
962/2024
M

IK
A

 SA
A

R
I Softw

are H
ardw

are C
om

bination for IoT Sensor D
ata G

athering and Prototyping

Tampere University Dissertations 962

Software Hardware
Combination for IoT

Sensor Data Gathering
and Prototyping

Architecture model, framework, and process model

MIKA SAARI

TUNI_Saari_Mika_kansi.indd 1TUNI_Saari_Mika_kansi.indd 1 24.1.2024 17:15:4024.1.2024 17:15:40

Tampere University Dissertations 962

MIKA SAARI

Software Hardware Combination for
IoT Sensor Data Gathering and Prototyping

Architecture model, framework, and process model

ACADEMIC DISSERTATION
To be presented, with the permission of

the Faculty of Information Technology and Communication Sciences
of Tampere University,

for public discussion in the auditorium 125
of the University Consortium of Pori, Pohjoisranta 11 A, Pori,

on 19 February 2024, at 12 o’clock.

ACADEMIC DISSERTATION
Tampere University, Faculty of Information Technology and Communication Sciences
Finland

Responsible
supervisor
and Custos

Associate Professor
David Hästbacka
Tampere University
Finland

Supervisor Professor
Kari Systä
Tampere University
Finland

Pre-examiners Professor
Olov Schelén
Luleå University of Technology
Sweden

Dr. Niko Mäkitalo
University of Helsinki
Finland

Opponent Professor
Jari Porras
LUT University
Finland

The originality of this thesis has been checked using the Turnitin OriginalityCheck
service.

Copyright ©2024 Mika Saari

Cover design: Roihu Inc.

ISBN 978-952-03-3306-5 (print)
ISBN 978-952-03-3307-2 (pdf)
ISSN 2489-9860 (print)
ISSN 2490-0028 (pdf)
http://urn.fi/URN:ISBN:978-952-03-3307-2

Carbon dioxide emissions from printing Tampere University dissertations
have been compensated.

PunaMusta Oy – Yliopistopaino
Joensuu 2024

"The secret of getting ahead is getting started. The secret of getting
started is breaking your complex overwhelming tasks into small man-
ageable tasks, and then starting on the first one."

Mark Twain

iii

iv

PREFACE

This work has been a long journey. The story began at Tampere University of Tech-
nology on June 1, 2002, when I was appointed as a research assistant for a program-
ming course to assist Markku Nevanranta (thanks to him for his trust) in unraveling
the mysteries of coding.

Over the years, debates with colleagues gradually increased the need to write
my own doctoral thesis. I remember how my friend Sanna asked Professor Hannu
Jaakkola at the post-doctoral celebration of Dr. Jari Soini in 2008: ’How long does
it usually take to write a doctoral thesis?’ – to which Professor Jaakkola replied: ’It
will be completed when its time comes.’ Well, now its time has come. I also want
to express my gratitude to all three of you for your support.

The thesis work was conducted at two universities and in numerous faculties,
which I cannot recall accurately due to numerous organizational changes. Through-
out the entire doctoral project, I was employed as a university instructor by Tam-
pere University of Technology, and by its successor, Tampere University, engaging
in various programming teaching activities and interesting research projects. Finan-
cial support for this thesis was provided by the High Technology Foundation of
Satakunta.

I had the privilege of being guided by Associate Professor David Hästbacka and
Professor Kari Systä. Thanks to David for keeping the doctoral thesis process going
and thanks to Kari for countless small clarifying questions. I remember best Kari’s
question at the beginning of the process: ’What is the benefit of this?’ Well, here
is the answer now. Additionally, I am very grateful to Professor Olov Schelén and
Doctor Niko Mäkitalo for their excellent service as pre-examiners of this thesis.

I want to express my gratitude to my colleagues at Tampere University. Espe-
cially, I want to thank the large group of co-authors: Pekka, Petri, Haruka, Ahmad,
Jere, Markku, Jaak, Sami, Timo, Janne, and Mikko. I also want to thank my friends
(No - I still don’t know anything about medicine) and all others who have helped

v

me on this long journey.
The importance of family cannot be overstated. Thanks to my parents for their

support (sometimes even financial). And thanks to my children Eerika, Jessika, and
Janette – is Dad going to become a doctor?

Finally, heartfelt thanks to my love, Niina. Your entrance at a time when the end
seemed so distant brought new life and motivation. I am deeply grateful for your
invaluable support in these final, defining moments.

Pori, February 2024
Mika Saari

vi

ABSTRACT

Nowadays large scale data gathering is more common than previously, enabled by
faster communication channels. In an Internet of Things (IoT) ecosystem, different
kinds of sensor systems collect a huge amount of data from different environments.
The first steps when starting to build a data gathering system are complex and chal-
lenging. This thesis provide guidelines for making a start. More specifically, this
thesis describes data gathering with sensor devices and building a system.

In this thesis, the issue is approached using the design science method. At first,
the problem was identified and divided into sub-questions. After determining the
objective, the design of the prototype systems and development for data collection
began. The developed systems were evaluated, documented, and the findings were
published. During this thesis research work, more than ten prototype systems (most
of which are discussed in the thesis) were built for gathering data from different en-
vironments.

The results and contributions of this thesis are divided into three IoT data gather-
ing prototype development sections: sensor node architecture, a framework for IoT
prototype development, and a process model for prototype development.

The sensor node architecture section introduces the abstract models developed
for data gathering: multi node and single node architecture models. The main com-
ponents are described: the sensor node, master node, communication, and the Inter-
net as a communication channel for user applications. Furthermore, the purpose of
the models and possible applications as a data collection tool are presented.

The framework section introduces the Software / Hardware (SW/HW) frame-
work for IoT data collection. The framework categorizes prototype systems into
three different types of construction, depending on the use case. Type 1 suits large
amounts of data from a few sensor nodes. Type 2 collects simple data from sev-
eral points with separate sensor nodes. In Type 3, smartphones are used as the data
gathering sensor devices. In addition, several prototype applications with suitable

vii

software and hardware components are presented.
The prototype development process section introduces theDescriptiveModel for

the Prototyping Process (DMPP). The process model brings together IoT prototype
development practices that have been applied in research projects between university
and enterprises.

These contributions were verified and validated by developing several data gath-
ering prototypes. The architecture model and the framework were used in several
prototype systems. The approach entailed setting a target, designing a measuring
system, finding suitable tools, building the system, and evaluating the results. This
prototyping took shape in similar processes, and was modeled into the descriptive
model for the prototyping process itself.

The main results of the research and the thesis can be used as a guideline to make
it easier to develop data gathering applications for an Internet of Things ecosystem.

viii

CONTENTS

1 Introduction . 1

1.1 Motivation . 1

1.2 Research questions . 3

1.3 Scope and contributions . 5

1.4 Research methodology . 7

1.5 Thesis structure . 9

2 Background . 11

2.1 Standards for IoT architecture . 11

2.2 Current trends related to IoT . 14

2.3 Constructing a WSN sensor node architecture model 16

2.4 Programming languages and hardware for prototyping WSN appli-
cations . 19

2.5 Data gathering prototype development process 22

2.6 Summary . 25

3 Architecture model for sensor nodes in data gathering 27

3.1 Architecture models for WSN data gathering 28

3.2 Developing the architecture models with prototype systems 29

3.3 Evaluating architecture models with prototype systems 33

3.4 Discussion and summary . 37

4 Framework for IoT Prototype development . 41

4.1 Development of the SW /HW framework 42

4.2 SW/HW framework . 43

ix

4.3 Use of the SW/HW framework with three types of systems 51

4.4 Discussion and summary . 60

5 Modeling the prototype development process 63

5.1 Developing the process model . 63

5.2 The DMPP . 67

5.3 Evaluation of the DMPP . 69

5.4 Discussion and summary . 72

6 Conclusion . 75

6.1 Revisiting the research questions . 75

6.2 Contributions and summary . 77

6.3 Limitations and future work . 78

References . 81

Publication I . 95

Publication II . 103

Publication III . 111

Publication IV . 135

Publication V . 145

Publication VI . 167

Publication VII . 189

Publication VIII . 203

x

List of Figures

1.1 The big picture. A few technologies or components commonly used

in the thesis have been added to the figure. 2

1.2 Thesis scope. 5

1.3 Thesis research questions (RQ) 1-3, contributions and their intercon-

nections. 7

1.4 Process for systemdevelopment research in this thesis. Adapted from

Nunamaker, Chen and Purdin (1991) and Hevner et al. (2004) 8

1.5 Thesis structure. 10

2.1 IoT reference model with four layers. Adapted from ITU-T Y.2060. . 12

2.2 The “Thing” as a context of standard IEEE 2413-2019. Adapted from

IEEE 2413-2019. 13

2.3 Three-Tier Industrial Internet of Things SystemArchitecture. Adapted

from IIRA V1.9. 15

2.4 SBC Raspberry Pi and SBM Arduino Uno. 21

2.5 Software development process models. a) Waterfall process model,

b) Agile process mode, and c) Rapid prototyping process model. . . . 24

3.1 Multi node architecture model abstraction when collecting simple

data on multiple sensor nodes. 28

3.2 Single node architecture model abstraction when collecting larger

data from a single location. 30

3.3 System Architecture of Data Collector Service - Starting point of

data gathering model. The figure is adapted from Publication I. 31

xi

3.4 System architecture of the prototype system introduced in Publica-

tion II. In amulti node system, themaster node gathers sensory data

from several sensor nodes. 31

3.5 System deployment diagram for the "ShockApp" prototype system.

The figure is adapted from Publication III. 32

4.1 SW/HW framework validation with prototypes in the timeline of

the thesis research. 42

4.2 Requirements from data handling guide the selection of software and

hardware in the SW/HW framework. 43

4.3 The SW/HW framework within the layer diagram for gathering IoT

data. 44

4.4 Software components and their connections when collecting data. . . 48

5.1 Fundamentals of the prototype development process. Adapted from

Publication VII. 64

5.2 The modeling of the bus case development process with whiteboard

and notes. The bus case prototype system is introduced in Publica-

tion IV. 65

5.3 Bus case development process. The project group developed a work-

ing prototype introduced in Publication IV. Adapted from Publica-

tion VII. 66

5.4 Processmodel for prototype development. The rounded corner rect-

angles represent activities and the parallelograms represent artifacts.

