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A B S T R A C T

Edge-to-cloud computing is an emerging paradigm for distributing computational tasks between edge devices
and cloud resources. Different approaches for orchestration, offloading, and many more purposes have been
introduced in research. However, it is still not clear what has been implemented in the industry. This work
aims to merge this gap by mapping the existing knowledge on edge-to-cloud tools by providing an overview
of the current state of research in this area and identifying research gaps and challenges. For this purpose,
we conducted a Multivocal Literature Review (MLR) by analyzing 40 tools from 1073 primary studies (220
PS from the white literature and 853 PS from the grey literature). We categorized the tools based on their
characteristics and targeted environments. Overall, this systematic mapping study provides a comprehensive
overview of edge-to-cloud tools and highlights several opportunities for researchers and practitioners for future
research in this area.

Editor’s note: Open Science material was validated by the Journal of Systems and Software Open Science Board.
1. Introduction

Edge computing is an emerging computing paradigm where data
processing and storage are performed closer to the source rather than
on centralized servers in the cloud. This is achieved by placing com-
puting resources at the network edge, which enables the processing of
data to be performed in real-time and with low latency.

In particular, the Edge-to-cloud Cloud Continuum enables the ex-
tension of the traditional Cloud towards multiple entities (e.g., Edge,
Fog, IoT) providing analysis, processing, storage, and data generation
capabilities (Moreschini et al., 2022).

In order to support the computation in the Edge-to-cloud contin-
uum, different tools have emerged. With edge-to-cloud tools we refer to
the combination of software, and services used to collect, process, and
analyze data from edge devices (sensors, machines, etc.) to the cloud.

The characteristics of edge-to-cloud tools vary depending on the
specific use case and organization’s needs. These characteristics can
include processing and analyzing data at the edge of the network,
reducing latency, optimizing data transmission, scalability, and flexi-
bility. Additionally, edge-to-cloud tools can provide access to advanced

✩ Editor: Uwe Zdun.
∗ Corresponding author.
E-mail addresses: sergio.moreschini@tuni.fi (S. Moreschini), elham.younesian@vut.cz (E. Younesian), david.hastbacka@tuni.fi (D. Hästbacka),

mialb@cs.aau.dk (M. Albano), hosek@feec.vutbr.cz (J. Hošek), davide.taibi@oulu.fi (D. Taibi).
1 The two authors equally contributed to the paper.

analytics and machine learning algorithms, enabling organizations to
gain insights and make data-driven decisions. In this context, under-
standing the different characteristics of edge-to-cloud tools such as
offloading, orchestration, workflow management and other computa-
tional tasks in the cloud continuum is crucial to harness their full
potential for various applications.

In order to solve the aforementioned issues, we performed a sys-
tematic mapping study from 1073 primary studies in academic and
industrial (i.e., grey literature) sources to classify the edge-to-cloud
tools in the cognitive cloud continuum. Therefore, the goal of this work
is to contribute to the state-of-the-art by providing a comparison of
edge-to-cloud tools for both researchers and practitioners. First of all,
such a comparison provides the reader with a list of all the available
tools. Following this, by performing a comparison, the reader can
understand the main characteristics of each tool, including its license.
Another fundamental aspect that we aim to tackle is the target envi-
ronment of each tool so that users can understand which architecture
a tool is compatible with.

The rest of this paper is structured as follows. Section 2 introduces
the background with a particular focus on concepts such as Cloud
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Continuum and Edge-to-Cloud Offloading. Section 3 presents the main
goal of the work and the related research questions. Section 4 reports
the method, and the multiple steps performed to follow it, used in this
paper to answer the 3 research questions proposed. Section 5, illustrates
the results obtained by answering the different research questions.
The main discussion points, future challenges and possible threats to
validity. The work ends with the conclusions presented in Section 7.

2. Background

In this section, we introduce the background of this work in cloud,
edge, cloud continuum, and edge-to-cloud technologies.

Cloud continuum is the seamless integration of different cloud
services and resources, such as IoT devices, fog, and edge nodes. Edge
and cloud technologies have grown significantly during these years.
Therefore, investigating offloading between these environments has
become important for practitioners and academics. In this Section,
we provide an overview of the cloud continuum and edge-to-cloud
offloading.

2.1. Cloud continuum

Cloud Computing was defined officially in 2011 by the National
Institute of Standard and Technologies (NIST) as ‘‘a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of con-
figurable computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction’’ (Mell et al., 2011).
Among its main characteristics, we have scalability and reliability;
the first is granted by the possibility of creating multiple instances
which can be easily distributed. Recently the cloud has been used as
a platform abstracting underlying infrastructure resources, particularly
for Serverless and Functions as a Service (Nupponen and Taibi, 2020;
Aslanpour et al., 2021).

