanisms or properties to implement specific

design properties with minimal effort.

ROS2, behavior trees, and the layered architecture will be evaluated on a scale between

1 and 5 from the perspective of design properties. Reasoning to scores to the 7.1 will be

introduced during the discussion in the text. The previous cell needs to be fulfilled in the

table for the system to be on the next level.

57

Modularity

System compo-

nents are very

time-consuming

to change due

to multiple func-

tionalities per

module

System com-

ponents are

time-consuming

to change due

to custom dedi-

cated interfaces

Changing system

components

is possible but

requires lot

of changes to

the connected

components

Any singular

component can

be changed

without modifying

connected

modules

Components and

full layers can

be changed with

any other com-

ponents or layers

implementing the

similar functional-

ity

Extendability

Minimal ability to

incorporate ad-

ditional features

or functionalities

extending the

system beyond

its initial design

Additional un-

related features

can be added to

the layers that

implement new

functionalities

Separate mod-

ules can be

modified and

extended without

changing the

connected mod-

ules

Additional fea-

tures be added

between the

existing modules

Capacity for

continuous

adaptation to

easily include

new features

without affecting

the current

system in all

system layers

Hardware

portability

Basic compatibil-

ity with specific

hardware with

minimal adapt-

ability to different

platforms and

sensors

System sup-

ports other basic

sensor configura-

tions

System support

various platform

kinematics

System support

varying sen-

sors to support

autonomous per-

ception, control,

and navigation

The system

can operate in

any platform

with any sensor

configuration

Run-time

overhead

Substantial

increase in

processing time

or resource

demands with

critical impact

on the system

performance

Overhead can

be managed,

but expanding

the system is

not possible

without optimiz-

ing processes

or increasing

computation

capabilities

System overhead

is small enough

that the system

can be extended

with additional

small features

System can han-

dle additional

heavy compu-

tational units for

additional fea-

tures

Overhead is not

noticeable

Score 1 2 3 4 5

Table 7.1. Evaluation matrix of the different design properties on the scale from 1 - 5

Similarly, the system architecture can be measured in the levels of automation, where cer-

tain design properties will contribute to the level of automation in the realized architecture,

in a form that it needs to be fulfilled to achieve higher levels of automation.

58

Reliability

Human monitors

the system’s

capabilities

and assesses

if the system

can continue

operation

System can

monitor the

reliability of its

singular state

System can

monitor the

achievability of

the current tasks

and report it.

The system can

recover from

erroneous states

System can tell

if any task is

achievable by the

current state in

both navigation

and manipulation

in a static envi-

ronment

The system can

tell if any task is

achievable by the

current state in

both navigation

and manipulation

in dynamic

environment

Robustness

Vulnerable to

failures and

disruptions

with minimal

ability to handle

unexpected

conditions in

case of sensor or

communication

breakdown

Capable of

handling some

unexpected

conditions with

limited impact

Capable to

handle a range

of expected

conditions with

reasonable

effectiveness

Well-equipped

to handle a

wide variety

of unexpected

conditions with

minimal impact

Designed to

withstand and

recover from

a wide scope

of unexpected

conditions

Reactivity

System can

only react to

static and known

situations and

stop motion if a

collision is about

to happen

System can

react to static

and known

situations and

avoid obstacles

System can per-

ceive and react

dynamic and

static situations

and avoid obsta-

cles

Able to perceive,

avoid obsta-

cles, and update

the static world

model in any

structured envi-

ronments

Able to perceive,

avoid obstacles,

and update

the static world

model in any

environment

Run-time

flexibility

Operation need

to be halted to

configure the

system

Only minor

parts of the

system can be

configured during

the run-time

Configuration

for all modules

can be changed

during the run-

time

Tasks definition

and components

can be changed

and activated

during the run-

time

Any component

can be changed

during the run-

time to match

the needs of the

environment and

objective

Autonomy LoA level 1 LoA level 2 LoA level 3 LoA level 4 LoA level 5

Table 7.2. Evaluation matrix of the different autonomy properties on the scale from 1 - 5

Both tables show the scale and definition for each design principle, which leads to a

certain score or level of automation in the realized architecture and tools used to realize

it. These tables will be gone through from the point of the realized architecture, ROS2,

and behavior trees. In some attributes or properties, the given tools do not contribute to

the actual realization of the design attribute as much as the underlying implementation

that implements the error handling and monitoring. Still under evaluation is to consider

whether the tools provide additional features to support the properties.

7.1 Modularity, extensibility, hardware portability, and overhead

System component modularity is an important point in designing the system architecture.

To keep the system extensible, the system components should be straightforward to inte-

grate without the need to modify other functionalities around the component. Modularity

as a design property was referred to point out the system component interchangeability.

This property should be regarded when selecting system tools and the architectural de-

59

sign itself. Modularity and extensibility can also be seen as a measure of coupling and

cohesion in the software [55]. The coupling is a measure of independence between the

modules in the system architecture [55]. Cohesion measures the degree to which the

modules in the system are directed to perform a single task [55].

