
e-Informatica Software Engineering Journal, Volume 18, Issue 1, 2024, pages: 240102, DOI: 10.37190/e-Inf240102

Continuous Software Engineering Practices
in AI/ML Development Past the Narrow Lens

of MLOps: Adoption Challenges

Sini Vänskä∗, Kai-Kristian Kemell∗∗ , Tommi Mikkonen∗∗∗ ,
Pekka Abrahamsson∗∗∗∗

∗Deloitte, Finland
∗∗Department of Computer Science, University of Helsinki, Finland

∗∗∗Faculty of Information Technology, University of Jyväskylä, Finland
∗∗∗∗Faculty of Information Technology and Communication Sciences, Tampere University, Finland

sini.vanska@deloitte.fi, kai-kristian.kemell@helsinki.fi,
tommi.j.mikkonen@jyu.fi, pekka.abrahamsson@tuni.fi

Abstract
Background: Continuous software engineering practices are currently considered state of
the art in software engineering (SE). Recently, this interest in continuous SE has extended
to ML system development as well, primarily through MLOps. However, little is known
about continuous SE in ML development outside the specific continuous practices present
in MLOps.
Aim: In this paper, we explored continuous SE in ML development more generally, outside
the specific scope of MLOps. We sought to understand what challenges organizations face
in adopting all the 13 continuous SE practices identified in existing literature.
Method: We conducted a multiple case study of organizations developing ML systems.
Data from the cases was collected through thematic interviews. The interview instrument
focused on different aspects of continuous SE, as well as the use of relevant tools and
methods.
Results: We interviewed 8 ML experts from different organizations. Based on the data,
we identified various challenges associated with the adoption of continuous SE practices
in ML development. Our results are summarized through 7 key findings.
Conclusion: The largest challenges we identified seem to stem from communication
issues. ML experts seem to continue to work in silos, detached from both the rest of the
project and the customers.

Keywords: artificial intelligence, machine learning, continuous software engineer-
ing, continuous star, multiple case study

1. Introduction

Continuous Software Engineering is the current trend in Software Engineering (SE). In brief,
continuous SE comprises various so-called continuous practices, which aim to eliminate
discontinuities in SE in order to make it a more continuous process. For example, con-
tinuous integration focuses on closer collaboration between development and deployment.

© 2024 The Authors. Published by Wrocław University of Science and Technology Publishing House.
This is an open access article under the CC BY license international.
Submitted: 09 Mar. 2023; Revised: 20 Aug. 2023; Accepted: 21 Aug. 2023; Available online: 28 Aug. 2023

1

https://www.e-informatyka.pl/
https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-0225-4560
https://orcid.org/0000-0002-8540-9918
https://orcid.org/0000-0002-4360-2226


Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

Continuous SE is currently state of the art in SE, and companies even consider certain
continuous practices vital for remaining competitive going forward [1].

In particular, bridging the gap between development and operations has received much
attention following the advent of continuous SE. Indeed, one widely discussed topic related
to continuous SE is DevOps. DevOps, a portmanteau of Development and Operations,
focuses on the integration between development and deployment. It involves a number
of continuous SE practices, which are also arguably some of the most high-profile ones:
continuous integration, continuous delivery, and continuous deployment, as well as testing
automation (or continuous testing), are typically considered to be necessary for DevOps
[2]. To further highlight the current importance of continuous SE practices, we turn to
Moreschini et al. [3] who state that “DevOps practices are the de facto standard when
developing software”.

By now, continuous SE practices have been explored in various contexts in SE research,
including the field of Machine Learning (ML). In ML system development, continuous
SE is still an emerging phenomenon. In fact, ML system development in general remains
a novel topic from the point of view of SE [4, 5]. Much of the current discussion on
continuous SE in the context of ML has been focused on the concept of MLOps. With
some simplification, MLOps can be considered to be the application of DevOps into the
context of ML systems [6].

Continuous SE, as Fitzgerald and Stol [7] conceptualize it, however, is a much larger
phenomenon than DevOps (or MLOps), which only comprises a small set of continuous SE
practices. Fitzgerald and Stol [7] posit that continuous SE comprises at least 13 different
continuous practices, split between the areas of business, development, operations, and
innovation. Many of these other continuous SE practices have received little attention
compared to the ones included in DevOps. This is especially the case for ML development,
where little research on continuous SE exists outside the topic of MLOps. Moreover, MLOps
in and of itself is still an emerging phenomenon [6].

Overall, the development of ML systems presents novel challenges in SE, as ML
components need to be incorporated into the software system being developed. These
components require new know-how and are typically developed separately from the rest of
the system by different personnel (e.g., data scientists). Incorporating the development of
ML components into the general SE process (via tooling, methods, practices, etc.) is the
core issue behind these challenges from the point of view of SE [4]. While ML has been
widely studied across disciplines, much of this extant research has focused on technical
challenges in ML instead of looking at the development of these systems through the lens
of SE [4]. This is especially the case for continuous SE in ML, where little research outside
the context of MLOps exists.

In this paper, we begin to address this perceived gap by studying ML development from
a more general continuous SE point of view. In doing so, we look past the lens of MLOps
(and DevOps) in order to explore the thus far largely unexplored (in ML development)
continuous SE practices described by Fitzgerald and Stol [7]. We begin to explore this
topic using an exploratory, qualitative multiple case study (n = 8) research approach.
The specific research question we tackle is formulated as follows: what are the challenges
associated with the use of continuous SE practices in ML development? Additionally, we
are interested in understanding which continuous SE practices are currently used in ML
development, which are not, and why.

Article number 240102

2

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/


Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

2. Background

In this section, we discuss the theoretical background of this study. In Section 2.1, we
discuss continuous SE in more detail. In Section 2.2, we discuss ML development and how
it relates to conventional software development. In Section 2.3, we discuss related work on
MLOps and challenges in ML development.

2.1. Continuous SE

Continuous SE aims to eliminate discontinuities in SE [7]. While previous lightweight
methodologies have already stressed the importance of focusing on error detection and
quick fixes in particular, continuous SE is more holistic. Indeed, in continuous SE, the
entire software life cycle, including business strategy and operations, is considered to be
a part of development process [7]. Continuous SE builds on agile SE, and agile has been
argued to be an important requirement for adopting, e.g., DevOps [8].

Continuous SE, in practice, encompasses various different practices that Fitzgerald and
Stol [7] refer to as continuous* (continuous star). These, they argue, can be split into three
areas (as seen in Figure 1) that together comprise continuous SE: (1) Business Strategy
and Planning; (2) Development, and (3) Operations. In addition (continuous) improvement
encompasses all three. Whereas DevOps focuses on collaboration between development
and operations, collaboration between business strategy and planning and development is
referred to as BizDev, and collaboration between all three is referred to as BizDevOps [7].

