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ABSTRACT 

Vilma Salmikuukka: Guidelines for sustainable software 
Master of Science thesis in technology 
Tampere University 
Master’s Programme in Information Technology 
January 2024 
 

Software applications contribute to greenhouse gas emissions indirectly through 

energy consumption, hardware production, and disposal of electronic waste. This work 

explores different factors that impact the environmental sustainability of software 

applications and investigates how these factors can be optimized during the software 

development process. The guidelines presented in this work include several strategies 

and actionable practices that can be incorporated throughout the software lifecycle. 

To reduce the environmental impact associated with hardware, it is important to 

optimize the software for efficient utilization of hardware devices. The results of this work 

underscore the importance of developing software that leverages containerization 

techniques and cloud computing paradigms, ensuring optimal resource utilization across 

diverse computing environments. 

This work also explores how software applications consume energy and investigates 

strategies to optimize energy usage from different perspectives. The findings emphasize 

the importance of minimizing data transfer and reducing the computational load within 

the software. By limiting the frequency and volume of data exchanges and reducing 

unnecessary processing, significant reductions in energy consumption can be achieved. 

Various higher-level aspects of software development process are also covered in 

this work, ranging from project management and DevOps to user experience and 

interface design. Several optimization strategies are introduced in each area. The text 

also investigates how energy consumption is affected by different software 

implementation elements, such as architecture, programming languages, frameworks, 

data structures, and algorithms. Furthermore, the work provides a more focused 

examination of web development, offering detailed insights into front-end, back-end, and 

mobile development. 

This work also highlights that the nature of the software influences the specific areas 

where optimizations can be applied, and which practices are realistic to implement. 

Therefore, the strategies and practices for sustainability need to be tailored to each 

application's unique characteristics and requirements. 
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Verkkosovellukset vaikuttavat kasvihuonepäästöihin epäsuorasti 

energiankulutuksen, laitteiston tuotannon ja elektroniikkajätteen hävittämisen kautta. 

Tässä työssä tutkitaan erilaisia tekijöitä, jotka vaikuttavat sovellusten 

ympäristöystävällisyyteen ja selvitetään, miten näitä tekijöitä voidaan optimoida 

ohjelmistokehitysprosessin aikana. Työssä esitetyt suositukset sisältävät useita 

strategioita ja käytäntöjä, jotka voidaan ottaa käyttöön koko ohjelmistokehitysprosessin 

ajan. 

Laitteistoon liittyvien ympäristövaikutusten vähentämiseksi on tärkeää optimoida 

ohjelmisto hyödyntämään laitteita mahdollisimman tehokkaasti. Työn tuloksissa 

korostetaan kontti- ja pilviteknologioiden hyödyntämistä, mikä auttaa varmistamaan 

optimaalisen resurssien käytön useissa laskentaympäristöissä. 

Lisäksi työssä tutkitaan, miten sovellukset kuluttavat energiaa, ja selvitetään 

strategioita energian käytön optimoimiseksi eri näkökulmista. Työn tuloksissa 

painotetaan tiedonsiirron minimoimisen ja laskennallisen kuorman vähentämisen 

tärkeyttä. Rajoittamalla tiedonsiirron tiheyttä ja määrää sekä vähentämällä tarpeetonta 

prosessointia voidaan saavuttaa merkittäviä vähennyksiä energiankulutuksessa. 

Työssä käsitellään myös ohjelmistokehitysprosessin korkeamman tason näkökohtia, 

kuten projektinhallintaa, DevOpsia, sekä käyttökokemus- ja käyttöliittymäsuunnittelua. 

Useita optimointistrategioita esitellään jokaisella osa-alueella. Tekstissä tutkitaan myös, 

miten erilaiset ohjelmistojen toteutuselementit, kuten arkkitehtuuri, ohjelmointikielet, 

kirjastot, tietorakenteet ja algoritmit vaikuttavat energiankulutukseen. Lisäksi työssä 

tarkastellaan tarkemmin verkkokehitystä ja käydään läpi yksityiskohtaisia näkemyksiä 

käyttöliittymä-, taustapalvelu- ja mobiilikehityksestä. 

Työssä korostetaan myös, että ohjelmiston luonne vaikuttaa siihen, millä aihealueilla 

optimointeja voidaan soveltaa ja mitkä käytännöt ovat realistisia toteuttaa. Tästä syystä 

kestävyyden strategiat ja käytännöt on räätälöitävä kunkin sovelluksen ainutlaatuisten 

ominaisuuksien ja vaatimusten mukaan. 
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1. INTRODUCTION 

The purpose of this work is to find out what are the current recommendations and 

guidelines for sustainable software. The research objectives for this work are to explore 

the factors that impact the environmental sustainability of software and to determine how 

these factors can be optimized and integrated into the software development process. 

These research goals are achieved by conducting a comprehensive review of the current 

literature on the subject. 

Software development is one of the only engineering fields where environmental 

sustainability is only rarely taken into consideration. It is a common misbelief that digital 

solutions and technology are inherently clean and environmentally sustainable. This is 

understandable since software itself is not a source of pollution, as it doesn’t produce 

physical waste or emissions. However, as software requires energy to operate and 

hardware to operate on, it contributes to pollution indirectly through energy consumption, 

electronic waste, and the production and disposal of hardware. 

The Information and Communications Technology (ICT) sector has been estimated to 

produce 4 % of the total greenhouse gas emissions (GHG) and consume 10 % of the 

electricity of the world. This includes the manufacture and power usage of 34 billion 

digital devices, and the millions of kilometers of cable they are connected with [1] [2]. 

Although the ultimate responsibility of hardware and energy consumption is always with 

the device, software dictates the way hardware is utilized and energy is consumed [3].  

Recently government policies and institutional standards have begun moving towards 

sustainable software. This work aims to gather guidelines for every state of the software 

lifecycle with actionable patterns and tools for decarbonizing software. While the 

guidelines have been generalized as much as possible, the main focus of this work is 

web application development. 

In the context of this work, sustainable software means ways to make software itself 

greener, as opposed to software that encourages environmentally sustainable 

movements. However, it is worth noting that software also has the potential to 

significantly reduce GHG emissions through innovative solutions for digitalization, such 

as online meetings which reduce the need for traveling [4]. 

 



2 

 

 

2. ENERGY 

Green transition and the digitalization that follows require a lot of energy. This chapter 

briefly explains how energy consumption contributes to carbon emissions through 

carbon intensity, and how emissions and energy consumption are distributed between 

different devices. Following that, different metrics and methods are introduced for 

measuring emissions related to software. 

 

2.1 Carbon Intensity 

Carbon intensity measures the amount of carbon dioxide (CO2) emitted per kilowatt-hour 

(kWh) of electricity produced. It is used as a key metric in assessing the environmental 

impact of energy production. Carbon intensity can be influenced by the source of the 

electricity, the efficiency of the energy conversion process, and the emissions associated 

with extracting and transporting the electricity source. [5] 

Electricity that is generated using fossil fuels (coal, oil, and natural gas) is more carbon 

intensive while nuclear power and renewable energy sources, such as hydropower, wind, 

and solar, are defined as low-carbon energy sources. The percentage of electricity 

generated from burning fossil fuels varies by country and region, as visualized in Figure 

1. Globally, fossil fuels have traditionally been the dominant source of electricity 

generation. [6] 

 



3 

 

 

 

Figure 1. Visualization of the variability in carbon intensity in different regions [6]. 

Fossil fuels account for about 80% of global electricity production. Oil is the largest 

source of electricity from fossil fuels, followed by coal and natural gas. The remaining 

electricity comes from renewable energy sources and nuclear power. [7] [8] 

Carbon intensity also changes over time due to the inherent variability of renewable 

energy caused by the changes in weather conditions as illustrated in Figure 2 [6]. 

 

Figure 2. Visualization of the variability in carbon intensity due to weather conditions 

[6]. 
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Unfavorable weather conditions for renewable energy sources can lead to a decrease in 

their contribution to the energy mix. In such cases, the energy demand is often met by 

conventional power plants, which typically have a higher carbon intensity. Shifting 

computation to a time and a place where weather conditions are favorable and 

renewable energy is available, can help decrease emissions [9]. 