In the current architecture implementation, many of the system functionalities are individ-

ual components that implement a singular purpose inside their designated layers. Com-

munication between the functional modules is implemented through abstract ROS2 com-

munication concepts such as topics, services, and actions. Continuous sources of infor-

mation such as sensors and localization are implemented over the topics, which comply

with the standard ROS2 communication messages like ”Imu”, ”NavSatFix”, and ”Odom-

etry” to provide a stable source of information to components that require them. At the

higher level, executing different functionalities is done through the one-time service or

long-taking action servers. These interfaces allow the system to have low coupling, which

allows changing the system components with relatively low effort without changing imple-

mentation in the lower or higher-level modules as long as the new module implements the

correct interfaces. Given the need to replace the robot localization, this could be possible

by removing the original package and replacing this one with a package that complies

with the same sensor interface and provides the same odometry output. Cohesion, on

the other hand, is implemented through the tightly coupled modules that implement sin-

gular functionalities in the architecture. If for example, the path follower would implement

the localization internally, it would make extending and replacing the module much harder

in the long run. In this case, the input of one module is most often the output of the other

this is considered sequential cohesion, which makes the system cohesion on the higher

end. These properties and design choices allow the system to be modular and extensible

in all of the layers of the system. For the implementation and the description of the scale,

the current state of the architecture implementation falls into the level of five in modularity

and extensibility due to any singular component and layer being able to be replaced and

extended, given that a new layer or component can be utilized the same communication

interfaces. This is not always the case, but due to the abstract interfaces of ROS2, it isn’t

too hard to make minor adaptation layers between.

ROS2 and behavior trees also support the modularity and extensibility design attributes at

a satisfactory level. As stated before, ROS2 abstract communication methods offer flexi-

bility in the extensibility of the system and allow the implementation of additional function-

alities between the modules. Behavior trees, then again, offer flexibility and modularity at

the decision-making level. This refers to the system’s ability to implement different behav-

iors and decision-making in the task execution. Due to the minimal interfacing between

the behavior tree modules, the system tree structure can be redefined without needing to

change the modules’ implementation. Design in the behavior tree implementations also

follows the low coupling and high cohesion design principles. Behavior trees and ROS2

60

support integration together to provide the ROS2 middleware concepts with the behavior

tree action nodes [32][56]. Due to this integration, the behavior tree layer of the appli-

cation can exist as a separate layer that does not implement any functionalities to the

control architecture, but rather interfaces and coordinates the execution of the functional

and executive layers. From the tool’s point of view, both BT and ROS2 support modu-

larity to an exceptional level, due to the abstract communication, low coupling, and high

cohesion in the modules. In behavior trees, modularity is experienced as flexibility in the

behavior structures that can be reorganized with low effort, without the need to modify

the additional behaviors. This score naturally assumes a design that does not couple ex-

ternal modules together with hard-to-replace interfaces, like internal state representation

between the behaviors in the behavior tree. Same with the ROS2 the abstract interfaces

allow the system to consist naturally of loosely coupled interfaces that implement concise

application layers. For both, the grade on the scale will be five.

Hardware portability relates to the effort to port the system from one platform to another,

be it a robotics platform or PC. This design property handles a substantial portion of the

architecture. For example, in the robotics platform, the lower level of the functional layer

is harder to generalize to the other robotics platforms than the type that it is designed to.

In this case, the hardware components are harder to export to similar HDMM systems

as seen in figure 5.1, but the higher level components can be adapted more easily as

long as the system adaptation layer to the ROS2 (ROS2 CAN interface in figure 5.10)

complies with the general ROS2 interfaces to provide the feedback and to control the

system. This way, the portable platform does not need the same models of sensors and

actuators, just the same abstraction of the sensors to the communication middleware and

accurate sensor-to-sensor calibration to provide accurate state estimation, localization,

and perception. In the case of ROS2, the abstraction of the common sensors has been

implemented in the communication interfaces, which means that many of the general

sensors, such as IMUs, lidars, and GNSS antennas, can be integrated into the system ef-

fectively. In the other direction, as long as the low-level control system can operate under

the assumption that the abstract communication input command to the platform is twist

message, which in the platform is turned to the specified control input to the actuators,

the architecture can perform in many different platforms. Additionally, in the manipulator,

joint velocity is used as an input to the system, which requires some adaptation to the

low-level control. In the layered architecture case in the thesis, the system can operate

with a similar sensor setup as long as it complies with the ROS2 interfaces in various

platforms, in some cases with slight adaptation needed. The main sensor source for per-

ception and world model gathering is lidar or point clouds, which might not be available

on all platforms for the perception source, so the system has not yet reached level four

portability.

At the behavior tree level, the system abstraction is so high that the behavior tree does

61

not control the machine but coordinates it. Given that the functional and executive layers

are compatible with the robot platform, the decision layer should be able to coordinate

the movements of the type of machine. In the higher level, even though the task abstrac-

tion is higher, the service and action interfaces are usually unique in some way, which

usually requires some adaptation to the communication interfaces. Overall the behavior

tree would get five for the hardware portability due to the ability to be platform-agnostic.

ROS2, then again, is also a platform-agnostic system, given that the low-level system

complies with the interfaces, is not restricted to any type of platform type, and supports

the integration of various sensors and drivers to the ecosystem, which scores it level four,

due to some adaptation usually required for the hardware layer. Modularity was given a

high score because the effort of integrating intermediate adaptability layers is usually low;

in this case, the system is evaluated based on pure portability.

One factor that affects or is affected by the many other design properties is the run-

time overhead. Given the high overhead of the system architecture, it is also hard to

extend even if the system architecture would allow it. This means that if the architecture,

components, or tools used in the application provide high overhead, the system cannot

be extended without refactoring the system components. The chapter 7 conducted tests

to measure the overhead that the RCLPY layer in ROS2 exerts on the base system.

There was a notice that given the high topic rates and higher bandwidth, the system load

increased almost linearly with the topic rates.

