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Abstract— This article presents a piecewise neural network
(NN) with dynamic sparsity for modeling and linearization of
radio frequency (RF) power amplifiers (PAs). A mixture of
experts NN (MENN) approach is employed to combine several
smaller real-valued time-delay NNs (RVTDNNs) by means of a
gating NN. Furthermore, we complement the MENN framework
with top-K sparse gating, such that only a subset of experts is
activated during each sample inference, reducing the computa-
tional complexity at run time. An end-to-end training approach is
presented, to optimize the gating alongside with specializing the
expert NNs, enabling the experts to collaborate. We experimen-
tally investigate the scaleability of the proposed model in terms
of modeling accuracy and linearization performance, as well as
run time and model complexity, using RF measurements with
two different gallium-nitride Doherty PAs at 1.8 and 3.5 GHz,
respectively. Our experiments confirm a significant reduction in
run-time complexity due to the sparse gating, with only a small
penalty on accuracy, linearization capability and scaleability.
Furthermore, the proposed approach is shown to offer favorable
complexity-performance trade-offs, outperforming the existing
state-of-the-art.

Index Terms— Behavioral modeling, digital predistortion, lin-
earization, mixture of experts neural network (MENN), power
efficiency, radio frequency (RF) power amplifiers (PAs), time-
delay neural network (NN).

I. INTRODUCTION

THE radio frequency (RF) power amplifier (PA) has been,
and continues to be, a major bottleneck for power effi-

ciency and linear transmission in wireless communication
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systems [1]. Modern, spectrally efficient waveforms with
a nonconstant envelope require RF PAs to operate in the
nonlinear region in order to be efficient. Although the PA
linearity-to-efficiency trade-off has been revisited many times
throughout past decades [2], the continuing trends in 5G new
radio (NR) and 6G toward higher and higher transmission
rates, wider bandwidths, and high peak-to-average power ratio
(PAPR) waveforms demand research on improved solutions to
the linearity versus efficiency challenge [1], [3].

When operating with high PAPR waveforms, the average
output power of the PA has to be significantly backed off from
saturation to avoid signal degradation, which compromises
the efficiency. Advanced PA architectures and technologies
have been developed to improve the power efficiency of PAs,
such as the Doherty PA [4] and the load-modulated-balanced
PA [5], [6]. Furthermore, gallium nitride (GaN)-based PAs
are promising significant efficiency gains, however, at the
cost of severe short- and long-term memory effects [7], [8].
Nevertheless, efficient operation of the PA inevitably causes
nonlinear distortion, while today’s wideband waveforms also
excite significant dynamic distortion. Thus, given the stringent
linearity requirements defined in, e.g., the 5G NR specifica-
tions [9], compensation techniques are necessary to ensure
linear amplification, wherein digital predistortion (DPD) is the
most capable and established approach [2]. The fundamental
concept is to induce artificial nonlinear distortion, inverse to
the distortion imposed by the PA, in order to cancel out the
nonlinear and dynamic effects of the PA and thereon achieve
linearized RF transmission.

Accurate and flexible models describing the inverse nonlin-
ear behavior of PAs are essential for DPD, with Volterra-based
polynomial models, such as the generalized memory poly-
nomial (GMP) [10], being commonly used. However, global
polynomials like the GMP can have limited capability to
accurately describe the distinct behavior of contemporary
PAs. Furthermore, scaling the accuracy of global polynomial
models by adding more terms is known to have limited
potential [11]. Inspired by above, piecewise models have been
proposed to partition the modeling space into sub-regions,
which can then be modeled locally using, e.g., GMPs. The
vector switched GMP (VS-GMP) model was proposed in [11],
where multiple GMP models are switched based on the input
signal amplitude, yielding a hard partitioning of the modeling
space. The decomposed piecewise GMP (DPW-GMP) was
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reported in [12], where the input to the model is decomposed
into multiple subsignals by threshold, with a separate GMP
model applied to each. However, hard partitioning may lead
to discontinuity when combining the sub-models. In [13],
the mixture of experts (ME) framework was utilized for
soft-partitioning based on a probabilistic scheme that allows
multiple local GMPs to be overlapped, and thus improves
continuity amongst the different submodels. However, those
piecewise models still rely on Volterra-based polynomials, and
the underlying problem of a limited scalability remains.

Due to their excellent nonlinear modeling capability and
high generality, artificial neural networks (NNs) have been
considered as an alternative for PA modeling and DPD [14],
[15], [16], [17], [18], [19], [20], [21], [22]. While the com-
plexity of NNs in terms of parameter count and training
effort is usually large, they allow scaling the modeling capa-
bilities further, as NNs do not suffer from ill-conditioning
for increased model sizes. Furthermore, NNs are more gen-
eral models, allowing to map more sophisticated nonlinear
dynamic behavior. In DPD context, although complex-valued
NNs are possible in principle, they are considered expensive
to train [23]. Thus, the real-valued time-delay NN (RVTDNN)
was proposed for PA behavioral modeling and DPD in [15],
[16], and [17], where the in-phase and quadrature-phase
(I/Q) components of the baseband signals are fed separately,
in parallel, to a single real-valued NN. This approach has
then been adopted for DPD in several scenarios [14], [18],
[19]. The work in [24] addresses the high generality and
complexity of the RVTDNN by restricting the NN to only
physically meaningful contributions. As an alternative, the
vector decomposition-based RVTDNN was proposed in [20]
which operates on the signal’s envelope only, and recovers
the phase information at a later stage, reducing the over-
all complexity. However, the involved linear phase recovery
limits the overall modeling capability. Furthermore, models
based on recurrent NNs have been proposed with particular
aim on improving the modeling of memory effects in [21],
[22], and [25], however, typically at the cost of increased
training and convergence time [18]. Additionally, generalized
NN models for coping with different transmission config-
urations have been explored, e.g., in [26], [27], and [28].
In [28], a dynamically gated NN was proposed to switch and
combine various NN submodels based on the transmission
configuration. The gating mechanism has conceptual similarity
to the methods proposed in this article, however, the aim
in [28] is to diversify the NN model for different transmission
configurations instead of pushing for enhanced linearization
capabilities and improved performance-complexity trade-offs
in a given transmit scenario.

In [29], aiming to provide a more flexible neural-network
architecture, the MENN was initially introduced for behavioral
modeling, inspired by the ME framework. The ME is a prob-
abilistic framework for soft-combining of several specialized
expert models, originally applied in the context of behavioral
PA modeling and DPD in [13]. A gating unit was employed to
provide Gaussian distributed probabilities, which served as a
basis for forming a joint model output from several polynomial
model experts. The work in [29] applied the ME concept

Fig. 1. Illustration of the proposed MENN, with multiple smaller size expert
NNs, which are combined by sparse gating based on the input envelope A(k).

of [13] to RVTDNNs [17]. NN experts were used in place
of the polynomial model experts and NN-enabled gating was
introduced, resulting in non-Gaussian distributed probabilities
for combining of the experts. Furthermore, the original training
approach of [13], where the training was altered between
updating the gate and the experts, was replaced by an end-
to-end NN training approach, where partitioning and gating
are obtained alongside with training the experts.