 

2.2 Software energy consumption 

Data centers, telecommunications equipment, and user end devices all consume energy 

as a result of running software. These devices contribute to other forms of pollution as 

well, such as water usage and mineral mining. Table 1 presents how different forms of 

pollution are distributed between the devices. The emissions related to the 

manufacturing process are also accounted for. 

Table 1. Emissions distribution [1]. 

 

Energy GHG Water Elec. ADP 

User  

equipment 
60% 63% 83% 44% 75% 

Network 23% 22% 9% 32% 16% 

Data centres 17% 15% 7% 24% 8% 

 

As Table 1 shows, devices located in data centers consume the least amount of energy, 

only about one-sixth of the total amount. Network devices are not far behind, consuming 

nearly a quarter of the total amount. However, users’ devices dominate energy 

consumption, by consuming over half of the total energy. Producing environmentally 

friendly software can influence the energy consumption of all this equipment. 
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2.3 Measuring energy consumption & carbon emissions 

The environmental footprint of a software can be measured through different 

characteristics of sustainability, such as energy efficiency, hardware efficiency, and 

resource optimization [10]. Continuously measuring the emissions throughout software 

lifecycle, from design and coding to deployment and maintenance, can help identify 

critical components and monitor progress towards improvement. The obtained results 

can be compared to previous measurements or those of competitors [11]. 

2.3.1 Metrics 

In most major industries, the key metrics of environmental performance and energy 

efficiency have been well-established and widely adopted. These can be, for example, 

liters per 100 km for cars or energy per square meter for homes. The tools and 

techniques used for calculating these metrics have become standardized, ensuring 

consistency and uniformity among environmental evaluations [12]. 

Various environmental standards and efficiency metrics exist for hardware, such as 

MIPS/W (million instructions per second per watt), and FLOPS/W (floating point 

operations per second per watt). However, no equivalent standards have been 

established for software [13]. Defining clear metrics allows for a better understanding 

and comparison of the measurements. 

In general, energy efficiency can be defined as useful work done per energy 

consumed [14]. As the useful work done varies greatly depending on the software and 

even within different parts of the software, the unit of efficiency has a wide range of 

possibilities [15]. These can be for example, the number of sorted items per Joule, HTTP 

requests per second, or Joules per database query [16]. 

Different factors need to be considered when measuring the overall sustainability and 

carbon emissions of the software. Measures, such as the amount of data transferred 

(kWh/GB) and the carbon intensity of energy (CO2/kWh), can be important indicators of 

carbon emissions. [12] 

2.3.2 Tools 

In order to determine the total carbon emissions of a software application, it is essential 

to have detailed information on energy consumption, carbon intensity, and the specific 

hardware utilized by the software. This information can be difficult to acquire [17]. 

However, there are several tools that can give indicative information about the 

environmental footprint of the software. Some of these tools are listed in Table 2.  
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Table 2. Tools for assessing the environmental footprint of software. 

Tool Description Type Ref. 

Website Carbon 

Calculator, 

Ecograder 

Estimate carbon footprint of websites. Free, online [18] 

[19] 

Greenspector Measure and analyze the 

environmental impact of mobile and 

web applications. 

Commercial [20] 

PowerAPI Measure power consumption of 

applications. 

Free, open-

source 

[21] 

CAST Highlight Analyze application and source code 

for energy consumption patterns and 

make suggestions for improvement. 

Commercial [22] 

Lighthouse Google chrome developer tool for 

analyzing the performance of a web 

page. 

Free, open-

source 

[23] 

Emissions 

Impact 

Dashboard 

Monitor the carbon impact of cloud in 

Microsoft Azure. 

License [24] 

Carbon Footprint Measure, report, and reduce cloud 

carbon emissions in Google Cloud. 

Commercial [25] 

Cloud Carbon 

Footprint 

Cloud carbon emissions 

measurement and analysis tool 

supporting multiple cloud providers. 

Free, open-

source 

[26] 

Software Carbon 

Intensity (SCI) 

Specification 

A specification that describes how to 

calculate a carbon intensity score for 

software applications. 

Free, open-

source 

[27] 
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Different tools can give insights on different aspects of the environmental footprint of the 

software. Using several different tools in a versatile way and combining the results can 

give a better overall understanding of the total emissions. 
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3. HARDWARE 

One aspect of software sustainability is designing software to be hardware efficient. This 

chapter provides an overview on how hardware relates to carbon emissions and 

consumes energy. Different options are introduced on how software can utilize hardware 

more efficiently. 

 

3.1 Embodied carbon 

Hardware contributes to pollution through usage, manufacturing, and disposal of 

devices. The production of hardware often involves the extraction of natural resources 

and the use of toxic chemicals. The disposal of hardware often produces electronic waste 

as devices may contain hazardous materials [28]. Embodied carbon measures the 

amount of pollution emitted during the manufacturing and disposal of a device. Total 

carbon pollution means the embodied carbon and the pollution associated with using the 

device [29]. 

 

Figure 3. Emissions per ICT device [29] [30]. 

Figure 3 illustrates the ratio of emissions related to the usage and production of end user 

devices. Production is the main contributor to GHG emissions across all types of devices. 

These emissions are driven up by the utilization of different raw materials and complex 

manufacturing processes. The impact of production emissions can be reduced by 

extending hardware lifespan [30]. 



9 

 

 

3.2 Extending lifespan 

By the time a new device is purchased, it has already emitted a significant amount of 

pollution in the manufacture process. In addition to that, devices have a limited lifespan, 

which means that eventually, they will be unable to handle modern workloads and will 

require replacement. One approach to account for embodied carbon is to amortize the 

carbon over the expected life span of the device as illustrated in Figure 4. [29] 

 

Figure 4. Increasing the usage time to reduce amortized carbon [29]. 
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Hardware lifespan can be extended by increasing the usage time of the device. This can 

be achieved by developing software that runs on older hardware, and thereby reduce 

the modern workload [31]. Figure 4 illustrates how adding one year into the lifespan could 

reduce the yearly amortized carbon. 

 

3.3 Static power draw & Energy proportionality 

The static power draw of a computer means how much electricity is drawn in idle state. 

Computer is in idle state when it is not processing any tasks or performing any 

operations. Servers require power even when they are in idle state because they must 

remain powered up in order to maintain their state of readiness. This can mean for 

example, keeping the network connection active, which allows the server to be available 

to receive new tasks. The amount of power consumed in idle can vary depending on the 

server's hardware specifications, and the power management configurations [32]. 

The energy proportionality measures the relationship between power consumed by a 

computer and the rate at which it is being utilized [32]. Computer power consumption 

responds differently to varying utilization levels. This means that the energy 

proportionality of the computer is not linear, as illustrated in Figure 5. Moreover, even 

energy-efficient servers tend to consume a relatively high amount of power when they 

are in idle state [33]. 
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Figure 5. Energy Proportionality [32]. 

Because of this, the more a computer is utilized, the more efficiently it converts electricity 

to practical computing operations. However, a lot of resources recommend the exact 

opposite, and encourage developers to maximize idle (“race to idle”) [34] [35]. This is 

because hardware efficiency and embodied carbon are not taken into consideration in 

these materials. Hardware efficiency can be improved by Increasing utilization. 

 

3.4 Increasing utilization 

One way to increase hardware utilization and thus, improve hardware efficiency, is to run 

the workload on as few servers as possible, as illustrated in Figure 6. Servers running at 

the highest utilization rate are maximizing energy efficiency and minimizing embodied 

carbon [29]. However, more research is required to determine how this affects the 

cooling demand and long-term durability of the device. 
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Figure 6. Increasing server utilization [29]. 

On the other hand, running servers at lower capacity ensures that peaks in demand can 

be handled without compromising performance [29]. Figure 7 shows how public cloud 

can offer high utilization rate and spare capacity. 

 

Figure 7. On-premise and cloud hardware utilization [29]. 