In chapter 7, system hardware overhead tests were conducted regarding the ROS2 mid-

dleware communication overhead exerted on the distributed system PCs. This chapter

will provide some oversights on the actual run time overhead in the application. This

analysis focuses on the hardware overhead instead of the communication delay. In the

overhead test, it was concluded that in the RCLPY layer of the ROS2, the CPU over-

head scaled almost linearly with the topic rate at the communication was sent. This also

showed that the payload of the topic has some part in the load, but the main property

affecting the overhead is the communication rate. This could lead to a potential system

failure during navigation in many low-resource systems. In this case, the internal topic

rates can be tuned and are highly up to the implementation. There is still some room to

be extended due to the distributed system and implementation system, which allows the

overhead compared to the resources to be on level three. This value could be higher, but

the ROS2 overhead is quite high overall, which scores the ROS2 overhead also to three.

This value is based on the computational load usage overall in the target systems PCs in

the table 6.1. Behavior trees did not exert any additional load on the system during the

testing, mainly because most of the tree structure is inactive and waits for interfacing with

the base system. This is why the behavior trees get a value of five in the overhead.

62

7.2 Reliability, robustness, reactivity, and run-time flexibility

Reliability, run-time flexibility, reactivity, and robustness highly depend on the underlying

implementation of the individual component and how these can handle faulty data and

recover from erroneous states. These properties also contribute to the level of automation

together, since they cover many aspects of the requirements for the automation level in

the 2.1. Reliability and robustness refer to the system’s capabilities to handle erroneous

data, state estimation, and tasks. Reactivity and run-time flexibility then again measure

how the system can react to new situations and changes in the environment and how it

can adapt to these changes. In this case, these parameters are evaluated on how the

current architecture implements these functionalities and if there are points that could be

improved.

The system’s ability to detect if the system can perform the given task is called reliabil-

ity. This includes detecting if the plan is not feasible due to certain restrictions such as

time constraints or the accuracy of functionalities. At the current state of the architecture,

the state and task monitoring mostly rely upon human monitoring, where the task state’s

accuracy and localization are the monitoring subjects. To improve system reliability there

would be a need to add mechanisms that can monitor the certainty of the different states

of the machine, task achievability, and additionally recover from them. For example, at the

moment of development, the robot localization package is the main localization source for

the system. If the updated sensor source GNSS unit does not provide accurate localiza-

tion data the system will become unreliable very fast, this performance degradation can

be detected due to continuous degradation of the filter accuracy, in some cases suitable

solution could be changing the localization technique to lidar based if the GNSS connec-

tion is not proper. The same goes for the path following and trajectory tracking accuracies,

given a certain amount of deviation from the plans it could detect the deviation and re-

plan, at the moment, this isn’t the case. Although these examples are specific to some

system components, they refer to all of the system components, and they should be able

to monitor their functionality and accuracy to some level. Due to the limited reliability of

the system, it scores one in the current architecture on the reliability scale. Recognizing

the task object, in this case, pallet, could fulfill some of the requirements for task reliability

since it can detect the incorrect state and recover from it, but this only applies to a very

simple extent compared to what a highly reliable system should be able to detect.

Even though the architecture in question does not yet utilize means to recover or monitor

the states and tasks, ROS2 and BT both utilize some functionalities to support reliability.

In the behavior tree, there could be an additional monitoring node or the monitoring could

be tied to the actions service feedback to monitor the states. Given the degradation of the

state certainty, aborting the task would be done, and fallback could try to recover from the

state. This recovery could be something of turning on additional recovery or calibration

63

functions to recover from the state or replan the tasks. The level of reliability depends

on the implementation itself, but together the utilized tools of ROS2 and behavior trees

can support reliability at higher levels in even dynamic environments. Meaning that the

current system could be implemented to provide reliable state monitoring and recovery

given extensions to the different layers to provide the feedback and recovery modes.

Robustness refers to the system’s ability to handle imperfect inputs and navigate through

unknown situations, including communication errors and faulty or incorrect sensor data.

Given the numerous abstraction layers within the system, there are multiple points where

faulty data could accidentally be injected. Although the ROS2 abstract global commu-

nication enables the fast integration of the components, it also allows very accessible

communication interfaces. This could potentially lead to other ROS2 interfaces injecting

the data into the system by accident if the networks are connected. For example, if two

machines are operating in the same network, they could inject the localization data into

each other. Unfortunately, the system lacks mechanisms to effectively respond to erro-

neous sensor data and identify and handle anomalies or external data injections. These

erroneous data sources need to be handled somewhere at the driver level to recognize

the faulty actuators or sensors. ROS2 provides features to enhance robustness against

communication faults through the quality of service settings to address the issues in the

lossy communication errors. These settings enable the configuration of communication

parameters, allowing for actions like resending or discarding data in network losses, par-

ticularly in configurations with lossy networks. In this case, the architecture can employ

the quality of service settings to maintain stable communication at different levels, but it

cannot employ any measure to check noisy and unreliable sensor data. This is why the

robustness is two. As said before the ROS2 employs the QoS settings for more robust

communication, but otherwise the robust processing of faulty data mostly needs to be

handled in the implementation of the components themselves, this applies in the behav-

ior trees themselves, which only interface with the low-level system. It should not feed

faulty data to the system.

Run-time flexibility referred to the capabilities of the system to be configured during the

system run-time. ROS2 employs a parameter server, which keeps track of programmed

parameters that can be updated during the run-time to configure algorithms and modules.

The parameter server makes the modules utilizing ROS2 easily configurable by the user

or application layers, such as the decision layer. Similarly, the decision layer should em-

ploy run-time flexibility to be able to execute different tasks. As mentioned in the 3.3.1,

the behavior tree logic is built in the run-time, allowing changing the mission description at

any time, given that all of the required behavior tree nodes are registered to the behavior

tree factory at the moment of behavior tree construction. Generalization is implemented

in the system through the decision layer and behavior trees. Since the system is run-time

flexible, it can be configured to implement different task executions that pallet-picking by

64

defining new behavior trees that utilize the functional layer definitions. If the tasks to be

defined are very complicated or large, designing the behavior tree can be hard with the

system’s general behavior. This may require more concentrated behaviors in the system

to define complex actions, like visual servoing.