Adapted from Publication VII. 67

xii

List of Tables

1.1 Research questions . 7

2.1 Programming languages used in the context of this thesis. 19

2.2 Features of Arduino Uno and Raspberry Pi hardware. 23

3.1 Design factors and how they are implemented in the prototypes.

Publications I and III describe the single node system and Publica-

tion II describes the multi node system. 34

3.2 Summary of benefits and challenges of single node and multi node

architecture models in prototyping for the design factors presented

in Table 3.1 . 35

4.1 Most notable features of the three different types of construction re-

ferred to in Chapter 3 including presented architecture models (Pub-

lication VI) . 46

4.2 Software features and examples of the three different types of data

gathering construction. 50

xiii

List of Programs and Algorithms

4.1 Pseudocode for SensorApp implementation 48

4.2 Pseudocode for ControlApp implementation 49

4.3 Python functions for data modifying and storing on Firebase Cloud

Storage. First the Firebase Cloud Storage address is defined. The

timestamp and collected measurements are combined into one line

with a separator for local storing. In the last step "firebase.post" data

are split and sent to the cloud. This prototype system is presented in

a study by Saari et al. (2020a) . 53

4.4 Data gathering code for the sensor node. (Rantanen and Saari, 2020) 55

4.5 Data processing and storing SQL code. (Rantanen and Saari, 2020) . 56

4.6 A Permission declaration in manifest.xml configuration file 58

4.7 Java file for Android environment and permission request. 58

xiv

ABBREVIATIONS

API Application Programming Interface

Bluetooth Short-range wireless technology standard used for exchanging
data e.g., mobile devices

C/C++ C and C++ programming languages

CBSE Component-based software engineering

CoAP The Constrained Application Protocol (CoAP)

DS Design Science

EEPROM Electronically Eraseable Programmable Read-Only Memory

GPS Global Positioning System

IDE Integrated development environment

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IIRA Industrial Internet Reference Architecture

IoT Internet of Things

ISO International Organization for Standardization

ITU International Telecommunication Union

ITU-T Telecommunication standardization sector of ITU

Java Java programming language

MAC Media Access Control

MQTT Message Queuing Telemetry Transport

OS Operating system

xv

PHY Physical Layer

Python Python programming language

RAM Random Access Memory

REST REpresentational State Transfer

ROI Return on investment

SBC Single-Board Computer

SBM Single-board microcontroller

SLR Systematic Literature Review

SN Sensor Network

SRAM Static random-access memory

SW/HW Framework Software/Harware Framework

UI User Interface

USB Universal Serial Bus

WSN Wireless Sensor Network

XBee Brand name for wireless connectivity modules, based on the
IEEE 802.15.4-2003 standard designed for point-to-point and
star communications

XML Extensible Markup Language

Zigbee Zigbee is a low-power, low data rate, and close proximity (i.e.,
personal area) wireless ad hoc network

xvi

ORIGINAL PUBLICATIONS

Publication I Saari, M., Sillberg, P., Rantanen, P., Soini, J. and Fukai, H.
(2015a). Data collector service - practical approach with em-
bedded linux. 38th International Convention on Information
and Communication Technology, Electronics and Microelectronics
(MIPRO), 1037–1041. DOI: 10.1109/MIPRO.2015.7160428.

Publication II Saari, M., Baharudin, A. M. bin, Sillberg, P., Rantanen, P. and
Soini, J. (2016a). Embedded Linux controlled sensor network.
39th International Convention on Information and Communica-
tion Technology, Electronics and Microelectronics (MIPRO). IEEE,
1185–1189. DOI: 10.1109/MIPRO.2016.7522319.

Publication III Sillberg, P., Saari, M., Grönman, J., Rantanen, P. and Kuu-
sisto, M. (2020a). Interpretation, Modeling and Visualization of
Crowdsourced Road Condition Data. Intelligent Systems: Theory,
Research and Innovation in Applications. Ed. by R. Jardim-
Goncalves, V. Sgurev, V. Jotsov and J. Kacprzyk. (Extension
of peer reviewed conference publication Sillberg, Gronman,
Rantanen, Saari and Kuusisto, 2018). Springer International Pub-
lishing, 99–119. ISBN: 978-3-030-38704-4. DOI: 10.1007/978-
3-030-38704-4_5. URL: https://doi.org/10.1007/978-3-
030-38704-4_5.

Publication IV Grönman, J., Rantanen, P., Saari, M., Sillberg, P. and Jaakkola,
H. (2018a). Lessons learned from developing prototypes for cus-
tomer complaint validation. Proceedings of the SQAMIA 2018: 7th
Workshop of SoftwareQuality, Analysis, Monitoring, Improvement,
and Applications. Vol. 2217, 27–30. ISBN: 9788670314733.

xvii

https://doi.org/10.1109/MIPRO.2015.7160428
https://doi.org/10.1109/MIPRO.2016.7522319
https://doi.org/10.1007/978-3-030-38704-4_5
https://doi.org/10.1007/978-3-030-38704-4_5
https://doi.org/10.1007/978-3-030-38704-4_5
https://doi.org/10.1007/978-3-030-38704-4_5

Publication V Saari, M., Sillberg, P., Grönman, J., Kuusisto, M., Rantanen, P.,
Jaakkola, H. and Henno, J. (2019a). Reducing Energy Consump-
tion with IoT Prototyping. Acta Polytechnica Hungarica 16.9, SI,
73–91. ISSN: 1785-8860. DOI: 10.12700/APH.16.9.2019.9.5.

Publication VI Saari,M., Rantanen, P.,Hyrynsalmi, S. andHästbacka,D. (2022).
Framework and Development Process for IoT Data Gathering.
Advances in Intelligent Systems Research and Innovation. Ed. by
V. Sgurev, V. Jotsov and J. Kacprzyk. (Extension of peer reviewed
conference publication Saari, Rantanen and Hyrynsalmi, 2020).
Springer International Publishing, 41–60. ISBN: 978-3-030-78124-
8. DOI: 10.1007/978-3-030-78124-8_3. URL: https://doi.
org/10.1007/978-3-030-78124-8_3.

Publication VII Saari, M., Soini, J., Grönman, J., Rantanen, P., Mäkinen, T. and
Sillberg, P. (2020a). Modeling the Software Prototyping Process
in a Research Context. Information Modelling and Knowledge
Bases XXXII. Ed. by M. Tropmann-Frick, B. Thalheim, H.
Jaakkola, Y. Kiyoki and N. Yoshida. Vol. 333. IOS Press, 107–
118. ISBN: 9781643681405. DOI: 10.3233/FAIA200823. URL:
http://ebooks.iospress.nl/doi/10.3233/FAIA200823.

Publication VIII Harjamäki, J., Saari, M., Nurminen, M., Rantanen, P., Soini, J.
and Hästbacka, D. (2023). Lessons Learned from Collaborative
Prototype Development Between University and Enterprises.
Proceedings of the 33th International Conference on Information
Modelling and Knowledge Bases. Ed. by T. Welzer Družovec, M.
Hölbl, L. Nemec Zlatolas and S. Kuhar. University of Maribor,
273–300. DOI: https://doi.org/10.18690/um.feri.5.
2023.13. URL: https://press.um.si/index.php/ump/
catalog/view/785/1118/3128-2.

Author’s contribution

The contribution of the author of this thesis to the included publications is listed
here for the reader’s convenience. The contribution of the publications in relation to

xviii

https://doi.org/10.12700/APH.16.9.2019.9.5
https://doi.org/10.1007/978-3-030-78124-8_3
https://doi.org/10.1007/978-3-030-78124-8_3
https://doi.org/10.1007/978-3-030-78124-8_3
https://doi.org/10.3233/FAIA200823
http://ebooks.iospress.nl/doi/10.3233/FAIA200823
https://doi.org/https://doi.org/10.18690/um.feri.5.2023.13
https://doi.org/https://doi.org/10.18690/um.feri.5.2023.13
https://press.um.si/index.php/ump/catalog/view/785/1118/3128-2
https://press.um.si/index.php/ump/catalog/view/785/1118/3128-2

the thesis is divided into three topics. Chapter 3 focuses on the topics of Publications
I – III. Chapter 4 focuses on the topics of Publications IV – VI. And finally, Chapter
5 focuses on the process modeling topic of Publications VI, VII and VIII.

Publication I The study consists of the lessons learned from the first experi-
ment of the data gathering prototype. The primary task of the
author was to design and implement the prototype system. One
of the author’s contribution was the background study with a
literature survey. Co-authors gave valuable feedback and help
with first prototype implementation. The author was the prin-
cipal author of the publication and presented the work at the
38th International Convention on Information and Communi-
cation Technology, Electronics and Microelectronics (MIPRO)
conference in May 2015.

Publication II The study presents an extension of the data gathering prototype
described in Publication I. The primary task of the author was to
design a model for a data collection node in the sensor network.
In addition, the author, along with co-authors, participated in
the implementation of the systembased on themodel. The study
introduces the sensor network multi node architecture model.
The author was the principal author of the publication. The au-
thor of this thesis presented the work at the 39th International
Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO) conference in May
2016.

Publication III The article introduces a combination of models for data gath-
ering and analysis of the gathered data, enabling effective data
processing of large data sets. The content and structure of the ar-
ticle were planned together with the authors. The author’s con-
tribution was related to Section 3.1 "Data Gathering" including
the data collection model and its modification into a single node
type solution. Pekka Sillberg’s contribution was related to Sec-
tion 3.2 "Data Processing: Manageable Data Sources". The au-
thors together discussed and constructed the entirety. The article
is an extension of peer reviewed conference publication Sillberg

xix

et al., 2018 which was presented at the International Conference
on Intelligent Systems (IS) in September 2018 by author.

Publication IV The study introduces two prototypes installed in vehicles and a
cloud service for the autonomous collecting of data. The pro-
totypes utilized a camera, location data, and timestamps for use
cases. The first prototype was implemented for the Android mo-
bile platform and the second one for the Raspberry Pi single-
board computer. The study presents the differences and chal-
lenges faced in designing and implementing two prototypes for
different platforms. The author contributed with the earlier de-
veloped data gathering node models and participated in the de-
sign and implementation of the prototype systems. The proto-
type system was developed and tested with the co-authors.

Publication V The study provides knowledge about the usage of open hard-
ware, open software, and open architectures with the develop-
ment of prototype systems for gathering data on the research
subjects of energy saving in the area of real estate and housing.
The author’s contributionwas to introduce the ideas about an In-
ternet of Things (IoT) prototype development framework. The
other co-authors give valuable feedback to improve and revise
the study. The author was the principal author of the publica-
tion and the article was an extension of a study by Saari et al.,
2019b.

Publication VI The article introduces a special software/hardware framework
for data gathering systems to be used in IoT related systems. Also,
the development process for IoT data gathering is introduced.
The software/hardware framework was created by the author
alone. Co-authors gave valuable feedback to improve and revise
the article. The article is an extension of peer reviewed confer-
ence publication Saari, Rantanen and Hyrynsalmi, 2020 which
was presented at the IEEE International Conference on Intelli-
gent Systems: Methodology, Models, Applications in Emerging
Technologies in August 2020 by author.

xx

Publication VII The article presents an implementation of university – enter-
prise collaboration in prototype development described bymeans
of process modeling notation. The focus is onmodeling the soft-
ware prototyping process in a research context. The author was
the principal author of the publication and co-authors give valu-
able feedback to improve and revise the article. The paper was
presented by Jere Grönman at EJC 2020, the 30th International
Conference on Information Modelling and Knowledge Bases in
June 2020.

Publication VIII The article presents an implementation of university – enter-
prise collaboration in prototype development. It focuses on the
present usability and evaluation of theDMPPmodel in theKIEMI
project. The author contributed to evaluating the suitability of
DMPP in this kind of research environment. Janne Harjamäki
contributed with his knowledge the enterprise collaboration the
related aspects of research. The other co-authors give valuable
feedback to improve and revise the article. The author of this
thesis presented the work at EJC 2023, the 33rd International
Conference on Information Modelling and Knowledge Bases in
June 2023.

xxi

xxii

1 INTRODUCTION

Nowadays data gathering is very common. Commercial sensor systems of differ-
ent kinds collect a huge amount of data from different environments. This thesis
presents guidelines for building sensor devices for various environments. These
guidelines were tested with several data gathering prototype systems in different
projects carried out at Tampere University.

This thesis follows the research timeline. First, a wireless sensor network for
data gathering is examined. This is done with prototype systems where the sensor
node plays the main role. Also, the architecture model for a data gathering sensor
node is presented. Second, the development of the architecture model into a sensor
node framework is continued. The architecture model is an abstract tool for select-
ing different components and the framework is a more detailed approach, which
gives examples of possible existing product components. The framework consists of
software and hardware components, and is tested with the data gathering prototype
systems that are developed. Third, the focus changes back to modeling – modeling
of the development process. This is done by selecting four prototype systems, iden-
tifying their main factors, and modeling the process. Thus, the last part of the thesis
focuses on the model of the prototype system development process.

1.1 Motivation

The Internet of Things (IoT) refers to the expansion of Internet services, connect-
ing everyday physical objects to a network. This connection between a network
and physical objects makes it possible for the things (devices) to interact with each
other and cooperate with their neighbors to achieve common goals (Atzori, Iera and
Morabito, 2010). According to predictions made by GSMA Intelligence (GSMA In-
telligence, 2020), there will be about 24 billion IoT devices by 2025.