Cloud services typically increase the energy and hardware efficiency of the software 

application when compared to on-premise data centers. This is mainly due to reduced 

overheads and more efficiency in scalability [31] [36]. Therefore, moving computation to 

public cloud can reduce the overall emissions caused by the software application [29]. 

3.4.1 Virtualization  

A typical system which is operated with only one operating system (OS) per device, 

generally has a relatively low usage rate with a lot of unused hardware resources, as 

illustrated in Figure 8. However, the introduction of virtualization technology has helped 

address the issue of low usage rates by making better use of the available resources of 

the equipment [37]. 
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Figure 8. Example of a typical device. 

Figure 8 shows an example where the device only contains a single application. This is 

often necessary, so that different applications can be isolated from each other. Isolation 

ensures that applications are running in a clean and safe environment. As different 

applications often require different dependencies, it is important to have control over 

resources and configurations [38]. 

Virtualization technology employs a hypervisor to abstract physical resources logically 

and allocate them to multiple operating systems running on a single device 

simultaneously [37]. Figure 9 visualizes how hypervisor allows multiple isolated 

applications to run in the same device while maximising hardware usage. 

 

Figure 9. Example of virtualization. 

Virtualized systems consume more energy than physical ones due to higher hardware 

utilization rate [39]. The energy consumption depends on the hypervisor used with KVM 

being the most efficient compared to Xen and vSphere [40]. 

3.4.2 Containerisation 

Virtualization require the whole system (hardware, and OS) to be virtualized. However, 

with the use of containers, individual applications can be isolated from each other, and 

"virtual machines" can be created without the overhead associated with traditional 

 ard are

  est o erating s stem   est o erating s stem

      

   er isor
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virtualization setups. This means that containers allow for a more lightweight and efficient 

way to virtualize applications [41]. Containerization is illustrated in Figure 10.  

 

Figure 10. Example of containerization. 

Containerization consumes less power compared to hypervisors [38] [42]. However, 

some cases of virtualization cannot be containerized, such as those where a different 

type of OS is required [41]. 
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4. DEVOPS & PROJECT MANAGEMENT 

Development and Operations (DevOps) combines a set of practices and tools that 

automate and streamline the software delivery process. This increases the 

organization’s abilit  to deli er a  lications and ser ices more quickly and reliably [43]. 

This chapter goes over different factors that affect the energy consumption related to 

DevOps, including cloud, continuous integration and continuous deployment (CI/CD), 

and project management. 

 

4.1 Cloud 

The cloud provides services, such as computation, databases and servers over the 

internet. It allows accessing and utilizing these resources on-demand, without the need 

for local hardware or infrastructure. Although the energy consumption of the cloud is 

heavily affected by the cloud provider, there are some factors that can be taken into 

consideration by the cloud consumers. 

4.1.1 Power Usage Effectiveness (PUE) 

The power usage effectiveness (PUE) metric is widely used by data center industry, to 

measure the infrastructure energy efficiency for data centers. PUE is a measure of the 

energy used by computing equipment compared to the energy used for cooling and other 

overheads that support the equipment [44]. A data center with a PUE close to 1.0 means 

that computing is using almost all the energy, while a PUE of 2.0 indicates that an 

additional watt of power is required to cool and distribute power to the IT equipment for 

every watt of power used by the equipment. 
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Figure 11. PUE 1.5 [32] 

To put it simply, PUE can be thought of as a multiplier for an application's energy 

consumption. For instance, as illustrated in Figure 11, if an application consumes 10 

kWh and the PUE of the data center it runs in is 1.5, the actual consumption from the 

grid is 15 kWh. This is because 5 kWh goes towards the operational overhead of the 

data center, while the remaining 10 kWh goes to the servers that run the application [32]. 

In 2021, the average PUE of data centers was 1.57 [45]. Choosing a cloud provider and 

data center with lower PUE can help increase the overall energy efficiency of the 

software. 

4.1.2 Data center location 

The location of the data center is an important factor of energy consumption. The further 

data travels, the more energy is consumed in transmitting the data through the network. 

Therefore, locating servers closer to users can help to reduce energy consumption. 

However, it can be hard to define the precise center of mass of the users, but website 

analytics can help to get a rough idea by identifying the country where core user groups 

are located [12]. 
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Figure 12. Live data of carbon intensity of electricity in Europe on November 19th 2023 

[46]. 

The location of the data centre can also have an impact on the availability of clean energy 

sources for the data center. Figure 12 shows the electricity map that presents live data 

for the carbon intensity of electricity by country [46]. The usage of renewable energy 

sources also varies between different cloud providers. Major cloud providers, such as 

Microsoft, Google, and Amazon, are making investments in sustainable energy sources 

to power their data centers. Additionally, many providers engage in CO2 certificate 

trading to present a more environmentally friendly image for the energy waste generated 

by their data centers [31]. Typically cloud providers are being very public about these 

kinds of commitments, which makes it easier to choose a more environmentally friendly 

provider. 
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4.2 CI/CD 

Continuous Integration (CI) and Continuous Deployment (CD) is a software development 

approach that involves frequently integrating code changes into a shared repository, and 

automating the required processes to ensure that software is always in a releasable state 

[47]. The CI/CD process is automated in a pipeline, which can consist of various stages, 

such as code compilation, unit testing, integration testing, code analysing, packaging, 

and deployment. 

Running the pipeline consumes energy and can take a very long time to complete [48]. 

As the pipeline typically includes very critical and essential operations that ensure 

software quality, such as testing, the energy cost of running the pipeline should be 

reduced without compromising software quality. This could be done by running the 

pipeline more strategically and avoiding unnecessary triggering of the process [49]. The 

frequency of running the pipelines and the workload of each run should be considered 

to reduce the energy consumption related to the CI/CD process. 

To reduce the frequency of running the process, automatic triggers of the pipeline could 

be limited to the most important parts of the integration. For example, the pipeline could 

run automatically only when a complete feature (e.g., branch) is integrated, instead of 

when a single change (e.g., commit) is made. The pipeline could be triggered manually 

for individual changes if needed [48]. 

Additionally, the pipeline could run only partially in some situations. For example, tests 

could be run when a feature is ready without building and deploying the whole software, 

and unit tests could be skipped for units that have not changed. Configuring which parts 

of the pipeline are set to run can reduce the workload of the run. Alternatively, the CI/CD 

process could be skipped entirely for changes that are unlikely to impact any functionality 

of the software, such as changes made to the documentation or comments [49].  

 

4.3 Methodologies 

The choice of software development methodology can influence the environmental 

impact of the project. Different methodologies offer different approaches for planning, 

organizing, and managing the software development process. By choosing a method 

that optimizes resource utilization and reduces waste, the overall environmental 

sustainability of the software can be improved [50]. 
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The waterfall methodology is a traditional project management approach that follows 

a sequential and linear process, where each phase of the project is completed before 

moving on to the next one [11]. The typical phases in waterfall methodology include 

requirements gathering, design, implementation, testing, deployment, and maintenance 

as presented in Figure 13. 

 

Figure 13. Example of waterfall methodology [51]. 

The waterfall methodology can promote waste in several ways through wasted efforts 

and profitless work. It involves a significant amount of upfront planning, documentation, 

and design work, which does not account for new ideas and knowledge that arise during 

the development process. This also makes it challenging to adapt or incorporate changes 

in requirements efficiently [11]. Furthermore, there is rather limited communication and 

collaboration between team members and stakeholders during the development 

process. The lack of regular feedback can result in misunderstandings and thereby, 

wasted efforts [11]. 

The agile methodology, on the other hand, is a flexible and iterative approach to 

software development that emphasizes continuous collaboration between developers 

and stakeholders. Agile methodology focuses on iterative and incremental development, 

which means that the development team delivers working software in short cycles which 

is visualized in Figure 14 [50]. 
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Figure 14. Example of agile methodology [52]. 

