

Vilma Salmikuukka

GUIDELINES FOR SUSTAINABLE
SOFTWARE

Master of Science thesis in technology
Information Technology and Communication Science

Prof. Hannu-Matti Järvinen
CST Lead Satu Kaivonen

January 2024

i

ABSTRACT

Vilma Salmikuukka: Guidelines for sustainable software
Master of Science thesis in technology
Tampere University
Master’s Programme in Information Technology
January 2024

Software applications contribute to greenhouse gas emissions indirectly through

energy consumption, hardware production, and disposal of electronic waste. This work

explores different factors that impact the environmental sustainability of software

applications and investigates how these factors can be optimized during the software

development process. The guidelines presented in this work include several strategies

and actionable practices that can be incorporated throughout the software lifecycle.

To reduce the environmental impact associated with hardware, it is important to

optimize the software for efficient utilization of hardware devices. The results of this work

underscore the importance of developing software that leverages containerization

techniques and cloud computing paradigms, ensuring optimal resource utilization across

diverse computing environments.

This work also explores how software applications consume energy and investigates

strategies to optimize energy usage from different perspectives. The findings emphasize

the importance of minimizing data transfer and reducing the computational load within

the software. By limiting the frequency and volume of data exchanges and reducing

unnecessary processing, significant reductions in energy consumption can be achieved.

Various higher-level aspects of software development process are also covered in

this work, ranging from project management and DevOps to user experience and

interface design. Several optimization strategies are introduced in each area. The text

also investigates how energy consumption is affected by different software

implementation elements, such as architecture, programming languages, frameworks,

data structures, and algorithms. Furthermore, the work provides a more focused

examination of web development, offering detailed insights into front-end, back-end, and

mobile development.

This work also highlights that the nature of the software influences the specific areas

where optimizations can be applied, and which practices are realistic to implement.

Therefore, the strategies and practices for sustainability need to be tailored to each

application's unique characteristics and requirements.

Keywords: Environmental sustainability, Software development, Green Coding, Web

applications

The originality of this thesis has been checked using the Turnitin OriginalityCheck

service.

ii

TIIVISTELMÄ

Vilma Salmikuukka: Guidelines for sustainable software
Tietotekniikan diplomi-insinööri
Tampereen yliopisto
Informaatioteknologian ja viestinnän tiedekunta
Tammikuu 2024

Verkkosovellukset vaikuttavat kasvihuonepäästöihin epäsuorasti

energiankulutuksen, laitteiston tuotannon ja elektroniikkajätteen hävittämisen kautta.

Tässä työssä tutkitaan erilaisia tekijöitä, jotka vaikuttavat sovellusten

ympäristöystävällisyyteen ja selvitetään, miten näitä tekijöitä voidaan optimoida

ohjelmistokehitysprosessin aikana. Työssä esitetyt suositukset sisältävät useita

strategioita ja käytäntöjä, jotka voidaan ottaa käyttöön koko ohjelmistokehitysprosessin

ajan.

Laitteistoon liittyvien ympäristövaikutusten vähentämiseksi on tärkeää optimoida

ohjelmisto hyödyntämään laitteita mahdollisimman tehokkaasti. Työn tuloksissa

korostetaan kontti- ja pilviteknologioiden hyödyntämistä, mikä auttaa varmistamaan

optimaalisen resurssien käytön useissa laskentaympäristöissä.

Lisäksi työssä tutkitaan, miten sovellukset kuluttavat energiaa, ja selvitetään

strategioita energian käytön optimoimiseksi eri näkökulmista. Työn tuloksissa

painotetaan tiedonsiirron minimoimisen ja laskennallisen kuorman vähentämisen

tärkeyttä. Rajoittamalla tiedonsiirron tiheyttä ja määrää sekä vähentämällä tarpeetonta

prosessointia voidaan saavuttaa merkittäviä vähennyksiä energiankulutuksessa.

Työssä käsitellään myös ohjelmistokehitysprosessin korkeamman tason näkökohtia,

kuten projektinhallintaa, DevOpsia, sekä käyttökokemus- ja käyttöliittymäsuunnittelua.

Useita optimointistrategioita esitellään jokaisella osa-alueella. Tekstissä tutkitaan myös,

miten erilaiset ohjelmistojen toteutuselementit, kuten arkkitehtuuri, ohjelmointikielet,

kirjastot, tietorakenteet ja algoritmit vaikuttavat energiankulutukseen. Lisäksi työssä

tarkastellaan tarkemmin verkkokehitystä ja käydään läpi yksityiskohtaisia näkemyksiä

käyttöliittymä-, taustapalvelu- ja mobiilikehityksestä.

Työssä korostetaan myös, että ohjelmiston luonne vaikuttaa siihen, millä aihealueilla

optimointeja voidaan soveltaa ja mitkä käytännöt ovat realistisia toteuttaa. Tästä syystä

kestävyyden strategiat ja käytännöt on räätälöitävä kunkin sovelluksen ainutlaatuisten

ominaisuuksien ja vaatimusten mukaan.

Avainsanat: Ympäristöystävällisyys, Ohjelmistokehitys, Vihreä koodi, Verkkosovellukset

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.

iii

PREFACE

This thesis marks the end of my studies at Tampere University. It was a long journey,

but thanks to an amazing group of friends, it was filled with laughter, love, and

unforgettable moments. I am also grateful to my family for their encouragement and

support throughout my studies. Additionally, a special thanks goes to my boyfriend for

always helping me and teaching me new things and being so patient with me. I could not

have done this without him.

Furthermore, I want to thank CGI and Satu Kaivonen for making this thesis possible and

providing such an interesting topic.

Tampere, 29 January 2024

Vilma Salmikuukka

iv

CONTENTS

1. INTRODUCTION .. 1

2. ENERGY ... 2

2.1 Carbon Intensity ... 2

2.2 Software energy consumption .. 4

2.3 Measuring energy consumption & carbon emissions 5

2.3.1 Metrics .. 5

2.3.2 Tools ... 5

3. HARDWARE ... 8

3.1 Embodied carbon ... 8

3.2 Extending lifespan .. 9

3.3 Static power draw & Energy proportionality .. 10

3.4 Increasing utilization ... 11

3.4.1 Virtualization ... 12

3.4.2 Containerisation .. 13

4. DEVOPS & PROJECT MANAGEMENT .. 15

4.1 Cloud .. 15

4.1.1 Power Usage Effectiveness (PUE) .. 15

4.1.2 Data center location .. 16

4.2 CI/CD ... 18

4.3 Methodologies .. 18

5. WEB APPLICATION DEVELOPMENT .. 21

5.1 Front-End Development .. 21

5.1.1 DOM ... 22

5.1.2 Frameworks .. 22

5.1.3 WebAssembly ... 23

5.2 Back-End Development .. 23

5.2.1 HTTP .. 23

5.2.2 Database .. 24

5.2.3 Frameworks .. 24

5.3 Mobile Development ... 25

6. SOFTWARE IMPLEMENTATION ... 28

6.1 Architecture .. 28

6.2 Programming language .. 30

6.3 Concurrency ... 34

v

6.4 Data Structures & Algorithms .. 34

6.5 Cache ... 37

6.6 Synchronization .. 38

6.7 Data format ... 38

6.7.1 Text-based data .. 38

6.7.2 Images .. 39

6.8 Code implementation .. 40

7. USER EXPERIENCE .. 42

7.1 Usability .. 42

7.1.1 Content ... 42

7.1.2 User Preferences .. 43

7.2 User Interface Design ... 43

7.2.1 Images .. 44

7.2.2 Videos ... 44

7.2.3 Colors ... 45

7.2.4 Fonts ... 46

8. CONCLUSION .. 47

vi

LIST OF SYMBOLS AND ABBREVIATIONS

ICT Information and Communications Technology
GHG Greenhouse gas
CO2 Carbon dioxide
kWh Kilowatt-hour
Elec. Electricity
ADP Abiotic resource depletion
MIPS/W Million instructions per second per watt
FLOPS/W Floating point operations per second per watt
HTTP Hyper Text Transfer Protocol
GB Gigabyte
SCI Software Carbon Intensity
OS Operating System
DevOps Development and Operations
CI/CD Continuous Integration and Continuous Deployment
PUE Power Usage Effectiveness
SPA Single-Page Application
SSR Server Side Rendering
SSG Static Site Generation
DOM Document Object Model
Wasm WebAssembly
CPU Central processing unit
PWA Progressive Web Application
OOP Object-Oriented Programming
API Application Programming Interface
UX User Experience
UI User Interface
IA Information Architecture
OLED Organic Light-Emitting Diode
LCD Liquid Crystal Display

1

1. INTRODUCTION

The purpose of this work is to find out what are the current recommendations and

guidelines for sustainable software. The research objectives for this work are to explore

the factors that impact the environmental sustainability of software and to determine how

these factors can be optimized and integrated into the software development process.

These research goals are achieved by conducting a comprehensive review of the current

literature on the subject.

Software development is one of the only engineering fields where environmental

sustainability is only rarely taken into consideration. It is a common misbelief that digital

solutions and technology are inherently clean and environmentally sustainable. This is

understandable since software itself is not a source of pollution, as it doesn’t produce

physical waste or emissions. However, as software requires energy to operate and

hardware to operate on, it contributes to pollution indirectly through energy consumption,

electronic waste, and the production and disposal of hardware.

The Information and Communications Technology (ICT) sector has been estimated to

produce 4 % of the total greenhouse gas emissions (GHG) and consume 10 % of the

electricity of the world. This includes the manufacture and power usage of 34 billion

digital devices, and the millions of kilometers of cable they are connected with [1] [2].

Although the ultimate responsibility of hardware and energy consumption is always with

the device, software dictates the way hardware is utilized and energy is consumed [3].

Recently government policies and institutional standards have begun moving towards

sustainable software. This work aims to gather guidelines for every state of the software

lifecycle with actionable patterns and tools for decarbonizing software. While the

guidelines have been generalized as much as possible, the main focus of this work is

web application development.

In the context of this work, sustainable software means ways to make software itself

greener, as opposed to software that encourages environmentally sustainable

movements. However, it is worth noting that software also has the potential to

significantly reduce GHG emissions through innovative solutions for digitalization, such

as online meetings which reduce the need for traveling [4].

2

2. ENERGY

Green transition and the digitalization that follows require a lot of energy. This chapter

briefly explains how energy consumption contributes to carbon emissions through

carbon intensity, and how emissions and energy consumption are distributed between

different devices. Following that, different metrics and methods are introduced for

measuring emissions related to software.

2.1 Carbon Intensity

Carbon intensity measures the amount of carbon dioxide (CO2) emitted per kilowatt-hour

(kWh) of electricity produced. It is used as a key metric in assessing the environmental

impact of energy production. Carbon intensity can be influenced by the source of the

electricity, the efficiency of the energy conversion process, and the emissions associated

with extracting and transporting the electricity source. [5]

Electricity that is generated using fossil fuels (coal, oil, and natural gas) is more carbon

intensive while nuclear power and renewable energy sources, such as hydropower, wind,

and solar, are defined as low-carbon energy sources. The percentage of electricity

generated from burning fossil fuels varies by country and region, as visualized in Figure

1. Globally, fossil fuels have traditionally been the dominant source of electricity

generation. [6]

3

Figure 1. Visualization of the variability in carbon intensity in different regions [6].

Fossil fuels account for about 80% of global electricity production. Oil is the largest

source of electricity from fossil fuels, followed by coal and natural gas. The remaining

electricity comes from renewable energy sources and nuclear power. [7] [8]

Carbon intensity also changes over time due to the inherent variability of renewable

energy caused by the changes in weather conditions as illustrated in Figure 2 [6].

Figure 2. Visualization of the variability in carbon intensity due to weather conditions

[6].

4

Unfavorable weather conditions for renewable energy sources can lead to a decrease in

their contribution to the energy mix. In such cases, the energy demand is often met by

conventional power plants, which typically have a higher carbon intensity. Shifting

computation to a time and a place where weather conditions are favorable and

renewable energy is available, can help decrease emissions [9].

