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ABSTRACT

Chronic diseases burden patients with unending symptoms and functional decline,
which limit the activities of daily living and decrease working ability. They increase
the risk of injuries, comorbidities, and death. The disabilities from chronic diseases
are a major contributor to disease burden globally. With the aging and increasingly
obese population, chronic diseases are becoming increasingly common.

Time series analytics offer means to investigate the evolution of chronic diseases
over time. The analysis of time dependent patterns can facilitate diverse applica-
tions for clinical decision support. Modern analytical methods have grown extremely
powerful with the accelerated development of computational resources, being able
to mine vast amounts of data and enabling the discovery of all the more complex
patterns. Moreover, modern sensor technologies and electronic health record sys-
tems have boosted the continuous buildup of high quality health data, monitoring
physiological events at hospitals and throughout everyday life. This thesis presents
four studies that delve into chronic disease related algorithms across various appli-
cation time spans, ranging from overnight to several months. The thesis centers
around cardiorespiratory measurements collected from healthy and chronic disease
patients, measured at hospitals, in free-living settings, and in a controlled laboratory
environment.

The studies cover contact-free overnight vital sign monitoring for sleep apnoea
detection, wearable sensor based continuous monitoring for fatigue and sleep assess-
ment in neurodegenerative and immune-mediated inflammatory diseases, and six-
month mortality risk prediction from electronic health records in cardiac patients.
The work applies traditional model driven signal processing as well as the more
recently emerged data driven deep learning methods, such as transformer neural net-
works. This thesis presents pragmatic insights on building time series based decision
support tools for chronic disease management, and addresses the requirements and
limitations related to time series analytics and the underlying data collection across
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the above-specified time spans. Robust algorithms for contact-free vital sign moni-
toring are presented and evaluated in broad physiological conditions, the feasibility
of continuous monitoring in outpatients and the diverse measurement associations
with health related quality of life are analyzed, and the benefits of applying deep
learning on health records but also their disadvantages in clinical use are presented.
The results imply the importance of high frequency data in applications with short
time spans, data collection context tracking in continuous monitoring, and data qual-
ity and coverage across all application time spans. The algorithms proposed in this
thesis are validated with data collected from human volunteers, including chronic
disease patients from the selected disease groups.
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TIIVISTELMÄ

Krooniset sairaudet kuormittavat niistä kärsiviä potilaita tauotta, heikentäen niin
työkykyä kuin yleistä toimintakykyä, sekä arkisuoriutumista. Ne kasvattavat louk-
kaantumisriskiä, oheissairauksien esiintyvyyttä, sekä kuolleisuutta. Toimintakyvyn
heikentyminen kroonisten sairauksien vuoksi aiheuttaa merkittävän osan globaalia
tautitaakkaa. Väestön ikääntyessä ja ylipainon yleistyessä kroonisista sairauksista on
tulossa entistä yleisempiä.

Aikasarja-analytiikka tarjoaa keinoja kroonisten sairauksien kehittymisen tarkas-
teluun. Aika-riippuvaisia ilmiöitä analysoimalla voidaan mahdollistaa kliinisen pää-
töksenteon tuen sovellutuksia monipuolisesti eri käyttökohteissa. Modernit analyyt-
tiset menetelmät ovat kehittyneet huomattavan tehokkaiksi laskentatehon yleisen
kehityksen myötä, mahdollistaen suurien datamäärien louhimisen ja entistäkin mon-
imutkaisempien yhteyksien ja toistuvien kaavojen paljastamisen. Samaan aikaan mo-
dernit sensoriteknologiat ja sähköiset potilastietojärjestelmät ovat edistäneet hyvälaa-
tuisen terveysdatan jatkuvaa kertymistä tietovarastoihin niin arkielämästä kuin sai-
raalamittauksistakin. Tässä väitöstyössä esitellään neljä tutkimusta, jotka syventyvät
kroonisiin sairauksiin liittyviin algoritmeihin eri aikaskaalojen käyttösovelluksissa
aina yön yli kestävistä mittauksista useiden kuukausien seurantajaksoihin. Väitöskir-
jassa keskitytään sydän- ja hengityselinten toimintojen mittauksiin. Mittausdataa
kerättiin sekä terveiltä koehenkilöiltä että kroonisesti sairailta potilailta eri ympä-
ristöissä: sairaalassa, kontrolloimattomissa olosuhteissa arkielämässä, sekä kontrol-
loidussa laboratorioympäristössä.

Esitetyt tutkimukset kattavat elintoimintojen monitoroinnin tutkateknologialla
yön yli erityisesti uniapnean seurantasovelluksiin, uupumuksen ja uniongelmien arvi-
oimisen puettavien älylaitteiden välityksellä neurodegeneratiivisten sairauksien sekä
tulehduksellisten suolisto- ja reumasairauksien yhteydessä, sekä puolen vuoden kuol-
leisuusriskin ennustamisen potilastietojärjestelmän tiedoista sydän- ja verisuonisai-
railla. Väitöstyössä sovelletaan sekä perinteisiä mallipohjaisen signaalinkäsittelyn

vii



menetelmiä, että uusimpia datalähtöisiä syviä neuroverkko-pohjaisia menetelmiä. Ai-
kasarjoihin perustuvien päätöksenteon tuen työkalujen kehittämistä tarkastellaan
käytännönläheisesti kroonisten sairauksien hoitoon keskittyen. Työ käsittelee niin
aikasarja-analytiikan menetelmiin kuin datan keräämisen liittyviä vaatimuksia ja ra-
joituksia eri aikaskaalojen käyttösovelluksissa. Väitöstyössä esitellään algoritmeja
kontaktittomaan monitorointiin ja validoidaan ne kattavasti erilaisissa fysiologisissa
tiloissa, arvioidaan puettavien sensoreiden soveltuvuutta avohoitopotilaiden moni-
torointiin sekä niistä saatavien mittausten assosiaatioita terveyteen liittyvän elämän-
laadun arviointiin, ja tutkitaan syvien neuroverkkojen hyötyjä ja heikkouksia poti-
lastietokantojen käsittelyssä kliinisiä sovelluksia ajatellen. Tutkimustulosten perus-
teella korkealla näytetaajuudella kerätty mittausdata vaikuttaa sitä tärkeämmältä,
mitä lyhyemmän tähtäimen käyttösovellus on kyseessä. Lisäksi datankeruun kon-
tekstin seuraamisesta havaittiin olevan hyötyä jatkuvissa mittauksissa, ja datan laadun
ja kattavuuden tärkeys havaittiin kaikissa tutkituissa sovellutuksissa.
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1 INTRODUCTION

Modern sensor technologies have become highly popular for health tracking among
the general public. They have become more user-friendly and comfortable to use
and have lighter materials and longer battery-lives. The global market for wearable
technology is predicted to increase from USD 61.3 million in 2022 to USD 186.1
million by 2030, mostly thanks to health tracking consumer devices [1]. These de-
vices generate a large variety of longitudinal health data with unprecedented poten-
tial for creating personalized health solutions ranging from predictive and preventive
applications to new gold standards for clinical assessments. The realisation of this
paradigm shift in healthcare depends on the clinical acceptance and uptake of the new
technologies and the associated algorithms. The sensors and algorithms need to be
validated for clinical use, also including any machine learning (ML), artificial intelli-
gence (AI), or other signal processing techniques they may contain. Moreover, they
will need to generate easily interpretable insights which can be further integrated to
the electronic health record (EHR) systems to enable seamless everyday clinical use.
Hospitals around the world have widely adopted EHRs to manage the data masses
but currently lack methods to fully exploit the new knowledge embedded in the
longitudinal and mixed type data coming from the modern sensors.

One of the most promising application areas for longitudinal data applications lies
in chronic disease management. Non-communicable diseases (including chronic dis-
eases) account for over 70 % of yearly deaths globally [2]. The disabilities caused by
chronic diseases and injuries already cause over half of the entire disease burden in 11
countries [3]. Minimizing the effects of chronic diseases can improve the patient’s
health-related quality of life (HRQoL), improve patient outcomes through inter-
ventions and prevention, and reduce healthcare costs. Historical data, anomalies and
repeating patterns in recorded data or other information can contain far-reaching
and crucial information for chronic disease management. For example, in sleep ap-
noea, repetitive cessation of breathing during sleep can cause daytime sleepiness and
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decline in cognitive function, ultimately increasing the risk of more serious adverse
health events such as falls or even death [4]. Early detection of disease onset and
disease state monitoring can efficiently improve the patient’s HRQoL [5].

The evolution of health data in time is extremely important for various healthcare
applications. Detecting complicated patterns and complex dependencies has become
easier than ever before thanks to the recent advances in computational power. In
practice, clinical data analysis applications range over all possible time spans and
hence also have different requirements on both input and output. In-patient applica-
tions onsite at healthcare facilities may emphasize the importance of real-time detec-
tion of patient deterioration, whereas outpatient monitoring may be more focused
on the remote assessment of HRQoL. Future development in the field could benefit
from wider understanding of the realities of time series applications in patient mon-
itoring. New approaches are needed to extract health insights from different time
scales and to allow the clinicians to fully harness their patients’ historical health data
to improve patient outcomes.

1.1 Scope and objectives

This thesis aims to promote time series analytics for decision support in chronic dis-
eases through three clinical case studies. The thesis aims to offer pragmatic insights
on creating time series based tools by focusing on clinical applications that aim to
support chronic disease management through monitoring cardiovascular and respira-
tory functions and health events over the course of one day, weeks, or months. The
applications range from near real-time health event detection to monitoring changes
in the health-related quality of life to predicting the risk of death. Specifically, the
applications cover sleep apnoea monitoring overnight, fatigue and sleep problem
monitoring in chronically ill over weeks, and cardiac patient mortality prediction
over six months. The scope of the thesis is summarized in Figure 1.1.

This thesis presents time series based algorithms for different time scales in the
context of selected clinical use cases. The thesis studies model driven algorithms,
which rely on a priori knowledge and conventional digital signal processing, and data
driven algorithms, which adapt to example data. The performance of the algorithms
is evaluated with data from real human subjects, and the suitability of especially deep
learning methods for applications over days, weeks or months is analyzed, while
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Time span Day Weeks Months

Detection 
target

Health event 
detection in 
near real-time

Changes in 
quality of life

Increased risk 
of death

Data 
collection

At home Continuous At hospital

Publication I II III IV

Figure 1.1 Scope of the thesis. The thesis focuses on time series analytics applications in clinical
use cases ranging over different time spans of interest with various detection targets and
varying data collection settings. The scope of each individual publication is indicated on
the lowest row. Icons by Just Icon and adapted from icons by WiStudio and Paomedia,
used under CC BY 3.0.

assessing the requirements for data collection methods, quality, and availability for
different time spans of interest. This thesis focuses the following research questions.

1. What are the requirements for, and limitations of model driven and data driven
time series analytics across different time spans for chronic disease monitoring?
How do model driven and data driven methods perform and compare across
time spans?

2. What requirements and limitations relate to the clinical use and uptake of time
series analytics applications?

3. Which data collection methods are feasible with chronic disease patients?

4. What data collection requirements relate to different time spans of interest?
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1.2 Thesis outline

The thesis starts with the Chronic diseases and physiology section, which outlines the
physiological functions of the cardiorespiratory system, measured throughout the
thesis, and the selected chronic diseases inspected in this thesis. The Methodology
and prior work section describes the means of data collection and the analytical
techniques applied in the publications, as well as the prior work in the related time
series applications. The Study data section describes the data of each publication.
The Results section summarizes the results of each publication, which are further
discoursed in the Discussion. Finally, Conclusion summarizes the main findings of
this work.
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2 CHRONIC DISEASES AND PHYSIOLOGY

Human physiology comprises a complex network of processes where everything is
interdependent. All subsystems in the human body, the physiological systems, inter-
act and co-operate to maintain conditions that keep us alive and, on the other hand,
adjust the bodily functions dynamically to adapt to internal or external changes [6].
These systems include, e.g. the cardiovascular system, respiratory system, nervous
system, digestive system, endocrine system, and the list goes on. Quantifying phys-
iological changes with respect to time may provide information that can be used to
prevent or predict certain health events.

This thesis studies applications related to chronic diseases and the cardiorespira-
tory system (CRS), aiming to detect physiological events and exploit physiological
time-series to improve the quality of life and health outcomes of the chronically
ill. Section 2.1 outlines the anatomy, regulation, as well as normal and abnormal
functions of the cardiorespiratory system, whereas section 2.2 describes the chronic
diseases included in this thesis. Understanding the basic underlying physiology is
fundamental for signal processing and machine learning technologies that aim to
transform the collected data into actionable information.

2.1 Cardiorespiratory system

The CRS contains the cardiovascular and respiratory systems. The heart, vessels,
lungs, and other organs work together to provide cells with blood full of important
substances such as oxygen, hormones, and amino acids, and simultaneously, a means
to remove metabolic wastes from the body. As blood also carries heat around the
body, the CRS puts all main vital signs into effect: heart rate, respiratory rate, body
temperature, blood oxygen, and blood pressure. These vital signs are the physio-
logical measures primarily monitored at healthcare facilities and strong indicators of
patient deterioration [7].
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The chronic diseases described in section 2.2 pertain to the cardiorespiratory
physiology, either directly at the root of the disease or indirectly through more com-
plex causal relationships. Sleep apnoea is directly related to the respiratory system.
Neurodegenerative diseases (NDDs) have been associated with autonomic dysfunc-
tion, even presymptomatically [8], [9]. NDDs and immune-mediated inflammatory
diseases (IMIDs) have also been connected to decreased post-exercise heart rate recov-
ery (HRR) in controlled settings [10]–[15]. Cardiovascular diseases (CVDs) directly
relate to malfunction in the cardiovascular system whether it is, for instance, atrial
fibrillation due to overwhelming impulses originating outside the sinoatrial (SA)
node (regulatory malfunction), or coronary artery disease caused by atherosclerotic
plaque in the coronary arteries, causing reduced blood flow in to the heart [16].

The main characteristics and functions of cardiovascular and respiratory subsys-
tems are detailed in subsections 2.1.1 and 2.1.2, respectively. Importantly, the CRS
operates dynamically, reacting to changes both within and outside the body. The
CRS functions are regulated by the nervous system, as described in 2.1.3.

2.1.1 Cardiovascular system

The blood enters the heart through the right atrium. As illustrated in Figure 2.1, it
passes via the tricuspid valve while flowing into the right ventricle, which pumps it
on through the pulmonary valve into the pulmonary circulation in the lungs, where
the blood regains oxygen while giving up carbon dioxide and other gases [17]. The
blood then re-enters the heart through the left atrium and passes the mitral valve
upon entering the left ventricle [17]. Finally, the blood leaves the heart through the
aortic valve, moving on to the aorta, arteries, and arterioles, flowing into capillaries
to distribute the oxygen and other substances to the cells [17]. The cycle restarts
when deoxygenated blood passes through the venules and veins back to the heart [17].
The valves open and close based on the pressure differences created by the blood
itself between the atria and the ventricles. Nevertheless, the mechanical contraction
of the heart is required to create the pressure differences and maintain the blood
circulation [17].

The SA node (also sinus node) initiates the contraction and sets the heart rate
(sinus rhythm) [6]. The specialized cells in the sinus node spontaneously depolar-
ize, disturbing the cell’s membrane potential and causing an electrical impulse that
spreads to the atria and the atrioventricular node (AV node) [17]. The AV node cru-
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Figure 2.1 The anatomy of the heart. Blood flow is indicated with arrows. Figure used under the CC
BY 4.0 license, adapted from [6].

cially delays the impulse to allow the blood flow from the atria to the ventricles [17].
From the AV node, the impulse travels to the bundle of His (a group of specialized
conductive muscle cells), which brings it to ventricles where the impulse ultimately
reaches the Purkinje fibres and hence the myocardial cells of the ventricles and starts
the ventricular contraction [17]. The cardiac conduction system enables the impulse
to travel throughout the heart more rapidly than it could travel via the myocardial
tissue [17]. The spontaneously depolarizing cells in the SA node create the normal
naturally paced sinus rhythm [17]. However, other similar cells exist also elsewhere
in the heart and may initiate the contraction should the SA node fail to do so [17].

The above-described cardiac cycle is divided into two phases: diastole and sys-
tole. Diastole is the phase when the ventricles relax and fill with blood, whereas the
contraction phase is known as the systole. Blood pressure is measured during both
phases independently. Blood pressure is further interlinked with the heart rate and
stroke volume. Blood pressure, heart rate and storke volume together form the car-
diac output, which is regulated by several different mechanisms to ensure sufficient
blood flow and pressure in vital organs and perfusion to tissues. These mechanisms
include (1) autoregulation within the organs (vasodilation or vasoconstriction based
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on metabolic need or blood pressure), (2) neural regulation through the autonomic
nervous system (ANS), and (3) endocrine regulation [17]. Neural regulation in-
cludes the baroreceptor reflex (baroreflex), chemoreceptor reflex, as well as more
sophisticated ANS activity [18]. The baroreflex reacts to blood pressure changes in
a fraction of a second and helps the body adjust, e.g., to postural changes, while the
chemoreceptor reflex reacts to changes of hydrogen concentration (pH) and affects
the respiratory rate accordingly [16], [18]. Finally, endocrine regulation employs
different hormones, such as adrenaline and norepinephrine in stress reactions, to
adjust the cardiac output [18].

2.1.2 Respiratory system

The respiratory system comprises upper and lower airways and some muscles that
facilitate breathing, such as the diaphragm [17]. The upper airways consist of the

Figure 2.2 The anatomy of the major structures of the respiratory system. Figure from [6], used under
the CC BY 4.0 license.
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nose and mouth and the respective cavities, paranasal sinuses, and pharynx [17].
The lower airways contain the trachea, bronchi, bronchioles, and the lungs [17]. The
larynx is located between the pharynx and the trachea, and is sometimes considered a
part of the upper, sometimes the lower airways. The components of the respiratory
system are illustrated in Figure 2.2. The air is first inhaled through the airways to
oxygenate blood within the pulmonary circulation, and exhaled to remove the waste
gases [6]. The oxygen primarily adheres onto the hemoglobin molecules in the blood
(over 98%) but in small amounts also dilutes into the plasma [17]. The exchange of
gases takes place in the hundreds of millions of alveoli in the lungs. The alveoli do not
allow air to mix with blood but facilitate the gas exchange by creating an extremely
small distance between the two (on average around 0.6–0.8µm, approximately the
diameter of a red blood cell) [17]. This enables diffusion, which is driven by the
partial pressure difference of a gas between the inhaled air and the blood.

In contrast to heart rate, respiratory rate can also be controlled voluntarily to
some extent, until the chemical stimulation from CO2 builds up and restarts respi-
ration automatically [17]. However, the brain starts to develop permanent damage
after five to eight minutes without oxygen, underscoring the vital role of the respira-
tory system [16]. Normally, respiration is regulated by the nervous system (impulses
originating from the medulla oblongata) and via chemoreceptors that monitor the
chemical composition of the blood (oxygen, CO2, pH) [16].

2.1.3 Neurophysiology

The autonomic nervous system (ANS) adapts the body to any external or internal
perturbation by controlling involuntary physiological functions, such as cardiac out-
put, respiration, and blood flow [20]. It is a major part of the peripheral nervous
system and extends to nearly all tissues but consciously controlled skeletal muscles.
The ANS is responsible for maintaining the integrity of cells, tissues, and organs
(i.e., homeostasis) in the dynamically changing settings the human body may expe-
rience, be it common everyday life or sudden unexpected events. It responds to,
e.g., exercise, stressful situations, different body positions, and illness [20]. Also,
the body temperature, immune system, and inflammatory processes are regulated
by the ANS. Disruptions in ANS functions can lead to or stem from a plethora of
diseases including cardiorespiratory conditions such as hypertension, stroke, sleep
disorders, and Parkinson’s disease [20]. The ANS consists of three branches: the
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Figure 2.3 The interaction of the autonomic nervous system and the heart. Blood flow is indicated
with arrows. Figure used under the CC BY 4.0 license, adapted from [19].

sympathetic, parasympathetic, and enteric nervous systems [20]. The sympathetic
nervous system (SNS) can be thought to mainly drive the fight-or-flight response
and the parasympathetic nervous system (PNS) the rest-and-digest response. The
enteric nervous system (ENS) is a relatively independent branch regulating the gas-
trointestinal track. The reader should refer to the vast literature for more detailed
information [16]. The cardiorespiratory functions are primarily influenced by the
interplay between SNS and PNS that affect the rate and force of the contraction.
The interaction between the ANS and the heart is illustrated in Figure 2.3.

Activity in the SNS increases heart rate and respiratory rate, while decreasing
heart rate variability (HRV), and causes, e.g., vasoconstriction on the skin decreasing
peripheral skin temperature [16]. Sympathetic activity is often linked with stress
responses; it is not only necessary to induce the fight-or-flight response in case of
emergencies but also to improve performance in non-threatening situations.

The dominance of the PNS relates to relaxation. It decreases the heart rate and
respiratory rate, allowing increased heart rate variability [16]. The vagus nerve is
the primary parasympathetic nerve and delivers information across the body to the
central nervous system [16]. Several studies have implied that the proper functioning
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and the activation of the vagus nerve decreases cardiac risks [21]–[23]. PNS activ-
ity can be promoted by deep inhalation and several commercial health monitoring
devices incorporate guided breathing exercises.

Typically, target organs are affected by both sympathetic and parasympathetic
nerves, including the heart and respiratory system [6]. As explained above, in these
organs the SNS and PNS have the opposite effect with respect to each other. While
the activity of one branch does not entirely exclude that of the other, the ratio of
the activity in the two branches is referred to as the sympathovagal balance. Many
chronic diseases are linked with autonomic dysfunction, contributing to decline in
HRQoL [24].

2.2 Chronic diseases

Chronic diseases typically develop when risk factors actualize as gradual changes in
physiology, eventually causing pathological changes in tissues. Chronic diseases in-
flict a continuous burden of symptoms on to the patient, typically impairing their
health-related quality of life (HRQoL) and reducing working ability [25], [26]. In
many cases, accelerated functional decline weakens the patient’s ability to manage
activities of daily living (ADL), such as dressing, eating, walking, and bathing [27].
Chronic diseases are persistent conditions that may require frequent medical atten-
tion, such as control visits to monitor the disease progression.

This work focuses on sleep apnoea, Parkinson’s disease (PD), Huntington’s dis-
ease (HD), inflammatory bowel disease (IBD), primary Sjögren’s disease (PSS),
rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and CVDs. These
diseases and the related symptoms can be devastating to ADLs and the quality of life.
For instance, PD, IBD, RA, and sleep apnoea are all examples of chronic diseases
linked with physical and mental fatigue and daytime sleepiness, which are known
to cause functional impairment and hence deteriorate the HRQoL [28]–[30]. Due
to population aging and increasing obesity, the prevalence of chronic diseases is ex-
pected to rise [2], [31]. Chronic diseases may generally increase the risk of death,
either directly or via comorbidities or increasing the risk of incidents, such as falls.
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2.2.1 Sleep apnoea

Sleep apnoea causes breathing cessations during sleep. It can be due to physical ob-
struction from other tissues in the airways (obstructive sleep apnoea), neural mal-
function (central sleep apnoea), or both (complex sleep apnoea) [32]. In obstructive
sleep apnoea, a partial obstruction causes hypopnoea, abnormally shallow breathing,
and the severity of sleep apnoea is typically measured via the number of apnoeas and
hypopnoeas per hour (apnoea-hypopnoea index) [33]. Individual cessations may last
10 seconds or longer, repeating 300–500 times per night [16]. The symptoms may
include headache, mood swings, problems focusing, and daytime sleepiness [33]. Ad-
ditionally, the patient may snore and experience repeated interruptions to sleep and
restless sleep [33]. Moreover, sleep apnoea is considered a risk factor for developing
cardiovascular diseases [34].

Sleep apnoea is typically diagnosed with an overnight polysomnography (PSG),
which includes for instance electroencephalogram (EEG), electromyogram (measur-
ing muscle activations), and nasal cannula for sleep and respiratory monitoring [33].
While sleep apnoea cannot be strictly cured, it can be efficiently treated, for instance,
by treating physical obstructions to breathing (e.g. via losing weight or tonsillec-
tomy), reducing alcohol consumption and smoking, or using a continuous positive
airway pressure (CPAP) mask while sleeping.

2.2.2 Neurodegenerative diseases

Neurodegenerative diseases such as Parkinson’s disease and Huntington’s disease
cause brain cells to gradually deteriorate and die. They yield gradually progres-
sive symptoms that eventually destroy the patient’s ability to control their own
body [35]. There is currently no known cure for these diseases and the best re-
sults are achieved through early diagnosis and disease state monitoring, which enable
timely interventions and treatment [36]. The disease progression and symptoms
may be controlled via medication, deep brain stimulation surgery, and supportive
therapies (such as physical or speech therapy) [35].

PD symptoms include bradykinesia (slowness of movement), tremor, muscle stiff-
ness, cognitive decline, and problems with balance and sleep [35], [37]. PD causes
dysfunction of the autonomous nervous system [37]. It induces annual costs exceed-
ing $50 billion in the United States alone [38]. In 2019, neurological disorders in-
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cluding PD and dementias affected 2,660 million individuals resulting in 97.7 million
years of life lost or lived with disability (disability-adjusted life-years, DALYs) [3].

HD is often hereditary, and the symptoms may include chorea (uncontrolled
movements), dystonia (repetitive movements, abnormal postures), problems with
balance and movements, as well as cognitive and behavioural changes. As the disease
progresses, the medical costs increase, too [39].

2.2.3 Immune-mediated inflammatory diseases

Immune-mediated inflammatory diseases such as inflammatory bowel disease, pri-
mary Sjögren’s syndrome, rheumatoid arthritis, and systemic lupus erythematosus
relate to dysregulated immune responses.

In inflammatory bowel disease the gastrointestinal tract becomes chronically in-
flamed. The IBD is specified as either Crohn’s disease or ulcerative colitis, depending
on the location of the inflamed tissue and the affected tissue layers [40]. The dam-
aged tissue may cause abdominal pain, weight loss, bloody stool, diarrhea, and fa-
tigue [40], [41]. These symptoms can restrict the patient’s life severely and decrease
working ability [40]. IBD symptoms may be treated with medication, ostomy (a
surgically created exit point for secretions), and/or by surgically removing parts of
the gastrointestinal tract [40].

Primary Sjögren’s syndrome is an autoimmune disease where the body’s own
immune system damages glands in the eyes and mouth [42]. In addition to extremely
dry eyes and mouth, the symptoms may include cough, problems eating and talking,
tooth decay, dry skin, muscle and joint pain, and fatigue [42], [43]. The symptoms
may be alleviated through medication (e.g. eye drops, drugs that increase saliva
production, pain medication) or physically blocking tear ducts either with punctal
plugs or through surgery [42], [43].

Rheumatoid arthritis is another autoimmune disease; it causes inflammation in
the lining of the joints, which can gradually lead to bone erosion and joint disfigure-
ment [44]. The symptoms may also include joint stiffness, weight loss, fever, and
fatigue [44]. Medication in an early disease state may slow down disease progression
and prevent joint deformities [45]. Additionally, the symptoms may be treated via
pain medication, physical therapy, or surgery [45].

Systemic lupus erythematosus is a widespread autoimmune disease that may in-
duce inflammation several organs including for instance the heart, lungs, kidneys,
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skin, joints, and the nervous system [46]. The symptoms may include similar symp-
toms as RA, in addition to hair loss, malar rash (extending across the face), scaly rash,
sensitivity sun light exposure, abdominal pain, and headaches [47]. SLE may develop
comorbid diseases such as osteoporosis, diabetes, and cardiovascular diseases [46].
The treatment aims to reduce and control the symptoms and may consist of medi-
cation (pain medication, hydroxychloroquine) and treatment and prevention of the
comorbid diseases [48].

2.2.4 Cardiovascular diseases

Cardiovascular diseases comprise the deadliest group of diseases globally, causing the
death of over 18 million individuals every year [2], [3], [49]. CVD incidence in-
creased by 24.6% over the previous decade (2010-2019), to an alarming 55.5 million
cases a year [3]. Most CVDs can be preventable and treatable but require preventive
and predictive methods, accessible to all [50].

CVDs encompass for example coronary artery disease, peripheral arterial disease,
cardiomyopathy, cardiac dysrhythmias, rheumatic heart disease, among others. The
symptoms vary from disease to disease but may include pain, dizziness, running out
of breath, palpitations, and fatigue [51]. In some cases, the first identified symptom
may be a heart attack. CVDs may be treated with medications, a pacemaker, or
otherwise surgically, for example with a transcatheter aortic valve implantation or
percutaneous coronary intervention (angioplasty).
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3 METHODOLOGY AND PRIOR WORK

This chapter describes the data collection methods and analytics used in this thesis.
Section 3.1 outlines the applied physiological measurements and the data collection
methods. Sections 3.2 and 3.3 detail the signal processing andmachine learningmeth-
ods employed in this thesis, and section 3.4 describes the algorithm performance eval-
uation metrics. Section 3.5 summarizes the methods used in each substudy. Finally,
section 3.6 presents a literature review summarizing prior work.

3.1 Health sensing and health records

Clinical care generates large volumes of data. Inpatients staying at hospital wards,
including but not limited to emergency and intensive care patients, may be con-
tinuously monitored to detect sudden shifts in their condition. The medical state
of outpatients, on the other hand, may be very sparsely monitored with occasional
measurements, and questionnaires which capture patient reported outcomes (PROs),
such as daytime sleepiness, reported on a predefined scale. Currently, clinical patient
data is widely recorded in EHRs, which may at best record a comprehensive de-
scription of all healthcare services that pertain to a specific patient; hospital visits,
diagnoses, procedures, measurements, medications, and other activities.

Healthcare facilities routinely use 12-lead electrocardiography (ECG), photo-
plethysmography (PPG) from the fingertip, thermometers, and cuff-based blood
pressure monitors to monitor the patient’s vital signs. Patients may also be sent
home with ambulatory devices such as a Holter monitor or PSG equipment to col-
lect monitoring data over a full 24 hour period or overnight, respectively. Modern
clinical patient monitoring devices can track heart rate, blood oxygen saturation
(SpO2), temperature, and respiration (exhaled CO2) but may require finger clips,
electrodes, nasal cannula, or other devices attached to the patient.

Smart wearable devices such as smart watches and rings can be used to monitor
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physiological signals continuously and are already widely used to quantify physical
workouts and sleep. Commercial wearable devices often rely on PPG, requiring a
contact with the skin, risking eczema in some users. Unobtrusive sensing technolo-
gies such as radars and ballistocardiography (BCG) on the other hand do not require
skin contact but restrict monitoring to conditions where the subject is mainly still,
e.g., in bed or driving a car. These technologies can facilitate the measurement of
physiological signals including heart rate, heart rate variability, and respiratory rate
on daily basis, and even continuously.

The safety, quality, and performance of all medical devices are ensured through
regulations and standards. Medical devices need to conform to requirements set by
the local regulatory authority, such as the Food and Drug Administration (FDA)
in the United States or the European Commission in Europe. It is noted that these
regulations apply to commercial devices intended for medical use, excluding many
common commercial wearables.

This section first describes the main physiological measures used to quantify car-
diorespiratory functions in subsection 3.1.1 and secondly, the related different means
of data collection used in this thesis in subsections 3.1.2, 3.1.3 and 3.1.4.

3.1.1 Physiological measurements

Heart rate (HR) is a typical physiological measurement recorded by consumer de-
vices as well as clinical devices. It can promptly indicate acute changes in the health,
but it is also commonly used to support physical training. Heart rate monitoring
technology has been suggested for maximal oxygen consumption (VO2max) pre-
diction and therefore monitoring long-term changes in cardiorespiratory fitness in
free-living settings [52], [53]. Furthermore, heart rate and heart rate variability based
approaches play a major role in sleep and recovery assessment [54]–[57]. Heart rate
measurement in non-clinical devices may be based on, at least, ECG, PPG, BCG,
image-based or radar-based technologies.

