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Abstract

Bioreactor scale‐up is complicated by dynamic interactions between mixing, reaction,

mass transfer, and biological phenomena, the effects of which are usually predicted with

simple correlations or case‐specific simulations. This two‐part study investigated whether

axial diffusion equations could be used to calculate mixing times and to model and

characterize large‐scale stirred bioreactors in a general and predictive manner without

fitting the dispersion coefficient. In this first part, a resistances‐in‐series model analogous

to basic heat transfer theory was developed to estimate the dispersion coefficient such

that only available hydrodynamic numbers and literature data were needed in

calculations. For model validation, over 800 previously published experimentally

determined mixing times were predicted with the transient axial diffusion equation.

The collected data covered reactor sizes up to 160m3, single‐ and multi‐impeller

configurations with diverse impeller types, aerated and non‐aerated operation in

turbulent and transition flow regimes, and various mixing time quantification methods.

The model performed excellently for typical multi‐impeller configurations as long as

flooding conditions were avoided. Mixing times for single‐impeller and few nonstandard

bioreactors were not predicted equally well. The transient diffusion equation together

with the developed transfer resistance analogy proved to be a convenient and predictive

model of mixing in typical large‐scale bioreactors.
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1 | INTRODUCTION

The competition between reaction, mixing, and various transfer

phenomena ultimately determines the degree of potentially detrimental

heterogeneity (Enfors et al., 2001) found in large‐scale bioreactors.

Knowledge of the reactor's mixing capabilities is thus necessary for time‐

scale analyses that are used to assess whether mixing limitations are

expected. The rate of mixing is often quantified using a mixing time, that

is, the time required to reach a prescribed level of homogeneity after a

tracer pulse. Mixing time predictions are generally made using

correlations (Magelli et al., 2013), compartment models (Vasconcelos

et al., 1998; Vrábel et al., 2000), or computational fluid dynamics (CFD)

(Delafosse et al., 2014). Correlations have the merits of simple usage and

good representation of empirical data. Unfortunately, some relevant
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aspects such as the measurement technique and feed and probe

placements are not readily accounted for by a correlation. Furthermore,

most mixing time correlations have been developed and fitted for single‐

impeller vessels without aeration. Magelli et al. (2013) derived

correlations for multi‐impeller reactors, though, which are more relevant

for bioreactors, but only for unaerated operation. Compartment model

and CFD simulations, on the other hand, have a stronger physical basis

than correlations and can incorporate the geometrical and configuration‐

related details that simple correlations cannot. However, despite their

power and increased accessibility with modern software and computing

resources, both compartment models and CFD have some disadvantages

in predicting mixing times: First, the developed model and the simulation

result is case‐, geometry‐, and flow‐field‐specific. For instance, a change

in the flow field due to addition or removal of impellers, change of

impeller type, or strong aeration requires adjustment of the model

structure and a new simulation. Second, an analytical mixing time

formula would be preferable over individual simulations when deriving

general results or conclusions.

Overall it would be desirable that a general model would have an

understandable physical foundation like compartment model and CFD

simulations do, be straightforward to use like correlations are, but would

not require fitting of its parameter(s) to the validation data. An alternative

to correlations and the more involved hydrodynamic models is the

transient one‐dimensional (1D) diffusion equation, also called the axial

dispersionmodel (Kawase &Moo‐Young, 1989;Machon& Jahoda, 2000;

Pinelli & Magelli, 2000). The equation can produce a single formula for

mixing time, it has an easily interpreted physical basis (axial dispersion), it

can include configuration details such as feed and probe placements, and

it depends only on a single parameter, the axial dispersion coefficient.

The 1D diffusion equation has received relatively little attention despite

these attractive features, which is probably due to the fact that its

parameter is not predicted a priori, but has been fitted instead.

The overall purpose of this two‐part study was to develop diffusion

equations into a general model of mixing and reaction in typical large‐

scale stirred bioreactors. The focus of this first part is on mixing times,

and the aim was here to derive a predictive formula for the sole

parameter of the 1D diffusion equations, the axial dispersion coefficient,

without fitting the model to the validation data. Previously developed

successful 1D and 2D (two‐dimensional) compartment modeling frame-

works (Vasconcelos et al., 1998; Vrábel et al., 2000) were reformulated

as a heat transfer resistance analogy to obtain a globally averaged axial

dispersion coefficient from the impeller‐wise volume flow rates, which

enabled the transient 1D diffusion equation to predict mixing times. A

large and diverse set of over 800 measured mixing times obtained in

reactor setups relevant for biotechnology was collected from literature

and used to challenge the model. The model's theoretical predictions

were also studied and compared to the collected literature data, and

various mixing time measurement techniques were interpreted and

unified in the context of the diffusion equation. In Part II of this study

(Losoi et al., 2023), the focus is on 1D steady‐state diffusion equations

with first‐ and zeroth‐order kinetics, which were developed to predict

and characterize the potentially heterogeneous profiles of substrate, pH,

oxygen, and temperature in large‐scale stirred bioreactors.

2 | MATERIALS AND METHODS

2.1 | Mixing time data

A comprehensive set of mixing time data was collected from 23

published articles representing 102 different reactor setups and 832

reported mixing times. In this context a reactor setup is considered a

unique combination of reactor geometry, impeller type or placement, and

working medium. Table 1 shows the number of mixing times obtained

from the different studies, and also divides them according to

configuration and operating conditions. The mixing times were typically

a mean of three to four measurements, and the working media were

mostly water or glycerol solutions of varying viscosity (solutions of

different strength were treated as separate media). The data covered

TABLE 1 Distribution of mixing time data obtained from
literature references.

Reference M‐u M‐a M‐f M‐t M‐p S S‐p Total

Alves et al. (1997) 13 13 26

Bernauer et al. (2022) 8 8

Cronin et al. (1994) 29 11 24 7 71

Delafosse et al. (2014) 2 2

Gabelle et al. (2011) 12 10 22

Guillard and Trägårdh (2003) 20 20

Jahoda and Machon (1994) 45 5 50

Jaworski et al. (2000) 12 12

Kasat and Pandit (2004) 12 12

Khang and Levenspiel (1976) 35 35

Langheinrich et al. (1998) 21 28 49

Machon and Jahoda (2000) 15 15 15 45

Magelli et al. (2013) 96 7 103

Pinelli and Magelli (2000) 8 8

Rosseburg et al. (2018) 28 28

Shewale and Pandit (2006) 12 17 31 60

Vasconcelos et al. (1995) 15 12 4 2 33

Vasconcelos et al. (1996) 17 42 59

Vasconcelos et al. (1998) 11 60 71

Vrábel et al. (1999) 4 14 1 19

Vrábel et al. (2000) 10 31 41

Xie et al. (2014) 20 20 40

Xing et al. (2009) 18 18

Total 341 190 51 91 66 65 28 832

Note: The results in Section 4.3 are presented and discussed using these
subgroups. Symbols: a, aerated; f, flooding; M, multi‐impeller
configuration; p, pH‐based measurement (any operating conditions); S,

single‐impeller configuration; t, transition flow regime (with and without
aeration); u, unaerated.
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numerous reactor dimensions and impeller types and placements,

various feed and probe locations, both turbulent and transition flow

regimes, and different mixing time definitions and measurement

techniques. Rushton turbines and radial flow turbines with contoured

blades were used in 509 of the mixing time data, axial flow impellers

(pitched blade turbines, propellers, and hydrofoils) in 191, and combina-

tions of radial and axial impellers in 132. Supporting Information:

Table S1 lists the frequency of the 31 unique impeller configurations in

the collected data set. Altogether 298 mixing times (36% of total)

involved aeration in dispersed, loading, or flooding regimes. Table 2

summarizes the most relevant characteristics of the collected data, which

are detailed in Supporting Information: Section S2.3 and are fully

available (Supporting Information: File S1). In total 472 of the times were

obtained in lab‐scale (liquid volume V ≤ 0.1L m3), 201 in pilot‐scale

( V0.1 < ≤ 1L m3), and 159 in large‐scale (V > 1L m3) reactors.

In some cases, the original publications did not explicitly provide

all the details that were necessary for this work such as the gas

holdup and impeller power loss due to gas flow and tight impeller

spacing. In these cases, the values were either estimated directly

from literature or by using published correlations. All these

assumptions have been marked in Supporting Information:

Section S2.3 and also in Supporting Information: File S1.

2.2 | Goodness‐of‐fit metrics

Two coefficients of determination based on absolute and relative

error, respectively, were used to evaluate the mixing time predictions

of the model. In the following, f is the predicted value and y the true

experimentally determined value from literature. Mean values are

denoted with an “m” subscript (e.g., ym is the mean of experimental

values). To facilitate comparison of the model performance with

other published works, the commonly used mean relative error

 f y yMRE = ∑ ( − )∕
N i

N
i i i

1
=1 and coefficient of variation (relative standard

deviation) f y yCOV = ∑ ( − ) ∕
N i

N
i i

1
=1

2
m were also calculated.