By developing and delivering software in small increments that are frequently tested, less 

time and resources are wasted, since developers can quickly identify and fix problems 

as they arise. Agile methodology also involves continuous feedback loops between 

developers and stakeholders, which allows the development team to identify areas of 

improvement and quickly react to changes in requirements [11]. Choosing agile methods 

can help utilize resources more efficiently and reduce wasted time and effort which 

improves the overall environmental sustainability of the software [53]. 
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5. WEB APPLICATION DEVELOPMENT 

This chapter describes how different aspects affect the energy consumption of web 

applications. Web application development includes front-end, back-end and mobile 

development. Each section goes over various factors that affect the energy consumption 

and introduces ways to improve these. 

 

5.1 Front-End Development 

Front-end refers to the client, which is the user-facing part of a software application. It 

includes the visual and interactive elements that users see and interact with directly. 

Modern web applications are typically implemented as a single-page application 

(SPA). A single-page application is a web application that dynamically updates the 

content on a single web page, instead of loading separate pages for different 

interactions. SPAs use JavaScript to retrieve and display data without requiring a full 

page reload, resulting in a faster and more interactive user experience [54]. However, 

this typically requires extensive client-side JavaScript processing, which can be energy 

intensive. 

Server-side rendering (SSR) is a technique, where the server renders the web page 

and sends the HTML to the client, instead of relying on client-side JavaScript to render 

content. This approach reduces the client-side processing required, resulting in faster 

initial load times and potentially lower energy consumption on the client's device [55]. 

SSR is suitable for pages that consist of static content as frequent content updates can 

lead to increased data traffic. 

Static Site Generation (SSG) is another technique for rendering web pages on the 

server-side. When the data required to render a page is consistent for all users, the page 

can be rendered only once during the build process, instead of rendering the page for 

each client separately on every request. SSG can only be applied to pages that use static 

data, that is known during the build process and remains unchanged between 

deployments. Any updates to the data require a new deployment [56]. 
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5.1.1 DOM 

Document Object Model (DOM) is the browser's way of conceptualizing document 

content by turning the web page code into visual objects. Each HTML element is 

represented as a node in the DOM. The number of nodes in the DOM determines how 

much memory the browser requires and the time it takes to display and update the page. 

A higher number of nodes in the HTML means more time spent processing and rendering 

each element. Moreover, any interaction with the DOM through JavaScript requires 

additional processing time and memory to navigate the DOM elements [57] [58]. 

Different frameworks use different approaches to manipulate the DOM. Some 

frameworks, like React and Vue, use a virtual DOM to efficiently update the actual DOM. 

They update a virtual representation of the DOM first and compare it to the actual DOM. 

This allows the browser to only re-render the parts that have changed, minimizing actual 

DOM manipulations, and reducing the computational workload. Other frameworks, like 

Angular, re-rendering the entire DOM whenever there is a change in the application 

state [59]. This can lead to more extensive and potentially less energy-efficient DOM 

manipulations and updates. 

5.1.2 Frameworks 

In addition to DOM manipulation, there are several other aspects that can affect the 

efficiency of a front-end framework, such as bundle size and the number of components 

and elements within them, that need to be processed on each render [60] [59]. These 

are listed for three of the most popular frameworks in Table 3. 

 

Table 3. Front-end frameworks. [59] 

Framework 
Bundle 

size 
DOM 

Components  

processed 

Elements  

processed 

Angular Large Real All Bindings only 

React Small Virtual 
Subtree of updated  

component 
All 

Vue Small Virtual Dirty components only Bindings only 

 

Of these frameworks, Vue is the most efficient choice, showing very similar performance 

to vanilla JavaScript. It is followed by Angular, which was more performant than React 
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[59] [60] [61]. However, React was found the most responsive in terms of being ready to 

accept user interactions after DOM manipulation [60]. Although the performance was 

measured through duration, it correlates with energy consumption, since the tests were 

run on the same processor at full power. It is also worth noting that there are more 

efficient versions of React available, such as Preact, which shows similar results to 

Angular or even Vue in some cases [61]. 

5.1.3 WebAssembly 

For over two decades, JavaScript has been the standard scripting language for client-

side web development. However, it was not designed with performance in mind, and it 

falls short in energy efficiency. To overcome this, a new portable and efficient bytecode 

language, WebAssembly (Wasm), has been developed [62]. It is a low-level assembly-

like language with a compact binary format [63]. Assembly is human-readable 

abstraction on top of machine code.  

Programs written in other languages can be run in the browser by compiling them to 

Wasm. This way the performance intensive JavaScript code can be replaced with more 

energy efficient languages [63]. This has been shown to have a significant effect on the 

energy efficiency [64]. 

 

5.2 Back-End Development 

Back-end refers to the server-side components of a software application. It is responsible 

for handling tasks such as data storage, business logic, and communication with the 

front-end. In a typical scenario, the server receives requests from the front-end, 

processes them, retrieves, or manipulates data from databases, and sends back the 

appropriate response. 

5.2.1 HTTP 

The server typically communicates with front-end via Hyper Text Transfer Protocol 

(HTTP). This HTTP communication is typically the most energy consuming operation of 

the network [65]. One way to reduce energy consumption related to HTTP 

communication is by bundling multiple small HTTP requests into fewer, larger requests 

[66].  

Another technique involves attempting to parse an HTTP request with the assumption 

that it is valid and aborting if the parsing fails, rather than first validating that it is parse-
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able and then parsing it. Parsing gives access to the validated information straight away, 

while validation throws it away and then it needs to be parsed anyway [67]. 

5.2.2 Database 

Using efficient database queries and minimizing unnecessary data retrieval can help 

reduce the energy consumption of a software application. To reduce the amount of data 

needed to transfer, data-centric calculations can be performed in the database [68]. This 

can mean for example, querying only a certain selection of the data, instead of querying 

all the data and filtering it in the application code. 

More complex calculations and CPU (Central Processing Unit) intensive operations are 

more efficient to do in the application code, rather than in the database [69]. However, 

aggregate functions, such as MIN, MAX, SUM, and AVG, are typically more performative 

than the equivalent code implementation [68]. 

Moreover, the type of the database can have an impact on the energy efficiency of the 

application. Traditional relational databases, such as MySQL or PostgreSQL, offer 

support for structured data with complex relationships. However, they commonly act as 

a bottleneck withing an otherwise parallel application, in which case delegating some of 

the processing away from the database might be beneficial [68]. 

On the other hand, NoSQL databases, such as MongoDB or Cassandra, excel at 

handling large volumes of unstructured data with high scalability requirements. They are 

more efficient at retrieving and storing data than relational databases [70] [71]. However, 

the use of NoSQL databases might increase the need for data processing in the 

application code, which could end up being less energy efficient. This needs further 

research. 

5.2.3 Frameworks 

Back-end frameworks have significant differences in their efficiencies [72]. Lightweight 

frameworks (e.g., Fastify, FastAPI), that have minimal overhead and dependencies, tend 

to consume fewer server resources, resulting in lower energy consumption compared to 

heavier alternatives (e.g., Express, Django). Figure 15 shows how many requests some 

of the most popular frameworks can process in a second (higher is more efficient). 
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Figure 15. Requests per second for different Back-end frameworks (2023) [73]. 

The choice of programming language heavily affects the performance, but there are also 

notable differences in frameworks within the same language. For example, Fastify can 

process nearly three times more requests per second compared to Express, even though 

they are both JavaScript frameworks. Similarly with Python frameworks, Flask can 

process twice as much as Django, and FastAPI can process over three times more than 

Flask. [73] 

 

5.3 Mobile Development 

Mobile devices such as smartphones and tablets derive the required energy from 

batteries, which have a limited size and capacity. Therefore, it is crucial to manage 

energy consumption effectively [65]. Figure 16 shows how energy consumption is 

distributed in a typical mobile device. However, it is worth noting that this can vary a lot 

based on the activity and device used [74]. 
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Figure 16. Power consumption distribution in a mobile device (2013) [3]. 

As seen from Figure 16, the CPU is one of the most power consuming components. 

Some resources suggest CPU offloading to reduce energy consumption. This means 

moving computation to an external execution environment (e.g., the cloud) [75] [76]. 