2.2 Software energy consumption

Data centers, telecommunications equipment, and user end devices all consume energy

as a result of running software. These devices contribute to other forms of pollution as

well, such as water usage and mineral mining. Table 1 presents how different forms of

pollution are distributed between the devices. The emissions related to the

manufacturing process are also accounted for.

Table 1. Emissions distribution [1].

Energy GHG Water Elec. ADP

User

equipment
60% 63% 83% 44% 75%

Network 23% 22% 9% 32% 16%

Data centres 17% 15% 7% 24% 8%

As Table 1 shows, devices located in data centers consume the least amount of energy,

only about one-sixth of the total amount. Network devices are not far behind, consuming

nearly a quarter of the total amount. However, users’ devices dominate energy

consumption, by consuming over half of the total energy. Producing environmentally

friendly software can influence the energy consumption of all this equipment.

5

2.3 Measuring energy consumption & carbon emissions

The environmental footprint of a software can be measured through different

characteristics of sustainability, such as energy efficiency, hardware efficiency, and

resource optimization [10]. Continuously measuring the emissions throughout software

lifecycle, from design and coding to deployment and maintenance, can help identify

critical components and monitor progress towards improvement. The obtained results

can be compared to previous measurements or those of competitors [11].

2.3.1 Metrics

In most major industries, the key metrics of environmental performance and energy

efficiency have been well-established and widely adopted. These can be, for example,

liters per 100 km for cars or energy per square meter for homes. The tools and

techniques used for calculating these metrics have become standardized, ensuring

consistency and uniformity among environmental evaluations [12].

Various environmental standards and efficiency metrics exist for hardware, such as

MIPS/W (million instructions per second per watt), and FLOPS/W (floating point

operations per second per watt). However, no equivalent standards have been

established for software [13]. Defining clear metrics allows for a better understanding

and comparison of the measurements.

In general, energy efficiency can be defined as useful work done per energy

consumed [14]. As the useful work done varies greatly depending on the software and

even within different parts of the software, the unit of efficiency has a wide range of

possibilities [15]. These can be for example, the number of sorted items per Joule, HTTP

requests per second, or Joules per database query [16].

Different factors need to be considered when measuring the overall sustainability and

carbon emissions of the software. Measures, such as the amount of data transferred

(kWh/GB) and the carbon intensity of energy (CO2/kWh), can be important indicators of

carbon emissions. [12]

2.3.2 Tools

In order to determine the total carbon emissions of a software application, it is essential

to have detailed information on energy consumption, carbon intensity, and the specific

hardware utilized by the software. This information can be difficult to acquire [17].

However, there are several tools that can give indicative information about the

environmental footprint of the software. Some of these tools are listed in Table 2.

6

Table 2. Tools for assessing the environmental footprint of software.

Tool Description Type Ref.

Website Carbon

Calculator,

Ecograder

Estimate carbon footprint of websites. Free, online [18]

[19]

Greenspector Measure and analyze the

environmental impact of mobile and

web applications.

Commercial [20]

PowerAPI Measure power consumption of

applications.

Free, open-

source

[21]

CAST Highlight Analyze application and source code

for energy consumption patterns and

make suggestions for improvement.

Commercial [22]

Lighthouse Google chrome developer tool for

analyzing the performance of a web

page.

Free, open-

source

[23]

Emissions

Impact

Dashboard

Monitor the carbon impact of cloud in

Microsoft Azure.

License [24]

Carbon Footprint Measure, report, and reduce cloud

carbon emissions in Google Cloud.

Commercial [25]

Cloud Carbon

Footprint

Cloud carbon emissions

measurement and analysis tool

supporting multiple cloud providers.

Free, open-

source

[26]

Software Carbon

Intensity (SCI)

Specification

A specification that describes how to

calculate a carbon intensity score for

software applications.

Free, open-

source

[27]

7

Different tools can give insights on different aspects of the environmental footprint of the

software. Using several different tools in a versatile way and combining the results can

give a better overall understanding of the total emissions.

8

3. HARDWARE

One aspect of software sustainability is designing software to be hardware efficient. This

chapter provides an overview on how hardware relates to carbon emissions and

consumes energy. Different options are introduced on how software can utilize hardware

more efficiently.

3.1 Embodied carbon

Hardware contributes to pollution through usage, manufacturing, and disposal of

devices. The production of hardware often involves the extraction of natural resources

and the use of toxic chemicals. The disposal of hardware often produces electronic waste

as devices may contain hazardous materials [28]. Embodied carbon measures the

amount of pollution emitted during the manufacturing and disposal of a device. Total

carbon pollution means the embodied carbon and the pollution associated with using the

device [29].

Figure 3. Emissions per ICT device [29] [30].

Figure 3 illustrates the ratio of emissions related to the usage and production of end user

devices. Production is the main contributor to GHG emissions across all types of devices.

These emissions are driven up by the utilization of different raw materials and complex

manufacturing processes. The impact of production emissions can be reduced by

extending hardware lifespan [30].

9

3.2 Extending lifespan

By the time a new device is purchased, it has already emitted a significant amount of

pollution in the manufacture process. In addition to that, devices have a limited lifespan,

which means that eventually, they will be unable to handle modern workloads and will

require replacement. One approach to account for embodied carbon is to amortize the

carbon over the expected life span of the device as illustrated in Figure 4. [29]

Figure 4. Increasing the usage time to reduce amortized carbon [29].

10

Hardware lifespan can be extended by increasing the usage time of the device. This can

be achieved by developing software that runs on older hardware, and thereby reduce

the modern workload [31]. Figure 4 illustrates how adding one year into the lifespan could

reduce the yearly amortized carbon.

3.3 Static power draw & Energy proportionality

The static power draw of a computer means how much electricity is drawn in idle state.

Computer is in idle state when it is not processing any tasks or performing any

operations. Servers require power even when they are in idle state because they must

remain powered up in order to maintain their state of readiness. This can mean for

example, keeping the network connection active, which allows the server to be available

to receive new tasks. The amount of power consumed in idle can vary depending on the

server's hardware specifications, and the power management configurations [32].

The energy proportionality measures the relationship between power consumed by a

computer and the rate at which it is being utilized [32]. Computer power consumption

responds differently to varying utilization levels. This means that the energy

proportionality of the computer is not linear, as illustrated in Figure 5. Moreover, even

energy-efficient servers tend to consume a relatively high amount of power when they

are in idle state [33].

11

Figure 5. Energy Proportionality [32].

Because of this, the more a computer is utilized, the more efficiently it converts electricity

to practical computing operations. However, a lot of resources recommend the exact

opposite, and encourage developers to maximize idle (“race to idle”) [34] [35]. This is

because hardware efficiency and embodied carbon are not taken into consideration in

these materials. Hardware efficiency can be improved by Increasing utilization.

3.4 Increasing utilization

One way to increase hardware utilization and thus, improve hardware efficiency, is to run

the workload on as few servers as possible, as illustrated in Figure 6. Servers running at

the highest utilization rate are maximizing energy efficiency and minimizing embodied

carbon [29]. However, more research is required to determine how this affects the

cooling demand and long-term durability of the device.

12

Figure 6. Increasing server utilization [29].

On the other hand, running servers at lower capacity ensures that peaks in demand can

be handled without compromising performance [29]. Figure 7 shows how public cloud

can offer high utilization rate and spare capacity.

Figure 7. On-premise and cloud hardware utilization [29].

Cloud services typically increase the energy and hardware efficiency of the software

application when compared to on-premise data centers. This is mainly due to reduced

overheads and more efficiency in scalability [31] [36]. Therefore, moving computation to

public cloud can reduce the overall emissions caused by the software application [29].

3.4.1 Virtualization

A typical system which is operated with only one operating system (OS) per device,

generally has a relatively low usage rate with a lot of unused hardware resources, as

illustrated in Figure 8. However, the introduction of virtualization technology has helped

address the issue of low usage rates by making better use of the available resources of

the equipment [37].

13

Figure 8. Example of a typical device.

Figure 8 shows an example where the device only contains a single application. This is

often necessary, so that different applications can be isolated from each other. Isolation

ensures that applications are running in a clean and safe environment. As different

applications often require different dependencies, it is important to have control over

resources and configurations [38].

Virtualization technology employs a hypervisor to abstract physical resources logically

and allocate them to multiple operating systems running on a single device

simultaneously [37]. Figure 9 visualizes how hypervisor allows multiple isolated

applications to run in the same device while maximising hardware usage.

Figure 9. Example of virtualization.

Virtualized systems consume more energy than physical ones due to higher hardware

utilization rate [39]. The energy consumption depends on the hypervisor used with KVM

being the most efficient compared to Xen and vSphere [40].

3.4.2 Containerisation

Virtualization require the whole system (hardware, and OS) to be virtualized. However,

with the use of containers, individual applications can be isolated from each other, and

"virtual machines" can be created without the overhead associated with traditional

 ard are

 est o erating s stem est o erating s stem

 er isor

14

virtualization setups. This means that containers allow for a more lightweight and efficient

way to virtualize applications [41]. Containerization is illustrated in Figure 10.

Figure 10. Example of containerization.

Containerization consumes less power compared to hypervisors [38] [42]. However,

some cases of virtualization cannot be containerized, such as those where a different

type of OS is required [41].

 ard are

 ontainer ontainer ontainer ontainer

 erating s stem

15

4. DEVOPS & PROJECT MANAGEMENT

Development and Operations (DevOps) combines a set of practices and tools that

automate and streamline the software delivery process. This increases the

organization’s abilit to deli er a lications and ser ices more quickly and reliably [43].

This chapter goes over different factors that affect the energy consumption related to

DevOps, including cloud, continuous integration and continuous deployment (CI/CD),

and project management.

4.1 Cloud

The cloud provides services, such as computation, databases and servers over the

internet. It allows accessing and utilizing these resources on-demand, without the need

for local hardware or infrastructure. Although the energy consumption of the cloud is

heavily affected by the cloud provider, there are some factors that can be taken into

consideration by the cloud consumers.

4.1.1 Power Usage Effectiveness (PUE)

The power usage effectiveness (PUE) metric is widely used by data center industry, to

measure the infrastructure energy efficiency for data centers. PUE is a measure of the

energy used by computing equipment compared to the energy used for cooling and other

overheads that support the equipment [44]. A data center with a PUE close to 1.0 means

that computing is using almost all the energy, while a PUE of 2.0 indicates that an

additional watt of power is required to cool and distribute power to the IT equipment for

every watt of power used by the equipment.

16

Figure 11. PUE 1.5 [32]

To put it simply, PUE can be thought of as a multiplier for an application's energy

consumption. For instance, as illustrated in Figure 11, if an application consumes 10

kWh and the PUE of the data center it runs in is 1.5, the actual consumption from the

grid is 15 kWh. This is because 5 kWh goes towards the operational overhead of the

data center, while the remaining 10 kWh goes to the servers that run the application [32].

In 2021, the average PUE of data centers was 1.57 [45]. Choosing a cloud provider and

data center with lower PUE can help increase the overall energy efficiency of the

software.

4.1.2 Data center location

The location of the data center is an important factor of energy consumption. The further

data travels, the more energy is consumed in transmitting the data through the network.

Therefore, locating servers closer to users can help to reduce energy consumption.

However, it can be hard to define the precise center of mass of the users, but website

analytics can help to get a rough idea by identifying the country where core user groups

are located [12].

17

Figure 12. Live data of carbon intensity of electricity in Europe on November 19th 2023

[46].

The location of the data centre can also have an impact on the availability of clean energy

sources for the data center. Figure 12 shows the electricity map that presents live data

for the carbon intensity of electricity by country [46]. The usage of renewable energy

sources also varies between different cloud providers. Major cloud providers, such as

Microsoft, Google, and Amazon, are making investments in sustainable energy sources

to power their data centers. Additionally, many providers engage in CO2 certificate

trading to present a more environmentally friendly image for the energy waste generated

by their data centers [31]. Typically cloud providers are being very public about these

kinds of commitments, which makes it easier to choose a more environmentally friendly

provider.