The time between individual heart beats is referred to as R-to-R interval when
the R peaks are obtained via ECG, or interbeat interval (IBI) otherwise. HRV mea-
sures the variation between consecutive intervals. HRVmeasurements can be divided
into long-term (≥24h), short-term (about 5 min) and ultra-short-term (1 to <5 min)
measurements [58]. Long-term and short-term measurements are frequently studied
as they are associated with many health outcomes [59], [60]. However, the length
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of the measurement period determines which physiological processes the measure-
ments actually reflect and, hence, long-term and short-term measurements cannot
be used interchangeably [58]. Moreover, HRV can be described by several differ-
ent parameters, typically divided into time domain, frequency domain, non-linear,
and other groups of parameters depending on the underlying assumptions for mod-
eling [61], [62]. The ratio of low frequency to high frequency content (LF/HF) is
currently considered to best reflect the sympathovagal balance and is used by some
devices to detect sympathetic dominance, although this interpretation has also been
challenged [58]. A more frequently available metric is the root mean square of suc-
cessive differences (RMSSD) between beats. As a time domain feature, it is more
easily obtainable from short-term or ultra-short term measurements. RMSSD can
be satisfactorily obtained even from low sampling frequency ECG, at 50 Hz [63].

Respiration creates large periodic movements in the body that occur much less
frequently than heart beats. Respiration can therefore be relatively easy to measure
but it is also susceptible to artefacts. In Study I, a respiratory inductance plethys-
mography (RIP) belt was used to collect reference data. It’s inductance changes with
the circumference around the thorax as air flows in and out of the lungs, although
physical contact with the surroundings, like rubbing against a bed mattress, may
cause artefacts. The respiratory cycle also naturally affects the heart rate, causing its
increase during inhalation and decrease during exhalation. This makes respiration
rate highly available as a derived measure from a variety of heart monitors. Increased
average respiration rate at rest can be a sign of an illness or a stressful event. Res-
piratory sensing has been studied for localization of trapped victims (e.g. due to
earthquakes), apnoea detection, sleep stage classification, emotion recognition, and
athletics [64].

Skin temperature normally exhibits patterns related to the circadian rhythm and
the hormonal cycle in women. Skin temperature has been associated with acute stress
reactions and it has been applied in, e.g., sleep-wake classification, fever detection,
and menstruation prediction [65]. As compared to e.g. HR, skin temperature shows
slower variation [66]. However, the measurement point for skin temperature deter-
mines which physiological phenomena it can capture. The temperature measured
from the chest, near the heart, is not expected to vary as rapidly as from fingers and
correlates better with the core temperature. In hospitals, core temperature tends to
be the primary focus of interest, although more difficult to measure.
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3.1.2 Frequency modulated continuous wave radar

A frequency modulated continuous wave (FMCW) radar operates on a predefined
carrier frequency, transmitting a continuous millimeter wave signal at a continuously
changing frequency, sweeping across a frequency band [67]. When the transmitted
signal collides with a surface (here, the skin), it is partly reflected back to the radar.
The frequency of the received signal corresponds to the original transmit frequency
and hence indicates the original transmit time. The distance to the detected surface
can be calculated from the beat frequency; the absolute value of the difference be-
tween the transmit and received signal frequencies, shown in Figure 3.1. The set
of observed distances, i.e., the complex range profile, can be extracted from the set
of beat signals of a single frequency sweep by applying the Fast Fourier Transform
(FFT). The complex FFT results can be further processed to extract the beat signal
amplitude and phase for a specific distance, i.e, a range bin [67].

The thesis uses an FMCW developed at VTT Technical Research Centre of Fin-
land Ltd, which operates at a carrier frequency of 24 GHz and has a bandwidth of
250 MHz [67]. It is able to detect micromotions below 1 µm, and it has a range
resolution of 60 cm and an adjustable sampling frequency.

Figure 3.1 The operating principle of frequency modulated continuous wave radar [68]. ©2016 IEEE

3.1.3 Wearable sensors

An increasing amount of wearable and other non-intrusive devices for activity and
health tracking started to flow to the markets around 2010 [69]. The broad uptake
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of wearables among the general public came with the concept of "quantified self", a
new trend of tracking one’s own health. The high availability of wearable devices
enabled individuals with means to monitor their health and well-being, simultane-
ously increasing awareness of the physiological phenomena in their own body. The
global market for just wearable sensors, which reached USD 61.3 billion in 2022, is
forecasted to exceed USD 186 billion by 2030 [1].

Self-tracking devices actively collect invaluable, even round-the-clock data about
the user’s health. Modern sensor technologies achieve accuracy between 1.1% to
6.7% mean absolute percentage error for heart rate at different activity intensities
in controlled settings [70], [71]. They are able to use adequately high sampling
frequencies whilst maintaining a long-lasting battery life, covering up to several days.

VitalPatch, as used in this thesis, is a patch-like wearable sensor that measures
ECG, heart rate, R-to-R interval, respiratory rate, skin temperature, step count,
posture, and more [72]. It is a wireless disposable biosensor with a battery life up to
seven days. VitalPatch has a CE (class IIa medical device) and an FDA certification. It
records ECG at 125 Hz sampling frequency and ECG-derived HR, R-to-R interval,
and respiratory rate at 0.25 Hz frequency. Skin temperature is recorded similarly
at 0.25 Hz, and step count and posture at 1 Hz frequency. The encrypted data
is transferred through a wireless connection to a cloud-based platform, which also
offers a user interface for clinicians. The device can store up to 10 hours of data if
the connection is interrupted and upload the data upon re-connection.

VitalPatch has demonstrated a mean absolute error of 0.72 beats per minute
(bpm) for HR and 1.89 respirations per minute (rpm) for respiratory rate in healthy
subjects, when compared to gold standard heart rate from 3-lead ECG and respira-
tory rate from nasal cannula [72]. Heart rate was found accurate despite movement
and induced hypoxia, while respiratory rate was predominantly underestimated and
sensitive to artefacts from low frequency periodic movement [72]. The VitalPatch
also estimates core temperature and has demonstrated mean absolute errors of 0.29–
0.42 ◦C as compared to an oral and a swallowed pill-like thermometer [73].

3.1.4 Electronic health records

Electronic health records are the modern standard of clinical data storage. They can
record the patients’ full history in a digital form, including patient outcomes and
care paths. EHRs can contain diverse data including lab results, procedure details,
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prescriptions, hospital visits, clinical notes, and so on. They can cover millions of pa-
tients over long time periods, thus encompassing major promise for predictive appli-
cations. However, the data tend to be incomplete and even erroneous due to human
error, hence requiring special attention to handling missing data and poor data qual-
ity. Additionally, EHR data are sparse and heterogeneous by nature, i.e, the records
can include numerical data, images, and text, all recorded in an episodic manner.
This further complicates the application of data-driven technologies. Because EHRs
are recorded by healthcare providers, the data may also exhibit temporal patterns
reflecting, for instance, changes in the practical care guidelines or effects of a major
public health disruption, such as the peak in mortality observed due to COVID-19.

Although EHRs are widely adopted around the world, different healthcare
providers may use different standards. Interoperability between different healthcare
providers nationally and internationally, without risking data privacy, could enable
maximal input data volume and diversity to EHR based algorithms and wider up-
take [74]. A larger pool of data is more likely to include more observations of
rare conditions and generally more varying demographic and other background fac-
tors, and data collection across systems, institutions, and countries may be crucial
to obtain sufficient volume and variability for algorithm development [74]. When
applying an algorithm in a new EHR system, a different data standard may lead to
erroneous analysis results [74].

This thesis uses a combination of three registries: a hospital district EHR, a reg-
istry specialized in cardiac patients, and a national mortality registry. All three reg-
istries were collected in Finland and have been validated for cardiovascular diseases
such as strokes, coronary heart disease and heart failure [75]–[77]. The combined
database was automatically collected in a previous retrospective registry study, Mass
Data in Detection and Prevention of Serious Adverse Events in Cardiovascular Dis-
ease (MADDEC) [78].

3.2 Signal processing

Signal processing is a broad field of engineering, comprising a spectrum of method-
ology aimed to alter and analyze signals. Digital signal processing (DSP) specifically
focuses on digital signals and computational processing methods. This work employs
signal processing and machine learning methods for detecting and predicting health
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related events across various time spans. The time span of interest for each sub-study
affected the selected methodology.

3.2.1 Time domain analysis

Time domain analysis investigates signal properties and behaviour with respect to
time. This contains simple statistical metrics, like the mean and standard deviation,
median, different percentiles, and the minimum and the maximum values observed
over specific intervals, which can be used to summarize the time series. For instance,
resting HR equals to the minimum observed HRwhen the person is at rest/sleeping.
In this work, heart rate recovery was defined as the post-exertion decrease in HR
(difference between observed maximum and minimum), measured over one minute
after at least 6 min of walking.

The five least active hours of a day (L5) can be used to represent rest. In con-
tinuous measurements, the L5 window can be located by selecting the window with
highest percentage of laying down. The selected L5 was allowed to contain up to
100 recorded steps and was required a minimum of 80 % of laying down.

Time domain analysis also comprises non-statistical analysis, such as peak detec-
tion or the analysis of signal coverage. In this work, signal coverage for frequently
sampled signals was defined as the ratio between the number of observations and the
number of expected observations. For irregular signals, such as IBI, coverage was
defined as the sum of IBIs divided by the observed period of time.

3.2.2 Spectral and cepstral analysis

In spectral analysis, the time domain signal is transformed to the frequency domain,
e.g. using a Fourier transform, and analyzed therein. FFT is computationally effi-
cient algorithm for discrete Fourier transforms (DFT). For a signal 𝑥̄ of length 𝑁 ,
the DFT is defined by

  X_k = \Sigma ^{N-1}_{n=0} x_n e^{-2\pi ikn/N},  


   (3.1)

where 𝑘 = 0, ..., 𝑁 − 1 and 𝑖 is the imaginary unit. The inverse DFT is defined by

  x_n = \frac {1}{N}\Sigma ^{N-1}_{n=0} X_k e^{2\pi ikn/N}. 






   (3.2)

The DC component 𝑋0 equals to the mean of the signal.
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Cepstral analysis is a variant of spectral analysis, where a logarithmic transforma-
tion is applied on the frequency domain representation to emphasize small frequen-
cies. This is followed by the inverse Fourier transform which brings the representa-
tion to the so called quefrency domain (instead of the time domain), and the real part
of the inverse transform compose the cepstrum.

For a non-stationary process like the heart beat, the power spectral density (PSD)
can be used to estimate the frequency content. In Welch’s method, the signal is
divided into overlapping segments and the PSD is obtained as the average of the
modified periodograms calculated for each segment [79].

3.2.3 Autocorrelation

Autocorrelation describes a signal’s correlation with lagged versions of itself and can
indicate periodic characterictics. The autocorrelation function (ACF) is defined for
𝑘 < 𝑛 as

  R_k = \frac {\Sigma ^{n-k}_{i=1} (s_i-\mu )(s_{i+k}-\mu )}{\Sigma ^{n}_{i=1} (s_i-\mu )^2}, 

     


    (3.3)

where 𝑠𝑖 is a sequence at lag 𝑖 and 𝜇 is the signal mean.

3.2.4 Heart rate variability analysis

In the presented work, heart rate variability analysis primarily inspects time and
frequency domain features, and additionally geometrical and non-linear features in
Study II. The frequency domain features are based on the PSD estimation (see sub-
section 3.2.2) The full set of included HRV features is presented in Table 3.1.

It should be noted that the HRV features are based on normal-to-normal peak
intervals (NN), which improve the analysis as compared to unprocessed IBI [61],
[80]. NN are obtained by removing abnormal beats from the IBI (or R-to-R interval)
data and replacing them by the means of linear interpolation. The Malik method
was employed to remove abnormal beats, that is, IBI deviating over 20 % from the
previous interval were considered abnormal. For ECG, however, a limit of 15 %
was applied instead.
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Table 3.1 Heart rate variability features.

Type Feature Unit Description
T
im
e

NN mean ms Mean of normal-to-normal peak intervals (NN)
NN CV ms Coefficient of variation of NN
NN SD ms Standard deviation of NN

NN median ms Median of NN
NN range ms Difference between maximum and minimum of NN
RMSSD ms Root mean square of consecutive differences in adjacent NN
CVSD ms Coefficient of variation of consecutive differences in adjacent

NN
SDSD ms Standard deviation of consecutive differences in adjacent NN
NN50 Number of interval differences greater than 50 ms
NN20 Number of interval differences greater than 20 ms
pNN50 % Percentage of interval differences greater than 50 ms
pNN20 % Percentage of interval differences greater than 20 ms
HR mean bpm Heart rate mean
HR SD bpm Heart rate standard deviation
HR min bpm Heart rate minimum
HR max bpm Heart rate maximum

Fr
eq
ue
nc
y

VLF ms2 Power spectral density in very low frequencies (0.003–
0.04 Hz)

LF ms2 Power spectral density in low frequencies (0.04–0.15 Hz)
HF ms2 Power spectral density in high frequencies (0.15–0.40 Hz)

Total power ms2 Total power spectral density; sum of VLF, LF, and HF
LF/HF % The ratio of LF and HF
LFnu LF normalized to the sum of LF and HF
HFnu HF normalized to the sum of LF and HF

G
eo
m
et
-

ri
ca
l Triangular

index
Number of all NN divided by the maximum of the NN
density distribution

N
on
-li
ne
ar

CSI Cardiac sympathetic index
mCSI Modified cardiac sympathetic index
CVI Cardiac vagal index
SD1 ms Poincaré plot, SD1
SD2 ms Poincaré plot, SD2

SD2/SD1 % SD2 to SD1 ratio
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3.2.5 Feature normalization

Some methods and applications may benefit from normalized input features. For ex-
ample, physiological measurements can show significant inter-individual differences
as they are affected by the individual’s age, sex, and other variables [81]. Normaliza-
tion can mitigate the effect from inter-individual variance when investigating phys-
iological data for generalizable patterns. Additionally, many ML methods tend to
perform better when input features are scaled to a unified, confined range, as a fea-
ture with a broad numerical range might otherwise dominate over features with
narrow range when fitting the model.

Typical methods for normalization include, e.g., standardization (z score normal-
ization) and min max scaling. In ML, the normalization parameters are commonly
derived from the training data. For physiological data, normalization with respect to
the individual’s typical measurement values may provide more meaningful features
and improve generalization. To normalize data with respect to one’s resting param-
eters, standardization parameters (mean and standard deviation) can be calculated
from the L5 data. Hence, L5 normalized data is achieved by taking the difference to
the L5 mean and by dividing by the L5 standard deviation.

3.3 Machine learning

Machine learning algorithms learn dependencies from existing evidence by applying
optimization and statistical tools. An ML algorithm uses a set of prior observa-
tions, the training data, to create a data-driven model. ML methods can be coarsely
divided into supervised learning, unsupervised learning, and reinforcement learn-
ing. A suitable learning paradigm is selected based on the available training data.
Whereas supervised learning methods require a well defined target output for each
training example, unsupervised learning methods look for inherent dependencies and
reinforcement learning uses rewarding and punishing functions to guide the learning
process [82]. The presented work focuses on supervised learning.

The performance of an ML model on previously unobserved data (generalizabil-
ity) is highly dependent on the training data. To enable a generalizable model, the
data should comprise a representative sample that is diverse and sufficiently large,
with high quality while still representing the real life use case. The generalizability
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of a model can be tested by with-holding a part of the example data as a test set, which
remains unseen by the model during the development phase. Upon development,
the development data can be divided into training and validation sets to maximize
generalizability from the training set to the validation set. Cross-validation methods
iteratively change the training and validation set composition, which can help select
optimal model hyperparameters [83].

3.3.1 Artificial neural networks

Artificial neural networks (ANN) are a subset of ML models that mimic the biolog-
ical neural cells networks. An ANN comprises an input layer, at least one hidden
layer, and an output layer. Each layer may include a number of neurons which are
connected to the neurons on the other layers. Each neuron in a hidden layer takes
a weighted sum of inputs (originating from the previous layer) and a bias term, and
passes it through an activation function that is typically non-linear and enables the
ANN to implement complex dependencies. In deep learning, the ANN includes
multiple hidden layers. However, ANNs are generally black boxes, i.e., how the
model arrived to a specific output cannot be explained as the underlying math be-
comes too complicated to humanely comprehend (more in subsection 3.6.4).

ANNs can be trained using, e.g., backpropagation: a set of samples are first passed
through the network (forward pass), then the error to the target output is computed
and changes to the weights are propagated backwards to each neuron one-by-one
(backward pass). The data is typically passed in smaller batches over several iter-
ations, which adjusts the magnitude of the applied weight updates. An ANN is
trained over several epochs. A single epoch means one round of backpropagating
over all batches. It should be noted that instead of finding the global minimum, the
training process may get stuck in a local minimum. This can be battled through, e.g,
the careful selection of activation function, error optimizer, batch size, and learning
rate [84]. The training may also yield a model that has overfitted to the training
data and generalizes poorly. Overfitting may be reduced, e.g, via early stopping (less
training epochs) or by applying dropout (randomly disconnecting neurons) [85].

Specialized ANNs with specialized neurons and layer architectures have been
developed to handle different types of inputs. Very deep ANNs are nowadays pre-
trained on huge amounts of data and later fine-tuned to solve specific problems [86].
This work employs convolutional and transformer neural networks.
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3.3.2 Convolutional neural networks

Convolutional neural networks (CNN) are specialized in spatial data, such as images.
A convolutional layer convolves the input with sliding kernels and applies the non-
linear activation function to each convolution output, producing a set of feature
maps. Convolutional layers are typically coupled with pooling layers, which simply
shrink the input (without trainable parameters) to improve spatial invariance. For
example, maxpooling only keeps the maximum value of each smaller block of the
input. The spatial invariance makes CNNs optimal for spatial pattern recognition.

The number of trainable parameters in a convolutional layer depends on the ker-
nel size and the number of kernels. Typically the kernel size is small, enabling deep
CNNs. It is argued that in deep architectures, the first convolutional layers learn
simple patterns and the deeper layers building on them learn more complex patterns.

CNNs are extensively used in image processing including tasks like the classi-
fication of hand-written digits or animal species, object detection in traffic images,
and magnetic resonance image segmentation. The most popular architectures, like
the AlexNet, VGG or U-Net, typically achieved the state-of-the-art results in their
task [87]–[89]. With image input, a CNN is typically two-dimensional with squared
𝑛×𝑛 kernels. A one-dimensional CNN (1D CNN) with 1×𝑛 kernels can be ap-
plied for spatial pattern recognition in time series. The architecture of the model is
illustrated in Figure 3.2.

1800x1       1796x64         898x64           898x16       896x32       448x32       448x8      3584      3584            2

Input       Conv Pooling Dense Conv Pooling Dense Flatten Dropout Softmax

Figure 3.2 The 1D CNN architecture applied in Study III. The model consisted of 10,426 trainable
parameters.
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3.3.3 Transformer neural networks

Transformer neural networks specialize in sequential input data, such as written nat-
ural language. Inspired by the advancements emerging through attention, Vaswani et
al. built the network architecture exclusively on attention mechanisms [90]. Trans-
formers learn long-range bidirectional dependencies while outperforming previous
approaches in training time [90].

The attention mechanism applies weights to the input sequence elements and
runs the resulting sequence through a softmax function, converting the sequence
to weights that sum up to one, also known as attention scores. Originally, atten-
tion was developed for sequence-to-sequence autoencoder networks, which aimed to
transform one sequence to another but performed poorly on long sequences [91]. In
self-attention applied by transformers, attention is used to find dependencies between
different positions within one sequence [92].

A layer in a transformer neural network consists of two sub-layers: a multi-head
attention layer and a feed-forward layer [90]. Multi-head attention is able to apply
multiple attention functions in parallel, improving computational efficiency. Because
the full sequence is available for learning the attention weights, transformer models
learn bi-directional dependencies.

The Transformer inspired other transformer variations. The most popular vari-
ant is the Bidirectional Encoder Representations from Transformers (BERT), which
only employs the encoder part of the original Transformer [93]. The encoder is
trained by masking random elements of the training data and letting the model pre-
dict the masked input, and fine-tuned to a specific task [93]. Another variant, XL-
Net, surpassed the performance of BERT in several tasks [94]. As opposed to BERT,
XLNet is an autoregressive model and learns by maximizing the expected likelihood
over all permutations of the factorization order [94].

The attention weights of the pre-trained models may be visualized for specific in-
put sequences [94]. This has inspired hope of finding explainability or interpretabil-
ity to the inner workings of transformers. The presented work utilizes a visualization
tool, BertViz, to inspect attention weights of fine-tuned models [95].
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3.4 Performance evaluation

Algorithm performance evaluation may consist of diverse metrics. A descriptive
set of performance metrics is selected based on the type of the problem (e.g. re-
gression, classification) and captures the possible performance gaps by considering
different view-points and characteristics of the underlying data, like class imbalance,
participant cohorts, or varying measurement conditions. In regression problems,
the algorithm output is a continuous variable and the performance metrics may be
statistical or based on the distance from the true value. In classification problems, the
algorithm output is discrete. The presented work focuses on binary classification,
and thus multi-class performance evaluation is not discussed here.

3.4.1 Regression performance

Mean absolute error (MAE) describes the average deviation from the ground truth
value and is defined over 𝑁 samples as

  MAE = \frac {1}{N}\Sigma _{i=1}^{N}\left | x_{i}-y_{i} \right |, 






 
  (3.4)

where 𝑥𝑖 is a single value to evaluate against the corresponding reference value 𝑦𝑖 ,
and 𝑖 = 1, ..., 𝑁 .

Root mean squared error (RMSE) similarly describes deviation from the ground
truth but emphasizes individual large errors. It is especially useful to evaluate when
even individual large errors are unacceptable. RMSE is defined as

  RMSE = \sqrt {\frac {1}{N}\Sigma _{i=1}^{N}\left ( x_{i}-y_{i} \right )^2}, 









 


 (3.5)

where 𝑥𝑖 is a single value to evaluate against the corresponding reference value 𝑦𝑖 .
Various correlation metrics also describe the agreement between two continuous

variables. The Pearson correlation coefficient 𝑟 measures linear correlation between
two variables and gives a value between -1 (perfect negative correlation) and 1 (perfect
positive correlation), where zero corresponds to no correlation. For 𝑁 samples, it

46



is defined as the ratio of covariance and the multiplied standard deviations

  r = \frac {\Sigma _{i=1}^{N}\left ( x_{i}-\Bar {x} \right )\left ( y_{i}-\Bar {y} \right )}{\sigma _x\sigma _y}, 

  


 




 (3.6)

where 𝑥̄ and 𝑦̄ are the sample means for the two variables, and 𝜎𝑥 and 𝜎𝑦 are the stan-
dard deviations of 𝑥 and 𝑦, respectively. Pearson correlation is, however, sensitive
to outliers. The correlation coefficient is often inspected together with its 𝑝 value,
which originates from a statistical test with a null hypothesis 𝐻0 that correlation be-
tween two variables is zero. The 𝑝 value describes the probability that the observed
sample was drawn from a population with no actual correlation, i.e., the probability
that the null hypothesis would be falsely rejected. A predefined significance level 𝛼
(typically 0.01 or 0.05 depending, for instance, on sample size) defines how small
the 𝑝 value must be before 𝐻0 is rejected. It is additionally noted, that correlation
coefficients beyond Pearson 𝑟 may be selected when the relationship between two
variables is not expected to be linear. For instance, Spearman correlation coefficient
is non-parametric and measures the monotonicity of the relationship, rather than
linearity.

The Pearson correlation assumes the independence of observation errors, which
may be violated when multiple observations are obtained from each participant, in a
study comprising multiple participants [96]. Repeated measures correlation 𝑟𝑟𝑚 sim-
ilarly describes linear correlation in range [-1,1], but takes the repeated nature of the
observations into consideration and describes the common within-individual correla-
tion between the two variables [96]. It employs analysis of covariance (ANCOVA)
to adjust for between-individual variability and is defined as

  r_{rm} = \sqrt {\frac {SS_{measure}}{SS_{measure}+SS_{error}}}, 




 
 (3.7)

where the sign depends on that of the common slope across individuals, 𝑆𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒

is the sum of squared differences between the regression outputs and the sample
mean (regression sum of squares) and 𝑆𝑆𝑒𝑟𝑟𝑜𝑟 is the sum of squared differences be-
tween individual observations and the corresponding regression outputs (error sum
of squares) as obtained from ANCOVA [96].

ANCOVA itself can be used to assess the statistical significance of the difference
between the means of two or more groups while adjusting for the effect of covariates.
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One-way ANCOVAmodels the relationship between the 𝑗 th dependent variable of
the 𝑖th group and the corresponding covariate observation 𝑥𝑖𝑗 as

  y_{ij}=\mu +\tau _{i}+\beta (x_{ij}-{\bar {x}})+\epsilon _{ij}            (3.8)

where 𝜇 is the observed mean, 𝜏𝑖 is the effect of the 𝑖th group, 𝛽 is the regression
slope, 𝑥̄ is the average of covariate observations, and 𝜖𝑖𝑗 is the error associated with
the 𝑗 th observation of the 𝑖th group [96]. The 𝐹 test and its 𝑝 value are typically
used to assess the significance of difference between groups. If so, pairwise differences
can be further examined via ad hoc tests like Tukey’s method, which performs all
pairwise comparisons while adjusting the 𝑝 value for multiple comparisons. The
effect size from the covariate(s) is often assessed using partial 𝜂2.

The Kolmogorov-Smirnov (KS) test is a non-parametric test, which can be used to
test the difference of two empirical samples with unknown underlying distribution.

The Bland-Altman plot vizualizes the difference between two continuous vari-
ables, typically two measurement of the same phenomenon, with respect to their
average. Using the average instead of either variable alone avoids false indications of
a systematic error proportional to the magnitude [97]. Both systematic and random
error can be evaluated from the Bland-Altman plot.

3.4.2 Classification performance

Classification performance is often described via the confusion matrix or measures
that can be derived from it. The confusion matrix, as depicted in Table 3.2, presents
the number of true positive (TP), true negative (TN), false positive (FP), and false
negative (FN) classifications, or predictions. Table 3.2 also denotes the number of
positive (P) and negative (N) samples, as well as the number of predicted positive

Table 3.2 Confusion matrix

Prediction output

PP PN

G
ro
un
d

tr
ut
h P TP FN

N FP TN

48



(PP) and predicted negative (PN) samples.
Accuracy, sensitivity, and specificity are defined

  \text {accuracy} = \frac {TP+TN}{P+N} 
 

 
(3.9)

  \text {sensitivity} = \frac {TP}{P} 



(3.10)

  \text {specificity} = \frac {TN}{N}, 



 (3.11)

respectively. Accuracy describes how often the classification or prediction was cor-
rect, whereas sensitivity and specificity describe the accuracy for positive and nega-
tive classes, respectively. Together, sensitivity and specificity can capture how many
actual positive and negative samples were correctly identified by the algorithm.

A binary classifier typically produces a value, which is interpreted as a positive
or negative class according to some threshold. Adjusting the threshold can change
the model sensitivity and specificity without changing the underlying model per se.
The model performance at any threshold can be depicted in a plot of sensitivity with
respect to 1-specificity, where a completely random model would be represented by
a straight line from (0,0) to (1,1). An ideal model, on the other hand, would achieve
the (0,1) point with perfect sensitivity and specificity. Area under the receiver oper-
ating characteristics curve (AUC) describes the area under the curve in the sensitivity
to inverse-specificity plot and is sometimes preferred over accuracy, as it describes
performance over a range of thresholds. An AUC of 0.5 describes a random classifier
and an AUC of 1.0 would indicate a perfect classifier.

Sensitivity (also known as recall) may also be coupled with precision, defined as

  \text {precision} = \frac {TP}{PP}. 



 (3.12)

Together, sensitivity and precision capture how many of the positive cases were
identified but also how many of the produced positive classifications were correct.

3.5 Method summary

Table 3.3 summarizes the data collection and analysis methods in each study.
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Table 3.3 Summary of methods

Study Data collection
method Analysis method Performance metrics

I FMCW radar
Autocorrelation,
cepstral analysis,
HRV analysis

MAE, RMSE
Pearson correlation,
Bland-Altman plot

II Wearable
ECG sensor

Time domain analysis
(statistical analysis,
HRR, coverage)
HRV analysis

Repeated measures correlation
ANCOVA

KS

III Wearable
ECG sensor 1D CNN Accuracy, sensitivity

specificity

IV EHR Transformers
(BERT, XLNet)

AUC, sensitivity
precision

3.6 Prior work

Real-time health event monitoring primarily requires high accuracy measurement
capabilities, whereas FMCW radars can be sensitive to motion artefacts. Continu-
ous monitoring with wearables faces different challenges in different measurement
settings. EHRs can become massive and hard to utilize. This section reviews the
literature and the current state-of-the-art results related to each of the case studies.

3.6.1 Real-time health event detection with FMCW radars

Radars in healthcare monitoring have been primarily studied for applications where
the measurement equipment can be rather stationary, such as monitoring seated or
sleeping individuals at home, offices, or care facilities [98], [99]. They have also
been used for locating live earth-quake victims behind collapsed concrete walls via
respiratory rate detection, where the detected individual is again stationary [100].
Inpatients staying at healthcare facilities or nursing home residents often stay in bed
for long periods of time and could benefit from the contact-free monitoring which
radars can offer.

Prior studies have validated heart rate and respiratory rate monitoring with
FMCW radars against certified medical devices but restricted their experiments on
participants sitting up. Wang et al. included 10 participants in their study and vali-
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dated their heart rate and respiratory rate extraction method against a medical patient
monitoring device [101]. In their experiments the participants were sitting still, and
an 80 GHz radar was positioned 1 m in front, behind, and to the left side of the
participant, sequentially. The positioning in front of the participant was addition-
ally repeated with 2 m distance. They reported the best combined result from the
1 min frontal measurement setting with 8.1 % and 6.9 % relative errors for heart
rate and respiratory rate, respectively [101]. Similarly, Adib et al. studied partici-
pants in seated positions but aimed to monitor 2–3 individuals simultaneously, given
a distance of 1–2 m between two individuals [99]. Their study included 14 partici-
pants seated in different orientations and at varying distances with respect to a radar
mounted on a table. As compared to a medical device, they reported accuracies of
99% and 99.4% for heart rate and respiratory rate, respectively, when the participant
was sitting [99].

Arsalan et al. focused on heart rate estimation from seated participants and used
a commercial heart rate chest belt sensor as the reference device [102]. They pro-
posed adaptive band-pass filtering on the time-domain displacement signal, based on
Kalman filtering to narrow down the frequency band [102]. They used a 60 GHz
FMCW radar on 14 individuals. The validation was however restricted to 11 heart
beat estimation per individual, as all participants were measured for 20 s and they
used a 10 s sliding window (1 s interval). They reported an RMSE of 5.3 bpm for
7 participants holding their breath during the measurement and 7.0 bpm for the
remaining 7 breathing naturally [102].

Other studies have investigated FMCW radars for monitoring individuals in bed
but lack validation with respect to certified medical devices. Anitori et al. had six
participants lie down in four different positions on a bed [103]. They mounted four
radars of different carrier frequencies between 2.4 GHz and 24 GHz to the ceiling
above and, without seeing significant differences for heart rate and respiratory rate
extraction, selected the 9.6 GHz radar for further investigation. They compared the
accuracy of the radar technology against an ECG belt while the participant would
either breath normally or hold their breath. They reported that their best method,
a FFT on the phase signal showed up to 5% error in 55% of the measurements. Lim
et al. also measured five participants while lying on a bed and wearing a commercial
reference sensor [104]. Interestingly, the participants were lying on a surgical bed and
a surgeon was moving beside bed in some of the measurements. They used a 60 GHz
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FMCW radar and applied beam-forming to improve signal quality upon interference
from a surgeon [104]. They reported 0.75–1.66 bpm and 2.1–4.7 bpm MAE (or
over 90% and 93% accuracies) for respiratory rate and heart rate, respectively, in
the presence of a surgeon during 100 s measurements [104].

Overall, FMCW radars have achieved encouraging results in vital sign monitor-
ing. Nevertheless, their performance in lying positions has not been evaluated as
compared to medical grade reference devices. Moreover, prior studies have not in-
cluded wide ranges of both respiratory rates and heart rates, and thus the applicability
of FMCW radars for sleep apnoea monitoring has remained an open question.

3.6.2 Continuous health monitoring with wearables

In contrast to radars, wearable sensors can be used to monitor an individual any time
and anywhere, also during exercise. In exchange, wearables depend on rechargeable
batteries and require skin contact. Even so, they have potential to produce high
coverage continuous health data. Their feasibility for patient monitoring has been
studied both for inpatient and outpatient applications [105], [106].

