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Abstract

Large‐scale fermentation processes involve complex dynamic interactions between

mixing, reaction, mass transfer, and the suspended biomass. Empirical correlations or

case‐specific computational simulations are usually used to predict and estimate the

performance of large‐scale bioreactors based on data acquired at bench scale. In this

two‐part‐study, one‐dimensional axial diffusion equations were studied as a general

and predictive model of large‐scale bioreactors. This second part focused on typical

fed‐batch operations where substrate gradients are known to occur, and character-

ized the profiles of substrate, pH, oxygen, carbon dioxide, and temperature. The

physically grounded steady‐state axial diffusion equations with first‐ and zeroth‐

order kinetics yielded analytical solutions to the relevant variables. The results were

compared with large‐scale Escherichia coli and Saccharomyces cerevisiae experiments

and simulations from the literature, and good agreement was found in substrate

profiles. The analytical profiles obtained for dissolved oxygen, temperature, pH, and

CO2 were also consistent with the available data. Distribution functions for the

substrate were defined, and efficiency factors for biomass growth and oxygen

uptake rate were derived. In conclusion, this study demonstrated that axial diffusion

equations can be used to model the effects of mixing and reaction on the relevant

variables of typical large‐scale fed‐batch fermentations.
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1 | INTRODUCTION

Substrate‐limited large‐scale fed‐batch bioprocesses are attributed to

competition between reaction, mixing, and transfer phenomena,

which eventually leads to heterogeneous and suboptimal conditions

for the production microorganism (Enfors et al., 2001). Even though

most modeling works have focused on substrate, microorganisms are

known to be affected by dissolved O2 and CO2, pH, and temperature

as well (Baez et al., 2009; Caspeta et al., 2009; Risager Wright et al.,

2016; Schweder et al., 1999). Thus far the modeling of large‐scale

bioreactors has been performed with compartment model or

computational fluid dynamics (CFD) simulations and scale‐down

experiments (Haringa et al., 2018; Nadal‐Rey et al., 2021; Neubauer

& Junne, 2010). Recently, a simple “interaction by exchange with the
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mean” mixing model utilizing the substrate distribution instead of its

axial profile was presented (Maluta et al., 2020), showing that the

level of spatial detail in hydrodynamically sophisticated simulations is

not strictly necessary to correctly predict biomass yields.

At simplest, the compartment models are one‐dimensional or 1D

(Bisgaard et al., 2022), and they are essentially discretizations of a

diffusion equation. The diffusion equation reproduces tracer curves

measured in typical high aspect ratio bioreactors, as it is capable of

representing both convective and turbulent diffusive forms of mixing

in a 1D domain (Kawase & Moo‐Young, 1989; Machon & Jahoda,

2000; Pinelli & Magelli, 2000). Coupled with suitable approximations

to biologically relevant kinetics, the mathematics of diffusion could

permit analytical solutions to profiles and distribution functions of

the relevant variables in large‐scale fed‐batch processes. Such results

could even be used to derive efficiency factors, which relate with a

single number the performance at the large scale to a homogeneous

situation (Delvigne et al., 2005).

The aim of this two‐part study was to develop a general model of

mixing and reaction in typical large‐scale stirred fed‐batch bioreac-

tors using 1D diffusion equations. The first part derived a predictive

formula for the axial dispersion coefficient. This second part focused

on predicting and characterizing the profiles of substrate, pH,

dissolved O2, temperature, and both gaseous and dissolved CO2

using analytically soluble 1D steady‐state diffusion equations with

zeroth‐ and first‐order kinetics. The cumulative distribution and

probability density functions were also defined for the substrate. The

modeling was compared against both experimental (Bylund et al.,

1998; Larsson et al., 1996; Xu, Jahic, Blomsten, et al., 1999) and

numerical (Larsson et al., 1996; Losoi et al., 2022; Pigou & Morchain,

2015) literature data concerning Escherichia coli and Saccharomyces

cerevisiae fed‐batch fermentations. The model solutions were also

utilized to derive simple efficiency factor formulae for oxygen uptake

and biomass growth rates.

2 | MATERIALS AND METHODS

2.1 | Experiments and simulations from literature

The large‐scale experiments by Bylund et al. (1998), Larsson et al.

(1996), and Xu, Jahic, Blomsten et al. (1999) were used as a reference

for the modeling. The cited works reported glucose concentrations

measured at top, middle, and bottom sections of the reactors and

biomass concentrations. Dissolved oxygen tensions (DOTs) were also

monitored with one probe at the middle (Larsson et al., 1996) or two

probes at the middle and the bottom (Xu, Jahic, Blomsten, et al.,

1999). Bylund et al. (1998) did not report the probe location, so it was

assumed here to be in the middle as well. The control values for pH

and temperature were provided in the referenced works. The liquid

volumes were from 8 up to 22 m3. Table 1 lists relevant variables and

quantities regarding the experiments. The axial dispersion coeffi-

cients and mixing times were calculated from operating conditions as

in Part I of this study (Losoi et al., 2023). Bylund et al. (1998) reported

ranges of stirrer and gas flow rates, and here the midpoint of these

ranges was used as the operating condition. The mean substrate

concentrations shown in Table 1 refer to time points with constant

feeds and 20g L−1 biomass concentrations. Henry's constants for O2

and CO2 (Sander, 2023) and Kp a values (Rumble, 2022) relevant for

the cited experiments are listed in Table S1. Only temperature

corrections were considered to Henry's constants and the Kp a values,

but they had only little effect, though. Taking for example ionic

strength into account might have a more noticeable effect, but this

was not attempted.

Altogether the substrate data from these references included 96

time points with three values each measured at the top, middle, and

bottom of the reactors. Gas holdups were determined from the

references from the reported liquid volumes and total dispersion

heights, but for Bylund et al. (1998) experiments the holdups were

estimated here using a correlation fitted for large scale (Vrábel et al.,

2000). Larsson et al. (1996) and Xu, Jahic, Blomsten et al. (1999)

reported oxygen transfer rate constants of k a = 180hL
−1 for their

setups, and by using the specific power and superficial gas velocity

functionalities of the k aL correlations reviewed by Gabelle et al.

(2011), it was estimated that k aL should have been approximately

70%–80% of that value in the Bylund et al. (1998) experiments. For

simplicity, the same k a = 180hL
−1 was used also for the Bylund et al.

(1998) experiments. Some of the operating conditions for the Xu,

Jahic, Blomsten et al. (1999) experiment were determined using

literature based on the same large‐scale reactor (Vrábel et al., 1999,

2001). The E. coli kinetic parameters determined by Xu, Jahic, and

Enfors (1999) were used both for Bylund et al. (1998) and Xu, Jahic,

Blomsten et al. (1999) experiments.

The large‐scale simulations in 20m3 liquid volumes by Larsson

et al. (1996), Losoi et al. (2022), and Pigou and Morchain (2015) were

used as a further reference. Larsson et al. (1996) reported glucose

contours obtained with CFD simulations with standard Monod

kinetics (fig. 7 in Larsson et al., 1996). The cumulative distribution

function (CDF) of their simulated substrate concentrations was

estimated here by approximating the areas between the two‐

dimensional (2D) concentration contour lines. Pigou and Morchain

(2015) used a 2D compartment model and a metabolic model and

provided heat maps and values of glucose concentration and also

biomass concentrations (figs. 9 and 7b in Pigou & Morchain, 2015).