Reactivity measures how well the system can perceive and react to unknown situations

in the environment. This refers to the system’s capabilities to detect static and dynamic

obstacles while maintaining a stable system state that can avoid these obstacles. In this

architecture case, the system can avoid known static obstacles that belong to the known

world model. While the nav2 stack does offer features for dynamic obstacle detection

during the navigation, that could be utilized, it is not employed in this case to not mix the

target pallet as an obstacle. In the current architecture implementation, the architecture

sets the reactivity to level two.

7.3 Summary of the evaluation

The evaluation led to a discussion of the properties of the architecture, ROS2, and be-

havior trees. Figure 7.1 shows the results of the design property analysis.

Figure 7.1. Evaluation results of the design properties

and 7.1 the architecture autonomy results.

65

Figure 7.2. Evaluation results of the autonomy properties of the current architecture

The analysis includes evaluating each property individually in the system components

used for ROS2, behavior trees, and the realized architecture from a scale of one to five

according to how the components fill the property description and according to the expe-

riences and experiments with the system components and architecture.

As evaluated in the previous sections, the system architecture with ROS2 and behav-

ior trees offers high flexibility in modularity and extensibility due to the low coupling and

high cohesion between the system components and behaviors in the architecture. These

properties are important because the target machine is used as a research platform that

can experience many changes in the course of the different use cases. With the high

modularity, in this case, also comes the trade-off of high overhead provided by the mid-

dleware communication. This did not hinder the application but might restrict the future

extensibility of the application to even more demanding applications.

From reliability, reactivity, and robustness scale, the system still has room to improve the

autonomous capabilities in the architecture to achieve higher autonomy levels. To achieve

the higher levels of automation the system still requires improvements to the reliability and

robustness of the system to recognize the possible problems in the system to coordinate

the system better. The coordination layer or decision layer could still improve the auton-

omy given the proper feedback from the base system to coordinate the system. These

problems relate to the implementation of the independent layers and system components,

which should be extended to support more reliable and robust navigation and control for

decision-making. ROS2 supports some feedback, communication, and estimation reli-

ability and robustness mechanisms that could be employed to achieve better scale on

these properties. Behavior trees, then again, could employ some fallback nodes in the

66

control nodes on the decision-making level that could verify the system’s health or restore

the state with additional functionalities.

Autonomy refers to the system’s ability to execute tasks without human intervention. In the

current state, architecture can perform simple pallet-picking tasks and do simple decision-

making to facilitate the task into movements of the machine, which could be achieved with

the behavior trees, in this case, as a coordination layer of the system. This architecture is

also able to detect if the given initial parameters for the pallet are incorrect. In the levels

of automation, this system would be regarded to be in the level between 2 and 3 in both

navigation and manipulation tasks. Currently, the system does not fully fulfill the require-

ments for higher levels of automation, which can also be seen in the previously evaluated

properties, which require extensions to higher levels to achieve truly autonomous opera-

tions for the target machine. The system can perform autonomous decision-making and

perceive the pallet in the world without intermediate authorization from the operator dur-

ing the task execution. In its current state, the system lacks the higher-level perception

capabilities and state estimation that can be recovered in faulty states. Due to the exten-

sibility and modularity of the system, these system components are possible to be added

to the system to add obstacle detection and avoidance and other functionalities. Similarly,

if the system is not able to converge back to the path, it should be able to generate a new

path, but at the moment, it does not do so. In these situations, human intervention is

required, which hinders some of the capabilities of the system. Reliability and robustness

also affect this property to some degree. If the system’s reliability is questionable under

certain restrictions or there is faulty data in the system, it will also hinder the system’s

autonomy due to the system not being able to resolve this autonomously or report this

and stop the task execution. From this can be learned that to achieve a higher level of

autonomy there first needs to be careful consideration of the other design properties such

as robustness and reliability.

67

8. CONCLUSION

This thesis aimed to recognize the general navigation and control paradigm used in

robotics applications and implement one that could utilize mission-level decision-making

to accomplish simple everyday tasks in HDMM use cases. The task to be done was

pallet-picking, which needed to fulfill many system requirements and features. In the end,

behavior trees were a suitable tool to implement mission-level decision-making in the lay-

ered architecture, and the architecture managed to fulfill the set system requirements.

In conjunction with the behavior trees, this architecture description and implementation

could be implemented with the base system ROS2 application stack that existed in the

base target system.

From the literature, common architectures for navigation and control could be found, but

the hybrid was a very frequent architecture for machines that have to interface with partly

observed environments, with support to the coordination layer of the deliberative and re-

active control layers. There have been many versions of how to design an architecture

that can act fast against local obstacles and other issues while being able to generate

obstacle-free paths globally. One of the recognized architectures for hybrid architecture

was a layered architecture system. Behavior trees were found to be one of the ways to

implement mission-level decision-making for the coordination layer in the layered archi-

tecture. Layered architecture offered the idea of setting skills and abstract tasks in the

form of compound actions for the machine, making it easier to decompose the actions of

the machine for the target application and interface with the decision layer.