However, although moving energy consumption to a different location can reduce the 

consumption within the device, the effect on the total energy consumption requires more 

research.  

Mobile applications can often include background activities, which refer to the execution 

of tasks or operations that continue to run even when the application is not actively in 

the foreground or visible to the user [77]. Background activities enhance the user 

experience, improve app functionality, and provide timely updates and notifications. 

However, they can consume a lot of energy as they require the device to be activated or 

“ oken   ”. This could be optimized by bundling activities together, instead of activating 

the device multiple times, as illustrated in Figure 17 [78]. 

 

Figure 17. Combining background activities to optimize the activation energy needed 

[78]. 

 ask   ask   ask  
 ombined

tasks
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The display is also one of the most power consuming components of the device. 

Therefore, limiting the screen time can be an effective way to reduce the power 

consumption. This can be done, for example, by allowing users to interact with the 

application using alternative interfaces, such as audio or earphone buttons, although 

more research is needed to evaluate the power consumption of such alternative 

interfaces. The power consumption of the screen can also be affected by user interface 

design as discussed in Chapter 7 [78]. 

Another highly power consuming component is the cellular network. As Wi-Fi 

consumes significantly less energy, it is advised to use that instead of cellular. Heavy 

data connections could be delayed or disabled until the device is connected to Wi-Fi. 

[78]  

Additionally, there are several approaches to consider when developing applications 

for multiple platforms, such as Android and iOS. One option is to develop applications 

natively, which requires separate applications to be implemented for each platform. This 

is the most energy efficient approach, however, building and maintaining several code 

bases with different technologies requires additional work and knowledge from the 

development team [79]. 

Another option is to use cross-platform development approaches, such as Flutter, 

Capacitor, React Native or progressive web applications (PWA). These allow apps to be 

deployed for multiple platforms from a single code base. From these approaches, Flutter 

has been shown to be the most energy efficient choice, followed by Capacitor and PWAs, 

with React Native being the least efficient [79]. 
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6. SOFTWARE IMPLEMENTATION 

Software is getting slower at a faster rate than hardware is becoming faster. This means 

that the improvements made in microchips through electrical engineering is being 

outpaced by the software utilizing the hardware [80]. Software engineers are typically 

not required to take energy efficiency into consideration during the development process 

[81]. This chapter goes over different aspects of software implementation and the energy 

optimization possibilities related to these. 

 

6.1 Architecture 

A well-designed software architecture can significantly help decrease energy 

consumption. Research has shown that object-oriented programming (OOP) that 

implements metrics of high-quality architecture, such as modularity, scalability, and 

reusability, can reduce energy consumption by up to 30% [82]. These metrics are 

described in Table 4. 

 

Table 4. Architectural metrics. [82] 

Metric Description 

Loose coupling 
Components do not depend on each other and can operate 

independently. 

Abstraction of  

communication 

Hiding away communication details behind a simple 

interface. 

Expressive power 
Simplicity of the architecture so that it can be understood 

easily. 

Evolutionary power 
Easiness of updating and extending the software in the 

future. 

Depth of packages The depth of subpackages used for composition. 

 

Modularity refers to the practice of breaking a system down into smaller, reusable units 

(modules) that can be developed, tested, and maintained independently. Modular 
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software consists of more components, which increases the communication between 

them but reduces the payload on each message. In the context of database access, 

modularity has been shown to decrease energy consumption. While the software 

consisted of more database calls, the reduced amount of data transferred per call 

resulted in less overall energy consumption. [83] 

However, modularity can lead to software bloat, which refers to software becoming 

larger and heavier, affecting the performance and energy efficiency of the program. 

Modularity itself is not the issue, but as modules are often designed to be as generic as 

possible, they are harder to optimize for specific use cases. In doing so, programmers 

unintentionally introduce unnecessary processing and data overhead for the sake of 

reusability. [84]  

Another thing that can cause software bloat and increase energy consumption is the 

excessive use of external libraries [85]. Libraries can often be very bloated, and they 

might come with a lot of unnecessary components. For example, a library for drawing 

diagrams can consist of multiple different types of diagrams, when only one specific type 

of diagram is used. However, libraries can also be very modular in which case, by being 

selective about which parts to include, file sizes can be kept minimal. 

The high-level architecture dictates the workload distribution of the software 

application. For web applications, moving computation away from the end-user devices 

(client) can help increase the overall energy efficiency of the software, assuming 

computation is more energy efficient in another environment [14]. This can be achieved 

through various architectural patterns. 

In Client-Server Architecture, which is visualized in Figure 18 the server is responsible 

for processing and managing data, while the client mainly handles the user interface. 

This allows multiple clients to access the same server where common calculations can 

be executed once instead of every client performing the calculations themselves [86]. 

 

Figure 18. Client-server architecture. 

Microservices Architecture extends the Client-Server Architecture by dividing the 

server-side responsibilities into smaller, independent services that communicate with 

each other through APIs (Application Programming Interface). This is illustrated in Figure 
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19. Different services can be responsible for e.g., storing data, running complex 

calculations, and accessing data from an external source [86]. 

 

Figure 19. Microservices architecture. 

This allows services to be deployed independently and scaled up or down as needed, 

which can reduce energy consumption [87]. However, it typically requires more frequent 

API calls, which can increase energy consumption on the network [65]. Further research 

is required to compare the energy efficiencies of these architectural patterns. 

 

6.2 Programming language 

Programming languages differ in many mechanisms that can affect energy efficiency. 

One such significant mechanism is the execution type of a programming language, 

which defines how code written in that language is processed and run. Languages can 

be compiled, which means that the code is translated to machine code before execution. 

Interpreted languages are translated and executed simultaneously one instruction at a 

time. In virtual machine languages, code is translated to an intermediate form before it 

can be executed by a virtual machine [88]. Table 5 presents the energy efficiencies of 

different programming languages. 

 

  



31 

 

 

Table 5. Programming language efficiencies [89]. 

Rank Language Execution type Energy (J) 

1 C Compiled 1.00 

2 Rust Compiled 1.03 

3 C++ Compiled 1.34 

4 Ada Compiled 1.70 

5 Java Virtual machine 1.98 

6 Pascal Compiled 2.14 

7 Chapel Compiled 2.18 

8 Lisp Virtual machine 2.27 

9 Ocaml Compiled 2.40 

10 Fortran Compiled 2.52 

11 Swift Compiled 2.79 

12 Haskell Compiled 3.10 

13 C# Virtual machine 3.14 

14 Go Compiled 3.23 

15 Dart Interpreted 3.83 

16 F# Virtual machine 4.13 

17 JavaScript Interpreted 4.45 

18 Racket Virtual machine 7.91 

19 TypeScript Interpreted 21.50 

20 Hack Interpreted 24.02 

21 PHP Interpreted 29.30 

22 Erlang Virtual machine 42.23 

23 Lua Interpreted 45.98 

24 Jruby Interpreted 46.54 

25 Ruby Interpreted 69.91 

26 Python Interpreted 75.88 

27 Perl Interpreted 79.58 
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As Table 5 shows, compiled languages tend to consume the least energy, interpreted 

languages consume the most, and virtual machine languages are scattered in the 

middle. Interpreted languages are typically more readable, easier to learn, and faster to 

develop. The trade-off between efficiency and easiness should be taken into 

consideration when choosing a programming language. 

It is worth noting, that there have been some discussions [90] [91] regarding the results 

of [89], and particularly the energy consumption of TypeScript. Since TypeScript 

compiles to JavaScript, it should be expected to show more similar results. In the study, 

one test (fannkuch-redux) results TypeScript to consume about 1000 times more energy 

compared to JavaScript, as opposed to the other tests, which only resulted in minor 

differences. This has been speculated to be an implementation error in the test code, 

which is available in GitHub [92]. In the source code, the JavaScript and TypeScript 

implementations of the fannkuch-redux are somewhat different, and therefore this matter 

needs further research. However overall, the study is indicative. 