In this article, we extend our initial work in [29] and develop
the MENN approach further by introducing sparse top-K
gating to the MENN processing system as illustrated in Fig. 1.
Sparse gating has originally been applied in the context of
large-scale NNs as a way reduce the computational cost [30],
[31]. The top-K gating allows to dynamically select the K
highest rated experts while disabling the remaining experts
of the MENN, thus reducing the processing workload during
the inference phase, i.e., the run-time complexity. We translate
this approach to the DPD context and demonstrate potential
to achieve a high degree of linearity with reasonable run-time
complexity.

The main technical contributions and novelty of the article
can be summarized as follows.

1) We revisit the MENN of [29] and provide additional
theoretical foundation while also demonstrating the
applicability of MENN in the context of PA lineariza-
tion.

2) We develop the MENN further and propose the
K-MENN approach, which adds top-K sparse gating
to reduce the model’s processing complexity during
inference by dynamically disabling experts.

3) An end-to-end training scheme is proposed, with addi-
tions specific to the K-MENN with sparse gating.
Further, we describe specific modifications to enable
end-to-end training for top-1 selective gating, where only
a single expert is selected for each sample inference

4) We consider two different measures of complex-
ity, run-time and model complexity, for assessing
the performance-complexity trade-offs of the proposed
MENN and K-MENN models, assuming an applicable
hardware implementation.
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5) The MENN and K-MENN are evaluated in the context
of PA behavioral modeling using measured data from
a GaN Doherty PA, to showcase the capabilities of the
MENN and the newly proposed K-MENN, while also
discussing the trade-off of run-time complexity, model
accuracy, and model parameter count. We also compare
the K-MENN and MENN to the RVTDNN and vari-
ous state-of-the-art piecewise polynomial models with
respect to their complexity.

6) We provide extensive RF measurement results using two
different GaN Doherty PAs, to assess and demonstrate
the MENN and K-MENN in the context of PA lineariza-
tion. The linearization performances of the NN models
as well as those of the various reference methods are
evaluated and compared.

The remainder of the article is organized as follows. The
proposed MENN and K-MENN structures and the underlying
methods are described in Section II. Next, in Section III,
the end-to-end training schemes are detailed for the different
considered MENN variants. Measures of model complexity are
introduced, assessed and discussed in Section IV. Section V
presents the experimental results for behavioral modeling and
PA linearization. Finally, Section VI concludes the article.

II. PROPOSED MENNS

Let x(k) and ŷ(k) represent the complex-valued model
input and output samples with index k, respectively, with ŷ(k)
referring to an approximation of the PA output signal y(k).
For Volterra-based polynomial models, such as the GMP [10],
the nonlinear modeling capability is provided through a set
of nonlinear regressors 8̃(k) ∈ C1×W , corresponding to x(k),
which allows writing the model output as a linear combination
of a set of nonlinear basis functions with complex-valued
weights ãaa ∈ CW×1 as

ŷ(k) = 8̃(k)ãaa. (1)

These type of models are linear-in-parameters, thus facilitating
parameter identification using linear regression techniques,
such as ordinary least squares, or gradient-based techniques
like the least-mean-squares algorithm. The modeling capabili-
ties are generally limited by the available nonlinear regressors,
while increasing the number of regressors makes the associated
least-squares problem easily ill-conditioned [32].

A. Real-Valued Time-Delay Neural Network

In contrast to linear-in-parameter models, NN models are
inherently nonlinear, i.e., the linear weighting of input regres-
sors is replaced by a nonlinear transformation 4 performed
by a network χ of nonlinear nodes and a set of weights aaa,
expressed as

ŷyy(k) = 4χ (8(k)|aaa). (2)

Here, we consider a feed-forward, fully connected RVTDNN
with additional augmented terms, as described for example
in [17]. The network, shown in Fig. 2, generally consists of an
input layer, one or multiple hidden layers (HLs) with nonlinear
nodes, and a linear output layer.

Fig. 2. Block diagram of a RVTDNN. A delay line provides the current and
past I/Q and envelope samples to a set of non-linear HLs. The two outputs
form the complex-valued model output.

At the NN input layer, similar to linear-in-parameter mod-
els, a set of regressors, 8(k), is provided. The input layer
comprises the current input sample, separated into real-valued
I and Q components as x(k) = xI(k)+ j xQ(k). To enable the
NN to also model dynamic effects originating from wideband
waveforms, past samples xI(k − m), xQ(k − m) with delays
m = 1, 2, . . . ,M are provided as additional parallel inputs.
Since the PA-induced nonlinearity occurs at RF and thus
primarily depends on the input envelope A(k) = |x(k)|, the
instantaneous and delayed versions of the envelope, as well
as powers thereof, are also provided to the NN, expressed
as A(k − m)p with p = 1, 2, . . . , P . Although the NN is
inherently capable of creating a nonlinear mapping, these
pth order envelope terms have been reported to improve the
accuracy for smaller NN sizes by providing an additional
nonlinear reservoir to the NN input [17]. Consequently, the
input layer provides b0 input features, expressed formally as

8(k)=
[
xI(k), xQ(k), . . . , xI(k − M), xQ(k − M),

A(k), . . . , A(k)p, . . . , A(k − M), . . . , A(k − M)p].
(3)

The input layer is followed by L fully connected HLs with
bl nodes. The outputs υυυl(k) ∈ R1×bl of each layer become
the inputs of the following one and υυυ0(k) = 8(k). At each
node of a layer, nonlinear activation h(·) is applied to a linear
combination of the preceding layer’s outputs υυυl−1 using the
weights �l ∈ Rbl−1×bl , offset by a bias vector ψψψ l ∈ R1×bl .
Thus, the output vector of layer l becomes

υυυl(k) = h(υυυl−1(k)�l +ψψψ l). (4)

For the nonlinear activation h(·), we use the Sigmoid function,
which is applied element-wise at each node with combined
input z = υυυl−1(k)�l , defined as

h(z) = 1/(1 + exp(−z)) (5)

while other nonlinear activations can also be considered [20],
[33]. The output of the network is formed by a linear output
layer with two nodes, written formally as[

ŷI(k), ŷQ(k)
]

= υυυL(k)�L+1 +ψψψ L+1. (6)

The two outputs are then interpreted as the I and Q components
of the complex-valued model output ŷ(k) = ŷI(k)+ ŷQ(k).
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Fig. 3. Block diagram illustrating the proposed MENN processing structure with top-K sparse gating. N real-valued NN experts share a time-delayed input
layer and are combined by a gating NN based on the input envelope A(k). The model output is provided as decomposed I and Q components.

B. Proposed MENN

ME is a framework for realizing the divide-and-conquer
principle by partitioning the problem space and combining
a number of N specialized experts based on a probabilistic
scheme [34]. A soft-partitioning unit, referred to as the gate,
provides probabilities for the most suitable combination of
experts. In its generic form, an ME model with input vector
xxx and output vector yyy reads [34], [35], [36]

P(yyy|xxx) =

N∑
n=1

gn(xxx,vvv)P(yyy|xxx,aaan) (7)

where P(yyy|xxx) is the probability of observing yyy given xxx .
Furthermore, P(yyy|xxx,aaan) is the probability for yyy of the nth
expert associated with a parameter vector aaan , and gn(xxx,vvv) is
the associated weights provided by the gating function with
parameters vvv. The gating can generally adopt many shapes,
with the so-called mixture model being most commonly
adopted. In a mixture model, the gate weights are defined as
probabilities, imposing thus the following constraints: gn ≥ 0,
n = 1, .., N and

∑N
n=1 gn = 1.