Their results were considered here as CDFs and also as radially

averaged 1D axial profiles. Our previously published results (Table 1

in Losoi et al., 2022) were obtained with a three‐dimensional

compartment model and standard Monod kinetics. The dispersion

coefficient for Larsson et al. (1996) simulations was kept the same as

for their experiments (Table 1). For Pigou and Morchain (2015)

simulations a dispersion coefficient of d = 0.0659m s2 −1 was calcu-

lated using the transfer resistance analogy concept presented in Part

I of this study (Losoi et al., 2023) and the provided exchange,

circulation, and induced flow rates (Appendix B in Pigou & Morchain,

2015). The reported 95% standard‐deviation‐based mixing time of

154 s yielded d = 0.106m s2 −1 (eq. 7 in Losoi et al., 2023) for the Losoi

et al. (2022) simulations.
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2.2 | Linearization of substrate consumption rates

For the model used here, the volumetric (liquid‐phase) substrate

consumption rates rS (g L h−1 −1) were linearized into r k S= ,S S where kS

is a first‐order rate‐pseudoconstant (h−1), a function of the substrate

concentration S (gL−1). Using this definition, the rate‐pseudoconstants

were evaluated using mean consumption rates and mean concentrations.

Experimental mean concentrations were estimated here as weighted

averages of the three measured concentrations such that the individual

sampling locations were given weights according to the working height

that they represented, although the weighing had only little effect on the

mean. Simulated mean concentrations were either provided directly in

the references or they could be calculated from the data. When

comparing the model with experiments, the volumetric substrate

consumption rate rS was assumed to equal the volumetric feed rate QS

(steady‐state assumption), which was obtained from the references.

When considering previously published simulations, the kinetics used in

the reference were analytically linearized and the first‐order rate‐

pseudoconstant kS was evaluated with the mean concentration of

substrate,  S . Larsson et al. (1996) used standard Monod kinetics for

substrate consumption, which yielded

 k
q X

S K
=

+
,S

S

S
(1)

where q = 1.7gg hS
−1 −1 is the biomass‐specific maximal substrate

consumption rate, X the biomass concentration (gL−1), and

K = 0.18 gLS
−1 the Monod constant. The kinetic parameters were

q = 1 gg hS
−1 −1 and K = 0.025gLS

−1 for Losoi et al. (2022). The

substrate consumption rate in the Pigou and Morchain (2015)

metabolic model was based on defining an equilibrium biomass

growth rate and using a Pirt‐form of biomass yield to calculate the

anabolic demand of substrate. Their model included also the

catabolic demand of substrate, which accounted for oxidative

capacity and the state of the population. Here, the effects of

acetate, oxygen, and population state were neglected, which

ultimately simplified the first‐order rate‐pseudoconstant into the

same Equation (1), but with



  



q K

Sgg h
= 1.28 + 1 + 0.0722

S S

−1 −1
(2)

and K = 0.05gLS
−1. The parameters and biomass concentrations

necessary for calculating the rate constants were directly available

in each study.

TABLE 1 Referenced large‐scale experiments.

Quantity Unit L96 B98 X99

VL m3 20.8 (t)/19.8 (b) 8.0 22.4

ϵG % 17.1 13.1 (correlated) 17.5

H m 7.3 (t)/7.0 (b) 3.5 7.9

n rpm 133 113 (75–150) 133

v V∕G L vvm 0.525 (t)/0.552 (b) 0.50 (0.25–0.75) 0.48

p0 bar 1.29 1.5 1.5

T °C 30 30 35

pH 5 7 7

CB mmolL −1 8.8 95.8 110

d m s −2 1 0.126 (t)/0.121 (b) 0.094 0.134

t95 s 159 (t)/149 (b) 49 175

QS gL− h −1 1 2.58 (t)/2.72 (b) 5.9 3.86

 S mgL −1 10 10 30

qS g g h −−1 1 1.7 1.35 1.35

KS gL −1 0.18 0.05 0.05

Reference Larsson et al. (1996) Bylund et al. (1998) Xu, Jahic, Blomsten

et al. (1999)

Notes: Larsson et al. (1996) conducted two experiments, one with the feed at the top (t) and the other with the feed at the bottom (b). Bylund et al. (1998)
reported ranges of values for stirrer and gas flow rates (shown in parentheses here), and their means were used.

Symbols:VL , liquid volume; ϵG, overall gas holdup;H, overall dispersion height; n, stirrer rate; v V∕G L, volume flow of gas per liquid volume at reactor's middle
height; p0, head‐space pressure; T , temperature; CB, sum of H PO2 4

− and HPO4
2− concentrations in the medium; d , axial dispersion coefficient; t95, longest

possible 95% mixing time; QS, volumetric substrate feed rate during constant‐feed phase;  S , estimated mean substrate concentration during

constant‐feed phase at 20gL−1 biomass concentration; qS, specific substrate consumption rate; KS, Monod constant for substrate consumption.
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2.3 | Green's function method

Green's function method (Cole et al., 2010) was used to solve the steady‐

state 1D diffusion equations with zeroth‐ and first‐order kinetics, or

Laplace and Helmholtz equations, respectively. The method centers

around integrating the considered equation's impulse response to a

volumetric source term under the imposed boundary conditions. Symbolic

computation software (sympy) was used for some of the derivations.

2.4 | Model statistics and uncertainty

Model fits were assessed against the experimentally determined data

with the same two coefficients of determination that were used also in

Part I of this study (Losoi et al., 2023). R2 is the conventional coefficient

of determination based on residuals f y− , whereas Q2 is an analogous

coefficient of determination defined with logarithmic error q f y= log( ∕ ).

The error term in both coefficients was also decomposed to systematic

and random error components. Details on these metrics are given in

Section 2.2 of Part I and Section S3 of Part I. Like in Part I, the error σ

expected in model prediction due to the uncertainty of itsN parameters

xi was estimated by propagation of error with zero covariance between

parameters: σ f x σ= ∑ (∂ ∕∂ )f i
N

i x=1
2 2

i
, where σi is xi 's standard deviation. In

Part I, an error of σ d∕ = 7%d was determined for the dispersion

coefficient d.

2.5 | Software

The Python programming language version 3.8.5 (https://www.

python.org) was used for all calculations and derivations with the

packages numpy 1.19.2 (Harris et al., 2020), pandas

1.1.3 (McKinney, 2010; The Pandas Development Team, 2020),

scipy 1.5.2 (Virtanen et al., 2020), and sympy 1.6.2 (Meurer

et al., 2017). Both experimental and simulated previously published

data were digitized from original figures with WebPlotDigiti-

zer (Rohatgi, 2020) and GNU Image Manipulation Program

2.10.18 (https://www.gimp.org).

3 | THEORETICAL ASPECTS

3.1 | Substrate profile and distribution

Here, typical fed‐batch operations were considered such that both

the steady‐state approximation S t∂ ∕∂ ≈ 0 and negligible dilution

V t∂ ∕∂ ≈ 0 applied. Assuming spatially constant dispersion coefficient

and gas holdup and negligible volume fraction of biomass, the mass

balance of substrate with a standard Monod‐form uptake rate was

d
S

z
Q

S

S K
q X

∂

∂
+ =

+
,S

S
S

2

2
(3)

where z is the axial coordinate (m) and QS the local liquid‐phase

volumetric source or feed term (gL h−1 −1). However, Equation (3) is not

analytically soluble with Monod kinetics, but considering the mean

substrate concentration  S as a parameter and approximating the

Monod‐term S S K∕ ( + )S in Equation (3) with  S S K∕ ( + )S as explained

in Section 2.2 resulted in a classical Helmholtz equation

 d
S

z
Q

q X

S K
S

∂

∂
+ =

+
.S

S

S

2

2
(4)