The first mention of the term ‘IoT’ is said to have come from Kevin Ashton in

1

Data

SBC

MySQL
server

Camera

data

Firebase
data

User

Internet

SBC

WiFi
LoRa
3G/4G

Arduino

Arduino
LoRa

ZigBee

.

.

.

Master node
Sensor nodes

Figure 1.1 The big picture. A few technologies or components commonly used in the thesis have been
added to the figure.

1999 (Ashton, 2009). Several research papers have been written about IoT and what
it includes. Barr (2020) defines IoT as "including mobile devices to vehicles, home
appliances and other products that connect, communicate, and exchange data over
the Internet." A survey of the areas of “Internet of Things” was made by Atzori,
Iera and Morabito (2010). The basic features of sensor networks were compiled in a
survey conducted in Akyildiz, Sankarasubramaniam and Cayirci (2002).

Despite the above-mentioned studies, IoT could be understood to mean several
types of systems. In this thesis, the term IoT refers to the system illustrated in Figure
1.1 where it consists of sensors, the data gathering modules, data connection, the
Internet capable technologies to transfer data, and data storage, the cloud system to
store data. The users are provided with the stored data.

This research work originated from the idea of gathering data and using the gath-
ered data to deliver information to interested parties. There are several threats in
a world where information could save human lives - threats like tsunamis, volcanic
eruptions, and earthquakes. In Finland, threats of this kind are not part of everyday
life, but there are areas, like Japan, where they are. This research started in collab-
oration with Keio University. They had an interest in using the ideas we developed
in the area of delivering of emergency messages using mobile phones (Sillberg et al.,
2009).

Thus, the starting point of the research began with the idea of gathering data for

2

an emergency alert system. The idea was to collect data from as many points as
possible, analyze the data, and try to recognize anomalies. Furthermore, anomalies
would cause an alert and the alert messages would be sent to the people in the area
where the anomalies occurred. (Publication I)

At the beginning of the research process, other possibilities for utilizing IoT in-
formation in the university environment were identified. IoT research in universities
is quite wide, starting from IoT teaching with the devices by testing and program-
ming (Saari et al., 2015b). The ability to collect, analyze, and use IoT data offers a
large amount of research targets, which are highlighted in studies by Saari, Baharudin
and Hyrynsalmi (2017) and a study focused more on communication technology by
Saari et al. (2018).

The termsmodel andmodeling are mentioned in this research several times. This
shows the influence of the author’s learning and research environment in the Pori
unit of Tampere University. Jaakkola, Henno and Thalheim (2016) raised the ques-
tion "Why Information SystemModeling Is Difficult?" The thesis clarifies the mod-
eling issues given below, starting with the research questions.

1.2 Research questions

This thesis claims that it is reasonable to combine wireless sensor network (WSN)
node modeling, a framework for prototypes, and a process model of prototype de-
velopment. The claim is based on the finding of this study that all these aspects are
needed to build the data collection prototype system to achieve a successful outcome.

Based on these considerations, the following research question was defined:

How to construct a system architecture model of wireless sensor network nodes and

process models for the prototyping process to efficiently develop data gathering for

IoT applications?

This sentence combines the main components of the research focus. This main
question can be divided into three sub-questions:

RQ1: What kind of sensor model architecture can be developed for data gathering
in a wireless sensor network?

3

RQ2: How can IoT data gathering be generalized into a framework of required soft-
ware and hardware components?

RQ3: What kind of process model can be developed from prototype development
practices that have been applied in research projects between university and
enterprises?

The first sub-question was based on the following hypothesis: It is possible to
generate a multi-purpose sensor node model for the gathering, pre-processing, and
storage of different kinds of data. This multi-purpose model enables faster system
development and provides guidelines for the design of the internal structure of sen-
sors. The focus of the hypothesis was to construct an architecture model for a WSN
sensor node that combines software and hardware components.

Further, the hypothesis was tested with several prototypes in which the hardware
and software used were described. The hardware components were off-the-shelf (or
in other words "ready-to-use") devices such as a single-board computer (SBC), smart-
phone, single-board microcontroller (SBM), communication modules, sensor mod-
ules, power supplies and similar. The software components were open source or free
to use software, and some devices also included dedicated software. These topics are
handled and tested with prototype systems in more detail in Publications I-III. The
objectives and answers to the research questions are clarified in Chapter 3 of this
thesis.

The second sub-question was constructed from the following hypothesis: It is
possible to generalize the software and hardware components used from IoT and
data gathering prototypes into a framework that can be used in manyways for differ-
ent purposes (e.g., for energy, heating, and electricity savings (Publication V). The
framework for data gathering is a combination of software and hardware, which
is the focus of Publication VI. The answers to these sub-questions are presented in
Chapter 4.

The third sub-question was the conclusion of previous research and based on the
following hypothesis: There are prototype development practices that can be mod-
eled in a process model for use in collaboration between research institutes and en-
terprises. This topic was researched using earlier prototype development processes
in university - enterprise collaboration and by identifying the main factors, which
were role, activity, resource, and artifact. The development process is modeled in
Publication VII; its implementation is described in Publication VI. Publication VIII

4

Software
testing

SCOPE

WSN
Modeling

Hardware design
Network security

Network QoS

Performance
testing

WSN
Data storing

Data
analysis

Software design

Prototyping
Testing

Sensor node

Modeling sensor
node

Modeling prototyping
process

Figure 1.2 Thesis scope.

evaluates the usability of the developed model in a university research project. The
process and the model are presented in Chapter 5.

1.3 Scope and contributions

The scope of the thesis concentrates on selected IoT-related topics (1.2). The scope
of the thesis (blue ellipse) is centered on the sensor node and its modeling. Several
prototypes were made and finally the development process itself was modeled.

In addition, four major themes were involved: modeling, WSN, software design
and hardware design. These themes are only partially addressed in the thesis, depend-
ing on how each of them was needed to complement the prior knowledge. These
topics are clarified in Chapter 2 with related studies. The topics outside of the blue
ellipse are not covered in detail in this thesis. However, the out of scope topics were
handled in the research papers that support the concept of the thesis.

Several IoT-related applications were created during the study. The research theo-
rem and research questions were defined in relation to these data gathering prototype
applications. The answers were found to the research questions; the main contribu-
tions and results of the thesis are as follows:

• TheArchitecture model refers to the SN orWSN data gathering sensor node
architecture. The architecture consists of software and hardware components,
and their interconnections on an abstract level. The two architecture models
developed for the sensor node are presented in the first three Publications I-III

5

and Chapter 3.

• The Software / Hardware (SW/HW) framework generalizes prototype de-
velopment into groups of required software and hardware components; more
precisely, the framework defines the guidelines for constructing prototype sys-
tems to collect data for different purposes. Publications IV-VI and Chapter 4
focus on the SW/HW framework.

• The Descriptive Model for the Prototyping Process (DMPP) is the pro-
cess model developed from the prototype development practices applied in
research projects between the university and certain enterprises. Publication
VII introduces the modeling of the process and presents the DMPP. Further,
Publication VI combines the DMPP with the context of the SW/HW frame-
work. The last publication, Publication VIII, evaluates the usability of the
developed model in a university research project. The DMPP is presented in
Chapter 5.

In this thesis, the DMPP combines the developed architecture model and the
framework with the prototype development process model (Figure 1.3). In the first
phase (1. Define Requirements) decisions must be made by the developer team:
What do we want to measure? After this decision, a suitable architecture model
for the data is selected. This provides the basic requirements for the prototype sys-
tem (2. Requirement Notes). The selection of the architecture model can be used
as a guide when selecting a suitable framework of components to construct the first
prototype in the development phase (3. Develop Prototype). The fourth phase of
the DMPP (4. Develop Artifacts) includes the working prototype and the results of
its usage.

In the context of this thesis, the phase is completed when the prototype collects
data and the datameet the requirements of phase two. The fifth phase (5. Prepare and
Conduct Presentation) is the preparation to present the prototype system, collected
data, and data analysis to the project partners. The sixth phase is the publication or
release of the developed prototype system.

6

Descriptive Model for Prototyping Process (RQ3)

1. Define
Requirements

3. Develop
Prototype

2. Requirement
Notes

6. Communication4. Development
Artifacts

5. Prepare &
Conduct

Presentation

Architecture
model selection

(RQ1)

SW / HW
Framework constructs

(RQ2)Guides selection

Figure 1.3 Thesis research questions (RQ) 1-3, contributions and their interconnections.

Table 1.1 Research questions

Research questions Publications Thesis chapter
RQ1: Architecture model of WSN
data gathering sensor node I, II, III 3

RQ2: SW/HW framework for IoT
data gathering prototype IV, V, VI 4

RQ3: Descriptive model of the pro-
totyping process (DMPP) VI, VII, VIII 5

1.4 Research methodology

The research method used in the thesis is Design Science (DS), which is a practi-
cal constructive research method in the information systems field. The analysis is
mostly qualitative because of the difficulties involved in proper quantitative analy-
sis. Despite this, quantitative analysis is used partially in some use cases, for example
in Publication III, where the prototype system produced a large amount of numeri-
cal data.

DS and its methodologies are explored extensively in Nunamaker, Chen and Pur-
din (1991), Hevner et al. (2004), and Peffers et al. (2007). In DS, the attempt is to
create artifacts to serve human purposes. Peffers et al. (2007) have stated: "The devel-
opment of the artifact should be a search process that draws from existing theories
and knowledge to come up with a solution to a defined problem". The DS pro-
cess includes six steps: problem identification and motivation, the definition of the
objectives for a solution, design and development, demonstration, evaluation, and

7

Identify problem
Define objectives and

develop a system
architecture

Design and develop
the system

Proof-of-concept or
artifact demonstration

Observe and evaluate
the system Communication

Iterations

Figure 1.4 Process for system development research in this thesis. Adapted from Nunamaker, Chen
and Purdin (1991) and Hevner et al. (2004)

communication (Peffers et al., 2007). These six phases were adapted as guidelines
to be followed in this research and thesis work. In addition, the research method
adopted makes it possible to use iteration rounds during the research, which are also
illustrated in Figure 1.4.

The first phase "Identify problem" is the main research question: "How to con-
struct a system architecture model of wireless sensor network nodes and process
models for the prototyping process to efficiently develop data gathering for IoT ap-
plications?" The conceptual framework consists of modeling, WSN, and IoT. These
top-level concepts delimit the field of study.

In the next phase "Define objectives and develop a system architecture", the main
research question was used and the specific terms were taken with the top-level con-
cepts: constructing a model for a WSN sensor node. This gave rise to the first sub-
question: "RQ1: Developing a sensor model architecture for data gathering." The
selected research method enables iterations within the development process, which
is illustrated in Figure 1.4. The iteration rounds produced sub-questions "RQ2:
SW/HWframework for IoTdata gathering prototype" and "RQ3: Descriptivemodel
of the prototyping process (DMPP)".

The purpose of the third phase "Design and develop the system" is to produce
knowledge for the base schema. In the scope of this thesis, this knowledge is col-
lected in the "related studies" sections of the publications. During the research, the
knowledge was collected by using the systematic literature review (SLR) method in-
troduced by Kitchenham and Charters (2007). The SLR method was used and the
results are presented in Publication V and Saari, Baharudin and Hyrynsalmi (2017).
The second method used, introduced by Petersen, Vakkalanka and Kuzniarz (2015),
is a systematicmapping study to give insight into the research trendswithin the scope
of the thesis. In addition, answers to the sub-questions of the thesis were sought in
this phase.

The artifactswere built in the "Proof-of-concept or artifact demonstration" phase.