Generating high-level abstract tasks such as "generate a path", "follow path", and "move

manipulator" offer high-level interfaces in the functional layer that could be easily inte-

grated with other target applications, given that the application can be divided into the

skills of the machine able to perform. This skill decomposition also goes hand-in-hand

with behavior trees that require the decomposition of the tasks for symbolic-level mission

description or to compound actions of the machine. Also, it is possible to change the

system layers by following the layered architecture scheme, where the layers are com-

bined with specific middleware layer API definitions. A system can have different decision

and executive layers depending on the needs of the use case. These system possibili-

ties also increase the system modularity and flexibility with the given tasks and possible

other use cases. Changing components and task definitions becomes easier, allowing

68

the possibility of extending the base system modules without large modifications to the

connected module implementations. Behavior trees were interchangeable to implement

different subtrees for different purposes, such as picking and moving the pallet due to

the layered architecture formation, where the behavior tree interfaced only with the base

system instead of implementing the low-level commanding interfaces. This formulation

increased the modularity and flexibility of the system since it allowed for less interaction

changeability with the real machine and simulation environment. Similarly, even if the

system architecture was generalized, so could the machine interfaces. This leads to fast

integration from the simulated machine and environment to the actual hardware due to

the abstracted communication interfaces.

Offering multiple different platforms and algorithms, ROS2 can hasten the development

process of the heavy-duty mobile machine. On top of the middleware concepts and in-

terfaces, these packages offer different solutions to different applications in the form of

localization, state estimation, planning, and control. Robot localization offers flexible lo-

calization that accepts multiple different sensors to integrate for state estimation with dif-

ferent Kalman filter approaches. TF2 keeps track of the frame coordinate transformations

in the system and could be queried the transformation between any of the connected

frames in the transformation tree. Navigation2 and moveit2 concentrate on implement-

ing planning and control in their respective navigation and manipulator task fields. All

of these and many other open-source packages contribute to the fast deployment of au-

tonomous heavy-duty mobile machines while allowing the concentrated development of

the machine’s use case. Overall, ROS2 offers and implements multiple functionalities that

are required in many robotics applications that can be utilized to hasten the development

of the platform to be autonomous.

In the use case, the pallet-picking application was successfully developed using behavior

trees as a component for the decision layer. The application is not without limitations

and restrictions. In the tree, the main idea was to minimize the need for replanning since

this act can be very demanding from a computational point of view. Since the need for

replanning was avoided by utilizing the frame representation of the location of the machine

and path being represented in the pallet frame, we could minimize the error to the path by

moving the pallet in the global map frame, which allowed the path follower to minimize the

error back to the path instead of replanning. The path planner can converge back to the

path given that the initial estimation was close enough to the real pose of the pallet and the

pallet was detected far enough with the available sensor. Secondly, the system depends

on the accuracy of the state estimation and the trajectory and path following the machine,

which cannot be affected by the BT during the run-time at the current time, which relates

to the system’s reliability. Reliability, robustness, and autonomy overall were the points

that still require improvement at the decision and architectural level to achieve autonomy

without human intervention. There could be an option for the decision layer to monitor

69

and detect certain reductions in the accuracy of the state estimation, which could lead to

a stop, change of state estimation, or human intervention. These are issues of their own,

but without accurate sensor calibration and state estimation, the act of pallet picking is

very challenging given the accuracy required to navigate the system manipulator forks to

the pockets of the pallet, which is one of the key points to have for accurate pallet-picking.

ROS2, as a middleware implementation in the system, offered a lot of flexibility in the de-

velopment of the system, and middleware offers quite fast integration possibilities for the

target system. However, there are still some issues with the Python implementation of the

ROS Client Library, such as the high run-time overhead that the base executor implemen-

tation brings. This can be seen when the Python nodes handle large frequency topics

for varying payloads. The overhead on the CPU core follows almost linearly the topic

frequency, which can cause issues on the low-powered devices handling large frequency

data like IMUs (15 Hz ∼ 500 Hz) or estimating the state of the mobile or manipulator

machine. Otherwise, the communication between the system components and the layers

was successful enough to enable pallet-picking in the non-real-time operating system. Al-

though the CPU overhead specifically was high in these tests, results differ based on the

actual hardware used due to the actual performance of the hardware, such as CPUs per

core performance. In this case, the hardware systems used in the actual HDMM show

poor software scalability with ROS2, given the high overhead with the RCLPY implemen-

tation. In any case, ROS2 was a proper tool for topic interfacing between the system

components and implementing the layered architecture communication and system divi-

sion. Due to the peer-to-peer communication of the ROS2, the distributed control and

communication with minimal effort was possible to implement in the system to avoid the

CPU overhead in the singular computational unit. The system was able to pick the pallet

with the given architecture while maintaining the acceptable load in the actual hardware,

although the system was able to implement all of the functionalities due to the distributed

load with the given architecture.

Future research could include many things from this field since the act of combining nav-

igation and control with architecture is a wide topic that contains research possibilities.

From this thesis topics point of view, relevant research questions could be considered to

improve the system and task definition of the machine. There has been some research

on generating behavior tree models using machine learning to decompose the high-level

task definition to the behavior tree nodes. Could this method be used to generate many

types of use cases without programming the behavior tree by hand? For example, large

language models are used to automate the design of behavior trees by giving instruc-

tions on the task and by providing the API of the behavior trees, which could override

the manual labor of designing the manual labor of behavior trees. This could increase

the application’s design process based on the task’s requirements. Additionally, at this

stage, the system’s reliability, autonomy, and robustness could be increased with addi-

70

tional functionalities to verify the system’s state and control. What would be a suitable

metric to evaluate the system state, and what could be done in the state of erroneous

state estimation? When should additional path generation be done in the system?

71

REFERENCES

[1] Machado, T., Ahonen, A. and Ghabcheloo, R. Towards a Standard Taxonomy for

Levels of Automation in Heavy-Duty Mobile Machinery. American Society of Me-

chanical Engineers, 2021.