A nondimensional form

 
u

x

H Q

d S
M u

∂

∂
+ =

S
2

2

2
2 (5)

was obtained by defining a dimensionless substrate concentration

 u S S= ∕ normalized by the mean and a dimensionless axial

coordinate x z H= ∕ . The parameter

 M H
q X

d S K
=

( + )
S

S

2 2 (6)

is the ratio of the time‐scales of mixing (H d∕2 ) and substrate uptake

(    r S q X S K∕ = ∕ ( + )S S S ). The square root of the time‐scale ratio is

analogous to the Thiele modulus used in chemical reaction engineer-

ing to characterize mass transfer in catalytic reactions. For example,

M = 42 indicates that mixing is outperformed by reaction, as the rate

of linearized substrate uptake is four times the rate of mixing. A

general feel for the time‐scale ratio and mixing limitations can be

given by taking the longest t95 (95% mixing time with probe and feed

as wide apart as possible) as the measure of mixing rate according to

eq. (5) in Part I of this study (Losoi et al., 2023),  S K= = 0.05 g LS
−1 as

the mean substrate concentration and Monod constant, both quite

likely values in fed‐batch operations (Bylund et al., 2000, 1998;

Castan & Enfors, 2002; Larsson et al., 1996; Xu, Jahic, Blomsten,

et al., 1999), and q = 1 g g hS
−1 −1 as the biomass‐specific maximal

uptake rate. Under these conditions Equation (6) is simplified to

M
X t

≈ 0.00743
gL s

.2
−1

95
(7)

Another approach to evaluate the time‐scale ratio is to utilize the

steady‐state approximation r Q≈S S, which gives the time‐scale ratio

as a function of substrate feed rate instead (assuming

 S K= = 0.05gLS
−1):

M
Q t

≈ 0.0149
gL− h s

.
S2

1 −1

95
(8)

Tables 2 and 3 list example values for substrate time‐scale ratio

with some common 95% mixing times, biomass concentrations, and

feed rates using Equations (7) and (8), respectively. With over 40gL−1

biomass concentrations or 16gL h−1 −1 feed rates, mixing limitations

(M > 12 ) seem likely even in small‐scale reactors with only t = 10s95

mixing times. In large‐scale reactors, where t > 200s95 and longer

mixing times are possible, mixing limitations may occur with biomass

concentrations as low as X = 5 gL−1 or with feed rates as low as

Q = 1g L hS
−1 −1.

4 | LOSOI ET AL.
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Equation (5) was solved with Green's function method (Cole

et al., 2010), which allowed flexibility in defining the volumetric

source QS. Using a Dirac delta point source at x δ x x, ( − )0 0 , and

insulated boundaries ( u x∂ ∕∂ = 0 at both x = 0 and 1), the axial profile

of dimensionless substrate concentration was found to be

u
M

M
M x x M x x=

sinh
cosh( min( , ))cosh( (1 − max( , ))).0 0 (9)

It should be noted that u depends on the square root of the

substrate time‐scale ratio, M. Figure S1 compares the analytical

substrate profile with linearized kinetics to profiles determined

numerically by finite‐volume discretization and with standard Monod

kinetics assuming the Monod constant is 0.1, 1, or 10 times the mean

substrate concentration. The analytical profile is remarkably close to

the numerically solved unsimplified profiles, yielding mostly

R ≥ 95%2 . The test case M = 162 with  S K= 10 S deviated substan-

tially from the linearized analytical profile, but this case corresponded

to an unlikely situation having both a considerable mixing limitation

(time‐scale of mixing 16 times the time‐scale of reaction) and a high

mean concentration of substrate. Thus, in the context of the steady‐

state 1D diffusion equation, linearization is a good approximation to

Monod kinetics provided that the mean concentration of substrate is

known or can be predicted.

The CDF of (dimensionless) substrate concentration was found

by first noting that a randomly chosen point in the reactor obeys the

uniform distribution such that the CDF of the (dimensionless) axial

coordinate is F x x( ) = when x0 ≤ ≤ 1. Solving for x in Equation (9)

allowed identifying the substrate's CDF as






















F u

M

u

u

u u

u
( ) =

1
arcosh + arcosh

max( , )
.

min

tres

tres

(10)

when u u u≤ ≤min max. Owing to the symmetry of the diffusion equation,

feed points at x0 ≤ ≤ 0.50 can be reflected to x0.5 ≤ ≤ 10 , and it is

easiest to continue by defining x x x′ = max( , 1 − )0 0 0 . The minimum

concentration is found at the point farthest away from the (potentially

reflected) feed, u u x M= (0, ′ , )min 0 , the threshold value at the domain

boundary closest to the feed point, u u x M= (1, ′ , )tres 0 , and the maximum

at the feed point, u u x x M= ( , , )max 0 0 . The substrate concentration's

probability density function, also known as volume distribution

(Morchain et al., 2014), was obtained by differentiating Equation (10)

with respect tou (Section S1). The variance σ2 of substrate concentration

is found easiest by integrating spatially u x( ( ) − 1)2 with respect to x ,

which yields

σ M
x M x x Mx

M

M
M x Mx

M

=
cosh ( (1 − )) + (1 − )cosh ( )

2 sinh

+
cosh( (1 − ))cosh( )

2 sinh
− 1.

2 2 0
2

0 0
2

0

2

0 0

(11)

3.2 | Dissolved oxygen

The time‐scales of mixing were (3.5m) /0.094 m s = 130s2 2 −1 and

(7.9m) /0.134m s = 466s2 2 −1 for the Bylund et al. (1998) and Xu, Jahic,

Blomsten et al. (1999) data, respectively, whereas the k a = 180hL
−1

corresponded to a 20 s transfer time‐scale surpassing the liquid‐phase

mixing. The profile of dissolved O2 was then obtained by a steady‐state

approximation without mixing assuming that local transfer and

consumption rates are equal. The local consumption rate was estimated

with spatially dependent zeroth‐order kinetics, where the mean oxygen

demand rate ODR (gL h−1 −1) was determined from the volumetric

substrate feed rate using a constant yield coefficient (Bylund et al.,

2000; Xu, Jahic, & Enfors, 1999):

QODR= 0.446gg − .S
1 (12)

The local consumption was considered to have the same axial

profile as the substrate concentration. The corresponding mass

balance was

k a h O O u( − ) = ODR ,OL G L (13)

where k aL is the gas–liquid transfer rate constant for O2 (h−1), hO

Henry's constant for OO (mol mol ),2 L G
−1

G the gas‐phase concentra-

tion of O2 (gL−1), OL the liquid‐phase concentration of O2 (gL−1), and u

the local dimensionless concentration of substrate (Equation 9).

Solving for liquid‐phase O2 and limiting the values from below to zero

yielded







O x h O x

u x

k a
( ) = max 0, ( ) −

ODR ( )
.OL G

L

(14)

TABLE 2 Example values for kinetically calculated substrate
time‐scale ratio M X t≈ 0.00743( /(g L ))( /(s))2 −1

95 .

X (gL )−1 t = 10s95 t = 100s95 t = 200s95

1 0.07 0.74 1.49

5 0.37 3.72 7.43

10 0.74 7.43 14.86

20 1.49 14.86 29.73

40 2.97 29.73 59.46

Symbols: M2, substrate time‐scale ratio (Equation 7); X , biomass
concentration; t95, 95% mixing time with widest possible feed‐probe distance.

TABLE 3 Example values for substrate time‐scale ratio with
feed‐based calculation M Q t≈ 0.0149( /(gL h ))( /(s))S

2 −1 −1
95 .

Q (gL h )S
−1 −1 t = 10s95 t = 100s95 t = 200s95

1 0.15 1.49 2.97

2 0.30 2.97 5.95

4 0.59 5.95 11.89

8 1.19 11.89 23.78

16 2.38 23.78 47.56

Symbols: M2, substrate time‐scale ratio (Equation 8); QS, volumetric feed
rate of substrate; t95, 95% mixing time with widest possible feed‐probe
distance.
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Local DOT was obtained by dividing OL by local equilibrium

concentration with zero gas‐phase conversion, h O x( )O G . In the

referenced studies the flow of air into the bioreactors was so high

that even with a 1 gg−1 consumption of oxygen per substrate the

overall gas‐phase oxygen conversions could have been 21%–48% at

most. The effect of gas‐phase depletion was then neglected, which

simplified the treatment.