Table 6 shows the estimated popularities of different programming languages. The 

popularity has been estimated by analyzing how often language tutorials are searched 

on Google [93]. 
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Table 6. Popularity of programming languages [93]. 

Rank Languge Change Share Trend 

1 Python - 27.43 % -0.2 % 

2 Java - 16.19 % -1.0 % 

3 JavaScript - 9.4 % -0.1 % 

4 C# - 6.77 % -0.3 % 

5 C/C++ - 6.44 % +0.2 % 

6 PHP - 5.03 % -0.4 % 

7 R - 4.45 % +0.1 % 

8 TypeScript - 3.02 % +0.3 % 

9 Swift   2.42 % +0.4 % 

10 Rust     2.15 % +0.6 % 

11 Objective-C    2.13 % +0.0 % 

12 Go   2.01 % +0.0 % 

13 Kotlin   1.79 % +0.0 % 

14 Matlab - 1.59 % +0.0 % 

15 Ruby - 1.1 % -0.0 % 

16 Ada      1.06 % +0.3 % 

17 Powershell   1.06 % +0.2 % 

18 VBA    0.91 % -0.1 % 

19 Dart    0.86 % -0.0 % 

20 Lua    0.64 % +0.0 % 

21 Visual Basic - 0.58 % -0.0 % 

22 Abap    0.57 % +0.1 % 

23 Scala      0.57 % -0.2 % 

24 Julia   0.42 % -0.1 % 

25 Groovy - 0.42 % -0.0 % 

26 Haskell   0.3 % +0.0 % 

27 Perl   0.29 % -0.0 % 
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As seen in Table 6, Python is the most popular language despite being one of the least 

efficient. However, it delegates a lot of the workload to libraries written in other, more 

efficient languages, which makes Python programs perform more efficiently [94] [95] [96]. 

This practice is used in some other languages as well, such as JavaScript (V8, Node) 

[97] [98]. 

 

6.3 Concurrency 

Concurrent programming is a standard practice in software engineering [99]. It allows a 

program to execute multiple tasks or processes simultaneously, without waiting for one 

task to complete before starting another [100]. This can be achieved through various 

techniques such as multi-threading, multi-processing, or distributed computing. 

Multithreading can reduce energy consumption, assuming the workload can be split 

evenly [101].  However, forcing algorithms to run in parallel might have the contrary 

effect, which is why multithreading should be considered on a case-by-case basis [99]. 

 

6.4 Data Structures & Algorithms 

Many programmers have a tendency to select their preferred data structures, often 

without taking performance or energy consumption into consideration or knowing that 

there could be more optimal alternatives [102]. The Big-O notation is commonly used 

to analyze the efficiencies of data structures and algorithms. It represents the worst-case 

complexity, while the average complexity is represented by Big Theta (Θ), and the best-

case is represented by Big Omega (Ω) [103] [104]. In the Big-O notation, n represents 

the number of elements, which can be for example the number of items in an array [103]. 

Figure 20 illustrates some common Big-O notations. 
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Figure 20. Big-O notation [105]. 

Figure 21 presents the efficiencies of commonly used data structures. Different 

programming languages often have distinct names for the same data structures. For 

example, the default hash table implementation is named Map in JavaScript, 

unordered_map in C++, and dict in Python [106] [107]. In contrast, a map in C++ is 

typically implemented as a Binary Search Tree or a Red-Black Tree [108] [109]. 
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Figure 21. Common data structure operations [105]. 

When choosing which data structure to use, it is important to consider what are the most 

common operations for the data and choose a structure that is particularly efficient in 

those. However, also the circumstances and absolute efficiencies of these operations 

should be taken into consideration. For example, even though their average notations 

are the same, access operation in an array is more efficient than search operation in a 

hash table. 

Also, the algorithm choice can have a significant impact on energy consumption [110]. 

 

Figure 22. Array sorting algorithms [105]. 
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Figure 22 shows, how sorting an array can vary in performance. This applies to other 

algorithms as well. Different algorithms might result in the same outcome, but their 

efficiency can differ significantly. Decreasing algorithmic complexity can be an effective 

way to reduce energy consumption [34]. In other words, focus on improving the 

mathematical algorithm instead of the code implementation. 

 

6.5 Cache 

Avoiding unnecessary processing is an effective way to reduce the energy consumption 

of a software. It is very typical, that data is processed in real time, even if the content is 

not real-time, and that the same calculations are performed multiple times [111]. This 

can be avoided by caching. Cache is a temporary storage location that stores frequently 

accessed data. 

Caching can be done on multiple levels of the software application. Different cache 

mechanisms can be included for example, in code-level calculations or in 

communication. Code-level caching can be for example, storing the result of a function 

call to a variable so the value can be reused in other calculations. Additionally, some 

languages, such as Python, have built-in tools for caching [112]. 

The communication between client and server also offers many opportunities for 

caching. Results can be cached by the requesting or by the responding party. The 

requesting party (e.g., client) can cache the received response, so that it does not need 

to request it again [78]. The responding party (e.g., server) can cache the result so that 

it does not have to calculate it again. Similarly, the server can cache the received data 

from a database. 

Moreover, HTTP supports caching with Cache-Control and Expires headers. These 

allow the client to fetch updated information after an expiration period or ask if an update 

is needed [113]. 

Although caching can effectively reduce the energy consumption of a software, it is worth 

noting that not everything can be cached, as sometimes real-time data is needed. 

Caching can be used when the same calculations, operations, or communication are 

performed repeatedly. 
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6.6 Synchronization 

In some cases, software components may need to constantly synchronize or poll for 

updates, which can lead to frequent communication, heavy data transfer, and thus, 

increased energy consumption [114] [35]. Efficient synchronization mechanisms, such 

as event-driven architecture and differential synchronization can reduce the frequency 

and payload of communication. 

Event-driven architecture uses events to trigger actions in different components. 

Instead of continuously polling for updates, components subscribe to relevant events 

and react when those events occur [115]. This saves resources by eliminating the 

unnecessary communication and operations [14]. 

Differential synchronization is a minimalistic synchronization technique where only the 

changes or differences between two versions of data are synchronized rather than 

transmitting the entire dataset [116]. This reduces the total amount of data that needs to 

be transferred.  

However, sometimes polling cannot be avoided, such as with autosaving. In these 

situations, it is recommended to use the largest possible polling interval [34]. Similarly, it 

is more energy efficient to react to events as seldomly as possible. For example, input 

could be validated only when user moves on to the next input field, instead of reacting to 

every letter of the input. 

 

6.7 Data format 

Sending less data over the network can reduce energy consumption [14]. Larger file 

sizes typically require more storage space, more processing power, and more network 

bandwidth, which can result in higher energy consumption. Different file formats may 

support different features or data types, which can impact the file size. 

6.7.1 Text-based data 

In addition to bandwidth usage, text-based file formats involve extra computational cost 

from converting human-readable text data into a structured machine-readable format. 

This conversion consumes CPU and memory, which contributes to energy consumption. 

For text-based data, some of the most commonly used file formats include XML, JSON 

and CSV. These are compared in Table 7. 
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Table 7. File formats with examples of size overhead. [111] [117] [118] [119] [120] 

 XML JSON CSV 

Syntax <price>3</price> { price: 3 } ;3 

Payload 1 1 1 

Overhead 15 11 1 

Bandwidth high medium low 

CPU high medium low 

Complex data yes yes no 

 

As Table 7 shows CSV can be the most energy efficient option due to its low bandwidth 

and CPU usage. However, it does not support complex hierarchies of data, and 

therefore, JSON and XML are often more suitable choices. Out of these, JSON uses less 

bandwidth, CPU, and memory compared to XML, making it a more efficient option [117]. 

6.7.2 Images 

The image format and compression algorithm can significantly affect the file size and 

energy consumption related to data transfer. Some of the most common image 

encoding/decoding algorithms are listed in Table 8 with a rough indication of the typical 

file size categories associated with each algorithm. 

 

Table 8. Image formats [12] [11] [121] [122] [123] [124]. 