[2] Barrera, A. Advances in robot navigation. eng. Rijeka, Croatia: IntechOpen, 2011.

ISBN: 953-51-5539-3.

[3] Macenski, S., Foote, T., Gerkey, B., Lalancette, C. and Woodall, W. Robot Oper-

ating System 2: Design, architecture, and uses in the wild. Science Robotics 7

(66 2022), p. 6074. ISSN: 24709476. DOI: 10.1126/SCIROBOTICS.ABM6074/
ASSET/F1E0C116-9DF3-4C33-A5C1-001E136AFD23/ASSETS/IMAGES/LARGE/
SCIROBOTICS.ABM6074-F5.JPG. URL: https://www-science-org.libproxy.
tuni.fi/doi/10.1126/scirobotics.abm6074.

[4] Moore, T. and Stouch, D. A Generalized Extended Kalman Filter Implementation for

the Robot Operating System. Proceedings of the 13th International Conference on

Intelligent Autonomous Systems (IAS-13). Springer, 2014.

[5] Macenski, S. e. a. The Marathon 2: A Navigation System. International Conference

on Intelligent Robots and Systems (IROS) (2020).

[6] Coleman, D., Sucan, I., Chitta, S. and Correll, N. Reducing the Barrier to Entry

of Complex Robotic Software: a MoveIt! Case Study. eng. arXiv.org (2014). ISSN:

2331-8422.

[7] tf: The transform library. Conference on Technologies for Practical Robot Applica-

tions (TePRA)., 2013.

[8] Brocke, J. vom, Hevner, A. and Maedche, A. Introduction to Design Science Re-

search. eng. Design Science Research. Cases. Progress in IS. Switzerland: Springer

International Publishing AG, 2020, pp. 1–13. ISBN: 9783030467807.

[9] Vagia, M., Transeth, A. A. and Fjerdingen, S. A. A literature review on the levels

of automation during the years. What are the different taxonomies that have been

proposed?: Applied Ergonomics 53 (2016), pp. 190–202. ISSN: 0003-6870. DOI:

10.1016/J.APERGO.2015.09.013.

[10] Fassbender, D. and Minav, T. An Algorithm for the Broad Evaluation of Potential

Matches between Actuator Concepts and Heavy-Duty Mobile Applications. eng.

Actuators 10.6 (2021), pp. 111–. ISSN: 2076-0825.

[11] Machado, T., Fassbender, D., Taheri, R., Eriksson, D., Gupta, H., Molaei, A., Forte,

P., Rai, P., Ghabcheloo, R., Mäkinen, S., Lilienthal, A. J., Andreasson, H. and

https://doi.org/10.1126/SCIROBOTICS.ABM6074/ASSET/F1E0C116-9DF3-4C33-A5C1-001E136AFD23/ASSETS/IMAGES/LARGE/SCIROBOTICS.ABM6074-F5.JPG
https://doi.org/10.1126/SCIROBOTICS.ABM6074/ASSET/F1E0C116-9DF3-4C33-A5C1-001E136AFD23/ASSETS/IMAGES/LARGE/SCIROBOTICS.ABM6074-F5.JPG
https://doi.org/10.1126/SCIROBOTICS.ABM6074/ASSET/F1E0C116-9DF3-4C33-A5C1-001E136AFD23/ASSETS/IMAGES/LARGE/SCIROBOTICS.ABM6074-F5.JPG
https://www-science-org.libproxy.tuni.fi/doi/10.1126/scirobotics.abm6074
https://www-science-org.libproxy.tuni.fi/doi/10.1126/scirobotics.abm6074
https://doi.org/10.1016/J.APERGO.2015.09.013

72

Geimer, M. Autonomous Heavy-Duty Mobile Machinery : A Multidisciplinary Col-

laborative Challenge. eng. Tampere University. IEEE, 2021.

[12] Society of Automotive Engineers. "Taxonomy and Definitions for Terms Related to

Driving Automation Systems for On-Road Motor Vehicles". Standard. https://www.sae.org/standards/content/j3016202104/:

SAE international, 2021.

[13] Mtshali, M. and Engelbrecht, A. Robotic Architectures. eng. Defense science jour-

nal 60.1 (2010), pp. 15–22. ISSN: 0011-748X.

[14] Reda, A. and Vásárhelyi, J. Model-Based Control Strategy for Autonomous Vehicle

Path Tracking Task. eng. Acta Universitatis Sapientiae. Electrical and Mechanical

Engineering 12.1 (2020), pp. 35–45. ISSN: 2066-8910.

[15] Pendleton, S., Andersen, H., Du, X., Shen, X., Meghjani, M., Eng, Y., Rus, D. and

Ang, M. Perception, Planning, Control, and Coordination for Autonomous Vehicles.

eng. Machines (Basel) 5.1 (2017), pp. 6–. ISSN: 2075-1702.

[16] Siciliano, B. and Khatib, O. Springer Handbook of Robotics. eng. 2nd ed. 2016.

Springer Handbooks. Cham: Springer International Publishing, 2016. ISBN: 3-319-

32552-3.

[17] Jeon, J., Jung, H.-r., Luong, T., Yumbla, F. and Moon, H. Combined task and motion

planning system for the service robot using hierarchical action decomposition. eng.

Intelligent service robotics 15.4 (2022), pp. 487–501. ISSN: 1861-2776.

[18] Palomeras, N., El-Fakdi, A., Carreras, M. and Ridao, P. COLA2: A Control Architec-

ture for AUVs. eng. IEEE journal of oceanic engineering 37.4 (2012), pp. 695–716.