The simple zeroth‐order formulation allowed approximating the

oxygen‐limited volume fraction of the reactor directly as the volume

fraction where the substrate concentration induced a demand uODR *

exceeding the maximal transfer rate k ah OOL G:

F u1 − ( *), (15)

where the threshold substrate concentration is

u
k ah O

* =
ODR

.
OL G (16)

Since the maximum demand is found at the feed point x0, the

gas‐phase concentration OG in Equation (16) was evaluated at the

feed point's hydrostatic pressure as well.

3.3 | Efficiency factors

Using the distribution and density functions derived for sub-

strate, it was possible to derive efficiency factors for oxygen

uptake and biomass growth on the main substrate. The efficiency

factors represent the fraction of oxygen demand that the transfer

rate is capable of satisfying and the fraction of substrate uptake

that the population is adapted to continue growing on. At

substrate concentrations below the threshold u* (Equation 16),

where the local substrate‐induced demand equals the transfer

rate, the uptake rate equals the local demand such that

u uOUR( ) = ODR , but at concentrations above the threshold the

uptake rate is limited to the transfer rate such that

u k ah O xOUR( ) = ( )OL G 0 . The efficiency for oxygen uptake rate was

obtained by integrating the substrate‐dependent oxygen uptake

rate uOUR( ) with respect to the substrate concentration and

dividing this overall volumetric oxygen uptake rate by the overall

volumetric ODR such that ηOUR= ODROUR (gL h−1 −1). The integral

∫ ∫
∫

η
f u du

fu du
k ah O

f du=
OUR( ) 

ODR
=   +

ODR
  ,

u

u

u

u O

u

u

OUR

* L G

*

min

max

min

max

(17)

where f is the substrate's density function (Equations S1 and S2),

eventually simplified into

η G u
k ah O

F u= ( *) +
ODR

(1 − ( *)),
O

OUR
L G (18)

where G is the first moment of the substrate distribution

(Equation S7).

The efficiency of growth on the main substrate was determined

similarly by utilizing the population balance and adaptation concepts

(Morchain & Fonade, 2009; Morchain et al., 2013): the population

was assumed to grow at the growth rate μ u( ) allowed by the

environment where substrate concentration was below the mean

(u < 1), and to grow at the mean growth rate  μ where substrate

concentration exceeded the mean. Here the growth rate allowed by

the environment was assumed to follow the substrate profile just like

the oxygen consumption,  μ u μ u( ) = , which yielded

  ∫ ∫
∫

η
fμ u du

μ
fudu f du=

( )
= +μ

u

u

u

u1

1

min

max

min

max (19)

as the integral. Integration resulted in

η G F= (1) + 1 − (1).μ (20)

To give an interpretation of the efficiency factors, they can both

be transformed into simplistic biomass yield efficiencies. Given an

aerobic biomass yield on glucose Y = 51%0 and an anaerobic yield

Y = 15%1 (Xu, Jahic, & Enfors, 1999), the oxygen‐uptake‐based yield

efficiency was

η η η
Y

Y
= + (1 − ) .Y OUR OUR

1

0
(21)

The concept is that globally the microorganism utilizes glucose

aerobically as far as possible and that the rest of glucose

consumption is anaerobic. For biomass growth a similar yield

efficiency can be formulated by using ημ, aerobic yield on glucose

Y = 51%0 , and aerobic yield on acetate that has resulted from glucose

overflow Y = 0.667 × 0.4 = 26.7%1 (Xu, Jahic, & Enfors, 1999). For

growth rate efficiency the concept is that the population grows on

glucose, but dissimilates glucose to acetate by overflow metabolism

when substrate concentration exceeds the mean and then consumes

the acetate later on.

3.4 | Temperature

The steady‐state temperature profile was determined by using a heat

source with the substrate's spatial distribution and a uniform cooling

that balanced the heat source across the whole volume. In effect the

diffusion equation for temperature had then two zeroth‐order kinetic

terms, one spatially variable and the other spatially uniform. The

balance for temperature was

ρC d
T

z
H u H

∂

∂
= Δ OUR − Δ OUR,p

2

2 r r (22)

where ρ = 1000kgm−3 is the fermentation broth density,

C = 4180Jkg kp
−1 −1 the specific heat capacity of water (Rumble,

2022), T temperature (K), and HΔ = 460kJmol = 14375kJkgr
−1 −1 the

enthalpy of reaction per O2 consumed (Doran, 2013). Equation (22)

was solved with insulated boundaries and simplified into

6 | LOSOI ET AL.
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θ x x= + − max( , ) + −

+

x x

M

Mx Mx

M M

M x x M x x

M

1

3

+

2 0
1 cosh( )cosh( )

tanh

sinh( max( , ))cosh( min( , ))

2
0

2

2
0

0 0
(23)

by defining a nondimensional temperature

 θ x
ρC d

H H
T x T( ) =

Δ OUR
( ( ) − ).

p

r
2

(24)

The substrate time‐scale ratio M2 and feed point x0 define the

shape of the dimensionless temperature profile.

3.5 | Gaseous and dissolved carbon dioxide

The profiles of CO2(aq) and CO2(g) were estimated for complete

liquid‐phase saturation, where all produced CO2 is released as gas.

Plug flow was assumed for the gas phase (Dahod, 1993; Royce &

Thornhill, 1991), and the mass transfer rate constant for CO2 was

considered to be 89% of O2's k aL (Royce & Thornhill, 1991). For the

experimental references considered here, assuming the same k aL

implies that the liquid‐phase mixing of CO2(aq) is surpassed by local

gas–liquid transfer just as with O2 (Section 3.2). The overall CO2

production was related to the substrate feed rate by Q Q= 0.613D S

with a constant yield coefficient and the local CO2 production rate to

the substrate profile u. The CO2 and O2 yield coefficients correspond

to a respiratory quotient of 1. The resulting balance equation was

n

z
Q u

∂

∂
= ,

D
D (25)

where nD is the molar flow of CO2(g) (molh−1) and QD the CO2

production rate in the whole working volume divided by the cross‐

section (molm h−1 −1). Inlet molar flow at the bottom was considered to

be zero, but a nonzero value could be used as well according to the

composition of the fed gas. The molar flow of CO2(g) integrated to

n x M x x M x

M x Mx

M x x Mx

( ) = (sinh( min( , ))cosh( (1 − ))

− sinh( (1 − ))cosh( )

+ sinh( (1 − min( , )))cosh( )).

D
Q H

Msinh 0 0

0

0 0

D

(26)

Assuming then that the total molar flow of gas remains constant

throughout the reactor, the partial pressure and concentration of

CO2(g), pD, andDG, can be obtained using the ideal gas law accounting

for hydrostatic pressure. The local steady‐state balance for CO2(aq)

under negligible liquid‐phase mixing is

Q u k a h D D+ 0.89 ( − ) = 0,D DL G L (27)

where hD is Henry's constant for CO2 (mol molL G
−1) and 0.89 the

coefficient used to relate the k aL values of CO2 and O2. Equation (27)

allows estimating the concentration of CO2(aq) marked by DL

(mol m−3), which is in excess of the local gas–liquid equilibrium

h DD G to balance the local transfer rate with the local production rate

(Royce & Thornhill, 1991). In accordance with experimental data

(Dahod, 1993), Equation (27) implies that a higher stirrer rate and

thus a higher k aL would decrease the CO2(aq) excess. The

concentration of CO2(aq) can also be expressed as the partial

pressure of CO2(g) that would be in equilibrium with CO2(aq):

p D RT h= ∕ DL . After determining DL, the concentrations of HCO3
−(aq)

and CO3
2−(aq) can be obtained from the respective acid–base

equilibria.