18

4.2 CI/CD

Continuous Integration (CI) and Continuous Deployment (CD) is a software development

approach that involves frequently integrating code changes into a shared repository, and

automating the required processes to ensure that software is always in a releasable state

[47]. The CI/CD process is automated in a pipeline, which can consist of various stages,

such as code compilation, unit testing, integration testing, code analysing, packaging,

and deployment.

Running the pipeline consumes energy and can take a very long time to complete [48].

As the pipeline typically includes very critical and essential operations that ensure

software quality, such as testing, the energy cost of running the pipeline should be

reduced without compromising software quality. This could be done by running the

pipeline more strategically and avoiding unnecessary triggering of the process [49]. The

frequency of running the pipelines and the workload of each run should be considered

to reduce the energy consumption related to the CI/CD process.

To reduce the frequency of running the process, automatic triggers of the pipeline could

be limited to the most important parts of the integration. For example, the pipeline could

run automatically only when a complete feature (e.g., branch) is integrated, instead of

when a single change (e.g., commit) is made. The pipeline could be triggered manually

for individual changes if needed [48].

Additionally, the pipeline could run only partially in some situations. For example, tests

could be run when a feature is ready without building and deploying the whole software,

and unit tests could be skipped for units that have not changed. Configuring which parts

of the pipeline are set to run can reduce the workload of the run. Alternatively, the CI/CD

process could be skipped entirely for changes that are unlikely to impact any functionality

of the software, such as changes made to the documentation or comments [49].

4.3 Methodologies

The choice of software development methodology can influence the environmental

impact of the project. Different methodologies offer different approaches for planning,

organizing, and managing the software development process. By choosing a method

that optimizes resource utilization and reduces waste, the overall environmental

sustainability of the software can be improved [50].

19

The waterfall methodology is a traditional project management approach that follows

a sequential and linear process, where each phase of the project is completed before

moving on to the next one [11]. The typical phases in waterfall methodology include

requirements gathering, design, implementation, testing, deployment, and maintenance

as presented in Figure 13.

Figure 13. Example of waterfall methodology [51].

The waterfall methodology can promote waste in several ways through wasted efforts

and profitless work. It involves a significant amount of upfront planning, documentation,

and design work, which does not account for new ideas and knowledge that arise during

the development process. This also makes it challenging to adapt or incorporate changes

in requirements efficiently [11]. Furthermore, there is rather limited communication and

collaboration between team members and stakeholders during the development

process. The lack of regular feedback can result in misunderstandings and thereby,

wasted efforts [11].

The agile methodology, on the other hand, is a flexible and iterative approach to

software development that emphasizes continuous collaboration between developers

and stakeholders. Agile methodology focuses on iterative and incremental development,

which means that the development team delivers working software in short cycles which

is visualized in Figure 14 [50].

20

Figure 14. Example of agile methodology [52].

By developing and delivering software in small increments that are frequently tested, less

time and resources are wasted, since developers can quickly identify and fix problems

as they arise. Agile methodology also involves continuous feedback loops between

developers and stakeholders, which allows the development team to identify areas of

improvement and quickly react to changes in requirements [11]. Choosing agile methods

can help utilize resources more efficiently and reduce wasted time and effort which

improves the overall environmental sustainability of the software [53].

21

5. WEB APPLICATION DEVELOPMENT

This chapter describes how different aspects affect the energy consumption of web

applications. Web application development includes front-end, back-end and mobile

development. Each section goes over various factors that affect the energy consumption

and introduces ways to improve these.

5.1 Front-End Development

Front-end refers to the client, which is the user-facing part of a software application. It

includes the visual and interactive elements that users see and interact with directly.

Modern web applications are typically implemented as a single-page application

(SPA). A single-page application is a web application that dynamically updates the

content on a single web page, instead of loading separate pages for different

interactions. SPAs use JavaScript to retrieve and display data without requiring a full

page reload, resulting in a faster and more interactive user experience [54]. However,

this typically requires extensive client-side JavaScript processing, which can be energy

intensive.

Server-side rendering (SSR) is a technique, where the server renders the web page

and sends the HTML to the client, instead of relying on client-side JavaScript to render

content. This approach reduces the client-side processing required, resulting in faster

initial load times and potentially lower energy consumption on the client's device [55].

SSR is suitable for pages that consist of static content as frequent content updates can

lead to increased data traffic.

Static Site Generation (SSG) is another technique for rendering web pages on the

server-side. When the data required to render a page is consistent for all users, the page

can be rendered only once during the build process, instead of rendering the page for

each client separately on every request. SSG can only be applied to pages that use static

data, that is known during the build process and remains unchanged between

deployments. Any updates to the data require a new deployment [56].

22

5.1.1 DOM

Document Object Model (DOM) is the browser's way of conceptualizing document

content by turning the web page code into visual objects. Each HTML element is

represented as a node in the DOM. The number of nodes in the DOM determines how

much memory the browser requires and the time it takes to display and update the page.

A higher number of nodes in the HTML means more time spent processing and rendering

each element. Moreover, any interaction with the DOM through JavaScript requires

additional processing time and memory to navigate the DOM elements [57] [58].

Different frameworks use different approaches to manipulate the DOM. Some

frameworks, like React and Vue, use a virtual DOM to efficiently update the actual DOM.

They update a virtual representation of the DOM first and compare it to the actual DOM.

This allows the browser to only re-render the parts that have changed, minimizing actual

DOM manipulations, and reducing the computational workload. Other frameworks, like

Angular, re-rendering the entire DOM whenever there is a change in the application

state [59]. This can lead to more extensive and potentially less energy-efficient DOM

manipulations and updates.

5.1.2 Frameworks

In addition to DOM manipulation, there are several other aspects that can affect the

efficiency of a front-end framework, such as bundle size and the number of components

and elements within them, that need to be processed on each render [60] [59]. These

are listed for three of the most popular frameworks in Table 3.

Table 3. Front-end frameworks. [59]

Framework
Bundle

size
DOM

Components

processed

Elements

processed

Angular Large Real All Bindings only

React Small Virtual
Subtree of updated

component
All

Vue Small Virtual Dirty components only Bindings only

Of these frameworks, Vue is the most efficient choice, showing very similar performance

to vanilla JavaScript. It is followed by Angular, which was more performant than React

23

[59] [60] [61]. However, React was found the most responsive in terms of being ready to

accept user interactions after DOM manipulation [60]. Although the performance was

measured through duration, it correlates with energy consumption, since the tests were

run on the same processor at full power. It is also worth noting that there are more

efficient versions of React available, such as Preact, which shows similar results to

Angular or even Vue in some cases [61].

5.1.3 WebAssembly

For over two decades, JavaScript has been the standard scripting language for client-

side web development. However, it was not designed with performance in mind, and it

falls short in energy efficiency. To overcome this, a new portable and efficient bytecode

language, WebAssembly (Wasm), has been developed [62]. It is a low-level assembly-

like language with a compact binary format [63]. Assembly is human-readable

abstraction on top of machine code.

Programs written in other languages can be run in the browser by compiling them to

Wasm. This way the performance intensive JavaScript code can be replaced with more

energy efficient languages [63]. This has been shown to have a significant effect on the

energy efficiency [64].

5.2 Back-End Development

Back-end refers to the server-side components of a software application. It is responsible

for handling tasks such as data storage, business logic, and communication with the

front-end. In a typical scenario, the server receives requests from the front-end,

processes them, retrieves, or manipulates data from databases, and sends back the

appropriate response.

5.2.1 HTTP

The server typically communicates with front-end via Hyper Text Transfer Protocol

(HTTP). This HTTP communication is typically the most energy consuming operation of

the network [65]. One way to reduce energy consumption related to HTTP

communication is by bundling multiple small HTTP requests into fewer, larger requests

[66].

Another technique involves attempting to parse an HTTP request with the assumption

that it is valid and aborting if the parsing fails, rather than first validating that it is parse-

24

able and then parsing it. Parsing gives access to the validated information straight away,

while validation throws it away and then it needs to be parsed anyway [67].

5.2.2 Database

Using efficient database queries and minimizing unnecessary data retrieval can help

reduce the energy consumption of a software application. To reduce the amount of data

needed to transfer, data-centric calculations can be performed in the database [68]. This

can mean for example, querying only a certain selection of the data, instead of querying

all the data and filtering it in the application code.

More complex calculations and CPU (Central Processing Unit) intensive operations are

more efficient to do in the application code, rather than in the database [69]. However,

aggregate functions, such as MIN, MAX, SUM, and AVG, are typically more performative

than the equivalent code implementation [68].

Moreover, the type of the database can have an impact on the energy efficiency of the

application. Traditional relational databases, such as MySQL or PostgreSQL, offer

support for structured data with complex relationships. However, they commonly act as

a bottleneck withing an otherwise parallel application, in which case delegating some of

the processing away from the database might be beneficial [68].

On the other hand, NoSQL databases, such as MongoDB or Cassandra, excel at

handling large volumes of unstructured data with high scalability requirements. They are

more efficient at retrieving and storing data than relational databases [70] [71]. However,

the use of NoSQL databases might increase the need for data processing in the

application code, which could end up being less energy efficient. This needs further

research.

5.2.3 Frameworks

Back-end frameworks have significant differences in their efficiencies [72]. Lightweight

frameworks (e.g., Fastify, FastAPI), that have minimal overhead and dependencies, tend

to consume fewer server resources, resulting in lower energy consumption compared to

heavier alternatives (e.g., Express, Django). Figure 15 shows how many requests some

of the most popular frameworks can process in a second (higher is more efficient).

25

Figure 15. Requests per second for different Back-end frameworks (2023) [73].

The choice of programming language heavily affects the performance, but there are also

notable differences in frameworks within the same language. For example, Fastify can

process nearly three times more requests per second compared to Express, even though

they are both JavaScript frameworks. Similarly with Python frameworks, Flask can

process twice as much as Django, and FastAPI can process over three times more than

Flask. [73]

5.3 Mobile Development

Mobile devices such as smartphones and tablets derive the required energy from

batteries, which have a limited size and capacity. Therefore, it is crucial to manage

energy consumption effectively [65]. Figure 16 shows how energy consumption is

distributed in a typical mobile device. However, it is worth noting that this can vary a lot

based on the activity and device used [74].

26

Figure 16. Power consumption distribution in a mobile device (2013) [3].

As seen from Figure 16, the CPU is one of the most power consuming components.

Some resources suggest CPU offloading to reduce energy consumption. This means

moving computation to an external execution environment (e.g., the cloud) [75] [76].

However, although moving energy consumption to a different location can reduce the

consumption within the device, the effect on the total energy consumption requires more

research.

Mobile applications can often include background activities, which refer to the execution

of tasks or operations that continue to run even when the application is not actively in

the foreground or visible to the user [77]. Background activities enhance the user

experience, improve app functionality, and provide timely updates and notifications.

However, they can consume a lot of energy as they require the device to be activated or

“ oken ”. This could be optimized by bundling activities together, instead of activating

the device multiple times, as illustrated in Figure 17 [78].

Figure 17. Combining background activities to optimize the activation energy needed

[78].

 ask ask ask
 ombined

tasks

27

The display is also one of the most power consuming components of the device.

Therefore, limiting the screen time can be an effective way to reduce the power

consumption. This can be done, for example, by allowing users to interact with the

application using alternative interfaces, such as audio or earphone buttons, although

more research is needed to evaluate the power consumption of such alternative

interfaces. The power consumption of the screen can also be affected by user interface

design as discussed in Chapter 7 [78].

Another highly power consuming component is the cellular network. As Wi-Fi

consumes significantly less energy, it is advised to use that instead of cellular. Heavy

data connections could be delayed or disabled until the device is connected to Wi-Fi.