Weenk et al. studied the feasibility of two wearable devices for continuous patient
monitoring on 20 patients at the surgical and internal medicine wards [105]. Both
wearables were worn simultaneously for 2–3 days and measured ECG, heart rate,
respiratory rate, and skin temperature [105]. They reported positive feedback from
both patients and nurses. The nurses found the devices easy to attach whereas the pa-
tients reported increased sense of safety due to continuous monitoring and acknowl-
edged the light weight and low interference with ADLs [105]. The wearables addi-
tionally reduced interruptions of sleep by allowing monitoring from a distance [105].
However, 20 % of the measurements observed by nurses were incomplete and acci-
dental data deletions, data transfer failures, as well as movement artifacts and loos-
ened skin contact reduced the coverage and quality of the collected data [105]. The
study criticized the inaccuracy of respiratory rate measurements. The authors noted
that using wearable sensors for in-patient monitoring creates high demand for auto-
matic patient deterioration alarms but the risk of false alarms creating alarm-fatigue
in nurses must be considered.

Integrating alarm systems to wearables could offer additional value for inpatient
monitoring. Väliaho et al. validated a PPG based wrist-worn medical device against
an ECG for atrial fibrillation detection in a study including 173 inpatients [107].
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They reported high sensitivity and specificity (over 94 % and 98 %, respectively)
for atrial fibrillation in detector time-frames ranging from 10 to 60 minutes. The
patients found the wearable sensor more comfortable than the Holter ECG, with a
statistically significant difference, and most patients would have preferred the wear-
able for measurements at home [107]. The study also reported low interference with
ADLs and mobility.

Outpatient monitoring imposes a greater challenge as compared to inpatient mon-
itoring due to the less controlled measurement environment. Free-living outpatients,
such as home care clients, may continue their typical daily living, which may inter-
fere with the continuous measurement. Interviews with healthcare providers, health
information professionals, and providers of commercial remote monitoring solu-
tions have indicated that the top concerns regarding remote patient monitoring were
mainly about the lack of integration with electronic health records, with gaps in ac-
cessibility to professional interfaces and interpretable reports as well as interoperabil-
ity between outputs from different sensors [108]. The measurement inaccuracies due
to human or technical errors were also concerning to the expert interviewees [108].
In 2020, Soon et al. published a review covering 30 wearable devices in outpatient
monitoring settings [106]. They reported a gap in the amount of clinical validation
studies and presented that several devices lack peer-reviewed publications.

Despite the added challenge, remote monitoring has also demonstrated new pro-
mising opportunities. Sokas et al. created an automated walk-test mimicking a six
minute walk test (6MWT), regularly used in controlled environments to assess car-
diovascular fitness [109]. The study covered a total of 99 participants, including
CVD patients and healthy volunteers. They demonstrated that detecting eligible
(unguided) walking periods during activities of daily living with a commercial wrist-
worn device can be feasible and exhibits different walking distances between CVD pa-
tients and healthy participants. Furthermore, Iqbal et al. reviewed the effect of wear-
able based alerting systems on clinical outcomes in remote monitoring [110]. They
assessed hospitalization, all-cause mortality, length of stay, emergency department,
and outpatient visits. They reported reduced length of stay and all-cause mortality
thanks to the alerting systems, supporting the important role of early detection (of
patient deterioration) for improving patient outcomes. However, the results regard-
ing hospitalization were inconclusive, whereas no improvement was found in terms
of emergency department and outpatient visits [110]. The inspected studies included
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various alerting systems with some alerting the participant instead of healthcare pro-
fessionals [110]. Most studies included in the review considered cardiorespiratory
measures.

Importantly, continuous monitoring with wearable sensors could offer sensitive
objective assessment of HRQoL. Currently, the HRQoL of a patient is primarily
evaluated in healthcare via subjective patient reported outcomes, which are suscepti-
ble to recall bias. Prior works lack proposals for objective metrics that adequately de-
scribe HRQoL through physiological functions in uncontrolled free-living settings.
Additionally, the feasibility of continuous monitoring has not been sufficiently ad-
dressed for physiological monitoring in chronic patients, especially in outpatients.

3.6.3 Predicting health event risks from EHRs

EHR applications are often simplified to only consume a small selection of data
from the EHR, such as well defined diagnostic or other codes, continuous clinical
measurements, or free text clinical notes [111]–[116]. Some studies have proposed
data representations that can capture several types of inputs, even representations that
could be applied to the entire EHR [117]–[121]. Regardless of the challenges, EHR
data are seen full of potential for discovering new information about cardiovascular
disease mechanisms, drug development, personalized medicine, risk prediction for
decision support, among other benefits [122].

In the context of cardiovascular diseases, EHR data have been typically applied for
some specific diagnostic cohort. Motwani et al. used a multi-site registry of 10,030
patients with suspected coronary artery disease and trained a boosted (decision tree
based) ensemble classifier to predict 5-year all-cause mortality [123]. A total of 745
deaths occurred within the 5 years. They demonstrated that a combination of clini-
cal and coronary computed tomography angiography features obtained an AUC of
0.79 and outperformed several individual clinical scores (AUC values 0.61–0.64).
Notably, the results were obtained with 10-fold cross-validation without conducting
tests with held-out data. The other individual scores were selected as input features
in the model. Later, Hernesniemi et al. used a 9,066 registry from a single site
and predicted 6-month mortality in patients with acute coronary syndrome [124].
A total of 660 patients died within 6 months. They evaluated a logistic regression
model and an extreme gradient boosting model obtaining AUC values of 0.87 and
0.89, respectively, both exceeding the performance of the traditionally used Global
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Registry of Acute Coronary Events (GRACE) score (AUC 0.82). Some of the ML
model features overlapped with GRACE score components [124]. Their training
data covered the years 2007-2014 and 2017, and the test data covered 2015-2016.

In addition to CVD patient-specific mortality risk prediction in the studies by
Motwani et al. and Hernesniemi et al., mortality risk prediction has been stud-
ied in other patient groups. Rajkomar et al. combined three deep learning models
(long short-term memory or LSTM, attention-based time aware neural network,
and boosted time-based decision stumps network) and predicted in-patient mortal-
ity within 24h of admission with AUCs of 0.93-0.95 at two sites [119]. They used
EHRs from two hospitals in the USA, including a total of 114,004 patients. Mor-
tality studies have also been especially applied for intensive care unit (ICU) patients.
Choi et al. studied mortality risk prediction during ICU admission using a graph
convolutional transformer model and achieved an AUC of 0.60 [120]. Their data
were highly imbalanced and covered multiple sites in the USA over two years. Yang
et al., on the other hand, reported an AUC of 0.85 for mortality risk prediction
among ICU patients [125]. They used the codes representing diagnoses, treatments,
interventions, and diagnosis related groups, as well as hospitalization type and ad-
mission and discharge times. They applied an LSTM classifier with attention mech-
anisms in two levels, for visits and for individual variables. They used EHR data
of 7,491 patients that reportedly included well balanced target groups. They argued
for the benefits of using EHRs comprising a variety of diseases and conditions but
also noted that the proposed model is not suitable for real-time early detection of
high-risk patients in the ICU due to the requirement of longitudinal EHR data for
input.

In CVD patients, heart failure is another popularly studied prediction target
alongside mortality. Choi et al. developed the RETAIN model and demonstrated
it for heart failure prediction [111]. Their recurrent neural network (RNN) model
used attention mechanisms and was trained on data extracted from an EHR database
of over 263,000 patients. They reported an 87% AUC when testing on a held-out
subset containing 15 % of the data. On the same year, Choi et al. also predicted the
risk of heart failure fromEHRdata by stackingmedical concept vectors, a specifically
trained representation for a patient’s records [126]. They created a 100-dimensional
numerical vector space, where similar concepts would reside close to each other.
The concepts were captured through diagnoses, medications, and procedures. They
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trained the concept representation on an EHR database of over 265,000 patients
(or smaller subsets) and, from the same EHR, selected a subset of 32,787 patients
(3,884 with heart failures) to train several ML based prediction models. They re-
ported AUCs up to 0.81, obtained from six-fold cross validation. Later, Chu et al.
applied deep adversarial learning on an RNN to predict the occurrence of heart fail-
ure readmission, all-cause mortality, or a composite endpoint within a three-month
window and achieved AUC values of 0.74, 0.66, and 0.87, respectively [127]. They
used 197 features selected by clinical experts and processed all data into categorical
form. They included 2,102 patients from an EHR of heart failure patients. They
reported better AUCs for shorter prediction windows as opposed to longer (ranging
from 3 to 24 months) and longer sequences as opposed to shorter ones.

EHRs can also be utilized for validation. Kolek et al. used an EHR with over
33,000 patients to validate a previously developed atrial fibrillation risk model [128].
In the inspected 5 years period, 7.3% of the patients developed atrial fibrillation.
However, the authors reported that the risk prediction model under-predicted the
disease in low risk patients and over-predicted it in high risk patients. Similarly,
Rodriguez et al. used EHR data from northern California, USA to validate the
Pooled Cohort Equations (PCE, intended for atherosclerotic CVD risk assessment)
in different ethnic groups [129]. They observed overestimated risks by 20–60% in
the investigated groups.

EHRs provide large data sets, which is a basic requirement for the very powerful
deep learning techniques, and prior works have reported successful experiments ap-
plying DL methods on EHR data. Especially attention based DL methods have been
involved in the state-of-the-art studies, even though EHR data are also a challenging
starting point due to their unstructured, multi-modal, error-prone, and episodic con-
tents. However, attention based deep learning has remained underutilized in CVD
patient mortality risk prediction, and their capabilities to combine the different types
of health records has not been thoroughly addressed.

3.6.4 Algorithm requirements in clinical applications

The acceptance of a novel technology for clinical use can be achieved through ex-
tensive validation of the method, investment in user experience among patients, a
user-friendly interface for the clinicians, designing it to fit existing workflows, and
most importantly, a clinically relevant and actionable output. Considering algorith-
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Figure 3.3 The six properties of an ideal algorithm for a healthcare application [134]. Figure
from [134], used under the CC BY 4.0 license.

mic requirements for clinical algorithms from the start of the development can help
avert many pitfalls that may block algorithm adoption in clinical practice. There
are several guidelines to support coherent and sufficient reporting in scientific pub-
lications presenting new algorithms with clinical use cases, and guidelines written
directly for clinicians to help them evaluate ML applications [130]–[133]. Loftus
et al. formulated a framework for ideal healthcare algorithms, which lists six de-
sirable characteristics to maximize the algorithm’s benefits to patients, clinicians,
and researchers [134]. As depicted in Figure 3.3, they define an ideal algorithm as
explainable, dynamic, precise, fair, reproducible, and autonomous [134].

Mathematically complexmultilayered solutions, such as deep learning algorithms,
often become black boxes where the role of each input in computing the output be-
comes incomprehensible. A black box algorithm could be based, e.g., on clinicians’
actions rather than physiological events, potentially leading to devastating outcomes
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in clinical use [134]. Whereas more traditional ML algorithms can be naturally ex-
plainable, recent research in the field of ML and AI has put significant effort to
shed light inside the black boxes, too [135]. Research has mainly focused on model
interpretability and produced methods such as LIME to explain individual predic-
tion outputs and SHAP that can additionally help evaluate feature relationships in
the model [136], [137]. However, they have received criticism as the created inter-
pretations can be misdirected by adversarial methods, which naturally reduces their
credibility [138]. On the other hand, novel DL mechanisms such as attention have
been proposed, building weights into the model itself and offering a means for in-
terpretability [114]. It has been suggested that attention weights may not purely
represent importance across the input, but some methods may mitigate this phe-
nomenon [139].

A dynamic algorithm is able to consume new data in real-time in continuously
evolving conditions and capture any relevant temporal changes [134]. Dynamic algo-
rithms can ease repetitive and continuous use cases [134]. In chronic disease related
applications, algorithms covering different time spans can capture changes of differ-
ent scales and be utilized in very different applications. The use case as well as the
intended implementation setting determine the data that are available and the ways
to exploit them to produce the desired output [134]. Different use cases may also
set different requirements for algorithm validation. In practice, real-time implemen-
tation of algorithms can be a computationally demanding task where issues such as
latency, data shifts and keeping algorithms up to date (e.g. via continual learning)
need to be considered [86]. Testing and updating the algorithm should be possible
also after clinical adoption [133].

The performance of the algorithm and therefore precision is often the focal point
in ML research especially when the research aims to produce novel algorithms. For
clinical use cases, the performance metrics should convey realistic information about
their generalizability in the real use case. The algorithm performance should be eval-
uated against a reliable reference, preferably the clinical gold standard [133]. The
precision of the algorithm is also interlinked with the data collection method. For
instance, any signals need to be sampled at frequencies capable of capturing the phe-
nomenon of interest (Nyquist theorem) and too large an input feature set can cause
the algorithm to suffer from the curse of dimensionality [134]. The algorithm should
be built on sufficient quantities of data to enable generalization to new observations.
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Algorithm fairness is closely related to performance evaluation; a fair algorithm
benefits different patients equally regardless of any socioeconomic or ethnic fac-
tors [134]. The selection of representative samples is central to creating fair algo-
rithms, in both training and validation. For instance, multicenter data capturing suf-
ficient numbers of different demographics may serve this goal [134]. Performance
gaps should be analysed to identify any lack of fairness.

Reproducibility of the validation results is crucial for credibility and, thus, ac-
ceptability. Recent studies have demonstrated difficulties in this aspect with ML
algorithms [140], [141]. Some guidelines have been suggested for standardized re-
porting of the methods and results [141].

An autonomous algorithm can be a major help to the clinicians, automating and
aiding tasks and, importantly, saving time [134]. Making the algorithm easy to use
without requiring time consuming additional steps outside the standard workflows
can promote uptake. Simultaneously, the clinician should be able to supervise and
control the algorithm in order to make an informed decision regarding the output.

Beyond the list by Loftus et al., there are additional requirements related to the
practical adoption of clinical algorithms. For example, all algorithm inputs must
be available at the intended time of algorithm usage, according to the existing work-
flows [133]. Additionally, a very specific use case or other built-in restrictions within
the algorithm may block its clinical uptake because it quickly becomes impractical
to adopt and maintain countless very specific algorithms [133]. The range of the
algorithm should be well justified. Algorithms also need interoperability to oper-
ate despite changes in the source of data, such as a different device or data storage
system, to avoid added costs due to requiring specific data sources. Finally, algo-
rithms will need to conform to regulations, such as the Medical Devices Regulation
in the European Union, and follow ethical guidelines, such as the ethics guidelines
for trustworthy AI by the European Commission [142]–[145].
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4 STUDY DATA

This thesis analyzes three different data sets, with studies II and III using different
subsets of one data set. Table 4.1 summarizes the data sets used in each substudy (after
applying any exclusion criteria). The data set characteristics are further detailed in
sections 4.1 to 4.3.

Table 4.1 Summary of the study data sets

Study N Female Male Cohorts Study
period

No. of
sites

Age range
(average)

I 10 2 9 Healthy 32 min 1 25–55 (37)
II∗ 136 86 50 Healthy, PD,

HD, IBD,
PSS, RA,
SLE

1–21 days 4 21–82 (52)

III∗ 82 53 29 Healthy, PD,
HD, IBD,
PSS, RA,
SLE

3–12 days 4 21–82 (51)

IV 57,377 7940† 12,548† CVD Decades 1 18–105 (65)

4.1 Simulated hypopnoea detection data

Unlike the remaining studies, Study I used a data set collected in laboratory settings.
Informed consent was obtained from all participants. Each participant was appointed
a time at the laboratory to participate in the study. The participants were measured
with the VTT 24 GHz FMCW radar mounted above a bed (at about 2 m distance)
using sampling frequencies of 110 Hz and 154 Hz. A CE certified class II medical de-
vice (the Embla titanium portable polysomnography system) was used as a reference

∗Studies II and III used subsets of the same database
†Sex unknown for a large part of the database
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device: the participants wore two ECG electrodes (under the right side collarbone
and on the lower left thoracic cage) measuring at 256 Hz sampling frequency, and
a RIP belt (on the thorax) operating at 32 Hz sampling frequency [146]. Addition-
ally, a ballistocardiography based sensor sheet by VTT was installed under the bed
mattress topper to collect supporting reference data at 110 Hz sampling frequency.

The measurement protocol consisted of three 2 min activities: relaxed respiration,
hypopnoea simulation (comprising a 1 min shallow respiration period followed by
1 min of normal respiration), and post-exercise respiration. The first two activities
were repeated in supine, right lateral recumbent, prone, and left lateral recumbent
positions while the participant was lying on a bed. The hypopnoea simulation was
preceded by an additional 2 min supine relaxed respiration period. The post-exercise
respiration activity was measured only in the supine position, after two minutes
on a treadmill with roughly 15% inclination. The participants had the option to
interrupt the treadmill exercise at any time but none did. The same protocol for
relaxed respiration in different positions and post-exercise respiration in the supine
position was additionally repeated with another sampling frequency. The order of
the full protocol with 110 Hz sampling frequency and the reduced protocol with
154 Hz sampling frequency were alternated between participants.

4.2 Fatigue and sleep disturbance study data

Studies II and III exploited different subsets of the same database. The data was
collected in the IDEA-FAST project, which aims to identify digital endpoints for
fatigue, sleep disturbances, and activities in daily living in NDDs and IMIDs [147].
The study was registered with the German Clinical Trial Registry (DRKS00021693)
and received ethical approvals from the ethical committees of the Medical Faculty of
Kiel University, Newcastle upon Tyne Hospitals National Health Service (NHS)
Foundation Trust/Newcastle University, Erasmus University Medical Centre in
Rotterdam, and Georg-Huntington-Institute in Münster, over June to November
2020. The participants were recruited by the aforementioned study sites and en-
rolled for up to 60 days. Informed consent was obtained from all participants. The
participants were either healthy or diagnosed with one of PD, HD, IBD, PSS, RA,
or SLE. Inclusion criteria included age of over 18 years, smartphone usage in the
past three months, ability to follow written and oral instructions, to walk, sit, and
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stand independently, to socialize and communicate, and have over 15 points in the
Montreal Cognitive Assessment (MoCA) assessment of cognitive abilities. Exclusion
criteria consisted of certain comorbities (such as chronic fatigue syndrome or major
sleep disorders), physical traumas with hospitalization in the past 3 months, cancer
diagnosis in the past three years, major psychiatric disorders, suicidal attempt in the
past 5 years or suicidal ideation in the past half a year, substance/ethanol abuse, and
severe visual impairment.

The participants were instructed to wear the VitalPatch biosensor for five con-
secutive days while conducting their usual daily activities. The participants were
also asked to report selected patient reported outcomes (PROs) via an electronic
questionnaire four times a day on a smart phone using the VTT Stress Monitor Ap-
plication (SMA) [148]. The SMA prompted a questionnaire at 9:00, 13:00, 17:00
and 21:00 local time each day, allowing a response within 3 hours (2.5 h for the final
daily questionnaire). If the questionnaire had been opened but not submitted, and it
was no longer in active view, the app would prompt a reminder every 15 minutes.
The questionnaire included 7-point Likert items for physical and mental fatigue, anx-
iousness, depression, pain, sleep quality ("How was your sleep?"), and physical and
mental activities of the day, a 10-point Karolinska Sleepiness Scale (KSS) for sleepi-
ness, and additional questions touching sleep times. The exact set of questions varied
with the time of the day. The applications and devices were explained in detail to the
participants. The study team provided the participants with informational material,
telephone support, and optional home visits to support device usage.

VitalPatch was used for the following continuous physiological measurements:
HR, R-to-R interval, respiratory rate, and skin temperature. The data were sorted
in time and duplicate records were removed. Invalid values, physiologically unrealis-
tic values, and contextual outliers were removed and treated as gaps, except the latter
two for R-to-R intervals, where the removed values were replaced using linear inter-
polation as routinely done to improve HRV analysis. Invalid and unrealistic values
were also removed from posture and the number of steps, which were additionally
acquired from VitalPatch to select data for heart rate recovery analysis.

Study II used a subset of 136 patients, 101 of which had reported PROs con-
currently while using VitalPatch. Each participant used VitalPatch for 1–21 days,
resulting in data of 1,297 days in total. A subset of 91 participants (30 healthy, and
9 PD, 6 HD, 12 IBD, 13 PSS, 10 RA and 11 SLE patients) had at least two 2 h
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windows of sensor data (with >70% coverage of inspected signals, as compared to
the number of expected samples) ending at a PRO response. This subset was em-
ployed to analyze the association between features derived from the sensor data and
the PROs. Another subset of 73 participants (21 healthy, and 10 PD, 9 HD, 11
IBD, 8 PSS, 8 RA, and 6 SLE patients) had at least one uninstructed 6 min walking
period (an average of at least 60 steps/min) followed by a one minute rest with full
coverage heart rate. This subset was used for heart rate recovery analysis.

Study III used a smaller subset of the same data, including 82 individuals who had
responded to a KSS questionnaire at least six times over 3–12 days while wearing
the VitalPatch biosensor. The target for study III was to predict daytime sleepiness
(sleepy or non-sleepy) from two hours of continuous respiratory rate signal. The
subset included 8 PD, 6 HD, 10 IBD, 13 PSS, 7 RA, and 12 SLE patients and
26 healthy volunteers. The KSS comprised 10 options ranging from extremely alert
(index 0) to extremely sleepy (index 9). The KSS responses were used as the prediction
target so that extremely alert to rather alert (indices 0–3) were labelled non-sleepy and
neither alert nor sleepy to extremely sleepy (indices 4–9) were labelled sleepy.

The respiratory rate data covering at least 90 % of the 2 hours preceding a KSS
response was taken as the input data. Given the sampling rate of 0.25 Hz, the full 2
hour window would have consisted of 1800 samples. Therefore, the signal coverage
was evaluated as the observed number of samples divided by 1800. Reduced coverage
may have resulted from non-wear time or data cleaning.

4.3 Mortality risk prediction data

Study IV exploited a large database collected from three sources: the Pirkanmaa Hos-
pital District EHR, the Tays Heart Hospital KARDIO registry, and the Finnish
mortality registry collected by Statistics Finland. The first two extend back to the
1990’s and early 2000’s, respectively, and the date of death from the thirdly men-
tioned was included for the matching period. The database was collected automat-
ically as a part of a retrospective registry study, MADDEC, and continued until
January 2020 [78]. For Study IV, the data were anonymized in accordance with the
Finnish legislation, leading to partial data loss, e.g., exact timestamps were replaced
with days since birth. As a retrospective study, informed consent was not required.

The database consisted of CVD patients (various cardiac conditions) treated at the
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Tays Heart Hospital. The anonymous database consisted of patient events, which
were linked to the patient and their background information, such as birth year
and residence, as well as event details according to the event type. The events were
categorized as labs, diagnoses, medications, operations, procedures, measurements,
hospital visits and wards, angiography, imaging, percutaneous coronary intervention
(PCI), coronary care unit (CCU), transcatheter aortic valve implantation (TAVI),
or resuscitation. Each event type was recorded with attributes specific to that event
type. The anonymous database comprised a total of 72,680 patients, 9172 of which
had diseased within six months of their last visit.

The event-oriented data were pre-processed into patient specific time series of
events. Individual events were excluded from the time series if the event time was
missing or overlapped with the date of death, or occurred before the patient turned
eighteen. For each event type, the size of the event representation was limited to
control time series length: attributes were completely disregarded if they were com-
pletely missing or were not within the nine best available attributes. Otherwise all
event type specific attributes were included in all occurrences of such events, with any
missing values set to none. The patient time series were tokenized with pre-trained
tokenizers and special tokens were inserted once to each time series to the expected
position (according to the selected transformer model). Numerical attributes were
transformed to string type integers prior to tokenization, including the age of the
patient at each event, which was additionally transformed to years. Finally, the se-
quences were truncated to 512 most recent tokens. Under-length sequences were
padded with a specialized padding token determined by the tokenizer.

Study IV was formulated as a classification task between those who survived over
six months after an event (negative cases) and those to those who died within 182
days of the last event (positive cases). Importantly, data were retrospective (including
full history of those diseased) whereas the clinical use case would entail predictions
at random patient encounters. To avoid bias due to the retrospective nature of the
data, a random number of events were removed from the end of each patient time
series, as long as (a) at least five events remained and (b) death was still within six
months for the positive cases.
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5 RESULTS

5.1 Accuracy of contact-free detection of simulated hypopnoea
events

In Study I, the FMCW radar detected respiratory rate with an overall MAE of
1.4 rpm as compared to a certified medical device in laboratory settings. The radar
derived respiratory rate demonstrated a 91 % Pearson correlation (𝑝<0.01) with the
reference, while the total RMSE was 3.1 rpm. The Bland-Altman plot is shown in
Figure 5.1. The user specific MAE varied from 0.7 rpm to 5.1 rpm. As seen in Ta-
ble 5.1, the highest errors clearly occurred for shallow respiratory motions, during
the simulated hypopnoea. Moreover, the errors for this activity were notably higher
in the lateral positions than in the supine or prone positions. It should, however, be
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Figure 5.1 Bland-Altman plot of respiratory rate between the FMCW radar and the reference device.
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Table 5.1 Mean absolute error in respiratory rate (rpm) from FMCW radar with respect to activity and
lying position.

Position Relaxed Hypopnoea,
Shallow

Hypopnoea,
Normal Post-exercise Position MAE

Supine 1.002 1.270 1.149 1.149 1.086
Right lateral 1.096 3.588 0.682 - 1.656

Prone 1.256 1.458 0.707 - 1.225
Left lateral 1.732 3.454 1.001 - 2.064

Activity MAE 1.222 2.408 0.887 1.149 1.414∗

noted that the reference RIP belt may have slightly dislocated and loosened when a
participant rotated their body on the bed to change positions.

Table 5.2 Mean absolute error in interbeat interval (s) from FMCW radar with respect to activity and
lying position.

Position Relaxed Hypopnoea,
Shallow

Hypopnoea,
Normal Post-exercise Position MAE

Supine 0.034 0.014 0.042 0.052 0.038
Right lateral 0.040 0.036 0.041 - 0.040

Prone 0.039 0.028 0.054 - 0.040
Left lateral 0.038 0.028 0.032 - 0.035

Activity MAE 0.037 0.026 0.042 0.052 0.038∗

Monitoring the heart can reveal indications of developing CVDs due to sleep ap-
noea, thus offering valuable information when coupled with respiratory monitoring.
The IBI measurements with the FMCW radar were typically overestimated with an
overall MAE of 38 ms and a total RMSE of 84 s from the medical level reference,
with an 81 % Pearson correlation to the reference values. Detailed inspection of
the results revealed highest IBI measurement errors for arrhythmic heartbeats. The
results are summarized with respect to the varying respiratory activities and posi-
tions in Table 5.2. The best accuracy was during shallow respiratory motions. The
results demonstrate that the smaller the interference from the respiratory motions,
the more accurate the IBI measurement can be. In terms of heart rate, the overall
MAE was 1.1 bpm when ectopic beats were discarded.

Finally, the error in HRV analysis was evaluated for a selected group of time and
frequency domain HRV features. The radar derived time domain features demon-

∗Total MAE over all activites and positions

68



strated 79–98 % correlations with the reference, and frequency domain features
showed 72–95 % correlations. For instance, MAE was 10 ms for both RMSSD
and NN SD, and 20 ms for normal-to-normal intervals.

5.2 Continuous monitoring of measures describing the quality of life

In Study II, two-hour aggregates of physiological signals (HR,HRV, respiratory rate,
temperature) were L5 normalized for each individual. The L5 windows were located
at 1-min resolution. The L5 normalized data exhibited statistically significant corre-
lations with immediately following patient reported outcomes describing fatigue and
sleep. Several significant correlations were identified for all three cohorts (healthy,
NDD, IMID) whether the measurements were normalized by the mean and SD av-
eraged over all participant-specific L5 windows (see Figure 5.2), or just the nearest
preceding L5 window (see Figure 5.3). Interestingly, only the correlation between
minimum HR normalized by overall L5 metrics and sleepiness was significant in all
three cohorts. In both disease cohorts, the respiratory rate minimum normalized by
full L5 data correlated negatively with the reported sleep quality, while the healthy
cohort did not show a significant correlation.

With normalization using all L5 data, the healthy and IMID patients showed
several similar correlations. For both groups, mental activity level correlated with
skin temperature maximum, and mental fatigue correlated with HR SD and R-to-R
maximum, all negative correlations. Sleepiness showed negative correlations with
HR minimum, maximum, mean, and SD (also with HRV derived HR maximum,
mean, and SD instead of the directly available HR), respiratory rate maximum and
SD, and NNCV. Additionally, sleepiness correlated positively with R-to-R and NN
mean, and NN median.

Importantly, the healthy and NDD both showed significant correlations between
sleep quality and NN range and HRV derived HR minimum, but of opposite direc-
tions. Wider NN range correlated with poor sleep quality in the healthy and good
quality in the NDD patients. Higher HRV derived HR minimum correlated with
better sleep quality in the healthy, and poor quality in the NDD patients.

In the NDD cohort, the significant correlations were mainly related to sleep
quality, with only two significant correlations with both mental fatigue and mental
activity level, and three significant correlations with sleepiness. The IMID cohort,
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Figure 5.2 Repeated measures correlation 𝑟 values between physiological quantities and PROs, for
the healthy, NDD patients, and IMID patients. The statistically significant (𝑝<0.05) are
depicted on opaque colours. Here, the participant-specific normalization method used all
available L5 data.

on the other hand, had only a few significant correlations with sleep quality, while
most significant correlations were for sleepiness. The IMID group also demonstrated
several significant correlations with both mental and physical fatigue. The healthy
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Figure 5.3 Repeated measures correlation 𝑟 values between physiological quantities and PROs, for
the healthy, NDD patients, and IMID patients. The statistically significant (𝑝<0.05) are
depicted on opaque colours. Here, the normalization method used the only the most
recent available L5 data.

participants had several significant correlations with all PROs.
With normalization using only the latest L5 data, the healthy group exhibited

mainly the same correlations as with the features normalized by all L5 data. Nev-
ertheless, six new correlations emerged: (1) mCSI correlated with sleep quality and
(2) sleepiness; (3) NN50 correlated with sleep quality; (4) NN median correlated
with physical fatigue; (5) respiratory rate SD correlated with mental activity level;
and (6) VLF correlated with physical activity level.

For NDD patients, only sleep quality correlations and the correlations between
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HR max and mental activity level, and mCSI and sleepiness were similar to features
normalized by all L5 data. Physical fatigue and physical activity level of the day
showed significant correlations only with the latest L5 based normalization.

With latest L5 based normalization for IMID patients, the significant correla-
tions found for mental activity level, mental and physical fatigue, and sleepiness also
appeared with the other normalization approach, whereas two dissimilar correla-
tions were identified for sleep quality. Interestingly, eleven significant correlations
for physical activity level emerged, whereas no such correlations were observed with
the full L5 based normalization.

5.2.1 Contextual features

Heart rate recovery over a restful period of 1 minute, following at least 6 minutes of
walking, showed a statistically significant difference between cohort groups (F 5.68,
𝑝<0.006), as depicted in Figure 5.4 together with the walk durations. Partial 𝜂2

indicated that cohort groups accounted for 14 % of HRR variance. Additionally,
HRR in the healthy participants differed significantly from both the NDD (T 3.95,
𝑝=0.001) and IMID (T 2.51, 𝑝<0.038) patient groups.
Furthermore, HRR showed significant differences between low (scores 0–2) and

high (scores 3–6) fatigue groups for bothmental and physical fatigue, but only within
the healthy participants. The two-sided KS test scored 0.77 (𝑝 0.01) for physical

Figure 5.4 Heart rate recovery after at least one minute of walking (left) and the corresponding walk
durations (right) in the healthy participants NDD patients, and IMID patients.
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fatigue and 0.68 (𝑝 0.02) for mental fatigue.

5.2.2 Statistical and deep learning based digital biomarkers

In Study III, the 1D CNN could classify 2-hour respiratory rate data between sleepy
and non-sleepy with 62.6 % accuracy, 57.2 % sensitivity, and 69.2 % specificity in a
test set comprising data from previously unseen participants (10 IMID and 2 NDD
patients, and 5 healthy with roughly 52 % of samples representing the sleepy class).
The model comprised 10,426 trainable parameters and was trained over 25 epochs.
The input was standardized by the training set’s average respiratory rate and standard
deviation. Early stopping was applied with the condition of observing over 0.05
difference in training and validation set loss for three consecutive epochs.