3.6 | pH

The referenced experimental media contained 10–100 mmolL −1

concentrations of H PO2 4
− and HPO4

2− (Table 1), and the acid–base

equilibria of carbonic acid and phosphate buffers were combined into

CO (aq) + HPO (aq) ↔ HCO (aq) + H PO (aq)2 4
2−

3
−

2 4
− to estimate how the

buffer concentrations and pH locally adjust to the CO2 dissolution

and saturation. The mean concentrations of the H PO , HPO42 4
−

2
−, and

HCO3
− ions at the controlled mean pH (Table 1) were used as the

initial state, and their local equilibrium concentrations were calcu-

lated such that Equation (27) applied to local CO2(aq) concentration

as the equilibrium state. The mean pH and mean CO2(aq) concentra-

tion were used to determine the meanHCO3
− concentration. The local

pH could then be obtained from either of the buffer equilibria.

Table S2 exemplifies the procedure.

4 | RESULTS AND DISCUSSION

Substrate profiles and distributions produced by the model are first

presented and discussed in Section 4.1 along with both experimental

and numerical reference data from literature. The effect of substrate

time‐scale ratio and feed point number and placement on the

substrate's volumetric variance were then calculated (Section 4.2).

Instantaneous profiles of O2, temperature, CO2, and pH correspond-

ing to 20gL−1 biomass concentrations were estimated for the

referenced large‐scale experiments (Section 4.3). Finally, biomass

yield effectivities were determined for the experimental references

by first calculating oxygen uptake and adaptation efficiency factors

directly from the experimental substrate concentration data

(Section 4.4). The assumptions, limitations, and applicability of the

model are evaluated in Section 4.5, and implications of the

characterized profiles and distributions are discussed in Section 4.6.

Section S2 contains supplementary general‐level results and

discussion.

4.1 | Substrate profiles and distributions

Instantaneous spatial profiles of substrate concentration produced by

the model were compared against simulated profiles obtained with a

complex metabolic model in a 2D compartment model (Pigou &

Morchain, 2015) and also against S. cerevisiae fed‐batch cultivations

in an over 20m3 working volume (Larsson et al., 1996). Using the

published parameters of the metabolic and hydrodynamic models,

the substrate time‐scale ratios M2 corresponding to the considered

LOSOI ET AL. | 7
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three profiles by Pigou and Morchain (2015) were estimated to be

2.1, 13.5, and 73.1 at 7, 9, and 15 h process times with 2.4, 5.0, and

14gL−1 biomass concentrations, respectively. The three profiles

represented mild (M = 2.12 ) and severe (M ≥ 102 ) mixing limitations

with the time‐scale of mixing being twice and over 10‐fold the time‐

scale of reaction. The profiles yielded by the model were in good

agreement ( R85% ≤ ≤ 94%2 ) with the radially averaged profiles

obtained by the much more complex modeling (Figures 1a and S2A).

As could be anticipated for the linearized kinetics (Figure S1), the two

profiles that had a mean concentration approximately equal to and

lower than the Monod constant at 9 and 15 h were associated with

the higher 94% R2 values. The volumetric feed rates and experimental

substrate concentrations reported by Larsson et al. (1996) yielded

substrate time‐scale ratios ranging from 17 to 30. The biomass

concentrations in these data were within 10–20gL−1. The top‐fed

profile with 10gL−1 biomass concentration was well represented with

R = 94%2 . The other three model profiles were similar despite having

an unsatisfying R < 02 , but this could for the most part be due to

comparing against only three reported experimental concentrations

and the uncertainty in estimating the mean concentration from only

three values.

The CDFs of substrate concentration were calculated for the

Pigou and Morchain (2015) data with the same substrate time‐scale

ratios as earlier (2.1, 13.5, and 73.1) but without radial averaging, and

also for the CFD‐simulation results by Larsson et al. (1996), for which

the substrate time‐scale ratio was estimated to range from 9.0 to

19.2 using their kinetic parameters and operating conditions. The

model produced almost identical distribution functions to Pigou and

Morchain (2015) data (Figure 2a) even though the R2 varied from

approximately 0% (15 h) up to 91% (7 h), but the Larsson et al. (1996)

simulation data had higher variability than the model predicted

(Figure 2b), resulting in R2 values of 43% for the top‐fed and 68% for

the bottom‐fed case. Given the inevitable inaccuracy in estimating

the CDF of the CFD‐simulated substrate contour curves from

Larsson et al. (1996), the model performed reasonably (Figure 2b).

The most notable discrepancies between the model here and the

referenced simulations were found at the upper end of the substrate

distributions, which was also expected due to the higher number of

spatial dimensions in the cited works. For example, the Pigou and

Morchain (2015) data at 9 and 15 h with radial averaging were both

reconstructed by the model with R = 94%2 (Figure 1a), but only

R = 76%2 and R ≈ 02 were obtained by the 1D model for the CDFs of

the same 2D data without radial averaging (Figure 2a).

The time evolutions of local substrate concentrations were

calculated with the model for the large‐scale S. cerevisiae and E. coli

fermentations with up to 40 h process times (Bylund et al., 1998;

Larsson et al., 1996; Xu, Jahic, Blomsten, et al., 1999). Error estimates

(Section 2.4) were also calculated for the model fits. The top‐fed run

of the Bylund et al. (1998) large‐scale experiments was not

considered here, as the mean concentration of substrate could not

be estimated owing to very high glucose concentrations measured at

the top sampling port. The substrate time‐scale ratio calculated with

the reported volumetric feed rates and substrate concentrations

ranged from 0.6 to 38.0 with a median of 15.0 and lower quartile of

8.8. In other words, most of the experimental data were estimated to

have time‐scales of mixing almost 10‐fold the time‐scale of reaction

or considerably more. The model fitted well the measured glucose

concentrations of the over 20m3 S. cerevisiae fed batches (Larsson

et al., 1996) with top and bottom feeds. The batch with top feeding

(Figure 3a) was fitted better than the bottom‐fed batch (Figure 3b),

where the measured heterogeneity was less than the model

suggested here. As shown in Figure 3c,d, respectively, the large‐

scale E. coli fermentations were also well fitted by the model, but the

bottom‐fed 8m3 batch (Bylund et al., 1998) better than the 20m3

batch (Xu, Jahic, Blomsten, et al., 1999), where the measurements

showed less heterogeneity than the model. As shown in Figure S5,

the data and model estimates covered a wide range of substrate

concentrations relative to the Monod constants KS. Altogether,

(a) (b)

F IGURE 1 Axial profile of substrate concentration. (a) The marks show data obtained by radial averaging from a numerical two‐dimensional
study by Pigou and Morchain (2015). The mean concentrations were 274, 58.1, and 13.6 mgL−1 at 7, 9, and 15 h, respectively. (b) Experimental
data by Larsson et al. (1996). Labels t1, t2, b1, and b2 refer to top‐ (t) and bottom‐fed (b) runs with biomass concentrations of 10, 15, 10, and
20gL−1, respectively. The corresponding calculated mean concentrations were 17. 7, 17.2, 16.2, and 10.2mgL−1.

8 | LOSOI ET AL.
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approximately one‐half of the model values were within one

estimated modeling error from the measured value (131/288). The

logarithmic coefficient of determination was Q = 52%2 with 2% and

46% contributions by systematic and random error, respectively, to

the fraction of variance unexplained. The distribution of logarithmic

error was approximately normal (Figure S6A). The conventional

coefficient of determination was slightly higher at R = 62%2 , and the

systematic error was negligible such that the fraction of variance

(b)(a)

F IGURE 2 Substrate concentration's cumulative distribution functions. (a) The marks show data obtained from a numerical two‐dimensional
study by Pigou and Morchain (2015). (b) The marks represent data obtained from computational fluid dynamics simulations by Larsson et al.
(1996) with top (t) and bottom feeds (b) with biomass concentrations 15 and 20gL−1, respectively.