Since for PA modeling and linearization a regression prob-
lem needs to be solved, the expectation of the probabilistic
framework in (7) can be used as the model prediction ŷyy [34].
Consequently, the model output becomes a weighted sum of
the expert’s expectations yyyn = E(P(yyy|xxx,aaan)), expressed as

ŷyy =

N∑
n=1

gn(xxx,vvv) ŷyyn(xxx,aaan). (8)

In [13], the ME framework was adopted for PA behavioral
modeling and DPD using GMP experts. As the PA nonlinearity
acts on the envelope of the transmit signal, the soft-partitioning
of the input space is based on the amplitude of the input signal
A(k) = |x(k)|, leading to

ŷ(k) =

N∑
n=1

gn(A(k),vvv) 8̃(k)ã̃ãan. (9)

A Gaussian mixture model [35] was assumed for the gating
variables gn(A(k),vvv) and expectation maximization (EM) was
employed to iteratively converge the model and find a prob-
abilistic partitioning by alternating between updating the gate
parameters and the expert parameters.

Inspired by the ME framework and the works in [13], [34],
[37], and [38], we propose the MENN, depicted in Fig. 3,
as a ME model using RVTDNN experts. Each expert realizes
a stand-alone RVTDNN 4e as formulated in Section II-A. The
experts share the same inputs 8(k) and structure, however,
using an individual set of parameters an per expert. Thus, the
individual expert output becomes

ŷyyn(k) = 4e(8(k)|aaan). (10)

In place of the commonly adopted Gaussian-distributed gating
probabilities, we instead employ NN-enabled gating, similar
to in [37] and [38]. Thus, the soft-partitioning gate can
basically adopt any arbitrary distribution. To comply with
the probabilistic interpretation of the gating weights, soft-
max normalization is applied in-line with the ME formulation
in [34], expressed as

gn(xxx,vvv) =
exp(βn(xxx,vvv))∑N

m=1 exp (βm(xxx,vvv))
(11)

where βn(xxx,vvv) denote the nonlinear kernels. Moreover,
we restrict the gating probabilities to be a function of the
instantaneous input envelope, similar to other piecewise DPD
models. Thus, βn becomes an arbitrary nonlinear function of
A(k), realized by a smaller gating NN 4g with one input, one
HL with Sigmoid activation, and N outputs. This can thus be
written as

βn(k) = 4(n)g (A(k)|vvv) (12)

where 4(n)g is the nth output of the gating NN.
Finally, the output of the aggregate MENN reads

ŷyy(k) =

N∑
n=1

gn(A(k),vvv)4e(8(k)|aaan). (13)

Furthermore, similar to the RVTDNN, the outputs ŷyy(k) =

[ŷI(k), ŷQ(k)] of the NN form the complex-valued output
signal ŷ(k) = ŷI(k)+ ŷQ(k).

C. Proposed Top-K Gated MENN (K-MENN)

To extend further the above MENN concept and our initial
work in [29], we next introduce top-K sparse gating to the
MENN framework, with particular emphasis on reducing the
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run-time complexity. Such sparse gating has been applied
earlier to reduce the computational cost of very large-scale
NN models in the context of natural language processing,
e.g., in [30] and [31]. Here, we formulate gating schemes that
are suitable for efficient, throughput-oriented NN inference
in the DPD context. To this end, with the top-K gated ME,
only a limited number of K < N expert NNs are allowed
to participate in producing an output ŷ(k). As highlighted
in Fig. 3, we enforce the desired sparsity by placing a top-
K selector at the output of the gating NN, which selects, on a
per sample basis, the K experts which have the highest rating
gn(k) as provided by the gating NN. Thus, the sparse gating
provides g′

n(k) with

g′

n(A(k),vvv, K ) =
top-Kn(zzz) n(A(k),vvv)∑N

m=1 top-Km(zzz) gm(A(k),vvv)
(14)

where zzz = [g1(A(k),vvv), . . . , gN (A(k),vvv)] and

top-Kn(zzz) =

 1
if zn amongst the K
largest elements in zzz

0 otherwise.
(15)

In (14), subsequent to the top-K selection, the gate weights
are normalized such that they reflect the relative importance
of each expert, while the weights of nonselected experts are
set to zero. The selected experts are still weighted respective
to the corresponding probabilities after top-K selection, and
thus the model output of the MENN with top-K sparse gating
reads

ŷyy(k) =

N∑
n=1

g′

n(A(k),vvv, K )4e(8(k)|aaan). (16)

The choice of K is a trade-off between accuracy and
efficiency, that will be further assessed and evaluated in
subsequent sections. Based on the sparsity of the gating,
we can save considerable amount of computations during NN
inference, as 4e only needs to be processed for K active
experts per sample inference. Thus, a small K can significantly
reduce the inference effort, which we refer to as run-time
complexity in the remainder of the article. However, while
a small K means that less experts need to be processed,
also fewer experts collaborate in providing an output, with
top-1 gating being an extreme special case where only one
expert is selected at a time and thus the ME becomes a
switched NN model [31]. Additionally, sparse gating requires
modifications to the training procedure, especially in the top-
1 case, where the gating becomes non-differentiable. Such
necessary modifications to still allow for end-to-end training
are described in the following.

III. END-TO-END NN TRAINING

While linear-in-parameter models, such as GMP-based
piecewise models, can be identified using a closed-form
least-squares solution [39], NNs require iterative optimization
techniques that use gradient estimates to converge the model
parameters. In this work, we use the adaptive moment estima-
tion (Adam) optimizer, which is an extension to the stochastic
gradient descent algorithm, maintaining a per-parameter learn-
ing rate based on the first and second moments of the

Fig. 4. Conceptual illustration of the training procedures for RVTDNN,
MENN, and K-MENN, depending on the NN type, and the K-MENN sparsity
factor K . The experts’ parameters are contained in aaa while vvv specifies the
parameters of the gate.

gradients [40]. Learning is pursued in batches, i.e., block-
wise processing of training data. The parameters of the net
are updated according to gradients which are averaged over the
batch of B samples. The gradients are computed with respect
to minimizing an objective function, given as the batch-wise
mean squared error (MSE) of the NN output, i.e.,

LMSE =
1
B

∑
k∈batch

((
ŷI(k)− yI(k)

)2
+
(
ŷQ(k)− yQ(k)

)2
)
. (17)

As in [29], we optimize the parameters of the aggregate
MENN using a joint training approach including both the
gating and the experts such that the gating is found alongside
with the expert’s specialization, while minimizing the model
error. Thus, we avoid the iterative EM procedure of alternating
between updating the experts and the gate used in [13], but
instead use an end-to-end training scheme which enables
collaboration among the NN experts. It is noted that the
described end-to-end training approach is a general method
and can as well be applied, e.g., with ME-GMP-based methods
and models.