8

The term artifact in the scope of this thesis refers to any kind of tangible product
produced during the development process. Further, Hevner et al. (2004) advised
building artifacts within the "Design-Science Research Guidelines". These artifacts
could be a model, method, or instance of the system. Publications I-VIII present the
artifacts produced, which are summarized in Chapters 3 to 5. Chapter 3 presents ar-
chitectural models for data gathering sensor node artifacts. Chapter 4 describes the
guidelines for creating a sensor node framework artifact for building new data gath-
ering devices. Finally, Chapter 5 presents the process model artifact for developing
data gathering prototypes.

The next phase, "Observe and evaluate the system," consists of testing. The first
evaluation was made during prototype development, and some of the prototype sys-
tems proceeded to customer evaluation. The other way to test the results was to
publish a scientific article, in which case the results were evaluated by academic re-
viewers.

In the final "Communication" phase, the knowledge and data are produced and
published. This thesis is now the last communication artifact, although ideas for
future research are presented in the conclusion chapter.

The iterations offer the possibility to develop the artifacts further, i.e., the data
gathering prototype systems, architecture model, and the software/hardware frame-
work. As an example: Publication I was the first to go through all the phases in the
process. Publication II was the second iteration and Publication III was the third.
The overall communication of the artifacts is provided in Publications I-VIII.

The evaluation of the research results has been subjected to international review
by other researchers by publishing the results obtained. Furthermore, the review
comments provided valuable information for the following iterations.

1.5 Thesis structure

The thesis structure in relation to the publications is illustrated in Figure 1.5. Chap-
ter 2 contains a section, 2.1, on IoT architecture standards. After that, there are three
sections to present existing work related to the research questions presented in Sec-
tion 1.3. In addition, relevant background information, i.e., methods, techniques,
and technologies, is provided.

Chapter 3 focuses on the RQ1 sub-question and how Publications I-III relate to

9

Pub VIII
Saari2023

EJC

Modeling prototype
development process

SW / HW framework
for IoT prototyping

Architecture model for
sensor nodes

in data gathering
Pub I

Saari2015

Pub II
Saari2016

Pub III
Sillberg2020

Pub VII
Saari2021

EJC

Pub VI
Saari2022

 IS

Pub IV
Grönman2018

Pub V
Saari2019

Figure 1.5 Thesis structure.

it. The main idea is to present the WSN node in two architecture models: single
node and multi node. Chapter 4 continues the subject of generalizing prototype
development into a software/hardware framework. RQ2 sub-question is presented
in the context of Publications IV-VI. Chapter 5 focuses on the modeling of the pro-
totype development process, which is the subject of the last RQ3 sub-question and
discussed in Publications VI-VIII.

Chapter 6 concludes the thesis by summarizing the research. The research ques-
tions are revisited at the beginning of the chapter. The generalization of the research
findings along with limitations are also dealt with. Finally, directions for future re-
search are discussed.

10

2 BACKGROUND

"The most profound technologies are those that disappear. They weave themselves
into the fabric of everyday life until they are indistinguishable from it."Weiser (1991)
said this in his article about "ubiquitous computing". IoT could be said to be environ-
mentally aware computers that disappear into the background. This chapter starts
with the introduction of IoT and related standards. The rest of the chapter is divided
into three sections to present the existing work in relation to the research questions
presented in Section 1.2.

2.1 Standards for IoT architecture

Guidelines and instructions are needed when creating a system architecture. Stan-
dard “ISO/IEC/IEEE 42010:2011, Systems and software engineering—Architecture
description” addresses the creation, analysis, and sustainment of architectures of sys-
tems through the use of architecture descriptions. It also includes a core ontology for
the description of architectures. The ISO/IEC/IEEE 42010:2011 standard is used as
a reference when creating or presenting architecture related standards.

The architecture of the IoT system can be represented as layers. The IoT sys-
tem can be divided into three layers: device, network, and application. The device
collects the data. The application is the provider of the data. Between these, the
network is the technology which moves the data from the device to the application.
The abstract architecture sets requirements for the properties of each layer but does
not specify the exact equipment. This abstract approach creates a foundation of
component-based development when each component is a higher-level abstraction.
In software engineering, component-based software engineering (CBSE) is an impor-
tant software development approach (Sommerville, 2016). Furthermore, a compo-
nent is "an independently deliverable set of reusable services" and this information
can be utilized in component-based development (CBD) (Brown and Short, 1997).

11

Device

Network

Service and application support

Application

Se
cu

rit
y

M
an

ag
em

en
t

Figure 2.1 IoT reference model with four layers. Adapted from ITU-T Y.2060.

The three IoT standards (or related recommendations) included in this study are
listed below. These are marked by their abbreviation, name, and date. The abbrevi-
ations are used later on this study to refer to a specific document.

• ITU-T Y.2060, Overview of the Internet of Things, 06/2012 (International
Telecommunication Union, 2012)

• IEEE 2413-2019, IEEE Standard for an Architectural Framework for the In-
ternet of Things, 05/2019 (IEEE Standard for an Architectural Framework for
the Internet of Things (IOT) 2019).

• IIRA V1.9, The Industrial Internet of Things, Volume G1: Reference Archi-
tecture, 06/2019 (The Industrial Internet of Things Volume G1: Reference Ar-
chitecture, v1.9 2019)

ITU-T Y.2060 is an overview of the IoT with clarification of concept and scope.
IEEE 2413-2019 is a description of the architectural framework, which is aimed at
stakeholders in IoT systems, for example: transport, healthcare, smart grid, etc.
IIRA V 1.9 is a technical report, which describes the Industrial Internet Reference
Architecture (IIRA) for Industrial Internet of Things (IIoT) systems. It provides
guidance and assistance to Industrial Internet Consortium (IIC) members and the
wider IoT community in the development, documentation, communication, and
deployment of IIoT systems.

These two documents, IEEE 2413-2019 and IIRAV1.9, use the ISO / IEC / IEEE
42010: 2011 standard (ISO/IEC/IEEE 42010:2011, Systems and software engineering
— Architecture description 2011) as a reference and furthermore utilize the architec-
ture concepts it introduces. Also both IEEE 2413-2019 and IIRA V1.9 are based on
the layer idea presented in ITU-T Y.2060 (Figure 2.1), but contain several extensions
and refinements.

12

App & Services

Thing

Function
Properties
Information exchange

Figure 2.2 The “Thing” as a context of standard IEEE 2413-2019. Adapted from IEEE 2413-2019.

ITU-T Y.2060 - Overview of the Internet of Thingswas developed by the Inter-
national Telecommunication Union (ITU) and is the oldest of the documents. The
document is termed a recommendation and it provides an overview of the Internet
of Things (IoT) with the main objective of highlighting this important area for fu-
ture standardization. It includes IoT-related terms, concepts, features, and high-level
requirements. In addition, the recommendation presents the IoT reference model
(Figure 2.1).

The device layer can be thought of as a physical sensor device which observes the
environment. The device has a network connection to communicate with the IoT
service and an application support layer. The support layer contains IoT applica-
tions, such as data processing and data storage. The purpose of the application layer
is to provide information to the users or clients of the IoT system.

The IoT reference model (Figure 2.1) also includes management and security ca-
pabilities in all layers. The management capabilities can be fault management, con-
figuration management, accounting management, performance management, and
security management. The security capabilities include authentication and autho-
rization in the different layers.

IEEE 2413-2019 simplifies the layer presentation into two layers “Thing” and
“Apps & Services” (Figure 2.2). “Thing” includes the device, information exchange,
and its functions. The network layer exists, but is not specified more precisely. The
terms “IoT system” (a system of entities including cyber-physical devices, informa-
tion resources, and people) and “IoT environment” (IoT components that may be
used to create the IoT systems) are clarified.

13

The architecture is presented as “the Abstract IoT Domain”, which is the foun-
dation of architecture frameworks and includes the common characteristics and be-
haviors of IoT systems. IEEE 2413-2019 presents representative domains: Smart
Manufacturing, Smart Grid, Smart Buildings, Intelligent Transport, Smart Cities,
and Healthcare, which are derived from the Abstract IoT Domain.

For this thesis, an important point, presented in IEEE 2413-2019, is a stakeholder
concern “How canwemake system concepts reusable, e.g., over product generations
and/or across engineering teams?” This proves that there is still a need for the work
described in the thesis.

IIRA V1.9 presents the industrial Internet architecture viewpoints in four lev-
els: business, usage, functional, and implementation. The functional viewpoint is
important for this research work: the components, their structure, and the inter-
actions between them. The implementation viewpoint is also important when it
deals with the technologies needed to implement functional components and their
communication.

IIRA V1.9 is based on the same idea of layers (Figure 2.1), but there are several
extensions. The implementation viewpoint presents three example architecture pat-
terns:

• Three-tier architecture pattern

• Gateway-Mediated Edge Connectivity and Management architecture pattern

• Layered Databus pattern.

In terms of this thesis, these three patterns present “Edge-Tier” as a sensor or
actuator tier, which collects data from edge nodes (Figure 2.3).

In summary, all three standards are worth knowing, as they all provide valuable
background information on terms and concepts.

2.2 Current trends related to IoT

Central to this thesis is the concept of the Internet of Things (IoT), which can be en-
visioned as an advancedWireless Sensor Network (WSN) that collects and processes
data. Replacing traditional data-collecting sensors, edge computing processes data
proximally to its source, minimizing the need for long-distance data transmission to

14

Edge Tier Platform Tier Enterprise Tier

Service Platform

Data transform
Analytics
Operations

Domain ApplicationsData Flow

Control Flow

Data Flow

Control Flow

Figure 2.3 Three-Tier Industrial Internet of Things System Architecture. Adapted from IIRA V1.9.

centralized data centers or clouds. (Roman, Lopez and Mambo, 2018), (Hamdan,
Ayyash and Almajali, 2020)

WSN communication technologies are pivotal in IoT ecosystems, facilitating data
relay between sensors and platforms. Given the limited power resources of typical
sensors, energy efficiency becomes a critical concern. To address this, innovative
sensors are being developed to preprocess data on-site, significantly reducing energy
consumption. (Gulati et al., 2022)

Furthermore, Artificial Intelligence (AI) plays an increasingly vital role in in-
terpreting the voluminous datasets generated by IoT devices. AI applications can
predict patterns, identify anomalies, and automate decision-making, enhancing the
overall efficiency of IoT systems. (Nguyen-Duc et al., 2023)

Lastly, the interconnectivity inherent in IoT devices introduces numerous secu-
rity challenges. It is imperative to implement stringent security protocols and en-
cryption methods to safeguard sensitive data against unauthorized access and main-
tain the confidentiality and integrity of the IoT network (Atlam and Wills, 2020).
More widely, the article by Porras et al. (2018) provides a comprehensive analysis
of IoT security concerns and solutions, utilizing a manual systematic mapping study
and automatic content analysis, identifying key challenges and research trends in IoT
security.

15

2.3 Constructing a WSN sensor node architecture model

The architecture model of the data gathering sensor node ‘Sensor networks’ refers
to distributed autonomous sensors used to monitor the physical environment, e.g.,
temperature or pressure. The main part of IoT systems is Sensor Networks (SN),
especially Wireless Sensor Networks (WSN) (Perera et al., 2014), (Marković et al.,
2016).

A sensor network is a group of sensor nodes for collecting physical environment
data and send data to the data storage. Since sensor nodes have data processing abil-
ity, the uploaded data can be either raw or pre-processed (Akyildiz, Sankarasubrama-
niam andCayirci, 2002). AWSNuses wireless network technologies for the commu-
nication of sensor nodes and sinks, which collect the data. A WSN includes sensor
nodes, which consist of sensing, data processing, and communicating components.

During the research work of the thesis, three literature reviews were published:
Saari, Baharudin andHyrynsalmi (2017), Saari et al. (2018), and Saari, Nurminen and
Rantanen (2022). The first two of these focus on resolving the state of research on
IoT network sensor solutions. The third addresses the use of software components
in IoT studies. These studies point to building prototypes as an important way to
study the IoT environment.