(a) (b)

(c) (d)

F IGURE 3 Model predictions and measured glucose concentrations in large‐scale fed‐batch fermentations. The gray regions denote the
estimated error of model prediction. (a) A 20m3 Saccharomyces cerevisiae fermentation reported by Larsson et al. (1996). The glucose was fed at
the top. (b) Otherwise the same setup as in panel A but with the glucose feed close to the bottom sampling port (Larsson et al., 1996). (c) An 8m3

Escherichia coli fermentation reported by Bylund et al. (1998). The glucose was fed close to the bottom port. (d) A 20m3 E. coli fermentation
reported by Xu, Jahic, Blomsten et al. (1999). The glucose was fed at the top.

LOSOI ET AL. | 9
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unexplained (38%) was solely due to random error in this metric

based on absolute error. The distribution of residuals was rather

symmetrical but sharper than normal, however (Figure S6B).

The two coefficients of determination were both above 50% for

the substrate time series data (Figure 3), which would be relatively

low for a fitted correlation, but indicates good performance here as

the model was not optimized to the data. Most of the uncertainty in

model predictions was caused by the fact that the mean substrate

concentration was not directly available but had to be estimated

using only three experimental concentration values measured at the

top, middle, and bottom of the reactors. The estimated mean values

were on average 22mgL−1 with a 21mgL−1 standard deviation, which

is reasonable for fed‐batch operations, though. The uncertainty

caused by the dispersion coefficient was small in comparison. The

experimental values closest to the feed point were also rather

variable, which was especially apparent with top feeds. Nevertheless,

the error distributions showed good quality of fit in both absolute and

relative error scales (Figure S6). Most of the error was random and

not systematic in nature, lack of precision instead of lack of accuracy.

4.2 | Variance, substrate time‐scale ratio, and feed
points

The substrate's spatial variance was calculated as a function of the

substrate time‐scale ratio with Equation (11) and also with experi-

mental and numerical references (Larsson et al., 1996; Losoi et al.,

2022; Pigou & Morchain, 2015) for comparison. According to the

model, the variance starts eventually to grow linearly with respect to

the square root of the substrate time‐scale ratio, as the rate of

reaction exceeds the rate of mixing, which was somewhat apparent

also in the experimental (Larsson et al., 1996) and numerical (Pigou &

Morchain, 2015) references (Figure 4a). With a conventional top feed

the substrate's volumetric standard deviation equals mean at

M ≈ 15.82 and half the mean at M ≈ 4.82 , where the time‐scales of

mixing are 16‐ and 4.8‐fold the time‐scale of reaction, respectively

(Figure 4b). Interestingly, most of the experimental reference data

(Larsson et al., 1996) with x = 0.880 clustered around the model

curve for simulation with x = 0.760 , and vice versa, the simulation

reference data (Pigou & Morchain, 2015) seemed to follow the model

curve for experiments. The higher‐than‐predicted variance of Pigou

and Morchain (2015) data could be explained by the two‐

dimensionality and different kinetics of their simulation. The

uncertainty in estimating the experimental substrate variance was

high, as only three samples (top, middle, and bottom) were available

at each time point. The variances σ2 of the rest of the experimental

substrate concentration data referenced earlier in this study were

scattered quite randomly on the M σ,2 2‐plot (not shown). The effect

of feed point placement and number demonstrated in a previous

numerical work (Losoi et al., 2022) was reproduced by the simpler

analytic modeling here: the variances were substantially lower with

x = 0.50 than with x = 10 (equivalent to x = 00 ) and practically null

with symmetrical placement of two feed points at x = 0.25 and 0.75.

The benefit of placing a single feed point in the middle instead of the

top or bottom is also seen in Figures S2B, S3B, and S3D.

4.3 | Profiles of DOT, temperature, CO2, and pH

Figures 5 and 6 show profiles of DOT, temperature, gaseous and

dissolved CO2, and pH estimated by the model for the experimental

references at time points corresponding to 20gL−1 biomass concen-

trations and a constant feed (parameters in Table 1). The calculated

substrate time‐scale ratios based on the estimated mean concentra-

tions and reported volumetric feed rates were between 16.8 and

30.2, and the corresponding substrate profiles are shown in

Figure 5a for reference.

Figure 5b shows the estimated DOT profiles, and the proportion

of O2‐limited zones (DOT= 0 with the zeroth‐order kinetic

approximation) was calculated to be 22%–46% (Equation 15). The

(a) (b)

F IGURE 4 Volumetric variance of dimensionless substrate concentration. The square root scaling of the horizontal axis emphasizes the
eventually linear σ M~2 relation. (a) Experimental data by Larsson et al. (1996) (the same data sets as in Figure 3a,b). Simulation data by Pigou
and Morchain (2015). (b) Simulation data by Losoi et al. (2022).
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bottom‐fed cultivations showed less limitation due to higher

hydrostatic pressure at the feed point where the local O2 demand

was highest. Unfortunately, the works referenced here did not

include spatial profiles of DOT, and as such, direct comparison was

not possible. O2 limitations were not detected in any of the

referenced works directly with the probes in the middle of the

reactors. However, Bylund et al. (1998) hypothesized that O2

limitations could have occurred around the feed points in their

experiments, and likewise, Xu, Jahic, Blomsten et al. (1999) estimated

based on the formate accumulation that approximately 12% of the

culture volume would have been anoxic. The modeling performed

here was in accordance with these hypotheses: a poorly mixing

substrate feed might localize the O2 demand such that the limitation

is undetected by the electrode(s) just as suggested in the literature

(Figure 5b).

Figure 5c shows temperature profiles estimated by the model for

the experimental references (Table 1) corresponding to the same time

instants with 20gL−1 biomass concentrations as in Figure 5a,b with

substrate and DOT profile estimates. The oxygen uptake efficiencies

were estimated to be 57%–85% in these situations, leading to

0.83–1.54gL h−1 −1 oxygen uptake rates. Consequently, the gas‐phase

O2 conversions would have been 6%–12%. On the basis of the modeling

here, the axial profile of temperature should have been virtually

homogeneous in the referenced large‐scale experiments. Even with a

higher 1gg−1 consumption of oxygen per substrate the estimated

temperature differences would have been only up to ∘0.16 C, which is still

negligible. For a general assessment of whether axial temperature

differences could be expected to occur, temperature differences were

evaluated with substrate feed rate and 95% mixing time as parameters

by assuming  S x= 0.05gL , = 1−1
0 , and QOUR = ODR = 0.446 S.

According to these estimates a notable temperature difference of ∘1C

scale could occur at large scale (t ≥ 200s95 ) with higher than 10gL h−1 −1

substrate feed rates, provided that oxygen transfer is not limiting

(Table 4). Again, a higher than 0.446g g−1 consumption of oxygen per

substrate would increase the difference accordingly. No reports of axial

temperature differences were found in experimental literature, and no

simulation works were found either, which implies that either there is no

reason to expect any major axial differences to exist or they have been

neglected. The estimations for axial temperature differences in the

referenced experiments were very small, which strongly suggests the

former. Unless higher than 10gL h−1 −1 substrate feed rates are utilized

with sufficient oxygen transfer (Table 4), the assumption of axially

constant temperature remains applicable. Local temperature differences

in the proximity of the heat transfer surfaces are more likely to exist.

The profile of CO2(g) partial pressure was different from the

others in that it was modeled by plug flow without any dispersion.