Fog computing is the computing layer between the cloud and the
edge. The main goal of fog nodes is to minimize the load on the cloud
by performing some services closer to the edge, providing a reduction
both in streaming loads and response time.

In Edge computing, the computation takes place at the edge of
the network where the data is usually generated. Use the Edge is an
effective solution whenever there are network problems and very strict
response time. However, it is essential to highlight that edge computing
does not have the computing and storing capabilities of the cloud or the
fog. To solve the problems related to restrictions in timing, storage, or
computational power the concepts of Cloud Continuum and Cognitive
Cloud have been proposed.

Cloud Continuum has been defined as ‘‘an extension of the traditional
Cloud towards multiple entities (e.g., Edge, Fog, IoT) that provide analysis,
processing, storage, and data generation capabilities’’ (Moreschini et al.,
2022).

Cognitive Cloud, instead, is defined as ‘‘a Cloud-based system that
is capable of sensing its environment, learning from it, and opportunis-
tically and dynamically adapt its computational load as well as its out-
come’’ (Moreschini et al., 2023).

The main difference between these two definitions is that the Cloud
Continuum is defined as the medium used to perform the computation
while the Cognitive Cloud towards the capability of adapting the
computational needs such as the load or the outcome.

Cloud computing technology reshaped traditional infrastructure,
platform, and software resources into flexible and available virtual
components. The effective orchestration of heterogeneous and multi-
layer resources is essential to ensure that end-users receive satisfac-
tory quality levels. Commercial cloud providers now offer proprietary
cloud orchestration platforms to users. These solutions, while pow-
2

erful, lack portability due to business considerations. Additionally,
even with modern configuration management tools often need to grap-
ple with low-level cloud service APIs and procedural programming
constructs to manage intricate resource configurations. Multi-cloud
computing compounds orchestration challenges. It is a recent trend
in cloud computing, involving the use of services and resources from
multiple cloud providers without a prior agreement, often managed by
a third party (Tomarchio et al., 2020).

The practical realization of the Computing Continuum vision faces
significant challenges due to the intricate nature of deploying applica-
tions across highly dispersed and diverse Edge-to-Cloud infrastructures.
Achieving this vision involves intricate tasks such as configuring nu-
merous system-specific parameters, as well as harmonizing various
demands and limitations concerning interoperability, mobility, com-
munication latency, network efficiency, data privacy, and hardware
resource utilization (e.g., GPU memory, CPU power, storage capacity,
among others) (Rosendo et al., 2022).

2.2. Edge-to-cloud offloading

As mentioned in the previous section, Edge Computing extends
computation facilities towards the edge of a network. Therefore, com-
putation is performed near the end user, resulting in ultra-low latency
and high bandwidth. Offloading algorithms allow end devices, edge
nodes, and the cloud to work together. Generally, task offloading can be
defined as the transfer of resource-intensive computational tasks to an
external, resource-rich platform such as the ones used in Cloud, Edge,
or Fog Computing.

There are different types of task offloading based on where the tasks
are split and where is performed the computation; these are:

• Partial offloading at the edge: In this type, part of the computation
is executed locally at the end device, and remained will be
offloaded at the edge.

• Full offloading at the edge: In this case, all computation tasks will
be offloaded and executed at the edge.

• Collaborative offloading at the edge and at the cloud: Such of-
floading is for situations where the edge resources cannot execute
all the tasks offloaded from the end device. Therefore, edge and
cloud collaborate to process all the computational tasks (Saeik
et al., 2021).

2.2.1. Targets of task offloading
There are different objectives for task offloading in the cloud con-

tinuum based on the different stakeholders, which can be categorized
as follows (Saeik et al., 2021):

• Delay: Minimizing the task execution delay is one of the main
goals of task offloading. This delay can be split into different
parts. It could be the delay related to the task execution at the
device, the edge, or the cloud, delay related to the transmission
at the various layers of the infrastructure, queuing delay, or
task partitioning delay. The goal of reducing the delay by task
offloading can be minimizing each of the mentioned delays or the
average one (Yang et al., 2013).

• Energy consumption: How to minimize the energy consumption
by using task offloading is another meaningful objective of task
offloading that typically refers to the end devices (Sardellitti et al.,
2014). However, minimizing the energy consumption has to be
followed by all the layers of this communication model because
this problem is pushed to the edge and/or cloud infrastructure at
the full offloading model (Mao et al., 2016; Singh and Awasthi,
2013).