A survey conducted in 2002 collected the basic design factors of a sensor network
(Akyildiz, Sankarasubramaniam and Cayirci, 2002). Design factors can be used as a
guide when developing prototype systems such as those presented in this thesis. The
list below alsomentions aspects and observed problems that were taken into account
in the prototypes developed:

• Fault tolerance – a common fault is power outage and consequent problems
such as data corruption.

• Scalability – the selected communication infrastructuremight limit the amount
of sensor nodes.

• Production costs – prototyping and testing the ideas should not be a large in-
vestment.

• Operating environment – open source with community support helps move
the research forward.

• Sensor network topology – star topology was selected for testing.

16

• Hardware constraints – sensing unit, storage/processing unit, and transceiver
unit.

• Transmission media – the prototypes use a feasible communication method.

• Power consumption – depends on the use case, battery use is avoided if possi-
ble.

A conceptual model is defined as "a representation of a system, made of the com-
position of concepts which are used to help people know, understand, or simulate
a subject the model represents." In the computer science area, conceptual modeling
concerns describing the semantics of software applications at a high level of abstrac-
tion (Embley and Thalheim, 2011). Furthermore, architecture refers to the funda-
mental structures when describing the system. A study by Al-Fuqaha et al. (2015)
discusses the overall architecture of IoT and its elements by referencing several stud-
ies. In addition, the study presents four different scale models. The architecture
model of IoT can be presented as a simplified three-layer construction of system
structures, such as the sensing layer, network layer, and application layer. The sens-
ing layer represents the physical sensors of IoT that aim to collect and process in-
formation. The network layer transfers data produced by the sensing layer to the
application layer using various communication technologies. The application layer
provides the information to the customer.(Al-Fuqaha et al., 2015)

There are several ways and reasons to model prototype systems in aWSN. An ar-
ticle by Galkin (2016) analyzes the different models of collecting information from
WSNs. The data collection model is based on a suitable schedule for monitoring
parameters. Jin et al. (2014) introduced the Physical Service model, where they sep-
arated a device model, resource model, and service model. Laukkarinen (2015) in-
troduced a Wireless Sensor Network abstraction model with three levels: node ab-
straction, network abstraction, and infrastructure abstraction.

WSN sensor nodes can be divided into three categories: time-driven, event-driven,
or query-driven (Barrenetxea et al., 2008). The time-driven system collects data pe-
riodically, for example, a temperature sensor measures the temperature every 10 sec-
onds. In event-driven systems, data are collected if a particular event occurs (Publica-
tion IV). One example of this is a GPS-driven camera application. The query-driven
systemonly sends data if someone asks for it. An example of the query-driven system
is the sensor node, which stores data in itself and does not forward the data except
upon request.

17

The query-driven system was used in the data gathering prototype system pre-
sented in Publication I, but subsequently the systems most often used in data gath-
ering prototypes were time-driven (e.g., Publication II) or event-driven (e.g., Publi-
cation IV).

Rapid prototyping embedded SW/HW systems is important because system dif-
ferences have increased and the product includes variation in software and system
features (Buchenrieder, 2000). In addition, involving users in the specification pro-
cess is crucial because an increasing number of customers expect solutions and ser-
vices customized to their specific requirements. In a study, Kruger, Abu-Mahfouz
and Hancke (2015) developed a working prototype using commercial off-the-shelf
components. This also showed that a lengthy product development life cycle is not
required when using a rapid prototyping process (Publication IV). The development
of SW/HW systems is accelerated if the framework of the components used in the
design of prototypes is defined. (Kreiner et al. (2001), Saha, Mitra and Basu (1997),
Srivastava and Brodersen (1991), Saari, Rantanen and Hyrynsalmi (2020)

The off-the-shelf software component development and maintenance process is
widely handled in the framework cited in Mäntyniemi, Pikkarainen and Taulavuori
(2004). A strict focus on the applications in a software-hardware combination can
also be found. For example, Rojas and Barrett (2017) introduce a platform for ma-
chine and structural monitoring.

There is also another, a wider way to divide SW/HW components - IoT architec-
ture layers. In this, the components can be divided into layers: sensing layer, net-
working layer, service layer, and interface layer (Xu, He and Li, 2014), (Vakaloudis
and O’Leary, 2019). In this thesis (Chapter 4), the SW/HW framework is focused
on the sensing layers. The networking layer exists and is needed for data transfer,
but is not the focus of our research. The interface layer is described to the user in the
SW/HW framework but is excluded from the study.

The related studies introduce the design factors used through which the guide-
lines of development are selected. Furthermore, this section confirms the usage of
selected devices in academic prototype research. The devices support rapid software
prototyping with good documentation of interfaces and supported features. With
the selected devices, the focus of research can be placed more on software develop-
ment instead of hardware development.

18

Table 2.1 Programming languages used in the context of this thesis.

Language Context
Assembly / Assembler
language (ASM)

Low-level programming language. Usable in micro-
controller programming.(Barnett, O’Cull and Cox,
2003)

C Programming lan-
guage

"General-purpose programming language with fea-
tures economy of expression, modern flow control
and data structures, and a rich set of operators."
(Kernighan and Ritchie, 1978)

C++ "General-purpose programming language with a bias
toward systems programming". (Stroustrup, 2013)

Python High-level general-purpose programming language.
(Python Software Foundation, 2021)

(Bash) Shell scripting Enables the task automation in Linux OS.(Nemeth,
Snyder and Hein, 2002)

Java Generic, Object-oriented programming language
(Oracle, 2021)

2.4 Programming languages and hardware for prototyping

WSN applications

IoT prototype systems can be built using several technologies. This section intro-
duces the hardware and software used during the research work of the thesis.

Embedded Systems - "A combination of computer hardware and software, and
perhaps additional mechanical or other parts, designed to perform a dedicated func-
tion." (Barr, 2020) For this thesis, the term "embedded system" is not suitable when
talking about IoT orWSN devices and systems. IoT is an abstract term and theWSN
is more precisely defined. Therefore, the pair of terms “Software” and “Hardware”
are used in this thesis. The studies focused on WSN solutions where the software
and hardware are usually handled together and it is hard to find research where one
part is not mentioned at all.

Single Board Computers (SBC) are commonly used technology in the develop-
ment of prototypes (Saari, Baharudin and Hyrynsalmi, 2017). Developing a proto-
type is often deemed challenging and expensive, primarily due to the costs involved

19

in hardware and software design, development, and manufacturing. However, em-
ploying SBCs can mitigate these expenses. There are already off-the-shelf hardware
solutions, like the Raspberry Pi, with pre-installed embedded Linux software. Ad-
ditionally, numerous online communities and user groups are available to offer help
and support to developers. (Saari, Baharudin and Hyrynsalmi, 2017)

This thesis focuses strongly on prototyping and not on reliability issues. There-
fore, for example the hardware used is not designed to operate in an industrial envi-
ronment.

The programming languages used during the thesis work are listed inTable 2.1. In
the early years of this research (2000-2005), the microcontrollers were programmed
with C programming language which gave the possibility to modify the compiled
assembly code. The focus of the modification was to improve the assembly code and
software produced by the compilers before it was uploaded to the microcontroller
chip. Nowadays (2023) the programming tools used are similar to Arduino IDE1

with SBM. This tool enables the use of C and C++ type programming languages.
Shell scripting and Python are used to control the operation of the system. Shell

scripting enables simple automation such as opening the data connection, file trans-
fer, and log file writing. The Python programming language has more capabilities
thanks to its support libraries2. These libraries can be used for connection and data
transfer to third party software, such as database systems. In addition, Python has
good capabilities for data manipulation if needed (Perkovic, 2012).

In the thesis context, Java is a more specific programming language compared
with the above. Java is used in the Android based smartphone environment and
there is no need to use other languages (also the User Interface (UI) needs XML and
the compiler needs configuration files).

Hardware in the context of this thesis usuallymeans theWSN sensor node, which
collects the data in some way. A basic sensor node consists of the sensor, CPU,
communication module, and power supply (Healy, Newe and Lewis, 2008). The
study by Ojo et al. (2018) divides IoT devices, with a lot of examples of hardware,
into three categories: low-end, middle-end, and high-end. The low-end devices are
the most restricted, with small processing power and a small amount of Random
Access Memory (RAM). The data gathering prototypes presented in this thesis, for
example Arduino, are in this device category. Middle-end IoT devices have more

1https://www.arduino.cc/en/software
2https://docs.python.org/3/library/

20

Figure 2.4 SBC Raspberry Pi and SBM Arduino Uno.

processing capabilities andmemory. In the last category, high-end IoT devices, SBCs
have enough capabilities to runOSs like LinuxOS. The data gathering prototypes in
this thesis use this level of devices for applications where the data are more complex
or the amount of data is larger.

The hardware and devices used in our data gathering prototypes are mostly off-
the-shelf devices, which means that the devices are available in electronics stores at a
reasonable price. More reasons to use off-the-shelf devices are as follows:

• cheap to buy

• easy to use, good documentation

• community support

• widely used

• widely configurable

These features are most often the advantages of prototypes, but it should be noted
that, for example, "community support" may mean a single enthusiast somewhere
in the world. This kind of research problem arose when the commonly available
NB-IoT development board was used in the study by Rantanen et al. (2021).

During the thesis research, several different devices were used when constructing
data gathering IoT prototypes. Two main hardware devices were the Raspberry Pi

21

SBC 3 and Arduino Uno SBM 4 (Figure 2.4). The third experiment device family
was Android smartphones, which were used as is without hardware modification.
The smartphone includes the basic features of an IoT sensor device as a ready-made
package: power source, processing power, various communication capabilities and
modifiable software. The smartphone experiments were application layer experi-
ments on top of the smartphone OS. The software was developed to use the phone’s
capabilities, e.g., sensors. Table 2.2 presents the most useful features of different
hardware in the thesis context.

Several different SBC devices were used to make the prototypes, as shown in Ta-
ble 2.2. The Intel Galileo (Intel Corporation, 2014) and BeagleBone (Coley, 2014)
devices are comparable to Raspberry Pi and all of them are low-cost development
devices suitable for testing or educational purposes. The Raspberry Pi is the most
popular of the three in the field of research according to the keyword search in the
IEEExplore database (December 21, 2020: "Raspberry Pi" - 3317 hits, "Intel Galileo"
- 58 hits, "BeagleBone" - 133 hits).

2.5 Data gathering prototype development process

The IoT prototyping process can be viewed from two perspectives: a software de-
velopment process and an embedded hardware development process. Furthermore,
the author researched the IoT data gathering prototype development process by col-
lecting data from several prototyping processes.

Regarding software related development processes, three different ways to model
a development process are presented in Figure 2.5. The "Waterfall" model (Royce,
1970) represents the steps in developing large computer programs, but it has limi-
tations, for instance returning to an earlier phase is forbidden. The second model
in Figure 2.5 – Agile software development process model allows a cycle of differ-
ent phases. Agile software development is the use of light but sufficient rules of the
project behavior and the use of human- and communication-oriented rules (Cock-
burn, 2007). Furthermore, Agile processes value code production more than plan-
driven processes (D. Mishra and A. Mishra, 2011). The last model in Figure 2.5 is
rapid prototyping, which is based on rapid development cycles.

3https://www.raspberrypi.org/
4https://www.arduino.cc

22

Table 2.2 Features of Arduino Uno and Raspberry Pi hardware.