(a) (b)

(c) (d)

F IGURE 5 Model estimations of axial distributions in the top‐ (t) and bottom‐fed (b, in gray) large‐scale cultivation experiments reported by
Bylund et al. (1998), Larsson et al. (1996), and Xu, Jahic, Blomsten et al. (1999). The model estimations apply to time points with 20gL−1 biomass
concentration (Table 1). (a) Substrate, (b) oxygen, (c) temperature, and (d) partial pressure of CO2(g).
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Consequently, the partial pressure in the gas phase was always zero

at the bottom (Figure 5d). According to the gaseous and dissolved

CO2 profiles estimated by the model for the experimental references

(Bylund et al., 1998; Larsson et al., 1996; Xu, Jahic, Blomsten, et al.,

1999), the mean partial pressure exerted by CO2(aq) may have been

relatively low, at most 35mbar, when top feeds were utilized

(Figure 6a). Bottom feeds increased CO2(g) and CO2(aq) earlier on,

and over 60mbar mean CO2(aq) pressure was estimated in the

Bylund et al. (1998) bottom‐fed case. It was also noticed that the

bottom‐fed batches were modeled to have a relatively homogeneous

profile of CO2(aq) (Figure 6a). The CO2 profiles were plausible:

CO2(aq) concentrations at the top of the reactors were 3%–87% in

excess of equilibrium with CO2(g) (Figure 6a), which is consistent with

the experimental findings of 10%–90% excesses depending on the

operating conditions (Dahod, 1993). Baez et al. (2009) measured

110mbar dissolved CO2 in a 5‐L reactor with a 60gL−1 E. coli

concentration. It was suggested by Baez et al. (2009) that the CO2

pressure might increase up to 300mbar at the bottom of a large

reactor due to hydrostatic pressure. The performed modeling

suggests that in a fed‐batch process such high values are obtainable

at the bottom only if the feed is at the bottom as well. This is due to

the typically low inlet CO2 content of air and the relatively little gas‐

phase dispersion expected in large‐scale reactors (Dahod, 1993;

Royce & Thornhill, 1991).

The axial pH differences due to heterogeneity in CO2(aq) in the

experimental references were estimated to range from 0.08 to

0.31 (Figure 6b). The estimated profiles reflect how the phosphate

buffers adjusted to the heterogeneous CO2(aq) concentrations.

Bottom‐feeding led to more homogeneous CO2(aq) and thus pH

profiles as well. The lower buffer concentrations (Table 1) used by

Larsson et al. (1996) and the greater distance from the buffer's Kp a

resulted in larger axial pH differences. Only single pH probes were

utilized in the referenced experiments, and as such direct

comparison or verification of the axial pH differences could not

be made. It needs to be noted that these estimates were sensitive

to the plug‐flow assumption and the local steady‐state approxima-

tion made for CO2(aq) in Equation (27). Both the gas‐phase

dispersion of CO2(g) and liquid‐phase mixing of CO2(aq) would

smoothen and homogenize the CO2 and consequently the pH

profiles to some extent.

4.4 | Efficiency factors

The experimental data referenced above in Section 4.1 were also

used to estimate time‐averaged efficiency factors for the experi-

ments. Both the oxygen uptake and adaptation efficiency factors

(Equations 18 and 20) were calculated for the same reported time

points as in Figure 3c,d using the same substrate time‐scale ratios

calculated from the reported volumetric feed rates and substrate

concentrations. In comparison with small scale, Xu, Jahic,

Blomsten et al. (1999) reported a 0.31∕0.41 ≈ 76% yield efficiency

on a large scale during the constant‐feed phase. Time‐averaged yield

efficiencies of 88% and 86% were estimated here by oxygen uptake

and adaptation efficiencies of 83% and 70%, respectively, resulting in

a total yield effectivity of 0.88 × 0.86 = 75%. Bylund et al. (1998)

(a) (b)

F IGURE 6 Model estimations of axial distributions in the top‐ (t) and bottom‐fed (b) large‐scale cultivation experiments reported by Bylund
et al. (1998), Larsson et al. (1996), and Xu, Jahic, Blomsten, et al. (1999). The model estimations apply to time points with 20gL−1 biomass
concentration (Table 1). (a) Partial pressure exerted by CO2(aq) concentration and (b) deviation of pH from mean due to CO2(aq) concentration.

TABLE 4 Axial temperature differences (°C) between top
and bottom evaluated with different substrate feed rates QS

and 95% mixing times assuming  S x= 0.05gL , = 1−1
0 , and

QOUR = ODR = 0.446 S.

Q (gL − h − )S
1 1 t = 10s95 t = 100s95 t = 200s95

1 0.00 0.01 0.02

2 0.00 0.02 0.07

4 0.00 0.07 0.21

8 0.00 0.21 0.54

16 0.01 0.54 1.30

Symbols: QS, volumetric feed rate of substrate; t95, 95% mixing time with
widest possible feed‐probe distance.
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reported an 85.5% biomass in their bottom‐fed large‐scale E. coli

batch in comparison with a small‐scale batch, and here the estimated

time‐averaged yield effectivities were 82% based on estimated O2

uptake efficiency of 74% and 84% based on adaptation efficiency of

67%. Larsson et al. (1996) did not report comparisons of lab‐ and

large‐scale yields.

Even though the efficiency factors were rather simplistic, they

were consistent with the yields reported in the literature. Estimation

of the time‐averaged ηOUR for Bylund et al. (1998) experiments was

rather uncertain, though. Both the gas flow rate and stirrer rate were

adjusted in their experiments, but here just the middle point of the

range was assumed to hold for the entire duration. For their data the

k aL was also only roughly approximated from the other referenced

experiments. Also the time‐averaged OUR‐effectivities were esti-

mated using a time‐independent coefficient of O2 consumption per

substrate, even though the consumption is likely to increase during a

fed‐batch process (Bylund et al., 2000). Furthermore, the yield losses

estimated here were simplified also in the sense that the effect of

maintenance was not considered. Interestingly, Maluta et al. (2020)

correlated yield loss to substrate variance. Here, the simple yield

losses were also related to variance through both the population

balance concept but also through O2 uptake efficiency. The relation

was not linear, though, unlike in the referenced modeling work.

4.5 | Assumptions, limitations, and applicability of
the model

First, it should be noted that the model was not optimized to any of

the experimental or numerical references, but the dispersion

coefficients were calculated directly from operating conditions using

the methodology developed in Part I of this study (Losoi et al., 2023),

and the kinetic parameters and mean concentrations were obtained

or calculated from the referenced works. The model involved two

main assumptions on the kinetics: (1) The substrate consumption was

considered to be linear or first‐order with respect to substrate

concentration. (2) The rest of the consumption or production rates

were modeled with zeroth‐order kinetics by first estimating the

overall volumetric rate using a global balance and then using the

substrate profile to transform this total consumption or production

rate to a local rate. Hydrodynamically the major assumptions were to

assume (1) turbulent axial dispersion for the liquid phase and (2) plug

flow for the gas phase. The solid phase (biomass) was not

distinguished from the liquid phase here.

The assumption of linear substrate consumption rate might seem

unlogical, as Monod kinetics are almost invariably used in bioreactor

modeling studies. However, the linearized consumption rate yielded

similar substrate profiles in the 1D diffusion equation's context as the

regularly used Monod kinetics (Figures 1a and S1) and it also

simplifies to standard Monod kinetics in homogeneous conditions.