ISSN: 0364-9059.

[19] Orebäck, A. and Christensen, H. I. Evaluation of Architectures for Mobile Robotics.

eng. Autonomous robots 14.1 (2003), pp. 33–49. ISSN: 0929-5593.

[20] Ahmad, A. and Babar, M. A. Software architectures for robotic systems: A system-

atic mapping study. eng. The Journal of systems and software 122 (2016), pp. 16–

39. ISSN: 0164-1212.

[21] Klančar G. Klancar, G. Wheeled mobile robotics: from fundamentals towards au-

tonomous systems. 1st edition. London, England: Butterworth-Heinemann, 2017,

2017.

[22] Bedkowski, J. Mobile Robots. Mobile Robots - Control Architectures, Bio-Interfacing,

Navigation, Multi Robot Motion Planning and Operator Training (2011). DOI: 10.
5772/2304.

[23] Zhu, Y., Zhang, T., Song, J. and Li, X. A new hybrid navigation algorithm for mobile

robots in environments with incomplete knowledge. eng. Knowledge-based sys-

tems 27 (2012), pp. 302–313. ISSN: 0950-7051.

[24] Albore, A., Doose, D., Grand, C., Guiochet, J., Lesire, C. and Manecy, A. Skill-

based design of dependable robotic architectures. eng. Robotics and autonomous

systems 160 (2023), pp. 104318–. ISSN: 0921-8890.

https://doi.org/10.5772/2304
https://doi.org/10.5772/2304

73

[25] Veres, S. M., Molnar, L., Lincoln, N. K. and Morice, C. P. Autonomous vehicle con-

trol systems — a review of decision making. eng. Proceedings of the Institution of

Mechanical Engineers. Part I, Journal of systems and control engineering 225.2

(2011), pp. 155–195. ISSN: 0959-6518.

[26] López, J., Sánchez-Vilariño, P., Sanz, R. and Paz, E. Implementing Autonomous

Driving Behaviors Using a Message Driven Petri Net Framework. eng. Sensors

(Basel, Switzerland) 20.2 (2020), pp. 449–. ISSN: 1424-8220.

[27] Diab, M., Pomarlan, M., Beßler, D., Akbari, A., Rosell, J., Bateman, J. and Beetz,

M. SkillMaN — A skill-based robotic manipulation framework based on perception

and reasoning. eng. Robotics and autonomous systems 134 (2020), pp. 103653–.

ISSN: 0921-8890.

[28] Barnett, W., Cavalcanti, A. and Miyazawa, A. Architectural modelling for robotics:

RoboArch and the CorteX example. eng. Frontiers in robotics and AI 9 (2022),

pp. 991637–991637. ISSN: 2296-9144.

[29] Qureshi, F., Terzopoulos, D. and Gillett, R. The Cognitive Controller: A Hybrid, De-

liberative/Reactive Control Architecture for Autonomous Robots. eng. Innovations in

Applied Artificial Intelligence. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,

pp. 1102–1111. ISBN: 9783540220077.

[30] Mohammad, S., Rostami, H., Sangaiah, A. K., Wang, J. and Liu, X. Obstacle avoid-

ance of mobile robots using modified artificial potential field algorithm. (2019). DOI:

10.1186/s13638-019-1396-2. URL: https://doi.org/10.1186/s13638-
019-1396-2.

[31] Collendanchise M. Ögren, P. Behavior Trees in Robotics and AI : An Introduction.

Boca Raton: CRC Press., 2018.

[32] Iovino, M., Scukins, E., Styrud, J., Ögren, P. and Smith, C. A survey of Behavior

Trees in robotics and AI. Robotics and Autonomous Systems 154 (2022), p. 104096.

ISSN: 0921-8890. DOI: 10.1016/J.ROBOT.2022.104096.

[33] Ghzouli, R., Berger, T., Johnsen, E. B., Wasowski, A. and Dragule, S. Behavior

Trees and State Machines in Robotics Applications. eng. IEEE transactions on soft-

ware engineering 49.9 (2023), pp. 4243–4267. ISSN: 0098-5589.

[34] Huang, Y. e. a. A Robot Architecture of Hierarchical Finite State Machine for Au-

tonomous Mobile Manipulator. Intelligent Robotics and Applications. (2017).

[35] Ben-Ari, M. and Mondada, F. Elements of Robotics. eng. 1st ed. 2018. Cham:

Springer Nature, 2018. ISBN: 3-319-62533-0.

[36] MIURA Yasuyuki. Distributions (2023). URL: http://wiki.ros.org/Distributions
(visited on 12/07/2022).

[37] Apache Software Foundation, Apache License, Version 2.0. URL: https://www.
apache.org/licenses/LICENSE-2.0.html (visited on 12/18/2023).

https://doi.org/10.1186/s13638-019-1396-2
https://doi.org/10.1186/s13638-019-1396-2
https://doi.org/10.1186/s13638-019-1396-2
https://doi.org/10.1016/J.ROBOT.2022.104096
http://wiki.ros.org/Distributions
https://www.apache.org/licenses/LICENSE-2.0.html
https://www.apache.org/licenses/LICENSE-2.0.html

74

[38] Open Robotics. Understanding nodes (2023). URL: https://docs.ros.org/
en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/
Understanding-ROS2-Nodes.html (visited on 08/07/2022).

[39] Cruz, J. M. e. a. DDS-based middleware for quality-of-service and high-performance

networked robotics. Concurrency and computation. (2012).

[40] Open Robotics. Understanding services (2023). URL: https://docs.ros.org/
en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/
Understanding-ROS2-Services.html (visited on 08/07/2022).