In the following, we describe a number of techniques
which can help to improve the training and convergence of
the MENN, and especially those of the K-MENN. Not all
optimizations are applicable in all cases, and thus Fig. 4
provides an overview of the training procedure, depending on
the configuration.

A. Gate Initialization and Expert Pretraining

In our initial experiments, direct gradient-based training
was observed not to diversify the experts in a reliable man-
ner, yielding thus a suboptimal partitioning and performance.
Instead, greater accuracy can be achieved when providing
guidance to the gradient-based training process. In [41],
an additional loss is introduced to encourage diversity of the
gating output. However, in our RF experiments, we observed
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that such loss is difficult to balance and may bias the training
unnecessarily. Instead, reliable training can be achieved by
initializing the gate parameters with a predefined partitioning,
and pretraining the experts accordingly. The joint training then
starts from a well-defined initial setting, leading to proper
partitioning and expert collaboration. To this end, we initialize
the gate NN with parameters vvv = vvv0, such that the gating
approximates a Gaussian-based initial partitioning given by

βn,0 ≈ −
1
2

(
x − µn,0

σ0

)2

(18)

where we distribute the starting conditions µi,0 for the different
experts evenly across the input amplitude space, while σ0 is
chosen equally for all the experts.

B. Top-K Gated MENN-Specific Training Modifications

In principle, the training of the K-MENN follows the same
end-to-end approach as MENN, however, the top-K selection
causes the experts to only train on the data they were selected
for, with some undesired implications on the optimization
process. We thus adopt two modifications, conceptually similar
to what was done in [30] in the natural language processing
context, to tailor the training appropriately. Specifically, the
following two problems were observed and addressed.

1) First, we observed that the selective training of the experts
tends to keep an existing partitioning, and due to the strongly
nonlinear behavior of NNs, the experts have only a limited
ability to extrapolate the behavior into adjacent regions. This,
in turn, compromises the possibility to optimize the initial
partitioning. To overcome this limitation, we introduce an
additional noise component to the top-K gating rule during
the training, which allows the experts to also learn from data
which they are not activated for. Thus, in (14), we substitute
zzz with a noisy z̃zz with

z̃zz = zzz +N
(

0, σ 2
top-K

)
(19)

where N (0, σ 2
top-K ) denotes Gaussian distributed noise with

a variance σ 2
top-K and zero mean. The variance of the noise

component is chosen such that it causes a small variation to
the top-K selection. The noise is, however, not injected to
the actual weighting of the experts, but only affects the top-
K selection. This unlocks the missing continuity between the
active regions and improves the optimization of the partition-
ing, while not limiting the converged accuracy. After training,
the noise component can be removed, as it is of no use for
the actual inference phase.

2) Second, the gating introduces a problem regarding the
balancing of experts. During training, some experts which
may receive a higher rating by the gate will get to train
with more data, causing them to converge faster. Such effect
reinforces itself to the point where some experts can even-
tually overpower and entirely suppress others. This can be
counteracted through regularization, by adding a balancing
loss component Lbalance to the optimization objective. This is
expressed formally as

LK-MENN = LMSE + αLbalance (20)

where α is a small-valued parameter to tune the loss term.
The added loss term directs the gating to balance the experts’
importance by also minimizing

Lbalance = var(γ1, . . . , γN ). (21)

The importance measure γn of an expert n is defined as
the mean of the expert’s rating provided by the gate, more
specifically as

γn =

∑
k∈batch

gn(k) (22)

and is evaluated per training batch.
The additional balancing loss objective only affects the

training of the gating NN. It can straightforwardly be included
in the end-to-end optimization, by merging the gradients for
the two loss objectives.

C. Top-1 MENN Training

Using top-1 gating, only the single highest-rated expert is
allowed to be active during each inference. Consequently, the
model becomes a switched model, conceptually similar to the
vector-switched model in [11], where several GMP models
are multiplexed based on the input signal envelope A(k).
Top-1 gating is especially attractive, since the gating decision
simplifies to hard switching, which can be easily implemented
by amplitude thresholding during the inference. Furthermore,
top-1 gating results in the highest degree of sparsity for a given
expert count N .

However, end-to-end training of such switched model is not
straightforward since, intuitively, at least two experts need to
be compared to train the gate alongside with the model. The
hard switching prevents the back-propagation algorithm from
calculating the gradients for the gating NN part. As reported
in [31], we can nonetheless optimize the gating, if considering
probability for an expert n generating the output y in line with
the formulation in (11). Thus, we optimize the gate parameters
vvv regarding LMSE by considering the nonswitched performance
as formulated in (13). Furthermore, the gate training is regular-
ized with Lbalance as in (20) to prevent the experts from being
suppressed during optimization. The different optimization
objectives do not break the joint end-to-end training of gating
and experts. Instead, the different objectives are incorporated
when computing the gradients for the joint parameter update,
with marginal overhead to the overall training complexity. It is
also important to note that the expert’s parameters aaan are still
optimized to minimize the LMSE of the actual model output
with top-1 gating, as formulated in (16). Additional gating
noise during training, as in (19), is required also for the top-
1 gating case to ensure the continuity between the switched
regions and to enable the optimization thereof.

D. DPD Model Training

For applying and evaluating different NN models for DPD
purposes, a modified indirect learning approach (ILA) [42]
is used for training, as depicted in Fig. 5. The principle of
indirect learning is to identify the predistorter parameters by
modeling the PA input signal as a function of the PA output.
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Fig. 5. Illustration of the DPD training scheme. First, a suitable DPD PA
excitation is found using ILC. In a second step, the model is trained via ILA,
using the ILC optimized PA input and the measured PA output signals.

However, since the PA is excited differently when applying the
identified DPD, the initial measurement used for identification
may not be representative of the inverse PA behavior. Thus, the
identification process needs to be repeated for several iterations
until a stable DPD performance is found.

Since our aim is to evaluate and compare the different
models, any performance implications of the ILA training
procedure should be kept at a minimum. Hence, we take an
alternative approach to ensure similar conditions when training
the different models. Specifically, instead of iterating the ILA
scheme, we first seek a suitable excitation through iterative
learning control (ILC) [43], which significantly reduces the
evaluation time for each NN model, given the considerable
effort for retraining the models in each ILA iteration. ILC
is a model-less iterative method to find a suitable input that
excites the desired PA output. The transmit signal is repeatedly
modified by injecting the output error after retransmission,
with opposite phase and weighted by a step-size λ ∈ (0, 1).
The process is repeated until the PA output matches the
desired output with sufficiently low error. We then use the
optimized PA input signal to acquire training data for our
models and perform indirect learning. For indirect learning,
the polynomial and NN models are trained on the reverse PA
behavior, i.e., the ILC optimized input after i iterations xi (k),
and the measured PA output yi (k) (divided by the target gain)
are used as ground-truth data for the model’s output ŷ(k) and
input x(k) for training purposes, respectively. For the actual
DPD operation, the trained predistorter operates on the desired
transmit signal u(k) and produces the predistorted PA input
xDPD(k).