The linearization performed best in accordance with the Monod

kinetics when the mean substrate concentration was at most of the

same magnitude as the Monod constant (Figures S1, S2, and S5). It

has been pointed out previously that Monod kinetics have been

validated in homogeneous conditions in chemostat and batch

cultivations, where the cell population has adapted to its environ-

ment (Morchain & Fonade, 2009; Morchain et al., 2013). Scale‐down

experiments have shown that the Monod kinetics do not apply at

dynamic, heterogeneous conditions (Xu, Jahic, Blomsten, et al., 1999):

substrate uptake rates exceeding the “maximal rate” parameter have

been found, when a culture is suddenly exposed to a higher substrate

concentration than what it has adapted to. The linearized kinetics

alleviate this to some extent by allowing the uptake rate to exceed

the conventional maximal uptake rate set by the standard Monod

kinetics. The multiple uptake systems existing in the considered

microorganisms were all represented here by a single rate expression,

which is a conventional choice despite neglecting an inherent

biological feature (Morchain et al., 2021). The net uptake rate of

the various substrate uptake systems with different affinities in an

adapted population is often quite well represented by a single

Monod‐ or Michaelis–Menten‐type expression both in E. coli

(Quedeville et al., 2018) and S. cerevisiae (Youk & van Oudenaarden,

2009), though.

Using the substrate profile to estimate the local consumption or

production rates from a global volumetric rate was a convenient

choice that allowed analytical profiles to be formed for dissolved O2,

temperature, and CO2. This implied a one‐way coupling between

substrate and O2 and substrate and CO2: substrate induced

consumption of O2 and release of CO2, but their availability or

presence did not influence substrate consumption. A two‐way

coupling would be more appropriate, as O2 limitation tends to

increase substrate consumption (Xu, Jahic, Blomsten, et al., 1999),

but in a fed‐batch context the overall substrate consumption rate

eventually equals the volumetric feed rate, making the straightfor-

ward one‐way coupling more applicable. In a batch reactor the two‐

way coupling would be more critical. It needs to be noted, however,

that the approach assumed the biomass concentration to be high

enough for the substrate feed rate rather than the metabolic capacity

to be the limiting factor. The k aL and yield coefficients are also

required as a parameter by the model and need to be estimated by

measurements or correlations. The obtained O2 profiles were more

indicative of potential O2 limitation zones that could be defined here

as environments with O = 0L , but probably less applicable as

definitive profiles. There is always some upper limit to biological

oxidative capacity (Szenk et al., 2017), which was not considered in

this modeling work, however. It would be possible to estimate the

spatial profile of dissolved O2 using also a biological limit to the local

uptake rate. This would hardly bring substantial value, when the

objective is simply to detect potential O2 limitation around feed

points in a fed batch. In a batch setting the biomass‐specific rates and

limits to them play a more important role, when the oxygen

consumption is not as limited by substrate availability. Likewise the

profiles of temperature and CO2 were relatively easy to obtain using

the substrate profile. For simplicity, local limitations in O2 transfer

were not considered in determining the temperature profile. Instead,

the local limitations were incorporated through the O2 uptake
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efficiency factor ηOUR, which affected the overall O2 consumption

and heat release rate. Using a nonuniform cooling in obtaining the

temperature would have affected the profile, but most likely not in a

significant amount.

As for the hydrodynamic assumptions, the use of turbulent

dispersion for the liquid phase was treated and validated in Part I of

this study (Losoi et al., 2023). Plug‐flow assumption for the gas phase

was necessary here to obtain an estimate of CO2 profiles. The

assumption could be considered reasonable in the high aspect ratio

reactors studied here (Dahod, 1993; Royce & Thornhill, 1991). With

lower aspect ratios it is probable that axial dispersion cannot be

neglected. The gaseous and dissolved CO2 balances also implied that

the liquid phase is locally saturated with CO2 such that all produced

CO2 is released as gas and none dissolves (Royce & Thornhill, 1991).

A high O2 flow rate was necessary for assuming undepleted

gas phase. With lower flow rates relative to theoretical maximum

consumption the gas‐phase conversion should be taken into

account. For preliminary analyses it is perhaps easiest to use zero

conversion and to note that if limitations are predicted, they are

likely to occur as well. In the modeling performed here, the

assumption of negligible gas‐phase conversion of O2 was not too

bold (conversions 6%–12%). In some other contexts, using zero

conversion throughout would be unreasonable. If the nonzero

conversion cannot be assumed, the profile of gas‐phase oxygen

could be roughly estimated similarly to CO2(g) by a plug‐flow

equation but with spatially dependent consumption. The axial and

radial differences in k aL due to impeller vicinity (Oosterhuis &

Kossen, 1984) were neglected for simplicity. In a heterogeneous

fed‐batch setting such as here the spatial variations in k aL are not

necessarily as important as in a homogeneous batch setting,

where the O2 demand by substrate is more‐or‐less uniform across

the whole reactor. It would be possible to use a spatially

heterogeneous k aL when estimating the profiles, if more precise

data were available, or by correlations (Oosterhuis & Kossen,

1984). Also, the space below the sparger at the bottom can usually

be expected to be poorly oxygenated (Oosterhuis & Kossen,

1984), which was not accounted for here.

4.6 | Implications

With over 40gL−1 biomass concentrations or 16gL h−1 −1 feed rates,

mixing limitations (M > 12 ) begin to occur even with only t = 10s95

mixing times characteristic of small‐scale equipment. In large‐scale

reactors, where t > 200s95 and longer mixing times are possible,

mixing limitations may appear already with low biomass concentra-

tions of 5gL−1 or feed rates of 1gL h−1 −1 (Tables 2 and 3).

Heterogeneous substrate concentration profiles localize O2 demand

as well, leading to anoxic zones. Similarly the use of cofeeding

strategies, where an additional high‐energy substrate is supplied in

low concentrations (Park et al., 2019), could be compromized by the

high substrate concentrations found near the feeding points. If the

substrate feed rates were more intensive, for example,10gL h−1 −1, and

O2 transfer were not limiting, measurable axial temperature differ-

ences might be expected especially if the substrate is completely

oxidized for energy.

On the basis of the various negative effects of the characterized

heterogeneity, it is suggested that large‐scale reactors should be

homogenized more effectively. Of all the alternatives, the use of

multiple feed points or at least positioning the feed in the middle

instead of at the top (Losoi et al., 2022) could be the easiest to

implement. Symmetrical feed placement divides the effective work-

ing height by the number of feed points N such thatM N~2 −2 holds,

leading to a quick decrease in the time‐scale of mixing and thus

heterogeneity. From the dissolved CO2 and pH perspectives a

bottom feed would be most desirable. Homogeneity in the gas phase

is not achievable by substrate feed arrangements, but linear gas‐

phase composition profiles would be found in the case of a

homogeneous substrate concentration.

5 | CONCLUSIONS

The aim of this two‐part study was to comprehensively model large‐

scale stirred bioreactors using 1D diffusion equations. Part I of this

study (Losoi et al., 2023) presented a computation formula for the

model's parameter, the axial dispersion coefficient, and validated it

against a large set of previously published experimental data. This

second part employed the model to characterize substrate, pH,

oxygen, CO2, and temperature profiles in typical fed‐batch contexts.

The characterizations were compared with available experimental

and numerical data, and good accordance was found even though

the model was not optimized to the reference data. The modeling

suggested that indeed each of the five variables could be

heterogeneous, though temperature not as severely as the others.

According to the model, appropriate feed point placement could

effectively homogenize the liquid phase. CO2 could not be

homogenized in a tall reactor, but a linear profile of gas‐phase

content could be expected if the substrate were homogeneously

distributed. Likewise, gas‐phase O2 conversion would be expected

to be linear in a tall but homogeneous reactor. Using a bottom feed

could improve O2 consumption and yield more homogeneous

profiles of dissolved CO2 and pH. On the basis of this two‐part

study, 1D diffusion equations can be applied for simple and

predictive preliminary modeling of typical large‐scale stirred

bioreactors.
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