[78]

Additionally, there are several approaches to consider when developing applications

for multiple platforms, such as Android and iOS. One option is to develop applications

natively, which requires separate applications to be implemented for each platform. This

is the most energy efficient approach, however, building and maintaining several code

bases with different technologies requires additional work and knowledge from the

development team [79].

Another option is to use cross-platform development approaches, such as Flutter,

Capacitor, React Native or progressive web applications (PWA). These allow apps to be

deployed for multiple platforms from a single code base. From these approaches, Flutter

has been shown to be the most energy efficient choice, followed by Capacitor and PWAs,

with React Native being the least efficient [79].

28

6. SOFTWARE IMPLEMENTATION

Software is getting slower at a faster rate than hardware is becoming faster. This means

that the improvements made in microchips through electrical engineering is being

outpaced by the software utilizing the hardware [80]. Software engineers are typically

not required to take energy efficiency into consideration during the development process

[81]. This chapter goes over different aspects of software implementation and the energy

optimization possibilities related to these.

6.1 Architecture

A well-designed software architecture can significantly help decrease energy

consumption. Research has shown that object-oriented programming (OOP) that

implements metrics of high-quality architecture, such as modularity, scalability, and

reusability, can reduce energy consumption by up to 30% [82]. These metrics are

described in Table 4.

Table 4. Architectural metrics. [82]

Metric Description

Loose coupling
Components do not depend on each other and can operate

independently.

Abstraction of

communication

Hiding away communication details behind a simple

interface.

Expressive power
Simplicity of the architecture so that it can be understood

easily.

Evolutionary power
Easiness of updating and extending the software in the

future.

Depth of packages The depth of subpackages used for composition.

Modularity refers to the practice of breaking a system down into smaller, reusable units

(modules) that can be developed, tested, and maintained independently. Modular

29

software consists of more components, which increases the communication between

them but reduces the payload on each message. In the context of database access,

modularity has been shown to decrease energy consumption. While the software

consisted of more database calls, the reduced amount of data transferred per call

resulted in less overall energy consumption. [83]

However, modularity can lead to software bloat, which refers to software becoming

larger and heavier, affecting the performance and energy efficiency of the program.

Modularity itself is not the issue, but as modules are often designed to be as generic as

possible, they are harder to optimize for specific use cases. In doing so, programmers

unintentionally introduce unnecessary processing and data overhead for the sake of

reusability. [84]

Another thing that can cause software bloat and increase energy consumption is the

excessive use of external libraries [85]. Libraries can often be very bloated, and they

might come with a lot of unnecessary components. For example, a library for drawing

diagrams can consist of multiple different types of diagrams, when only one specific type

of diagram is used. However, libraries can also be very modular in which case, by being

selective about which parts to include, file sizes can be kept minimal.

The high-level architecture dictates the workload distribution of the software

application. For web applications, moving computation away from the end-user devices

(client) can help increase the overall energy efficiency of the software, assuming

computation is more energy efficient in another environment [14]. This can be achieved

through various architectural patterns.

In Client-Server Architecture, which is visualized in Figure 18 the server is responsible

for processing and managing data, while the client mainly handles the user interface.

This allows multiple clients to access the same server where common calculations can

be executed once instead of every client performing the calculations themselves [86].

Figure 18. Client-server architecture.

Microservices Architecture extends the Client-Server Architecture by dividing the

server-side responsibilities into smaller, independent services that communicate with

each other through APIs (Application Programming Interface). This is illustrated in Figure

30

19. Different services can be responsible for e.g., storing data, running complex

calculations, and accessing data from an external source [86].

Figure 19. Microservices architecture.

This allows services to be deployed independently and scaled up or down as needed,

which can reduce energy consumption [87]. However, it typically requires more frequent

API calls, which can increase energy consumption on the network [65]. Further research

is required to compare the energy efficiencies of these architectural patterns.

6.2 Programming language

Programming languages differ in many mechanisms that can affect energy efficiency.

One such significant mechanism is the execution type of a programming language,

which defines how code written in that language is processed and run. Languages can

be compiled, which means that the code is translated to machine code before execution.

Interpreted languages are translated and executed simultaneously one instruction at a

time. In virtual machine languages, code is translated to an intermediate form before it

can be executed by a virtual machine [88]. Table 5 presents the energy efficiencies of

different programming languages.

31

Table 5. Programming language efficiencies [89].

Rank Language Execution type Energy (J)

1 C Compiled 1.00

2 Rust Compiled 1.03

3 C++ Compiled 1.34

4 Ada Compiled 1.70

5 Java Virtual machine 1.98

6 Pascal Compiled 2.14

7 Chapel Compiled 2.18

8 Lisp Virtual machine 2.27

9 Ocaml Compiled 2.40

10 Fortran Compiled 2.52

11 Swift Compiled 2.79

12 Haskell Compiled 3.10

13 C# Virtual machine 3.14

14 Go Compiled 3.23

15 Dart Interpreted 3.83

16 F# Virtual machine 4.13

17 JavaScript Interpreted 4.45

18 Racket Virtual machine 7.91

19 TypeScript Interpreted 21.50

20 Hack Interpreted 24.02

21 PHP Interpreted 29.30

22 Erlang Virtual machine 42.23

23 Lua Interpreted 45.98

24 Jruby Interpreted 46.54

25 Ruby Interpreted 69.91

26 Python Interpreted 75.88

27 Perl Interpreted 79.58

32

As Table 5 shows, compiled languages tend to consume the least energy, interpreted

languages consume the most, and virtual machine languages are scattered in the

middle. Interpreted languages are typically more readable, easier to learn, and faster to

develop. The trade-off between efficiency and easiness should be taken into

consideration when choosing a programming language.

It is worth noting, that there have been some discussions [90] [91] regarding the results

of [89], and particularly the energy consumption of TypeScript. Since TypeScript

compiles to JavaScript, it should be expected to show more similar results. In the study,

one test (fannkuch-redux) results TypeScript to consume about 1000 times more energy

compared to JavaScript, as opposed to the other tests, which only resulted in minor

differences. This has been speculated to be an implementation error in the test code,

which is available in GitHub [92]. In the source code, the JavaScript and TypeScript

implementations of the fannkuch-redux are somewhat different, and therefore this matter

needs further research. However overall, the study is indicative.

Table 6 shows the estimated popularities of different programming languages. The

popularity has been estimated by analyzing how often language tutorials are searched

on Google [93].

33

Table 6. Popularity of programming languages [93].

Rank Languge Change Share Trend

1 Python - 27.43 % -0.2 %

2 Java - 16.19 % -1.0 %

3 JavaScript - 9.4 % -0.1 %

4 C# - 6.77 % -0.3 %

5 C/C++ - 6.44 % +0.2 %

6 PHP - 5.03 % -0.4 %

7 R - 4.45 % +0.1 %

8 TypeScript - 3.02 % +0.3 %

9 Swift 2.42 % +0.4 %

10 Rust 2.15 % +0.6 %

11 Objective-C 2.13 % +0.0 %

12 Go 2.01 % +0.0 %

13 Kotlin 1.79 % +0.0 %

14 Matlab - 1.59 % +0.0 %

15 Ruby - 1.1 % -0.0 %

16 Ada 1.06 % +0.3 %

17 Powershell 1.06 % +0.2 %

18 VBA 0.91 % -0.1 %

19 Dart 0.86 % -0.0 %

20 Lua 0.64 % +0.0 %

21 Visual Basic - 0.58 % -0.0 %

22 Abap 0.57 % +0.1 %

23 Scala 0.57 % -0.2 %

24 Julia 0.42 % -0.1 %

25 Groovy - 0.42 % -0.0 %

26 Haskell 0.3 % +0.0 %

27 Perl 0.29 % -0.0 %

34

As seen in Table 6, Python is the most popular language despite being one of the least

efficient. However, it delegates a lot of the workload to libraries written in other, more

efficient languages, which makes Python programs perform more efficiently [94] [95] [96].

This practice is used in some other languages as well, such as JavaScript (V8, Node)

[97] [98].

6.3 Concurrency

Concurrent programming is a standard practice in software engineering [99]. It allows a

program to execute multiple tasks or processes simultaneously, without waiting for one

task to complete before starting another [100]. This can be achieved through various

techniques such as multi-threading, multi-processing, or distributed computing.

Multithreading can reduce energy consumption, assuming the workload can be split

evenly [101]. However, forcing algorithms to run in parallel might have the contrary

effect, which is why multithreading should be considered on a case-by-case basis [99].

6.4 Data Structures & Algorithms

Many programmers have a tendency to select their preferred data structures, often

without taking performance or energy consumption into consideration or knowing that

there could be more optimal alternatives [102]. The Big-O notation is commonly used

to analyze the efficiencies of data structures and algorithms. It represents the worst-case

complexity, while the average complexity is represented by Big Theta (Θ), and the best-

case is represented by Big Omega (Ω) [103] [104]. In the Big-O notation, n represents

the number of elements, which can be for example the number of items in an array [103].

Figure 20 illustrates some common Big-O notations.

35

Figure 20. Big-O notation [105].

Figure 21 presents the efficiencies of commonly used data structures. Different

programming languages often have distinct names for the same data structures. For

example, the default hash table implementation is named Map in JavaScript,

unordered_map in C++, and dict in Python [106] [107]. In contrast, a map in C++ is

typically implemented as a Binary Search Tree or a Red-Black Tree [108] [109].

36

Figure 21. Common data structure operations [105].

When choosing which data structure to use, it is important to consider what are the most

common operations for the data and choose a structure that is particularly efficient in

those. However, also the circumstances and absolute efficiencies of these operations

should be taken into consideration. For example, even though their average notations

are the same, access operation in an array is more efficient than search operation in a

hash table.

Also, the algorithm choice can have a significant impact on energy consumption [110].

Figure 22. Array sorting algorithms [105].

37

Figure 22 shows, how sorting an array can vary in performance. This applies to other

algorithms as well. Different algorithms might result in the same outcome, but their

efficiency can differ significantly. Decreasing algorithmic complexity can be an effective

way to reduce energy consumption [34]. In other words, focus on improving the

mathematical algorithm instead of the code implementation.

6.5 Cache

Avoiding unnecessary processing is an effective way to reduce the energy consumption

of a software. It is very typical, that data is processed in real time, even if the content is

not real-time, and that the same calculations are performed multiple times [111]. This

can be avoided by caching. Cache is a temporary storage location that stores frequently

accessed data.

Caching can be done on multiple levels of the software application. Different cache

mechanisms can be included for example, in code-level calculations or in

communication. Code-level caching can be for example, storing the result of a function

call to a variable so the value can be reused in other calculations. Additionally, some

languages, such as Python, have built-in tools for caching [112].

The communication between client and server also offers many opportunities for

caching. Results can be cached by the requesting or by the responding party. The

requesting party (e.g., client) can cache the received response, so that it does not need

to request it again [78]. The responding party (e.g., server) can cache the result so that

it does not have to calculate it again. Similarly, the server can cache the received data

from a database.

Moreover, HTTP supports caching with Cache-Control and Expires headers. These

allow the client to fetch updated information after an expiration period or ask if an update

is needed [113].

Although caching can effectively reduce the energy consumption of a software, it is worth

noting that not everything can be cached, as sometimes real-time data is needed.

Caching can be used when the same calculations, operations, or communication are

performed repeatedly.

38

6.6 Synchronization

In some cases, software components may need to constantly synchronize or poll for

updates, which can lead to frequent communication, heavy data transfer, and thus,

increased energy consumption [114] [35]. Efficient synchronization mechanisms, such

as event-driven architecture and differential synchronization can reduce the frequency

and payload of communication.

Event-driven architecture uses events to trigger actions in different components.

Instead of continuously polling for updates, components subscribe to relevant events

and react when those events occur [115]. This saves resources by eliminating the

unnecessary communication and operations [14].

Differential synchronization is a minimalistic synchronization technique where only the

changes or differences between two versions of data are synchronized rather than

transmitting the entire dataset [116]. This reduces the total amount of data that needs to

be transferred.