• Bandwidth/spectrum: Allocation of spectrum in IoT and cellular
networks plays an important role because of the limited band-
width availability. Evaluating the spectrum utilization based on
the number of offloaded tasks, power transmission, and band-
width consumption is an efficient metric to deploy the available
spectrum optimally (Sahni et al., 2017; Zhao et al., 2017; Mao

et al., 2017; Zhang et al., 2017).
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Fig. 1. Overview of the followed MLR process.
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3. Research questions

Our goal is to identify edge-to-cloud tools available on the market
and classify their characteristics.

To achieve the aforementioned goal, we defined 3 main research
questions (RQs).

RQ1. Which edge-to-cloud tools are available on the market?
In this RQ, we aim at finding tools capable of performing offload-
ing, either vertical (edge-to-cloud) or horizontal (edge-only). The
available tools are researched in the grey and peer-reviewed
literature.

RQ2. What are the characteristics of edge-to-cloud tools?
In this RQ we aim at finding the characteristics of the tools which
have been found from different sources. Whether they are just for
offloading, capable of orchestrating, or if they are simulators.

RQ3. What are the target environments of edge-to-cloud tools?
In this RQ we aim at finding out the environment where the dis-
covered tools can work. In this context, the target environment
classifies the tools based on the specific environments they are
tailored to address.

4. Study design

This section outlines the process used for this work, which involved
a Multivocal Literature Review (MLR) following the guidelines pro-
posed by Garousi et al. (2019), due to the topic’s novelty. The following
subsections provide a summary of the MLR process, including the
selection of primary studies, quality assessment of the grey literature,
data extraction, tool selection, conducting the review, and verifiability
and replicability.

4.1. MLR process overview

The MLR process encompasses a variety of sources, including peer-
reviewed and grey literature, and acknowledges the diverse perspec-
tives of both practitioners and academic researchers. To categorize
contributions, MLR distinguishes between academic literature (peer-
reviewed papers) and grey literature (other forms of content such as
blog posts, white papers, podcasts, etc.) An overview of the whole
process is summarised in Fig. 1.

4.2. MLR motivation

When it comes to exploring a complex and rapidly evolving field
like Edge to Cloud Tools, it is crucial to approach the literature with
a multivocal perspective. Multivocal literature reviews acknowledge
diverse perspectives, opinions, and experiences of researchers and prac-
titioners. By incorporating multiple voices, this approach can help to
surface hidden assumptions, biases, and blind spots in the existing
literature, as well as open up new avenues for inquiry and innovation.

In the context of edge-to-cloud tools, a multivocal literature review
could of particular value. From the perspectives of software developers,
hardware manufacturers, cloud providers, policymakers, end-users, and
3

other stakeholders, the benefits, risks, and trade-offs of Edge to Cloud
Tools can look very different. By engaging with multiple voices, this
multivocal literature review can help to paint a more nuanced and com-
prehensive picture of Edge to Cloud Tools. It can reveal the divergent
interests, values, and priorities that underpin different perspectives.
This approach can also help to highlight gaps and contradictions in the
existing literature and identify opportunities for further research and
collaboration.

Ultimately, this work can help to enrich the understanding of Edge
to Cloud Tools and inform more effective and inclusive approaches
to their development and deployment. It can help us to embrace the
complexity and diversity of this dynamic field.

4.3. Selection of primary studies

The first step for selecting the Primary Studies (PS) is the search
string identification that will be adopted in the academic bibliographic
sources and in the grey literature source engines. We define the search
string as follows:

(‘‘edge cloud’’ OR ‘‘edge-to-cloud’’)
AND

(offloading OR cognitive OR orchestration)
AND
tool

To maximize the number of retrieved works, the search terms were
used across all fields (i.e. title, abstract, and keywords). The same
search terms were utilized for both grey literature from online sources
and white literature from academic bibliographic sources, with both
searches being performed in November 2022.

Peer-reviewed literature search. We considered the papers in-
dexed by five bibliographic sources:

• IEEEXplore digital library (Anon, 2023b)
• Scopus (Anon, 2023f)
• ACM digital library (Anon, 2023a)
• Science Direct (Anon, 2023e)
• ISI Web of science (Anon, 2023g)

Grey literature search. We performed the search using two search
engines:

• Google Search2

• Medium3

The search results consisted of books, blog posts, forums, websites,
ideos, white-paper, frameworks, and podcasts. Specifically, for Google
earch we limited our search by forcing all the 6 different combinations
f the search string.