5.3 Mortality risk prediction from electronic health records

The optimized BERT comprised 108,312,578 trainable parameters with 12 hidden
layers, each with 12 attention heads. The optimized XLNet only used 6 hidden
layers with 6 attention heads, totalling 5,482,130 trainable parameters. The final
training was repeated five times to account for the effect of random initialization,
and early stopping was applied with the condition that training loss would fail to
improve by more than 0.0045 over 5 epochs. On each repetition, the training was
stopped before reaching 50 epochs.

The final BERT model achieved the classification AUC of 75.5 %, precision of
19.2 %, and sensitivity of 73.3 %. The corresponding results for XLNet were 76.0 %
(AUC), 15.9 % (precision), and 83.1 % (sensitivity). Overall, XLNet achieved a
slightly better AUC and clearly better sensitivity, thus capturing more positive cases
than BERT. Yet, the low precision scores reveal that both models produced mostly
false positive predictions. The test results were well aligned with the cross-validation
results during development apart from sensitivity. Sensitivity dropped in the test set
due to the smaller relative amount of positive cases. The portion of positive cases in
the test set matched the portion in the full data, whereas the training and validation
data contained a larger portion due to down-sampling, which was applied to handle
class imbalance during training.

The attention weights were inspected layer-by-layer for individual examples by
using BertViz [95]. In an example case representing the positive class, correctly clas-
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    a               b c

…
labs, 82, None, 266, None, B -Trom, E9/l
labs, 82, None, 1, None, fP-Kol-LDL, mmol/l
labs, 82, None, 344, None, E -MCHC, g/l
labs, 82, None, 91, None, E -MCV, fl
labs, 82, None, 332, None, E -MCHC, g/l
labs, 82, None, 3, None, B -Eryt, E12/l
operation, 82, Päijät-Häme, 2, FN1BC
operation, 82, Päijät-Häme, 3, FN1BT
operation, 82, Päijät-Häme, 4, FN1YT
angio, 82, Päijät-Häme, 1, None, 3-VD, 1, 

is stenosis, A. radialis
pci, 82, Päijät-Häme, 1, None, No complications, 

1, NSTEMI, during the same hospitalization period
labs, 82, None, 1, None, P -CRP, mg/l
labs, 82, None, 3, None, B -Eryt, E12/l
labs, 82, None, 3, None, P -K, mmol/l
labs, 82, None, 0, None, B -HKR, %
labs, 82, None, 129, None, B -Hb, g/l
labs, 82, None, 61, None, fP-Krea, umol/l
labs, 82, None, 0, None, B -HKR, %
labs, 82, None, 315, None, B -Trom, E9/l
labs, 82, None, 143, None, P -Na, mmol/l
labs, 82, None, 14, None, Pt-EKG-12, form
labs, 82, None, 9, None, fB-Leuk, E9/l
labs, 82, None, 342, None, E -MCHC, g/l
labs, 82, None, 29, None, E -MCH, pg
labs, 82, None, 88, None, E -MCV, fl
labs, 82, None, 88, None, E -MCV, fl
labs, 82, None, 5, None, fB-Leuk, E9/l
labs, 82, None, 14, None, Pt-EKG-12, form
labs, 82, None, 45, None, P -CRP, mg/l
labs, 82, None, 364, None, E -MCHC, g/l
labs, 82, None, 3, None, P -K, mmol/l
labs, 82, None, 30, None, E -MCH, pg
labs, 82, None, 66, None, fP-Krea, umol/l
labs, 82, None, 128, None, B -Hb, g/l
labs, 82, None, 4, None, B -Eryt, E12/l
labs, 82, None, 293, None, B -Trom, E9/l
labs, 82, None, 143, None, P -Na, mmol/l
operation, 83, None, 1, H0519

Figure 5.5 The attention weights in (a) XLNet and (b) BERT in selected layers (5th and 12th respec-
tively) near the CLS token, for a given example of a positive case, correctly classified by
XLNet and misclassified by BERT. The example is shown in text form in (c) with the first
information available for XLNet and BERT highlighted in green and purple, respectively.

sified by XLNet and misclassified by BERT, XLNet attended to the patient’s age and
operation code towards the end of the timeline and BERT attended to lab results,
as visualized in Figure 5.5. Another positive example case, depicted in Figure 5.6,
was misclassified by XLNet and correctly classified by BERT. In this case, XLNet
is mostly seen to attend to measurement context (e.g. suspected diagnosis) and mea-
surement name, and BERT to the numerical values of lab tests in the vicinity of the
CLS token. In both cases, BERT is able to include just slightly more information
for the classification than XLNet, due to differences in tokenization.
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…
labs, 72, None, 99, None, fP-Krea, umol/l
labs, 72, None, 4, None, P -K, mmol/l 
labs, 72, None, 4, None, B -Eryt, E12/l 
labs, 72, None, 2, None, P -TT-INR, form 
labs, 72, None, 143, None, P -Na, mmol/l 
labs, 72, None, 12, None, fB-Leuk, E9/l 
hospital visit, 72, None 
medication, 72, None, B01AA03, None, None, PO 
measurement, 72, None, 203, Amebic brain abscess, 

systolic blood pressure, mmHg, A066 
measurement, 72, None, 90, Amebic brain abscess, 

systolic blood pressure, mmHg, A066 
measurement, 72, None, 90, Salmonella meningitis, 

oxygen saturation, percentages, A022 G01 
measurement, 72, None, 101, Salmonella meningitis, 

oxygen saturation, percentages, A022 G01 
measurement, 72, None, 52, Isosporiasis, 

heart rate, bpm, A073 
labs, 72, None, 99, None, fP-Krea, umol/l 
measurement, 72, None, 93, Salmonella meningitis, 

oxygen saturation, percentages, A022 G01
labs, 72, None, 143, None, P -Na, mmol/l 
measurement, 72, None, 95, Salmonella meningitis, 

oxygen saturation, percentages, A022 G01 
measurement, 72, None, 96, Salmonella meningitis, 

oxygen saturation, percentages, A022 G01 
measurement, 72, None, 46, Isosporiasis,

heart rate, bpm, A073 
measurement, 72, None, 63, Isosporiasis, 

heart rate, bpm, A073 
measurement, 72, None, 119, Amebic brain abscess,

systolic blood pressure, mmHg, A066 
diagnosis, 72, None, I48, 1 
labs, 72, None, 14, None, Pt-EKG-12, form 
labs, 72, None, 130, None, B -Hb, g/l 
diagnosis, 72, None, I48, 1 
measurement, 72, None, 95, Salmonella meningitis, 

oxygen saturation, percentages, A022 G01 
measurement, 72, None, 94, Salmonella meningitis, 

oxygen saturation, percentages, A022 G01 
measurement, 72, None, 141, Amebic brain abscess, 

systolic blood pressure, mmHg, A066 
labs, 72, None, 4, None, P -K, mmol/l 
measurement, 72, None, 38, Amebic nondysenteric colitis, 

diastolic blood pressure, mmHg, A062 
medication, 72, None, N05CF02, None, mg, PO 
measurement, 72, None, 43, Amebic nondysenteric colitis, 

diastolic blood pressure, mmHg, A062

a                b       c

Figure 5.6 The attention weights in (a) XLNet and (b) BERT in selected layers (5th and 12th respec-
tively) near the CLS token, for a given example of a positive case, misclassified by XLNet
and correctly classified by BERT. The example is shown in text form in (c) with the first
information available for XLNet and BERT highlighted in green and purple, respectively.

5.4 Data quality and availability across time spans

Study I was conducted in laboratory settings and the high coverage for the FMCW
radar data may not be representative of a real-life setting. It is noted that the radar
was sensitive to motion artefacts.

In Study II, the data were of good quality with less than 0.5 % outliers for HR,
respiratory rate, and R-to-R intervals each, while 2.3 % of skin temperature were
outliers. The median daily data coverage from the patch sensor was 78 % for HR,
respiratory rate, and R-to-R intervals, and 77 % for skin temperature, after cleaning
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the data. The median coverage was comparable across cohorts. Eleven participants
stood out with missing skin temperature measurements and were revealed to have
been collected at the same study site. Therefore, the missing measurements could be
related to practicalities at one site.

The EHR data in Study IV was fundamentally different as compared to the sensor
data in Studies I–III and hence the data quality cannot be evaluated similarly. The
EHR data were only recorded when a patient used healthcare services, and they
were partially incomplete and sometimes erroneous. The notation was not uniform
across the database for several variables, body-mass index (BMI) included unit errors,
and timestamps could be missing or recorded in reverse order. The data gaps were
partly due to database anonymization. Sex was only available for roughly 36 % of
patients. In the patient event time series, some event attributes were completely
missing and excluded from the event attributes. In the 14 event types, residence was
completely missing for TAVI events and in 59–94 % of the other events excluding
CCU, resuscitation and hospital ward events where it was available in 67–79 % of
cases. Diagnosis code and priority were only available in 36 % and 41 % of diagnosis
events, respectively. While event type, start time, all operation attributes, times
repeated, ward, sex, stenosis, imaging type, dialysis, temporary pacemaker, primary
vasoactive medication, fluoroscopy time, and glomerular filtration rate attributes
were all fully available for the related event types, the availability of other attributes
varied starting from 56 % (with the exception of 1 % availability for textual lab
attribute values).
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6 DISCUSSION

The presented studies proposed decision support tools for chronic disease manage-
ment. Temporal patterns and changes in health data may indicate patient deteriora-
tion and disease progression. Monitoring the evolution of health data may be used
to benefit disease management and patient outcomes. The selected application time
spans reflected the time needed to capture meaningful health events or physiological
changes and, on the other hand, time required to make the output actionable.

Study I aimed for robust vital sign extraction across individuals. The Bland-
Altman plot was selected to identify systematic and random error, while MAE,
RMSE, and the Pearson correlation coefficient were used to quantify the agreement
with the reference device. Studies II and III assumed chronic diseases with similar
origins would exhibit reasonably similar physiological phenomena across patients
whereas different disease groups might not. It was also assumed that the chronic dis-
eases may affect the patients’ daily lifestyle similarly. In Study II, normalization using
participant specific L5 parameters was selected to promote inter-individual compa-
rability and repeated measures correlation was selected to assess common within-
individual association in a group of individuals while accounting for the repeated
nature of the measurements. CNN was selected for Study III due to its high merits
in spatial pattern recognition. Study IV aimed for temporal pattern recognition in
episodic patient event data, among a heterogeneous group of CVD patients. Trans-
former models were chosen based on their abilities to learn bi-directional patterns in
sequential data and use attention mechanisms to potentially resolve issues from the
episodic and sparse nature of the data.

This chapter discusses the results while considering the research questions pre-
sented in Section 1.1. Section 6.1 focuses on research question 1 and reviews the
algorithm performance results and technical challenges from each study. Section 6.2
inspects method applicability across time spans while assessing the presented solu-
tions with respect to the requirements for ideal clinical algorithm determined, thus

77



addressing research questions 1 and 2. Section 6.3 delves into research questions 3
and 4 by discussing the feasibility of data collection methods with chronic disease pa-
tients and data collection requirements across time spans. Finally, Section 6.4 details
the limitations of each presented study, touching their limitations related to clinical
use and uptake to further address research question 2.

6.1 Algorithm performance

The presented work applied model based and data driven time series analytics to
applications relevant to chronic diseases, and evaluated algorithm performance on
real human subjects while reporting promising results. This subsection sums up the
algorithm performance and scientific contributions of each substudy.

6.1.1 Contact-free monitoring applicable for monitoring abnormal respirations

Accurate contactless monitoring can offer a user-friendly and unobtrusive means of
patient monitoring during sleep, at hospitals and in home care. Study I demonstrated
high accuracy in a wide range of both respiratory and heart rates. FMCW vital
sign monitoring obtained small MAE for both respiratory and IBI monitoring, and
demonstrated potential for contactless HRV analysis.

The correlation between radar and reference respiratory rate was high at 91%.
Across different scenarios, the respiratory rate error was highest for simulated hy-
popnoea where the reference respiratory rate was at highest. As seen in Figure 5.1,
two participants stood out with largely underestimated (by over 20 rpm) respiratory
rates from the radar for individual samples, when the reference value was high. Sim-
ilarly, one participant stood out with some overestimated respiratory rates from the
radar when the reference values exceeded 15 rpm. A larger study in real-life settings
is needed to determine whether hypopnoea events of clinically significant duration
could be missed due to the high error cases.

Using the autocorrelation function for respiratory rate extraction causes a delay
equal to the maximum peak extraction buffer (15 seconds by default). In real-life
applications, dynamic optimal range bin selection and DC removal would be needed,
creating further latency. Improvements to decrease latency would be needed if this
technology were used for any real-time interventional systems, with the intention to
restart respiration during cessations.
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Heart rate and HRV during hypopnoeas or apnoeas could act as early indicators
of apnoea-induced pathological changes towards CVDs. Contact-free HR and HRV
monitoring accuracy was highest at low respiratory motions, which insinuates tech-
nological applicability for such a use case. HR and HRV could also be used for sleep
analysis throughout the time spent in bed. It should be noted that for monitoring IBI
derived measures, the monitoring latency depends on the longest FFT window and
the window used for iterative smoothing to remove uncertain observations. Here,
the windows were 20 seconds and up to 4 minutes long, respectively, which may not
be sufficient for interventional systems.

As compared to preceding studies, Study I achieved a high respiratory monitoring
accuracy over a wide range of respiratory rates over several study participants while
using a certified medical device as a reference. Prior studies were typically restricted
to normal respiratory rates, seated positions, fewer participants, and/or commercial
reference devices [99], [101], [103], [104]. Only Arsalan et al. included a sequence
of holding one’s breath in their measurements but only measured for 20 seconds and
only reported errors for heart rate [102]. They also reported higher heart rate error
during normal respiration as compared to holding one’s breath.

More recent studies have investigated the feasibility of sleep apnoea detection
with commercial FMCW radars and reported promising results obtained via ML
and DL approaches, utilizing PSG reference [149], [150]. The studies included up
to 44 participants and performed respiratory signal extraction but did not quantify
the accuracy of the extracted signals. Choi et al. used 1 min signal segments and
considered the apnoea-hypopnoea event severity in their analysis [149]. They noted
that detection sensitivity was higher for severe apnoeas (87 %) but remained limited
(54 %) for hypopnoeas.

6.1.2 Continuous monitoring offers objective measures to assess fatigue and sleep

Studies II and III addressed the lack of objective measurements to describe HRQoL in
chronic diseases. The studies evaluated the agreement between a plethora of physio-
logical measurements and fatigue and sleep PROs. Importantly, continuous measure-
ments were conducted using multi-modal wearable sensor technology in free-living
settings, and included both healthy and chronically ill patients. The data covers
daily living and hence offers realistic insights of the feasibility of the proposed meth-
ods. The objective measurements could potentially augment the questionnaire based
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HRQoL assessment that is currently used in healthcare and provide a consistent
means to evaluate therapeutic outcomes.

Study II identified several promising physiological measures that correlated with
PROs. All statistically significant correlations were modest, with absolute 𝑟 values
in 0.07 – 0.48. It should be noted that a subjectively reported reference may be
influenced by many things, like recall bias and inter-individual differences in, e.g.,
tolerance to changes. Hence, high correlations with PROs are not typically reported.
Additionally, the subjective measures may be confused with one another, whereas
an objective measure typically describes a more well-defined (here, physiological)
phenomenon. Additionally, here, two hours of physiological signals preceding a
PRO were inspected, whereas some other windows relative to the PRO timing may
be equally reasonable.

Three different groups (healthy, NDD and IMID patients) were studied, but
only one correlation, that between minimum HR (full L5 based normalization) and
sleepiness, was significant in all groups. This implies physiological differences be-
tween the cohorts. Some correlations appear significant in both the healthy and the
IMID patients but not in NDD patients, and some correlations were common for
healthy and NDD patients but the opposite direction. This could be indicative of
the degeneration of central autonomic nuclei and/or pathways in NDDs.

Study II inspected two alternative approaches to normalize the physiological mea-
sures. While both relied on resting data for constructing the user-specific baseline,
one used all available L5 windows and the other only the most recent L5 window.
The firstly mentioned baseline may be more stable while the other shifts with daily
changes. Indeed, the latter baseline revealed significant relationships to PROs the
other normalization did not, especially in the disease groups; for physical activity
and physical fatigue in NDD patients and for physical activity in IMID patients. In-
terestingly, some physiological measures were significant despite the normalization
method.

Many of the observed correlations comply with normal physiological functions.
For example, lower HR measures correlated with higher sleepiness in especially
healthy participants and IMID patients, and normally heart rate slows down as the
body prepares for sleep [8]. Also in the healthy participants, worse sleep quality was
associated with lower HRV measures (NN range, RMSSD, CVSD, SDSD) [61].
Since the sleep quality question was prompted only in the morning, the analyzed
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physiological measures were more likely to contain sleep.
Heart rate recovery analysis in Study II demonstrated that physiological measure-

ments in a specific context in free-living settings may be useful in assessing patient
status. As a measure of physiological fitness, HRR might be affected by fatigue.
HRR showed differences between healthy and chronic disease patients, and may be
indicative of mental and physical fatigue in the healthy. Prior work has suggested
that laboratory HRR correlates with physical fatigue [151], [152]. A longer study
period is needed to confirm the presented findings on a participant level, to enable
repeated measures correlation analysis.

In addition to statistical aggregations, temporal patterns may capture more in-
tricate indicators of decreased HRQoL. Study III was motivated by the natural as-
sociation between yawning and sleepiness. It showed that deep learning methods
hold promise in daytime sleepiness classification, although PROs were found a poor
ground truth for a data-based model. The daytime sleepiness classification accuracy
from respiratory rates was modest at roughly 63 %. Although respiratory rate was
studied because it may be easily available from wearable devices, applying CNNs to
the underlying respiratory signal may reach more informative patterns.

6.1.3 Bi-directional patterns in EHR data indicate increased risk of death

Predicting 6-month mortality can provide a significant advance for chronic disease
management and treatment by flagging high risk patients in good time. Decision sup-
port tools that can be easily used during a doctor’s appointment to detect increased
risk of death may indicate changes in patient status, allowing preventive actions and
interventions. Study IV demonstrated the promise of transformer models for mor-
tality prediction with CVD patients, although many technical challenges remain
before this could become a reality. Attention based algorithms like transformers are
specifically interesting for healthcare applications because they have increased hopes
of achieving explainable deep learning. The results from Study IV advocate the use
of XLNet over BERT, underlining the need to expand future EHR based research
beyond BERT and the need to pre-train XLNet resources for clinical applications.

Study IV showed moderate AUC results (75–76 %) for 6-month mortality pre-
diction among CVD patients by applying transformer neural networks on multi-
modal patient time-series. Both BERT and XLNet produced mainly false positive
predictions. XLNet achieved a reasonable sensitivity of 83 %, exceeding that of
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BERT by nearly 10 %. Previous work has suggested the autoregressive XLNet may
be better able to learn long-term dependencies as compared to BERT, which may ex-
plain why XLNet outperformed BERT [94]. XLNet additionally surpassed BERT
in terms of size. The optimized XLNet network comprised 5.5 million trainable
parameters; only 5 % of the amount required in the optimal BERT model. Gener-
ally, a smaller model is computationally less expensive and provides an easier starting
point for productization and real-life use at hospitals.

The examined models used standard English tokenizers and were trained from
scratch. Even though the results were promising, the models could benefit from
tokenizers specialized in EHR vocabulary. As seen with Chat-GPT by OpenAI,
pre-training transformers on extensive data can yield impressive results. Further-
more, the event-oriented data representation with a fixed number of attributes for
each event type faced challenges due to computational restrictions. The most recent
512 tokens representing the patient history were used, which captured varying time
periods from different patients. The proposed event-oriented representation could
help discover novel dependencies in CVD disease progression but more concise rep-
resentations are needed to capture more complete patient histories.

The patient population in Study IV was heterogeneous among CVD patients and
highly imbalanced; only 6.57 % of the patients had died. In the future, harmonized
EHR databases across hospitals and nations could enable more homogeneous patient
data sets for more specialized and possibly more accurate models by providing a high
number of positive examples despite the natural low prevalence of positive cases.

Other EHR based mortality studies building on attention typically predicted 24h
mortality at admission and often focused on ICU patients, achieving varying re-
sults [119], [120], [125]. Study IV, on the other hand, examined chronically ill
patients, who may benefit from early detection of increased mortality risk. Interest-
ingly, non-deep learning models by Hernesniemi et al. achieved AUCs beyond 0.87
but only included a highly homogeneous subgroup of patients in their model [124].
Hence, more specialized models may perform better. Furthermore, more encourag-
ing results have been reported on transformer models with more simple EHR input
data representations [114].

Finally, Study IV experimented with model explainability by attempting to inter-
pret the attention weights of individual model outputs. The deepness of the network
and the number of attention heads were found to complicate model output inter-
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pretability, and existing attention visualization tools like BertViz provide fairly com-
plex output in contrast to quickly and easily comprehendable information needed
for clinicians. More intuitive and user-friendly interfaces are needed for clinical use.
When such tools are established, integrating them in to the EHR could make them
a valuable part of the clinical workflow.

6.2 Analytical methods across time spans

The presented work employed model driven and data driven methods for applica-
tions with the time span of interest ranging from overnight to weekly and month-
to-month. All solutions demonstrated dynamicity to capture temporal changes rele-
vant to the application time span, although other requirements for the ideal clinical
algorithm (explainability, preciseness, autonomy, fairness, and reproducibility), as
defined by Loftus et al., were not always fully met [134].

For near-real time, overnight monitoring, the primary goal was high measure-
ment accuracy and thus the ability to detect abnormalities over night. Despite their
small latency, the selected model driven methods reached high accuracies for mon-
itoring individual physiological events (respiration and heart beat), demonstrating
dynamicity and preciseness. Deep learning methods could potentially match the
reported accuracies and be equally autonomic but the presented solution benefits
from explainability. Some participant-to-participant variation in the accuracy was
observed. Hence, fairness could be further affirmed in future work. The result re-
producibility could be estimated through the overall MAE in future studies.

For week-by-week monitoring, the aim was to find objective measures that reflect
the health-related quality of life and the related changes. Both model driven and data
driven methods showed modest correlation with patient reported outcomes, demon-
strating ability to dynamically detect patterns in physiological events. In free-living
settings, measuring in a specific context may provide further insights into patient
status, as demonstrated in Study II.

The preciseness was challenging to evaluate in both studies II and III due to the
limited-quality reference. PROs do not provide the high quality ground truth needed
especially for data driven methods. Bearing that in mind, the results in Study III were
quite promising and the method may prove more successful as a personalized model.
This, however, requires far longer data collection and the implementation would
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similarly suffer from a long training time to obtain the personalized model. The
statistically based objective measures in Study II, on the other hand, attract with their
explainability, although they too require some period of wear time to first collect a
sufficient baseline (depending on the normalization method). Both solutions could
operate autonomously.

It is noted that the proposed objective measures in Study II work differently
between the participant cohorts. The fairness of the algorithm across other factors
may depend on the wearable sensor technology; e.g. optical sensors accuracy may
be affected by skin tone. Here, the sensor was ECG based and thus expected to be
fair across patients.

In month-to-month monitoring, the objective was to predict increased risk of
death. Data driven methods demonstrated reasonable ability to detect patterns be-
tween different EHR events and could provide a highly autonomous solution if inte-
grated in the EHR system. The presented solution was able to exploit high volumes
of heterogeneous data without feature engineering. The explainability of the model
was insufficient with too complex visualization tools to explain the attention weights
behind a single prediction. A previous study used traditional machine learning, in-
cluding explainable models, to predict six month mortality in a more limited subset
of CVD patients from the same database [124]. Patients with acute coronary syn-
drome comprised a considerably smaller (N=9066) and more homogeneous set of
patients, and the study achieved AUCs above 80 %, notably higher than in Study
IV. This observation emphasizes the challenge of learning meaningful dependencies
among a wide spectrum of conditions with different symptoms and pathologies in a
single model. On the other hand, collecting sufficiently large data sets of homoge-
neous patients can be very difficult, especially when the classification setting is highly
imbalanced.

Additionally, the model in Study IV was trained on an ethnically homogeneous
population, and its fairness and reproducibility at other locations with more diverse
populations and possibly different EHR systems are not guaranteed.

Overall, model driven approaches (autocorrelation, cepstral analysis, statistical
and HRV analysis) were generally more explainable as compared to data driven deep
learning methods. Because of their explainability, model driven methods may be
more easily accepted, especially in cases where data driven methods cannot be pro-
vided with a high quality reference to obtain high accuracies. Model driven ap-
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proaches offer dynamic and precise solutions in applications for short-term time
spans. On the other hand, data driven methods were able to capture more abstract
patterns, and were more easily applied to sparse heterogeneous data. They may
therefore be the more advantageous choice for applications related to longer time
spans, which may rely on more complex dependencies across time and even across
data sources.

6.3 Data collection for different time spans

The detection or prediction target sets the time span of interest and defines the min-
imum data collection period for algorithm development. The shorter the time span,
the higher the required data frequency typically is. For example, in Study I, to detect
abnormal physiological events the data collection frequency needs to be sufficient for
accurate monitoring, as defined by the Nyquist theorem. Correspondingly, for long
time spans, high level data may be sufficient. For instance, in Study IV the time span
was six months, the data was episodic and each event represented by a rather small set
of attributes. Like in Studies II and III, high frequency sensor data may be processed
into less frequent derived metrics. For example, ECG signal may be processed to
extract heart rate and further the resting heart rate, which can be a useful metric to
monitor over longer periods.

Some of the collected data could not be employed in algorithm development.
In studies I-III, some participants were excluded from the analysis due to problems
with sensor data collection or reference data collection. In study II, the PRO cov-
erage varied significantly between PROs. Moreover, out of 72.7k patients in Study
IV, 57.4k were eligible for the study but only 23.5k patients could be included after
downsampling. The actual amount of applicable data may be estimated before hand
by considering the expected number of positive cases (if can be estimated) and the
requirements of the analytical method together with the availability of computing re-
sources. This can be especially important when the algorithm development depends
on pre-existing data records.

The method of data collection plays a key role in fulfilling the ideal clinical algo-
rithm requirements. The data collection technique (sampling frequency, accuracy,
and overall quality including gaps) may directly contribute to the dynamicity, pre-
ciseness, fairness, and reproducibility of the algorithm. In Study I, two sampling
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frequencies (110 Hz and 154 Hz) were tested and found to produce equally accu-
rate results. In free-living settings, sensor data may include extra noise and gaps, as
reported in Study II. In Study I, conducted in laboratory settings, coverage could
not be realistically evaluated. However, another study from the same database as
studies II and III reported a median coverage rate of 69 % over 76 participants for
an ultra-wideband (UWB) radar, which is used similarly to the FMCW radar. They
used WiFi for data transfer. In studies II-III, the wearable sensor data median daily
coverage was at 78 %, indicating that some non-wear time was typical when using
the selected wearable sensor. User experience may affect data coverage, especially in
the case of wearables. With chronic disease patients, the data collection should not
add burden or hinder the patients’ daily living.

The EHR data in Study IV suffered from missing data, too, but also from human
errors and inconsistent entries. Methods more robust towards missing data or noise
and errors could possibly overcome some of the data accuracy or quality require-
ments but may create new requirements, e.g., bigger masses of training data.

6.4 Limitations

The substudies were based on limited data collections and the data collection methods
imposed their own limitations. The proposed algorithms additionally have their own
limitations.

Study I inspected healthy participants in controlled laboratory settings with a
single person on a bed and is not directly applicable to distinguishing people from
one another (such as two people on a double bed or a nurse in a hospital or nursing
home). The number of participants was low and included but two females. Some
of the medical device reference for respiration had to be replaced by non-medical
reference due to poor signal quality. There were minimal extra motions, which will
likely happen in free-living monitoring conditions. The study only included simu-
lated hypopnoea periods, where the participants were instructed to perform shallow
respiration. Moreover, future work should ensure that full cessations of respiration
can be reliably distinguished from leaving the radar’s field of view. Finally, the pro-
posed algorithms introduce some delay and thus the approach may not be applicable
for truly real-time monitoring.

Studies II and III inspected mostly participants of Caucasian ethnicity with only a
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few non-Caucasian participants. The effect of the severity of the conditions was not
investigated. The studies used a single wearable device and the HR, IBI, respiratory
rate, and skin temperature readily provided by the device, processed from the rele-
vant sensors using the manufacturer’s algorithms. The HRV analysis was conducted
over each full window inspected, instead of averaging short-term measures over the
inspected periods, and can therefore describe different physiological phenomena as
compared to typical commercial device HRV measures. The study analyzed two
hour windows of physiological data leading up to each PRO instance, whereas other
periods with respect to the PRO may be equally valid. The presented studies only
combined different modalities for HRR analysis but did not assess combinations of
signals/modalities with respect to PROs. Although, the presented results may help
form more informed signal combinations in future work. Furthermore, an extended
study period would allow for more variations in the PROs, hence enabling analysis
of changes in biometrics with respect to changes in PROs.

The study data in Study IV consisted of an anonymous database, adding noise and
gaps as compared to the original EHR. Sex was missing for the majority of patients.
The examined models were trained from scratch using standard English tokenizers
in order to perform a fair comparison between the models, whereas the strength
of transformer models is typically in massive pre-trained models. For interpretabil-
ity experiments, only individual examples were analyzed. Finally, in a real-life use
case, mortality risk prediction may be an ethically questionable prediction target; it
may not help direct more resources to high risk patients but instead might lead to
pulling resources from high risk patients, even if an effective intervention or treat-
ment existed and could change the outcome. The model users (clinicians) should be
educated on the model principles and proper regulation would be needed to make
sure the final decision makers are accountable for using the predicted information to
the patient’s benefit.
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7 CONCLUSION

This thesis studied time series based algorithms for decision support in chronic dis-
eases. Four studies were presented, covering time series analytics in three case stud-
ies where the application scope varied from overnight to monthly monitoring. The
study data were collected from chronic disease patients and healthy individuals, focus-
ing on cardiorespiratory data. The participants included patients visiting a hospital,
outpatients in free-living settings, and healthy subjects in laboratory settings. The re-
search questions urged the search for pragmatic and purposeful solutions that would
be consequential for clinical algorithm development across application time spans,
beyond any specific chronic disease. While the intentionally wide questions could
not be fully answered within the scope of this thesis, the thesis presented relevant
scientific contributions to address them.

The studies presented contact-free radar based algorithms for overnight respira-
tory and heart rate monitoring, wearable sensor based algorithms for fatigue, sleep,
and daytime sleepiness assessment over weeks, and EHR based algorithms for 6-
month mortality risk assessment. Study I presented algorithms for contact-free vital
sign monitoring and tested them on a broad range of both respiratory and heart rates,
providing insights on their performance in clinically meaningful conditions. More-
over, the work was among the first to demonstrate HRV analysis using an FMCW
radar, valuable for further sleep analysis. Studies II and III explored the objective
assessment of fatigue, sleep, and daytime sleepiness using a multi-modal wearable
sensor. Quantifying the changes in HRQoL would be highly important for example
for drug development. Studies II and III included chronic disease patients in a feasibil-
ity study conducted in free-living settings, addressing the lack of similar study data
from chronic disease patients. Furthermore, Study II illustrated the promise that
context-bound features from continuous monitoring can have in health state assess-
ment. Study IV was one of the earliest works to apply transformer neural networks
on multi-modal EHR data, furthermore focusing on chronic disease patients. The
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study argued that transformer models beyond BERT can achieve improved results
with a fraction (here, only 5 %) of the model size, and exemplified gaps in model
interpretability that should be addressed before clinical use.

For algorithms closer to real-time applications, the requirements for accurate high
frequency data collection and algorithm latency becamemore crucial, whereas longer
application time spans could perform on episodic clinical data. In free-living settings,
controlling for the measurement context provided additional value to the time series
analytics, even though the context (low intensity activity) was achieved without any
guidance to the participants. The quality of the reference data was a major limitation
for both model and data driven algorithms. Accounting for the repeated measures
study design in algorithm evaluation was found especially important when the ref-
erence was based on subjective evaluation.