However, sometimes polling cannot be avoided, such as with autosaving. In these

situations, it is recommended to use the largest possible polling interval [34]. Similarly, it

is more energy efficient to react to events as seldomly as possible. For example, input

could be validated only when user moves on to the next input field, instead of reacting to

every letter of the input.

6.7 Data format

Sending less data over the network can reduce energy consumption [14]. Larger file

sizes typically require more storage space, more processing power, and more network

bandwidth, which can result in higher energy consumption. Different file formats may

support different features or data types, which can impact the file size.

6.7.1 Text-based data

In addition to bandwidth usage, text-based file formats involve extra computational cost

from converting human-readable text data into a structured machine-readable format.

This conversion consumes CPU and memory, which contributes to energy consumption.

For text-based data, some of the most commonly used file formats include XML, JSON

and CSV. These are compared in Table 7.

39

Table 7. File formats with examples of size overhead. [111] [117] [118] [119] [120]

 XML JSON CSV

Syntax <price>3</price> { price: 3 } ;3

Payload 1 1 1

Overhead 15 11 1

Bandwidth high medium low

CPU high medium low

Complex data yes yes no

As Table 7 shows CSV can be the most energy efficient option due to its low bandwidth

and CPU usage. However, it does not support complex hierarchies of data, and

therefore, JSON and XML are often more suitable choices. Out of these, JSON uses less

bandwidth, CPU, and memory compared to XML, making it a more efficient option [117].

6.7.2 Images

The image format and compression algorithm can significantly affect the file size and

energy consumption related to data transfer. Some of the most common image

encoding/decoding algorithms are listed in Table 8 with a rough indication of the typical

file size categories associated with each algorithm.

Table 8. Image formats [12] [11] [121] [122] [123] [124].

Format Type File size Suitable for

SVG vector small icons, logos, illustrations

WebP lossy & lossless small-medium web images

GIF lossless small-medium
simple pictures and

animations

JPEG lossy medium-large images

PNG lossless large high-quality images

40

More specific comparison of the energy efficiencies of these algorithms would require

further research but based on the file size, SVG and WebP formats are the most efficient

options [12]. However, the choice of image format and compression algorithm depends

on various factors of the specific use case, including image content, desired image

quality, and platform compatibility.

6.8 Code implementation

Code that consists of fewer instructions typically results in a more efficient program

that consumes less computational resources, memory, and ultimately, less energy. By

focusing on the code’s logic and str ct re, energy efficiency can be optimized. This can

be achieved by following good coding practices such as avoiding global variables,

reducing the complexity inside loops, and caching the results of frequently performed

calculations to variables [125].

Program 1 shows how complexity can be reduced in loops. Repeated function calls can

be avoided by storing the result to a variable. While the program on the left appears to

be simpler, and consists of fewer lines of code, the program on the right is actually more

energy efficient.

Program 1. Avoiding repeated function calls in a loop [125].

Some languages, such as C and C++, allow the programmer to choose the parameter-

passing strategy manually, in which case energy can be saved by passing a reference

instead of a copy of the object. This is shown in Program 2, where the left side passes a

copy of the object, and right side passes a reference. Higher-level languages like

JavaScript and Python typically make this choice on the rogrammer’s behalf.

Program 2. Pass reference instead of a copy of the object [125].

41

Another aspect of code implementation is logging, which is used for recording and storing

information about a program's execution, errors, and events to monitor the rogram’s

correct behavior and simplify bug reporting. However, intensive logging can lead to

frequent data transfer. Avoiding unnecessary logging can result in energy savings

[126] [78].

It is also worth noting that more specific energy optimization techniques might depend

on the programming language used. There can be found a lot of language specific

resources in optimizing the energy consumption, such as [127] (Java) and [128] (C++).

Additionally, refactoring can help keep the code simple and improve energy efficiency

[3] [65] [129] [130].

42

7. USER EXPERIENCE

Ultimately, users use software to achieve a goal. This can be for instance, finding a piece

of information, making a purchase, or submitting a form. The amount of energy

consumed in the process depends on how the software is implemented and how

efficiently the hardware is utilized. However, it is also influenced by the content presented

to the user, and the time the user takes to achieve their goal. These can be optimized

with sustainable user experience (UX) design.

This chapter describes how different aspects of UX design can be optimized for better

energy efficiency. These include various usability factors and user interface (UI) design

elements.

7.1 Usability

The longer a user uses a software, the more energy is consumed [14]. To improve the

user's efficiency in achieving their goal, it is important to minimize wasted time, which

includes activities such as navigating and searching for information, waiting for content

to load, recovering from possible error situations, and learning how to use the software.

[12] [11] [131]

Creating an intuitive and consistent user experience by using familiar elements and

features in the design allows users to predict how elements behave based on past

interactions. This can increase the learnability of the application and help the user

achieve their task more efficiently [131].

 nother a to increase the ser’s efficienc is b error prevention and effective error

handling. These can prevent users from making mistakes and help recover from error

situations more effectively. This can be done for example, by validating user inputs and

showing error messages that are informative, actionable, and easy to understand [131].

7.1.1 Content

The way content is organized and presented to a user can have a significant impact on

how efficiently the user can achieve their goal. Various techniques can be used to make

content perform well and minimize the time user spends on searching for information

and navigating through the application.

43

To maximize efficiency, information architecture (IA) should be designed in a way that

helps users find what they need as quickly as possible [12] [11]. This can be achieved,

for example, by organizing content into logical categories and using clear and descriptive

labels. Additionally, implementing a search functionality, and providing guidance to the

 ser’s desired content through effective navigation menus and breadcrumbs can further

increase the ser’s efficienc [131].

Moreover, content should incite users to take action quickly [11]. This can be done, for

example, by using action-oriented verbs or visual cues such as arrows or bold colors to

highlight the action.

7.1.2 User Preferences

Users can be empowered to actively participate in energy efficiency efforts by

incorporating user preferences into the software application. Allowing users to customize

their preferences regarding energy consumption and energy critical features can help

improve energy efficiency [78].

This can be achieved by informing users about energy intense operations and providing

the option to customize, enable or disable certain features [78]. For example, users could

be allowed to adjust data synchronization intervals or disable automatic background

updates. Moreover, applications could feature a power saver (or eco) mode in which the

user experience can drop in order to optimize energy consumption [78].

7.2 User Interface Design

The user interface (UI) can be designed to help increase the energy efficiency of a

software application by implementing different optimization techniques. Different types

of content and visual effects can be optimized to reduce data transfer and decrease

loading times.

One effective way to optimize the UI is by adopting a minimalist approach. This can be

achieved by eliminating unnecessary elements and rejecting ideas that cannot be

justified. [12] Fewer visual elements require fewer system resources and less data that

needs to be transferred.

44

7.2.1 Images

Images are one of the biggest contributors to the amount of data transferred on most

websites [12]. It should be carefully assessed whether an image brings enough value to

the page to justify the energy cost. If so, there are several options to reduce the file size

of an image. These include reducing the amount of color variation in the image, and

using more efficient file formats, like SVG, as discussed in section 6.7.2 [12].

Figure 23. Images with reduced file size (1.17 Mt → 858 kt → 12 kt).

Another technique to reduce the file size is using lower resolution or blurring some parts

of the image that are not as important, such as the background. By having different

versions of the image with different resolutions, images can be loaded at the correct

scale for each screen size [113]. Moreover, one possible alternative is to have images

disabled by default, prompting users to enable image display or clicking to load an image

[132].

7.2.2 Videos

Using videos can be an effective way to engage users and convey information [11].

However, videos are one of the largest contributors to the overall environmental impact

of the internet. Therefore, videos should be used mindfully, and designs that involve

automatically playing videos, like video backgrounds, should be avoided. Placing a play

button in front of the video ensures that it only loads when the user explicitly chooses to

watch it. This enhances the user experience and significantly reduces the unnecessary

streaming of data [12].

Additionally, given that a single second of video content consumes more data compared

to a full-screen JPEG image, videos should be kept short and impactful. This reduces

45

energy consumption and saves users' time [12]. Moreover, the video file size can be

minimized by reducing the resolution and framerate of the video [113].

7.2.3 Colors

Different colors of light have different wavelengths and energies. For example, red light

has a longer wavelength and lower energy than blue light. When a screen displays a

particular color, it is essentially emitting light of a specific wavelength and energy. The

color temperature refers to the balance of blue and red light emitted by the screen. Cooler

colors, which have a higher proportion of blue light, consume more energy than warmer

colors, which have a higher proportion of red light. [133]

Figure 24. Colors on OLED display [134].

OLED (Organic Light-Emitting Diode) screens illuminate each pixel individually. This

means that the pixels emit their own light, and the brightness of a pixel determines how

much light it emits and therefore energy it consumes. When a pixel is displaying a dark

color such as black, it is essentially turned off and does not emit any light, which saves

a lot of energy. However, this does not apply to LCD (Liquid Crystal Display) screens,

which have a permanent backlight, and use about the same amount of energy regardless

of the color on the display [12].

46

7.2.4 Fonts

The availability of commercial and open-source web fonts has significantly increased the

number of typographic options for user interfaces. However, their usage can result in a

significant environmental impact due to the increased amount of data transfer and server

requests required to load a webpage [12] [11].

The most energy efficient option is using system fonts, such as Arial, Times New Roman,

Helvetica on Apple devices, and Roboto on Android, as they come pre-installed on

devices. These fonts do not require additional server requests or data transfer. However,

their use may limit creative freedom, and their appearance may vary across different

devices, leading to a reduced level of control over presentation [12].

Having control over the font files allows for optimization. Various tools can be used to

reduce the size of the font file and stripe out unused characters, such as special

alphabets for certain languages [12]. However, it is worth noting that the licenses on

some fonts may limit modifications.

47

8. CONCLUSION

The goal of this work was to explore different factors that impact the environmental

sustainability of software applications and investigate how these factors can be optimized

during the software development process. This work goes over a wide range of aspects

within software development, and various optimization strategies were found on each

area. The guidelines presented in this work include several approaches and actionable

practices that can be incorporated into the development process. A summary of the

guidelines and their possible trade-offs are listed in the appendices with references to

section numbers in which they occur in this work.

It is worth noting that all the guidelines are not suitable or necessary for all software

applications. Different software applications have varying computational demands, data

processing requirements, and usage patterns. This influences the specific areas where

optimizations can be applied, and which practices are realistic to implement. The

strategies and practices for sustainability need to be tailored to the unique characteristics

and requirements of each application.

Consistently measuring the energy consumption and emissions of the software can help

give more detailed insight on which aspects and components are the most significant

contributors to the energy consumption and carbon footprint. This may provide a better

understanding of which optimization strategies could be the most effective for the specific

software.

For further research, the impact of adapting these guidelines could be studied in different

applications. This would help to get a broad idea of the effectiveness of the guidelines at

different scales. Moreover, the perceived impact of the trade-offs related to the guidelines

could also be measured.

48

REFERENCES

[1] GreenIT, "The environmental footprint of the digital world," 2019. Available:

https://www.greenit.fr/wp-

content/uploads/2019/11/GREENIT_EENM_etude_EN_accessible.pdf.

[2] The Shift Project, "Lean ICT: Towards Digital Sobriety," 2019. Available:

https://theshiftproject.org/wp-content/uploads/2019/03/Lean-ICT-Report_The-

Shift-Project_2019.pdf.

[3] L. Ardito, G. Procaccianti, M. Torchiano and A. Vetrò, "Understanding Green

Software Development: A Conceptual Framework," IT Professional, vol. 17, no.

1, pp. 44-50, Jan.-Feb. 2015. Available: https://doi.org/10.1109/MITP.2015.16.

[4] M. Dastbaz, C. Pattinson and B. Akhgar, "Green Information Technology: A

Sustainable Approach," Morgan Kaufmann Publishers Inc. 2015. Print.

Available: https://doi.org/10.1016/C2014-0-00029-9.