We apply the described strategy for initial training and
evaluation of the models in a static laboratory environment.
However, for the actual field application, the models require
adaptation to track the potential changes in the PA behavior.
Suitable online adaptation schemes, which avoid full retraining
of models, are reported, e.g., in [14] and [25]. One straightfor-
ward approach builds on updating only the linear output layer
of the model. For the MENN, this would translate to adapting
the linear output layer of each of the experts, with respect
to a fixed gating. If the gating also needs adaptation, then
the same end-to-end training approach described previously
can be applied. The discussed top-K gating-related training

modifications only have limited impact on the fine-tuning and
can be omitted.

IV. MODEL AND RUN-TIME COMPLEXITIES

We next address the important aspect of processing com-
plexity related to the proposed methods and the corresponding
reference schemes. Throughout the rest of this article,
we report to two different measures of complexity for the DPD
methods: the model complexity and the run-time complexity.
In addition to introducing these metrics, we additionally dis-
cuss their relation to the actual processing complexity for NN
inference and NN training.

The model complexity reflects the overall size of the model.
We measure the model complexity C in terms of real-valued
parameter count, as this maps directly to the memory cost
for storing the model. The real-valued parameter count of a
RVTDNN with L fully connected HLs and two outputs can
be expressed as

CRVTDNN =

(
L∑

l=1

bl−1 × (bl + 1)

)
+ 2(bL + 1) (23)

where bl specifies the node count of layer l, for l ∈ 1, . . . , L ,
while b0 is the number of the NN inputs. For the MENN,
we additionally have the gating NN, thus the corresponding
total complexity reads as

CMENN = N × C(4e)+ C
(
4g
)
. (24)

In this article, we consider MENNs with a single HL for both
the gate and the expert NNs, thus

CMENN = N (b1 + 1)(b0 + 2)+ (c1 + 1)(N + 1) (25)

with b1 and c1 representing the sizes of the HLs of the expert
and gate NNs, respectively.

Then, with the run-time complexity, we refer to the com-
putational complexity when really processing the model in
real-time. One way to assess the run-time complexity of NN
models is to quantify the total amount of operations (OPs)
required for inference of a single sample, i.e., to count the
required multiplications, additions, and nonlinear OPs. Table I
shows and compares these for the RVTDNN, MENN, and
K-MENN, each with an equal model complexity of C =

2k parameters. We find that for RVTDNN and MENN, the
total OP count proportionally corresponds to their respec-
tive model complexities. However, with top-K sparse gating,
only a subset of the K-MENN contributes to forming the
model output. Consequently, only the active parts of the
K-MENN need to be processed and a suitable implementa-
tion will spare computation of the inactive experts. This is
reflected by a lower amount of OPs stated for the K-MENN
in Table I. Given the large complexity of the NN layers,
we have neglected the computational effort for providing the
NN inputs.

To better relate the run-time complexity to the model com-
plexity C, we introduce the active real-valued parameter count
R. For the RVTDNN and MENN, the run-time complexity
equals the model complexity since all coefficients are always
applied. In the K-MENN case, however, we consider only the
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TABLE I
COMPLEXITY COMPARISON OF EQUALLY SIZED RVTDNN, MENN, AND K-MENN. ALL MODELS USE b0 = 32 INPUTS,

AND b1 IS CHOSEN TO MATCH C = 2000 PARAMETERS

coefficient count of the K simultaneously active experts, and
the run-time complexity can be expressed as

RK-MENN = K × C(4e)+ C
(
4g
)

= K (b1 + 1)(b0 + 2)+ (c1 + 1)(N + 1). (26)

For reasonably sized models, the active parameter count R
behaves proportionally to the total OPs, thus being a reason-
able measure for the NN run-time complexity.

The corresponding polynomial models, utilized for refer-
ence purposes in the upcoming experiments, have as many
complex-valued parameters as the model has regressors. For
comparison purposes, this is mapped to the model complexity
by considering each complex-valued parameter as two real-
valued ones. The run-time complexity of polynomial models
is, however, strongly linked with the implementation. Consid-
erable complexity arises from creating the model regressors,
however, the polynomials may, in parts, be mapped to LUT-
powered structures, making it nontrivial to rate the run-time
complexity without a specific implementation assumption.
In the polynomial model cases, we thus only report the model
complexity numbers in the following experiments.

To complete the discussion on processing complexity, the
training complexity of the different NN models is explored in
the following. In our experiments, RVTDNN and K-MENN
showed a similar convergence speed and we found that similar
settings for the amounts of training samples, epochs, batch
size, and learning rate are suitable. Comparing the training
complexity thus narrows down to comparing a single NN
training step. Therein, a batch of B samples is propagated
through the model (forward pass, FP), after which trainable
parameters are updated according to gradients minimizing the
MSE of the NN output. These gradients are computed by
means of the back-propagation algorithm (backward pass, BP).
For a reasonable batch size B, forward and backward pass
clearly dominate the overall training complexity as their cost
scales proportional with B, whereas the model parameters are
updated only once per training batch. Fortunately, the sparsity
aspect of K-MENN also benefits the training complexity since
in both backward and forward pass, computations can be
skipped for the disabled experts, whereas the actual param-
eter update affects all model parameters, irrespective of the
sparse gating. The additional balancing loss and gating noise
component proposed for the K-MENN in Section III-B both
have a negligible effect on the training complexity. However,
as discussed in Section III-C, the top-1 gated K-MENN
requires evaluation of all experts during the forward pass to
properly train the gating, which compromises the gains from

Fig. 6. Graphical illustration of the RF measurement setup and PA modules
used in the experiments.

sparse gating for the fully switched case. We report the exact
absolute and relative training complexities in Table I for the
different NN models with C = 2000 parameters.

V. RF MEASUREMENT EXPERIMENTS

In this section, different variants of the proposed MENN
and K-MENN models are evaluated and compared with the
RVTDNN as well as the GMP, and different piecewise polyno-
mial models. We first present forward modeling results based
on RF measurements with a GaN Doherty PA operating at the
1.8 GHz band. Subsequently, we apply the compared models
for the actual linearization of two different Doherty GaN PAs,
operating at the 1.8 GHz and the 3.5 GHz bands, respectively.
The performance of each model is evaluated in terms of
the adjacent channel leakage ratio (ACLR), the normalized
mean squared error (NMSE), and the error vector magnitude
(EVM), with respect to the model’s run-time complexity and
the parameter count.

A. Experimental Setup and Configuration

In our RF experiments, as also illustrated graphically in
Fig. 6, we utilized the NI PXIe-5840 vector signal transceiver
(VST) for analog signal generation and up-conversion to RF,
in the transmit path, as well as for the downconversion and
digitization of the PA output in the observation path. Two
different PA units were used in the experiments. For the
forward modeling experiments as well as the first set of
DPD experiments, we used the RTH18008S-30 by RFHIC,
which is a two-stage GaN Doherty PA operating at 1.842 GHz
center frequency with static biasing. A linear, high-gain driver
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amplifier, ZFL-2500+, was used to preamplify the signals to
reach the desired output power. In the second set of DPD
experiments, we used the QPA3503 by Qorvo, which also is a
two-stage GaN Doherty PA, while operating at 3.5 GHz. This
PA was used without any additional driver amplifier.