Application of inclusion and exclusion criteria. Based on guide-
ines for Systematic Literature Reviews (Keele et al., 2007), we defined
nclusion and exclusion criteria (Table 1). We considered less restrictive

2 https://www.google.com/
3 https://medium.com

https://www.google.com/
https://medium.com
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Table 1
Inclusion/Exclusion criteria for primary studies selection.

Primary Study (PS) Criteria

Inclusion Research papers or search results that are commercial and
open source tools performing computational tasks along the
Cloud Continuum (Edge-to-Cloud)

Exclusion Not in English
Duplicated (post summarizing other websites)
Out of topic (using the terms for other purposes)
Non peer-reviewed papers
Research Plans, roadmaps, vision papers

Table 2
Data extraction.

RQs Info Description Step

RQ1 Tool Name Name of the tool PERQ2 Tool Url

RQ1 Where to move Categorizing the tools based on
where they can move the
computational tasks

RQ2 Characteristics Identify the main characteristics of
each tools

TE

RQ3 Environment Main environment for the tool

inclusion criteria to enable the inclusion of a more comprehensive set
of tools.

To ensure the effectiveness of the inclusion and exclusion criteria,
a subset of 10 randomly selected primary studies (PSs) from those
retrieved were tested before their application. The resulting inclusion
and exclusion criteria are outlined in Table 1.

To screen each entry, two researchers were tasked with indepen-
dently fairly reviewing them. The entry assignments were mixed up,
and each researcher was given a similar number of entries to review,
along with other team members. Cohen’s kappa coefficient was calcu-
lated to assess inter-rater agreement following the guidelines provided
in Emam (1999). Cohen’s coefficient kappa (𝑘) is therefore calculated
as:

𝑘 =
𝑃0 − 𝑃𝑒
1 − 𝑃𝑒

(1)

where 𝑃0 is the sum of the proportion of the agreements (i.e. sum of
the proportion of included by both and excluded by both) and 𝑃𝑒 is
the chance agreement (i.e. the observed data is used to calculate the
probabilities of each observer randomly seeing each category).

4.4. Data extraction

As our goal is to characterize information from edge-to-cloud of-
floading tools, we need to get the information directly from the tools’
websites. Therefore, the data extraction process is composed of two
steps:

(PE) Extraction of the list of tools from the primary studies (PSs) that
satisfied the quality assessment criteria.

(TE) Extraction of the information from the tools list. In this case, we ex-
tracted the information directly from the official website portals.

We utilized a review spreadsheet to manually extract information
following our research questions (RQs). A summary of the data ex-
traction form can be found in Table 2, as well as the mapping of the
necessary information for addressing each RQ.

The data extraction process adhered to the qualitative analysis
guidelines proposed by Wohlin et al. (2012) as the extraction form
is separated into two parts for quality data and for the study of the
data. All information was extracted by two researchers. If there was
disagreement, a third author was consulted, and a discussion was held
4

until the disagreement was resolved.
Table 3
Initial search result from bibliographic sources.
Bibliographic source #non-duplicated papers

IEEEXplore 5
Scopus 144
ACM Digital Library 69
Science Direct 1
ISI Web of Science 1

Total 220

Table 4
Search results from grey literature search engines.
Search engines #non-duplicated search result

Google search 495
Medium search 358

Total 853

Table 5
Inclusion/Exclusion criteria for tool selection.

Tools Selection Criteria

Inclusion Commercial and Open Source Tools

Exclusion Not downloadable
Exclusion Open Source Tools with less than 100 stars in GitHub

4.5. Tool selection

To identify the final set of tools required to answer our RQs, a
similar process to the one employed in the paper selection phase
(Section 4.3) was applied, which involved filtering the tools based on
a set of inclusion and exclusion criteria.

As with the PS selection process, we tested the applicability of the
inclusion and exclusion criteria on a randomly selected subset of 10%
of the retrieved tools before applying them. The final set of inclusion
and exclusion criteria is presented in Table 1.

The tool selection was carried out by two researchers who inde-
pendently reviewed them, as was the case with the PS selection. Any
discrepancies, a third author was brought in to reach a consensus.
The inter-rater agreement was also assessed in this case by calculating
Cohen’s kappa coefficient Emam (1999). These results are documented
in the replication package.4

4.6. Conducting the review

From the Search process, conducted in November 2022, we re-
trieved a total of 1073 unique PS (after the exclusion of 137 dupli-
cated): 220 PS from the white literature (Table 3) and 853 PS from the
grey literature (Table 4).

Out of the 1073 works we retrieved and after applying inclusion and
exclusion criteria, with an almost perfect agreement (Cohen’s kappa
= 0.765), the two authors agreed on excluding 771 works (157 from
white literature and 614 from grey literature), resulting in 302 PS (63
from white literature, 239 from grey literature).