Figure 1. Continuous SE according to Fitzgerald and Stol [7]

Altogether, 13 different continuous* practices are identified by Fitzgerald and Stol
[7]. These 13 practices are as follows. The first area (business strategy and planning)

Article number 240102

3

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/


Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

includes continuous planning and continuous budgeting. The second area (development)
includes continuous integration, continuous deployment, continuous delivery, continuous
verification/testing, continuous security, continuous compliance, and continuous evolution.
The third area (operations) includes continuous use, continuous trust, and continuous
run-time monitoring. Finally, continuous improvement encompasses all the areas, and
continuous experimentation and innovation drive organizations to perform better [7]. These
are all illustrated in Figure 1.

Continuous SE further reinforces the need to break down silos inside organizations.
DevOps focuses on breaking down the silos between development and operations [9].
However, even more comprehensive collaboration between departments may be needed to
achieve continuous SE in some contexts [10]. For example, in the context of ML development,
continuous SE faces new challenges as the continuity needs to be extended to also include the
ML experts working on the ML components of the system [6], as we discuss in Section 2.3.
Next, in Section 2.2, we discuss what makes ML development different from the point of
view of SE.

2.2. ML Development from the point of view of software engineering

AI has largely become synonymous with ML today [5]. ML applications are useful for
poorly understood problem domains, domains with valuable regularities in their databases
waiting to be discovered, and domains in changing environments [11]. In terms of SE
practice, ML systems differ from conventional software systems due to the addition of
ML components. Developing these components requires new know-how and is handled by
various ML experts (e.g., data scientists and ML developers), who are a new addition to
the SE process [5]. Aside from various the technical challenges associated with developing
ML components, integrating the ML experts into the larger SE workflow poses challenges
for organizations developing ML [4].

ML systems are often divided into three classes. The most common is supervised
learning where the training data and the “right answer” are accessible. In unsupervised
learning, the systems learn by trying to find the common structure in the data on their
own. The third, so-called reinforcement learning, refers to systems that evolve by learning
in a sequence that leads it to a given goal [12]. The process requires a lot of testing and
data sets created (or simply used) for training purposes, and the product can still fail to
fulfill its requirements. Moreover, resource estimation in ML development is difficult [13].

Yet, as some existing papers argue, much of ML development is ultimately still software
development. Mikkonen et al. [12] cite Google in stating that “even if ML is at the core of
an ML system, only 5% or less of the overall code of that total ML production system”
is code related to ML. Indeed, ML features are simply “embedded into a larger software
system that hosts, provides access to, and monitors ML features” [10], while the rest of the
development endeavor is conceptually speaking conventional SE.

Nonetheless, the addition of these ML components into the SE process poses challenges
from the point of view of SE. Perhaps most importantly, as already touched upon, the ML
development requires collaboration between ML experts and rest of the development team(s)
[4, 5]. Two studies reviewing existing literature (one systematic literature review [4] and one
systematic mapping study [5]) highlight various challenges in ML development discussed
by existing literature. Martínez-Fernández et al., in their systematic mapping study [5],
list various challenges associated with SE for ML systems, highlighting the wide variety
of challenges associated with ML development from a SE point of view. These include

Article number 240102

4

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/


Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

challenges such as end-to-end ML-based systems including components written in a wide
variety of programming languages, reliance on third party components, ML presenting
challenges from the point of view of changing requirements (whereas ML components create
entanglement), etc.

Giray [4] conducted an SLR specifically focused on SE challenges in ML development,
identifying various challenges unique to ML system development across the following six
main categories: (1) requirements engineering (RE), (2) design, (3) software development
and tools, (4) testing and quality, (5) maintenance and configuration management, and
(6) SE process and management. First, in relation to RE, issues such as difficulties managing
customer expectations due to lack of customer ML understanding, quantitative measure-
ments being new to many stakeholders, and having to deal with new types of quality
attributes (e.g., explainability, fairness) resulted in challenges. Secondly, design-wise, ML
systems posed challenges from the point of view of monitoring performance degradation on
production (concept drift, etc.), as well as in terms of system architecture, as the interplay
of the different parts of an ML system can often result in issues. Thirdly, the vast number
of tools and dealing with development environments and infrastructure, both in terms
of understanding them and simply successfully utilizing them in practice (compatibility,
etc.), were among the key challenges related to software development and tools, in addition
to issues related to dealing with ML models and the data required for ML. Fourthly,
testing ML components remains a challenge due to the non-deterministic nature of ML
systems, including issues related to designing and evaluating test cases, preparing test
data, executing tests, and evaluating test results, as well as actually fixing any bugs that
are found (which may also be bugs in the ML libraries, frameworks, and platforms being
used). Fifthly, dealing with a history of experiments, re-training and re-deployment, and
the configuration management (CM) of data and ML models present new challenges for
maintenance and CM. Finally, harmonizing the activities for developing ML components
with the rest of the software development process, assessing the ML process, and estimating
effort are new challenges related to the SE process and management in ML development.

2.3. Related work: MLOps and continuous SE in ML

Thus far, studies on continuous SE in ML have predominantly approached the topic
through MLOps. MLOps can be largely considered DevOps for ML [6, 14]. John et al. [6]
conceptualize MLOps in their study, highlighting three different pipelines (data, model,
and release), each with 3–4 subprocesses, that together comprise the MLOps pipeline.

Lwakatare et al. [15] discuss SE challenges associated with DevOps in ML development
contexts, focusing on technical aspects such as issues related to data and ML models.
Symeonidis et al. [16] discuss tooling for MLOps and challenges related to it. Granlund et
al. [17] discuss challenges related to implementing MLOps practices in a highly regulated
application domain (medical). A number of other papers on MLOps are listed in the
multi-vocal literature of John et al. [6], and in the systematic literature reviews of Kolltveit
and Li [14] and Lima et al. [18]. Overall, much of the existing research on MLOps has
focused on defining the concept and on challenges related to establishing an MLOps pipeline
(e.g., challenges related to tooling). Fewer papers can be found on human aspects (e.g.,
project communication, etc.).

As our focus is on challenges, papers related to challenges in ML development could
also be seen as related work. Indeed, we find connections between our results and such
papers in Section 6. In this regard, a paper by Serban and van der Blom [19] looks at

Article number 240102

5

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/


Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

SE best practices for ML development in general and discusses the adoption rates of the
practices, pointing towards challenges in some areas. The secondary studies of Giray [4]
and Martínez-Fernández et al. [5] also list various SE challenges related to ML development
based on existing literature, as we have discussed in Section 2.2. Other primary studies
discussing challenges include the study of de Souza Nascimento et al. [20] that looks at
challenges in ML development overall, with the main challenges being: identifying the
clients’ business metrics, lack of a defined development process, and designing the database
structure. Nahar et al. [21] specifically look at communication and collaboration challenges
between data scientists and software developers in ML development in their empirical study.