Before feeding the amplified signals to the observation
receiver path, sufficient attenuation was provided to match the
VST’s input dynamic range. Furthermore, we conducted each
measurement five times and applied time-domain averaging on
the time aligned signals in order to reduce the system’s internal
noise floor. The transmit path baseband I and Q samples were
generated on a host PC running MATLAB, which was also
used for controlling the VST transmission and data recording
as well as for evaluation of the DPD performance.

The NNs were trained offline with TensorFlow, using
600 training epochs on 120k samples of training data. The
samples were processed in batches of 2048 samples for each
parameter update step. The global learning rate, which serves
as an upper limit for the individual parameter update rates in
Adam, was set to an initial value of µ0 = 0.2, while then
allowed to decay with

µp = µ0 × 0.998p (27)

for each batch update step p. For the exponential decay rates
of the first and 2nd moment mean estimates, we applied β1 =

0.98, and β2 = 0.999, respectively. For training the K-MENN,
necessary modifications described in Sections III-B and III-C
were additionally applied. The additional noise component
in (19) to establish continuity between regions during training
was applied with σtop-K = 0.005 while the regularity bal-
ancing term in (20) was weighted with α = 0.001. For the
actual evaluation or testing of the learned models, separately
generated data with 50k samples was used. In the case of
forward modeling, training data and validation data are the
recorded I/Q input and output samples for the tested PA.
For the DPD linearization experiments, ground-truth data are
generated using the ILC method detailed in Section III-D.

In the upcoming experiments, we evaluate different models
at different sizes. For the NNs, the choices of the input-layer
hyperparameters P and M are specific to the experiment.
A suitable configuration was determined initially in each
case, using a RVTDNN with 2000 parameters as reference
or baseline solution. We state the respective choices at the
beginning of each corresponding section. Then, to vary the
NN sizes, the amount of nodes in the first layer b1 was
altered. For the RVTDNNs with two HLs, the size of the
second HL was fixed at b2 = 10 nodes. For the MENN,
the HL of the gating NN always uses ten nodes. For each
NN, we repeated the training and measurement five times,
and averaged the results to mitigate the impact of randomly
initialized parameters during training.

To scale up the polynomial models, an exhaustive search
on suitable GMP basis function configurations was performed
and the best performing cases were selected for comparison.
For the piecewise models, we restricted our exploration to up
to six partitioning regions. The hard partitioning needed for
the VS- and DPW-GMP models was determined by K-means
clustering as described in [11]. The soft-partitions of the

Fig. 7. Measured forward modeling NMSEs of the various GMP-based
polynomial models and NN models for the GaN Doherty PA at 1.8 GHz
running a 100 MHz 5G NR OFDM signal at +40.7 dBm output power.

ME-GMP, are found by means of the EM algorithm [13],
with an upper limit of 25 iterations. The polynomials were
identified and validated with the same dataset as the NNs.
We use the MATLAB built-in least squares solver to identify
the coefficients of the polynomials. Ridge regularization [44]
was additionally applied to stabilize the estimated polynomial
models with high-order GMP terms.

Models are reported and compared with respect to their
numbers of real-valued parameters, as a measure of com-
plexity, following the analysis principles of Section IV. The
complex-valued coefficients of the polynomials are properly
mapped to the corresponding real-valued parameter count for
fair comparison.

B. Forward Modeling Experiments at 1.8 GHz

As the first set of experimental results, we present the
forward modeling performance for the measured behavior of
the RTH18008S-30 operating at 1.8 GHz while including also
a driver amplifier ZFL-2500+. We applied a 5G NR compliant
256 QAM modulated orthogonal frequency division multiplex-
ing (OFDM) waveform with 100 MHz channel bandwidth and
a subcarrier spacing of 30 kHz. The PAPR of the waveform
was limited to 8 dB using iterative clipping and filtering. The
baseband sampling frequency for processing the signals was
chosen as 614.4 Msamples/s to account for the bandwidth
expansion due to the PA nonlinearity. The PA was operated
close to saturation, with an average RF output power of
+40.7 dBm.

To assess the modeling capabilities toward large parame-
ter counts, we sweep the sizes of the NN and polynomial
models by adding more nodes to the NNs, or adding more
basis-functions in case of the polynomials. Furthermore, for
this experiment, the input layer was configured to use first
and third order envelope inputs and an input delay line with
a delay depth of M = 5, resulting in a total of b0 = 24 NN
inputs.

Fig. 7 reports the forward modeling NMSEs for the MENN
as well as the various reference methods as a function of the
real-valued parameter count. No sparse gating is yet applied,
in the context of Fig. 7. We can observe that the NNs can
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Fig. 8. Measured MENN forward modeling NMSEs with an initially fixed
as well as end-to-end optimized gatings, for the GaN Doherty PA at 1.8 GHz
running a 100 MHz 5G NR OFDM signal at +40.7 dBm output power.

be scaled to outperform the polynomial models. While poly-
nomial models reach a lower bound for NMSE when adding
more basis functions, NNs continue to successfully scale their
performance toward lower modeling errors if provided with
more nodes in the HL. Furthermore, differences among the
considered NN models are apparent. The RVTDNN benefits
from having a second HL, especially when scaled toward
higher parameter counts. The single HL MENN outperforms
the single HL RVTDNN, and performs slightly better if
compared to the RVTDNN with two HLs. The MENN was
also tested with two, three, and four experts, which all resulted
in similar NMSE accuracies with negligible differences, as can
be observed through Fig. 7. Thus, in this forward modeling
scenario, the number of experts does not essentially impact
the modeling accuracy. Furthermore, in our earlier experiments
in [29], we observed that adding a third HL to the RVTDNN,
or adding more HLs to the MENN, does not yield any notable
performance gains.

Additionally, in Fig. 8, the modeling accuracy of the end-
to-end optimized MENN is compared with a fixed gating case,
where the initial MENN gating was not optimized during
training. Clearly, the optimized gating advances the accuracy
with respect to the initial segmentation. The differences are
more prominent for smaller sized NNs and are as large as
1 dB in the 1000–2000 parameter range.

Next, we apply the proposed sparsely gated K-MENN
approach to the same GaN PA forward modeling scenario.
The modeling accuracies for the different processing variants
are depicted in Fig. 9(a)–(c). For each graph, the number of
experts was kept constant while the number of active experts
was varied from K = N down to K = 1. Additionally,
to highlight the differences between the model and run-time
complexities, both are plotted and interconnected horizontally.
Thus, two horizontally connected data points refer to the
same measurement result and NN configuration, but depict
the difference in the model and run-time complexities due to
the sparse gating. As can be observed, limiting the number
of active experts for a fixed MENN realization degrades
the accuracy of the K-MENN, compared to the respective
nonsparse MENN case of K = N . Especially K =1 is already

accompanied by a considerable loss of accuracy, if consid-
ering only the model complexity. Nevertheless, considering
the run-time complexity of the sparsely gated K-MENN, the
performance can be pushed below the accuracy-complexity
curve of the nonswitched NNs. Naturally, a greater ratio of
active versus total number of experts improves the run-time
complexity and accuracy trade-off, however, at the cost of an
increased total model size. Consequently, K =1 cases can offer
the lowest modeling NMSE with the least run-time complexity,
however, with a comparably larger model complexity.