The conventional coefficient of determination R = 1 −2

f y y y(∑ ( − ) )∕ (∑ ( − ) )i
N

i i i
N

i=1
2

=1 m
2 is based on the sum of squared

residuals normalized by the overall variability of the experimental

data around their mean. R2 measures goodness‐of‐fit in absolute

terms. However, the mixing time data to be predicted are both

strictly positive and have an orders‐of‐magnitude range from 3.20

to 1840 s, which makes a statistic based on absolute error

nonoptimal. A metric based on relative error would be preferred

for such data. Logarithmic error f yln( ∕ ) is a suitable measure as the

logarithm deals with relative errors such that for example, both a

−50% error in f y= (1 − 0.5) and a +100% error in f y= (1 + 1) have

the same magnitude (ln(2) = −ln(1∕2)) (Tofallis, 2015). For strictly

positive mixing times it makes sense to penalize predictions half or

double the true value equally. An analogous coefficient of

determination based on squared logarithmic error was therefore

used as a supplementary statistic:

Q
f y

y y
= 1 −

∑ (ln( ∕ ))

∑ (ln( ∕ ))
.

i
N

i i

i
N

i

2 =1
2

=1 gm
2

(1)

To retain similarity with the conventional R2, geometric mean

y y= exp( ∑ ln )
N i

N
igm

1
=1 was used in the denominator to minimize the

denominator sum just as arithmetic mean is used in R2 to minimize

its respective denominator sum (Tofallis, 2015). Like with R2 that

has a maximum value of 1 and desirable values over 0, a perfect fit

would yield Q = 12 and a constant model ∀f y i=i gm predicting

only the (geometric) mean of data would yield Q = 02 . The error

term in Q2 was also decomposed to quantify the systematic and

random error contributions separately (Supporting Information:

Section S3).

2.3 | Estimation of model uncertainty

The main parameters of the model were obtained directly from

literature correlations, which involved some uncertainty. The

error expected in model prediction f purely due to the inevitable

uncertainty in its N parameters xi was estimated by the first‐order

propagation‐of‐error formula assuming zero covariance between

the parameters: σ f x σ≈ ∑ (∂ ∕∂ )f i
N

i x=1
2 2

i
, where σi is the standard

deviation of i. The derivatives f x∂ ∕∂ i were calculated numerically

with a centered difference.

2.4 | Software

Literature mixing time data that were reported in figures were

recovered with WebPlotDigitizer (Rohatgi, 2020). All calcu-

lations were performed with Python 3.8.5 programming

language (https://www.python.org) with scipy 1.5.2 (Virtanen

et al., 2020), numpy 1.19.2 (Harris et al., 2020), and pandas

1.1.3 (McKinney, 2010; The Pandas Development Team, 2020)

packages.

TABLE 2 Overview of the 832 experimental mixing times and
operating conditions obtained from literature (Table 1).

t Re VL v V∕G L

s – m3 vvm

Minimum 3.20 187 0.00722 0.00248

Lower decile 13.0 8060 0.0308 0.0126

Lower quartile 19.0 25500 0.0587 0.196

Median 34.2 62700 0.0766 0.501

Upper quartile 73.5 216000 0.586 0.974

Upper decile 136 726000 8.25 1.27

Maximum 1840 5050000 160 2.00

Note: The vG/VL column refers only to the aerated subset of the data

(298/832). Symbols: t, measured mixing time; Re, impeller Reynolds
number;VL , liquid volume; vG, volume flow of gas; vvm, volume flow of gas
per liquid volume per minute.
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3 | THEORETICAL ASPECTS

Section 3.1 presents the transient 1D diffusion equation and its

solution, Section 3.2 discusses the determination of mixing time in

the context of the diffusion equation, and Section 3.3 details the

calculation of the required axial dispersion coefficient.

3.1 | Transient 1D diffusion equation

Mixing across the working height H (m) was modeled here with the

transient 1D diffusion equation:

u

t
d

u

z

∂

∂
=

∂

∂
,

2

2
(2)

with closed boundaries ( u z∂ ∕∂ = 0 at both bottom z = 0 and top

z H= ) (Kawase & Moo‐Young, 1989; Machon & Jahoda, 2000; Pinelli

& Magelli, 2000). u is the normalized concentration of the added

substance or tracer (initial value 0, spatial mean 1), t time (s), d the

axial dispersion coefficient representing both convective and diffu-

sive turbulent flows (m s2 −1), and z axial coordinate (m). The working

height includes the gas holdup αG. Solution to Equation (2) with

closed boundaries and an impulse initial condition at z0 can be found

in heat transfer textbooks (e.g., Cole et al., 2010):



 


 


 


 






∑u kπ

z

H
kπ

z

H
k π

dt

H
= 1 + 2 cos cos exp − .

k=1

∞
0 2 2

2 (3)

The above equation was used here to predict both tracer curves

and mixing times according to their various definitions.

3.2 | Mixing time

The sum's first time‐dependent term in Equation (3) dominates the

solution as equilibrium is approached, and Equation (3) is simplified to



 


 


 


 






u π

z

H
π
z

H
π

dt

H
≈ 1 + 2 cos cos exp − ,

0 2
2

(4)

from which the time can be solved. More terms and a numerical

solution of mixing time are required if the mixing time's heterogeneity

level  u1 − is high or if either the feed or measurement point, z0 or z ,

respectively, is close to H0.5 (Supporting Information: Section S4). In

most cases the one‐term Equation (4) is sufficient.

Sections 3.2.1, 3.2.2, and 3.2.3 present how the diffusion equation

applies to mixing times measured with a single probe, multiple

probes, or a colorimetric method, respectively.

3.2.1 | Single probe

The most of the data collected in this work were obtained with a

single probe measuring conductivity (586 mixing times out of 832),

which increases linearly with the local concentration of a salt solution

tracer. For a single probe at z, the mixing time is readily solved from

Equation (4):

t
H

π d

πz H πz H

u
≈ ln

2 cos( ∕ )cos( ∕ )

1 −
.u

2

2

0 (5)

Heterogeneity level of the mixing time is specified by  u1 − . The

most common heterogeneity levels are 5% and 10%, which

correspond to u = 0.95 and u = 0.90 when equilibrium is approached

from below (probe far from tracer's injection point) or to u = 1.05 and

u = 1.10 when from above (probe close to injection). For conve-

nience, the absolute value of the logarithm's argument can be used

such that u in Equation (5) is the homogeneity level between 0 and 1

regardless of whether the actual normalized signal (u in Equation 3)

rises or decays to 1.

3.2.2 | Multiple probes

In some studies, multiple probes have been used, and the final mixing

time can be the mean of each probe's individual mixing time (e.g.,

Bernauer et al., 2022; Xing et al., 2009) or the mixing time determined

from an averaged signal of the probes (Mayr et al., 1992). In such cases, it

is straightforward to first calculate separate mixing times using Equation

(5) and to average them or to average the signals first (Equation 4) for

mixing time quantification. The standard deviation of the local

concentrations may also be tracked. In experimental cases a discrete

definition of standard deviation is used: σ u= ∑ ( − 1)
N i

N
i

1
=1

2 . For best

comparison with experimental data, axial coordinates should be repeated

to match the number of multiple probes occupying the same height if the

probe numbers differ between axial locations. WithN probes the mixing

time becomes (Supporting Information: Section S5)

t
H

π d

πz H πz H

σ
=

2
ln

cos ( ∕ ) ∑ cos ( ∕ )
,σ

N i
N

i2

2

4 2
0 =1

2

2
(6)

when the feed point is not too close to H0.5 . In numerical cases, the

whole volume is usually monitored and the continuous definition

∫σ u z= ( − 1) d
H

H1

0
2 is most appropriate, which yields (Supporting

Information: Section S5):

t
H

π d

πz H

σ
=

2
ln

2 cos ( ∕ )
,σ

2

2

2
0

2
(7)

assuming again that the feed point is not at H0.5 . Interestingly, a

symmetric placement of discrete probes at z H i N∕ = (2 − 1)∕ (2 )i

simplifies Equation (6) to Equation (7) (Supporting Information:

Section S5).

3.2.3 | Colorimetric measurements

Mixing times are also fairly commonly measured with colorimetric

methods. In the starch–iodine–thiosulphate method, the complete

4 | LOSOI ET AL.
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decolorization of the vessel contents signals the mixing time. In the

diffusion equation's context, such measurements can be represented

by monitoring the normalized concentration at the point furthest

away from the feed (last to receive the sufficient amount of the

decolorization agent). The homogeneity level is related to the

stoichiometric excess of thiosulphate. For example, Cronin et al.

(1994) used 25% excess of thiosulphate, which means that a

u = 1∕1.25 = 80% concentration is required to completely decolorize

the starch‐iodine‐complex in the axial point furthest away from feed

(z = 0 if z H≥ 0.50 or z H= if z H< 0.50 ). The mixing time can then be

calculated with Equation (5).

With an inert dye the standard deviation of local mean gray

values of the experiment's video recording can be monitored (Gabelle

et al., 2011). Assuming that the local mean gray value is linear with

respect to local dye concentration, the mixing time is essentially a

standard deviation‐based mixing time (Equations 6 and 7). Quantifi-

cation based on pH‐indicators is discussed in Supporting Information:

Section S8.

3.3 | Axial dispersion coefficient

To calculate the mixing time as described in Section 3.2, the axial

dispersion coefficient d is required as a parameter. Based on classical

turbulence theory, it is defined as:

d UX= , (8)

where U is the axial velocity fluctuation (m s−1) and X is the integral

length‐scale of turbulence (m) (Kawase & Moo‐Young, 1989).