On the other hand, we are unable to identify existing empirical papers discussing
continuous* more generally for ML development. As established in Section 2.1, MLOps
(and DevOps) only cover some of the 13 continuous* practices discussed by Fitzgerald and
Stol [7]. Thus, in looking at continuous* more generally in this study, we believe this paper
presents a novel contribution in the area with its point of view.

3. Research framework

This study is an empirical study utilizing qualitative, thematic interviews as the data
collection method (see Section 4). Prior to the data collection, to aid in the creation
of a suitable interview instrument, we constructed a research framework. This research
framework is split into five elements. Fitzgerald and Stol [7] classify continuous* practices
into categories as follows: business, development, operations, and innovation. These are
elements (2), (3), (4), and (5) in our framework. In addition, we look at current tools
and the use of methods (1) related to both continuous SE and, more broadly, agile in ML
development, to better understand the development practices being utilized. These five
elements are described in more detail below:

(1) Current tools and use of methods. The first part of the research framework
is focused on understanding the tools and methods used in ML development. In particular,
this part of the research framework is focused on collecting data on development tools
and practices, and especially continuous or agile frameworks or methods used in ML
development.

(2) Business strategy and planning. Continuous SE considers software development
a continuous, holistic process that bridges different organizational units, and also conse-
quently encompasses business strategy and planning [7]. This link between development and
business is referred to as BizDev (which in turn is a part of BizDevOps). The purpose of
this theme is to understand how ML experts see their organizations’ business and strategic
elements. This component is also related to understanding how ML experts deal with
changing customer/business requirements.

(3) Development. This part of the research model aims to understand the ML
development actions, and how they relate to the project as a whole, i.e., whether the
ML related tasks are integrated into the rest of the development process, or more of an
independent, separate, and siloed process.

(4) Operations. Continuous SE also includes bridging together development and
operations (as in DevOps). This part of the research framework is focused on understanding
what practices are used after the project goes into production and how the system is
monitored past this point. Existing DevOps literature argues that agile transformation is
essential for improving the efficiency of the company in optimizing the lifecycle delivery,

Article number 240102

6

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/


Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

breaking the gaps, and creating a continuous feedback loop between the business users and
the development teams [8].

(5) Innovation. Fitzgerald and Stol [7] consider continuous improvement and innova-
tion a part of continuous SE. In continuous SE, a new planning phase starts when new
opportunities are recognized. This part of the research model is focused on understanding
how ML experts feel about new opportunities, innovation, and new technologies. E.g., are
they motivated to suggest new ways of developing ML systems based on lessons learned,
both in terms of technologies and project management? In this regard, the state of their
current project(s) was discussed in relation to what they would do next.

4. Research method

In this section, we discuss the methodology of the empirical study we conducted. In
Section 4.1, we discuss our data collection approach. In Section 4.2, we discuss our data
analysis approach.

4.1. Data collection

The data for this study were collected through qualitative interviews. The interviews
in question were thematic, semi-structured interviews. The themes for the interviews
were based on the research framework discussed in the previous section, i.e., there were
five themes that the questions were focused on: (1) current tools and use of methods,
(2) business strategy and planning, (3) development, (4) operations, and (5) innovation.
The interview instrument in its entirety can be found in the Appendix A.

Eight interviews were conducted with respondents from different organizations working
on AI-related projects. The respondents (and thus cases) were selected through convenience
sampling. The participants had varied job titles, ranging from research assistant to service
manager (see Table 1). Similarly, their past job experience varied greatly, ranging from some
months to decades of working with ML technologies. We preferred to have respondents from
a variety of organizations, as opposed to more in-depth case studies of fewer organizations,
due to the novelty of the topic. Similarly, we opted for a semi-structured and thematic
interview format due to the novelty of the research topic.

The interviews were conducted digitally due to the COVID-19 pandemic situation that
was on-going at the time of the interviews. The interviews were conducted either in Finnish
or English, with the (pre-planned) questions being the same in both cases. Due to the
semi-structured approach, each interview was nonetheless different, as additional questions
were posed based on the responses of each respondent.

Table 1. Respondents

Respondent Job title

Respondent 1 Research assistant
Respondent 2 Data scientist
Respondent 3 Research assistant
Respondent 4 Service manager
Respondent 5 Professor (SE)
Respondent 6 Senior lecturer (SE and applied AI)
Respondent 7 Regulation specialist
Respondent 8 Software developer

Article number 240102

7

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/


Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

The average duration of the interviews (recorded data) was 35 minutes, i.e., not including
introductory statements, instructions, and any post-interview discussion. The interview
recordings were transcribed, and the resulting transcripts were analyzed for this paper. We
discuss our analysis approach next.

4.2. Data analysis

To analyze the data, we utilized qualitative thematic analysis as the primary data analysis
method. More specifically, we utilized deductive coding as our coding approach. In deductive
coding, codes are pre-determined based on a framework and then applied to the data in
the coding process.

We utilized deductive coding as the coding approach, using our research framework
(see Section 3) as the basis for coding. In practice, the codes were the 13 continuous*
practices discussed by Fitzgerald and Stol [7]. As we were interested in exploring how
different continuous* practices are utilized in the context of ML development, we focused
on determining which practices were utilized and how (if at all), resulting in a rather
straightforward coding approach.

These codes were then organized in themes according to our research framework. Thus,
these 13 codes were arranged into 5 themes for reporting as follows: (1) current tools and
use of methods, (2) business strategy and planning, (3) development, (4) operations, and
(5) innovation. These codes and their occurrences are detailed in Table 2. The results of
this analysis are reported next in Section 5.

In addition to this coding process focusing on solely continuous* practices, the data was
analyzed more generally through the five elements of the research framework. For example,
we were interested in the use of tools, which were outside the scope of the continuous*
practices used as a framework for deductive coding. This was also the case for agile in
relation to continuous* in ML.

Table 2. Codes and their occurrences in the data

Code [Continuous…] Occurrence(s)

Planning 4
Budgeting 2
Integration 1
Delivery 2
Deployment 3
Verification 2
Testing 2
Compliance 0
Security 0
Evolution 5
Use 1
Trust 0
Run-time monitoring 2
Improvement 1
Innovation 2
Experimentation 3

Article number 240102

8

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/


Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

5. Results

In this section, we discuss the results of the empirical study. This section is split into five
subsections, with each subsection covering one of the five themes of our research framework.

While reporting our results, we structure the discussion through the use of PECs
(Primary Empirical Contributions). These PECs are intended to communicate our key
findings in a clear manner. Later, in Section 6, these PECs are also used to structure the
discussion of our results.

Additionally, although we use direct citations from the interviews in the text, it should
be noted that these PECs are not based solely on the few citations found in the text. While
including all relevant citations would not be feasible in the interest of space, we nonetheless
use some citations to liven up the text and to provide some transparency in terms of our
use of our data.