Format Type File size Suitable for 

SVG vector small icons, logos, illustrations 

WebP lossy & lossless small-medium web images 

GIF lossless small-medium 
simple pictures and 

animations 

JPEG lossy medium-large images 

PNG lossless large high-quality images 
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More specific comparison of the energy efficiencies of these algorithms would require 

further research but based on the file size, SVG and WebP formats are the most efficient 

options [12]. However, the choice of image format and compression algorithm depends 

on various factors of the specific use case, including image content, desired image 

quality, and platform compatibility. 

 

6.8 Code implementation 

Code that consists of fewer instructions typically results in a more efficient program 

that consumes less computational resources, memory, and ultimately, less energy. By 

focusing on the code’s logic and str ct re, energy efficiency can be optimized. This can 

be achieved by following good coding practices such as avoiding global variables, 

reducing the complexity inside loops, and caching the results of frequently performed 

calculations to variables [125]. 

Program 1 shows how complexity can be reduced in loops. Repeated function calls can 

be avoided by storing the result to a variable. While the program on the left appears to 

be simpler, and consists of fewer lines of code, the program on the right is actually more 

energy efficient. 

 

Program 1. Avoiding repeated function calls in a loop [125]. 

Some languages, such as C and C++, allow the programmer to choose the parameter-

passing strategy manually, in which case energy can be saved by passing a reference 

instead of a copy of the object. This is shown in Program 2, where the left side passes a 

copy of the object, and right side passes a reference. Higher-level languages like 

JavaScript and Python typically make this choice on the  rogrammer’s behalf. 

 

Program 2. Pass reference instead of a copy of the object [125]. 
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Another aspect of code implementation is logging, which is used for recording and storing 

information about a program's execution, errors, and events to monitor the  rogram’s 

correct behavior and simplify bug reporting. However, intensive logging can lead to 

frequent data transfer. Avoiding unnecessary logging can result in energy savings 

[126] [78]. 

It is also worth noting that more specific energy optimization techniques might depend 

on the programming language used. There can be found a lot of language specific 

resources in optimizing the energy consumption, such as [127] (Java) and [128] (C++). 

Additionally, refactoring can help keep the code simple and improve energy efficiency 

[3] [65] [129] [130]. 
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7. USER EXPERIENCE 

Ultimately, users use software to achieve a goal. This can be for instance, finding a piece 

of information, making a purchase, or submitting a form. The amount of energy 

consumed in the process depends on how the software is implemented and how 

efficiently the hardware is utilized. However, it is also influenced by the content presented 

to the user, and the time the user takes to achieve their goal. These can be optimized 

with sustainable user experience (UX) design. 

This chapter describes how different aspects of UX design can be optimized for better 

energy efficiency. These include various usability factors and user interface (UI) design 

elements. 

 

7.1 Usability 

The longer a user uses a software, the more energy is consumed [14]. To improve the 

user's efficiency in achieving their goal, it is important to minimize wasted time, which 

includes activities such as navigating and searching for information, waiting for content 

to load, recovering from possible error situations, and learning how to use the software. 

[12] [11] [131] 

Creating an intuitive and consistent user experience by using familiar elements and 

features in the design allows users to predict how elements behave based on past 

interactions. This can increase the learnability of the application and help the user 

achieve their task more efficiently [131]. 

 nother  a  to increase the  ser’s efficienc  is b  error prevention and effective error 

handling. These can prevent users from making mistakes and help recover from error 

situations more effectively. This can be done for example, by validating user inputs and 

showing error messages that are informative, actionable, and easy to understand [131]. 

7.1.1 Content 

The way content is organized and presented to a user can have a significant impact on 

how efficiently the user can achieve their goal. Various techniques can be used to make 

content perform well and minimize the time user spends on searching for information 

and navigating through the application. 
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To maximize efficiency, information architecture (IA) should be designed in a way that 

helps users find what they need as quickly as possible [12] [11]. This can be achieved, 

for example, by organizing content into logical categories and using clear and descriptive 

labels. Additionally, implementing a search functionality, and providing guidance to the 

 ser’s desired content through effective navigation menus and breadcrumbs can further 

increase the  ser’s efficienc  [131]. 

Moreover, content should incite users to take action quickly [11]. This can be done, for 

example, by using action-oriented verbs or visual cues such as arrows or bold colors to 

highlight the action. 

7.1.2 User Preferences 

Users can be empowered to actively participate in energy efficiency efforts by 

incorporating user preferences into the software application. Allowing users to customize 

their preferences regarding energy consumption and energy critical features can help 

improve energy efficiency [78]. 

This can be achieved by informing users about energy intense operations and providing 

the option to customize, enable or disable certain features [78]. For example, users could 

be allowed to adjust data synchronization intervals or disable automatic background 

updates. Moreover, applications could feature a power saver (or eco) mode in which the 

user experience can drop in order to optimize energy consumption [78]. 

 

7.2 User Interface Design 

The user interface (UI) can be designed to help increase the energy efficiency of a 

software application by implementing different optimization techniques. Different types 

of content and visual effects can be optimized to reduce data transfer and decrease 

loading times. 

One effective way to optimize the UI is by adopting a minimalist approach. This can be 

achieved by eliminating unnecessary elements and rejecting ideas that cannot be 

justified. [12] Fewer visual elements require fewer system resources and less data that 

needs to be transferred. 
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7.2.1 Images 

Images are one of the biggest contributors to the amount of data transferred on most 

websites [12]. It should be carefully assessed whether an image brings enough value to 

the page to justify the energy cost. If so, there are several options to reduce the file size 

of an image. These include reducing the amount of color variation in the image, and 

using more efficient file formats, like SVG, as discussed in section 6.7.2 [12]. 

 

Figure 23. Images with reduced file size (1.17 Mt → 858 kt → 12 kt). 

 

Another technique to reduce the file size is using lower resolution or blurring some parts 

of the image that are not as important, such as the background. By having different 

versions of the image with different resolutions, images can be loaded at the correct 

scale for each screen size [113]. Moreover, one possible alternative is to have images 

disabled by default, prompting users to enable image display or clicking to load an image 

[132]. 

7.2.2 Videos 

Using videos can be an effective way to engage users and convey information [11]. 

However, videos are one of the largest contributors to the overall environmental impact 

of the internet. Therefore, videos should be used mindfully, and designs that involve 

automatically playing videos, like video backgrounds, should be avoided. Placing a play 

button in front of the video ensures that it only loads when the user explicitly chooses to 

watch it. This enhances the user experience and significantly reduces the unnecessary 

streaming of data [12]. 

Additionally, given that a single second of video content consumes more data compared 

to a full-screen JPEG image, videos should be kept short and impactful. This reduces 
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energy consumption and saves users' time [12]. Moreover, the video file size can be 

minimized by reducing the resolution and framerate of the video [113]. 

7.2.3 Colors 

Different colors of light have different wavelengths and energies. For example, red light 

has a longer wavelength and lower energy than blue light. When a screen displays a 

particular color, it is essentially emitting light of a specific wavelength and energy. The 

color temperature refers to the balance of blue and red light emitted by the screen. Cooler 

colors, which have a higher proportion of blue light, consume more energy than warmer 

colors, which have a higher proportion of red light. [133] 

 

Figure 24. Colors on OLED display [134]. 

 

OLED (Organic Light-Emitting Diode) screens illuminate each pixel individually. This 

means that the pixels emit their own light, and the brightness of a pixel determines how 

much light it emits and therefore energy it consumes. When a pixel is displaying a dark 

color such as black, it is essentially turned off and does not emit any light, which saves 

a lot of energy. However, this does not apply to LCD (Liquid Crystal Display) screens, 

which have a permanent backlight, and use about the same amount of energy regardless 

of the color on the display [12]. 
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7.2.4 Fonts 

The availability of commercial and open-source web fonts has significantly increased the 

number of typographic options for user interfaces. However, their usage can result in a 

significant environmental impact due to the increased amount of data transfer and server 

requests required to load a webpage [12] [11]. 