Regarding the total number of experts, it can be observed
that a higher value for the expert count N allows for a more
fine-grained choice on the ratio of the active to total number
of experts and thus on the trade-off between the model and
the run-time complexities. Also, a larger complexity difference
is possible, allowing for high accuracy at lower run-time
complexity. Moreover, and importantly, these experimental
results indicate that a K-MENN with more experts scales better
toward higher parameter counts.

In Fig. 10, the end-to-end optimized gating is illustrated
considering the example case of a K-MENN with 2000 total
parameters and varied sparsity of K = 4, 2, and 1. The
upper graphs show the combined outputs together with the
individual expert contributions, which are weighted according
to the gate weights g′

n . The respective outputs of the gate
NNs are shown in the bottom row subfigures, as functions
of the input envelope. It is important to note that the gating
depends only on the instantaneous input envelope A(k), thus it
does not have any memory behavior and appear as continuous
lines. Additionally, due to the soft-max normalization, they
are bound to a range from zero to one while adding up to
one as a whole. In the leftmost case, shown in Fig. 10(a),
all experts are active. Thus, the individual expert NNs will
strongly collaborate in forming the output, thanks to the end-
to-end training. However, none of the experts could work
standalone. In the middle case, shown in Fig. 10(b), only two
experts were allowed to be active. It is clearly visible and
observable that the lowest rated experts are being suppressed
due to the top-2 selection. A corresponding example with
top-1 selection is then depicted in the rightmost graphs,
shown in Fig. 10(c). The gate weights after top-1 selection
equal either one or zero, and the hard switching is clearly
observable. The soft probability rating, which is the basis for
the top-1 selection, is shown in addition to the top-1 selected
weights.

Finally, it is noted that we have compared the end-to-end
optimized gating with the nonoptimized initial gating also for
the K-MENNs, and the respective performance differences are
in the order of 0.5 dB for the 1000–2000 parameter range.

C. Digital Predistortion Experiments at 1.8 GHz

Next, we apply the proposed K-MENN approach for lin-
earizing the RTH18008S-30 PA running the same 100 MHz 5G
NR waveform at 1.8 GHz as in the previous forward modeling
experiments. Compared to the previous experiments, we now
operate the PA with slightly reduced output power, namely
+38.9 dBm. This corresponds to an approximate back-off of
9 dB relative to the PA’s saturation level, implying thus a
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Fig. 9. Measured forward modeling NMSEs of the different MENN and K-MENN configurations with varied K for the GaN Doherty PA at 1.8 GHz being
excited with 100 MHz 5G NR OFDM signal at +40.7 dBm output power. For each K-MENN realization, the run-time and model complexities are plotted
and connected with a horizontal line. Curves illustrate the interpolated trends for a specific sparsity K . (a) K-MENN with N = 2 total experts. (b) K-MENN
with N = 3 total experts. (c) K-MENN with N = 4 total experts.

Fig. 10. Example (K-)MENN modeling results for the 1.8 GHz GaN Doherty PA (100 MHz 5G NR OFDM, +40.7 dBm output power) using different (sparse)
gating configurations for the four experts. The upper graphs show the amplitude contributions of the individual experts, together with the combined model
output. The bottom graphs depict and illustrate the corresponding weights provided at the output of the gating NN. (a) N = 4 experts, all active (K = 4).
(b) N = 4 experts, top-2 gating (K = 2). (c) N = 4 experts, top-1 gating (K = 1).

feasible operation point for employing DPD given the earlier
stated PAPR characteristics of the digital waveform. Addition-
ally, we also evaluate the models using a carrier aggregation
type of waveform, consisting of three 40 MHz OFDM carriers,
corresponding to a total aggregate bandwidth of 120 MHz,
while having an overall PAPR of 8 dB.

For comparison purposes, we again apply and compare the
RVTDNN, MENN, K-MENN, as well as various GMP-based
piecewise models. Specifically, when it comes to MENN and
K-MENN methods, we consider configurations with N =2 and
N = 4 experts while assessing the performance with K ≤ N .
The NN node counts are configured such that the baseline
MENN cases have matching model complexities to the refer-

ence RVTDNN cases, while then also K-MENN cases with
reduced run-time complexities are assessed. Additionally, the
polynomial-based systems are parameterized using a relatively
large number of basis functions, and the respective pareto-best
configurations are selected.

The measured ACLRs are reported in Fig. 11, in (a) for the
100 MHz test waveform case and in (b) for 120 MHz carrier
aggregation waveform case. To depict the respective run-time
and model complexities of the K-MENN, the ACLR results are
plotted for both complexities and interconnected horizontally.
The overall results are consistent with the findings observed for
behavioral modeling. The figures report effective linearization
for each of the models. Furthermore, NNs tend to outper-
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Fig. 11. Measured linearization performance of various DPD models for the 1.8 GHz GaN Doherty PA using two different OFDM waveforms at an output
power of +38.9 dBm. K-MENN with N = 2 and N = 4 experts and varied K ≤ N are considered. For each measured K-MENN realization, the model
complexity as well as the run-time complexity with respect to the sparse top-K gating are shown and horizontally interconnected. (a) 100 MHz OFDM.
(b) 120 MHz (3 × 40 MHz) OFDM.

TABLE II
SUMMARY OF THE RF MEASUREMENT RESULTS FOR THE LINEARIZATION OF THE 1.8 GHZ GAN DOHERTY PA OPERATING A 100 MHz OFDM SIGNAL

WITH AN OUTPUT POWER OF +38.9 dBm

form polynomial models above a certain model size, while
polynomial models reach a lower bound for the ACLR. With
the proposed K-MENN approach, however, very low ACLRs
can be reached at a competitive complexity. As a concrete
example, in the range of 2000 active parameters, only the
sparsely gated K-MENNs with K =2 or K =1 are competitive
with the polynomial models. The K-MENN enables a 50%
reduction in run-time complexity compared to an equally
performing RVTDNN with the same model complexity. Even
better ACLR, or lower run-time complexity, can be achieved if
the model complexity is increased by a factor of 2× (100%).
As the K = 1 setting offers the largest variance of model
and run-time complexity, the best linearity results with lowest
run-time complexity could be achieved with K =1, N =4.

Different from the forward modeling results, the RVTDNN
and MENN need to be scaled toward a high complexity to pro-
vide a significant linearization advantage over the polynomial
models. Generally, the linearization capabilities of polynomi-
als versus NNs are specific to the PA, its operation point,
and the properties of the applied signals. Typically, NNs tend
to outperform polynomials when strong nonlinear memory
behavior is present. This can be observed when applying a
waveform with larger bandwidth, as shown in Fig. 11(b),

where a 120 MHz wide OFDM waveform, consisting of three
40 MHz carriers was applied to the same PA. With the larger
bandwidth, the NNs tend to outperform the polynomial models
also at smaller parameter counts. However, the achievable
linearization is also slightly degraded, due to the excitation of
strong nonlinear memory behavior, and a comparably lower
in-band power density due to the widened bandwidth.

Results of selected model configurations are further detailed
and summarized in Table II, for the 100 MHz measurement
case. For the polynomial-based systems, only the respec-
tive best performing cases are reported, while for the NNs,
only configurations with a run-time complexity at around
2000 parameters are detailed. The differences in model accu-
racy map to the ACLR differences as reported in the table.
In addition to the obtained linearized ACLRs, also NMSE and
EVM figures are listed. The reported EVM results follow the
NMSE and ACLR trends, however, irrespective of the model,
the EVM results are bound to around 1.6% which is due to a
minimum EVM introduced by the digital PAPR reduction.