From the data extraction process, 338 tools were obtained.
The application of inclusion and exclusion criteria for tools resulted

in a fair agreement (Cohen’s kappa = 0.523) and a final set of 68 tools,
as reported in Table 7.

After applying the inclusion and exclusion criteria, we focused on
one of the characteristics extracted during the previous stage: Tool
Type. In the previous stage, we had 3 possible outcomes for the Tool
Type characteristic, namely Commercial, Open Source, and Research
Prototype. As a quality check, we included two more exclusion criteria
as reported in Table 5. The reason behind this choice is to favor only
projects that can be categorized as popular (Han et al., 2019; Du et al.,
2020; Xiao et al., 2022). This would result in checking every single tool
marked as a Research Prototype and categorizing it as Commercial or
Open Source. As a result, we included 40 tools.
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Table 6
Edge to cloud tools and their characteristics.

RQ1 RQ2 RQ3 RQ2

Tool
code

Tool name edge-to-
cloud

edge-
only

Offloading Orchestra-
tion

Workflow
Management

Proprietary
Container

Deploy-
ment

Kubernetes
Distribution

Kubernetes
Extension

Simulator E2E
Service

Platform Agnostic Cloud Edge
Node

Far
Edge

License

T1 Amazon EKS x x x Com
T2 Ambassador

Edge Stack
x x x Com

T3 Apache
Airflow

x x x Com

T4 APEX x x x Com
T5 Aruba ESP x x x Com
T6 Avassa x x x Com
T7 AWS IoT

GreenGrass
x x x Com

T8 AWS
Wavelength

x x x Com

T9 Azure stack
Edge

x x x Com

T10 Baetyl x x x OSS
T11 Cloudify x x x Com
T12 Docker Swarm x x x Com
T13 Eclipse ioFog

2.0
x x x x Com

T14 EdgeCloudSim x x x OSS
T15 eKuiper x x x OSS
T16 FogFlow x x x OSS
T17 Home edge

orchesterator
x x x OSS

T18 Intel Smart
Edge

x x x OSS

T19 k0s x x x x OSS
T20 K3s x x x x OSS
T21 KubeEdge x x x x OSS
T22 KubeFed x x x x OSS
T23 Kubernetes x x x x OSS
T24 MicroK8S x x x OSS
T25 Microsoft’s

Azure IoT
Edge

x x x Com

T26 Nearby One x x x Com
T27 Nomad x x x x x OSS
T28 NEBULA x x x x x OSS
T29 Nuvlabox

(NuvlaEdge)
x x x Com

T30 ONAP x x x OSS
T31 Open horizon x x x Com
T32 Open Stack

Starlingx
x x x OSS

T33 OpenNebula x x x Com
T34 OpenShift x x x Com
T35 Openstack x x x Com
T36 OpenYurt x x x OSS
T37 Ormuco x x x x Com
T38 Saguna x x x Com
T39 Windriver

Studio
x x x Com

T40 Zededa x x x Com
a

4.7. Verifiability and replicability

To allow our study to be replicated, we have published the complete
raw data in the replication package.4

5. Study results

In this section, we present the results of our MLR study, guided
by the research questions stated in Section 3. Table 6 summarize
the results achieved among the different RQs. Such a Table can be
subdivided into 4 main areas: the first one includes the information
related to RQ1, the second is related to RQ2, the third to RQ3, and the
last area is specifically reserved for the license.

5.1. Edge-to-cloud tools (RQ1)

Description. To answer RQ1, we identified the tools that can per-
form offload, orchestration, or other computational tasks in the cloud
continuum.

Results. The main objective of performing task offloading, orchestra-
tion, or workflow management is to optimize the computational tasks
from an end-user device to a remote site under specific constraints.
This process consists of three main parts that are (i) various hardware
components, such as end-user devices and Edge/Cloud devices, (ii) mul-
tiple computing processes, including task splitting and computational
processing either locally or remotely and (iii) networking components
for transferring data between the hardware components involved (Saeik
et al., 2021).

4 https://figshare.com/articles/dataset/Replication_package/22567708
5

As discussed in Section 2.2, the different types of computational
tasks are categorized based on where they are executed. According
to the final list of selected tools, we identify two types; vertical and
horizontal, i.e. edge-to-cloud and edge-only . As illustrated in Table 6,
from the 40 tools, 6 of them are capable of moving the tasks only among
edge devices, while 34 can move to the cloud.

5.2. Tools characteristics (RQ2)

Description. To answer RQ2, we extracted the characteristics of the
tools.