Section 3.3.1 extends Equation (8) to a global axial dispersion

coefficient using a transfer resistance analogy, and Sections 3.3.2

and 3.3.3 define the velocity fluctuation and length‐scale terms,

respectively. The literature correlations that were used in calculating

the dispersion coefficient and thus the mixing times are compiled in

Table 3 along with their uncertainties. The following dispersion

coefficient calculation method is used also in Part II of this study for

characterization of substrate, temperature, dissolved oxygen, and pH

profiles in large‐scale bioreactors (Losoi et al., 2023).

3.3.1 | Transfer resistance analogy

Here, in this study, the structure of previously published

successful and predictive 1D and 2D compartment models

(Vasconcelos et al., 1998; Vrábel et al., 2000) was formalized

into a resistances‐in‐series model analogous to basic heat

transfer theory (Figure 1). The previous 1D compartment models

and by extension the 1D axial diffusion equation here represent

both the turbulent exchange and the convective axial‐radial

circulation flow patterns by a diffusive exchange flow, or axial

dispersion. It was first recognized that the overall axial dispersion

coefficient d is inversely proportional to an overall transfer

resistance R (s m−3):

d
H

AR
= , (9)

where H is the working height and A the tank's cross‐section (m2).

As illustrated in Figure 1, the transfer within each impeller

stage is slowed down by a circulation resistance RC, and the

transfer between impeller stages by an interstage resistance RI.

Resistances of both types are connected in series such that the

total resistance is the sum of all circulation and interstage

resistances: R R= ∑i i. In this analogy, a reactor equipped with Ni

impellers has Ni circulation resistances and N − 1i interstage

resistances. The concept of circulation and interstage resistances

is coherent with the experimental findings that a smaller number

of impellers in a high aspect ratio reactor results in a smaller

mixing time (Cui, van der Lans, Noorman, et al., 1996; Vasconcelos

et al., 1995): decreasing the number of impellers increases

dispersion coefficient in the model as interstage resistances are

removed.

Using heat transfer terminology, the circulation resistances are

analogous to conduction resistance within solid bodies, and they are

related to local dispersion coefficient di within respective impeller

regions by

R
H

Ad
= ,C

i

i
(10)

where Hi is the considered impeller's working height. The impeller‐

wise dispersion coefficients are further decomposed to mechanical

and pneumatic components such that d UX=i (Equation 8) is applied

separately to both components. The product of cross‐section A and a

velocity fluctuationU is essentially a volume flow rate v , which yields

R
H

v X v X
=

+
,C

i

C0 0 CG G
(11)

where vC0 and vCG are the mechanical and pneumatic circulation flows

(m s3 −1), respectively, and X0 and XG their length‐scales (m). The

impeller working heights are determined such that the boundaries are

midway between neighboring impellers. Similarly, the interstage

resistances are analogous to contact resistances between solid

bodies, and they are inversely proportional to the mechanical and

pneumatic exchange flow rates:

TABLE 3 Model parameters.

Parameter Equation COV/% References

KI 15 10 Vasconcelos et al. (1998, 1996)

KC 17 10 Vasconcelos et al. (1998, 1996)

P P∕G S1, S2 5 Cui, van der Lans, Luyben (1996);
Vrábel et al. (1999)

αG S4 4 Vrábel et al. (2000)

Note: Originally reported power loss and gas holdup values and
uncertainties were used whenever available. Symbols: COV, coefficient of
variation; KI, interstage flow number; KC, circulation flow number; P P∕G ,

power loss due to aeration; αG, gas holdup.
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R
v v

=
1

+
.I

I0 IG
(12)

The flow rates in interstage resistances were averaged from the

adjacent two impellers.

Some operating conditions (impeller placement, strong aeration)

do not conform to the standard model of Ni circulation resistances

and N − 1i interstage resistances. Depending on the placement of the

impellers, a stagnant upper zone may form (Cronin et al., 1994;

Magelli et al., 2013; Vrábel et al., 1999). The size of the stagnant

upper zone varies somewhat in literature, but here the working

height of the top impeller was allowed to extend at most T0.75

(Magelli et al., 2013) above the impeller itself, where T is the vessel

diameter (m). The possible extra space was then considered a

stagnant upper zone separated from the top impeller region by an

extra interstage resistance. Furthermore, the mechanical circulation

flow rate of the stagnant upper zone was set to half the top impeller's

mechanical circulation flow rate (Vrábel et al., 1999, 2000). On the

other hand, a merging flow was reported in some reactors with very

tight impeller spacings. In such cases, the interstage resistances

between merged impellers were removed such that only the

circulation resistances within impeller stages remained (65 mixing

times out of all 832). Similarly, the two bottommost impeller regions

were merged and the interstage resistance between them was

removed when flooding conditions were indicated in the original

publications (70 mixing times out of 298 aerated). For reference,

Alves and Vasconcelos (1995) extended the applicability of the

Vasconcelos et al. (1995) 1D compartment model into the flooding

regime by merging compartments from the two impeller regions

closest to bottom. However, they also augmented the flow rates by

fitting, which was not done here.

3.3.2 | Velocity fluctuations and volume flow rates

The mechanical circulation and interstage volume flow rates required

in Equations (11) and (12), vC and vI, respectively, can be correlated to

stirrer rate n (s )−1 and impeller diameter D (m) through respective

dimensionless flow numbers KC and KI:

v K nD= ,C C
3 (13)

v K nD= .I I
3 (14)

A velocity fluctuation U (Equation 8) is obtained by dividing a

volume flow rate by the cross‐section of the tank.

According to measurements in 0.292–0.720 m tanks with

D T= ∕3 to D T= ∕2 Rushton turbines, the interstage flow number

is (Vasconcelos et al., 1998, 1995):



 


K F

T

D

P

P
= 0.2 ,I I

G (15)

where the correction factor FI is approximately 1 in turbulent flow

with high Reynolds numbers. P P( ∕ )G is the gassed‐to‐ungassed power

ratio. Here a linear dependency on the gassed‐to‐ungassed power

ratio was assumed in accordance with Vasconcelos et al.

(1998, 1995). The coefficient 0.20 is the mean reported by

Vasconcelos et al. (1998, 1995) with COV≈10%. Vasconcelos et al.

(1996) measured and reported the interstage flows at Reynolds

F IGURE 1 Application of the transfer resistance analogy developed here in a standard geometry vessel stirred with a Rushton turbine (radial
flow) and an upwards pumping pitched blade turbine (axial flow). The overall axial dispersion coefficient d (m s2 −1, Equation 9) is inversely
proportional to the sum of the three resistances in series (two circulation resistances and an interstage resistance). Both circulation resistances
RC (s m−3, Equation 11) are proportional to the respective impellers' working height Hi (m), but inversely proportional to the mechanical (0) and
pneumatic (G) circulation flows vC (m s3 −1) and their respective length‐scales X (m). The interstage resistance RI (s m−3, Equation 12) is inversely
proportional to the mechanical and pneumatic interstage flows vI (m s3 −1).

6 | LOSOI ET AL.
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numbers down to 200, and their results can be interpolated by

setting (Supporting Information: Section S6)

F =
Re − 147

Re + 88.3
,I (16)

where nD νRe = ∕ is the impeller Reynolds number (ν is the kinematic

viscosity, m s2 −1). Equation (16) is obviously restricted to Re > 147.

Both direct velocity measurements and 1D compartment model

fits by others suggest that the interstage flow numbers might be

approximately the same also with axial flow impellers: Jahoda and

Machon (1994) measured mixing times with multiple Rushton

turbines and pitched blade turbines in both up‐ and down‐pumping

configurations and fitted very similar exchange flow numbers in a 1D

model with Ni compartments regardless of the impeller type. Vrábel

et al. (2000) measured magnetically the axial velocity fluctuation

away from the impellers in over 20 m3 working volumes and found

that the normalized velocity fluctuation induced by a Rushton turbine

and an axial flow impeller was practically identical. Consequently,

Equations (15) and (16) were used here for all impeller types.

The circulation flow number was correlated as:



 


 


 


K F

T

D

P

P
= 0.21 ,C C

1.8
G (17)

by Vasconcelos et al. (1998, 1995) using Rushton turbines, where the

correction factor FC is approximately 1 in the turbulent regime.

Equation (17) agreed with their experimental measurements for

D T= ∕3 andD T= ∕2 impellers. It is reasonable to assume that KC has

at least the same 10% relative standard deviation as KI. Vasconcelos

et al. (1996) fitted their model's circulation flow rate at Reynolds

numbers down to 200, and the obtained correction factor is

satisfactorily represented by setting (Supporting Information:

Section S6)

F =
Re − 161

Re + 456
,C (18)

which is restricted to Re>161. Similarly to the interstage flow

number, Equations (17) and (18) were used here for all impeller types.

Vasconcelos et al. (1996) remarked that at low Reynolds numbers

(Re≤200) the corrected circulation flows unphysically fell below the

interstage flows. Interestingly, the Kolmogorov length‐scale associ-

ated to the smallest turbulent eddies would have been approximately

up to 3mm in their reactor with Re = 200, which is relatively close to

the scale of conductivity probe diameters. The unphysical fit might

have been due to microscale mixing limitations in the lower transition

region. In any case, such low Reynolds numbers are rare in bioreactor

operation, and improvement of their correction factor was not

attempted here.

The effect of gas flow on both circulation and exchange flows

was based on the specific power lost and gained through aeration.

Both circulation and interstage flows were reduced in direct

proportion to the impeller power loss (Vasconcelos et al., 1998, 1995).