[41] Open Robotics. Understanding actions (2022). URL: https://docs.ros.org/en/
foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/
Understanding-ROS2-Actions.html (visited on 08/07/2022).

[42] On the use of simulation in robotics: Opportunities, challenges, and suggestions for

moving forward. Proceedings of the National Academy of Sciences - PNAS, 2021.

[43] Why Gazebo? URL: https://classic.gazebosim.org/ (visited on 12/18/2023).

[44] Rviz2. URL: https://turtlebot.github.io/turtlebot4-user-manual/
software/rviz.html (visited on 09/20/2023).

[45] Rico, F. M. A Concise Introduction to Robot Programming with ROS2. eng. 1st ed.

Milton: CRC Press, 2022. ISBN: 9781032267203.

[46] TurtleBot3. URL: https://www.turtlebot.com/turtlebot3/ (visited on 01/04/2023).

[47] Integrating GPS Data. URL: https://docs.ros.org/en/melodic/api/robot_
localization/html/integrating_gps.html (visited on 01/04/2023).

[48] REP-105. URL: https://www.ros.org/reps/rep- 0105.html (visited on

01/04/2023).

[49] Macenski, S., Martin, F., White, R. and Ginés Clavero, J. The Marathon 2: A Navi-

gation System. 2020 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). 2020.

[50] Yossawee, W., Tsubouchi, T., Kurisu, M. and Sarata, S. A semi-optimal path gener-

ation scheme for a frame articulated steering-type vehicle. eng. Advanced robotics

20.8 (2006), pp. 867–896. ISSN: 0169-1864.

[51] Malvido Fresnillo, P., Vasudevan, S., Mohammed, W. M., Martinez Lastra, J. L. and

Perez Garcia, J. A. Extending the motion planning framework—MoveIt with ad-

vanced manipulation functions for industrial applications. eng. Robotics and computer-

integrated manufacturing 83 (2023), pp. 102559–. ISSN: 0736-5845.

[52] Move Group C++ Interface. URL: https://moveit.picknik.ai/humble/doc/
examples/move_group_interface/move_group_interface_tutorial.html
(visited on 01/17/2023).

[53] Trimble SPS351 GPS Receiver. URL: https://www.geos.ed.ac.uk/~gisteac/
fieldkit/userguides/gps/survey_grade_basestations/trimble/SPS855%
20GSG/SPS351%20GSG%20PDF.pdf (visited on 12/18/2023).

https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html
https://classic.gazebosim.org/
https://turtlebot.github.io/turtlebot4-user-manual/software/rviz.html
https://turtlebot.github.io/turtlebot4-user-manual/software/rviz.html
https://www.turtlebot.com/turtlebot3/
https://docs.ros.org/en/melodic/api/robot_localization/html/integrating_gps.html
https://docs.ros.org/en/melodic/api/robot_localization/html/integrating_gps.html
https://www.ros.org/reps/rep-0105.html
https://moveit.picknik.ai/humble/doc/examples/move_group_interface/move_group_interface_tutorial.html
https://moveit.picknik.ai/humble/doc/examples/move_group_interface/move_group_interface_tutorial.html
https://www.geos.ed.ac.uk/~gisteac/fieldkit/userguides/gps/survey_grade_basestations/trimble/SPS855%20GSG/SPS351%20GSG%20PDF.pdf
https://www.geos.ed.ac.uk/~gisteac/fieldkit/userguides/gps/survey_grade_basestations/trimble/SPS855%20GSG/SPS351%20GSG%20PDF.pdf
https://www.geos.ed.ac.uk/~gisteac/fieldkit/userguides/gps/survey_grade_basestations/trimble/SPS855%20GSG/SPS351%20GSG%20PDF.pdf

75

[54] Janos, D., Kuras, P. and Ortyl, Ł. Evaluation of low-cost RTK GNSS receiver in mo-

tion under demanding conditions. eng. Measurement : journal of the International

Measurement Confederation 201 (2022), pp. 111647–. ISSN: 0263-2241.

[55] Chowdhury, I. and Zulkernine, M. Using complexity, coupling, and cohesion met-

rics as early indicators of vulnerabilities. eng. Journal of systems architecture 57.3

(2011), pp. 294–313. ISSN: 1383-7621.

[56] Integration with ROS2. URL: https://www.behaviortree.dev/docs/ros2_
integration (visited on 01/07/2023).

https://www.behaviortree.dev/docs/ros2_integration
https://www.behaviortree.dev/docs/ros2_integration

	Introduction
	Autonomous heavy-duty mobile machinery
	Levels of automation
	Autonomous HDMM architecture

	Layered architecture and task planning
	Functional layer
	Executive layer
	Decision layer
	Behavior trees
	Finite state machines

	Robot operating system 2
	ROS2 communication and middleware concepts
	Nodes and Topics
	Services and Actions

	Developer tools
	Frameworks
	TF2 and transformation trees
	Robot localization
	Navigation2
	Moveit2

	Pallet-picking system for heavy-duty mobile machine
	Pallet-picking as reactive layer problem
	Distributed control system for autonomous HDMM
	Behavior tree for pallet-picking using ROS2
	Architecture for autonomous heavy-duty mobile machine

	Experiments
	Pallet picking test setup
	Pallet-picking simulation results
	Pallet-picking real machine results

	ROS2 performance overhead test setup
	ROS2 performance overhead evaluations results

	Analysis of the autonomous HDMM architecture for pallet-picking
	Modularity, extensibility, hardware portability, and overhead
	Reliability, robustness, reactivity, and run-time flexibility
	Summary of the evaluation

	Conclusion