Results. We extracted characteristics of the identified tools and their
lternatives, and grouped them into 11 categories:

• Offloading: tools used to perform different kinds of offloading as
introduced in Section 2.2.

• Orchestration: tools performing Orchestration with a focus on
the edge, i.e., tools that are capable of ‘‘managing, automating
and coordinating the flow of resources between multiple types
of devices, infrastructure, and network domains at the edge of a
network’’ (Stackpath, 2023).

• Workflow Management: tools used to manage the workflow
and tasks assignable. In contrast with orchestration, workflows
are usually not scalable and only allow for the creation of task
queues that can be executed sequentially by a limited number
of resources. In many cases, high-level processes are connected
through monolithic applications in a workflow. However, or-
chestration goes beyond this by managing not only high-level
processes but also low-level services and virtual infrastructure. It
adapts to changing demands and scales accordingly.

https://figshare.com/articles/dataset/Replication_package/22567708
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Fig. 2. Tools classification based on their characteristics.
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• Proprietary Container: tools that allow the creation of con-
tainerized applications.

• Deployment: tools used to deploy containerized and
non-containerized applications across the cloud continuum. These
tools create an environment where the containerized applications
can be managed after the deployment.

• Kubernetes Distribution: complete Kubernetes platforms de-
signed to provide an out-of-the-box solution for deploying Kuber-
netes and managing containerized workloads with pre-configured
solutions.

– k0s: minimalist distribution designed to reduce complexity
packaged into a single binary

– k3s: lightweight distribution similar to k0s. It also includes
some features by default, such as an ingress controller and
load balancer.

– KubeEdge: k8s distribution proposed to be extended for
edge devices. It includes device management and MQTT
integration.

– KubeFed: k0s is designed to unify the lifecycle management
of a multi-cluster workload. Therefore it is a unified server
that distributes the objects towards multiple clusters.

– Kubernetes: classic distribution also known as k8s.

• Kubernetes Extension: additional components that extend the
core functionality of Kubernetes. These extensions are developed
and added by third-parties. To enhance the functionality of Kuber-
netes and provide additional capabilities for managing complex
workloads. Kubernetes extensions are custom additions to a Ku-
bernetes distribution, enhancing its capabilities with features like
custom controllers or resources.

• Simulator: tools used to simulate specific environments for test-
ing purposes. Such environments are useful when performing tests
among different simulated entities and devices without deploying
a complete hardware infrastructure.

• End2End (E2E) Service: fully managed services providing a set
of functionalities to automate the full software lifecycle along the
cloud continuum. They are usually based on a set of integrated
6

tools aimed at providing an end-to-end solution.
• Platform: complete software environment that provides a set
of services and tools for developing, deploying, and managing
distributed applications. The goal of a platform is to provide a
high-level abstraction of the underlying infrastructure, making it
easier for developers to build and deploy distributed applications.

• License: the license adopted by the different tools. A tool can
be based on a Commercial (Com) or released as an Open Source
Software (OSS).

Fig. 2 illustrates the proposed tools classification based on their
haracteristics. From our extraction process, we discovered that only
ne tool is used to perform pure offloading: MicroK8s while 14 other
ools are mostly used for orchestration purposes, and 2 for workflow
anagement. On the same page, we discovered that the use of con-

ainers is of tremendous importance in this environment as 2 tools
ave been categorized as proprietary containers, and 4 tools are used
o perform deployment. Most importantly, the high use of Kubernetes
llowed us to label two specific categories: the Kubernetes distributions
omposed of 5 tools and the Kubernetes Extensions composed of 3 tools.
hile only one tool can be categorized as a Simulator, multiple End-

o-End Services (i.e. 7) and Platforms (i.e. 14) have been discovered,
ith Ormuco being categorized as both of the latter. Out of the 40

etrieved tools, 23 have a commercial license, and 17 have an Open
ource License. The mapping of each different tool to the different
ategories is depicted in the second part of Table 6. A complete list
f tools and their URL is reported in Table 7.

.3. Tools environment (RQ3)

Description. To answer RQ3, we identified the target environment
or each tool.
Results. We categorized the different tools based on the main envi-

onment they target. We identified 4 different alternatives:

• Agnostic: tools created to run seamlessly on different entities
among the cloud continuum. We identified 29 agnostic tools.

• Cloud Infrastructure: tools that target the Cloud as the main
environment to be run. Out of 40 final tools, 6 of them could be

run at cloud infrastructures.
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• Edge Node: tools made to run on Edge Devices. We found 5 tools
whose main environment is edge nodes.