Unfortunately, there are no direct measurements available for

calculation of the gas‐induced flows required in Equations (11) and

(12): the induced flows reported by Vasconcelos et al. (1998, 1995)

were fitted, not measured. Based on dimensional analysis, the ratio of

pneumatic and mechanical interstage flows was assumed to be

proportional to the cubic root of the ratio of pneumatic and

mechanical power inputs (Vrábel et al., 1999, 2000). The gas‐

induced interstage flow was also reduced in proportion to the cross‐

section occupied by impellers, though linearly here for simplicity and

not quartically like in Vasconcelos et al. (1998). The mechanical

interstage flow rate's correction factor for low Reynolds numbers and

power‐reduction due to aeration were discarded. The ratio was then







 













v

v
F
P

P

D

T
= 1 −

ϵ

ϵ
,

IG

I0
I

G
2

G

L

1∕3

(19)

where gUϵ =G G is pneumatic specific power input (W kg−1), g = 9.81

m s−2 gravitational acceleration,UG superficial gas velocity (m s−1), and

ϵL mechanical specific power input (W kg−1). In the absence of data,

the pneumatic circulation flow was simply assumed to be equal to the

pneumatic interstage flow: v v=CG IG.

3.3.3 | Integral length‐scales

The tank diameter T has been suggested as the relevant length‐scale

for mixing time calculations (Nienow, 1997). The successful applica-

tion of compartments with T∕3 height (Alves et al., 1997;

Vasconcelos et al., 1995) implies that the integral length‐scale would

be X T= ∕3. However, this result was obtained in tanks where H T≥i .

Cui, van der Lans, Noorman et al. (1996); Vrábel et al. (1999, 2000)

defined their predictive 2D compartment models where H T<i with

three compartment rows per impeller, which indicates X H= ∕3i

instead. To accommodate both of these definitions here, their

harmonic mean was used

X
TH

T H
=

2

3 +
,

i

i
(20)

which favors the lower of the values. In a standard geometry, each

impeller has a H T=i working height and X T H= ∕3 = ∕3i . For

pneumatic circulation flow the whole working height H was used

here instead of impeller‐wise working heights Hi, as pneumatic

agitation tends to create a circulation loop encompassing the whole

tank when it is the dominant form of agitation (Alves &

Vasconcelos, 1995; Machon & Jahoda, 2000; Shewale &

Pandit, 2006).

4 | RESULTS AND DISCUSSION

We first show that the diffusion equation accommodates to different

mixing time definitions (Section 4.1). Theoretical results derived here

from the diffusion equation and the developed transfer resistance

analogy model regarding operating conditions, number of impellers,

and nonideal tracer pulse and probe response are then presented

LOSOI ET AL. | 7
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(Section 4.2). As a final validation, a few tracer curves and the large

body of experimental mixing times from literature were predicted

with the model (Section 4.3). Finally, potential improvements to the

model are discussed (Section 4.4).

4.1 | Mixing time definitions in the context of the
diffusion equation

Literature contains a couple of intriguing examples of the mixing time

measurement technique's influence on mixing times. Gabelle et al.

(2011) used both the common single‐probe conductivity method and

a dye‐based method, where the standard deviation of a few local

mean gray values of the tracer experiment's video recording was

monitored. According to Equations (5) and (7), a single‐probe mixing

time agrees with a standard‐deviation‐based one if the probe is

placed at either z H= ∕4 or z H= 3 ∕4. With the probe and feed points

as wide apart as possible, the most commonly used single‐probe 95%

and 90% mixing times ( u1 − = 5% and  u1 − = 10%) would be 10%

and 13% higher than the corresponding standard deviation mixing

times, respectively. However, if the feed is at the middle or very close

to it as in Gabelle et al. (2011), the second time‐dependent (k = 2)

term dominates the diffusion equation's solution (Equation 3), and

the two methods agree when the probe is placed at z H= ∕8 or

z H= 7 ∕8 instead. In accordance with this prediction, Gabelle et al.

(2011) measured practically equal mixing times with the two

techniques when the conductivity probe was located below the

lower impeller, which was placed at z H= ∕6. The exact placement of

the probe was not reported, but the z H= ∕8 prediction agrees well

with the reported z H< ∕6 configuration.

Both Vrábel et al. (1999) and Guillard and Trägårdh (2003)

reported mixing times in the same 30 m3 reactor with an approxi-

mately 22 m3 working volume stirred with four Rushton turbines.

Vrábel et al. (1999) measured 95% times with a fluorescent tracer,

and their unaerated mixing times at four different stirrer rates can be

summarized as a dimensionless mixing time nt = 292 ± 795

(mean ± sample standard deviation), which can be transformed to

nt = 235 ± 690 by applying Supporting Information: Equation (S28) to

the individual mixing times first. Guillard and Trägårdh (2003), on the

other hand, reported in otherwise similar conditions nt = 221 ± 3590

where the four dimensionless pH‐based 90% times (251, 250, 200,

and 182) had a quite high COV= 16% when compared to Vrábel et al.

(1999) data (under 3%). Both the higher variability of the pH‐based

mixing times and the difference to fluorescence‐based times

warranted analysis (Supporting Information: Section S8): It turned

out that in general pH‐based mixing times deviate from “true” mixing

times due to the nonlinear definition of pH and acid–base chemistry,

and that the magnitude of this deviation is proportional to the

magnitude of the pH change incurred by the measurement. In

addition, the locations of both the initial and final pH with respect to

the Kp a value of the medium affect the direction and magnitude of

the error. Guillard and Trägårdh (2003) mentioned that the acid

pulses resulted in approximately 1 unit pH changes, which could

induce even ±20% quantification errors in a tap‐water like carbonic

acid buffer (Supporting Information: Section S8). The nonlinearity of

pH and acid–base chemistry effects alone seem sufficient to explain

these discrepancies in pH‐based data.

Interestingly, Langheinrich et al. (1998) found that pH‐based

90% mixing times matched starch‐iodine‐thiosulphate decolorization

mixing times (25% excess stoichiometry, 80% mixing time at the

point farthest away from feed) closely in one of their configurations

but not in another one. Assuming that the probe was located at the

impeller's height, the diffusion equation predicts exact correspon-

dence for the two determination methods in their first configuration

with H T= and z T= ∕3 bottom clearance of impeller (Supporting

Information: Equation S28). Their second case with H T= 1.3 and

z T= 2 ∕9 bottom clearance (assumed probe location) was less

favorable: the decolorization method was reported to yield twice as

long mixing times as the pH‐method, but the diffusion equation

predicts 19% shorter times instead. According to the equation, the

methods would have agreed if the pH‐probe were placed at

z H≈ 0.42 . However, that particular configuration was somewhat

unusual with a very low impeller placement.

4.2 | Theoretical predictions

Given that the diffusion equation could coherently unify mixing times

determined with differing experimental methods, it was then used to

study the effects of nonideal pulses and probes on mixing times

(Section 4.2.1). The resistances‐in‐series model (Section 3.3) was

used to predict how transition from turbulent flow to lower Reynolds

numbers (Section 4.2.2) and the number of impellers (Section 4.2.3)

affect mixing times.

4.2.1 | Nonideal pulse and probe effects

According to the diffusion equation, the dimensionless mixing time

becomes a rising function of the stirrer rate or Reynolds number in

turbulent flow both with a finite‐duration tracer pulse and a finite

probe response time‐constant (first‐order kinetics). The whole

analysis is presented in Supporting Information: Section S9, but in

each case the measured dimensionless time could be expressed as

π
dt

H

πz H πz H

u
d= ln

2 cos( ∕ )cos( ∕ )

1 −
+ error( ),

measured

2

0 (21)

where the first right‐hand term represents “true” mixing and the

second term is the error caused by nonideal probe or pulse. The error

term is a rising function of the dispersion coefficient, which is directly

proportional to the stirrer rate or Reynolds number in turbulent flow

(Section 3.3). The error caused by the probe is approximately equal to

the probe response's first‐order time‐constant assuming the time‐

constant is at most 10% of the measured time, and the error caused

by a finite pulse time is approximately 50% of the pulse's duration if

the pulse lasts at most 10% of the measured time. In both cases, the

8 | LOSOI ET AL.
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error grows greater once the pulse duration or probe response time

exceed 10% of the measured time. A greater degree of homogeneity

is less influenced by these nonideal conditions as the true mixing

term becomes more dominant, and vice versa, lesser degrees of

homogeneity are more sensitive to the nonideal pulse and response

times.

Kasat and Pandit (2004) studied also the effect of tracer density

on mixing times, and found that at greater densities the point‐

addition of tracer stretched to a line addition. Based on their model

fits the mixing times were on average up to 12% lower in turbulent

flow with the highest tracer density. With the highest stirrer rate the

mixing times were 6%–7% lower with the highest tracer density. A

finite‐length pulse can also be assessed with the diffusion equation:

In good agreement with the experimental findings, a uniform line

addition ranging from the top to the middle (comparable to Figure 6b

by Kasat and Pandit [2004]) results in a 12% lower mixing time, and

an addition ranging one‐third from the top results in a 5% lower

mixing time (Supporting Information: Section S9.3).

4.2.2 | Effect of Reynolds number

The product of stirrer rate and mixing time, the dimensionless mixing

time nt, is usually considered constant in the turbulent regime.