Raspberry Pi Arduino Uno Android Smart-
phone

Price
(Euro)

35 20 50-1000

Release
date

24 February,
2012

20 February,
2010

OS Version 2.3,
9 February 2011
(Nexus S was our first
developer enabled
smartphone)

Recent
version

Raspberry Pi 4 B Arduino Uno
Rev3

OS version 11 (ver-
sion 10: Nokia 8 and
7.2 devices)

Processor 24 Broadcom
BCM2711B0

ATmega328P Qualcomm Snap-
dragon 660

Memory 2- 8 GiB 32 KB, 2 KB,
1 KB (flash,
SRAM, EEP-
ROM)

4/6 GB RAM

OS Suitable for
e.g., Linux,
OpenBSD, Win-
dows 10 ARM64

None Android

References Raspberry Pi
Foundation
(2020)

Arduino (2020) Android (operating
system) (2021), HMD
Global (2021)

Liou (2019) presents the basic ideas of prototyping in his book "Rapid Prototyp-
ing and Engineering Applications". Rapid prototyping can be represented as a circle
(Figure 2.5). Rapid prototyping includes three stages: making a prototype, review-
ing the result, and refining and iterating (Babich, 2019).

Both rapid prototyping and Agile require the making of incremental improve-
ments over several iterations, but implementing a prototype focuses on rapid proto-
typing, while Agile’s focus is on the product. The idea of rapid prototyping was used
in the prototype projects of the thesis because coding guidelines could be ignored.
According to Hunt and Thomas (2000)(p. 54), prototyping allows the ignoring of:

23

Review Build prototype

Refine anditerate1. Requirements 2. Design

3.
Im

plem
entation

4. Testing

5.R
ele

as
e

6. Review

b) Agile

1. Requirements

2. Specification

3. Design

4. Implementation

5. Testing

6. Maintenance

a) Waterfall

c) Rapid prototyping

Figure 2.5 Software development process models. a) Waterfall process model, b) Agile process mode,
and c) Rapid prototyping process model.

• Correctness – using dummy data

• Completeness – the prototype can work only in a limited area (i.e., input data
or functionality).

• Robustness – error checking

• Style – coding of the prototype can be without style guide and documentation
and comments can be missing.

In the context of IoT, the working prototype solution is the following: hardware
to run the software; software for collecting, storing, and transferring data; the right
technologies for use cases to make things easier for both developers and users. (Pub-
lication VI)

24

During the research phase of the thesis, several prototypes were developed and
these include a lot of software development. Therefore, a suitable development pro-
cess from the area of software development was selected. For this research, there are
two significant process models: prescriptive and descriptive. The prescriptive model
describes how the process should be performed. In the software development con-
text the "Waterfall" model (Royce, 1970) is an example of the prescriptive process
model (Scacchi, 2002). A descriptive model describes how a process is performed in
a particular environment (Becker, Hamann and Verlage, 1997).

The descriptive processmodel (DPM) (Becker,Hamann andVerlage, 1997), (Becker-
Kornstaedt andWebby, 1999) introduces an eight-step approach to producing a pro-
cess model from software processes. These steps are divided into two phases: the
setup phase and the execution phase. The eight-step approach was used when the
descriptive model for the prototyping process (DMPP) was developed, as presented
in Chapter 5 .

Furthermore, regarding embedded systems there is some need for focusing the
development process. The book "Introduction to Embedded Systems – A Cyber-
Physical Systems Approach" by Lee and Seshia (2017) is based on the idea that de-
signing and implementing an embedded system consists of three major parts of the
process: modeling, design, and analysis. (Lee and Seshia (2017), Publication IV)

2.6 Summary

This section gave an overview of the thesis within the area of the research questions
presented in Section 1.2. The first section, 2.1, clarified the research area by intro-
ducing the related standards. In summary, all three standards are worth knowing and
they all give valuable background knowledge about the terms and concepts. How-
ever, they are also strongly focused on stakeholder concerns and business issues,
which are not the main focus of this thesis. Furthermore, these standards present
high-level architecture models and frameworks, which are good guidelines, but can-
not directly be implemented in the technical construction of IoT systems.

The state of the art on data gathering prototypes was presented in Section 2.3
with several related studies. Section 2.4 continued the briefing by introducing the
technological terms with components from the software and hardware areas. The
last section 2.5 clarifies the background of the development process models when

25

building data gathering prototypes.
Each topic has been addressed with sufficient precision to give the reader an un-

derstanding of the subjects of the thesis. With this background knowledge, the first
main subject of the thesis can be addressed: the WSN data gathering sensor node
architecture model.

26

3 ARCHITECTURE MODEL FOR SENSOR

NODES IN DATA GATHERING

The research goal covered in this chapter is the presentation of a Wireless Sensor
Network (WSN) sensor node architecture model for data gathering. The architec-
turemodel contains software and hardware components, and their interconnections.
With the use of this fundamentally simple model, it is possible to create highly prac-
tical and interoperable sensor applications to gather data on environmental condi-
tions.

The research started as a practical approach – what is possible and what is not. In
Publication I, the aimwas to research and solve the idea of how condition changes in
indoor spaces could be observed and how to collect these data. Our research group
had suitable devices and a lot of knowledge about software development, but not
specifically regarding the building of IoT device prototypes. Therefore, the develop-
ment work started by experimenting with the structures of different data collection
prototypes. These experiments showed the need to define the guidelines for inter-
connecting components. The purpose of the guidelines was "to keep the architects
of the system from drifting off into the blue with unimplementable or costly speci-
fications" (Brooks, 1995), p.43.

Later on, the main research method for developing the model was iterative devel-
opment. The system development research process is illustrated in Figure 1.4 and
more widely in Section 1.4. In addition, the design factors of WSN were followed,
where applicable (introduced in Section 2.3 and based on Akyildiz, Sankarasubra-
maniam and Cayirci (2002)). Design factors were used as a guideline in approaching
the WSN sensor node architecture model by designing concept prototype systems.

The prototype systems were built for different purposes to gather, store, and de-
liver data to the user. From these prototypes, an abstract architectural model for
sensor applications was built. The model was applied using the iterative develop-

27

Sensor Node 1

Sensor Node 2

Sensor Node n

.

.

.

Master Node

OS

Controlling
application

Data cache

InternetNetwork
Communication

Network
Communication

Figure 3.1 Multi node architecture model abstraction when collecting simple data on multiple sensor
nodes.

ment approach and evaluated several times in the developed prototype systems. The
practical outcome of this chapter is a guideline for constructing the architecture for
IoT sensor applications. Further, this section creates the basis of the later introduc-
tion of the SW/HW Framework and the prototyping research process model.

This chapter starts with the introduction of two architecture models. These are
evaluated and used within the IoT data collecting prototype systems, which are also
presented. The last part summarizes the usability of the architecture models.

3.1 Architecture models for WSN data gathering

This section presents two architecture models developed for data gathering. The
purpose of these models was to facilitate the initial design of the data collection sys-
tem. The development and timeline of research produced two architecture models
for different purposes. Figure 3.1 presents the multi node architecture model and
Figure 3.2 presents the single node architecture model.

Both architecture models contain the following main abstract components:

• Sensor nodes, containing sensors to measure environmental conditions, e.g.,
temperature, humidity, acceleration, photos.

• Master node OS and controlling application, controlling the collection and
delivery of the data. A data cache is useful if data analysis or processing is
needed.

• Communication between sensor nodes and master nodes, and the Internet is
needed.

• The Internet is the channel used when data are provided to a user or service

28

platform.

Multi node architecture is focused on systems that collect data from several points
in an area - the communication technology chosen determines the extent of the area.
In the implementations described in this thesis, a group of sensor nodes are suit-
able for collecting simple numerical data, e.g., temperature or humidity. The master
node controls the sensor nodes and collects the data. The data can be stored, ana-
lyzed, and processed, and sent further on or offered via the Internet. The advantages
of this architecture model are the ability to collect a large amount of environmental
data with low power and reasonably priced devices. The limitation of the model is
that the type of data to be collected is limited to simple sensor data. For example, a
surveillance camera sensor network would require too much processing power from
a master node and the reasonable price advantage would be lost.

Single nodemodels are focused on systems for a smaller amount of sensors, but
the collected data can bemore diverse, such as photos or a large amount of numerical
data chunks (e.g., the mean value of acceleration). The sensor node and master node
are software components which work in a single device, such as a smartphone or
Raspberry Pi with sensors. This architecture model has been designed to collect data
which are at least partially processed in a device. The advantages of this architecture
model are its configurable and reasonably priced devices. The limitations, e.g., data
processing ability, guides device selection for more expensive devices.

The multi node and single node models were developed to clarify the inner ar-
chitecture of the sensor node in the data gathering prototype systems. These models
can be used as a guideline when designing IoT systems. The information collected
determines which model it is more sensible to use. The architecture models do not
limit the amount of systems, for example two single node systems (Raspberry Pi
constructions) are suitable for collecting data from multiple locations (Grönman et
al., 2019).

3.2 Developing the architecture models with prototype

systems

This section follows the timeline of data collection model development. Publication
I presents the starting point for the research – the first prototype and the background

29

Smartphone or SBC

Sensor Node

Sensor 1

Sensor 2

Sensor n

.

.

.

Master Node

OS

Controlling
application

Data cache

InternetNetwork
Communication

Figure 3.2 Single node architecture model abstraction when collecting larger data from a single location.

of the development process. This is followed by the second prototype system and the
multi node architecture model of WSN data gathering. The model defines the com-
ponents to build the working prototype at an abstract level. The single node archi-
tecture model is introduced in Publication III. In this further developed architecture
model of data gathering, the hardware configuration is replaced by a smartphone, a
fully operational embedded off-the-shelf sensing device.

Thefirst prototype system and basis of the studywas the intelligent alarm system
that was under development at Keio University Shonan Fujisawa campus1. The in-
telligent alarm system consists of several data gathering prototypes – Data Collector
Services. (Publication I)

Publication I presents the first prototype system (Figure 3.3) that was developed.
This is an early phase single node architecture construction. The hardware consists
of a BeagleBone Black SBC, which runs on Linux OS (Ångström) (Coley, 2014). In
the OS, database services were constructed to store data and a web service to offer
the data to the Internet. BeagleBone has an Ethernet connection to the Internet. The
data were collected with sensors: the first sensor collected humidity and temperature
data and the second one, a photo-conductive cell, collected brightness data.

In conclusion, Publication I presents the features and architecture, the hardware
and software components of the prototype, and the physical connections between
the components. The structure of the developed software used for data collection is
also described.

The second prototype, amulti node system developed for WSN data gathering
contains a master node managing several sensor nodes. The architecture is presented

1https://www.sfc.keio.ac.jp/en/

30

Figure 3.3 System Architecture of Data Collector Service - Starting point of data gathering model. The
figure is adapted from Publication I.

Figure 3.4 System architecture of the prototype system introduced in Publication II. In a multi node
system, the master node gathers sensory data from several sensor nodes.

in Figure 3.4. The sensor nodes collect data from several points and route the data to
one master node. The collected data are stored on the master node and are provided
to the user via the Internet. (Publication II)

The basic features of the second prototype (Publication II) are as follows:

• Collecting temperature, humidity, and air pressure data from the environment

31

Figure 3.5 System deployment diagram for the "ShockApp" prototype system. The figure is adapted
from Publication III.

with several sensor nodes. The number of sensor nodes is not limited.

• Data collected and cached onmaster node SBCs: OS in SBCoffers the database
application.

• Data processing: no processing.

• SBCs use an Ethernet connection.

• User access to data: Data provided to the clients over the Internet.

The single node architecture model was introduced in a data gathering pilot
study by Sillberg et al. (2018), where the focus was on collecting data from several
sensor nodes. The developed prototype system and architecture model are presented
in Publication III (Figure 3.2. Figure 3.5 presents the deployment diagram of the de-
veloped data gathering prototype system. The mobile phone application collects
data from the mobile phone sensors, the data are stored on the phone and then sent
to the cloud service. The users and client can fetch or process the data in the cloud
service. The test software named ShockApp was developed during the study. The
application and its features are discussed in depth in Sillberg et al. (2018). (Publica-
tion III)

The usage of smartphones enables the crowdsourcing idea, where a large amount

32

of people use the software and collect data. ShockApp can be installed on all modern
Android smartphones. The identification mark of the user helps to order the data
points in the cloud. The data are cached on the smartphone and stored in a cloud
service. Publication III uses (Figure 3.5) the relational database MySQL. The other
possibility is to use a time series database, as presented in the accompanying research
study Saari et al. (2020a). The cloud service enables the processing and usage of the
data.