• Far Edge: tools targeting the deployment on those devices which
reside in the far edge and therefore have lower computation
capabilities. Examples of far edge can be weather or remote
sensors. Based on our results, only 1 tool was made to run on
the far edge.

mong the tools analyzed, the vast majority can be cataloged as
gnostic (29 out of 40), the following 6 tools have been labeled as

argeted for the Cloud, 4 for the edge nodes, while only eKuiper targets
deployment in the far edge.

The second part of Table 6 maps each different tool to its targeted
nvironment.

. Discussion

The results achieved in this work provide insight view of the state
f the market for what concerns the ability to move the computational
urden of software among different parts of the Cloud Continuum.
iven the hype that has targeted cloud computing for more than
decade, as expected, most tools target the execution of tasks on

he cloud. However, given the strict requirement that nowadays are
alid for edge and far-edge devices, this cannot always be a solution,
nd therefore the necessity of orchestrators and offloaders becomes
ssential.

It is therefore surprising to find only a single tool that targets as its
rimary task the offloading of tasks being executed, which is clearly a
onsequence of the inherent technical hurdles that are involved in such
process. While only 2 tools are able to perform as workflow managers,
any more tools are capable of performing orchestration. This shows

hat it is not always easy to dynamically adapt the computational tasks
ut is usually preferred to move the tasks before they actually start and
lan in advance the execution and computation.

Predictably, a significant observation stemming from this MLR is
he prominent role played by Kubernetes among the chosen tools.
ubernetes is primarily renowned for its orchestration capabilities,
nd its adoption varies according to user needs and the architectural
equirements of the environment. In conjunction with this, numerous
ther tools leverage its capabilities to execute valuable orchestration
asks

For what concerns container technologies, from our analysis we can
ee that all of the agnostic and cloud infrastructure-based technologies
re compliant with the Open Container Initiative (OCI) (Anon, 2023c)
xcept for Nomad and NEBULA which have proprietary container
tructures.

On the design of the tools, we can say that the difficulties of
reating an end-to-end tool are reflected by the producer of the tool
s those are mostly owned by very big companies. Ormuco is the only
xception to this rule, being a company employing 40 people only
2022 data) (Anon, 2023d).

Regarding target platforms, platform-agnostic ones are the most
ommon. This is reflected by the fact that the closer you move to
ardware the more difficult it gets to support heterogeneous hard-
are/software platforms. This is shown also by only a few platforms

argeting mainly edge nodes, and only one for the far edge.

.1. Feature challenges

The analysis of the literature shows that the design of systems
apable of performing task offloading is still in its infancy. The tools are
ither targeted at a specific use case or are extensions of mainstream
ools such as Kubernetes or containers. Moreover, the lack of interest
n simulation hints that the scenarios under consideration are limited
n size.

Most tools either provide coverage for end-to-end service or are full
7

oftware platforms. This approach works against standardization and
interoperability efforts, which would grow if it was possible to use
different tools for the various actions related to task offloading and
orchestration.

Moreover, as stated in the previous section, the difficulties in cre-
ating a system capable of dynamically adapting the computational
tasks (i.e. Cognitive), is nowadays reflected by the presence of multiple
works researching how to perform advanced orchestration mechanisms
aiming at achieving offloading but not so many tools released on the
matter. We believe that a future challenge in the field will be related
to the creation of tools leveraging AI-based algorithms for offloading
purposes.

6.2. Threats to validity

We are aware that our work is subject to threats to validity, since
we got through only tools that are available either commercially or as
OSS, while other tools could be used internally by large companies, or
more advanced techniques could be developed and close to reaching
the maturity level required to be part of a tool such as the ones included
in this analysis.

One more issue, that we tried to solve with a thorough analysis,
was that some tools could have been abandoned, and slowly growing
obsolescent.

With regards to the tools’ features, we based our analysis on the
material available as a bibliography, and on the tools’ website, not
considering experimental features. This approach can be too defensive
and produce several false negatives, nevertheless, we preferred this
issue instead of accepting characteristics and capabilities not mature
enough for tools that can be used in a production environment.

To improve the reliability of this work, we defined search terms
and apply procedures that can be replicated by others. Since this is
a mapping study and no systematic review, the inclusion/exclusion
criteria are only related to whether the topic of Cognitive Cloud is
present in a paper or not, as suggested by Petersen et al. (2008).

As for the analysis procedure, since our analysis only uses descrip-
tive statistics, the threats are minimal. However, we are aware that
the synthesis of the definition might be subjective. To mitigate this
threat, the analysis was done collaboratively, using a collecting coding
method, and discussing with all the authors about inconsistencies. The
Kohen K index about our disagreement also confirms the quality of the
qualitative analysis performed.