However, a rising trend in nt as a function of stirrer rate n has been

reported in some cases at high Reynolds numbers (Gabelle et al., 2011;

Guillard & Trägårdh, 2003; Rosseburg et al., 2018), and even a

negative exponent a has been mentioned in the nt ~ Rea functionality

(Guillard & Trägårdh, 2003). An increase in dimensionless mixing time

is actually expected at high Reynolds numbers as the measured time

approaches the probe response and pulse duration times

(Section 4.2.1). Most of the data collected in this work displayed

essentially constant dimensionless times even at very high Reynolds

numbers, though, and interestingly almost all of the contrasting data

were obtained with nonlinear, pH‐based measurement techniques. At

transition flow regime the dimensionless mixing time increases

noticeably at Reynolds numbers less than 104 (Alves et al., 1997;

Jahoda & Machon, 1994; Vasconcelos et al., 1996). Using the flow

number correction factors (Equations 16 and 18) interpolated from

Vasconcelos et al. (1996), the developed model was well applicable

even down to Re= 200 (Figure 2a). According to the flow‐number‐

corrected model, approximately 2‐, 4‐, and 10‐fold dimensionless

mixing times compared to turbulent regime are found at Reynolds

numbers of approximately 600, 300, and 200, respectively.

4.2.3 | Number of impellers

Figure 2b shows the model's prediction of how the number of

impellers in a standard geometry (H N T= i ) with symmetrical impeller

placement affects the dimensionless mixing time when probe and

feed placements are kept as far apart as possible (both either at top

or bottom). According to the model, increasing the number of

impellers (and aspect ratio) from two to three and four results in 2.5‐

and 4.6‐fold mixing times, respectively. Experimental data by Cronin

et al. (1994); Jahoda and Machon (1994); and Vasconcelos et al.

(1995) were considered for comparison, and fair agreement was

found: The model predictions and experimental data obtained with

multiple radial impellers coincided, but with multiple axial impellers

the three‐ and four‐impeller mixing times were lower than predic-

tions, on average 2.0 and 3.5 times the two‐impeller values. The

prediction for a single impeller was also too low (18% of two‐impeller

time, experimental references 24% and 45%). With a single impeller it

is quite universally acknowledged that mixing time is related to power

dissipation (Nienow, 1997), which is not included in the presented

model emphasizing multi‐impeller configurations. A correlation by

(a) (b)

F IGURE 2 Dimensionless mixing times nt predicted by the diffusion model. Both model predictions and experimental reference data have
been normalized such that the exact value of dispersion coefficient has no effect. (a) Turbulent and transition flow regimes. The data and model
predictions have been normalized by the (approximately) constant values at the turbulent regime. (b) Aspect ratio and number of impellers. A
correlation T D N2.3exp(0.68 ∕ + 0.83 )i fitted for Rushton turbines (Vasconcelos et al., 1995) is shown for comparison. The data, model, and
correlation predictions have been normalized by the respective values at aspect ratio 2. PBTD, pitched‐blade turbine (down); PBTU,
pitched‐blade turbine (up); RT, Rushton turbine.

LOSOI ET AL. | 9
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Vasconcelos et al. (1995) agreed excellently with the radial flow

impeller configurations to which it was originally fitted.

4.3 | Tracer curve and mixing time predictions

The diffusion equation and the resistances‐in‐series model for

dispersion coefficient were found to be coherent with various mixing

time definitions and their theoretical predictions agreed with the

available experimental data. It should be noted, however, that

the results in previous Sections 4.1 and 4.2 were independent of

the actual values of the dispersion coefficient. The dispersion

coefficient calculation procedure developed here (Section 3.3) was

next validated by predicting tracer curves and the large set of

experimental mixing times from literature (Table 1). Cui, van der Lans,

Noorman, et al. (1996); Vrábel et al. (1999) published tracer curves

measured in a large‐scale reactor with and without aeration

(V ≈ 22L m3). Excellent agreement was found between the experi-

ments and the curves predicted here (Figure 3). Previous studies have

shown that the diffusion equation can be fitted to tracer curves

(Machon & Jahoda, 2000; Pinelli & Magelli, 2000), but in this study,

the curves were predicted without parameter optimization.

Sections 4.3.1 and 4.3.2 discuss the multi‐ and single‐impeller mixing

time predictions, respectively, and Section 4.3.3 concludes by

evaluating the overall performance of the model.

4.3.1 | Multi‐impeller mixing times

The unaerated turbulent multi‐impeller data with non‐pH‐based

measurement methods included 61 configurations (Figure 4a) and the

nonflooding aerated turbulent data 20 configurations (Figure 4b).

Due to the higher variability of pH‐based mixing times (Supporting

Information: Section S8), they are presented and discussed separately

below. Most of the data were obtained with two to four impellers

(radial, axial, or a combination) in a standard geometry (H N T=L i ) with

symmetrical impeller placement or close to it. The quality of the

predictions was notable, and as could be expected, unaerated data

were predicted better than aerated data (MRE = 18% vs.

MRE = 20%). The few poorly predicted outliers in these data can be

attributed to exotic or non‐standard configurations: Some of the tight

impeller spacing data with a merging flow by Magelli et al. (2013); Xie

et al. (2014) were not predicted correctly by removing the interstage

resistances, and the Gabelle et al. (2011) data were obtained with an

unusually low impeller placement and tracer pulse exactly at the

middle, which is a sensitive point in the diffusion equation's context

(Supporting Information: Figure S1B). These deviant data have been

annotated in Figure 4a,b. The unaerated and aerated predictions

were evaluated both with and without these outliers (Table 4), and

the overall performance was remarkable especially when these

untypical data (28 unaerated, 10 aerated) were not considered:

R ≥ 95%2 and Q ≥ 90%2 were achieved even in aerated data and the

MRE was only 12% for the unaerated data and 18% with aeration.

The approximately normal distribution of logarithmic error also

indicated a high quality of prediction (Figure 5a,b).

Flooding condition data included seven configurations (Table 1),

and these data were the most poorly predicted subset by all metrics

(Figure 4c, Table 4), which is also seen in the far‐from‐normal

distribution of logarithmic error (Figure 5c). This was expected,

however, for the experimental mixing times were also much less

reproducible in flooding conditions (Alves & Vasconcelos, 1995;

Shewale & Pandit, 2006). The merging of the two bottommost

impeller regions as explained in Section 3.3.1 was insufficient to

predict mixing times in flooding conditions where a bubble column

like flow field starts to emerge (Alves & Vasconcelos, 1995; Shewale

& Pandit, 2006).

Transition regime data were obtained in 13 configurations with

Re < 10, 000 (Table 1), and they were predicted with high accuracy

(a) (b)

F IGURE 3 Tracer curve predictions for a 22m3 liquid volume stirred with four Rushton turbines. (a) Unaerated data by Cui, van der Lans,
Noorman, et al. (1996): Working height H = 6.55 m, tracer injection z H= 0.990 , and predicted dispersion coefficient d = 0.104 m2 s−1. (b)
Aerated data by Vrábel et al. (1999): Working height H = 7.24 m, gas holdup α = 9.5%G , superficial gas velocityU = 9.2G mm s−1, tracer injection
at z H= 0.910 , and predicted dispersion coefficient d = 0.103 m2 s−1.

10 | LOSOI ET AL.
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and precision (Figures 4d and 5d). Some data from Cronin et al.

(1994) included aeration as well, and the Alves et al. (1997) data

sampled systematically various feed locations. Of all the subgroups

shown in Table 4, these data were predicted with the highest R2 and

Q2 and lowest MRE. All the data in this group were obtained with

Rushton turbines, mostly D T= ∕3 in size. Two of the Magelli et al.

(2013) configurations in this group had 8 and 12 impellers in aH T= 4

geometry where four impellers would be expected, but good

predictions were nevertheless obtained by the removal of the

interstage resistances in the 12‐impeller configuration where merging

flow was reported. All the other configurations had the standard

aspect ratio H N T=L i .

Three studies (Table 1) reported pH‐based multi‐impeller data

that were obtained in nine different large‐scale configurations with

working volumes from 1.8 up to 22 m3 (Figure 6a). The impeller types

were varied: Guillard and Trägårdh (2003) data were obtained with

only Rushton turbines, Xing et al. (2009) with axial flow impellers, and

Rosseburg et al. (2018) with combinations of both types. All of the

Xing et al. (2009) data were aerated, and the predictions were precise

(small random error) but very inaccurate with a large bias to low

values. However, they obtained their mixing times in a bicarbonate

buffer with addition of a strong base, and it is plausible that the pH

changes were toward the equivalence point between Kp a values. In

such a case longer than true mixing times would be expected

(Supporting Information: Section S8), which is equivalent to predic-

tions being systematically too low. The 22 m3 unaerated data

reported by Guillard and Trägårdh (2003) were fairly well predicted

with good accuracy and decent precision as well. The random error

was, however, larger than what was obtained in the same configura-

tion by Vrábel et al. (1999) with a linear mixing time determination

method (Section 4.1). Rest of the Guillard and Trägårdh (2003) data

were both aerated and unaerated, and the predictions deviated more

from the experimental values. Three of these mixing times were

obtained with two impellers in a low aspect ratio of only H T= 0.84 ,

and these outliers are annotated in Figure 6a. The Rosseburg et al.