Both model and data driven approaches provided reasonable performance and
demonstrated the ability to capture time dependent variations in health data. Model
driven algorithms were found more suitable to high frequency sensor signal process-
ing. Deep learning methods enable the detection of complex time-dependent patterns
but currently lack explainability, which typically hinders their clinical uptake. Deep
learning methods benefit from good quality training reference, and from specialized
training on similar inter-related physiological patterns rather than a wide spectrum
of physiological phenomena. They may, nevertheless, be efficient in pattern recog-
nition even from episodic multi-modal data.

The data collection method plays a major role in algorithm development and in
real-life performance. Data quality and coverage may set limitations to the algo-
rithm; how the input sequence can be selected and processed, whether model or data
driven methods should be used, and how accurate the algorithm can be. Maximizing
data coverage enables more flexibility in input sequence selection and more accurate
analyses. Additionally, albeit not specifically inspected in this thesis, noise or gaps in
high coverage data may convey actionable information as well. For example, noise
in radar data may indicate motions providing information about sleep quality, or the
lack of hospital visits may indicate a stable patient status.

Contact-free monitoring showed encouraging results with 91 % and 81 % cor-
relations to reference in still laying positions for a range of respiratory and heart
rates, respectively, whereas motion artefacts posed the largest limitation. Continu-
ous monitoring with a wearable ECG based device achieved high wear-times with
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78 % coverage and little noise (less than 0.5 %) for cardiorespiratory signals. User-
friendly (easy and comfortable to use) sensors can avoid creating extra burden from
the measurement and avoid excess non-wear time. Electronic health records can pro-
vide a pervasive view to patient history but systematic errors or gaps, due to privacy
regulations or other reasons, may challenge algorithm development.

Time series analytics offer a variety of powerful methods to be harnessed for
chronic disease management. The conclusions of this thesis are based on limited
data and many questions remain around the practical clinical deployment of any
of the presented algorithms. All the presented studies comprised mostly Caucasian
ethnicities, and Study I included a small set of only healthy participants and should
be further validated on sleep apnoea patients. Study I was conducted in controlled
laboratory settings with low motion and for one participant at a time, Studies II
and III exploited readily available derived measurements instead of raw signal data,
and Study IV trained transformers from scratch with standard English tokenizers on
highly gapped data.

In future work, improvements in algorithm delay and robustness to motion arte-
facts may be needed for real-time applications, along with improved means to exploit
the information in data gaps. For assessing patient reported outcomes, other signal
time windows with respect to the PRO timing should be evaluated. Future research
may additionally consider semi-supervised data driven methods to overcome chal-
lenges with sub-optimal reference data, and longer study periods to explore person-
alized solutions. For long-term non-frequently sampled data, the explainability of
attention based models need further exploration, and may prove especially useful in
the case of multi-modal input data. Moreover, pre-trained models and tokenizers
specialized in electronic health records are needed to fully exploit the potential of
transformer models. Finally, major focus should be directed at the ethical principles
of clinical time series analytics applications.

Future patient monitoring for chronic diseases can be expected to move away
from the clinical environment and closer to the everyday life, collecting data where
it matters the most. The large volumes of data from continuous monitoring could
fill in gaps in the EHR data, linking multi-modal data such as lab values and imaging
results to the free-living measurements. The combined depiction of the patient’s
life with the chronic disease may promote early detection of clinically meaningful
changes in patient state and create more predictive and personalized health solutions.
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Abstract: Remote monitoring of vital signs for studying sleep is a user-friendly alternative
to monitoring with sensors attached to the skin. For instance, remote monitoring can allow
unconstrained movement during sleep, whereas detectors requiring a physical contact may detach
and interrupt the measurement and affect sleep itself. This study evaluates the performance of a
cost-effective frequency modulated continuous wave (FMCW) radar in remote monitoring of heart
rate and respiration in scenarios resembling a set of normal and abnormal physiological conditions
during sleep. We evaluate the vital signs of ten subjects in different lying positions during various
tasks. Specifically, we aim for a broad range of both heart and respiration rates to replicate various
real-life scenarios and to test the robustness of the selected vital sign extraction methods consisting of
fast Fourier transform based cepstral and autocorrelation analyses. As compared to the reference
signals obtained using Embla titanium, a certified medical device, we achieved an overall relative
mean absolute error of 3.6% (86% correlation) and 9.1% (91% correlation) for the heart rate and
respiration rate, respectively. Our results promote radar-based clinical monitoring by showing that
the proposed radar technology and signal processing methods accurately capture even such alarming
vital signs as minimal respiration. Furthermore, we show that common parameters for heart rate
variability can also be accurately extracted from the radar signal, enabling further sleep analyses.

Keywords: biomedical monitoring; biomedical signal processing; contactless; health monitoring;
heart rate; heart rate variability; millimeter wave radar; respiratory rate

1. Introduction

Monitoring vital signs is routine practice to detect patient deterioration at healthcare facilities.
Changes in vital signs can indicate serious medical problems, and catching the early signs may
improve survival rates for the relevant conditions [1]. Lately, the general population has become
more interested in self-monitoring, which has provoked the emergence of numerous commercial
wearable devices, particularly ones specialized in heart rate monitoring. Such wearable devices have
also been examined in the context of monitoring healthcare patients [2,3]. Yet, wearable and other
attachable devices can cause eczema and they depend on a sufficient contact to operate. In contrast,
remote monitoring is contactless, unobtrusive, and could monitor several vital signs simultaneously
while providing more user-friendly monitoring in various environments [4–7]. Remote monitoring
with radar technology could reform sleep monitoring at home and nursing homes by removing the
often disturbing tactile sensation of a wearable device and the wired sensors that tend to detach.
It can also be a cost-effective solution as it does not require disposable elements such as electrodes.
Ultimately, remote measurements could ease monitoring in critical care taking place in hospitals [8,9].

Periodic variations in the measured radar signal, which are caused by micromotions on the
body surface, can convey information regarding the two vital signs considered herein: heart rate and

Sensors 2020, 20, 6505; doi:10.3390/s20226505 www.mdpi.com/journal/sensors



Sensors 2020, 20, 6505 2 of 19

respiration rate. In this paper, we study a frequency modulated continuous wave (FMCW) radar
developed at VTT Technical Research Centre of Finland [6,10]. Similar millimetre wave chipsets and
development boards capable of time domain multiplexing are also available commercially [11,12].
The radar transmits frequency-modulated electromagnetic waves and can detect the phase of the
received signal with about one degree accuracy. Its high resolution enables the detection of microscopic
vascular pulsations on the skin.

Prior studies on FMCW radars have already established the potential for vital sign monitoring
applications [4,13–15]. Among the heart rates extracted by Anitori et al. 60% were within 10% of
their reference values [13]. Alizadeh et al. later achieved 94% and 80% accuracies for respiration
rate and heart rate, respectively [15]. However, while both studies examined monitoring in lying
positions, Alizadeh et al. included only one subject as opposed to the six participants by Anitori et al.
Additionally, both studies used a commercial, non-medical device for reference signals. In contrast,
Wang et al. and Adib et al. studied ten or more subjects in seated positions, using medical devices for
reference [4,14]. Wang et al. reported approximately 5–31% and 11–20% relative errors for respiration
and heart rate, respectively, depending on the exact position [14]. Adib et al. demonstrated median
accuracies of 99.4% and 99% for respiration and heart rate, respectively, and were also able to measure
multiple targets simultaneously [4].

In this study, we explore the potential of FMCW radar technology for the special application
of nocturnal vital sign monitoring by emulating diverse real-life scenarios. Unlike previous studies,
we pursue a wide range of both heart and respiration rates to discuss the applicability of FMCW radars
to monitor people with different conditions. Capturing a wide range of vital signs is essential for
sleep analysis and for monitoring sleep disorders, such as hypopnoea, and for following the effects
of possible interventions [16–18]. Whereas previous works have established suitable accuracies for
commercial use at home and office environments, we demonstrate the applicability of an FMCW radar
in the aforementioned clinical applications by showing that it can accurately capture even alarmingly
anomalous vital signs, such as shallow respiration.

We include ten volunteers in our study in order to account for the natural differences
between individuals and to ensure a level of robustness in our vital sign extraction methods [19].
The participants are monitored in varying lying positions while performing simple activities,
emulating vital sign variations of real-life sleeping scenarios. We extract their interbeat intervals
(IBI) and respiratory rates, and compare to reference data acquired using Embla Titanium, a certified
medical device.

Despite the deliberately challenging study setting, we are able to surpass the results of previous
studies in heart rate monitoring accuracy. Moreover, we establish high accuracy in respiration
monitoring even with minimal respiratory motion, which we expect to promote radar-based
monitoring in clinical settings. We provide further grounds for such clinical applications by
demonstrating, for the first time to our knowledge, accurate radar-based extraction of features
commonly used in heart rate variability (HRV) analysis, an essential tool in modern stress monitoring
applications [20–23].

2. Materials and Methods

The workflow of our study is schematically illustrated in Figure 1. In this section, we elaborate
on each item step-by-step. We used an in-house developed FMCW radar (Section 2.1) and reference
devices (Section 2.2) to measure each participant in the study group (Section 2.3) during a set of
activities resembling real-life sleeping scenarios (Section 2.4). The measured data were analysed using
robust state-of-the-art approaches to extract interbeat interval, heart rate, and heart rate variability
parameters, as well as respiration rate (Sections 2.5–2.7). Finally, the accuracy assessment of the
retrieved estimates was performed using the methods described in Section 2.8.



Sensors 2020, 20, 6505 3 of 19

Figure 1. The overall measurement and evaluation workflow. The radar and reference data
are processed separately. A beat signal describes the difference between the transmitted and
received signals.

2.1. Frequency Modulated Continuous Wave Radar

An FMCW radar transmits a frequency-modulated continuous signal and detects its reflection.
As visualized in Figure 2, the distance to an object can be computed based on the beat frequency, i.e.,
the frequency difference between the transmitted and received signals [24].

Figure 2. Illustration of the frequency modulated continuous wave (FMCW) radar principle [6]. Using a
frequency sweep allows to compute the distance from the radar to the target.

An FMCW radar measurement can be divided into chirps, or frequency sweeps, where the
transmit signal frequency modulates (or sweeps) through the specified frequency band [10].
The instantaneous profile of the observed distances, also known as the complex range profile, can be
extracted from the collected samples of beat signals by applying a Fast Fourier Transform (FFT) to each
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set of samples from the same chirp. Using the resulting set of complex FFTs, the beat signal amplitude
and phase can be extracted for the desired range bin. Furthermore, the complex range profiles
from consecutive chirps can be stacked into the range slow-time matrix, which contains the phase
information of the beat signal as a function of time, the main signal needed for vital sign extraction.

The in-house FMCW radar used in this study operated at the carrier frequency of 24 GHz with a
250 MHz bandwidth. The radar has a range resolution of 60 cm, micromotion detection accuracy below
1 μm, and receiver noise figure of 12 dB. In this study, we explore two chirp repetition frequencies,
i.e., sampling frequencies: 110 Hz and 154 Hz. While the maximum operable frequency of 154 Hz can
capture more detailed information, the lower one is more stable to operate with the existing software.
Thus, we take the opportunity to examine whether lowering the sampling frequency deteriorates
performance in vital sign monitoring.

The radar was mounted on the ceiling above a bed, facing downwards towards the subject above
the torso, at a fixed distance of about 2 m, as portrayed in Figure 3. The radar antenna 3 dB beam
width was 65◦ along the length of the bed and 26◦ along the perpendicular direction. The field of
coverage was configured to 3 m to reduce noise.

Figure 3. The measurement setting. The FMCW radar (highlighted in brighter tones and pointed out
with a red arrow) is mounted on the ceiling above the bed. The treadmill beside the bed was used for
exercising during the measurement session.

2.2. Reference Devices

Reference signals were collected simultaneously with the radar data, using the Embla titanium
portable polysomnography (PSG) system, a CE certified class II device in use in many physiological
studies worldwide [25]. Two electrocardiographic (ECG) electrodes were attached to the subject to
collect the reference ECG signal at 256 Hz sampling frequency. One electrode was attached under the
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right-side collarbone and the other on the lower left part of the thoracic cage. One respiratory inductive
plethysmography (RIP) belt on the thorax was used to collect the reference respiration signals at 32 Hz
sampling frequency.

Because of technical issues that sometimes occur in the measurements and downgrade the
signal-to-noise ratio, an additional reference was collected at 110 Hz using VTT’s ballistocardiography
(BCG) based sensor sheet installed beneath the mattress topper. The sensor sheet can detect respiration
rate with 1.5% error relative to RIP belts [26].

2.3. Study Group

We measured eleven participants from age 25 to 55 (37 on average, 2 female), who signed an
informed consent form prior to the measurement, after receiving information about the measurement
protocol and the study objectives. The study did not intervene with the physical integrity of the
volunteers and the study setting was not harmful or otherwise disturbing.

2.4. Measurement Protocol

As presented in Table 1, the measurement protocol was a combination of three distinct activities,
each measured for two minutes at a time: relaxed respiration, hypopnoea simulation, and recovering
after physical exercise. The hypopnoea simulation comprised one minute of shallow respiration and
another minute of normal respiration. These sub-activities are presented separately in Table 1 for
clarity. Before the final activity of recovering after exercise, the participants walked on a treadmill with
roughly 15% inclination at 2 km/h, for two minutes. The participants were not measured during the
exercise, and they were allowed to interrupt at any time. Nevertheless, all participants exercised the
full two minutes.

Table 1. Vital sign measurement protocol.

Activity Position
Duration (min)

110 Hz 154 Hz

Relaxed respiration Supine 2 2
Relaxed respiration Right lateral 2 2
Relaxed respiration Prone 2 2
Relaxed respiration Left lateral 2 2
Relaxed respiration Supine 2 2
Hypopnoea simulation, shallow respiration Supine 1 -
Hypopnoea simulation, normal respiration Supine 1 -
Hypopnoea simulation, shallow respiration Right lateral 1 -
Hypopnoea simulation, normal respiration Right lateral 1 -
Hypopnoea simulation, shallow respiration Prone 1 -
Hypopnoea simulation, normal respiration Prone 1 -
Hypopnoea simulation, shallow respiration Left lateral 1 -
Hypopnoea simulation, normal respiration Left lateral 1 -
Recovering after exercise a Supine 2 2

Total measurement time (min) 20 12
a Preceded by a two-minute exercise (not measured).

The relaxed respiration and hypopnoea simulation activities were measured once in all four
different positions: supine, left lateral recumbent, right lateral recumbent, and prone. This was true
with one exception: the relaxed respiration activity was repeated in the supine position to ease the
participant’s transition to the next activity. The final activity (after the exercise) was only measured in
the supine position. The participants were given sufficient transition time for each change of position.

The protocol was repeated with two sampling frequencies using a reduced protocol with the
more unstable 154 Hz sampling frequency (see Table 1). Measurement segments using the different
sampling frequencies were performed sequentially but in alternating order between participants.
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In total, 32 min of activity data were collected per participant (20 min with 110 Hz and 12 min with
154 Hz). This comprises 14 min in the supine position and 6 min in each of the three other positions.

2.5. Heart Rate Extraction

The interbeat interval was extracted from the reference and radar devices using different methods
(see Figure 1). The R-to-R interval, used as reference IBI, was extracted from the ECG signal using
the findpeaks function by MATLAB® (minimum peak distance 0.3 s) after trend removal. To extract
IBI from the radar signal, cepstral analysis, a variant of spectral analysis, was applied [27]. It is
able to emphasize the significantly small heartbeat-induced motions on the body surface by using
a logarithmic transformation. However, the performance of the FFT-based method is deteriorated
by both spectral variance and the natural variations in the pulse shape and IBI. To minimize spectral
variance, we average over multiple contemporaneous range signals. To overcome the non-stationary
nature of the heartbeat, we use a set of different FFT window lengths in parallel to compose a
summary cepstrum. The proposed method was first developed for IBI extraction from multichannel
BCG (covered by US patent 2010/0249628) [28]. In the current study, we adapt the method for the
radar application.

Figure 4 illustrates the radar IBI extraction process. We selected N = 24 radar range bins to
provide the input signals. Six different length Hamming windows Wi (i = 1, . . . , K, K = 6) were used in
parallel, each on every one of the N signals, to apply FFT and obtain the signal spectra. Each window
was applied as a sliding window with strong overlap (0.1 s interval). The K window lengths ranged
from 3.5 s to 20 s. The shortest windows were used to capture IBI approximately equal to half the
window length, whereas the longest windows containing more than the optimal two heartbeats were
used to detect IBI of rather constant pulse shape and interval. The FFT length was set to 40 s of samples
for all windows and zero padding was used to improve resolution for the upcoming peak selection.
To boost computational speed, the FFT length was rounded up to be divisible by sixteen.

Subsequently, the inverse FFT (IFFT) over the natural logarithm of the averaged spectra were
computed to obtain the K cepstra. The cepstrum Ci is defined as the real part of the inverse Fourier
transform F−1{·} taken over the natural logarithm of an amplitude spectrum |Si|

Cx = real(F−1{log(|Sx|)}) (1)

as described in [27]. Whereas the spectrum Si contains peaks at the harmonic frequencies of the
fundamental heartbeat frequency, in the cepstrum the harmonic spectral peaks appear as a single peak
at the corresponding lag time, or quefrency [27].

The K cepstra are averaged to form the summary cepstrum. The overlaps between neighbouring
cepstra were taken into consideration by applying a weighting window designed to produce equal
sensitivity on each quefrency upon averaging.

Finally, the peaks in the summary cepstrum were taken as the IBI estimates. The quefrency
resolution of the summary cepstrum and thus the IBI is directly the inverse of sampling frequency,
and the slow-time resolution equals the sliding window interval. The peak selection was performed
over the quefrency range from 0.5 s to 1.5 s in the cepstogram. It was initialized by taking the peaks
that were strong with respect to both quefrency and time. Next, while weighting each initial IBI
estimate by the corresponding peak height, a time averaged IBI SIBI was computed using a 60 s sliding
Hamming window. Lastly, uncertain IBI were removed based on the cepstral peak height and distance
to SIBI ; only the most prominent peaks were selected. The entire peak selection routine was repeated
iteratively up to four times to allow SIBI to stabilize into the most prominent signal shape.
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Figure 4. Interbeat interval extraction from a set of N range signals using K Fast Fourier Transform (FFT)
windows. The process is repeated using overlapping FFT windows. The notations on the right
represent the data dimensions at each phase; t denotes time, f frequency, and q the cepstrum lag time,
or quefrency.

We note that our method can yield more than one estimates per actual interbeat interval. Thus, the
average heart rate in the unit of beats per minute (bpm) was calculated by dividing 60 s by the average
of the corresponding IBI estimates.

2.6. Heart Rate Variablity Analysis

HRV analysis employs a collection of features describing the beat-to-beat signal. The 13
time-domain features and 7 frequency domain features selected for this study are described in Table 2.
In the context of frequency domain features, we chose to use the square root of power to rather present
information scaled by the IBI signal amplitude than power itself. Welch’s method (30 s windows with
trend removal, 75% window overlap) was used to estimate the power spectral density after resampling
IBI to a constant 10 Hz sample frequency using cubic interpolation.

HRV features are commonly extracted from normal-to-normal peak intervals (NNI).
Therefore, abnormal IBI were removed to obtain NNI estimates and replaced by linearly interpolated
values [29]. A reference interval was considered abnormal if it changed more than 15% with respect to
the previous one, whereas IBI from the radar were allowed a 20% change to account for the irregularity
of the extracted IBI values.
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Table 2. Heart rate variability features explained.

Domain Feature Description

Mean NNI Average over all normal-to-normal peak intervals (NNI)
Median NNI Median over all NNI
RMSSD Root mean square of consecutive differences of adjacent NNI
SDSD Standard deviation of consecutive differences of adjacent NNI
SDNN Standard deviation of NNI
CVNNI Coefficient of variation

Time CVSD Coefficient of variation for successive differences
pNN20 Percentage of interval differences exceeding 20 ms
pNN50 Percentage of interval differences exceeding 50 ms
HR Heart rate
STDHR Standard deviation of heart rate
Min HR Minimum heart rate
Max HR Maximum heart rate
√Total power Square root of total power√VLF Square root of very low frequency power (0.0033–0.04 Hz)√LF Square root of low frequency power (0.4–0.15 Hz)

Frequency √HF Square root of high frequency power (0.15–0.4 Hz)√LF/HF ratio Square root of the ratio of low and high frequency power
LFnu Normalized low frequency power
HFnu Normalized high frequency power

2.7. Respiration Rate Extraction

As indicated in Figure 1, distinct methods were used to extract the respiratory vital sign from the
reference devices and the radar. The reference respiration rate was derived from the reference signal
through detrending and peak detection. The subtracted, smoothed trend was estimated using a 15 s
Hann window, and the findpeaks function by MATLAB® was used for peak detection (peak distances
ranging from 1.4 s to 20 s were allowed). Local respiratory cycles were extracted from subsequent
maxima and minima separately. Artefacts were identified based on the length and amplitude of the
respiration cycle. Consecutive distorted cycles were combined when possible to better match the
preceding and following five respiration cycles.

For the radar data, the respiratory motion was captured from the change of phase between
consecutive chirps in the complex range profile, hereafter referred to as the phase signal.
Specifically, the autocorrelation function (ACF) is applied on the phase signal of a selected range
bin. The ACF has been previously proved to work in respiration monitoring on a single subject [15].
In this study, we aim for a robust implementation accurate for several subjects.

The respiration rate extraction process is presented schematically in Figure 5. The optimal range
bin corresponds to the distance where the primary target is located. The participants in this study were
mostly stationary, which made it possible to select an optimal range-bin for each sub-measurement
(row in Table 1). The range bin with the global maximum over the profiles in the range slow-time
matrix was selected as the optimal range bin. Subsequently, the DC component was estimated globally
from the full slow-time signal and removed. The slow-time profile in the optimal range bin was
further used to extract an instantaneous phase signal, which was then unwrapped to remove ±2π

phase jumps.

Figure 5. Respiration signal extraction.
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Because the phase signal closely follows periodic variation of the respiratory motion, we used the
autocorrelation function to extract and quantify it. Unlike a periodogram, it can work with both long
and short signals. The ACF at lag k < n can be written as

Rk =

[
n−k

∑
i=1

(si − μ) (si+k − μ)

]
/

[
n

∑
i=1

(si − μ)2

]
, (2)

where the input sequences [s1, s2, ..., sn] are generated by a sliding window function, and μ denotes
their mean [30]. Given a suitable input sequence size, the lag of the maximum peak directly provides
an estimate of the breathing interval. Thus, approximating one respiratory cycle as the average of 100
consecutive estimates, the window size was dynamically adjusted to contain 2.2 respiratory cycles.

Finally, post-processing focused on the removal of non-reliable estimates, such as outliers
(over three standard deviations apart from the mean) and estimates with unstable phase due to
other movements.

2.8. Performance Evaluation

Vital sign values (IBI or respiration interval) extracted from the radar data were each compared
against the reference value closest in time. In all cases, a reference value resided within a maximum of
1.5 s temporal distance from the value.

Mean absolute error (MAE), root mean square error (RMSE), and Pearson correlation coefficient
were selected for performance evaluation. While MAE is easy to interpret, RMSE emphasizes large
errors, conveying information on where the most blatant errors occur. MAE and RMSE were computed
individually for each participant and sub-measurement (row in Table 1). The resulting errors were
weighted by the sub-measurement duration to aggregate representative error metrics for participants,
activities, and lying positions. The aggregation methods are further described in Supplementary
Material. For visual analysis, Bland-Altman plots were chosen to depict the agreement between the
suggested methods and the reference. In contrast to correlation, the Bland-Altman plot describes both
random and systematic error [31,32].

3. Results

The two sampling frequencies produced equally accurate results: the difference in RMSE was
0.001 s when measuring IBI and 0.169 1/min when measuring respiration rate. Thus, the measurements
of either frequency are included in the remaining analysis.

The vital sign extraction results encompass ten participants. One of the 11 subjects (ID004) was
excluded from the analysis due to unsuccessful data collection. Also, for three other participants
(ID002, ID005, and ID010), the PSG respiration reference showed poor signal quality and was replaced
with the secondary BCG-based reference. One participant (ID007) was excluded from the respiratory
rate analysis due to poor quality reference in several sub-measurements.

3.1. Heart Rate

The average measured interbeat interval over all measurements was 1.041 s (standard deviation
SD 0.160 s, 5th percentile 0.820 s, 95th percentile 1.313 s), corresponding roughly 57.7 bpm, using the
reference device. Respectively, the radar measured average was 1.053 s (SD 0.152 s, 5th percentile
0.832 s, 95th percentile 1.310 s), or roughly 57.0 bpm. Largest variations in the IBI were recorded
when recovering from physical exercise; SD of 0.178 s was observed (0.164 s using the radar).
Figure 6 illustrates samples of the extracted IBI signals with respect to the reference IBI for two
participants. More samples are provided in the Supplementary Figure S1.
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Figure 6. Interbeat interval samples of two participants (ID003 on the top, ID011 on the bottom) for
each activity in the supine lying position.

Figure 7 illustrates the resulting differences between the radar and reference IBI in a Bland-Altman
plot. The mean difference between the radar-derived and reference IBI is 0.013 s (SD 0.083 s),
which roughly corresponds to a 0.71 bpm difference in the instantaneous heart rate.
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Figure 7. The Bland-Altman plot for interbeat interval. The dashed lines indicate the mean and the
interval containing 95% of the samples.
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Table 3 presents mean absolute error for each participant and activity. Differences between
participants were below 0.07 s. To complement these results, we compensated for the varying number
of heartbeat events per participant by taking an average not weighted by measurement duration.
Also in this case, the participant MAE demonstrate differences under 0.07 s (and an overall average
MAE of 0.038 s).

Considering MAE for each activity in Table 3, the error was at its largest when the participant
was recovering after a short exercise session. Table 4 further describes the increase in MAE during the
recovering activity as compared to the other activities measured in the same position. Additionally,
Table 4 shows that differences between positions are in the order of milliseconds.

Table 3. Mean absolute error (MAE, s) for interbeat intervals with respect to activity and participant.

Participant ID Relaxed Hypopnoea, Shallow Hypopnoea, Normal Recovering Participant MAE

ID001 0.016 0.013 0.011 0.018 0.015
ID002 0.040 0.015 0.028 0.050 0.034
ID003 0.068 0.032 0.067 0.058 0.061
ID005 0.029 0.032 0.023 0.095 0.038
ID006 0.073 0.074 0.061 0.116 0.077
ID007 0.023 0.010 0.057 0.027 0.027
ID008 0.041 0.019 0.029 0.032 0.036
ID009 0.046 0.009 0.090 0.061 0.051
ID010 0.023 0.032 0.020 0.019 0.023
ID011 0.018 0.014 0.017 0.020 0.018

Activity MAE 0.037 0.026 0.042 0.052 0.038 a

The largest activity and participant MAEs are bolded. a The total MAE over all activities and participants

Table 4. Mean absolute error (s) for interbeat intervals with respect to activity and lying position.

Position Relaxed Hypopnoea, Shallow Hypopnoea, Normal Recovering a Position MAE

Supine 0.034 0.014 0.042 0.052 0.038 b

Right lateral 0.040 0.036 0.041 - 0.040
Prone 0.039 0.028 0.054 - 0.040

Left lateral 0.038 0.028 0.032 - 0.035

Activity MAE 0.037 0.026 0.042 0.052 0.038 c

The largest mean MAEs are bolded. a Recovering was only measured in the supine position. b 0.033 s if the
recovering activity is not considered. c The total MAE over all activities and positions.

Considering all participants, activities, and positions, the IBI extracted from the radar exhibited
an overall MAE of 0.038 s (SD 0.074 s, median absolute error 0.008 s) and RMSE of 0.084 s.
The RMSE results presented in the Supplementary Tables S1 and S2 display similar trends as MAE.
The Supplementary Figure S2 exemplifies the difference of the two metrics. Furthermore, the extracted
IBI demonstrated a statistically significant Pearson correlation of 0.862 (p-value less than 0.01) as
compared to the reference IBI. The IBI extracted from the radar are illustrated with respect to the
reference values in the Supplementary Figure S4.

As for averaged heart rate in the units of beats per minute, MAE varied from 0.816 to 1.384 bpm for
the different activities. These results are in line with the IBI results. Ranking the participant-wise errors,
the order of some participants were reversed (e.g., ID003 and ID006), showing a small effect from the
timestamp misalignment between the radar-derived and reference IBI. The mean absolute temporal
distance between the two estimates was 0.24 s (SD 0.13 s), while maximum temporal misalignment
was 0.74 s.

Overall, the heart rate analysis gave a MAE of 1.031 bpm, which corresponds to an average MAE
of 0.016 s for the IBI. After removing ectopic beats, the results remained similar with an overall MAE
of 1.079 bpm.
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3.2. Heart Rate Variability

The HRV features were computed and evaluated for each sub-measurement individually.
The results are summarized over all measurements in Table 5.

Table 5. Comparison of the heart rate variability features.

Feature
Mean ± Standard Deviation

MAE Correlation
Radar Reference

Time-domain features

Mean NNI 1.06 ± 0.13 1.05 ± 0.14 0.02 0.98
Median NNI 1.06 ± 0.14 1.05 ± 0.15 0.02 0.98
RMSSD 0.05 ± 0.02 0.04 ± 0.02 0.01 0.81
SDNN 0.07 ± 0.03 0.07 ± 0.04 0.01 0.88
SDSD 0.05 ± 0.02 0.05 ± 0.02 0.01 0.81
CVNNI 0.07 ± 0.03 0.07 ± 0.04 0.01 0.89
CVSD 0.05 ± 0.02 0.04 ± 0.02 0.01 0.84
pNNI20 50.59 ± 17.75 50.92 ± 25.88 11.12 0.81
pNNI50 28.10 ± 15.03 25.31 ± 21.08 9.19 0.84
Mean HR 57.68 ± 7.06 58.52 ± 7.66 1.15 0.97
STDHR 4.03 ± 1.93 4.09 ± 2.44 0.77 0.86
Min HR 48.87 ± 5.95 51.03 ± 6.67 2.61 0.87
Max HR 70.24 ± 9.79 70.87 ± 12.02 3.93 0.79

Frequency-domain features
√Total power 0.09 ± 0.04 0.09 ± 0.04 0.01 0.95√VLF 0.04 ± 0.02 0.05 ± 0.02 4.9 ×10−3 0.94√LF 0.07 ± 0.03 0.07 ± 0.03 0.01 0.93√HF 0.04 ± 0.01 0.04 ± 0.02 0.01 0.86√LF/HF ratio 1.58 ± 0.37 1.66 ± 0.41 0.20 0.72
LFnu 68.94 ± 13.27 70.70 ± 13.28 5.44 0.78
HFnu 31.06 ± 13.27 29.30 ± 13.28 5.44 0.78

Most of the time-domain features exhibited notable correlation between the radar-derived and
reference features. However, the MAE indicated notable 9–11% mean absolute errors in the pNNI20 and
pNNI50. The remaining features agreed well with the reference features, exhibiting high correlation
and small errors. For deviation-based features, MAE were lower than the standard deviation of the
mean reference and for other features MAE was at most 5.5% (max HR) of the mean reference value.

Mean NNI, median NNI, and mean heart rate exhibited similar trends in terms of MAE between
different participants as already observed in Table 3. Additionally, no large differences between neither
the lying positions nor the activities were observed, although the recovering activity showed the
largest error consistently.

The frequency-domain features showed mostly high correlations and low errors as well.
The √LF/HF ratio, LFnu, and HFnu features exhibited the most moderate correlations and the
largest errors among the selected features. Yet, a 5% error in the normalized low or high frequency
power may be considered acceptable. The errors for each activity, participant, or position did not seem
to differ much for any of the frequency-domain features.

3.3. Respiration Rate

The measured respiration rates were on average 15.634 1/min (SD 7.492 1/min, 5th percentile
6.548 1/min, 95th percentile 32.535 1/min) for the reference devices. Correspondingly, the radar
measured average was 15.855 1/min (SD 7.223 1/min, 5th percentile 7.138 1/min, 95th percentile
32.000 1/min). Most variation was recorded during the shallow respiration part of the hypopnoea
simulation, showing SD of 10.010 1/min (9.097 1/min for the radar measured values). Samples of the
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extracted respiration rates are illustrated in Figure 8 with respect to the reference signals. More samples
are depicted in the Supplementary Figure S3.
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Figure 8. Respiration signal samples of two participants (ID003 on the top, ID011 on the bottom) for
each activity in the supine lying position.