The most energy efficient option is using system fonts, such as Arial, Times New Roman, 

Helvetica on Apple devices, and Roboto on Android, as they come pre-installed on 

devices. These fonts do not require additional server requests or data transfer. However, 

their use may limit creative freedom, and their appearance may vary across different 

devices, leading to a reduced level of control over presentation [12]. 

Having control over the font files allows for optimization. Various tools can be used to 

reduce the size of the font file and stripe out unused characters, such as special 

alphabets for certain languages [12]. However, it is worth noting that the licenses on 

some fonts may limit modifications. 
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8. CONCLUSION 

The goal of this work was to explore different factors that impact the environmental 

sustainability of software applications and investigate how these factors can be optimized 

during the software development process. This work goes over a wide range of aspects 

within software development, and various optimization strategies were found on each 

area. The guidelines presented in this work include several approaches and actionable 

practices that can be incorporated into the development process. A summary of the 

guidelines and their possible trade-offs are listed in the appendices with references to 

section numbers in which they occur in this work. 

It is worth noting that all the guidelines are not suitable or necessary for all software 

applications. Different software applications have varying computational demands, data 

processing requirements, and usage patterns. This influences the specific areas where 

optimizations can be applied, and which practices are realistic to implement. The 

strategies and practices for sustainability need to be tailored to the unique characteristics 

and requirements of each application. 

Consistently measuring the energy consumption and emissions of the software can help 

give more detailed insight on which aspects and components are the most significant 

contributors to the energy consumption and carbon footprint. This may provide a better 

understanding of which optimization strategies could be the most effective for the specific 

software. 

For further research, the impact of adapting these guidelines could be studied in different 

applications. This would help to get a broad idea of the effectiveness of the guidelines at 

different scales. Moreover, the perceived impact of the trade-offs related to the guidelines 

could also be measured. 
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APPENDIX A: ENERGY RELATED GUIDELINES 

FOR ENVIRONMENTALLY SUSTAINABLE 

SOFTWARE APPLICATIONS 

Subject Guidelines Trade-Offs Sec. 

Carbon 

intensity 

Move computation to a place where 

carbon intensity is lower, and do 

more computation when the 

circumstances are favorable and 

more renewable energy is available 

Requires 

additional 

monitoring of 

carbon intensity 

and weather 

conditions 

2.1 

Measuring Consistently measure the energy 

consumption and emissions of the 

software to monitor improvements 

and identify resource-intensive 

components 

Can be  

time-consuming, 

requires tools and 

additional work 

2.3 
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APPENDIX B: HARDWARE RELATED 

GUIDELINES FOR ENVIRONMENTALLY 

SUSTAINABLE SOFTWARE APPLICATIONS 

Subject Guidelines Trade-Offs Sec. 

Extend 

hardware 

lifespan 

Design software that can be run on 

older hardware 

Can limit new 

features and 

increase 

resources required 

for testing 

3.2 

Increase 

hardware 

utilization 

Move computation to public cloud, 

and employ virtualization and 

containerization technologies 

Requires DevOps 

knowledge 

3.4 
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APPENDIX C: DEVOPS & PROJECT 

MANAGEMENT RELATED GUIDELINES FOR 

ENVIRONMENTALLY SUSTAINABLE SOFTWARE 

APPLICATIONS 

Subject Guidelines Trade-Offs Sec. 

Cloud Choose a data center that is close to 

users, runs with renewable energy 

and has a low PUE 

Requires further 

investigation of 

data centers, can 

be more 

expensive 

4.1 

CI/CD Reduce the amount of automatization 

and workload in CI/CD pipelines 

Slightly increased 

chance of 

unnoticed bugs 

4.2 

Methods Use Agile methods, instead of 

waterfall, to reduce wasted efforts 

 

4.3 
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APPENDIX D: WEB APPLICATION RELATED 

GUIDELINES FOR ENERGY EFFICIENCY 

Subject Guidelines Trade-Offs Sec. 

Rendering Use static site generation and 

consider using server-side 

rendering to reduce the total 

workload 

Not suitable for 

dynamic content 

5.1 

Frameworks Use lightweight frameworks, such 

as Vue or Preact for front-end, 

and Fastify or FastAPI for back-

end 

Might not support 

as many 

features, smaller 

community might 

not offer as much 

support, can 

contain more 

bugs 

5.1.2 

5.2.3 

WebAssemby Consider using WebAssembly for 

energy intensive operations 

Requires 

advanced 

knowledge 

5.1.3 

HTTP 

communication 

Consider bundling small HTTP 

requests into fewer, larger 

requests 

Requires more 

specific routes, 

which can reduce 

reusability 

5.2.1 

HTTP parsing Consider parsing the requests 

straight away rather than first 

validating, then parsing 

 5.2.1 
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Subject Guidelines Trade-Offs Sec. 

Database Use efficient database queries by 

querying only the required data, 

and perform complex calculations 

and data operations in the 

application code 

 5.2.2 

Mobile Bundle background activities 

together, use Wi-Fi over cellular 

 5.3 

Mobile 

platforms 

Develop applications natively or 

with more efficient cross-platform 

frameworks, such as Flutter 

Can require 

additional work 

and knowledge 

5.3 
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APPENDIX E: SOFTWARE IMPLEMENTATION 

GUIDELINES FOR ENERGY EFFICIENCY 

Subject Guidelines Trade-Offs Sec. 

Architecture Implement proper object-

oriented paradigm for modular, 

scalable, and reusable software 

Requires 

advanced 

experience to 

implement 

properly 

6.1 

Software bloat Avoid software bloat by being 

selective about external library 

usage 

Might require 

more manual 

implementation  

6.1 

Programming 

language 

Use efficient programming 

languages 

Reduced 

readability and 

learnability, can 

be more time-

consuming to 

develop 

6.2 

Concurrency Consider multithreading when a 

large workload can be spread 

evenly 

 

6.3 

Data structures Find the most efficient data 

structure for each use case 

 6.4 

Algorithms Focus on improving the 

algorithm’s mathematical 

complexity over the code 

implementation 

Requires 

mathematical 

proficiency and 

increased work 

6.4 
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Subject Guidelines Trade-Offs Sec. 

Cache Use various caching 

mechanisms at code-level and 

with communication 

Increased 

memory and 

 rogrammer’s 

responsibility 

6.5 

Synchronization Use efficient synchronization 

techniques and increase polling 

inter al  here it can’t be a oided 

 6.6 

Data format Use efficient data format that 

reduces the size of the file 

Might not support 

as many features 

6.7 

Code 

implementation 

Implement code with fewer 

instructions and adopt good 

coding practices 

 6.8 
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APPENDIX F: USER EXPERIENCE GUIDELINES 

FOR ENERGY EFFICIENCY 

Subject Guidelines Trade-Offs Sec. 

Usability Increase  ser’s efficienc  b   sing 

familiar features and elements, 

preventing errors, and handling 

error situations effectively 

Limiting creativity 

in design 

7.1 

Content Organize content logically and 

encourage users to take action 

quickly by highlighting important 

elements 

 

7.1.1 
 

User 

preferences 

Allow energy intensive features to 

be customized or disabled 

 

7.1.2 

User 

interface 

Design user interface with 

minimalistic approach 

Limiting creativity 

in design 

7.2 

Images Use correct resolution for each 

screen size  

Requires multiple 

copies of the 

image 

7.2.1 

Image 

optimization 

Reduce image file size by reducing 

color variation, blurring background 

and selecting efficient image 

formats 

Limiting creativity 

in design, requires 

additional 

operations for 

optimization 

7.2.1 

6.7.2 

Videos Minimize videos and avoid auto-

playing videos by placing a play 

button, minimize the resolution and 

framerate of the video 

Limiting creativity 

in design, requires 

additional 

operations for 

optimization 

7.2.2 
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Subject Guidelines Trade-Offs Sec. 

Colors Use darker and warmer colors Limiting creativity 

in design 

7.2.3 

Fonts Use system fonts, and strip out 

unused characters from non-system 

font files 

Limiting creativity 

in design and 

requires additional 

operations for 

optimization 

7.2.4 

 