(2018) data (unaerated, aerated, and flooding), that were obtained by

monitoring the mean gray value of a pH‐indicator solution, could not

be predicted with high quality. Their 95% mixing times could be

interpreted as the time points where the bottom 5% of the reactor

had a pH above 8.2 and the rest a pH below 8.2 (Supporting

Information: Section S8). Unfortunately, it was not possible to

determine in retrospect which normalized concentration of the

(a) (b)

(c) (d)

F IGURE 4 Mixing time predictions in multi‐impeller reactors. Mixing times determined with a pH‐based method are shown separately in
Figure 6a. Note the logarithmic scaling of axes. Lab‐, pilot‐, and large‐scale labels refer to liquid volumes under 0.1 m3, between 0.1 and1 m3, and
over 1 m3, respectively. The solid black line is the ideal x y= line, and the dashed black lines show 1.25 multiplicative error limits x y= 1.25 and
x y= ∕1.25. Panels a–d show unaerated, aerated, flooding condition, and transition flow regime (Re < 10, 000) data, respectively.
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added acid (u in Equation 5) corresponded to pH 8.2, and single‐

probe 95% mixing times at z H= 0.05 were predicted as the best

guess requiring least assumptions. The distribution of logarithmic

error in pH‐based mixing time predictions resembled a bimodal

mixture of two normal distributions (not shown), one associated with

the underpredicted Xing et al. (2009) and low aspect ratio Guillard

and Trägårdh (2003) data and the other with the rest of the data.

Overall these pH‐based data were poorly predicted, which is seen as

negative R2 and Q2 and a high MRE in Table 4. However, difficulty in

predicting was expected due to acid–base‐chemistry's influence

(Supporting Information: Section S8). The pH‐based mixing times

seem to be subject to chemistry‐related case‐ and study‐specific

variations that cannot always be accounted for in modeling, which is

regrettable, since pH‐based measurements often are the only

practical alternative to measure mixing times in large‐scale reactors.

The chemical error of pH‐based mixing times can be kept to a

minimum, though, by (1) keeping the initial pH close to a Kp a value of

the buffer (tap water is a carbonic acid buffer), (2) making the pH

change always toward the Kp a value, (3) employing small pH changes

(Supporting Information: Section S8). For example, a pH‐change from

Kp + 0.25a to Kp − 0.25a induces an error less than 3% to 90% mixing

times. The time‐constant of the pH probe's response should also be

kept small compared to the measured times (Section 4.2.1).

4.3.2 | Single‐impeller mixing times

The non‐pH‐based single‐impeller mixing times (Table 1) were

quantified with starch‐iodine decolorization and conductivity tech-

niques (Figure 6b) in 18 mostly pilot‐scale ( V0.1 < < 1L m3) configu-

rations (sources referenced in Table 1). Impeller placements ranged

from H0.125 to H0.5 and diameters from T0.09 to T0.45 . Here, the

best predictions with only at most 10% errors on average were

obtained for Khang and Levenspiel (1976); Langheinrich et al. (1998).

Rushton turbine configuration data which included both measure-

ment methods. However, the predictions for Khang and Levenspiel

(1976) small Rushton turbine data (D T≤ 0.3 ) were in an average

sense only 50%–75% of the true values, and all axial flow impeller

data by Khang and Levenspiel (1976); Langheinrich et al. (1998) were

vastly underpredicted. The overrepresentation of impellers with low

power numbers (axial flow) in the underpredicted subset suggests

that the impeller's specific power should not be neglected

(Nienow, 1997). Overpredictions were found only in reactors with

aspect ratios 2 (Cronin et al., 1994) and 3 (Vasconcelos et al., 1995).

The distribution of logarithmic error resembled a bimodal mixture of

two normal distributions (not shown), one associated with the

underpredicted axial flow impeller data and the other with the rest

of the data.

The single‐impeller pH‐based mixing times (Figure 6c) originated

from Langheinrich et al. (1998) study, and they covered six

configurations with a low impeller placement of T2 ∕9, small impeller

diameterD T= 2 ∕9, and working volumes from 72 L up to 8 m3. Apart

from the three time points annotated in Figure 6c that were obtained

in an untypical, very low aspect ratio of H T= 0.3 , the model

performance was rather good. Rest of the pH‐based data had an

aspect ratio of 1 or 1.3. The three outlier points with very large

relative errors resulted in a negative Q2 (Table 4) even though

R = 71%2 was decent. The distribution of logarithmic error did not

resemble a normal distribution (not shown). Even with the three

outliers the pH‐based single‐impeller predictions clearly outper-

formed the linear single‐impeller predictions in terms of MRE (23%

vs. 40%), but this is mostly due to the systematic underprediction of

axial flow impeller mixing times in the linear subset.

4.3.3 | Model evaluation

The predictions yieldedMRE = 26%, R = 92%2 , andQ = 74%2 for the

whole set of 832 mixing times encompassing all configurations,

operating conditions, and measurement techniques (Table 4), which is

a good score given the extent and diversity of the data. In addition to

the often considered flat‐blade Rushton turbines, the modeling

covered other biotechnologically relevant reactor setups with only

axial flow impellers such as pitched blade turbines, propellers, or

hydrofoils (191 mixing times), combinations of a Rushton or other

radial turbine at bottom and axial flow impellers above (132 mixing

times), and other radial flow turbines with contoured blades (50

mixing times). The reduction inQ2 due to systematic error was mostly

TABLE 4 Mixing time prediction statistics.

Group N R2 Q2 MRE Nrad Nax Nhyb

All 832 0.921 0.738 0.264 509 191 132

Multiple impellers

1 Linear 673 0.968 0.834 0.236 421 148 104

1.1.1 Unaerated 341 0.877 0.863 0.177 198 99 44

1.1.2 Unaerated* 313 0.964 0.966 0.117 192 99 44

1.2.1 Aerated 190 0.949 0.732 0.203 122 22 46

1.2.2 Aerated* 180 0.953 0.900 0.175 122 22 36

1.3 Flooding 51 −2.754 −2.755 0.969 10 27 14

1.4 Transition 91 0.977 0.980 0.117 91 0 0

2 pH 66 −0.256 −0.742 0.433 20 18 28

Single impeller

1 Linear 65 0.184 0.472 0.398 40 25 0

2 pH 28 0.711 −0.128 0.230 28 0 0

Note: Linear refers to all mixing times that have not been measured with a
pH‐based technique. The * mark in unaerated and aerated refers to

removing the data annotated in Figure 4 and mentioned in Section 4.3.1.
Flooding conditions were indicated in original references. Transition flow
regime data had Re < 10, 000. Multi‐impeller pH‐based and transition
regime mixing times include aerated and flooding data as well. Symbols: N,

amount of data points in (sub)group; R2, coefficient of determination; Q2,
logarithmic coefficient of determination; MRE, mean relative error; Nrad,
amount of data points with radial impellers; Nax, amount of data points
with axial impellers; Nhyb, amount of data points with both radial and axial
impellers.
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negligible and always smaller than due to random error in each of the

considered data subsets (Supporting Information: Table S2). With a

COV = 10% in circulation and interstage flow numbers and the slight

uncertainty in gas holdup and power loss due to aeration (Table 3),

the model was calculated to have a 7%–10% COV depending on the

number of impellers and impeller working heights. Considering that

approximately at least a 7% prediction error is expected due to

parameter uncertainty alone, the 12%–20% MRE obtained for non‐

flooding multi‐impeller data with non‐pH‐based measurement

techniques show good performance. For context: Magelli et al.

(2013) reported 21% and 18% MRE for their two unaerated multi‐

impeller correlations that were fitted to the respective data

containing 11 vessels. Here their data were predicted with a similar

MRE = 17%. Vasconcelos et al. (1998) calculated unaerated and

aerated mixing times for three dual Rushton turbine reactors with an

ambitiousMRE ≤ 5% using a 1D compartment model. Their data were

predicted here with a higher MRE = 10%, which is still a fair result

given that Vasconcelos et al. (1998) fitted their gas‐induced flow

parameter. Vrábel et al. (1999, 2000) predicted unaerated and

aerated mixing times in four large‐scale reactors using 2D compart-

ment models and reported MRE = 4% and COV ≤ 19%, respectively.

Comparable values were obtained here with MRE = 8% and

COV = 18%. It seems reasonable to say that the model developed

here has performed excellently and particularly with multi‐impeller

configurations, where also the error distributions indicated only little

systematic error (Figure 5a–c, Supporting Information: Table S2). It is

to be noted that the diffusion equation's only parameter was

calculated with a predictive model with no fitting to the data.

4.4 | Future improvements

Standard multi‐impeller configurations were predicted remark-

ably well regardless of whether they involved radial or axial flow

impellers or a combination of them, but some non‐standard and

single‐impeller configurations and aerated cases left room for

improvement: (1) The circulation and interstage flow numbers

with different impeller types were assumed here to be the same

as was determined for Rushton turbines by Vasconcelos et al.

(1998, 1995). Especially the axial flow single‐impeller data

suggested, that the specific power input might be worth including

in determining the circulation resistance. In accordance with the

(a) (b)

(c) (d)

F IGURE 5 Cumulative distributions of logarithmic error q in multi‐impeller mixing time predictions. Mixing times quantified with pH‐based
methods are not shown. Two normal distributions are shown for reference: both have the error distribution's variance, but one has zero mean
and the other (shifted) has the error distribution's mean. The error distribution's mean and standard deviation are shown in each panel (qm and σq,
respectively). The proportion of data within a 1.25 multiplicative error ( f yln( ∕ ) = ±0.223) is denoted by brackets. (a) Unaerated. (b) Aerated. (c)
Flooding. Flooding has been indicated in the original publications. (d) Transition regime (Re < 10, 000).
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(a)

(b)

(c)

F IGURE 6 Mixing time predictions for single‐impeller reactors
and pH‐based data. Note the logarithmic scaling of axes. Lab‐, pilot‐,
and large‐scale labels refer to liquid volumes under 0.1 m3, between
0.1 and 1 m3, and over 1 m3, respectively. The solid black line is the
ideal x y= line, and the dashed black lines show 1.25 multiplicative
error limits x y= 1.25 and x y= ∕1.25. (a) Multi‐impeller reactors with
pH‐based mixing times. (b) Single‐impeller reactors with linear mixing
times. (c) Single‐impeller reactors with pH‐based mixing times.