Figure 9 presents the Bland-Altman plot comparing respiration rates from the radar to those given
by the reference devices. It exhibits a mean error of 0.221 breaths per minute (SD 3.137 1/min).
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Figure 9. The Bland-Altman plot for respiration rate. The dashed lines indicate the mean and the
interval containing 95% of the samples.
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As presented in Table 6, the largest observed difference between participants in terms of MAE
was 1.820 1/min. Additionally, when compensating for the different number of respiratory events
per participant by averaging without weighting by measurement duration, the largest difference in
participant MAE reduced to 1.487 1/min (with an overall average MAE of 1.354 1/min). For different
activities, the smallest respiratory motions (during hypopnoea, shallow) exhibited the largest errors
(especially ID003 and ID006).

Table 6. Mean absolute error for respiration rates with respect to activity and participant.

Participant ID Relaxed Hypopnoea, Shallow Hypopnoea, Normal Recovering Participant MAE

ID001 0.367 0.725 0.418 0.251 0.487
ID002 0.940 1.694 1.124 0.611 1.088
ID003 1.305 5.118 0.505 0.339 2.272
ID005 0.751 2.419 0.934 0.617 1.075
ID006 0.856 3.852 0.369 0.536 1.331
ID008 2.626 2.310 1.601 1.170 2.308
ID009 1.049 2.610 0.869 1.833 1.336
ID010 0.737 2.516 0.752 3.094 1.392
ID011 1.311 1.155 0.981 0.388 1.114

Activity MAE 1.222 2.408 0.887 1.149 1.414 a

The largest activity and participant MAEs are bolded. a The total MAE over all activities and participants.

In different positions, the differences in MAE are below 1.000 1/min, as presented in Table 7.
However, the lateral measurement positions, especially the left lateral position, exhibited higher MAE
as compared to the other two positions.

Table 7. Mean absolute error for respiration rates with respect to activity and lying position.

Position Relaxed Hypopnoea, Shallow Hypopnoea, Normal Recovering a Position MAE

Supine 1.002 1.270 1.149 1.149 1.086 b

Right lateral 1.096 3.588 0.682 - 1.656
Prone 1.256 1.458 0.707 - 1.225

Left lateral 1.732 3.454 1.001 - 2.064

Activity MAE 1.222 2.408 0.887 1.149 1.414 c

The largest mean MAEs are bolded. a Recovering was only measured in the supine position. b 1.061 1/min if
the recovering activity is not considered. c The total MAE over all activities and positions.

We obtained an overall MAE of 1.414 1/min (SD 2.810 1/min, median absolute error 0.515 1/min)
and RMSE of 3.145 1/min for respiration rate. Detailed RMSE results are presented in the
Supplementary Tables S3 and S4. Furthermore, the measurements exhibited a significantly high
Pearson correlation of 0.910 (p-value less than 0.01), as visualized in the Supplementary Figure S5.

4. Discussion

The radar derived IBI tend to be slightly larger than the reference, although this systematic error
varies considerably between participants (see Figure 7). Differences between participants in the normal
ECG waveform, heart rate, and heart rate variability are all expected due to varying physiological
factors. Thus, it comes as no surprise that the IBI of some participants may be more difficult to
extract than that of others. The error in IBI for each participant is reasonable, in the order of tens
of milliseconds.

As for different activities, the error in the extracted IBI was at its largest when a participant
was recovering after an exercise session. This is when the largest respiratory motions are expected.
Consistently, during the hypopnoea-mimicking shallow respiration, with close to no respiratory
movement, the error was at its smallest. After the physical exercise, the participants were somewhat
out of breath and it came naturally to take quick, deep breaths. Thus, the respiratory rate came closer
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to the expected range of the heart rate. As both motions are periodic, it became more difficult to
distinguish the two. However, MAE for the recovering activity is only 0.052 s, thus showing good
performance despite the challenging circumstances.

The overall error of 0.038 s indicates strong performance for the presented IBI extraction method
in various scenarios. The different lying position did not affect the accuracy of the extracted IBI
(see Table 4).

The presented results exceed previous achievements in heart rate monitoring obtained for lying
positions. Anitori et al. presented an FFT method achieving a 10% error for heart rate, whereas we
obtained 3.6% error for instantaneous heart rate [13]. Alizadeh et al. obtained a correlation of 80%
for a single person, whereas we demonstrate an 86% correlation for ten participants [15]. Our results
also compete with the results by Adib et al. who achieved a 99% median accuracy over a variety
of measurement distances for participants in sitting positions [4]. At a similar distance of 2 m,
they obtained a median accuracy of 98.7%, whereas our overall median absolute error of 0.008 s
corresponds to a 99.2% accuracy and the mean absolute error of 0.038 s corresponds to 96.3% accuracy.

In HRV analysis, most time and frequency-domain features obtained from the IBI estimates
demonstrated high agreement with the reference values. The pNNI20 and pNNI50 time-domain
features were the notable exceptions. The error for these parameters presumably followed from the
numerous estimates for each actual heartbeat event given by our IBI extraction method, which shifts
the number of intervals exceeding 20 or 50 ms as compared to the total number of intervals. The extra
estimates might have also affected the error in minimum and maximum heart rates. Yet, many HRV
parameters remain useful when extracted from the radar.

As for respiratory rate, smallest respiratory motions were the most difficult to detect using
the radar (see Table 6). Yet, the average MAE remained comparable to that of normal respiration
(1.222 1/min), supporting that the method is reliable in various real-life scenarios.

Respiration rate extraction was found to be more complicated in lateral positions; the highest
error was measured in one of the two positions for all expect one participant. Notably, two participants
(ID003 and ID006) exhibited exceptionally high error (especially RMSE) in one of the lateral positions
during the shallow respiration period of the hypopnoea simulation, contributing notably to the
overall error.

The observed differences in the error of the two lateral positions may be tracked back to the
measurement setting. The RIP belt used to measure the primary respiration reference is an elastic
band around the participants thorax; the change of posture could loosen the RIP belt by sliding it
from its original location. As described in the protocol (Table 1), the participants always visited the
right lateral position before the left, which may have resulted in larger error in the left lateral position.
Additionally, the error may be higher in lateral positions as compared to the other two because of the
smaller prevalence of the respiratory motion in the observed area.

Altogether, our respiration extraction method is comparable to the state-of-the-art methods.
As compared to Alizadeh et al. who used a similar autocorrelation approach to extract respiration
with 94% correlation with the reference, we expand the method for several participants and achieve a
91% correlation. Adib et al. on the other hand achieved a 99.4% median accuracy in seated positions,
while we show an overall 96.5% median absolute accuracy and a 91.0% mean absolute accuracy in lying
positions [4]. However, in contrast to previous studies, our study considered a wide range of respiration
rates including breathing with minimal motion [4,13–15]. Despite the challenging setup, our method
performed robustly in the different scenarios. The high correlation between the radar-extracted and
reference estimates is a remarkable result given the wide range of recorded respiratory motions.

The chosen methods of cepstrum for IBI extraction and autocorrelation for respiration rate
extraction are closely related, as both can be formulated as an inverse Fourier transform from the
power spectra [33]. Cepstral analysis emphasizes the harmonic frequencies of a spectrum. The signal
power of rapid bursts, such as heartbeats, is mainly carried by the harmonic spectral peaks, which are
further emphasized in the logarithm of the spectrum. In contrast to heartbeats, the signal power of
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respiratory motion is concentrated on the base frequency, making autocorrelation a suitable approach
to extract respiration [33].

The presented vital sign extraction methods are limited with respect to real time applications.
The IBI extraction requires a delay equal to the longest FFT window (20 s) in addition to the delay due
to the iterative smoothing to remove uncertain estimates (upto 4 min). The IBI extraction performance
could however be improved if it was implemented in parallel with another method, such as the data
fusion method described in [34]. The respiration rate extraction is restricted by the maximum delay
equal to the maximum ACF peak extraction buffer (default of 15 s). Furthermore, the optimal range
bin selection and DC removal were computed globally for each sub-measurement, and would need to
be performed adaptively to account for changes of position during sleep.

The presented results are limited by the restricted set of participants and thus the methods may
not generalize as well for broader groups. Although data collection in a controlled environment
allowed us to capture a wide range of vital signs, the natural next step would be to test the presented
methods on a large study group in over-night measurements. The suggested techniques could also
be optimized for personal vital sign patterns to improve performance for individuals. For future
work, we note that while here the clean reference ECG enabled the use of the standard MATLAB®

tool findpeaks, the Pan-Tompkins algorithm is suggested for reference R peak extraction. In addition,
the results were obtained on subjects lying still and therefore do not directly apply to moving subjects.
However, applying noise removal prior to the vital sign extraction methods could increase performance
for moving subjects.

5. Conclusions

Our results suggest that the cost-effective 24 GHz FMCW radar together with the proposed vital
sign extraction methods represent a solution that can deliver accurate results for nocturnal vital sign
monitoring even during various conditions, such as sleep apnoea. We obtained state-of-the-art level
accuracies for heart rate monitoring while, to the best of our knowledge, being the first to report
as low errors in recording instantaneous interbeat intervals using a similar device [4]. Moreover,
we demonstrated the radar’s feasibility in heart rate variability analysis. Finally, we presented
remarkably accurate results in respiration monitoring, maintaining a reasonable error level from
abnormally shallow respiration to high-volume gasping. As far as we know, this is the first study
to include uncommonly small respiratory motions in the studied respiratory range and evaluate the
FMCW radar technology for apnoea indication.

While our study focused on nocturnal vital sign monitoring applications, the technology can
be applicable to various other purposes where the subjects remain mainly still, such as monitoring
bedridden patients or the elderly, or finding victims trapped under constructions at disaster scenes.
In the future, the methods can be tested on authentic nocturnal measurements and adjusted for more
advanced 60 GHz radars, enabling the measurement of multiple subjects simultaneously, despite close
proximity [35]. Other remaining challenges include, e.g., decreasing the effect of motion artefacts and
reducing the time delay during signal extraction to enable real-time applications.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/22/6505/s1;
Aggregated error metrics, Figure S1: Examples of interbeat intervals extracted for each subject during relaxed
respiration in the supine lying position, Table S1: Root mean square error for interbeat intervals with respect to
activity and participant, Table S2: Root mean square error for interbeat intervals with respect to activity and lying
position, Figure S2: Example of interbeat intervals extracted from an arrhythmic sequence, Figure S3: Examples
of respiration signals for each subject during relaxed respiration in the supine lying position, Table S3: Root mean
square for respiration rates with respect to activity and participant, Table S4: Root mean square error for respiration
rates with respect to activity and lying position, Figure S4: Correlation of the interbeat interval derived from the
radar signal and the reference IBI, Figure S5: Correlation of the respiration rate derived from the radar signal and the
reference respiration rates.
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Problems with fatigue and sleep are highly prevalent in patients with chronic

diseases and often rated among the most disabling symptoms, impairing their

activities of daily living and the health-related quality of life (HRQoL). Currently,

they are evaluated primarily via Patient Reported Outcomes (PROs), which can

suffer from recall biases and have limited sensitivity to temporal variations.

Objective measurements from wearable sensors allow to reliably quantify

disease state, changes in the HRQoL, and evaluate therapeutic outcomes.

This work investigates the feasibility of capturing continuous physiological

signals from an electrocardiography-based wearable device for remote

monitoring of fatigue and sleep and quantifies the relationship of objective

digital measures to self-reported fatigue and sleep disturbances. 136 individuals

were followed for a total of 1,297 recording days in a longitudinal multi-site

study conducted in free-living settings and registered with the German Clinical

Trial Registry (DRKS00021693). Participants comprised healthy individuals (N =

39) and patients with neurodegenerative disorders (NDD, N = 31) and immune

mediated inflammatory diseases (IMID, N = 66). Objective physiological
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measures correlated with fatigue and sleep PROs, while demonstrating

reasonable signal quality. Furthermore, analysis of heart rate recovery

estimated during activities of daily living showed significant differences

between healthy and patient groups. This work underscores the promise

and sensitivity of novel digital measures from multimodal sensor time-series

to differentiate chronic patients from healthy individuals and monitor their

HRQoL. The presented work provides clinicians with realistic insights of

continuous at home patient monitoring and its practical value in quantitative

assessment of fatigue and sleep, an area of unmet need.

KEYWORDS

wearabe sensors, chronic disease, biomedical signal analysis, fatigue, sleep
disturbance, continuous monitoring, neurodegenerative diseases, immune-
mediated inflammatory disease

1 Introduction

Health-related quality of life (HRQoL) and ability to conduct

activities of daily living (ADL) are greatly impaired in patients

with chronic diseases, such as neurodegenerative disorders

(NDD) and immune mediated inflammatory diseases (IMID)

(Kluger et al., 2013; Zielinski et al., 2019). Fatigue and sleep

disturbances are known to be key factors predicting poor HRQoL

or reduced ADLs, and as such alleviation of these symptoms may

significantly improve patient’s health and quality of life (Center

for Disease Control and Prevention, 2000). Current evaluations

rely primarily on patient reported outcomes (PROs) which are

subjective and prone to recall biases and poorly capture

variability over time (Stone et al., 2002). Sensors, such as

wearable technology or standalone sensors using a wide range

of technologies, can perform continuous real-world monitoring

of patient health and thus offer the opportunity to provide digital

measures that are objective, potentially reliable and more

sensitive to change over time (Bangerter et al., 2020a; 2020b;

Luo et al., 2020).

Fatigue is defined as a multi-dimensional phenomenon in

which the biophysiological, cognitive, motivational and

emotional state of the body is affected resulting in significant

impairment of the individual’s ability to function in their normal

capacity (Davies et al., 2021). Specifically, in NDD and IMID

patients, such as those with Huntington’s Disease (HD),

Parkinson’s Disease (PD), Inflammatory Bowel Diseases

(IBD), Primary Sjögren’s Syndrome (PSS), Rheumatoid

Arthritis (RA), and Systemic Lupus Erythematosus (SLE),

fatigue and sleep disturbances are highly prevalent (Hewlett

et al., 2011; Lendrem et al., 2014; Siciliano et al., 2018;

Chavarría et al., 2019). Previous studies assessing fatigue

through digital measurement technologies are relatively sparse,

especially in chronic disease populations. Changes in physical

activity levels such as daily and bouted moderate to vigorous

physical activity (MVPA) minutes and no bouts of MVPA have

been found to be associated with fatigue in RA, SLE and Crohn’s

disease (Legge et al., 2017). Fatigue has also been shown to be

correlated with changes in the frequency spectrum of EEG signals

(Zhang et al., 2020). Individuals with chronic fatigue syndrome

were found to have lower heart rate variability (HRV) measures

such as standard deviation of the interbeat intervals of normal

sinus beats (SDNN), power spectrum densities of low frequency

(LF) and high frequency (HF) compared to controls, while total

HRV power within the frequency range of 0–0.4 Hz was shown

to be negatively associated with fatigue (Boissoneault et al., 2019;

Escorihuela et al., 2020).

Sleep disorders such as decreased sleep efficiency and

increased fragmentation are the second most frequent

complaint in PD (Stefani and Högl, 2019). In HD, sleep and

circadian rhythm alterations have been reported to correlate with

depression and cognitive impairment (Aziz et al., 2010). Sleep

disturbances, also common in RA, SLE, IBD, and PSS, have been

attributable to changes in circadian rhythms or disease

symptoms such as pain, discomfort, respiratory and

movement disorders sleep, with disruptions in sleep associated

with further worsening of disease symptoms (Swanson and

Burgess, 2017). Recording night ECG allows evaluation of the

fluctuation of the sympathetic and parasympathetic nervous

system functions, which physiologically happen during

sleep. The LF (frequency range 0.04–0.15 Hz) reflects both

sympathetic and vagal modulations, which decrease with the

depth of sleep. The HF (frequency range 0.15–0.4 Hz) is

associated with respiration and reflects the activity of the

parasympathetic nervous system, which increases in deep

sleep (Somers et al., 1993).

Digital measures that can objectively assess HRQoL-related

factors, such as sleep and fatigue will be invaluable for drug

development. Despite the advent of wearable sensors, there is

limited understanding of fatigue and sleep assessment using

objective measurements in these patient population, with

existing work primarily focusing on the relationship between

physical activity measured from accelerometers with fatigue

PROs. Even among healthy cohorts, only few recent studies

have utilized wearable sensors (Luo et al., 2020) such as

inertial measurement units and heart rate monitors to assess
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fatigue, majority with smaller sample size or under tightly

controlled experimental settings. Building on these challenges,

the IDEA-FAST project (https://idea-fast.eu/) aims to utilize

multiple sensing modalities and technologies at home to

identify digital endpoints of fatigue and sleep in the six NDD

and IMID populations–HD, PD, IBD, PSS, RA, and SLE.

In this paper, we present insights from a feasibility study of

IDEA-FAST (The IDEA-FAST project consortium, 2020) and

focus specifically on evaluating the promise of capturing digital

measures of fatigue and sleep from biophysiological signals

collected in patients and healthy groups at home from a

wearable ECG device. Specifically, signal quality and coverage

of digital measures were assessed and their agreement with sleep

and fatigue PROs were investigated. Furthermore, heart rate

recovery (HRR) periods were estimated, among patients and

healthy participants, as a metric to assess physiological fitness

which could potentially be impacted by fatigue. Post-exercise

heart rate recovery reflects the interplay between the sympathetic

and parasympathetics parts of the autonomic nervous system

(Qiu et al., 2017). It is an important predictor of all-cause

mortality and related to fatal cardiovascular events (Qiu et al.,

2017). Decrease in HRR is shown to be associated with physical

fatigue (Lamberts et al., 2009; Djaoui et al., 2017) and has been

typically measured in controlled laboratory settings. Here we

explored if HRR quantified from free-living environments can

distinguish between NDD, IMID and healthy groups and those

with varying levels of fatigue.

2 Materials and methods

The presented data was obtained as a part of the IDEA-FAST

project (The IDEA-FAST project consortium, 2020; Chen et al.,

2022). Nine different candidate technologies measuring different

modalities (activity trackers, ECG-sensors, sleep trackers) were

explored in a feasibility study aiming to assess fatigue and sleep

disorders. Additionally, the participants’ social activity, cognitive

skills, and PROs were captured with smartphone applications.

This paper focuses on the continuously measured physiological

signals collected from the ECG-based VitalPatch sensor and the

concurrently collected PROs. The digital measures from

VitalPatch included heart rate (HR), R-to-R interval,

respiratory rate (RR), skin temperature (skin T), number of

steps, and posture. The first three are mainly derived from the

ECG measurement and are the main focus of this study.

2.1 Ethical approvals

Ethical approval was first granted by the Ethical Committee

of the Medical Faculty of Kiel University (D491/20) in June

2020 and then by the Research Ethics Committees of all other

study sites: Newcastle upon Tyne Hospitals National Health

Service (NHS) Foundation Trust/Newcastle University in

August 2020, Erasmus University Medical Centre in

Rotterdam in November 2020, and George-Huntington-

Institute in Münster in September 2020. The study was

registered with the German Clinical Trial Registry

(DRKS00021693) and was conducted according to the

principles of the Declaration of Helsinki (version of 2013).

2.2 Study participants

Potential participants were identified during routine

clinical visits at the hospitals and through public outreach

at information events or support groups. After providing

information about the study and obtaining informed

consent, the participants were screened for eligibility.

Inclusion criteria required age over 18 years, consent to

participate in the study for up to 60 days and according to

the study protocol, use of a smartphone in the past 3 months,

and ability to follow written and oral instructions in the local

language, to walk, sit, and stand independently and to socialize

and communicate. Another inclusion criterion was a score of

over 15 points in the Montreal Cognitive Assessment

(MoCA), which was used to evaluate cognitive abilities

(Nasreddine et al., 2005). Participants were excluded if they

had certain comorbidities like major sleep disorders, chronic

fatigue syndrome, respiratory, cardiovascular or metabolic

disorders or physical traumas with hospitalization in the

past 3 months, diagnosis of cancer in the past 3 years,

major psychiatric disorders, suicidal attempt in the past

5 years or suicidal ideation in the past 6 months, substance

or ethanol abuse or severe visual impairment.

The study was conducted at four different sites: Rotterdam

(E), Kiel (K), Muenster (G), and Newcastle (N). The study start

date was between July 2020 (Kiel) and November 2020

(Rotterdam), depending on the date of ethical approval of the

study site. The last visit of the final participant took place in

December 2021. The participants were either healthy or suffered

from one of six diseases, which we have divided into two groups:

NDDs including HD and PD, and IMIDs including IBD, PSS,

RA, and SLE. Thus, the study inspects three participant

categories: 1) the healthy participants, 2) the NDD patients,

and 3) the IMID patients.

2.3 Study design

Participants were enrolled in the study for up to 60 days.

Demographic information was collected during a baseline visit

conducted at the study center or at the participant’s home.

Subsequently, the participants were provided with a detailed

explanation of the devices and the applications. In addition, they

received informational materials and telephone support by the
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study team. Optional home visits were conducted to further

ensure accurate use of the devices.

Over a period of five consecutive days, participants wore the

VitalPatch biosensor in their home environment and were

instructed to carry out their usual daily activities. This

constituted one technology use period that was followed by at

least two rest days, after which a new technology use period could

be started. Participants were able to opt for a prolonged resting

period. The study cycle, illustrated in Figure 1, was repeated up to

four times per participant. During the technology use period,

participants were asked to report their perceptions of fatigue and

sleep quality four times daily in an e-diary using the VTT Stress

Monitor Application (SMA) (Vildjiounaite et al., 2018).

2.4 Measurement setup

VitalPatch is a wireless wearable patch sensor designed for

remote patient monitoring (Areia et al., 2021). The fully

disposable 12-cm patch adheres to the skin and is worn on

the left chest. It contains a zinc-air battery that lasts up to 7 days.

Once the measurement is started, it continues whenever the

device is in skin contact, until the battery runs out. After one

patch sensor is disposed, the measurement can be continued with

a new patch. VitalPatch has CE certification as a Class IIa medical

device and FDA clearance.

The VitalPatch biosensor incorporates a single-lead ECG, a

tri-axial accelerometer, and a thermistor. It records ECG at

125 Hz sampling frequency, with derived heart rate, R-to-R

interval, and respiratory rate (partly derived from the

accelerometer) sampled at 0.25 Hz. The accelerometer is used

for step counting and posture detection at 1 Hz. The thermistor

collects skin temperature at 0.25 Hz. The recorded data is

encrypted and transferred with a latency in the order of

seconds via a wireless connection to a cloud-based patient

monitoring platform. If the connection is interrupted, the

device can store up to 10 h of data until the connection is re-

established.

2.5 Patient reported outcomes

PROs were collected using the VTT Stress Monitor

Application (SMA), an Android smartphone application that

provides a user interface for questionnaires (Vildjiounaite et al.,

2018). PROs were collected four times a day (at 9:00, 13:00, 17:00,

and 21:00 local time). The response could be submitted within

3 hours of the prompted question, except in the evening as those

responses were set due at 23:30. To promote compliance, the

application prompted a new notification again every 15 min if the

user had opened the application but did not submit the

responses, and the application had gone out of active view.

Throughout the day, the participants were requested to

respond to a total of 14 different PROs, as detailed in Table 1.

All Likert items had seven options from low (zero) to high (six).

An example of the Likert item interface is presented in Figure 1.

2.6 Data pre-processing

The HR, R-to-R interval, RR, and skin T data were pre-

processed in two steps. First, timestamps were sorted, and

duplicates removed. Second, the data were cleaned from 1)

invalid values (unsuccessfully measured) predefined by the

manufacturer, 2) physiologically unrealistic values, and 3)

contextual outliers. Such values were removed and considered

FIGURE 1
The study cycle. Participants went through a baseline visit at the beginning of the study, followed by four technology use periods (the circle)
when they were instructed to use different sensors and report certain outcomes with a mobile phone application (example screenshot on the right).
This study focuses on the participants using the depicted wearable device, VitalPatch (two alternative wear locations depicted).
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gaps in the data, except for cases 2–3 for R-to-R interval, which

were replaced using linear interpolation to improve heart rate

variability (HRV) analysis (detailed below). The first pre-

processing step along with the removal of invalid values were

also applied to the number of steps and posture.

To exclude any physiologically unrealistic values, a range of

acceptable values was defined for each feature independently.

The selected limits are presented in Table 2. The limits for HR

and R-to-R interval are adopted from previous studies (Tanaka

et al., 2001; Zhai et al., 2020). The range for respiratory rate, on

the other hand, was defined broadly, including abnormal hypo-

and hyperventilation scenarios, such as exercise (Cretikos et al.,

2008; Gutierrez et al., 2016; Nicolò et al., 2017, 2020). Finally,

skin temperature is presumed to obtain lower values as compared

to core body temperature but is allowed a range that can capture

abnormal physiological states (Martinez-Nicolas et al., 2015;

Rajbhandary and Nallathambi, 2020). Restricting the range is

expected to exclude notably exceptional measurement

conditions, even though the thermal sensor itself has been

reported to work accurately across a wider range (Selvaraj

et al., 2018).

Contextual outliers were removed to reduce unlikely

variation within short time periods. Using a sliding

window, the value at the centre of the window was

inspected: if it was not within a predefined range of the

window mean, it was considered a contextual outlier

(Karlsson et al., 2012). The ranges were 30% for all features

except for RR; threshold for respiration rate was 50%. As

respiration can be controlled at will, it is more prone to larger

variations. The size of the sliding window was 1 min for HR

and R-to-R interval, 3 min for RR, and 5 min for skin T.

Patient reported outcomes did not require pre-processing,

apart from the sleep times: they were collected with a 24-h clock

user interface, which was discovered prone to 12-h shifts in the

user input, especially when reporting late hours (12–24).

Bedtimes that exceeded the waking up or occurred

considerably late with respect to the wake-up time, were

considered as input errors and shifted by 12 h.

TABLE 1 Patient reported outcomes collected with the VTT Stress Monitor Application.

Questionnaire time

Patient reported
outcome

Type Morning (9–12) Early after-noon
(13–16)

Late after-noon
(17–20)

Evening (21–23:30)

Physical fatigue Likert item X X X X

Mental fatigue Likert item X X X X

Anxiousness Likert item X X X X

Depression Likert item X X X X

Pain Likert item X X X X

I went to bed at Clock X

I woke up Clock X

How was your sleep? Likert item X

Time to fall asleep Drop-down menu X

Time awake during night Drop-down menu X

Sleepiness, current feeling Drop-down menu X X X

My activities of the day, physically Likert item X

My activities of the day, mentally Likert item X

Other comments Free text X

TABLE 2 Accepted range for each physiological feature. The selected ranges were validated visually and by comparing them against the 1st and 99th
percentiles of the collected data.

Heart rate (bpm) R-to-R interval (ms) Respiratory rate (bpm) Skin temperature (°C)

Minimum 30 300 4 28

Maximum 200 2000 60 40
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2.7 Data quality assessment

The quality of the digital measures was assessed via the extent

of pre-processing necessary [corresponding to items (1), (2), (3)

as described in Section 2.6], and the data coverage after pre-

processing. For HR, RR and skin T, coverage was calculated

based on the expected number of samples. Coverage of R-to-R

interval was estimated via the sum of recorded R-to-R interval

values divided by the duration of the actual measurement period.

Data quality was first evaluated on participant-level and then

averaged over cohorts or participant groups. The participant-

level coverage was computed as the mean of midnight-to-

midnight coverage values.

Additionally, PRO coverage during VitalPatch wear periods

was evaluated for each PRO as compared to the expected number

of responses. PRO coverage was also evaluated midnight-to-

midnight for each participant and then averaged over participant

subgroups.

2.8 Feature aggregates

The features were segmented into time windows of interest

(see Section 2.9) and aggregated into statistical descriptors, to

summarize the physiological feature time series into single

values, which could be compared to the corresponding PROs.

TABLE 3 Heart rate and heart rate variability features.

Abbreviation Domain Description

NN mean Time Mean of normal-to-normal peak intervals (NN)

NN CV Time Coefficient of variation of NN

NN SD Time Standard deviation of NN

NN median Time Median of NN

NN range Time Difference between maximum and minimum of NN

RMSSD Time Root mean square of consecutive differences in adjacent NN

CVSD Time Coefficient of variation of consecutive differences in adjacent NN

SDSD Time Standard deviation of consecutive differences in adjacent NN

NN50 Time Number of interval differences greater than 50 ms

NN20 Time Number of interval differences greater than 20 ms

pNN50 Time Percentage of interval differences greater than 50 ms

pNN20 Time Percentage of interval differences greater than 20 ms

HRV HR mean Time Heart rate mean

HRV HR SD Time Heart rate standard deviation

HRV HR min Time Heart rate minimum

HRV HR max Time Heart rate maximum

VLF Frequency Power spectral density in very low frequencies (0.003–0.04 Hz)

LF Frequency Power spectral density in low frequencies (0.04–0.15 Hz)

HF Frequency Power spectral density in high frequencies (0.15–0.40 Hz)

Total power Frequency Total power spectral density; sum of VLF, LF, and HF

LF/HF Frequency The ratio of LF and HF

LFnu Frequency LF normalized to the sum of LF and HF

HFnu Frequency HF normalized to the sum of LF and HF

Triangular index Geometrical Number of all NN divided by the maximum of the NN density distribution

CSI Non-linear Cardiac sympathetic index

mCSI Non-linear Modified cardiac sympathetic index

CVI Non-linear Cardiac vagal index

SD1 Non-linear Poincaré plot, SD1

SD2 Non-linear Poincaré plot, SD2

SD2/SD1 Non-linear SD2 to SD1 ratio
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The selected statistical aggregations were the mean, standard

deviation (SD), minimum, and maximum.

Additionally, HRV parameters were computed from the R-to-R

interval data over each full window. Furthermore, the feature

coverage within each window was computed for reliability

evaluation. For HRV analysis, the R-to-R interval data was

further cleaned to achieve normal-to-normal (NN) intervals by

replacing ectopic peaks using linear interpolation (Peltola, 2012).

This was performed via the Malik method: intervals deviating more

than 20% from the previous interval were replaced (Malik et al.,

1996). Both time and frequency domain HRV features were

computed, as well as geometric and non-linear features (Malik

et al., 1996; Champseix, 2021). The included HRV features are

described in Table 3. Details of these widely-used HRV parameters

and their implications in health and performance can be found in

existing literature (Shaffer and Ginsberg, 2017).

2.9 Time windows of interest

The feature aggregates were computed over 2-h windows

preceding the time at which a PRO response was obtained. Thus,

the aggregation represents the participants’ physiological features

leading to the questionnaire response.

To estimate physiological measures during rest, major rest

periods were identified for each participant, using step count and

posture information available fromVitalPatch. As a proxy for major

rest periods, the L5metric was calculated which corresponded to the

least active 5-h (L5) periods in the day (Witting et al., 1990). A

maximum of 100 steps was allowed and a minimum of 80% laying

down was used as a threshold. The starting times of the 5 h long

resting windows were located at 1 min resolution, and the best

option among overlapping consecutive windows was selected by

maximizing the laying down percentage.

2.10 Feature normalization

Physiological parameters are affected by the subject’s age and

sex (and physical fitness) and the inter-individual differences can

be significant (Voss et al., 2015; Garavaglia et al., 2021).

Therefore, the 2-h feature aggregates were normalized on a

subject-by-subject basis to alleviate the differences. Previous

studies have normalized HRV features by adjusting the feature

according to feature baseline and range, adjusted with the 5th and

95th percentiles to account for outlier effects (Wijsman et al.,

2011; Xiao et al., 2013; Altini et al., 2014; Altini and Kinnunen,

2021). In this study, the features are normalized relative to the

L5 aggregates, according to

xnorm � x − μL5

σL5
,

where x is a feature aggregate (over a 2h window of interest),

xnorm is the normalized feature aggregate, μL5 is the mean feature

value and σL5 its standard deviation obtained as the mean and SD

(a) from the nearest previous L5 window, or (b) averaged over all

subject specific L5 windows. In approach (a), the specific instance

of x was excluded if no previous L5 window existed.

Normalization was applied to all physiological feature

aggregates (excluding the feature coverage).