7. Conclusion

This paper presents the results of a systematic mapping study to
classify the edge-to-cloud tools in the cognitive cloud continuum. We
conducted a multivocal literature review considering 40 tools from
1073 primary studies (220 from the white literature and 853 from the
grey literature), as presented in Section 5.

One of our main findings is that 85% of the tools can perform
offloading, orchestration, or other computational tasks from edge-to-
cloud while the rest can execute on the edge only.

This work provides a valuable comparison of edge-to-cloud tools
and their characteristics that can be used by researchers and practi-
tioners to select the proper tool for their purpose. Such characteristics
include the nature of the tools, but also the environment target for the
deployment and its license.

Future works include and empirical evaluation of pros and cons
of each tool by running an industrial survey and a set of industrial

use-cases.
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Table 7
Tools main reference and their license.

Tool URL

Amazon EKS https://aws.amazon.com/eks/features/
Ambassador Edge Stack https://www.getambassador.io
Apache Airflow https://airflow.apache.org
APEX (for Dell Technologies) https://www.dell.com/en-us/dt/apex/
Aruba Edge Services Platform (ESP) https://www.arubanetworks.com/solutions/aruba-esp/
Avassa https://avassa.io
AWS IoT GreenGrass https://aws.amazon.com/greengrass/
AWS Wavelength https://aws.amazon.com/wavelength/
Azure stack Edge https://azure.microsoft.com/en-us/products/azure-stack/edge
Baetyl https://baetyl.io/en/
Cloudify https://cloudify.co/
Docker Swarm https://docs.docker.com/engine/swarm/
Eclipse ioFog 2.0 https://iofog.org
EdgeCloudSim https://github.com/CagataySonmez/EdgeCloudSim
eKuiper https://ekuiper.org/
FogFlow https://github.com/smartfog/fogflow
Home edge orchesterator https://www.lfedge.org/projects/homeedge/
Intel Smart Edge https://smart-edge-open.github.io
k0s https://k0sproject.io/
K3s https://k3s.io/
KubeEdge https://kubeedge.io/en/
KubeFed https://github.com/kubernetes- sigs/kubefed
Kubernetes https://kubernetes.io/
MicroK8S https://microk8s.io/
Microsoft’s Azure IoT Edge https://azure.microsoft.com/en-us/products/iot-edge
Nearby One https://www.nearbycomputing.com/nearbyone/
NEBULA https://nebula-orchestrator.github.io/
Nomad https://www.nomadproject.io/
Nuvlabox (NuvlaEdge) https://nuvla.io/ui/sign- in
ONAP (Open Network Automation Platform) https://www.onap.org/
Open horizon https://www.lfedge.org/projects/openhorizon/
Open Stack Starlingx https://www.starlingx.io/
OpenNebula Edgify https://opennebula.io/edgify-opennebula-as-a- service/
OpenShift https://www.redhat.com/en/technologies/cloud-computing/openshift
Openstack https://www.openstack.org/
OpenYurt https://openyurt.io/
Ormuco https://ormuco.com
Saguna https://www.saguna.net/product/saguna-edge- to-cloud/
StudioGA (WINDRIVER STUDIO) https://www.windriver.com/studio
Zededa https://zededa.com/
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Cloud Gaming. In International Conference on Cloud Comput-
ing (pp. 3–13). Springer, Cham.
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Analytics (pp. 3–28). Springer, Cham.
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[SP8] Chiang, M., et al. (2016). Fog and IoT: An overview of research
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[SP9] Mahmoodi, S. E. et al. (2018). Cognitive Cloud Offloading
Using Multiple Radios. In Spectrum-Aware Mobile Computing
(pp. 23–33). Springer, Cham.

[SP10] Wu, X. et al. (2018). Phase-compensation-based cooperative
spectrum sensing algorithm for cognitive cloud networks. In
2018 ICOIN (pp. 755–759). IEEE.

[SP11] Wang, L. et al. (2018). Cooperative Spectrum Sensing Al-
gorithm Based on Phase Compensation in Cognitive Cloud
Networks. ICUFN (pp. 143–147).

[SP12] Huang, H. et al. (2018). On the Performance of Cognitive
Cloud Radio Access Networks in the Presence of Hardware
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[SP13] Marshall, T. E. et al. (2018). Cloud-based intelligent accounting
applications: accounting task automation using IBM watson
cognitive computing. Journal of Emerging Technologies in
Accounting, 15(1), 199-215.

[SP14] Jann, J. et al. (2018). IBM POWER9 system software. IBM
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