[5] Intergovernmental Panel on Climate Change (IPCC), "Energy Systems,"

Climate Change 2014: Mitigation of Climate Change, pp. 511–598. 2015.

Available: https://pure.iiasa.ac.at/id/eprint/11118/.

[6] reen Soft are Fo ndation, ” arbon areness,” [ccessed J n 0, 0].

Available: https://learn.greensoftware.foundation/carbon-awareness.

[7] International Energy Agency (IEA), "Energy Technology Perspectives 2020,"

2020. Available: https://www.iea.org/reports/energy-technology-perspectives-

2020.

[8] H. Ritchie, M. Roser and P. Rosado, "Energy Mix," 2022. [Accessed Jul 13,

2023] Available: https://ourworldindata.org/energy-mix#.

[9] P. Wiesner, I. Behnke, D. Scheinert, K. ontarska and L. hamsen, "Let’s Wait

Awhile: How Temporal Workload Shifting Can Reduce Carbon Emissions in the

Cloud," 22nd International Middleware Conference (Middleware ’21), ACM.

2021. Available: https://doi.org/10.1145/3464298.3493399.

[10] M. Á. Moraga and M. F. Bertoa, "Green Software Measurement," Green in

Software Engineering, pp. 261-282. Springer International Publishing. 2015.

Available: https://doi-org.libproxy.tuni.fi/10.1007/978-3-319-08581-4_11.

[11] . Frick, "Designing for S stainabilit  : a ide to B ilding reener Digital

Prod cts and Ser ices," ’Reill . 0 6. Print.

[12] T. Greenwood, Sustainable Web Design, A Book Apart, 2021. Print.

[13] E. a ra, . Francalanci and S. . Sla ghter, "Is soft are “green”? lication

development environments and energy efficiency in open source applications,"

Information and Software Technology, 54.1, pp. 60-71. 2012. Available:

https://doi.org/10.1016/j.infsof.2011.07.005.

[14] L. Ardito and M. Morisio, "Green IT – Available data and guidelines for

reducing energy consumption in IT systems," Sustainable Computing:

Informatics and Systems, vol. 4, no. 1, pp. 24-32. 2014. Available:

https://doi.org/10.1016/j.suscom.2013.09.001.

49

[15] F. Goekkus, "Energy Efficient Programming," University of Zurich. Dec 1, 2013.

Available

https://files.ifi.uzh.ch/hilty/t/examples/bachelor/Energy_Efficient_Programming_

G%C3%B6kkus.pdf.

[16] T. Johann, M. Dick, S. Naumann and E. Kern, "How to measure energy-

efficiency of software: Metrics and measurement results," 2012 First

International Workshop on Green and Sustainable Software (GREENS), pp.

51-54. 2012. Available: https://www.doi.org/10.1109/GREENS.2012.6224256.

[17] Green Software Foundation, "Measurement," [Accessed Jul 10, 2023].

Available: https://learn.greensoftware.foundation/measurement.

[18] Wholegrain Digital, "Website Carbon Calculator," [Accessed Jul 10, 2023].

Available: https://www.websitecarbon.com.

[19] Mightybytes, "Ecograder," [Accessed Jul 10, 2023]. Available:

https://ecograder.com/.

[20] Greenspector, [Accessed Jul 10, 2023]. Available:

https://greenspector.com/en/home/.

[21] University of Lille and Inria, "PowerAPI," [Accessed Jul 10, 2023]. Available:

https://powerapi-ng.github.io/index.html.

[22] CAST, "CAST Highlight," [Accessed Jul 10, 2023]. Available:

https://learn.castsoftware.com/green-software.

[23] Google, "Lighthouse," [Accessed Jul 10, 2023]. Available:

https://developer.chrome.com/docs/lighthouse/.

[24] Microsoft, "Emissions Impact Dashboard," [Accessed Jul 10, 2023]. Available:

https://www.microsoft.com/en-us/sustainability/emissions-impact-dashboard.

[25] Google, "Carbon Footprint," [Accessed Jul 10, 2023]. Available:

https://cloud.google.com/carbon-footprint.

[26] Cloud Carbon Footprint, [Accessed Jul 10, 2023]. Available:

https://www.cloudcarbonfootprint.org.

[27] Green Software Foundation, "Software Carbon Intensity (SCI) Specification,"

[Accessed Jul 10, 2023]. Available: https://github.com/Green-Software-

Foundation/sci.

[28] reen eace, ” i de to reener Electronics,” 0 7. ailable:

https://www.greenpeace.org/usa/reports/greener-electronics-2017/.

[29] Green Software Foundation, "Hardware Efficiency," [Accessed Jun 18, 2023]

Available: https://learn.greensoftware.foundation/hardware-efficiency.

[30] L. Hilty and J. Bieser, "Opportunities and Risks of Digitalization for Climate

Protection in Switzerland," University of Zurich. 2017. Available:

https://doi.org/10.5167/uzh-141128.

[31] R. Verdecchia, P. Lago, C. Ebert and C. d. Vries, "Green IT and Green

Software," IEEE Software, vol. 38, no. 6, pp. 7-15. 2021. Available:

https://www.doi.org/10.1109/MS.2021.3102254.

50

[32] Green Software Foundation, "Energy Efficiency," [Accessed Jul 13, 2023].

Available: https://learn.greensoftware.foundation/energy-efficiency.

[33] L. A. Barroso and U. Hölzle, "The Case for Energy-Proportional Computing,"

Computer, vol. 40, no. 12, pp. 33-37, 2007. Available:

https://doi.org/10.1109/MC.2007.443.

[34] P. Larsson, ”Energ -Efficient Soft are idelines,” Intel. 0 . ailable:

https://www.intel.com/content/dam/develop/external/us/en/documents/energy-

efficient-software-guidelines-v3-4-10-11-140545.pdf.

[35] K. Eder ja J. P. allagher, ”Energ - are Soft are Engineering,” ICT - Energy

Concepts for Energy Efficiency and Sustainability, InTech, Mar. 22, 2017.

Available: https://doi.org/10.5772/65985.

[36] Google, "Google Apps: Energy Efficiency in the Cloud," 2012. Available:

https://static.googleusercontent.com/media/www.google.com/en//green/pdf/goo

gle-apps.pdf.

[37] J.-H. Huh, "Server Operation and Virtualization to Save Energy and Cost in

Future Sustainable Computing," Sustainability, vol. 10, no. 6, 2018. Available:

https://doi.org/10.3390/su10061919.

[38] E. A. Santos, C. McLean, C. Solinas and A. Hindle, "How does docker affect

energy consumption? Evaluating workloads in and out of Docker containers,"

Journal of Systems and Software, vol. 146, pp. 14-25. 2018. Available:

https://doi.org/10.1016/j.jss.2018.07.077.

[39] Y. Jin, Y. Wen and Q. Chen, "Energy efficiency and server virtualization in data

centers: An empirical investigation," 2012 Proceedings IEEE INFOCOM

Workshops, pp. 133-138. 2012. Available:

https://www.doi.org/10.1109/INFCOMW.2012.6193474.

[40] O. helin, "A Study on Virtualization and Energy Efficiency Using Linux," 2012.

Available: https://trepo.tuni.fi//handle/123456789/20918.

[41] R. Long, "Use of containerisation as an alternative to full virtualisation in grid

environments," vol. 664, no. 2. 2015. Available:

https://www.doi.org/10.1088/1742-6596/664/2/022028.

[42] R. Morabito, "Power Consumption of Virtualization Technologies: An Empirical

Investigation," 2015 IEEE/ACM 8th International Conference on Utility and

Cloud Computing (UCC), pp. 522-527. 2015. Available:

https://www.doi.org/10.1109/UCC.2015.93.

[43] Synopsys, "DevOps," [Accessed Jul 17, 2023]. Available:

https://www.synopsys.com/glossary/what-is-devops.html.

[44] V. Avelar, D. Azevedo and A. French, "PUE: A Comprehensive Examination of

the Metric," The Green Grid. 2014. Available:

https://datacenters.lbl.gov/sites/default/files/WP49-

PUE%20A%20Comprehensive%20Examination%20of%20the%20Metric_v6.p

df.

[45] Uptime Institute, "Uptime Institute Global Data Center Survey 2021," 2021.

Available: https://uptimeinstitute.com/2021-data-center-industry-survey-results.

51

[46] Electricity Maps, [Accessed Nov 19, 2023]. Available:

https://app.electricitymaps.com/map.

[47] K. Gallaba, "Improving the Robustness and Efficiency of Continuous

Integration and Deployment," IEEE International Conference on Software

Maintenance and Evolution (ICSME), pp. 619-623. 2019. Available:

https://www.doi.org/10.1109/ICSME.2019.00099.

[48] M. Hilton, T. Tunnell, K. Huang, D. Marinov and D. Dig, "Usage, costs, and

benefits of continuous integration in open-source projects," 31st IEEE/ACM

International Conference on Automated Software Engineering (ASE), pp. 426-

437. 2016.

[49] R. Abdalkareem, S. Mujahid, E. Shihab and J. Rilling, "Which Commits Can Be

CI Skipped?," IEEE Transactions on Software Engineering, vol. 47, no. 3, pp.

448-463. 2021. Available: https://www.doi.org/10.1109/TSE.2019.2897300.

[50] E. Kern, S. Naumann and M. Dick, "Processes for Green and Sustainable

Software EngineeringProcesses for Green and Sustainable Software

Engineering," Green in Software Engineering, Springer International

Publishing. pp. 61-81. 2015. Available: https://doi.org/10.1007/978-3-319-

08581-4_3.

[51] Adobe Communications Team, "Waterfall Methodology: A Complete Guide,"

Adobe Experience Cloud Blog, Mar 18, 2022. [Accessed Jul 19, 2023].

Available: https://business.adobe.com/blog/basics/waterfall.

[52] Software SOLVED, "Our Approach: Our Methodology," [Accessed Jul 19,

2023]. Available: https://www.softwaresolved.com/our-methodology.

[53] N. Rashid and S. U. Khan, "Agile Practices for Global Software Development

Vendors in the Development of Green and Sustainable Software," Journal of

Software : Evolution and Process, vol. 30, no. 10. 2018. Available: https://doi-

org.libproxy.tuni.fi/10.1002/smr.1964.

[54] Emmit A. Scott, Jr, "SPA Design and Architecture: Understanding single-page

web applications," Manning Publications. 2015. Print.

[55] T. F. Iskandar, M. Lubis, T. F. Kusumasari and A. R. Lubis, "Comparison

Between Client-Side and Server-Side Rendering in the Web Development,"

IOP Conference Series: Materials Science and Engineering, vol. 801, no. 1.

2022. Available: https://doi.org/10.1088/1757-899X/801/1/012136.

[56] Vue.js, "Server-Side Rendering (SSR)," Vue 3 documentation, [Accessed Jul

26, 2023]. Available: https://vuejs.org/guide/scaling-up/ssr.html.

[57] Lindle , od , "D M Enlightenment," Sebasto ol: ’Reill Media,

Incorporated, 2013. Print.

[58] Green Software Foundation, "Avoid an excessive DOM size," Green Software

Patterns, [Accessed Jul 6, 2023]. Available:

https://patterns.greensoftware.foundation/catalog/web/avoid-excessive-dom-

size/.

52

[59] R. Ollila, N. Mäkitalo and T. Mikkonen, "Modern Web Frameworks : A

Comparison of Rendering Performance," Journal of Web Engineering, vol. 21 ,

no. 3 , pp. 789-813. 2022. Available: https://doi.org/10.13052/jwe1540-

9589.21311.

[60] R. N. Diniz-Junior, C. C. L. Figueiredo, G. De S.Russo, M. R. G. Bahiense-

Junior, M. V. Arbex, L. M. Dos Santos, R. F. Da Rocha, R. R. Bezerra and F. T.