2.11 Feature association with patient
reported outcomes

The association between the above-described 2-h feature

aggregates and the PROs were studied through repeated

measures correlation, to account for intra-individual

dependencies in the data (Bakdash and Marusich, 2017).

Significance level α was set to 0.05. Feature aggregates

TABLE 4 Demographics of study participants using VitalPatch.

Cohort
group

Cohort Sites N Female Male Years
since
diagnosis,
mean
(SD)

Years
since
diagnosis

Age,
mean
(SD)

Age
range

BMI,
mean
(SD)

Healthy Healthy All 39 20 19 — — 47.3 (16.3) 21–77 26.3 (4.9)

NDD HD G, K 13 7 6 4.8 (2.7)a 0–8a 44.2 (9.6) 30–60 26.3 (7.1)b

PD K 18 7 11 7.8 (5.9) 1–18a 62.3 (11.0) 37–80 24.3 (2.4)

IMID IBD E 18 9 9 12.9 (10.8) 1–35 36.7 (11.3) 22–55 24.7 (3.4)

PSS N 18 16 2 11.6 (5.4) 4–27 62.6 (13.1) 37–82 21.9 (10.3)

RA K, N 14 11 3 14.1 (9.4) 3–35 64.6 (12.2) 39–79 29.5 (7.9)

SLE K, N 16 16 0 16.7 (9.9)a 4–34a 48.3 (13.1) 31–80 23.1 (10.5)

Total 7 cohorts 4 sites 136 86 (63.2%) 50 (36.8%) 11.2 (8.4) 0–35 51.6 (16.1) 21–82 25.2 (7.0)

aFour HD, patients, one PD, patient, and nine SLE, patients with unknown years since diagnosis.
bFour HD, patients with unknown BMI.
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demonstrating lower than 70% coverage over the window of

interest were excluded from the association analysis. Moreover,

only participants with at least three pairs of PROs and feature

aggregates were included. Repeated measures correlation values

close to one indicate linear correlation between the two

compared measures.

2.12 Heart rate recovery

Heart rate recovery (HRR) was defined as the maximum

difference in the HR signal provided by the VitalPatch sensor

that was observed during a 1 min resting period after a 6-min

walk, similarly to a six-minute walking test (Roberts et al.,

2006; Bellet et al., 2012). Because the measurements were

conducted in free-living settings, applicable sequences were

retrospectively detected from the clean (non-aggregated)

sensor data. The walking periods were identified via the

“walking” posture, as classified by the wearable sensor. A

walk was required to last at least 6 min, but no upper limit

was applied. Small pauses in walking and changes of posture

lasting up to 3 s were ignored (Del Din et al., 2016). However,

a minimum average cadence of 60 steps/min was required

(Sokas et al., 2021). For the 1-min resting periods, we required

100% heart rate coverage and zero taken steps. In case of

multiple applicable sequences, the highest HRR for a

participant was selected as the representative value.

2.13 Statistical analysis

One-way and two-sided Analysis of Covariance (ANCOVA)

was used to assess whether the HRR differs significantly among

the three participant groups (healthy, NDD, and IMID). The

significance level α was again 0.05. Age and gender were taken as

covariates and the effect size was evaluated using partial η2 (eta
squared). Pairwise differences between the groups were analysed

in post hoc tests performed with Tukey’s method, which adjusts

the p-values for multiple comparisons.

All presented boxplots depict the median as the horizontal

line within the box, the interquartile range (IQR) via the box

limits, and 1.5 times the IQR through the whiskers (points

falling outside this range are displayed individually as

outliers).

3 Results

3.1 Participant number and demographics

Continuous physiological monitoring of VitalPatch was

conducted on 136 participants, 101 of which responded to

PROs collected during the patch measurement period.

Participants recorded VitalPatch data on 1–21 days, summing

up to a total of 1,297 days. Table 4 describes the demographics in

each cohort. The patients were diagnosed on average 11.2 years

before participation (SD 8.4, ranging from less than a year to

35 years, excluding 14 unknown time of diagnosis). All disease

cohorts, excluding HD, included at least one participant unable

to work (14 in total), while other participants worked full- or

part-time, or were retired. Some IBD participants even worked

several part-time jobs. While most participants were Caucasian,

four participants were of Asian ethnicity and belonged to IMID

group. One participant was African American and belonged to

the healthy group.

A flow diagram illustrating different stages of analyses and

their participant sample size is shown in Figure 2. A subset of

91 participants were applicable for the analysis of association

FIGURE 2
Participant flow diagram. The number of participants (N) in total and included in different analyses, presented with the inclusion criteria (black-
bordered box).
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between the digital measures and PROs. The concurrent

measurements of digital measures and PRO data totalled

632 days, varying between 1 and 12 days per participant, and

included 15 NDD patients (6 HD, 9 PD), 46 IMID patients

(12 IBD, 13 PSS, 10 RA, 11 SLE), and 30 healthy controls.

All VitalPatch data were scanned for sequences applicable for

heart rate recovery analysis. In total, 73 participants were

included in the HRR analysis, comprising 19 NDD patients

(9 HD, 10 PD), 33 IMID patients (11 IBD, 8 PSS, 8 RA,

6 SLE), and 21 healthy participants.

3.2 Data quality

In all VitalPatch data measured throughout the study, 2.3%

of skin temperature data were range outliers, while only

contextual outliers were identified for HR and RR (0.2% and

0.1%, respectively). For R-to-R intervals, less than 0.5% were

outliers (0.1% invalid, 0.3% range and 0.1% contextual outliers).

After outlier processing, the average daily coverage rates were

71.6% (16.3% SD) for HR, 71.7% (16.3% SD) for R-to-R interval,

70.9% (16.9% SD) for RR, and 65.5% (25.3% SD) for skin T.

Moreover, the median daily coverage was 77% for skin T and

about 78% for all other features. Hence, the sensor was typically

worn for most of the day.

FIGURE 3
Average daily coverage of the cleaned digital measures across participants, presented by cohort.

TABLE 5 Mean (with 95% confidence interval) feature coverage (%) in the 2-h windows preceding PRO responses, presented by participant
group. Confidence intervals are based on the empirical rule (2*SD).

Heart rate R-to-R interval Respiratory rate Skin temperature

Healthy 99.3 [91.6, 100] 99.4 [91.7, 100] 98.9 [87.0, 100] 89.0 [27.7, 100]

NDD 99.4 [93.7, 100] 99.6 [94.0, 100] 99.4 [93.3, 100] 99.6 [94.1, 100]

IMID 99.3 [93.3, 100] 99.5 [93.7, 100] 98.9 [86.7, 100] 92.3 [40.6, 100]

Total 99.3 [92.8, 100] 99.5 [93.1, 100] 99.0 [87.6, 100] 92.5 [41.3, 100]

FIGURE 4
Coverage (%) of PROs per participant group (left) and
questionnaire timing (right).
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Figure 3 illustrates the obtained coverage for each digital

measure in each study cohort. While the smaller cohort groups

(HD, RA) exhibit higher variation, the medians are comparable

across cohorts. Notably, 11 participants stand out with zero

coverage for skin T. However, further inspection revealed that

these participants were recruited at the Newcastle site. The

outliers could potentially indicate a need for improved device

usage instructions at one site.

Table 5 presents the coverage of digital measures in the

selected 2-h windows, analysed for association with PROs. Only

skin temperature, which failed for 11 participants (including

healthy, PSS, RA, and SLE participants), shows notable coverage

differences across participant groups. Themedian coverage in the

2-h windows was 100% for all measures (10% percentile was

95.9% for skin temperature and above 99% for all other

measures).

The coverage of PROs corresponding to the 2-h feature

aggregates, analysed for association with digital measures,

are presented in Figure 4. The analysis focuses on Likert item

or drop-down menu PROs with overall coverage

beyond 70%.

Figure 5 presents SD captured in the PRO responses. The

median number of distinct responses received from a participant

was 2 for the activity and sleep detail questions, 3 for the fatigue

questions, and 4 for the sleepiness question. The PRO response

distributions were similar from participant group to another.

Because the drop-down menu PROs (time to fall asleep and time

awake during night) exhibit low variability, they are excluded

from further analyses.

Self-reported sleep times were obtained for 244 nights

concurrent with the VitalPatch data, allowing a comparison

between reported sleep times and the extracted L5 periods.

Overall, 68.4% of the L5 periods were entirely within the

reported sleep time (82.0% started and 86.5% ended within the

reported sleep time), and 86.9% were within a 30-min

threshold of the reported sleep time (92.6% started and

94.3% ended within the reported sleep time). All

L5 windows overlapped with the reported sleep times to

some degree: in the case of least overlap, the L5 window

started 3 h and 19 min before the reported sleep time. We

note that the comparison only covers 54.6% of the total

447 extracted L5 periods.

3.3 L5 features in participant groups

The mean resting time (L5) physiological measures for HR,

RR, R-to-R interval, and skin T are compared across participant

groups in Figure 6 (top). The average L5 mean HR observed for

healthy participants was lower than that of either of the disease

groups, and similarly mean R-to-R interval was higher.

Additionally, a larger variety of L5 mean skin T was observed

for the healthy group.

Selected L5 HRV parameters are similarly presented in

Figure 6 (bottom). The frequency-domain features (LFnu,

HFnu, and VLF) show some variations in the value

distributions across groups. In accordance with the above-

mentioned mean R-to-R interval distributions, pNN50 shows

most R-to-R intervals exceeding 50 ms in the healthy group.

3.4 Feature aggregate association with
PROs

The association analysis between the 2-h aggregated features

and the PROs comprised a total of 1,646 (476 for healthy, 253 for

NDD, and 917 for IMID group) comparable instances collected

from 91 participants. The analysis revealed statistically

significant correlations between PROs and several feature

aggregates. Figure 7 depicts the correlation r values for each

participant group when the feature aggregates were normalized

using the L5 participant-mean parameters. The corresponding

p-values, degrees of freedom, and 95% confidence intervals are

presented in Supplementary Figures S1–S3, respectively. For the

healthy and IMID patients, the most pronounced correlations are

close to ± 0.3, most of them for sleepiness PRO. NDD group

shows most of the statistically significant correlations with sleep

quality (|r| = 0.31–0.37).

Figure 8 displays the correlation r to 2-h feature aggregates

(see Supplementary Figures S4–S6 for the p-values, degrees of

freedom, and 95% confidence intervals, respectively) normalized

using the most recent previous L5 window parameters. It

includes 1,319 (410, 209, and 700 for the healthy, NDD, and

IMID group, respectively) PRO responses coupled with feature

aggregates from a total of 84 participants. This is less than above

because a normalization window with the set requirements was

not always available. In this case, digital measure coverage shows

significant correlation with mental daily activities. For the NDD

group, the significant correlations are more spread over PROs. In

the IMID group, features correlating with daily activity levels

emerge.

FIGURE 5
The SD of responses across participant groups. Here, the
PROs correspond to the feature aggregates normalized with the
participant-mean L5 window parameters.
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3.5 Heart rate recovery

The full 1,297 days of VitalPatch data were scanned for

sequences applicable for heart rate recovery analysis. A total of

274 applicable HRR resting periods were identified, covering

73 distinct participants, as detailed in Table 6. Each

participant (among the 73) had 1–16 applicable periods

(3.8 on average). HRR by participant group is presented in

Figure 9, with the total walk durations of the accepted walks.

Only one representative HRR value (the highest) is depicted

for each participant.

ANCOVA showed a significant difference with an F statistic

of 5.68 (p < 0.006) in HRR between participant groups while

adjusting for age and gender. The partial η2 implied a small effect,

with 14% of the variance explained by the group (and 10% by age

while the effect of gender was not significant). Post hoc analysis

indicated that the healthy group differs significantly from both

the NDD (T 3.95, p = 0.001) and IMID (T 2.51, p < 0.038) groups.

Among the 73 participants included in the HRR analysis,

65 had reported PROs during the full study period (3 participants

among healthy and NDD patients and 2 among IMID patients

had no response). The mean score for physical fatigue was 2.00 in

healthy, 2.33 among NDD patients, and 2.39 in IMID patients.

HRR’s relation to fatigue is explored further in the

Supplementary Material S1 (see Supplementary Figures S7,

S8). Significant HRR differences between high and low fatigue

groups were observed only within the healthy participants.

4 Discussion

Fatigue and sleep disturbances reduce the quality of life and

the activities of daily living. Digital measures collected with

wearable devices could improve the objectivity and sensitivity

of fatigue and sleep assessment, ultimately providing additional

support for disease assessment and evaluation of new therapies.

Wearable technologies could facilitate continuous monitoring

outside the clinical setting without requiring active interaction

from the patient. Moreover, digital measures in free-living

settings may enable assessment that is more meaningful to the

patient’s daily living. However, their potential for fatigue

assessment have not been extensively studied, especially in the

clinical context.

The results presented in this study suggest the feasibility of

collecting reasonable quality physiological measures with a

wearable biosensor on patients with chronic NDD and IMID

diseases, as well as healthy controls. The median coverage was

77%–78% for all digital measures, with minimal variability across

different cohorts. The coverage result implies high compliance to

using the wearable biosensor. In contrast, only 91 among the

FIGURE 6
The participants’ average L5 parameter, presented by participant group, for (top) the mean signal values and (bottom) selected frequency
domain HRV features. The figure covers 31 healthy participants, and 21 NDD and 49 IMID patients.
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136 participants reported PROs at least three times during the

study. Furthermore, in all the collected VitalPatch data, less than

0.5% of HR, RR, and R-to-R interval data and only 2.3% of skin

temperature data needed to be cleaned out, indicating a sufficient

data quality given the criteria used in this study.

To evaluate the association between the digital physiological

measures and fatigue and sleep, we presented results of repeated

measures correlation. We selected to evaluate the association

between features aggregated over a 2-h window prior to a self-

evaluation instance. Thus, the results represent the relationship

between the 2-h physiological measures and the PRO at any time

of the day. In the morning, the 2-h window may overlap with

sleep. To account for the natural person-to-person variability in

the digital measures, we further normalized the aggregated

features with respect to the participant’s average parameters at

rest, representing their typical resting state. The L5 windows

representing rest were identified utilizing the activity measures

available from the same wearable sensor. The L5 periods were

reasonably aligned with the self-reported sleep times. While no

major differences were observed in the participant-mean

FIGURE 7
Repeated measures correlation r values between the 2-h feature aggregates and the corresponding PROs. Here, the 2-h feature aggregates
have been normalized with the participant-mean L5 parameters. Statistically significant correlation results (p-value<0.05) are emphasized with black
borders, other r values have faded annotation.

Frontiers in Physiology frontiersin.org12

Antikainen et al. 10.3389/fphys.2022.968185



FIGURE 8
Repeated measures correlation r values between the 2-h feature aggregates and the corresponding PROs. Here, the 2-h feature aggregates
have been normalized with the participants’ latest L5 window parameters. That is, as compared to Figure 7, the normalization parameters are not
averaged over the full study periods. Statistically significant correlation results (p-value<0.05) are emphasized with black borders, other r values have
faded annotation.

TABLE 6Number of participants and sequences applicable for HRR analysis, and themedian duration of walks leading to the inspected resting period.

Group Cohort N Sequences
for HRR analysis

Median
walk duration (min)

Healthy Healthy 21 91 9

NDD HD 9 21 9

PD 10 27 8

IMID IBD 11 32 11

PSS 8 45 11

RA 8 36 9

SLE 6 22 8

Total 7 cohorts 73 274 9
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L5 parameters themselves across participant groups, some

expected variations appeared. For instance, we observed lower

mean HR and higher R-to-R intervals for the healthy, which is

consistent with the presumption that increased fatigue is

associated with reduced HRV (Escorihuela et al., 2020).

Interestingly, the NDD group showed higher skin

temperatures than others, with less variation, too. Although

the group is small, this observation is in line with study by

Eggenberger et al. (2021) where they found that cognitively

healthy adults have lower skin temperatures than those with

mild cognitive impairment. It is noted that the skin temperature

may be affected by ambient temperatures.

The statistically significant correlations between the 2-h

feature aggregates and the PROs varied from participant

group to another. For NDD patients, most of the significant

correlations associated with sleep quality. For the IMID patients,

most correlations were found for sleepiness, whereas a reasonable

number of correlations were also identified for both physical and

mental fatigue. The same is true for the healthy participants,

although there is some variance in the specific digital measures

that correlate with the PROs.

We also proposed an alternative method for feature

normalization, which uses the latest L5 parameters instead of

the averaged ones. Using this method revealed correlations for

physical and mental fatigue also in the NDD patient group. In the

IMID group, significant correlations with the physical activities

of the day emerged. This normalization approach may be better

able to account for shifts in the daily baseline.

Inspecting the individual feature aggregates in Figures 7, 8

further imply the relevance of the digital measures. HR is

relevantly associated with sleepiness, both in the healthy

group and IMID patients. Interestingly, this association is not

seen in the NDD group, suggesting that neurodegeneration

breaks this association, e.g., by affecting the central autonomic

nuclei and/or pathways. Significant associations between skin T

and the dependent variables in the healthy and the IMID

patients, but not in NDD patients in Figure 7, suggest a

similar mechanism. These observations may be related to the

circadian rhythm abnormalities in NDD patients reported in

previous studies (Hood and Amir, 2017). The LF/HF ratio, which

in controlled settings reflects the ratio between sympathetic

nervous system and parasympathetic nervous system activity,

was associated with daytime symptoms in the healthy, but not in

the NDD and IMID patients, suggesting an affection of this

balance in NDD and IMID in the daytime. It is also noteworthy

that in NDD most of the significant results occur between the

dependent variables and sleep quality, and in IMID between

dependent variables and (daytime) sleepiness, which speaks for

different mechanisms of vegetative control between the different

types of diseases. Conversely, it is also interesting to observe that

sleepiness and mental/physical fatigue obviously represent

different concepts and mechanisms, since the distribution of

the significances for the respective variables is very different. A

detailed analysis of the clinical relevance of the findings is,

however, out of the scope of this work and will be left for

future research. The clinical implications of free-living heart

rate variability details may require further examination

(Hayano and Yuda, 2019, Hayano and Yuda, 2021). Since

wearable devices often utilize a lower sampling frequency to

reduce power consumption and prolong the battery life, careful

consideration on the sampling rate should be made during

experiment planning. Although prior work has demonstrated

reliability and clinical utility of heart rate variability measures

quantified from a sampling frequency of 125 Hz (Ellis et al., 2015;

Nallathambi et al., 2020; Hirten et al., 2021; Lee et al., 2022), very

low variability in R-to-R interval, such as those observed in heart

failure patients, may require higher sampling frequencies for

sufficient temporal resolution (Kuusela, 2013).

We note that most of the correlations are modest, and a

larger group especially of NDD patients is required to validate the

presented findings. More advanced features beyond the 2-h

statistical aggregators and classical HRV features should be

studied in the future to capture more complicated temporal

patterns. Additionally, although repeated measure correlation

was selected to account for participant-to-participant differences

in PRO reporting, the subjectivity and limited sensitivity of the

PROs could limit the possibilities to detect associations.

The PRO-association analysis was complemented by an

explorative analysis of 1-min HRR during rest, after periods

of sustained activity. We discovered that the NDD and IMID

patients showed significantly (p = 0.001 and p = 0.0378,

respectively) lower HRR values as compared to the healthy

controls. This finding is consistent with previous research

indicating deteriorated HRR in the HD, PD, IBD, RA, and

SLE cohorts as compared to healthy controls after an exercise

FIGURE 9
Heart rate recovery (left) in the three participant groups,
including one representative value for 21 healthy participants,
18 NDD (9 HD, 10 PD), and 33 IMID patients (11 IBD, 8 PSS, 8 RA,
6 SLE). The adjusted p-values from post hoc analysis with
Tukey’s method indicate the significance of the differences. The
total duration of each accepted walk leading to a 1-min resting
period is presented on the right.
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test either on a treadmill or on a cycle ergometer (Dogdu et al.,

2010; Sarli et al., 2016; Bienias et al., 2017; Pecąnha et al., 2018;

Roberson et al., 2018; Steventon et al., 2018). The presented result

suggests that the difference may also be observed in the context of

daily walking activities using wearable technology in free living

participants. While the 6-min walk test in controlled settings has

been previously established as a valid test beside the more intense

treadmill exercise, our results suggest that useful information can

also be extracted from at-home continuous physiological

measurements (Roberts et al., 2006). On the other hand, NDD

are associated with disruption to blood flow, hypertension, and

reduction in cerebral blood flow (Youwakim and Girouard,

2021). These factors may contribute to the variation in the

HRR results in comparison to the healthy participants. For

SLE, HRR deterioration has been suggested to associate with

disease severity (Bienias et al., 2017). More research is required to

assess the connection of HRR monitored by wearables to disease

severity in the NDD and IMID patients.

The study did not show any significant association between

HRR and fatigue in the patient groups, although on average the

NDD and IMID patients reported higher fatigue than the healthy

participants. However, the participant group correlated

significantly to HRR and may act as a confounder whose

effect dominates over that of fatigue. In the healthy group, in

contrast, a significant difference in HRR was observed between

high and low fatigue groups. Furthermore, because of the

subjective differences in self-assessment of fatigue, the

association between HRR in free-living settings and fatigue

should be studied with repeated measures on a subject level,

in a study covering a longer study period. A notably longer study

period could also enable more advanced analysis, like evaluating

the sensitivity of HRR to within-subject changes in fatigue.

Given the multifactorial nature of fatigue, future work will

combine physiological measures studied here with multiple

sensing modalities. For instance, acceleration signals could be

utilized to investigate physiological responses in the context of

specific activities, or physiological measures could be combined

with the observed sleep stages to further investigate connections

with sleep. The IDEA-FAST consortium intends to validate

findings of this pilot study using multiple sensing modalities

in a larger cohort of patient and healthy participants (N = 2000)

and over a longer study period. The large-scale nature of this

future study will enable further investigation on the sensitivity of

HRR and other digital measures to changes in fatigue and sleep.
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Abstract

Daytime sleepiness impairs the activities of daily living,
especially in chronic disease patients. Typically, daytime
sleepiness is measured with subjective patient reported
outcomes (PROs), which could be prone to recall bias. Ob-
jective measures of daytime sleepiness, which are sensitive
to change, would benefit the assessment of disease states
and novel therapies that impact the quality of life. The pre-
sented study aimed to predict daytime sleepiness from two
hours of continuously measured respiratory rate using a
1-dimensional convolutional neural network. A wearable
biosensor was used to continuously measure electrocar-
diography (ECG) based respiratory rate, while the partic-
ipants (N=82) were asked to fill in Karolinska Sleepiness
Scale three times a day. Considering the need for a sleepi-
ness measure for chronic diseases, neurodegenerative dis-
ease (NDD, N=14) patients, immune-mediated inflamma-
tory disease (IMID, N=42) patients, as well as healthy par-
ticipants (N=26) were included in the study. The disease-
agnostic model achieved an accuracy of 63% between non-
sleepy and sleepy states. The result demonstrates the po-
tential of using respiratory rate with deep learning for an
objective measure of daytime sleepiness.

1. Introduction

Chronic disease patients commonly experience sleep
disturbances and fatigue, which contribute to daytime
sleepiness. Daytime sleepiness, in return, interferes with
the activities of daily living, ultimately deteriorating the
quality of life [1]. It affects cognitive functionalities, in-
creasing the risk of falls resulting in injuries and increased
healthcare costs [1, 2]. For instance, among Parkinson’s
Disease (PD) patients, over 35 % experience excessive
daytime sleepiness [3]. Objective measurement of daytime
sleepiness is important for both assessing new therapies
and evaluating the effect of interventions.

Currently, daytime sleepiness is assessed with subjective

patient reported outcomes (PROs), such as the Karolin-
ska Sleepiness Scale (KSS) or the Epworth Sleepiness
Scale. However, such subjective measures suffer from re-
call bias [4]. Objective measures of the physiological signs
of sleepiness could provide better accuracy, reliability, and
continuous assessment. Electrocardiography (ECG) based
wearable sensors can facilitate the continuous monitoring
of chronic disease patients in free-living settings and may
capture how the disease affects the patient’s daily-living.

Previous studies on patients’ daytime sleepiness pre-
diction have utilized clinical data or laboratory measure-
ments [5,6]. To our knowledge, sleepiness prediction with
wearable sensors in free-living settings has not been stud-
ied extensively: Igasaki et al. predicted sleepiness from
respiratory signals with support vector machines during a
simulated drive, achieving an 89 % accuracy, whereas Bao
et al. used wearable body temperature sensing to assess
sleepiness over two days [7,8]. Both studies only included
a small sample (6-7) of healthy adults measured for a short
time in simulated or restricted free-living settings.

One intuitive manifestation of daytime sleepiness in res-
piration is yawning. Previous studies have established that
yawning frequency increases with sleepiness [9, 10]. This
study uses deep learning (DL) to predict patient reported
daytime sleepiness from continuously measured respira-
tory rate, which is often readily measured by modern wear-
able sensors and may offer an easily accessible continu-
ous measure for sleepiness. The proposed disease-agnostic
model uses a 1-dimensional convolutional neural network
(1D CNN) and builds on a longitudinal multi-site data
set, covering several days of respiratory rate and KSS
responses (three times a day) collected from 82 volun-
teers, including neurodegenerative disease (NDD) patients
(N=14), immune-mediated inflammatory disease (IMID)
patients (N=42), and healthy participants (N=26).

2. Material and Methods

The study is based on the data collected in the IDEA-
FAST feasibility study [11, 12].

Computing in Cardiology 2022; Vol 49 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2022.100



2.1. Study participants

The study data comprised a total of 82 volunteered
adults, including NDD patients (N=14), IMID patients
(N=42), and healthy volunteers (N=26). The NDD group
comprised patients with PD (N=8) and Huntington’s Dis-
ease (HD, N=6). The IMID group included Inflammatory
Bowel Disease (IBD, N=10), Primary Sjögren’s Syndrome
(PSS, N=13), Rheumatoid Arthritis (RA, N=7), and Sys-
temic Lupus Erythematosus (SLE, N=12).

The participants were recruited at four sites, and the eth-
ical approvals were granted (in June to November 2020)
by the research ethics committees of each site: the eth-
ical committee of the Medical Faculty of Kiel Univer-
sity (K) (D491/20), Newcastle upon Tyne Hospitals Na-
tional Health Service Foundation/Newcastle University
(N), Erasmus University Medical Centre in Rotterdam
(E), and George-Huntington-Institute in Muenster (G). The
study was registered in the German Clinical Trial Registry
under DRKS00021693.

2.2. Study protocol

The participants wore a patch sensor, VitalPatch, on
their chest [13]. It adheres to the skin, and its battery lasts
up to seven days. VitalPatch uses a single lead ECG (and
partially a tri-axial accelerometer) to derive respiratory rate
readings at 0.25 Hz. It is a class IIa medical device with
FDA clearance. The participants wore the biosensor for
five consecutive days at a time in free-living settings. The
wear period was repeated up to four times during their en-
rollment and was always followed by at least two rest days.

The PRO for daytime sleepiness was collected using the
KSS, which was prompted three times a day (at 13:00,
17:00, and 21:00 local time) via a smartphone application,
the VTT Stress Monitor App [14]. The KSS was available
for a response for 3 hours in the early and late afternoon
and 2.5 hours in the evening. The response was selected
from a drop-down menu list of ten options, ranging from
”extremely alert” to ”extremely sleepy”.

2.3. Data pre-processing

The respiratory rate data were pre-processed by sorting
the timestamps into monotonically increasing order while
removing duplicates and by removing (a) manufacturer-
defined invalid values, (b) values beyond the range of 4–60
breaths per minute (bpm), and (c) contextual outliers [15].
For (c), each value was compared to the mean of the sur-
rounding ±1.5 minutes of data and removed if the in-
spected value differed from the mean by more than 50%.
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Figure 1. Samples of 2h respiratory rate signals associated
with sleepy (blue) and non-sleepy (orange) states. A row
shows two samples from an individual randomly chosen
from the NDD (top), IMID (middle), and healthy (bottom)
groups. The KSS levels (0–9) are shown in the legend.

2.4. Deep learning approach

A 1D CNN was employed to learn respiratory rate pat-
terns and classify the samples into two target classes:
(1) non-sleepy and (2) sleepy. The non-sleepy class was
defined as KSS levels from “extremely alert” to “rather
alert” (indexed 0 to 3), whereas the sleepy class was rep-
resented by KSS levels from “neither alert nor sleepy” to
“extremely sleepy” (indexed 4 to 9).

The respiratory rates over the 2 hours preceding a KSS
response was selected as the prediction input. Thus, the
input samples were 1800-value time series. Any missing
values were padded with zeros; however, a respiratory rate
coverage of at least 90% was required in the 2h window.
The coverage was evaluated as the number of observations
compared to the observations expected per the sampling
frequency. Additionally, for each participant, at least six
eligible 2h windows with a corresponding KSS score were
required, to capture variation within subject. Figure 1 de-
picts some eligible samples coupled with the KSS scores.

The 1D CNN model was built from two convolutional
layers coupled with max pooling and dense layers. Recti-
fied linear units were used for activation. The training set
samples’ average respiratory rate and standard deviation
were used to standardize the prediction input. The final
layers consisted of a dropout layer and a dense layer with
softmax activation. The weighted sparse categorical cross-
entropy loss function was used together with the Adam op-
timizer. Model performance was measured via classifica-
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tion accuracy, sensitivity, and specificity.
The dataset was grouped by the participant and split ran-

domly into training and test sets, with 20 % of the subjects
held out for testing. The training set was further split by
5-fold cross-validation (CV), and the cross-validation was
utilized in hyperparameter selection. The final model was
trained on the full training data and tested on the held-out
20 % test set. During training, 10% of training data were
used to estimate validation metrics and over-fitting.

3. Results
Table 1 shows the participants’ demographics. The mean

age was 50.9 (±16.1) years, time since diagnosis 11.1
(±9.2) years, and body-mass index 23.8 (±7.2) kg/m2.

Each participant wore the patch-like sensor for 3–12
days while responding to KSS questionnaires. The total
number of 2h respiratory rate samples coupled with a pa-
tient reported sleepiness score was 1255, comprising 187
samples for NDD patients, 708 for IMID patients, and 360
for the healthy group. Whilst a minimum number of 6 sam-
ples was required, the mean number of obtained samples
was 15 (maximum was 30).

The architecture of the 1D CNN is summarized in Fig-
ure 2. The hyperparameter optimization yielded a batch
size of 30 samples, a learning rate of 0.0001, 50 % dropout
rate, and kernel size 5 in the first and 3 in the second convo-
lutional layer. Additionally, the second convolutional layer
included an L2 regularization factor of 0.1.

In the cross-validation, the 1D CNN model achieved
an average accuracy of 58.3%, sensitivity of 62.5%, and
specificity of 52.6%, as detailed in Table 2. Over-fitting
was monitored via the training and validation loss curves,
and the training was limited to 25 epochs.

The final model achieved 62.6 % accuracy, 57.2 % sen-
sitivity, and 69.2 % specificity in a held-out test set. Based
on observations during CV, early stopping was applied af-
ter the training and validation loss diverged beyond 0.05
from each other for three consecutive epochs. The test set

Table 1. Participant demographics by participant group.

NDD IMID Healthy
Study sites K, G E, K, N E, G, K, N
Number 14 42 26

Female 7 34 12
Male 7 8 14

Age (mean±SD) 53.6
(±12.6)

53.1
(±16.0)

46.1
(±17.4)

Years since diag-
nosis (mean±SD)

4.3
(±2.5)

13.5
(±9.4)

–

Body-mass index
(mean±SD)

24.0
(±2.4)

22.5
(±9.2)

25.7
(±4.4)

Table 2. Cross-validation results.

Accuracy Sensitivity Specificity
1 0.5226 0.6484 0.4167
2 0.6061 0.6458 0.5686
3 0.5707 0.4884 0.6334
4 0.6396 0.7344 0.4638
5 0.5758 0.6061 0.5455

Average 0.5829 0.6246 0.5257

Figure 2. The model architecture comprises 10,426 train-
able parameters.

comprised 10 IMID (5 SLE, 3 RA, 2 PSS) and 2 NDD
(both PD) patients and 5 healthy participants, with 7–30
samples per participant. On average, 52% of the partici-
pant’s samples represented the sleepy class.