3.3 Evaluating architecture models with prototype systems

The architecture models were evaluated by building prototype systems. The topic
of prototype testing methods and procedures was oriented by means of a literature
survey entitled "Survey of Prototyping Solutions Utilizing Raspberry Pi" (Saari, Ba-
harudin andHyrynsalmi, 2017), although the focus of the study was more about the
usage of Raspberry Pi for prototyping purposes than finding overall prototype test-
ing methods. The survey emphasized the limited use of testing practices and meth-
ods in this context. Often only functional testing was performed, which in practice
means testing that the prototype works. In our prototype systems, the testing was
also functional testing, i.e., does it work as planned? In some cases, a service stress
test or data transfer coverage test was also performed.

The multi node architecture model was evaluated with off-the-shelf SBCs and
other instruments in three studies: Publication I, Publication II, and Baharudin et
al. (2016).

Publication I presents a data collector service that utilizes a BeagleBone Black
computer and sensors. The goal of the study was to evaluate how an off-the-shelf
SBC could be used to collect sensory data and how this data could be provided to
the client over the Internet. The developed prototype produces data regularly and
has proven to be stable and reliable in practice. The research presents the features
and architecture of the developed service, the hardware and software components
used, the physical connections between the components, and the structure of the
software. The research gives a concrete example of using an SBC with embedded
Linux distribution. In addition, the study presents the design of the system, which
was tested and found to work as planned. (Publication I)

Publication II presents a WSN implementation of a prototype system. The em-

33

Table 3.1 Design factors and how they are implemented in the prototypes. Publications I and III describe
the single node system and Publication II describes the multi node system.

Design Factor Implementation
Fault tolerance Publications I and II - Automatic recovery from power outage

managed by OS. Publication III highlights OS version related
software problems.

Scalability Publications I-III introduce independent software based con-
structions where the amount of devices was unlimited. Pub-
lication II describes the separate sensor node-master node con-
struction. There is a theoretical limit for the amount of sensor
nodes within a master node, but this was not reached in the
tests.

Production costs Off-the-shelf hardware and Open source or free-to-use soft-
ware. The hardware constructions and software development
(or configuration) were made by the research group.

Operating environ-
ment

Indoor and outdoor usage tested. Further, the environment for
using the prototypes is not limited.

Sensor network
topology

Star topology or its variants. The special case of fog gateways
is handled by Baharudin et al. (2018)

Hardware con-
straints

Publications I and II use SBCs - Sensing unit (sensors), data stor-
ing and processing unit (Linux OS), and transceiver unit (net-
work communication). Publication III introduces the proto-
type implemented in a mobile phone (Android smartphone).
Only software modifications made.

Transmission media Publication I - Ethernet network. Publication II - Ethernet and
ZigBee communication. Publication III - Mobile network(3G,
4G)

Power consumption Baharudin et al. (2016) deals with maximizing energy savings
through software-related optimization.

34

Table 3.2 Summary of benefits and challenges of single node and multi node architecture models in
prototyping for the design factors presented in Table 3.1

Single node Multi node
e.g., SBC prototype or smart-
phone

e.g., SBC master node with sev-
eral SBM sensor nodes

Fault toler-
ance

Allows easy booting recovery
from a fault condition.

Easy booting – the master node
will restore the fault state.

Difficult to start remotely. Sensor nodes are difficult to boot
remotely if configured without
remote access (only send data).

Scalability:
Number
of physical
devices

Scales linearly with amount of de-
vices.

Singlemaster node has theoretical
limit of sensor nodes, but it not
reached in prototype systems.

Scalability:
Data

Enables complex or large size data
packets.

Restricted for small size data
packets.

Production
costs

Consumer product smartphones
can be used. SBC production
costswith off-the-shelf devices are
low.

Price depends on the quality and
quantity of sensor nodes.

Sensor
network
topology

Allows multiple network topolo-
gies (star network tested).

Allows multiple network topolo-
gies (star network tested).

Transmission
media

Allows use of multiple network
communication technologies.
Smartphone has internet connec-
tivity built in.

Possible to optimize the range,
power consumption, or price
when selecting the sensor node
communication technology.
Allows the use of multiple net-
work communication technolo-
gies.

Power con-
sumption

Moderate power consumption
with SBC; smartphone has lim-
ited battery operation allowing
short power blackouts.

Allows sensor nodes to work
with lowpower consumption (de-
pends on selected software / hard-
ware).

35

bedded Linux controlled sensor network utilizes sensors for the Arduino SBM sen-
sor nodes and an Intel Galileo SBC for the master node. ZigBee expansion boards
handle the communication between sensor nodes and master nodes. In the protocol
stack related to ZigBee, the Physical Layer(PHY) and MAC (Media Access Control)
Layer are below the ZigBee network layer, and theApplication Layer is above it. The
study proved by testing that cost-efficient SBCs have the ability to gather data from
sensor nodes and provide it to users over the Internet. Publication II also presents
the features and architecture of the developed service, the hardware and software
components used, the physical connections between the components, and the struc-
ture of the software. The research gives a concrete example of using an SBC with
embedded Linux distribution. (Publication II)

The third study, (Baharudin et al., 2016) used a multi node architecture model
when testing a low-energy algorithm for data transfer between the sensor nodes and
the master node. The system architecture of the prototype was similar to that pre-
sented in Figure 3.4. Themaster node receives data from the sensor nodes via ZigBee
communication. The focus of the studywas on reducing energy consumption due to
wireless data transmission without sacrificing the reliability of data for real-time vi-
sualization. The total power consumption can be significantly reduced by applying
the algorithm to the sensor nodes.(Baharudin et al., 2016)

The single node architecture model is presented in Sillberg et al. (2018) with a
description of the ShockApp application in smartphones. Furthermore, Publication
III extends the study by Sillberg et al. (2018) by introducing a combination of models
for data gathering and an analysis of the collected data.

The deployment diagram of a system that utilizes data collected by smartphone
sensors is presented in Figure 3.5. The data were obtained from a group of smart-
phone users driving on the roads in western Finland. The developed smartphone
testing software itself is an Android application, which consists of a single main view
that allows the user to stop and start the sensors, and a settings screen, which allows,
for example, the modifying of user credentials. The application collects accelerom-
eter data, direction, speed, location, and timestamps. The data are stored in a cloud
service at predefined intervals. (Publication III)

Publication III combines a data gathering model with a data analysis model to
evaluate the condition of road surfaces. This was implemented and tested in a pro-
totype system. The trial period showed that the selected methods were successful in

36

identifying individual road surface issues, such as potholes, but more importantly,
they were also effective in providing an overall assessment of the road condition.
(Publication III)

Despite the variety of hardware used, the prototype systems presented in Publi-
cation I and Publication III use the architecture model where master node and sen-
sor node are separated into separate software components. The separation is imple-
mented at software level, creating the necessary software components.

The implementations of the different evaluations are listed in Table 3.1. The
table summarizes the practical implementations, comparing the design factors pre-
sented in 2.3. These practical implementations are also categorized by the design
factors (Akyildiz, Sankarasubramaniam and Cayirci, 2002).

The benefits and challenges of single node and multi node architecture models
in prototyping are listed in Table 3.2.

3.4 Discussion and summary

The goal of this chapter was to answer the first research sub-question: RQ1: What
kind of sensor model architecture can be developed for data gathering in a wire-
less sensor network? The design factors from Akyildiz, Sankarasubramaniam and
Cayirci (2002) served as a guideline for prototype development. The study by Bar-
renetxea et al. (2008) presented time-driven, event-driven, and query-driven cate-
gories for WSN systems. The architecture of the sensor node model can work in
all of these categories. The first prototype introduced in Publication I is a combina-
tion of time-driven and query-driven, where the data are collected periodically and
served only in a query. As explained in Chapter 4, two event-driven prototypes are
presented in Publication IV.

The main contribution of this chapter and the first artifacts of the research are
the multi node and single node architecture models. The chapter described the
main components: the sensor node, master node, communication, and the Internet
as a communication channel for user applications. Furthermore, the purpose of the
models and possible applications as a data collection tool were presented.

The architecture model and prototype development along with the related pro-
totypes were described in Section 3.2. The evaluation of the architecture models was
approached by constructing prototypes. The working prototypes show the usabil-

37

ity of the architecture models as a guideline when constructing data gathering sensor
devices.

The research work on this chapter was done by means of several prototype sys-
tems. The most significant findings and results from the prototype systems are pre-
sented in Publications I-III and this chapter presents them as a single entity.

Publication I shows the ability to prototype data collectionwith reasonably priced
off-the-shelf devices. The data collection, analysis, storage, and offeringwere demon-
strated with the proof-of-concept prototype. Furthermore, the prototype system
highlights the strength of component based prototype development where some
components are ready to use with only slight configuration or modification. Publi-
cation I presents the first implementation of the single node architecture model.

Publication II presents the proof-of-concept implementation of the multi node
architecture model which was utilized to construct sensor nodes – master controller
combinations in the IoT environment. The evaluation of the multi node model
shows the usability of an off-the-shelf SBC to collect data frommultiple sensor nodes.

Publication III demonstrates the ability to use lessons learned from earliermulti
node prototypes with a new device family of smartphones. The presented proof-of-
concept ShockApp smartphone application showed the usability of smartphones in
an IoT data gathering system. The same component based ideology as described in
Publications I and II was used but only the software side; the system used consumer
devices without hardware modifications. Therefore, the smartphone application is
a single node architecture model implementation.

The related research section 2.3 also introduced several studies related to themod-
eling topic. Regarding the thesis, the node level abstraction, which is also the idea
and starting point of Chapters 3 and 4, is presented in Laukkarinen (2015).

Despite the similarity of the idea, more ready-made off-the-shelf components
were used in the development of prototypes. Building the prototype systems showed
that the hardware selection supports rapid prototyping and that test configurations
were reproducible. Furthermore, several related studies were selected for construct-
ing a similar off-the-shelf component tool set. These studies showed that the hard-
ware used, i.e., Raspberry Pi, Arduino, and similar devices, were suitable (and com-
monly used) in the academic research area for prototyping and evaluating ideas (Saari,
Baharudin and Hyrynsalmi, 2017).

This chapter presented the basic approach when building the first implementa-

38

tions of the architecture of data gathering prototype systems.
Table 3.2 lists the benefits and challenges of the architecture models. The abstrac-

tion of the models is the main feature, so developers have ample opportunities to
make choices between different features and different technologies. Furthermore,
choices made by developers can significantly affect the price of the prototype, mak-
ing cost-effective development possible if desired.

The presented twomodels can handle wide variations of data gathering prototype
systems, which is proved by the following Chapter 4. The presented architecture
models are focused on the data gathering side of systems and therefore they do not
deal with data storage, usage, and processing on the cloud side. Future research topics
could focus on the cloud side, closer to data use and utilization.

The results described in this chapter give a strong background to the development
of the framework presented in the next chapter. After formulating the architectural
model, the research continued with the development of a framework that utilizes
the model.

39

40

4 FRAMEWORK FOR IOT PROTOTYPE

DEVELOPMENT

This chapter introduces the second artifact of the research – the Software /Hardware
framework (SW/HW framework) for IoT data gathering. The framework general-
izes prototype development into a group of required components; more specifically,
the framework defines the guidelines for constructing prototype systems to collect
data for different purposes. In addition, this chapter answers the research question
RQ2: How can IoT data gathering be generalized into a framework of required soft-
ware and hardware components?