Giuntini, "Evaluating the performance of web rendering technologies based on

JavaScript: Angular, React, and Vue," XVLIII Latin American Computer

Conference (CLEI), pp. 1-9. 2022. Available:

https://www.doi.org/10.1109/CLEI56649.2022.9959901.

[61] Stefan Krause, "js-framework-benchmark," [Accessed Jul 6, 2023]. Available:

https://rawgit.com/krausest/js-framework-benchmark/master/webdriver-ts-

results/table.html.

[62] J. De Macedo, R. Abreu, R. Pereira and J. Saraiva, "WebAssembly versus

JavaScript: Energy and Runtime Performance," International Conference on

ICT for Sustainability (ICT4S), pp. 24-34. 2022. Available:

https://www.doi.org/10.1109/ICT4S55073.2022.00014.

[63] Mozilla, "WebAssembly," mdn web docs, Last modified on May 31, 2023.

[Accessed Jul 6, 2023]. Available: https://developer.mozilla.org/en-

US/docs/WebAssembly.

[64] M. v. Hasselt, K. Huijzendveld, N. Noort, S. d. Ruijter, T. Islam and I. Malavolta,

"Comparing the Energy Efficiency of WebAssembly and JavaScript in Web

Applications on Android Mobile Devices," EASE '22: Proceedings of the 26th

International Conference on Evaluation and Assessment in Software

Engineering, pp. 140–149. 2022. Available:

https://doi.org/10.1145/3530019.3530034.

[65] G. Pinto, F. Soares-Neto and F. Castor, "Refactoring for Energy Efficiency: A

Reflection on the State of the Art," IEEE/ACM 4th International Workshop on

Green and Sustainable Software, pp. 29-35. 2015. Available:

https://www.doi.org/10.1109/GREENS.2015.12.

[66] D. Li and W. G. J. Halfond, "An Investigation into Energy-Saving Programming

Practices for Android Smartphone App Development," ACM. 2014. Available:

https://www.doi.org/10.1145/2593743.2593750.

[67] . King, "Parse, don’t alidate," No 5, 0 9. [ccessed J l 6, 0]. ailable:

https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/.

[68] A. Bansal, "Performing Calculations in the Database vs. the Application," Oct 5,

2020. [Accessed Jul 11, 2023]. Available:

https://www.baeldung.com/calculations-in-db-vs-app.

[69] Y. Z. YIK and F. K VE İ, " MP RIS N F L UL IN

OPERATIONS PERFORMANCES ON DATABASE SERVER AND WEB

SERVER," The journal of international social research, vol. 12, no. 63, pp.

1324–1329. 2019. Available: https://doi.org/10.17719/jisr.2019.3321.

53

[70] R. Wang and Z. Yang, "SQL vs NoSQL: A Performance Comparison,"

[Accessed Jul 11, 2023]. Available:

https://www.cs.rochester.edu/courses/261/fall2017/termpaper/submissions/06/

Paper.pdf.

[71] Y. Li and S. Manoharan, "A performance comparison of SQL and NoSQL

databases," IEEE Pacific Rim Conference on Communications, Computers and

Signal Processing (PACRIM), pp. 15–19. 2013. Available:

https://doi.org/10.1109/PACRIM.2013.6625441.

[72] TechEmpower, "Web Framework Benchmarks," Jul 19, 2022. [Accessed Jul 6,

2023]. Available: https://www.techempower.com/benchmarks/#section=data-

r21.

[73] The Benchmarker, "Web Frameworks Benchmark," Last Update: Jul 2, 2023.

[Accessed Jul 6, 2023]. Available: https://web-frameworks-

benchmark.netlify.app/.

[74] A. Carroll, "Understanding and Reducing Smartphone Energy Consumption,"

2017. Available: https://doi.org/10.26190/unsworks/19721.

[75] Y.-W. Kwon and E. Tilevich, "Reducing the Energy Consumption of Mobile

Applications Behind the Scenes," IEEE International Conference on Software

Maintenance, pp. 170-179. 2013. Available:

https://www.doi.org/10.1109/ICSM.2013.28.

[76] L. Corral, A. B. Georgiev, A. Sillitti and G. Succi, "A study of energy-aware

implementation techniques: Redistribution of computational jobs in mobile

apps," Sustainable Computing: Informatics and Systems, vol. 7, pp. 11-23.

2015. Available: https://doi.org/10.1016/j.suscom.2014.11.005.

[77] Google, "Background Work Overview," Developer guides, Last updated 2023-

01-04. [Accessed Jul 5, 2023]. Available:

https://developer.android.com/guide/background.

[78] L. r z ja R. bre , ” atalog of Energ Patterns for Mobile lications,”

Empirical software engineering : an international journal, vol. 24, no. 4, pp.

2209-2235. 2019. Available: https://www.doi.org/10.1007/s10664-019-09682-0.

[79] S. Huber, L. Demetz and M. Felderer, "PWA vs the Others: A Comparative

Study on the UI Energy-Efficiency of Progressive Web Apps," Web

Engineering, vol. 12706, pp. 464-479. Springer International Publishing. 2021.

Available: https://doi.org/10.1007/978-3-030-74296-6_35.

[80] J. Manner, "Black software — the energy unsustainability of software systems

in the 21st century," Oxford Open Energy, vol. 2. 2023. Available:

https://doi.org/10.1093/ooenergy/oiac011.

[81] I. Manotas, C. Bird, R. Zhang, D. Shepherd, C. Jaspan, C. Sadowski, L.

Pollock and J. Clause, "An Empirical Study of Practitioners' Perspectives on

Green Software Engineering," 2016 IEEE/ACM 38th International Conference

on Software Engineering (ICSE), pp. 237-248. 2016. Available:

https://www.doi.org/10.1145/2884781.2884810.

54

[82] M. C. Oussalah, R. Brohan and O. Moustafa, "Object Metrics for Green

Software," Journal of software, pp. 285–305. 2021. Available:

https://www.doi.org/10.17706/jsw.16.6.285-305.

[83] E. Jagroep, J. M. van der Werf, S. Brinkkemper, L. Blom and R. van Vliet,

"Extending software architecture views with an energy consumption

perspective: A case study on resource consumption of enterprise software,"

Computing, vol. 99, no. 6. 2017. Available:

https://www.doi.org/10.1007/s00607-016-0502-0.

[84] S. Bhattacharya, K. Gopinath, K. Rajamani and M. Gupta, "Software Bloat and

Wasted Joules: Is Modularity a Hurdle to Green Software?," Computer, vol. 44,

no. 9, pp. 97-101. 2011. Available: https://www.doi.org/10.1109/MC.2011.293.

[85] E. a ra, . Francalanci and S. . Sla ghter, "Is soft are “green”? lication

development environments and energy efficiency in open source applications,"

Information and Software Technology, vol. 54, no 1, pp. 60-71. 2012. Availale:

https://doi-org.libproxy.tuni.fi/10.1016/j.infsof.2011.07.005.

[86] M. R. Ghidersa, "Software Architecture for Web Developers," [First edition].

Packt Publishing. 2023.

[87] Gabriel, A. Sabino, L. Lima, V. Barbosa, C. Brito, P. Rego, Iure and F. A. Silva,

"Energy Consumption in Microservices Architectures: A Systematic Literature

Review," 2023. Available: https://www.doi.org/10.21203/rs.3.rs-3069141/v1.

[88] E. Ampomah, M. Ezekiel and G. Abilimi, "Qualitative Assessment of Compiled,

Interpreted and Hybrid Programming Languages," Communications on Applied

Electronics, vol. 7, no. 7, pp. 8–13. 2017. Available:

https://doi.org/10.5120/cae2017652685.

[89] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. P. Fernandes and J.

Saraiva, "Energy Efficiency across Programming Languages: How Do Energy,

Time, and Memory Relate?," Proceedings of the 10th ACM SIGPLAN

International Conference on Software Language Engineering, pp. 256–267.

2017. Available: https://sites.google.com/view/energy-efficiency-

languages/home?authuser=0.

[90] A. Koskela, "TypeScript fannkuch-redux implementation skews results in

paper," Energy Efficiency in Programming Languages, May 25, 2022.

[Accessed Jul 9, 2023]. Available: https://github.com/greensoftwarelab/Energy-

Languages/issues/34.

[91] moaz_mokhtar, "Energy Efficiency across Programming Languages," Apr 26,

2021. [Accessed Jul 9, 2023]. Available:

https://www.reddit.com/r/rust/comments/mytmyu/energy_efficiency_across_pro

gramming_languages/.

[92] Green Software Lab, "Energy Efficiency in Programming Languages," Last

updated on Feb 27, 2022. [Accessed Jun 21, 2023]. Available:

https://github.com/greensoftwarelab/Energy-Languages.

[93] PYPL, "PopularitY of Programming Language," Last updated Jul 2023.

[Accessed Jul 22, 2023]. Available: https://pypl.github.io/PYPL.html.

55

[94] NumPy, Last updated Jun 17, 2023. [Accessed Jul 9, 2023]. Avaliable:

https://numpy.org/.

[95] SciPy, Last updated Jun 28, 2023. [Accessed Jul 9, 2023]. Available:

https://scipy.org/.

[96] pandas, [Accessed Jul 9, 2023]. Available: https://pandas.pydata.org/about/.

[97] V8, "Getting started with embedding V8," [Accessed Jul 9, 2023]. Available:

https://v8.dev/docs/embed.

[98] Node.js, "C/C++ addons with Node-API," Node.js v20.4.0 documentation,

[Accessed Jul 09, 2023]. Available: https://nodejs.org/api/n-api.html.

[99] G. Pinto, F. Castor and Y. D. Liu, "Understanding Energy Behaviors of Thread

Management Constructs," SIGPLAN notices, vol. 49, no. 10, pp. 345-360.

2014. Available: https://www.doi.org/10.1145/2714064.2660235.

[100] B. Zhong, M. Feng and C.-H. Lung, "A Green Computing Based Architecture

Comparison and Analysis," IEEE/ACM Int'l Conference on Green Computing

and Communications & Int'l Conference on Cyber, Physical and Social

Computing, pp. 386-391. 2010. Available:

https://www.doi.org/10.1109/GreenCom-CPSCom.2010.110.

[101] S. Murugesan and G. R. Gangadharan, "Harnessing Green IT: Principles and

Practices," John Wiley & Sons, Incorporated. 2012. Available:

https://doi.org/10.1002/9781118305393.

[102] J. Michanan, R. Dewri and M. J. Rutherford, "GreenC5: An adaptive, energy-

aware collection for green software development," Sustainable Computing:

Informatics and Systems, vol. 13, pp. 42-60, 2017. Available:

https://doi.org/10.1016/j.suscom.2016.11.004.

[103] S. Bae, "JavaScript Data Structures and Algorithms: An Introduction to

Understanding and Implementing Core Data Structure and Algorithm

Fundamentals," Berkeley, CA: Apress L. P, 2019. Print. Available:

https://doi.org/10.1007/978-1-4842-3988-9.

[104] Educative, "Big O Notation: A primer for beginning devs," Dec 26, 2019.

[Accessed Jun 20, 2023] Available: https://www.educative.io/blog/a-big-o-

primer-for-beginning-devs.

[105] "Big-O Cheat Sheet," [Accessed Jun 20, 2023]. Available:

https://www.bigocheatsheet.com/.

[106] Mozilla, "Map," JavaScript, Last modified: Jun 20, 2023. [Accessed Jun 21,

2023]. Available: https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Global_Objects/Map.

[107] Python, "Built-in Types," 3.12.0 Documentation, Last modified Nov 26, 2023.

[Accessed Nov 27, 2023]. Available:

https://docs.python.org/3/library/stdtypes.html#typesmapping.

[108] cplusplus.com, "C++ reference - std::map," [Accessed: Jun 21, 2023].

Available: https://cplusplus.com/reference/map/map/.

56

[109] cppreference.com, "std::map," C++ reference, Last modified 29 April 2023.

[Accessed Jun 21, 2023]. Available:

https://en.cppreference.com/w/cpp/container/map.