4. Discussion

This study presented a 1D CNN model using ECG-
based respiratory rate data to predict daytime sleepiness
at the end of a 2-hour monitoring sequence. The final
model achieved a 63% accuracy between non-sleepy and
sleepy states, together with 57% sensitivity and 69% speci-
ficity. The training data included participants from six
chronic disease cohorts and healthy participants, capturing
several days and several times of the day, from afternoon
to evening. We note that notable variations in the perfor-
mance metrics were revealed in cross-validation within the
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training set. However, the average accuracy of 58% was
reasonably close to the final test accuracy. Overall, our re-
sults suggest that respiratory rate may have potential as a
disease-independent predictor of daytime sleepiness.

A well performing objective digital measure can be use-
ful for the clinical assessment of daytime sleepiness in
chronic patients. Continuous measures may capture long-
term temporal trends more easily than a PRO and enable
assessing patient state in the free-living environment, com-
prehensively describing the effect of sleepiness on the pa-
tient’s day-to-day quality of life. However, the PROs act as
a reference in prediction modelling. This complicates the
development of a model that can generalize to new sub-
jects since the scoring may differ significantly from person
to person due to individuals’ subjective experiences. Thus,
personalized models may achieve improved results.

Future studies may explore more specific respiratory
patterns from the respiratory signal, and combine with
other modalities, e.g, activity measures. Moreover, previ-
ous studies have reported that age can affect yawning fre-
quencies [10]. We note that the presented study did not in-
corporate any demographic information in the model. Per-
sonalized prediction models may overcome this and per-
form better for individual patients. Future studies should
eventually focus on developing more complex models that
can indicate the level of sleepiness, especially capturing
clinically relevant changes in daytime sleepiness.
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Electronic health records (EHRs) encompass evidence of patient care paths and outcomes. Different EHR models 
have been widely adopted by healthcare facilities and continue to accumulate increasing amounts of data with 
potential to discover new medical knowledge and to support decision making to improve outcomes for new 
 patients1. Although EHRs offer large volumes of longitudinal real-life data for improved machine learning (ML), 
they still challenge the methodology with their heterogeneous, sparse, often incomplete and even erroneous  data2. 
Moreover, due to the sensitive nature of the data, privacy issues and regulations will further complicate model 
development and deployment in the  future3. Some regulations may require database anonymization to protect 
data privacy but this may result in decreased data quality due to additional noise and gaps.

Cardiovascular diseases (CVDs) have held their ranking as the leading cause of death worldwide for years 
and continue to impose an increasing challenge to the global health. In 2017, CVDs alone caused 17.8 million 
deaths globally, showing an alarming 21.2 % increase in the yearly CVD death count since  20074. Furthermore, 
CVDs can be a risk factor in relation to other diseases and increase the demand for hospital care. For instance, 
they have been linked with poor prognosis in the context of COVID-19, which threatened health care capacity 
all over the  world5. The problem of CVDs has not been sufficiently addressed. While the risk could be efficiently 
reduced with lifestyle changes towards physically active lives and healthier diets, the reports of the aging popula-
tion and overwhelming obesity rates indicate enduring prosperity for  CVDs4. Predictive models may help identify 
high-risk patients and patient deterioration and may be used to focus healthcare resources efficiently to improve 
patient outcomes and manage the increasing CVD counts. Data-driven approaches are expected to renew the 
clinical cardiology practice, ascertain their place in the clinician’s toolbox, and to reform our understanding of 
the causes of  CVDs6,7.
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Transformer neural networks are the state-of-the-art machine learning methods for sequential data modelling. 
Developed for natural language processing, their built-in properties respond to many needs that arise when using 
EHR data. Thanks to them combining attention and positional encoding, transformers can be applied to learn 
bidirectional temporal dependencies despite the sparsity and possible errors in the large volumes of EHR data. 
Their design to handle textual input does not exclude numerical input and may thus be useful for heterogeneous 
input types. In the context of EHRs, they have been applied mainly to clinical notes or  diagnoses8–11. Yet, their 
capabilities to capture more complex dependencies in heterogeneous databases have received little  attention12. 
Furthermore, prior studies have focused on one transformer variant; bidirectional encoder representations from 
transformers (BERT)13. A newer model, XLNet, has surpassed BERT in many baseline natural language process-
ing  tasks14. This work uses an anonymous cardiac patient EHR database to compare the learning capabilities 
of BERT and XLNet in the important application of mortality risk prediction. Here, the transformer models 
are applied to multi-modal heterogeneous patient event time series, comprising both textual and numerical 
attributes.

Prior to transformers, convolutional neural networks (CNNs) and recurrent neural networks (RNNs) achieved 
encouraging results in, e.g., arrhythmia detection from electrocardiograms (ECG), diagnostic decision sup-
port using cardiovascular images, and diagnosis prediction from EHR  data15–18. The introduction of attention 
mechanisms provoked countless new studies reporting improved  results19–23. Importantly for clinical applica-
tions, attention gave interpretability to the model outcomes, thus offering one solution to the primarily criticized 
shortcoming of deep learning (DL)  methods19. For example, Choi et al. presented the RETAIN model which 
coupled attention with recurrent neural networks (RNNs) to predict heart failure from EHR data. They presented 
a method for prediction interpretation while reporting an 87% area under the receiver operating characteris-
tics curve (AUC)21. Another relevant study was conducted by Rajkomar et al. who used an ensemble of three 
DL models, one of which was attention-based, and tested their system on EHR data from two hospitals. They 
achieved 93–95% AUC for in-patient mortality prediction at 24 h after  admission22.

The original Transformer relied exclusively on attention  mechanisms24. The Transformer and its variants 
surpassed RNNs by allowing parallelized computing and by learning bidirectional dependencies. They learned 
longer-range dependencies at improved training time, which is crucial with long input sequences like EHR 
 histories24. The first studies applying transformers directly on EHRs were built on BERT, which bases its learning 
strategy on masking the  input13. Shang et al. combined BERT with ontology embeddings from a graph neural net-
work creating G-BERT for medication  recommendation10. They reported a 1% increase in precision-recall AUC 
as compared to RETAIN. BEHRT by Li et al. applied BERT directly for disease prediction by using sequences 
of diagnoses available in the  EHRs9. They reported a patient-averaged AUC of 95–96% for varying prediction 
windows extending up to 12 months. Thirdly, Rasmy et al. reported up to 2% improvement in disease predic-
tion with their Med-BERT as compared to  RETAIN11. They evaluated Med-BERT for heart failure prediction in 
diabetic patients and pancreatic cancer onset prediction. Some studies have additionally proposed somewhat 
modified transformers for EHR representation  learning25–27.

In this study, we apply the ground-breaking transformer models on patient time series to predict 6-month 
mortality in cardiac patients. The 6 months prediction period may offer actionable predictions for many chronic 
conditions. Unlike BEHRT and Med-BERT which were trained on sequences of diagnostic codes, we incorporate 
over a dozen different event types each described by multiple attributes to capture a more complete depiction of 
the patient history. By feeding the transformers sequences of patient events with timestamps based on age, the 
models may learn how the interplay between different events and their outcomes, as well as temporal dependen-
cies, affect the patient outcome. With this approach, the patterns learned by the model may unveil unforeseen 
associations between different events. Moreover, we study both BERT and XLNet. Unlike BERT, XLNet is an 
auto-regressive transformer variant that avoids corrupting the  input14. We exploit the anonymous EHRs of over 
23,000 cardiac patients who were treated at Tays Heart Hospital in Finland and report our findings on using 
privacy-preserving anonymous data in model development, an increasingly common starting point for future 
EHR studies. A previous machine learning study on the same database considered a subset of 9066 consecutive 
acute coronary syndrome patients and achieved an AUC of 89% for 6-month mortality using conventional, non-
deep learning  methods28. This study takes up a more complex challenge of predicting mortality in all available 
CVD patients, comprising a more heterogeneous patient population.

The longitudinal study data comprised three Finnish data sources: (1) the EHR by the Pirkan-
maa Hospital District (PHD), (2) the KARDIO registry by the Tampere Heart Hospital, and (3) the Finnish 
mortality registry by Statistics Finland. The PHD EHR extend back to the 1990’s and the date of death from 
the mortality registry was included for the matching period. The PHD EHR data include hospital discharge 
diagnoses, which record every diagnosis recorded for the patient in ICD-10 format (and previously in ICD-9 
and ICD-8 formats). This data is equally reported in every hospital nationally and the validity of the registry is 
high for many significant cardiovascular conditions such as strokes, coronary heart disease and heart  failure29–31. 
The KARDIO registry is the most recent of the three; its first entries date back to the early 2000’s. The original 
database was automatically collected from the three registries until January 2020 as a part of a retrospective 
registry study, MADDEC (Mass Data in Detection and Prevention of Serious Adverse Events in Cardiovascular 
Disease)32.

The study was approved by the Pirkanmaa Hospital District Institutional Review Board’s scientific steering 
committee. Informed consent is waived since the retrospective nature of the study by the Pirkanmaa Hospital 
District Institutional Review Board’s scientific steering committee. The study was conducted according to the 
declaration of Helsinki as applicable and the study data was processed in accordance with the Finnish legislation. 
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An anonymous version of the database was used, comprising 72,680 patients (9172 deceased patients within 
six months of their last visit, i.e., 12.6%) all treated at the Tays Heart Hospital for different cardiac conditions.

The patient records were extracted from the event-oriented database, pre-
processed, and finally ordered on temporal attributes to formulate a single time series of events for each patient. 
The resulting time series were further processed into appropriate input for the transformer neural networks, as 
summarized in Fig. 1. In the anonymous database, the temporal attributes were age-based (on a daily level, i.e., 
days since birth) and the real dates and times were unknown.

Data pre-processing included replacing Roman numerals with Arabic numerals, filling in event start or end 
times when only one of the two was missing, and unifying notations. Units and measurement names, anesthesia 
types, and urgency classes were translated from Finnish to English. Additionally, some body-mass index (BMI) 
values below 0.02 were presumed to use centimeters instead of meters for height, and thus, multiplied by 104 to 
restore correct units. For events where the ending time preceded the recorded event start time, the timestamp 
order was presumed a typographical error and the timestamps were switched. In the end, only the pre-processed 
event start time was included as the event durations were generally error-prone.

Any events occurring before the patient became of age were excluded. Additionally, any events with missing 
event timing or overlap with the date of death were excluded. The latter consists of events extending to the date 
of death, e.g., resuscitation or procedures, or beyond, such as lab values or diagnoses.

The data sources contained 14 distinct types of events each described by a different set of attributes, as pre-
sented in Table 1. Here, we took the liberty of excluding any attributes that were never present for an event type. 
For angiography, percutaneous coronary intervention (PCI), coronary care unit (CCU), transcatheter valve 
implantation (TAVI), and resuscitation events, the attributes were limited to the nine most available attributes 
(out of tens of attributes) to control input sequence length and to fit multiple events in the input sequence. Each 
event was constructed into a sequence simply by listing the event type and the corresponding attributes in one 
sequence. Thus, each event type was represented by a specific “sentence structure” mimicking natural language. 
Any missing attribute values were filled in with ’None’. All event representations started with the event type name, 
the event starting time, and residence (among Finnish counties) when available. Residence was available in 67%, 
74%, and 79% of CCU, resuscitation, and hospital ward events respectively, while it was missing completely for 
TAVI and in 59–94% for other event types. Event type, start time, all operation attributes, times repeated, ward, 
sex, stenosis, imaging type, dialysis, temporary pacemaker, primary vasoactive medication, fluoroscopy time, and 
glomerular filtration rate attributes were all fully available for the relevant event types. The remaining attributes 
in labs were available in 72–75% of lab events (except textual values only in 1%). Diagnosis code and priority 
were available in 36% and 41% of diagnosis events respectively, and anesthesia type, ASA class, and urgency in 
56%, 61%, and 93% of procedures. All measurement event attributes were available in 91–100% of measurement 
events. The remaining attributes in angiography, PCI, CCU, and TAVI were available in 98-100% of the respec-
tive events, whereas the other attributes for resuscitation events were available in 89% of resuscitation events.

The individual pre-processed events were combined in order of occurrence into one sequence per patient, 
forming the patient event timeline. Until this point, the events were linked via patient and event pseudo-iden-
tifiers. The pseudo-identifiers were removed and the date of death was isolated and transformed into a binary 
class: positive (1) when the date of death occurred within 182 days of the last event, and negative (0) otherwise. 
The date of death was comprehensively obtained from the Finnish mortality registry. Importantly, in the real-life 

Figure 1.  A schematic example of how a patient’s events were formulated into a time series. The records in the 
event-oriented database contain the event type specific attributes (yellow circles). First, the events related to the 
same patient ID (magenta square) were combined to a sequence sorted according to their temporal attributes. 
Hereafter, the patient ID was no longer necessary. Next, the class (prediction target, i.e., death within six months 
or alive) was computed using the death-related attribute (green striped circle) and the time between that and the 
previous event. Finally, the point of prediction was randomized. If the class was positive, the time to death from 
the final remaining event was maintained within the selected six month period.
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clinical use-case the model could be used to produce predictions at any time of a patient timeline. Therefore, to 
produce realistic evaluation of model performance and avoid bias due to the retrospective nature of the data, a 
random number of events at the end of a patient’s timeline were erased. The number of erased events was selected 
randomly between zero and a patient-specific maximum number such that at least five events remained for the 
patient, and the death for any positive case would still occur within the selected cutoff from the final remaining 
event.

Finally, the input sequences were tokenized and the special tokens for class (CLS) and sentence separation 
(SEP) were added once to each patient timeline according to their expected position in BERT and  XLNet33. Any 
numerical input was transformed into string-type integers for tokenization. The age in days was transformed 
into full years.

The model hyperparameters were optimized using Population Based 
Training (PBT)34,35. PBT is an evolutionary algorithm, which trains several networks with varying hyperpa-
rameters in parallel. During the training process, each network can explore hyperparameters randomly in a 
predefined space or exploit another better performing parallel model by copying its parameters and continuing 
to explore new hyperparameters with the partially trained model, without restarting the training from scratch.

PBT was applied to optimize the learning rate, dropout fraction, and model dimensions including the num-
ber of heads and layers, as well as layer size. Due to memory limitations, only batch sizes 16 and 24 were tested. 
PBT was run for both BERT and XLNet for 30 epochs on 12 trials with the perturbation interval of ten epochs. 
Similarly to the original transformers, Gaussian Error Linear Unit (GELU) was used for activation.

Eighty percent of the study data was used for model development, while 20% was held 
out as a test set. The development data was further split into training and validation data, comprising 80% and 
20% of the development set, respectively. Stratified splits were used to maintain a similar distribution of positive 
and negative cases in each set. The data sets were further balanced by taking a random sample of negative cases 
to match the number of positive cases (see details in Implementation). Model performance was assessed with 
AUC, precision (positive predictive value), and recall (sensitivity)36.

PBT was performed on the development set. The top-performing BERT and XLNet models were validated 
using stratified fivefold cross validation with the development data. Subsequently, the final BERT and XLNet 
models were trained with the selected hyperparameters on the full development data and evaluated on the held 
out test data set.

Table 1.  Event specific attributes *Measurement context in text format, for example a suspected diagnosis 
or type of the visit. **Measurement context related code (e.g. an ICD-10 diagnostic code). ***Family history 
(for early coronary artery disease) was positive if at least one of the patient’s first degree relatives had suffered 
a myocardial infarction or underwent coronary revascularization (PCI or coronary artery bypass surgery) at 
an early age ( < 55 and < 65 years in men and women, respectively). a International Statistical Classification of 
Diseases and Related Health Problems, the 10th revision (ICD-10). b Anatomical Therapeutic Chemical (ATC) 
code. c Nordic Classification of Surgical Procedures (NCSP). d American Society of Anesthesiologists (ASA) 
classification of physical status.

Event type Attributes

Labs Event type, start time, residence, lab test value (num), lab test value (char), lab test name, 
lab test unit

Diagnosis Event type, start time, residence, diagnosis codea , diagnosis priority

Medication Event type, start time, residence, ATC codeb , daily dosage, dose unit, administration 
method

Operation Event type, start time, residence, sequence number, code ID, codec

Procedure Event type, start time, residence, anesthesia type, ASA classd , operation urgency

Measurement Event type, start time, residence, measurement value (num), measurement context*, 
measurement name, measurement unit, measurement context code**

Hospital visit Event type, start time, residence
Hospital ward Event type, start time, residence, times repeated, ward

Angiography Event type, start time, residence, times repeated, ward, primary angiography findings, sex, 
stenosis (boolean), primary puncture places

Percutaneous coronary intervention (PCI) Event type, start time, residence, times repeated, ward, complications, sex, indication, 
urgency

Imaging Event type, start time, residence, imaging type

Coronary care unit (CCU) Event type, start time, residence, times repeated, ward, dialysis, sex, temporary pace-
maker, primary vasoactive medication

Transcatheter aortic valve implantation (TAVI) Event type, start time, times repeated, ward, dyslipidemia, fluoroscopy time, sex, glo-
merular filtration rate, hypertension

Resuscitation Event type, start time, residence, times repeated, ward, family history***, sex, hyperten-
sion, smoking
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The final model training was repeated five times to account for the effect of random initialization. Early 
stopping was applied when the training loss failed to improve at least by 0.0045 over 5 epochs (min_delta 
and patience in keras EarlyStopping, selected based on the previously observed cross-validation losses). To 
interpret what the final models had learned, the models were fed example time series from the test set and the 
attention weights were visualized using  BertViz37. Min–max normalization was applied to the attention layers 
prior to the visualization to properly highlight where attention was at its highest and lowest.

The data were tokenized using pretrained tokenizers (bert-base-cased, xlnet-base-cased) 
available in the Hugging Face model  database13,14. The transformer models were implemented in Python by 
using the Hugging Face Transformers library together with  Tensorflow33,38. The Ray Tune package (function 
API) was used for hyperparameter  optimization35. The data split for model evaluation was obtained using scikit-
learn39. The final models were trained using an Adam optimizer with an epsilon of 10−8 . The sequence length 
was restricted to 512 tokens such that the latest information in the patient history was included. Overlength 
sequences were truncated and under-length sequences padded using the tokenizer-specific padding token.

Class imbalance was managed by (1) down-sampling the negative examples in the training and validation 
sets and (2) using a weighted binary cross-entropy loss function. To ensure that each limited-size batch had a 
reasonable chance of including some positive cases, the negative samples were randomly down-sampled so that 
25% of the samples in both training and validation set were positive. By limiting the extent of down-sampling, 
the related data loss was also limited. The remaining imbalance was counteracted via the loss function using 
balanced class weights; each class was weighted by its inverse prevalence in the development set, further divided 
by the number of classes (two).

A 32 gigabyte Tesla V100-DGXS graphics processing unit (GPU) was used in hyperparameter optimization 
and training the models.

Implementing the exclusion criteria reduced the study data from 72,680 patients to 57,377 adult patients, includ-
ing 3771 (6.57%) positive cases. The demographic details are described in Table 2. The average age of patients was 
65 years (79 for positive cases). The sex of the patient was only available for 35.7%, most of which (61.2%) were 
male. The notably large portion of sex information was lost upon anonymization as the national identification 
numbers were removed.

After down-sampling the development sets to counteract class imbalance (as detailed in “Methods”), the 
resulting training and validation sets contained 9640 and 2420 patients (12,060 in total with 3015 positive cases). 
The test set comprised 11,482 patients with the number of positive cases, 756 (6.58%) corresponding approxi-
mately to the prevalence in the full pre-processed data. Thus, the study involved 23,542 individuals (including 
all 3771 positive cases). The patient flow is summarized in Fig. 2.

The hyperparameters optimized using PBT are presented in Table 3. BERT performed best on learning rates 
around 5 × 10

−7 to 1 ×10
−6 , whereas rates an order of magnitude larger ( 5 × 10

−6 to 1 × 10
−5 ) worked best 

Table 2.  Pre-processed study data. The percentages depict the proportion of the (known) sex with respect to 
the full number of patients on the same row. SD standard deviation.

N Female Male Age range Mean years of data (SD) Mean no. of events (SD)
Positive 3771 691 (18.3%) 1183 (31.4%) 18–102 6.5 (3.4) 1755 (2364)
Negative 53,606 7249 (13.5%) 11,365 (21.2%) 18–105 4.2 (3.8) 553 (1091)
Total 57,377 7940 (13.8%) 12,548 (21.9%) 18–105 4.4 (3.9) 632 (1255)

Figure 2.  Patient flow diagram. The total number of patients is indicated for each step and the number of 
positive cases is denoted in brackets. The final data used in model evaluation comprised 23,542 patients and is 
depicted on a gray background.
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for XLNet. The selected configurations comprised 108,312,578 trainable parameters for BERT and 5,482,130 
parameters for XLNet.

The models with optimized hyperparameters were cross-validated using 5-fold validation to assess their 
sensitivity to the selection of training instances. The validation results are presented in Table 4. The models 
achieved similar average AUC. BERT achieved slightly higher precision but the variance between folds was also 
higher. However, less than half of the predicted cases were true positive cases. Finally, XLNet reached a notably 
higher average recall, with low variance between folds. Thus, the optimized XLNet was more sensitive to detect 
positive cases than BERT.

The final model training was repeated five times to examine the effect of random initialization. The test results 
obtained on the held-out test set are presented in Table 5. The corresponding mean specificity scores were 78% 
and 69% for BERT and XLNet, respectively. The test set results support the observations from cross-validation. 
The slight improvement in AUC and recall were likely due to early stopping, which stopped the training already 
before 50 epochs in all cases. This prevented over-fitting, which occurred remarkably early for this data and 
models. The drop in precision is explained by the increased class imbalance in the test set but also underlines 
that both models produced mostly false positives, despite capturing 73–83% of the positive cases on average. 
In comparison to BERT, the improvement in XLNet’s recall exceeds the drop in precision and, thus, the XLNet 
model may be more useful.

The final BERT and XLNet models exhibited very similar metrics (run number 5 in Table 5) and were fed 
an example time series from the test set for interpretation. The model attention for the 50 tokens nearest to the 
classification token in an example time series are depicted in Fig. 3a,b for XLNet and BERT, respectively. The 
selected (full sequence) example was correctly labeled positive by XLNet and mislabeled negative by BERT. The 

Table 3.  Hyperparameters optimized via population based training.

Hyperparameter BERT XLNet
Hidden size 144 144
Number of layers 12 6
Number of attention heads 12 6
Feed-forward layer hidden size 128 128

Learning rate 1 × 10
−6

5 × 10
−6

Batch size 16 16
Dropout 0.5 0.4

Table 4.  5-fold cross-validation of optimized models. Performance metrics in the validation set, after 50 
epochs. The best mean score for each metric (AUC, precision, recall) is in bold. 

 Fold
BERT XLNet
AUC Precision Recall AUC Precision Recall

1 0.7452 0.4567 0.8126 0.7438 0.4592 0.8027
2 0.7366 0.5244 0.6783 0.7570 0.4740 0.8159
3 0.7703 0.4711 0.8640 0.7692 0.4873 0.8292
4 0.7432 0.5350 0.6849 0.7454 0.4496 0.8292
5 0.7689 0.5047 0.7993 0.7557 0.4815 0.7977
Mean 0.7528 0.4984 0.7678 0.7542 0.4703 0.8149

Table 5.  Blind test results on five different initializations. The best mean score for each metric (AUC, 
precision, recall) is in bold.

 Run
BERT XLNet
AUC Precision Recall AUC Precision Recall

1 0.7398 0.2248 0.6336 0.7556 0.1533 0.8373
2 0.7612 0.1923 0.7421 0.7602 0.1574 0.8360
3 0.7586 0.1919 0.7355 0.7654 0.1665 0.8201
4 0.7547 0.1937 0.7209 0.7609 0.1601 0.8280
5 0.7591 0.1571 0.8333 0.7586 0.1563 0.8347
Mean 0.7546 0.1919 0.7330 0.7602 0.1587 0.8312
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corresponding pre-processed example input before tokenization is depicted in Fig. 3c. The full patient history 
comprised 111 events, whereas the models could only consume input from up to 38 events.

The 83 years old patient’s latest event was an operation encoded as H0519, which stands for a simulation 
film, possibly related to radiation therapy planning. Their history also showed, e.g., an angiography of the heart 
and/or coronary artery, a percutaneous transluminal coronary angioplasty, and an intraventricular stent place-
ment to enlarge the coronary artery, all within the past year. As seen in Fig. 3a at the end of the sequence, XLNet 
attends especially to the age (three instances visualized) and to the operation code. Most other layers also attend 
to age and the operation code at the <cls> classification token, while exhibiting varying attention to the other 
inputs. In contrast, BERT’s attention at the [CLS] classification token in Fig. 3b does not exhibit special attention 
to the patient’s age (not the primary focus of attention in any layer) but attends to some of the lab results. It is 
noted that a tokenizer specialized in EHR data might not only make the interpretation easier but also improve 
attention results.

    a               b c

…

labs, 82, None, 266, None, B -Trom, E9/l

labs, 82, None, 1, None, fP-Kol-LDL, mmol/l

labs, 82, None, 344, None, E -MCHC, g/l

labs, 82, None, 91, None, E -MCV, fl

labs, 82, None, 332, None, E -MCHC, g/l

labs, 82, None, 3, None, B -Eryt, E12/l

operation, 82, Päijät-Häme, 2, FN1BC

operation, 82, Päijät-Häme, 3, FN1BT

operation, 82, Päijät-Häme, 4, FN1YT

angio, 82, Päijät-Häme, 1, None, 3-VD, 1, 

is stenosis, A. radialis

pci, 82, Päijät-Häme, 1, None, No complications, 

1, NSTEMI, during the same hospitalization period

labs, 82, None, 1, None, P -CRP, mg/l

labs, 82, None, 3, None, B -Eryt, E12/l

labs, 82, None, 3, None, P -K, mmol/l

labs, 82, None, 0, None, B -HKR, %

labs, 82, None, 129, None, B -Hb, g/l

labs, 82, None, 61, None, fP-Krea, umol/l

labs, 82, None, 0, None, B -HKR, %

labs, 82, None, 315, None, B -Trom, E9/l

labs, 82, None, 143, None, P -Na, mmol/l

labs, 82, None, 14, None, Pt-EKG-12, form

labs, 82, None, 9, None, fB-Leuk, E9/l

labs, 82, None, 342, None, E -MCHC, g/l

labs, 82, None, 29, None, E -MCH, pg

labs, 82, None, 88, None, E -MCV, fl

labs, 82, None, 88, None, E -MCV, fl

labs, 82, None, 5, None, fB-Leuk, E9/l

labs, 82, None, 14, None, Pt-EKG-12, form

labs, 82, None, 45, None, P -CRP, mg/l

labs, 82, None, 364, None, E -MCHC, g/l

labs, 82, None, 3, None, P -K, mmol/l

labs, 82, None, 30, None, E -MCH, pg

labs, 82, None, 66, None, fP-Krea, umol/l

labs, 82, None, 128, None, B -Hb, g/l

labs, 82, None, 4, None, B -Eryt, E12/l

labs, 82, None, 293, None, B -Trom, E9/l

labs, 82, None, 143, None, P -Na, mmol/l

operation, 83, None, 1, H0519

Figure 3.  Attention (a) in the fifth attention layer in XLNet at the end of an example subsequence near the 
<cls> token, and (b) in the final attention layer in BERT at the start of an example subsequence near the [CLS] 
token. The different colours represent the (a) six and (b) 12 attention heads; the more opaque the colour, the 
heavier the attention. The final events of the example time series are presented in a human readable format in 
(c), where the first information visible to BERT is highlighted with purple and with green for XLNet. Figures 
(a,b) were produced using  BertViz37.
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This work explored and compared the potential of two popular transformers, BERT and XLNet, in the task of 
predicting 6-month mortality in cardiac patients at randomly chosen events recorded in their EHR. The hetero-
geneous electronic health record data were constructed into semi-structured multi-event time series to exploit 
the temporal information. We achieved a higher recall with XLNet, suggesting that it captures more positive cases 
than BERT. It has been argued that the learning strategy implemented in XLNet is better capable of capturing 
long-term dependencies in  sequences14. To our knowledge, this is the first study exploring XLNet for mortality 
prediction from electronic health records.

Previous studies often set their focus on in-patient mortality within 24 h of admission, which can be especially 
beneficial for applications at intensive care  units2. In contrast, patients with long-term conditions may profit from 
earlier predictions. The 6-month prediction period selected in this study allows time for clinicians to re-evaluate 
the patient’s needs and make their care more effective to decrease their risk of death. It provides time for any 
additional tests and diagnostics, as well as a realistic possibility for interventions to take effect. Six months was 
considered a suitable period to explore model performance in such a heterogeneous cardiac patient population.

As compared to a prior study using extreme gradient boosting (XGBoost) on the same database and predic-
tion target, the presented results fall short of the previous AUC  result28. This may, however, be expected because 
the prior study focused on a specific homogeneous patient group (with acute coronary syndrome) whereas the 
current work with a larger portion of the database included a wide heterogeneous spectrum of CVD patients. 
Moreover, the more refined and smaller subset of data in the previous study allowed for features selected by expert 
clinicians, which may have further facilitated good performance but also increased manual work. Additionally, 
this study used the anonymous database, which lead to more noise and gaps in the training data and only offered 
dates relative to a patient’s birth instead of real dates. Hence, the importance of the concurrent planning of the 
analysis and anonymization is underscored. In this study, because the collection of study data was terminated 
on a specified date without any follow-up, the data contained patients that were still in care or did not have a 
full six months since their last event. These examples could not be filtered from the anonymous data as the real 
dates were no longer available and, thus, they may cause the model to be too optimistic about patient survival. 
The missing real dates also prevented the analysis of time-dependent differences between patient timelines which 
might exist due to, e.g., updates in care guidelines. Moreover, the sex of patient was largely missing although it 
is an important clinical factor affecting patient outcomes.

Even though some transformers such as XLNet are in principle able to consume sequences of any length, 
the models are still limited by the memory resources of the hardware used for training and visual output inter-
pretation. This poses a challenge for incorporating all different event types and their attributes from the patient 
history. Here, the 512 tokens representing the most recent events of the patient were used while the captured 
time period varied. Formulating the EHR data as multi-event time series may facilitate the extraction of new 
knowledge concerning the role and relationships of different types of events. Future research may explore longer 
input sequences with XLNet or alternative ways to incorporate multi-event information. For instance, replac-
ing code based attributes with full text descriptions may improve performance but would require longer input 
sequences to feed the model the equivalent portion of patient history. In the future, harmonization of hospital 
information management systems may additionally yield better grounds regarding the selection of attributes as 
they are inherited from the hospital’s original system. Further improvement may be achieved by using tokenizers 
specially trained on clinical data or pre-trained transformers. Here, due to the lack of such resources for XLNet, 
both models were trained from scratch to facilitate a fair comparison. Notably, our results show that the standard 
English tokenizers can produce promising learning results.

As demonstrated in this work, transformers provide a means to interpret individual outputs and the pre-
dictions may therefore become a valuable part of the clinical workflow and answer to the requirements set for 
ML models in CVD  predictions40. Nevertheless, intuitive and user-friendly output interpretation interfaces for 
clinicians need further development so that this capability can be properly harnessed. The resulting tools may 
be efficiently integrated to the EHR system itself, although additional computing resources are likely required.

Using transformers to learn bi-directional dependencies in EHRs shows promise in mortality prediction, despite 
the sparsity of the data. We compared BERT and XLNet for CVD patient mortality risk prediction from EHR 
data. While prior research has focused on BERT for EHR applications, the results of this study suggest that future 
studies may achieve improved results using XLNet. Similar models with actionable outputs, as presented here, 
could improve patient outcomes with chronic diseases, such as CVDs, and be directly integrated to the EHR 
systems for everyday clinical use.

We also observed that transformers may perform better in more refined patient groups. The wide spectrum 
of CVD patients in this study added complexity to the prediction problem, producing weaker performance 
as compared to conventional machine learning in a more refined patient group. Furthermore, more concise 
representations have reached better learning results, whereas the multi-attribute multi-event representation 
faces computational restrictions. Hence, in the future, improved results may be obtained via more sophisticated 
representations, transfer learning from pre-trained models, or via improved computational power. As in the 
presented study, anonymous data will become an increasingly common basis for model development. In such 
cases, the performance of data-driven models may benefit from an improved anonymization process.

The anonymized data is available for scientific purpose upon reasonable request to J.H. (jussi.hernesniemi@
sydansairaala.fi) pending the approval of the MADDEC study steering committee.
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