First, before going into more detail in our analysis, we can already make one interesting
observation based on the codes and their occurrences (Table 2): continuous compliance
and continuous security were not present in our data. In addition continuous trust also did
not appear in our data the way it is understood by Fitzgerald and Stol [7] (who consider
it to mean trust developed over time based on the belief that customer expectations are
fulfilled without exploiting their vulnerabilities). In our data, only one of the respondents
discussed continuous trust, and did so on a more general level in relation to having a good
relationship with the client.

PEC1: Continuous compliance, continuous trust, and continuous security were not
present within the data.

5.1. Overview of used tools and methods

The first interview theme (out of the five discussed in Sections 3 and 4) was focused on the
current work role of the respondent and the tools and methods used in the ML projects they
were involved with. The tools of interest included programming languages and software
tools used in ML development, alongside any other tools the respondents considered relevant
enough to mention.

Python was by far the most common language, discussed by seven of the eight respon-
dents. Java was discussed by two. In terms of software tools utilized, the answers of the
respondents were more diverse, especially regarding database systems and cloud services.
For example, Respondent 2 discussed Dataprix, which was not brought up by any other
respondent:

[Development was] 99% or like fully Python based, but then some of the data preparation
was done in a Dataprix, you know the kinda Spark service, so that was used. [...] I would
not say that I followed any framework with intent but rather trying to have like the mindset
within many of the frameworks. [R2]

For the most part, the respondents discussed choosing tools based on their own pref-
erences. Some respondents mentioned having a background in ML as a hobby and, thus,
opted to use the tools they were familiar with. Most respondents worked either alone or
in a small team with other ML experts, and consequently they were the only ones who
needed to understand the tools and the ML components and code. On the other hand,
some organizations had processes in place which determined what tools should/could be
used. Nonetheless, little consensus existed in terms of tooling.

Article number 240102

9

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/


Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

Aside from tooling, we also explored the use of SE methods. The respondents mentioned
Scrum, SAFe, DevOps, and MLOps when asked about the use of methods and other devel-
opment processes. However, the respondents discussed their use critically. The respondents
seemed to consider it more important that, as opposed to strictly following a method,
practices that fit the current project context are used on a case-by-case basis. Moreover, in
this regard, there seemed to be a disconnect between the rest of the organization and the
ML experts. For example, Respondents 2 and 4 both mentioned that their organization
had adopted an agile approach but that it had little impact on their ML development aside
from it being centered around sprints as a result.

The work is planned in sprints. We have 4 planning periods per year. If we speak about
doing AI then you can think that sprints always produce something that can be put into
production, with the next sprint it will be improved and expanded. [R4]

Some respondents felt that they did not use any methodologies in their development,
but rather, a mindset built on many different methods. This seemed common, with many
respondents mentioning frameworks but also specifying that they did not use any of them
strictly (e.g., ScrumBut), either on the level of the entire organization or just the ML
experts.

PEC2: The SE methods used by the organization at large seem to often have little
impact on the ML development processes.

5.2. Business strategy and planning

Questions related to this theme were focused on teamwork, requirements, and resources.
In both continuous* and agile, collaboration between business and development teams is
considered important.

Half (4) of the respondents said that the ML experts in their organization mainly worked
independently. In these cases, only project planning activities (e.g., sprint planning) and
result reviews were carried out with the rest of the project team, while most of their work
was carried out independently. Nonetheless, the majority of the respondents (6) considered
collaboration on a project-level important when discussing teamwork and planning. In
particular, two respondents working in large corporations with highly regulated projects
considered collaboration and communication a critical success factor for producing ML
components that fulfilled their requirements. Yet, aside from one respondent who worked
on a project with internal stakeholders, the respondents felt that their work was very
independent with little collaboration with other employees. To this end, three respondents
felt that they knew very little about the work of other people inside the organization as well.

Multiple respondents discussed issues related to collaboration, or from the point of view
of continuous*, continuous planning (and budgeting, though hardly discussed). To some
extent, this lack of collaboration was attributed to the remote work situation stemming
from the COVID-19 pandemic situation that was on-going at the time, although not
all respondents worked remotely. Respondent 3 highlighted the importance of informal
communication for formulating new ideas and discussing problems with co-workers, while
otherwise collaboration was minimal. In fact, three respondents felt that they did not even
understand the point of the project they were working on and were simply executing tasks:

Personally, the point of the project is unclear to me. [R3]
Customer involvement was also highly varied between projects. In projects with external

customers, customer involvement was not regular from the point of view of the ML experts.
Most felt that they were working in a silo, especially as far as the customer was considered.

Article number 240102

10

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/


Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

The respondents also discussed challenges related to (continuous) budgeting, as well as
resource allocation more generally. Multiple respondents mentioned working on multiple
projects at a time. Respondent 4 specified that their organization had difficulties finding
ML development capabilities, leading to the existing ML experts being stretched thin.

Practically everyone is doing multiple projects. All people are caught in all cases, work
needs to be prioritized. [...] Resourcing is challenging. [...] Plus, there is less and less
expertise. AI needs to have analysts and people who know algorithms, it is not that simple
to have them on every branch. [R4]

I do not know how they [resources] are decided. It feels like my time is being spent on
everything else that is not related to my work. [R3]

As all except one respondent worked on externally commissioned projects, continuous
budgeting was up to the customer(s). While the respondents had some control over suggesting
the addition of new features (or requirements) into the system/project, the customer had
the final say in such matters. Some of the projects had additional resources reserved for
use in case there were changes in the project scope (e.g., due to added functionalities).

If we get a green light from a company, the project price already includes a lump sum
of money either from the company or in the form of some collaboration. And we try to do
our best with that or go as far we can go with that sum of money. [R5]

On the other hand, three respondents felt that the customers’ indecisiveness caused
issues and unpredictability in the development. This, they felt, was frustrating because the
customers seemed to not have a sufficient grasp of the realities of ML development, leading
to unreasonable demands at times.

For example, the clients might change their mind in every two weeks as it has happened
in some projects or the approach to gain some insight to something has changed. [R1]

Overall, the relationship of the respondents and the rest of their organizations, as well
as their clients, was vague. The ML experts were not actively involved in project planning
and seldom interacted with the customer(s). This resulted in various issues, as discussed
above.

PEC3: ML experts seem to often work in a silo. They do not often participate in
business strategy related activities.

5.3. Development

The interview questions related to ML development included questions related to how
functionalities are added, how the product is tested, and when the product is ready
for production. The disconnects between the ML experts and the rest of the project
participants were even more apparent in the respondents’ responses when discussing
practical development matters. When asked about integration, continuous approaches were
not discussed by most respondents. Respondent 3 summarized their issues with the lack of
collaboration in terms of development as follows:

I feel that it is up to you to decide [when to implement your work] because there is no
teamwork, therefore others have nothing to say. I don’t know if it’s because of my own
experience, but it’s hard to trust that that product will work. [R3]

While testing was discussed with all respondents, only one respondent [R7] discussed
continuous testing in the form of automated testing using an MLOps pipeline. Other re-
spondents said that they tested ML functions manually for various reasons. One respondent
specified that they felt that automated testing tools for ML were simply not available
for their particular system context. Another respondent added that ML functionalities

Article number 240102

11

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/


Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

were difficult to test due to the high level of technical know-how required to develop
them, resulting in the tests being carried out by the same individual(s) who developed the
functions.