[110] A. Noureddine, A. Bourdon, R. Rouvoy and L. Seinturier, "A preliminary study

of the impact of software engineering on GreenIT," First International

Workshop on Green and Sustainable Software (GREENS), pp. 21-27. 2012.

Available: https://www.doi.org/10.1109/GREENS.2012.6224251.

[111] M. Koljonen, ”Vihreä koodi – mitä on reen oding?,” r 9, 0 . [Accessed

Jul 7, 2023]. Available: https://www.cgi.com/fi/fi/blogi/mita-green-coding-on.

[112] Python, "functools — Higher-order functions and operations on callable

objects," 3.11.4 Documentation, Last updated Jul 24, 2023. [Accessed Jul 24,

2023]. Available: https://docs.python.org/3/library/functools.html.

[113] M. Dick, S. Naumann and A. Held, "Green Web Engineering: A Set of

Princi les to S ort the De elo ment and eration of ‘ reen’ Websites and

 heir Utilization D ring a Website’s Life cle," WEBIST 2010 - Proceedings of

the 6th International Conference on Web Information Systems and Technology,

2010. Available: https://www.scitepress.org/papers/2010/28052/28052.pdf.

[114] G. Fagas, L. Gammaitoni, J. P. Gallagher and D. J. Paul, "ICT - Energy

Concepts for Energy Efficiency and Sustainability," IntechOpen. 2017.

Available: https://doi.org/10.5772/62522.

[115] AWS, "What is an Event-Driven Architecture?," [Accessed Jul 7, 2023].

Available: https://aws.amazon.com/event-driven-architecture/.

[116] N. Fraser, "Differential Synchronization," ACM. 2009. Available:

https://static.googleusercontent.com/media/research.google.com/fi//pubs/archiv

e/35605.pdf.

[117] R. Rianto, M. A. Rifansyah, R. Gunawan, I. Darmawan and A. Rahmatulloh,

"Comparison of JSON and XML Data Formats in Document Stored NoSql

Database Replication Processes," International Journal on Advanced Science,

Engineering and Information Technology, vol. 11, no. 3, pp. 1150–56. 2021.

Available: https://doi.org/10.18517/ijaseit.11.3.11570..

[118] S. Patni, "Introduction: XML and JSON," Pro RESTful APIs with Micronaut,

Apress L. P. 2023. Available: https://doi.org/10.1007/978-1-4842-9200-6_3.

[119] Barthelemy NGOM, "Storage size and generation time in popular file formats,"

Mar 22, 2021. [Accessed Jul 24, 2023]. Available:

https://www.adaltas.com/en/2021/03/22/performance-comparison-of-file-

formats/.

[120] Aida NGOM, "Comparison of different file formats in Big Data," Jul 23, 2020.

[Accessed Jul 24, 2023]. Available:

https://www.adaltas.com/en/2020/07/23/benchmark-study-of-different-file-

format/.

57

[121] E. Öztürk and A. Mesut, "Performance Evaluation of JPEG Standards, WebP

and PNG in Terms of Compression Ratio and Time for Lossless Encoding,"

2021 6th International Conference on Computer Science and Engineering

(UBMK), pp. 15-20. 2021. Available:

https://www.doi.org/10.1109/UBMK52708.2021.9558922.

[122] M. Rashid, L. Ardito and M. Torchiano, "Energy Consumption Analysis of

Image Encoding and Decoding Algorithms," 2015 IEEE/ACM 4th International

Workshop on Green and Sustainable Software, pp. 15-21. 2015. Available:

https://www.doi.org/10.1109/GREENS.2015.10.

[123] E. Paiz-Reyes, N. Nunes-de-Lima and S. Yildirim-Yayilgan, "GIF Image

Retrieval in Cloud Computing Environment," 2018. Available:

https://doi.org/10.1007/978-3-319-93000-8_30.

[124] Google, "WebP Compression Study," Last updated Jun 29, 2023. [Accessed

Jul 23, 2023]. Available:

https://developers.google.com/speed/webp/docs/webp_study.

[125] J. Corral-García, F. Lemus-Prieto, J.-L. González-Sánchez and M.-Á. Pérez-

Toledano, "Analysis of Energy Consumption and Optimization Techniques for

Writing Energy-Efficient Code," Electronics, vol. 8, no. 10, pp. 1192. 2019.

Available: https://www.doi.org/10.3390/electronics8101192.

[126] S. Chowdhury, S. D. Nardo, A. Hindle and Z. M. (. Jiang, "An exploratory study

on assessing the energy impact of logging on Android applications," Empirical

Software Engineering, vol. 23, no. 3, pp. 1422–1456. 2018. Available:

https://doi-org.libproxy.tuni.fi/10.1007/s10664-017-9545-x.

[127] H. S. Zhu, C. Lin and Y. D. Liu, "A Programming Model for Sustainable

Software," 2015 IEEE/ACM 37th IEEE International Conference on Software

Engineering, vol. 1, pp. 767-777. 2015. Available:

https://www.doi.org/10.1109/ICSE.2015.89.

[128] R. Grimes and M. Bancila, "Modern C++: Efficient and Scalable Application

Development," 1st edition, Packt Publishing, 2018..

[129] C. Sahin, L. Pollock and J. Clause, "How do code refactorings affect energy

usage?," International Symposium on Empirical Software Engineering and

Measurement, pp. 1–10. ACM. 2014. Available:

https://doi.org/10.1145/2652524.2652538.

[130] R. Sehgal, D. Mehrotra, R. Nagpal and R. Sharma, "Green software:

Refactoring approach," Journal of King Saud University. Computer and

Information Sciences, vol. 34, no. 7, pp. 4635–4643. 2022. Available:

https://doi.org/10.1016/j.jksuci.2020.10.022.

[131] Voil, Nick de, "User Experience Foundations," BCS Learning & Development

Limited. 2019.

[132] ClimateAction.tech, "Create Low-Carbon Images," [Accessed Jun 22, 2023].

Available: https://climateaction.tech/actions/create-low-carbon-images/.

58

[133] X. Chen, Y. Chen, Z. Ma and F. C. A. Fernandes, "How is Energy Consumed in

Smartphone Display Applications?," ACM. 2013. Available:

https://doi.org/10.1145/2444776.2444781.

[134] D. Rousset, "Creating Green Energy Efficient Progressive Web Apps," August

12th, 2021. [Accessed Jun 28, 2023]. Available:

https://greensoftware.foundation/articles/creating-green-energy-efficient-

progressive-web-apps.

59

APPENDIX A: ENERGY RELATED GUIDELINES

FOR ENVIRONMENTALLY SUSTAINABLE

SOFTWARE APPLICATIONS

Subject Guidelines Trade-Offs Sec.

Carbon

intensity

Move computation to a place where

carbon intensity is lower, and do

more computation when the

circumstances are favorable and

more renewable energy is available

Requires

additional

monitoring of

carbon intensity

and weather

conditions

2.1

Measuring Consistently measure the energy

consumption and emissions of the

software to monitor improvements

and identify resource-intensive

components

Can be

time-consuming,

requires tools and

additional work

2.3

60

APPENDIX B: HARDWARE RELATED

GUIDELINES FOR ENVIRONMENTALLY

SUSTAINABLE SOFTWARE APPLICATIONS

Subject Guidelines Trade-Offs Sec.

Extend

hardware

lifespan

Design software that can be run on

older hardware

Can limit new

features and

increase

resources required

for testing

3.2

Increase

hardware

utilization

Move computation to public cloud,

and employ virtualization and

containerization technologies

Requires DevOps

knowledge

3.4

61

APPENDIX C: DEVOPS & PROJECT

MANAGEMENT RELATED GUIDELINES FOR

ENVIRONMENTALLY SUSTAINABLE SOFTWARE

APPLICATIONS

Subject Guidelines Trade-Offs Sec.

Cloud Choose a data center that is close to

users, runs with renewable energy

and has a low PUE

Requires further

investigation of

data centers, can

be more

expensive

4.1

CI/CD Reduce the amount of automatization

and workload in CI/CD pipelines

Slightly increased

chance of

unnoticed bugs

4.2

Methods Use Agile methods, instead of

waterfall, to reduce wasted efforts

4.3

62

APPENDIX D: WEB APPLICATION RELATED

GUIDELINES FOR ENERGY EFFICIENCY

Subject Guidelines Trade-Offs Sec.

Rendering Use static site generation and

consider using server-side

rendering to reduce the total

workload

Not suitable for

dynamic content

5.1

Frameworks Use lightweight frameworks, such

as Vue or Preact for front-end,

and Fastify or FastAPI for back-

end

Might not support

as many

features, smaller

community might

not offer as much

support, can

contain more

bugs

5.1.2

5.2.3

WebAssemby Consider using WebAssembly for

energy intensive operations

Requires

advanced

knowledge

5.1.3

HTTP

communication

Consider bundling small HTTP

requests into fewer, larger

requests

Requires more

specific routes,

which can reduce

reusability

5.2.1

HTTP parsing Consider parsing the requests

straight away rather than first

validating, then parsing

 5.2.1

63

Subject Guidelines Trade-Offs Sec.

Database Use efficient database queries by

querying only the required data,

and perform complex calculations

and data operations in the

application code

 5.2.2

Mobile Bundle background activities

together, use Wi-Fi over cellular

 5.3

Mobile

platforms

Develop applications natively or

with more efficient cross-platform

frameworks, such as Flutter

Can require

additional work

and knowledge

5.3

64

APPENDIX E: SOFTWARE IMPLEMENTATION

GUIDELINES FOR ENERGY EFFICIENCY

Subject Guidelines Trade-Offs Sec.

Architecture Implement proper object-

oriented paradigm for modular,

scalable, and reusable software

Requires

advanced

experience to

implement

properly

6.1

Software bloat Avoid software bloat by being

selective about external library

usage

Might require

more manual

implementation

6.1

Programming

language

Use efficient programming

languages

Reduced

readability and

learnability, can

be more time-

consuming to

develop

6.2

Concurrency Consider multithreading when a

large workload can be spread

evenly

6.3

Data structures Find the most efficient data

structure for each use case

 6.4

Algorithms Focus on improving the

algorithm’s mathematical

complexity over the code

implementation

Requires

mathematical

proficiency and

increased work

6.4

65

Subject Guidelines Trade-Offs Sec.

Cache Use various caching

mechanisms at code-level and

with communication

Increased

memory and

 rogrammer’s

responsibility

6.5

Synchronization Use efficient synchronization

techniques and increase polling

inter al here it can’t be a oided

 6.6

Data format Use efficient data format that

reduces the size of the file

Might not support

as many features

6.7

Code

implementation

Implement code with fewer

instructions and adopt good

coding practices

 6.8

66

APPENDIX F: USER EXPERIENCE GUIDELINES

FOR ENERGY EFFICIENCY

Subject Guidelines Trade-Offs Sec.

Usability Increase ser’s efficienc b sing

familiar features and elements,

preventing errors, and handling

error situations effectively

Limiting creativity

in design

7.1

Content Organize content logically and

encourage users to take action

quickly by highlighting important

elements

7.1.1

User

preferences

Allow energy intensive features to

be customized or disabled

7.1.2

User

interface

Design user interface with

minimalistic approach

Limiting creativity

in design

7.2

Images Use correct resolution for each

screen size

Requires multiple

copies of the

image

7.2.1

Image

optimization

Reduce image file size by reducing

color variation, blurring background

and selecting efficient image

formats

Limiting creativity

in design, requires

additional

operations for

optimization

7.2.1

6.7.2

Videos Minimize videos and avoid auto-

playing videos by placing a play

button, minimize the resolution and

framerate of the video

Limiting creativity

in design, requires

additional

operations for

optimization

7.2.2

67

Subject Guidelines Trade-Offs Sec.

Colors Use darker and warmer colors Limiting creativity

in design

7.2.3

Fonts Use system fonts, and strip out

unused characters from non-system

font files

Limiting creativity

in design and

requires additional

operations for

optimization

7.2.4