Representative power spectra of the linearized PA out-
puts are shown in Fig. 12, corresponding to the results
reported in Table II. Furthermore, Fig. 13 shows the measured
AM–AM and AM–PM behavior, with and without K-MENN
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Fig. 12. Measured PA output power spectra of the 1.8 GHz GaN Doherty
PA (100 MHz OFDM waveform, +38.9 dBm output power) without and with
DPD, using selected models reported in Table II.

Fig. 13. Measured AM–AM and AM–PM characteristics of the 1.8 GHz
GaN Doherty PA with an output power of +38.9 dBm running a 100 MHz
OFDM waveform. The linearized output has −41.0 dB NMSE and is achieved
using a K-MENN with N =4, K =2, and a model complexity of 3960 model
parameters.

linearization. As can be observed, the NN DPD successfully
compensates the strong nonlinear and dynamic distortion
effects of the PA, affecting both the phase and the amplitude.

D. Digital Predistortion Experiments at 3.5 GHz

In the second linearization experiment, we apply DPD to the
QPA3503 operating at 3.5 GHz. We use a wide, noncontiguous
multicarrier waveform, consisting of five 20 MHz OFDM com-
ponent carriers with 15 kHz subcarrier spacing and 256 QAM
as the subcarrier data modulation. The active component carri-
ers are placed at offsets of [−70,−30,+10,+30,+70] MHz,
thus spanning 160 MHz of total linear bandwidth. The signal
is oversampled by approximately 5× using a sampling rate of
798.72 Msamp/s. Again, we limit the PAPR of the composite
waveform to 8 dB by means of iterative clipping and filtering.
The PA is operated with an output power of +35.6 dBm such
that clipping free amplification of the waveform is feasible
with DPD.

A slightly larger NN input memory depth, namely
M = 7, is selected for this experiment and additional first-

Fig. 14. Measured DPD linearization results for the 3.5 GHz GaN Doherty PA
(160 MHz noncontiguous carrier aggregation OFDM waveform, +35.6 dBm
output power). K-MENN with N =2 and N =4 experts and varied K ≤ N are
considered. For each measured K-MENN realization, the model complexity
as well as the run-time complexity with respect to the sparse top-K gating
are shown and horizontally interconnected.

and third-order envelope inputs are used to augment NN
models, resulting in a total of b0 = 32 NN inputs. As in
the first DPD experiment, the NN HLs are parameterized to
match the model-complexities of RVTDNN and K-MENN in
order to allow for a direct and fair comparison. K-MENN
variants with N = 2 and N = 4 experts are considered,
and K-MENN sparsity with K ≤ N is assessed. The basis
function configurations of the polynomial cases are also
reevaluated for the different PA, compared to the 1.8 GHz
measurements.

The achieved ACLRs using the different DPD models are
reported in Fig. 14. For measuring the ACLR, the average
power densities of each 20 MHz wide channel, including
the in-between channels of the multicarrier waveform, were
considered and the worst case ACLR is always reported. In this
scenario, as can be observed, the NNs tend to significantly
outperform the polynomial reference methods. The sparsely
gated K-MENN allows for low ACLRs, also at low run-time
complexity. Thus, very low ACLR is achievable with modest
run-time complexity due to the sparse gating, e.g., the range
of 1000–2000 parameters. For ACLR levels below −50 dBc,
the run-time complexity of the K-MENN is 50%–66% lower
compared to equally performing RVTDNN, while the model
complexity of K-MENN is increased by 1×–1.5× (0%–50%).

Detailed results for selected configurations are reported in
Table III, stating also the obtained NMSE and EVM figures.
The corresponding example PA output spectral densities are
shown in Fig. 15. The spectrum view reveals that the worst
ACLR is found for the in-between adjacent channels of the
active carriers. Especially for these in-between adjacent chan-
nels, the NNs allow for a significantly better ACLR compared
to the polynomial models, while the ACLR differences in outer
channels are observed to be smaller. Finally, the scatter graph
in Fig. 16 shows the AM–AM and AM–PM profiles of the
distortion and the linearized case for an example K-MENN
DPD with K =2 and a run-time complexity of approximately
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TABLE III
SUMMARY OF THE RF MEASUREMENT RESULTS FOR THE LINEARIZATION OF THE 3.5 GHz GaN DOHERTY PA OPERATING A NONCONTIGUOUS 160 MHz

SIGNAL WITH AN OUTPUT POWER OF +35.6 dBm

Fig. 15. Measured output power spectra for the 3.5 GHz GaN Doherty PA
(160 MHz noncontiguous carrier aggregation OFDM waveform, +35.6 dBm
output power) without and with DPD using selected models with around
2000 parameters.

Fig. 16. Measured AM–AM and AM–PM characteristics of the 3.5 GHz GaN
Doherty PA with an output power of +35.6 dBm, running a noncontiguous
160 MHz carrier aggregation waveform, consisting of five 20 MHz carriers.
The linearized output has −42.9 dB NMSE and is achieved using a K-MENN
with N =4, K =1, and model complexity of 3992 model parameters.

2000 parameters. The high linearization performance is clearly
visible in the figure.

VI. CONCLUSION

In this article, we proposed the MENN approach with top-K
sparse gating for behavioral modeling and digital predistortion

of RF PAs. The K-MENN, such as the MENN, adopts the core
idea of the MEs principle, by providing a set of NN experts
which are combined by means of a NN gating unit. Combining
the soft gating with a top-K selector introduces dynamic spar-
sity to the model, allowing a new trade-off between model size
and run-time complexity without compromising DPD perfor-
mance. With the proposed end-to-end training scheme, the gat-
ing and expert NNs are jointly optimized, enabling the experts
to collaborate. Appropriate modifications of the training
scheme were discussed, which allow training of the K-MENN
at different levels of sparsity, including also the extreme case
of a fully switched NN model. An analysis of model, run-
time and training complexities was presented, which showed
that, assuming a suitable processing platform, in addition to a
reduction of run-time complexity, also the training complexity
can be reduced when using top-K sparse gating.

The K-MENN was evaluated experimentally using two
different PA units, one at 1.8 GHz and another one at 3.5 GHz,
and challenging 5G NR type OFDM waveforms. The mea-
sured results confirm that the proposed K-MENN is a highly
capable solution for both PA forward modeling and actual
DPD-based linearization. The sparse gating allows achieving
the high modeling capability of larger NN models, at a sub-
stantially lower run-time complexity. Our DPD experiments
showed potential for run-time complexity reduction by about
50% for very low ACLR levels.

In our future work, we plan to investigate suitable digital
processing platforms to support the sparse gating. We fur-
thermore expect that MENN concept can adopt other NN
topologies proposed in the literature, as to further decrease
the complexity. Also, many degrees of freedom have not yet
been investigated, such as combining experts with different
capabilities or applying MENN in a more dynamic scenario,
where the possibility to add or remove specific experts may
help to adapt the NN to new operating conditions.
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