It was not automated for sure. It was all manual. There was unit testing, then there
was regression testing, also integration testing and all the things that you see. [R5]

You work with simple test cases at first and apply it into a bigger chunk of data. Then
there’s some peer review done by the other data scientist in the product team but it kinda
depends how well that can work because if you are working with something that is pretty
exotic then not even other data scientist might know that much about it. [R2]

PEC4: Automated testing in ML development remains a challenge for organizations
developing ML systems.

Continuous verification was mostly discussed in relation to regulations. This was mostly
in relation to data, with regulations such as the GDPR (the EU’s General Data Protection
Regulation) often affecting ML development due to their use of large amounts of data.

Continuity in general seemed to be less of a concern in situations where the organization
simply developed a narrow ML functionality or a model that the customer then implemented
and monitored on their own. In such situations where no full, functional system was
developed, continuous quality, for example, was of little concern to the respondents. This
also seemed to apply to continuous verification and continuous compliance.

5.4. Operations

The questions about operations focused on what happened to the product and project after
initial deployment. This included usage and monitoring of the product, as well as customer
relations. The questions dealt with user interaction, user expectations, monitoring, as well
as the conclusion of the project.

Continuous use focuses on understanding whether user expectations are fulfilled. How-
ever, the respondents felt that the users were not well understood. The ML experts seldom
had direct contact with the user(s) and only dealt with the representatives of the customer
organization. In some cases the respondents had no contact with the customer at all and
only communicated with their own organization’s project staff. When the ML experts got
feedback from the users, it was gathered by the customer organization and forwarded to
them. No direct channels existed. One of the respondents specifically remarked that such
feedback only reached them if something was “great or terribly wrong.”

[Interaction with the users] is rare, a privilege. [R6]
With internal customers, interaction was more frequent (as discussed by Respondent 4).

With external customers, much depended on who was the end-user and how the project
was organized. On the other hand, some ML experts did not want to interact with the user
or customer in the first place:

I guess some people like it and it can give some valuable feedback for the developers, but
I did not appreciate it in the past. [R2]

PEC5: The lack of user and customer interaction makes it difficult for ML experts to
ensure that the product can be continuously used.

Monitoring practices varied between projects. Monitoring was largely left to the customer.
In some cases, the ML experts were in charge of monitoring and problem detection right after
initial release, until the customer later took over. Active communication with the customer
would typically end after the product was delivered. This also meant that operations was
not of much concern in such projects from the point of view of the ML experts.

Article number 240102

12

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/


Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

Well, there is a short price/crisis period during which I can still provide help if still
needed but it is the customer’s job to deal with the rest. [R1]

None of the respondents mentioned trust (continuous trust) as something that they tried
to actively establish with the customer. The ML experts seemed to nonetheless recognize
the importance of having a good relationship with the customer, e.g., in terms of securing
future projects.

There are less opportunities to do something completely innovative once you’ve released
the project or the product. But if new opportunities arise in the sense, if it is a long-term
relationship with the client, and if you’re continuously working on something bigger, then of
course you have the possibility of improving or actually innovating or completely replacing
something that you’ve already delivered a couple of years ago. [R7]

The lack of interaction between the ML experts and the users of the product is
challenging for operations. Project contracts typically determined what kind of operational
activities the ML experts had in that project. The ML experts themselves, however, seemed
to not mind this situation. In fact, many of the respondents seemed satisfied about not
having to interact with external stakeholders after deployment.

PEC6: The emphasis placed on operations varies greatly depending on project context.
If the customer takes over entirely after release, there is little need for operations from the
development organization.

5.5. Improvement and innovation

Due to the disconnect between development and operations resulting from externally
commissioned projects and their contractual agreements, only R4, whose organization
developed ML systems for internal use, engaged in continuous improvement and innovation.
As the other organizations (four out of eight) largely moved on after deployment, in some
cases following an initial phase where they continued to make sure the system worked as
intended briefly after deployment, opportunities for continuous improvement were limited.
Only if the client proposed further improvements, and provided the funding for them,
would work on the system continue past bug fixes or minor improvements made shortly
after initial deployment, based on contractual obligations. R4, on the other hand, who
worked for internal customers, discussed how feedback gathered after deployment was used
to continuously improve the system.

Because the customers were in charge of the projects, improvements and innovations were
not automatically thought of, or even considered welcome in the project. As the contracts
typically determined the project scope, any potential changes would have to be discussed
with the customer. Three respondents described cases where they had proposed small
improvements. However, larger innovations were often seen as risky by the customer and
the ML experts, and were seldom suggested to the customer. Thus, continuous innovation
on a project level was largely not considered relevant by the respondents.

On the other hand, half of the respondents felt that an innovative mindset was essential
in their line of work on a personal level. As ML is a quickly evolving field, they felt that
they needed to be open to learning new things and coming up with new ideas. Even if the
current project was easier to carry out as planned earlier, new innovations could help with
future ones.

PEC7: New ideas or innovations are not automatically added to on-going ML projects
when an external customer is involved, as the customer sets the scope of the project.

Article number 240102

13

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/


Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

6. Discussion

In this section, we discuss the implications of our results. In Table 3 we summarize the
Primary Empirical Contributions (PECs) we highlighted during our analysis. We use these
PECs to structure the discussion in this section. After covering all the individual PECs,
towards the end of this section we return to the research question we outlined at the start
of this paper and answer it based on our findings.

Table 3. Primary empirical contributions of the study

PEC Description

1 Continuous compliance, continuous trust, and continuous security were not present within the
data.

2 The SE methods used by the organization at large seem to often have little impact on the ML
development processes.

3 ML experts seem to often work in a silo. They do not often participate in business strategy
related activities.

4 Automated testing in ML development remains a challenge for organizations developing ML
systems.

5 The lack of user and customer interaction makes it difficult for ML experts to ensure that the
product can be continuously used.

6 The emphasis placed on operations varies greatly depending on project context. If the customer
takes over entirely after release, there is little need for operations from the development organi-
zation.

7 New ideas or innovations are not automatically added to on-going ML projects when an external
customer is involved, as the customer sets the scope of the project.