2D compartment models by Cui, van der Lans, Noorman, et al.

(1996); Vrábel et al. (1999, 2000), an exchange flow could also

have been included in the circulation resistances within impeller

stages and not only in the interstage resistances. (2) Both

mechanical and pneumatic circulation flow length‐scales were

assumed here to be limited by the tank diameter and the impeller

or vessel working height. The choice to use their harmonic mean

was successful, but arbitrary, and other formulations could have

worked equally well or even better. In the cases of merged flow

due to tight impeller spacing or impeller flooding, the length‐

scales could benefit from revisiting. (3) The gas‐induced flow was

determined as an initial guess from specific power by dimensional

analysis, which yielded a fair result unless the aeration rate was

high enough to cause impeller flooding. The prediction accuracy

and precision were, however, smaller than in unaerated data

(Supporting Information: Table S2). The merging of the lowest

impeller region into the next impeller region was insufficient to

model the effects of excessive gas flow where pneumatic

agitation was dominant. However, this is less of a concern for

configurations with contoured‐blade radial turbines at the

bottom instead of flat‐blade Rushtons, as they tolerate higher

aeration rates without flooding. (4) The formation of a stagnant

top zone or loop and the flow within such a zone could be

investigated further. The same applies also for the merging flow

configurations: after removing the interstage flows, the circula-

tion flow numbers were simply assumed to remain the same as in

standard geometry, which in some cases predicted mixing times

correctly and in others incorrectly. It is likely that the circulation

flow numbers are in reality affected by merging of the flow of

adjacent impellers.

5 | CONCLUSIONS

The purpose of this two‐part study was to develop simple 1D

diffusion equations into a general model of typical large‐scale

stirred bioreactors, and this first part focused on predicting mixing

times. A transfer resistance analogy to basic heat transfer theory

was developed to calculate the diffusion equation's only parame-

ter, the axial dispersion coefficient, from published hydrodynamic

numbers, operating conditions, and reactor configuration. The

proposed calculation of the dispersion coefficient was evaluated

by collecting over 800 experimentally determined mixing times

from literature such that diverse reactor sizes and configurations,

impeller types and combinations, operating conditions, and mixing

time definitions were included. Overall the model performed well,

and the mixing time predictions were excellent in typical and

biotechnologically relevant multi‐impeller configurations even

with aeration if flooding was avoided. Furthermore, the diffusion

equation and the presented model for the dispersion coefficient

could explain and unify different definitions of mixing time and

theoretically predict general results regarding experimental

conditions and reactor configuration. Thus, a simple‐to‐use mixing

time predictor for large‐scale bioreactors with a clear physical

foundation was developed requiring only few literature correla-

tions but no fitting. Part II of this study (Losoi et al., 2023) utilizes

the validated dispersion coefficient to model and characterize the

relevant variables in typical fed‐batch operations.

14 | LOSOI ET AL.

 10970290, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bit.28632 by T

am
pere U

niversitaet Foundation, W
iley O

nline L
ibrary on [29/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



AUTHOR CONTRIBUTIONS

Pauli Losoi developed the model, performed the computations and

analysis, and wrote the manuscript. Jukka Konttinen and Ville Santala

supervised the study and revised the manuscript.

ACKNOWLEDGMENTS

Financial support by Tampere University of Technology Graduate

School is acknowledged. The work presented in this article is

supported by Novo Nordisk Foundation grant NNF22OC0079579.

CONFLICT OF INTEREST STATEMENT

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available as

Supporting information.

ORCID

Pauli Losoi http://orcid.org/0000-0002-1319-6503

REFERENCES

Alves, S., & Vasconcelos, J. M. (1995). Mixing in gas‐liquid contactors
agitated by multiple turbines in the flooding regime. Chemical

Engineering Science, 50(14), 2355–2357. https://doi.org/10.1016/
0009-2509(95)00091-I

Alves, S. S., Vasconcelos, J. M. T., & Barata, J. (1997). Alternative
compartment models of mixing in tall tanks agitated by multi‐
Rushton turbines. Chemical Engineering Research and Design, 75,
334–338. https://doi.org/10.1205/026387697523642

Bernauer, S., Eibl, P., Witz, C., Khinast, J., & Hardiman, T. (2022). Analyzing

the effect of using axial impellers in large‐scale bioreactors.
Biotechnology and Bioengineering, 119(9), 2494–2504. https://doi.
org/10.1002/bit.v119.9

Cole, K. D., Beck, J. V., Haji‐Sheikh, A., & Litkouhi, B. (2010). Heat

conduction using Green's Functions (2nd ed.). CRC Press. https://doi.

org/10.1201/9781439895214
Cronin, D. G., Nienow, A. W., & Moody, G. W. (1994). An experimental

study of mixing in a proto‐fermenter agitated by dual Rushton
turbines. Food and Bioproducts Processing, 72, 35–40.

Cui, Y. Q., van der Lans, R. G. J. M., & Luyben, K. C. A. M. (1996). Local
power uptake in gas‐liquid systems with single and multiple Rushton
turbines. Chemical Engineering Science, 51(11), 2631–2636. https://
doi.org/10.1016/0009-2509(96)00128-5

Cui, Y. Q., van der Lans, R. G. J. M., Noorman, H. J., &

Luyben, K. C. A. M. (1996). Compartment mixing model for
stirred reactors with multiple impellers. Chemical Engineering

Research and Design, 74, 261–271.
Delafosse, A., Collignon, M., Calvo, S., Delvigne, F., Crine, M., Thonart, P.,

& Toye, D. (2014). CFD‐based compartment model for description

of mixing in bioreactors. Chemical Engineering Science, 106, 76–85.
https://doi.org/10.1016/j.ces.2013.11.033

Enfors, S., Jahic, M., Rozkov, A., Xu, B., Hecker, M., Jü rgen, B., Krüger, E.,
Schweder, T., Hamer, G., O'Beirne, D., Noisommit‐Rizzi, N.,
Reuss, M., Boone, L., Hewitt, C., McFarlane, C., Nienow, A.,

Kovacs, T., Trägårdh, C., Fuchs, L., … Manelius, Å. (2001).
Physiological responses to mixing in large scale bioreactors. Journal
of Biotechnology, 85, 175–185. https://doi.org/10.1016/S0168-
1656(00)00365-5

Gabelle, J., Augier, F., Carvalho, A., Rousset, R., & Morchain, J. (2011).
Effect of tank size on kla and mixing time in aerated stirred reactors

with non‐Newtonian fluids. The Canadian Journal of Chemical

Engineering, 89, 1139–1153. https://doi.org/10.1002/cjce.v89.5
Guillard, F., & Trägårdh, C. (2003). Mixing in industrial Rushton turbine‐

agitated reactors under aerated conditions. Chemical Engineering and

Processing: Process Intensification, 42(5), 373–386. https://doi.org/
10.1016/S0255-2701(02)00058-2

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R.,
Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A.,

Fernández del Río, J., Wiebe, M., Peterson, P., … Oliphant, T. E.
(2020). Array programming with NumPy. Nature, 585, 357–362.
https://doi.org/10.1038/s41586-020-2649-2

Jahoda, M., & Machon, V. (1994). Homogenization of liquids in tanks
stirred by multiple impellers. Chemical Engineering & Technology,

17(2), 95–101. https://doi.org/10.1002/ceat.270170205
Jaworski, Z., Bujalski, W., Otomo, N., & Nienow, A. (2000). CFD study of

homogenization with dual Rushton turbines–Comparison with
experimental results: Part I: Initial studies. Chemical Engineering

Research and Design, 78(3), 327–333. https://doi.org/10.1205/

026387600527437
Kasat, G. R., & Pandit, A. B. (2004). Mixing time studies in multiple impeller

agitated reactors. The Canadian Journal of Chemical Engineering, 82,
892–904. https://doi.org/10.1002/cjce.v82:5

Kawase, Y., & Moo‐Young, M. (1989). Mixing time in bioreactors. Journal
of Chemical Technology and Biotechnology, 44, 63–75. https://doi.
org/10.1002/jctb.280440107

Khang, S. J., & Levenspiel, O. (1976). New scale‐up and design method for
stirrer agitated batch mixing vessels. Chemical Engineering Science,

31, 569–577. https://doi.org/10.1016/0009-2509(76)80020-6
Langheinrich, C., Nienow, A. W., Eddleston, T., Stevenson, N. C.,

Emery, A. N., Clayton, T. M., & Slater, N. K. H. (1998). Liquid
homogenization studies in animal cell bioreactors of up to 8m3 in
volume. Food and Bioproducts Processing, 76, 107–116. https://doi.
org/10.1205/096030898531873

Losoi, P., Konttinen, J., & Santala, V. (2023). Modeling large‐scale
bioreactors with diffusion equations. Part II: Characterizing sub-
strate, oxygen, temperature, carbon dioxide, and pH profiles.
Biotechnology and Bioengineering. https://doi.org/10.1002/bit.28635

Machon, V., & Jahoda, M. (2000). Liquid homogenization in aerated multi‐
impeller stirred vessel. Chemical Engineering and Technology, 23,
869–876. https://doi.org/10.1002/(ISSN)1521-4125

Magelli, F., Montante, G., Pinelli, D., & Paglianti, A. (2013). Mixing time in

high aspect ratio vessels stirred with multiple impellers. Chemical

Engineering Science, 101, 712–720. https://doi.org/10.1016/j.ces.
2013.07.022

Mayr, B., Horvat, P., & Moser, A. (1992). Engineering approach to mixing
quantification in bioreactors. Bioprocess Engineering, 8, 137–143.
https://doi.org/10.1007/BF01254229

McKinney, W. (2010). Data structures for statistical computing in Python.
In S. van der Walt & J. Millman (Eds.), Proceedings of the 9th Python in

Science Conference (pp. 51–56). https://doi.org/10.25080/Majora-
92bf1922-00a

Nienow, A. W. (1997). On impeller circulation and mixing effectiveness in
the turbulent flow regime. Chemical Engineering Science, 52,
2557–2565. https://doi.org/10.1016/S0009-2509(97)00072-9

Pinelli, D., & Magelli, F. (2000). Analysis of the fluid dynamic behavior of
the liquid and gas phases in reactors stirred with multiple hydrofoil

impellers. Industrial & Engineering Chemistry Research, 39(9),
3202–3211. https://doi.org/10.1021/ie000216+

Rohatgi, A. (2020). Webplotdigitizer: Version 4.4. https://automeris.io/
WebPlotDigitizer

Rosseburg, A., Fitschen, J., Wutz, J., Wucherpfennig, T., & Schlüter, M.
(2018). Hydrodynamic inhomogeneities in large scale stirred tanks—
Influence on mixing time. Chemical Engineering Science, 188,
208–220. https://doi.org/10.1016/j.ces.2018.05.008

LOSOI ET AL. | 15

 10970290, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bit.28632 by T

am
pere U

niversitaet Foundation, W
iley O

nline L
ibrary on [29/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://orcid.org/0000-0002-1319-6503
https://doi.org/10.1016/0009-2509(95)00091-I
https://doi.org/10.1016/0009-2509(95)00091-I
https://doi.org/10.1205/026387697523642
https://doi.org/10.1002/bit.v119.9
https://doi.org/10.1002/bit.v119.9
https://doi.org/10.1201/9781439895214
https://doi.org/10.1201/9781439895214
https://doi.org/10.1016/0009-2509(96)00128-5
https://doi.org/10.1016/0009-2509(96)00128-5
https://doi.org/10.1016/j.ces.2013.11.033
https://doi.org/10.1016/S0168-1656(00)00365-5
https://doi.org/10.1016/S0168-1656(00)00365-5
https://doi.org/10.1002/cjce.v89.5
https://doi.org/10.1016/S0255-2701(02)00058-2
https://doi.org/10.1016/S0255-2701(02)00058-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1002/ceat.270170205
https://doi.org/10.1205/026387600527437
https://doi.org/10.1205/026387600527437
https://doi.org/10.1002/cjce.v82:5
https://doi.org/10.1002/jctb.280440107
https://doi.org/10.1002/jctb.280440107
https://doi.org/10.1016/0009-2509(76)80020-6
https://doi.org/10.1205/096030898531873
https://doi.org/10.1205/096030898531873
https://doi.org/10.1002/bit.28635
https://doi.org/10.1002/(ISSN)1521-4125
https://doi.org/10.1016/j.ces.2013.07.022
https://doi.org/10.1016/j.ces.2013.07.022
https://doi.org/10.1007/BF01254229
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1016/S0009-2509(97)00072-9
https://doi.org/10.1021/ie000216+
https://automeris.io/WebPlotDigitizer
https://automeris.io/WebPlotDigitizer
https://doi.org/10.1016/j.ces.2018.05.008


Shewale, S. D., & Pandit, A. B. (2006). Studies in multiple impeller agitated
gas‐liquid contactors. Chemical Engineering Science, 61, 489–504.
https://doi.org/10.1016/j.ces.2005.04.078

The Pandas Development Team. (2020). Pandas (Version 1.1.3). Zenodo.

https://doi.org/10.5281/zenodo.4067057
Tofallis, C. (2015). A better measure of relative prediction accuracy for model

selection and model estimation. The Journal of the Operational Research

Society, 66(8), 1352–1362. https://doi.org/10.1057/jors.2014.103
Vasconcelos, J. M., Alves, S., & Barata, J. M. (1995). Mixing in gas‐liquid

contactors agitated by multiple turbines. Chemical Engineering Science,
50(14), 2343–2354. https://doi.org/10.1016/0009-2509(95)00090-R

Vasconcelos, J. M., Barata, J. M., & Alves, S. (1996). Transitional mixing in
multiple‐turbine agitated tanks. The Chemical Engineering Journal and

the Biochemical Engineering Journal, 63(1), 53–58. https://doi.org/10.
1016/0923-0467(95)03072-7

Vasconcelos, J. M. T., Alves, S. S., Nienow, A. W., & Bujalski, W. (1998).
Scale‐up of mixing in gassed multi‐turbine agitated vessels. The

Canadian Journal of Chemical Engineering, 76, 398–404. https://doi.
org/10.1002/cjce.v76:3

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,
van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N.,
Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … SciPy 1.0

Contributors (2020). SciPy 1.0: Fundamental algorithms for scientific
computing in Python. Nature Methods, 17, 261–272. https://doi.org/
10.1038/s41592-019-0686-2

Vrábel, P., van der Lans, R. G. J. M., Cui, Y. Q., & Luyben, K. C. A. M.
(1999). Compartment model approach: Mixing in large scale aerated

reactors with multiple impellers. Chemical Engineering Research and

Design, 77, 291–302. https://doi.org/10.1205/026387699526223

Vrábel, P., van der Lans, R. G. J. M., Luyben, K. C. A. M., Boon, L., &
Nienow, A. W. (2000). Mixing in large‐scale vessels stirred with
multiple radial or radial and axial up‐pumping impellers: Modelling
and measurements. Chemical Engineering Science, 55, 5881–5896.
https://doi.org/10.1016/S0009-2509(00)00175-5

Xie, M., Xia, J., Zhou, Z., Chu, J., Zhuang, Y., & Zhang, S. (2014). Flow
pattern, mixing, gas hold‐up and mass transfer coefficient of triple‐
impeller configurations in stirred tank bioreactors. Industrial &

Engineering Chemistry Research, 53(14), 5941–5953. https://doi.

org/10.1021/ie400831s
Xing, Z., Kenty, B. M., Li, Z. J., & Lee, S. S. (2009). Scale‐up analysis for a

CHO cell culture process in large‐scale bioreactors. Biotechnology
and Bioengineering, 103(4), 733–746. https://doi.org/10.1002/bit.
v103:4

SUPPORTING INFORMATION

Additional supporting information can be found online in the

Supporting Information section at the end of this article.

How to cite this article: Losoi, P., Konttinen, J., & Santala, V.

(2023). Modeling large‐scale bioreactors with diffusion

equations. Part I: Predicting axial dispersion coefficient and

mixing times. Biotechnology and Bioengineering, 1–16.

https://doi.org/10.1002/bit.28632

16 | LOSOI ET AL.

 10970290, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bit.28632 by T

am
pere U

niversitaet Foundation, W
iley O

nline L
ibrary on [29/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.ces.2005.04.078
https://doi.org/10.5281/zenodo.4067057
https://doi.org/10.1057/jors.2014.103
https://doi.org/10.1016/0009-2509(95)00090-R
https://doi.org/10.1016/0923-0467(95)03072-7
https://doi.org/10.1016/0923-0467(95)03072-7
https://doi.org/10.1002/cjce.v76:3
https://doi.org/10.1002/cjce.v76:3
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1205/026387699526223
https://doi.org/10.1016/S0009-2509(00)00175-5
https://doi.org/10.1021/ie400831s
https://doi.org/10.1021/ie400831s
https://doi.org/10.1002/bit.v103:4
https://doi.org/10.1002/bit.v103:4
https://doi.org/10.1002/bit.28632

	Modeling large-scale bioreactors with diffusion equations. Part I: Predicting axial dispersion coefficient and mixing times
	1 INTRODUCTION
	2 MATERIALS AND METHODS
	2.1 Mixing time data
	2.2 Goodness-of-fit metrics
	2.3 Estimation of model uncertainty
	2.4 Software

	3 THEORETICAL ASPECTS
	3.1 Transient 1D diffusion equation
	3.2 Mixing time
	3.2.1 Single probe
	3.2.2 Multiple probes
	3.2.3 Colorimetric measurements

	3.3 Axial dispersion coefficient
	3.3.1 Transfer resistance analogy
	3.3.2 Velocity fluctuations and volume flow rates
	3.3.3 Integral length-scales


	4 RESULTS AND DISCUSSION
	4.1 Mixing time definitions in the context of the diffusion equation
	4.2 Theoretical predictions
	4.2.1 Nonideal pulse and probe effects
	4.2.2 Effect of Reynolds number
	4.2.3 Number of impellers

	4.3 Tracer curve and mixing time predictions
	4.3.1 Multi-impeller mixing times
	4.3.2 Single-impeller mixing times
	4.3.3 Model evaluation

	4.4 Future improvements

	5 CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES
	SUPPORTING INFORMATION