PEC1, on a more general level, highlights that some continuous* practices receive less
attention than others, as seen in more detail in Table 2. This, to some extent, supports
our original motivation behind the study: some continuous* practices are seldom studied
compared to the most commonly discussed ones. However, as our data set is not large, given
the exploratory nature of the study, we would not place much emphasis on this particular
observation. It is also worth keeping in mind that the domain of the project may play
a large role in how relevant various regulations are (e.g., medical domain) from the point of
view of continuous compliance, and that issues such as cybersecurity may be delegated to
specific experts within an organization. PEC1 may nonetheless be of interest from the point
of view of future studies, however, as it may give an idea of which continuous* practices
are common out on the field and which are not.

PEC2. Based on our data, ML development is seldom carried out using SE methods by
the book. This is consistent with existing research where the lack of a defined development
process in ML development is identified as an issue [20]. Moreover, some of the respondents
discussed using some practices, such as sprints, as a part of the project in general, but
that 1) the associated method (e.g., SCRUM) was not followed by the book in the project
in general, and 2) they were at best erratically applied to the ML portion of the project.
PEC2 in this fashion highlights one way in which ML experts continue to work in a silo (as
they often seem to do [22] at present). As far as agile approaches are considered, our results
support the observations of Serban and van der Blom [19] who posit, based on a survey,
that traditional SE practices have a lower adoption rate than ML specific practices in ML
development. Our results in this regard provide further insights on how this manifests in
practice. Finally, the respondents of our study discussed a wide variety of tools (database
systems, cloud services, etc.) used in ML development, which corresponds with existing

Article number 240102

14

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/


Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

research where, e.g., Kim et al. [23] highlight that the vast number of available tools can
be a challenge in and of itself.

PEC3 corresponds with extant research in that bridging the gap between the ML
experts and the rest of the developers is a challenge in ML development [4, 21]. It seems
common for ML experts to work in a silo [21, 22], although there are also examples of
successfully integrating ML experts with the rest of the development team(s) found in
existing papers [23]. This is also an issue MLOps aims to tackle as an approach to ML
development, much like how DevOps focused on bridging the gap between development
and operations. Our findings may help further illustrate what this means in practice and
what kind of issues this results in.

Extant research argues that one of the key factors of success in implementing DevOps
is communication [24]. This, thus, presents various problems for adoption of continuous*
as well, as DevOps belongs under the umbrella of continuous*. Communication issues in
ML development are also acknowledged in extent literature, where, indeed, communication
issues between the ML experts and the rest of the development team and organization
are considered a recurring challenge [4, 5]. Educating software engineers on ML and ML
experts on SE could help in this regard by making it easier for the project participants to
develop a mutual understanding of the project [21].

However, communication issues are not an issue unique to ML development or continuous
SE in the context of ML. Indeed, organizations adopting DevOps often face issues related
to communication in and between teams, due to, e.g., differences in the professional and
personal backgrounds of the employees [25]. Issues with communication and siloing are
also seen in relation to software security, where collaboration between security experts and
software developers has been a challenge, and where more recently DevSecOps has looked
to improve the situation in a similar manner to DevOps and MLOps [26]. Just as how
ML experts may have problems communicating with software developers and vice versa
due to their different areas of expertise [21], security experts and software developers face
communication issues as well (e.g., developers may feel attacked when security experts
point out security flaws in their code) [26]. In fact, interdisciplinary collaboration between
team members with differing academic and professional backgrounds is seen as a challenge
in teamwork overall [27].

PEC4 highlights another challenge in adopting continuous practices: lack of experience
with testing among ML experts. Only one respondent discussed utilizing an MLOps pipeline
for automated testing. The other respondents felt that tooling was still lacking in the
area, or were simply not concerned with automated testing. One potential issue here could
be the specific know-how required in ML development: the people otherwise in charge
of testing in the project may not have the required skillset to carry out the testing on
the ML components. This is consistent with existing literature where various challenges
associated with testing ML systems are discussed [4]. Serban and van der Blom also report
that testing ML artefacts overall (even outside doing so in a continuous fashion) remains
a challenge in software organizations based on the low adoption rate of ML testing best
practices [19].

PEC5 further points towards communication issues on a project-level (together with
PEC3). Many of our respondents felt that they had very little interaction with the
(end-)users, or even the customer organization. This further points towards ML experts
working in a silo. ML experts seem to often be in a silo not just in relation to other
project members within the same organization, but also in relation to the customers and
users. Existing research considers identifying the relevant business metrics of the customer

Article number 240102

15

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/


Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

a challenge in ML development, as the customer company itself may not understand what
data or metrics could be important [4, 20]. Not having ML experts interact with the
customer would seem to be a bad practice, unless there is someone acting as a bridge
between the ML experts and the customer who is capable of bridging this communication
gap. Multiple existing studies have highlighted challenges associated with requirements
engineering in ML development, and many of these challenges are related to communication
(e.g., lack of knowledge of ML on the part of the customer(s), dealing with quantitative
measurements for requirements, etc.) [4].

PEC6 provides some additional insights into customer involvement in ML project
contexts. While customer and user involvement more generally is a widely studied topic
in SE, and is at the core of agile SE as well, ML development adds complexity to SE
projects in this regard, too. Maintenance of ML systems results in novel challenges in SE
[4] as, for example, an otherwise technically functioning system may still degrade in (ML)
performance over time due to concept drift [28]. How this is handled in projects where the
system is ultimately handed over to a customer is a practical challenge that the customer
organizations need to be aware of.

Finally, PEC7 highlights a conflict between practical project matters and organiza-
tional/personal interest. The respondents felt that continuous innovation was important,
especially on a personal level, in a field as topical and rapidly evolving as ML development.
Yet, when ML systems or ML components were developed for an external customer,
innovating during projects was not considered beneficial. New innovations would only serve
to increase the scope of on-going projects and doing so was seen as counter-intuitive, or
simply difficult, because it would necessitate having the customer okay the changes first.

6.1. Answers to research questions

Finally, to directly answer the research question we posed at the start of this paper (i.e., what
are the challenges associated with the continuous development of artificial intelligence?),
we summarize our results as follows. Our findings suggest that the adoption of continuous
software engineering in the development of ML has many challenges caused by the addition
of ML components into the SE process. ML development is carried out in a more rigid
fashion than agile SE in the context of conventional software, and ML experts mainly
work independently, i.e., in a silo. This results in difficulties adopting continuous* practices
that require collaboration across teams. Communication issues caused by a lack of shared
knowledge, lack of guiding frameworks, and issues related to the roles and responsibilities
of ML experts meant that the project life cycle did not resemble a continuous cycle
but a step-by-step heavyweight development model. Furthermore, the ML experts rarely
interacted with the customer or the product users, as they felt that their work role did not
include such actions.

Perhaps partially as a result of the types of projects the respondents were involved
in, the respondents also discussed challenges adopting continuous* practices related to
operations. Many of the respondents worked in projects commissioned by external customers
where the customer was largely responsible for the ML system once it had been deployed
(or once the ML component had been finished and delivered). Thus, the ML experts had
little control over the operational life of the system or components past an initial grace
period where it was jointly monitored after release to ensure it worked as intended. Such
practical, project-specific challenges require deliberation from the project participants, as

Article number 240102

16

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/


Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

the maintenance (or continuous development) of such systems is important in ML where,
for example, concept drift can degrade the performance of a system over time.

While ML is currently coveted by organizations everywhere, few organizations pos-
sess ML development competencies themselves. This situation makes externally commis-
sioned ML projects common. Such projects can pose challenges when it comes to utilizing
continuous* practices if the monitoring and operations are left to the customer organization.
This can lead to continuous* practices receiving less emphasis in organizations working on
such ML projects.

6.2. Limitations

We utilized a qualitative thematic interview approach in this study. This study design
poses limitations to the results of the study. First, the respondents held different roles
in their organizations and these roles influenced their answers. For example, one of the
respondents worked in a management role and as such could provide more insights into
the business aspects of the project, but was less knowledgeable about the technical aspects,
and vice versa in the case of some other respondents. Moreover, as we interviewed only
one respondent per organization, we arguably gained a limited understanding of each
organization through the lens of a single respondent. We selected this approach due to
the novelty of the topic, as we wanted to explore a larger number of organizations to
understand how (continuous) ML development is handled in different organizations.

Secondly, in spite of this, the number of the respondents (and organizations, where
n = 8) is a potential limitation when it comes to generalizing the results of the study. To
this end, it is a limitation as well that three of these organizations were research projects
with industry collaboration, as opposed to purely industrial contexts. However, given the
novelty of the topic, we argue that this is a sufficient number for an exploratory study into
a novel topic, e.g., Eisenhardt [29] recommends case study research particularly for novel
research topics. Thirdly, we highlight our utilization of convenience sampling as a further
limitation for this study, both on the level of organizations and respondents.

Finally, due to the novelty of the topic, we also utilized a more general research approach.
We did not focus, for example, only on certain technologies or project contexts. While
this approach let us gather more diverse data, this also presents some further limitations
for the study. This study ultimately provides a look at the current state of practice more
generally, i.e., we studied how different types of organizations develop ML systems. This
makes our findings less specific as well. Another approach to the topic could have been to
study organizations that specifically (claim to) utilize MLOps, for example, and to discuss
what they felt had been the largest challenges in adopting it in the past, or challenges
that they still continued to face. In such a fashion, the scope of the study could have
been very different. As it is, we have studied what aspects of continuous SE are used in
different projects, and which ones are omitted, across a more diverse set of organizations.
We chose this approach due to the fact that we specifically wanted to explore less commonly
discussed continuous* practices as opposed to the ones present in DevOps and MLOps.

7. Conclusions and future research suggestions

In this paper, we have explored the utilization of continuous* practices (as conceptualized
by Fitzgerald and Stol [7]) in the context of ML development. Though continuous SE is

Article number 240102

17

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/


Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

currently state of the art in SE, it has been less studied in the context of ML development.
In particular, continuous* practices outside those related to DevOps, and in this case
MLOps, have received little attention in ML development.

Through qualitative, thematic interviews with 8 respondents from different organizations
involved in ML development, we sought to understand current challenges organizations
face in continuous SE in the ML development context. Our findings are summarized in
Table 3 at the start of the preceding section. In brief, the largest issues across the board
were related to a lack of collaboration and communication between the ML experts and
the rest of the project team(s) and stakeholders. With ML experts largely working in a silo,
utilizing continuous* practices in the development of the ML components is challenging.

This paper presents a starting point for studying continuous SE in the context of ML
development, outside the specific context of MLOps. Much like how DevOps, which it is
based on, MLOps only comprises some continuous SE practices. Many of the continuous
SE practices discussed by Fitzgerald and Stol [7] are out of the scope of these processes. We
hope to encourage further studies into these practices in the context of ML development,
as well as in SE overall. Future studies should adopt more specific points of views to the
topic in delving deeper into the phenomenon (e.g., by focusing on specific, but nonetheless
less commonly studied continuous* practices). The main contribution of this paper is to
provide an initial look at the current state of practice through challenges associated with
the adoption of these practices.

Acknowledgments

This work was partly funded by local authorities (“Business Finland”) under grant agree-
ment ITEA-2020-20219-IML4E of the ITEA4 programme.

References

[1] C. Parnin, E. Helms, C. Atlee, H. Boughton, M. Ghattas et al., “The top 10 adages in continuous
deployment,” IEEE Software, Vol. 34, No. 3, 2017, pp. 86–95.

[2] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, “A survey of DevOps concepts and
challenges,” ACM Computing Surveys (CSUR), Vol. 52, No. 6, 2019, pp. 1–35.

[3] S. Moreschini, F. Lomio, D. Hästbacka, and D. Taibi, “MLOps for evolvable AI intensive
software systems,” in IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2022, pp. 1293–1294.

[4] G. Giray, “A software engineering perspective on engineering machine learning systems: State
of the art and challenges,” Journal of Systems and Software, Vol. 180, 2021, p. 111031. [Online].
https://www.sciencedirect.com/science/article/pii/S016412122100128X

[5] S. Martínez-Fernández, J. Bogner, X. Franch, M. Oriol, J. Siebert et al., “Software engineering
for AI-Based systems: A survey,” ACM Transactions on Software Engineering and Methodology,
Vol. 31, No. 2, 2022.

[6] M.M. John, H.H. Olsson, and J. Bosch, “Towards MLOps: A framework and maturity model,”
in 2021 47th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), 2021, pp. 1–8.

[7] B. Fitzgerald and K.J. Stol, “Continuous software engineering: A roadmap and agenda,” Journal
of Systems and Software, Vol. 123, 2017, pp. 176–189. [Online]. https://www.sciencedirect.
com/science/article/pii/S0164121215001430

[8] I. Karamitsos, S. Albarhami, and C. Apostolopoulos, “Applying DevOps practices of continuous
automation for machine learning,” Information, Vol. 11, No. 7, 2020. [Online]. https://www.
mdpi.com/2078-2489/11/7/363

Article number 240102

18

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/
https://www.sciencedirect.com/science/article/pii/S016412122100128X
https://www.sciencedirect.com/science/article/pii/S0164121215001430
https://www.sciencedirect.com/science/article/pii/S0164121215001430
https://www.mdpi.com/2078-2489/11/7/363
https://www.mdpi.com/2078-2489/11/7/363


Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

[9] R.V. O’Connor, P. Elger, and P.M. Clarke, “Continuous software engineering – a microservices
architecture perspective,” Journal of Software: Evolution and Process, Vol. 29, No. 11, 2017,
p. e1866. [Online]. https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1866

[10] S. Mäkinen, H. Skogström, E. Laaksonen, and T. Mikkonen, “Who needs MLOps: What data
scientists seek to accomplish and how can MLOps help?” in 2021 IEEE/ACM 1st Workshop
on AI Engineering – Software Engineering for AI (WAIN), 2021, pp. 109–112.

[11] D. Zhang and J.J. Tsai, “Machine learning and software engineering,” Software Quality Journal,
Vol. 11, 2003, pp. 87–119.

[12] T. Mikkonen, J.K. Nurminen, M. Raatikainen, I. Fronza, N. Mäkitalo et al., “Is machine learning
software just software: A maintainability view,” in Software Quality: Future Perspectives on
Software Engineering Quality, D. Winkler, S. Biffl, D. Mendez, M. Wimmer, and J. Bergsmann,
Eds. Cham: Springer International Publishing, 2021, pp. 94–105.

[13] K. Srinivasan and D. Fisher, “Machine learning approaches to estimating software development
effort,” IEEE Transactions on Software Engineering, Vol. 21, No. 2, 1995, pp. 126–137.

[14] A.B. Kolltveit and J. Li, “Operationalizing machine learning models: A systematic literature
review,” in Proceedings of the 1st Workshop on Software Engineering for Responsible AI,
SE4RAI ’22. New York, NY, USA: Association for Computing Machinery, 2023, p. 1–8.

[15] L.E. Lwakatare, I. Crnkovic, and J. Bosch, “DevOps for AI – Challenges in development of
AI-enabled applications,” in 2020 International Conference on Software, Telecommunications
and Computer Networks (SoftCOM), 2020, pp. 1–6.

[16] G. Symeonidis, E. Nerantzis, A. Kazakis, and G.A. Papakostas, “MLOps – Definitions, tools and
challenges,” in IEEE 12th Annual Computing and Communication Workshop and Conference
(CCWC), 2022, pp. 0453–0460.

[17] T. Granlund, V. Stirbu, and T. Mikkonen, “Towards regulatory-compliant MLOps: Oravizio’s
journey from a machine learning experiment to a deployed certified medical product,” SN
Computer Science, Vol. 2, 2021.

[18] A. Lima, L. Monteiro, and A.P. Furtado, “MLOps: Practices, maturity models, roles, tools,
and challenges – A systematic literature review,” in Proceedings of the 24th International
Conference on Enterprise Information Systems, 2022, pp. 308–320.

[19] A. Serban, K. van der Blom, H. Hoos, and J. Visser, “Adoption and effects of software
engineering best practices in machine learning,” in Proceedings of the 14th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement (ESEM), 2020,
pp. 1–12.

[20] E. de Souza Nascimento, I. Ahmed, E. Oliveira, M.P. Palheta, I. Steinmacher et al., “Un-
derstanding development process of machine learning systems: Challenges and solutions,” in
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM). IEEE, 2019, pp. 1–6.

[21] N. Nahar, S. Zhou, G. Lewis, and C. Kästner, “Collaboration challenges in building ml-enabled
systems: Communication, documentation, engineering, and process,” in Proceedings of the 44th
International Conference on Software Engineering, 2022, pp. 413–425.

[22] D. Piorkowski, S. Park, A.Y. Wang, D. Wang, M. Muller et al., “How AI developers overcome
communication challenges in a multidisciplinary team: A case study,” Proceedings of the ACM
on Human-Computer Interaction, Vol. 5, No. CSCW1, 2021.

[23] M. Kim, T. Zimmermann, R. DeLine, and A. Begel, “Data scientists in software teams: State
of the art and challenges,” IEEE Transactions on Software Engineering, Vol. 44, No. 11, 2017,
pp. 1024–1038.

[24] L. Riungu-Kalliosaari, S. Mäkinen, L.E. Lwakatare, J. Tiihonen, and T. Männistö, “DevOps
adoption benefits and challenges in practice: A case study,” in Product-Focused Software Process
Improvement: 17th International Conference, PROFES. Trondheim, Norway: Springer, 2016,
pp. 590–597.

[25] M.S. Khan, A.W. Khan, F. Khan, M.A. Khan, and T.K. Whangbo, “Critical challenges to
adopt devops culture in software organizations: A systematic review,” IEEE Access, Vol. 10,
2022, pp. 14 339–14 349.

Article number 240102

19

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1866


Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

[26] N. Tomas, J. Li, and H. Huang, “An empirical study on culture, automation, measurement,
and sharing of devsecops,” in International Conference on Cyber Security and Protection of
Digital Services (Cyber Security). IEEE, 2019, pp. 1–8.

[27] S. Brandstädter and K. Sonntag, “Interdisciplinary collaboration: How to foster the dialogue
across disciplinary borders?” in Advances in Ergonomic Design of Systems, Products and
Processes: Proceedings of the Annual Meeting of GfA 2015. Springer, 2016, pp. 395–409.

[28] L. Baier, F. Jöhren, and S. Seebacher, “Challenges in the deployment and operation of machine
learning in practice,” in ECIS, Vol. 1, 2019. [Online]. https://aisel.aisnet.org/ecis2019_rp/163/

[29] K.M. Eisenhardt, “Building theories from case study research,” The Academy of Management
Review, Vol. 14, No. 4, 1989, pp. 532–550.

Appendix A. Interview instrument

Theme 1: Current job and challenges
1. What is your current work role and what does it include?
2. How is the work divided in your project group? How much do you collaborate with

others?
3. What kind of tools did you use when developing AI?
4. Can you name any framework, model, or mindset that you used to guide the development

process?
Theme 2: Business strategy
1. Can you work independently in the project, or does your work require collaboration

with other project participants?
2. How are the requirements of the project decided? You can use a previous or current

project as an example.
3. How are the resources planned at the beginning of the project?
Theme 3: Development
1. When is a new functionality or part of the code applied to the larger project context at

hand?
2. Can you describe the testing process in some of your projects?
3. How do you decide that the system is ready to be released?
4. Do you know how your work affects the overall quality of the project? For example, the

quality of a software project.
Theme 4: Operations
1. Do you interact with the product users after the release?
2. After the product release, do you know if the user expectations are fulfilled?
3. Is the product monitored after the release? If it is, how?
Theme 5: Improvement and innovation
1. Is the product quality improved after the release by you?
2. Are new innovations added to the product if new opportunities arise?
3. When does your involvement with the project end?

Article number 240102

20

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/
https://aisel.aisnet.org/ecis2019_rp/163/

	Continuous Software Engineering Practices in AI/ML Development Past the Narrow Lens of MLOps: Adoption Challenges
	Introduction
	Background
	Continuous SE
	ML Development from the point of view of software engineering
	Related work: MLOps and continuous SE in ML

	Research framework
	Research method
	Data collection
	Data analysis

	Results
	Overview of used tools and methods
	Business strategy and planning
	Development
	Operations
	Improvement and innovation

	Discussion
	Answers to research questions
	Limitations

	Conclusions and future research suggestions
	References

	Interview instrument