Development work on the framework began from the previously created multi
node and single node architecture models. The research method used in this phase
of the study was the same as that introduced in 1.4, i.e., data were collected when
the prototype artifacts were implemented, and these data were used to develop the
framework. This chapter is based on Publications IV-VI.

The SW/HW framework is a guideline for producing practical implementations
– data gathering IoT prototypes. Three different constructions are presented for
building prototype systems. The software and hardware components are presented
for all three types of construction. Also, the practical implications are introduced
where these constructions have been evaluated.

This section starts by presenting the research approach, the timeline of the re-
search, and the studies that are relevant to the SW/HW framework development.
The SW/HW framework is presented by introducing the sensor network environ-
ment, three types of data gathering constructs, and the components with their in-
terconnections. Section 4.3 introduces the use cases that are congruent with the
construction of framework Types 1-3. Also, some examples of program code are
presented from selected real-life use cases to illustrate the role of the different com-
ponents in the system. Finally, the benefits of using this developed framework are

41

Pub I

2015 2016 2017 2018 2019 2020

Embedded Linux controlled sensor
network

Lessons learned from developing
prototypes for customer complaint

validation

Interpretation, Modeling and
Visualization of Crowdsourced Road

Condition Data

2021

Framework and Development
Process for IoT Data

Gathering

Pub II Pub IV Pub VI

Reducing Energy
Consumption with IoT

Prototyping

Pub V

Data collector service

Pub III

Figure 4.1 SW/HW framework validation with prototypes in the timeline of the thesis research.

listed.

4.1 Development of the SW / HW framework

The SW/HW framework was produced from several data gathering prototype sys-
tems, which have been developed and evaluated during several research projects. Fig-
ure 4.1 presents the publications in a timeline. Publications I and II describe the
start of the prototype development with the first experiments of suitable software
and hardware. The study by Saari, Baharudin andHyrynsalmi (2017) explores more
broadly what others in the academic world have done within this research area, iden-
tifying the lack of formalized testingmethods andminimized testing in general when
developing prototypes for research purposes.

Five different prototype systems for data gathering are presented in four studies:
Sillberg et al. (2018), Publication IV, Grönman et al. (2019), and Rantanen and Saari
(2020). The main idea was to design a data gathering system and test it with suitable
off-the-shelf devices and open source or free to use software. One of the studies,
Sillberg et al. (2018), was expanded into Publication III including modeling aspects
and was not made public until 2020.

Publication IV can be said to be the first iteration of the SW/HW framework.
The study presents the ideas and criteria for the components that are suitable for
data gathering prototypes. Publication V includes studies with potential methods
and technologies for monitoring energy consumption and savings. Also, Publica-
tion V summarizes the proof-of-concept demonstrations and prototype applications
that were developed to illustrate how to utilize cost-effective, open, and modular so-

42

Requirements

Data handling

Hardware Software

Gather Storage Process

Open hardware
Off-the-shelf

Open Source
Free-to-use

Preferred feature Preferred feature

Depends on

Figure 4.2 Requirements from data handling guide the selection of software and hardware in the SW/HW
framework.

lutions. Saari, Rantanen and Hyrynsalmi (2020) includes the second iteration of the
SW/HW framework. This work was extended to become Publication VI. Chapter
4 is based on Publication VI with minor additions.

4.2 SW/HW framework

This section introduces the SW/HW framework for an IoT data gathering system.
The abstract multi node and single node architecture models were introduced in
Chapter 3. The framework is the concrete application framework which uses the
developed architecture models.

The application framework is a guideline for producing practical implementa-
tions of data gathering sensor prototypes. The main purpose of the SW/HW frame-
work is to guide and assist in the construction of data gathering prototypes, and
therefore a set of hardware and software components to use for building data gath-
ering systems is introduced. The advantage of the framework is the support of re-
usability, portability, and interchangeability.

The SW/HW framework was defined during academic research projects where
the focus was on data gathering with self-made prototype systems. The framework
and its relationships are illustrated in Figure 4.2.

Essentially, when collecting data for a project, the types of data to be collected
determine the hardware and software components required. Optional features that
can be helpful can also guide the selection process. Ultimately, it is important to
ensure that the chosen hardware and software work together seamlessly.

43

Sensor

Gateway

Outbound
Communication

Storage

User / Client

Processing

SW
 /H

W
fram

ew
ork

C
on

fig
ur

at
io

ns

Type 3

Smartphone

Master node
Sensor node

Type 1

Master node
Sensor node

Type 2

Master node

SN1 SN2 SNn...

Pr
e-

C
ac

he
G

at
he

rin
gD
at
a

St
or

in
g

Pr
oc

es
si

ng

Figure 4.3 The SW/HW framework within the layer diagram for gathering IoT data.

"What information or data to collect" is the first question for the implementer
of an IoT data gathering system when constructing a prototype. The answer to the
question should be clear and it should also be the motivation for constructing the
system. During the thesis research work and the construction of prototypes, the
following three questions were asked after the decision of collecting data had been
made (Publication VI):

• How to gather the data?

• How to store the data?

• How to process the data?

The availability of the collected data is crucial for the end user. To ensure this, it is
preferable to store and process the data in cloud storage or a server, which could be an
old Linux server or a commercial cloud computing service. However, before sending
the data to the cloud storage, they should be collected and temporarily stored in a
sensor device or gateway device. This ensures that if there are any communication
issues with the network, the data can be saved temporarily, reducing the risk of data
loss. In this context, the SW/HW framework is designed to focus on data storage
and processing at the sensor or gateway layers. This allows for more efficient data
management and helps ensure that the end user has access to the data when needed.
(Publication VI)

Figure 4.3 presents an IoT data collection system with layers starting from data
sensor and ending with the user of the data. In this layer presentation, the SW/HW

44

framework, and all three types of configurations are located in the lower layers. The
following parts of the system should be noted:

• The collected data are utilized by the user/client (human or computer appli-
cation).

• In most use cases, the data are processed in some way according to customer
needs.

• The raw data are collected and saved in the storage layer.

• The outbound communication layer offers a suitable data transfer method for
the SW/HW framework. The most developed prototype systems have a con-
nection to the Internet, but this is not mandatory.

• In the SW/HW framework, three different hardware constructions (Types 1-
3) are presented: master node-sensor node; multiple sensor nodes with one
master node; sensor device (for example a smartphone). Types 1 and 3 are
derived from the single node model and Type 2 is derived from the multi
nodemodel.

• On the gateway level, the data could be cached and/or processed if it is neces-
sary and possible.

• Remote control for monitoring and configuring is enabled.

The versatility of the SW/HW framework is supported by dividing the main
node-sensor node into three different structures, which enables the collection of a
versatile data set. (Publication VI)

Hardware of the SW/HW Framework

The hardware of three types of SW/HW framework constructs uses off-the-shelf
devices; the most commonly used hardware is listed in Table 2.2. The use of at least
partially tested ready-made devices speeds up the development of prototypes. The
devices can be categorized into two parts (Publication VI):

• Sensor node hardware contains a combination of data sensors and a control
device.

• Master node hardware for gathering, processing, and storing of collected data.

45

Table 4.1 Most notable features of the three different types of construction referred to in Chapter 3 in-
cluding presented architecture models (Publication VI)

Type 1 Type 2 Type 3
Architecture
model

Single node Multi node Single node

Hardware
construction

SBC with sen-
sor(s), SBC works
as a control device
of sensor(s)

SBC master node
and group of
sensor nodes with
sensors

Smartphone

Data gather-
ing

No limitations –
suitable for large
data chunks such
as photos

Suitable for low
data transfer –
SBC limitations

Device sensors –
no hardware mod-
ifications

Data process-
ing

SBC limitations e.g., mean value
calculus, visualiz-
ing

e.g., mean value
calculus, data
packaging

Data storage Temporary stor-
age

Temporary stor-
age or Database
storage and
visualization

Temporary stor-
age

When compared to the three types of data gathering devices, the division into
three parts is sufficient for hardware. Types 1 and 3 are combined on the hardware
side, with sensors and processing capabilities integrated into a single device. Type 2,
on the other hand, allows the master node to manage multiple sensor nodes. Table
4.1 includes references to previously presented architecture models. (Publication VI)

The data collection process is executed by the sensor node, which employs sen-
sors to gather the necessary data. The data could be basic information, like temper-
ature and humidity, or more intricate data, such as photos. The hardware utilized is
determined by the data requirements. The sensor node is separate due to being Type
2, where the aim is to use multiple sensor nodes with a single master node. Con-
struction sensors are connected to an SBM, i.e., an Arduino or similar, in Type 2,
which can manage simple data, such as numerical values. The Type 2 sensor nodes
are connected to the master node, and the volume of transferred data must be in
bytes or kilobytes. Android smartphones can process a significant amount of basic
information from their built-in sensors, as well as more intricate data such as images

46

captured by the device’s camera. (Publication VI)
Themaster node receives data from the sensor nodes (sensor nodes send data or

the data are fetched by the master node). The master node can preprocess and/or
cache data if needed. The master node has a communication channel, for example,
3G/4G/5G1, Wi-Fi2, or LoRa. Depending on the master node’s communication
channel, remote control and configuration can be enabled. For example, Raspberry
Pi with Linux OS and a suitable communication channel is achievable with remote
control tools. (Publication VI)

TheType 3 construction is based on the idea of amaster node in a smartphone and
in such cases the solution is implementedwith a self-made application, which handles
data collection, storage, and processing. The application limitations come from the
OS of the smartphone and the fact that no hardware changes or modifications have
been made. (Publication VI)

This SW/HW framework relies on communication with the Internet, but in ad-
dition, suitable wireless technologies can be used (e.g., ZigBee, LoRa, 4G). The col-
lected data are transferred via the Internet to data storage devices. This storage could
be cloud servers with a database or dedicated Linux servers for saving data. The
study by Saari et al. (2020a) presents several ways for storing and visualizing sensor
data. The SW/HW framework can also be applied to these techniques. (Publication
VI)

Software of the SW/HW Framework

The SW/HW framework primarily relies on open-source software, which has been
in most cases tested by the community and comes with freely available source code.
Since open-source software is also free to use, multiple software combinations can
be utilized for testing without extra costs. (Publication VI)

The software components are divided into three parts:

• Sensor software - receives sensor data from sensors

• Data gathering and preprocessing software

• Data storage software

1Generations of wireless mobile telecommunications technologies
2Wi-Fi is the IEEE 802.11 standard based family of wireless network protocols

47

Sensors Sensor Node
SensorApp

Master Node
ControlApp

Read raw sensor data

Detect attached sensors
Associate with the master node
Synchronize configuration data
Begin data collection loop

Send sensor data

OK

Listen wireless interface for Sensor
Nodes
Preprocessing data
Temporarily store data
Begin web services

Client / User
Cloud storage

Store data
Process data
Use data (Visualize data)

Send data

Configurate and control

Figure 4.4 Software components and their connections when collecting data.

The diagram shown in Figure 4.4 serves as a guide for dividing software compo-
nents between themaster node and sensor node at an abstract level and demonstrates
how these parts work together. This kind of approach facilitates modular develop-
ment and the ability to interchange components. Additionally, the diagram depicts
how the sensors provide input and how data are transmitted to the cloud. (Publica-
tion VI)

The pseudo code examples of the SensorApp (4.1) read the state of the sensor
and send the data. The ControlApp (4.2) receives data and sends the data to the
cloud. These programs illustrate the software components of the data gathering sen-
sor node. The SensorApp (Program 4.1) works in a loop, reading the sensor mea-
surement and sending the read value at appropriate intervals. In this example, the
interval is 1000milliseconds. The ControlApp (Program 4.2) waits for the data from
the SensorApp and, depending on the setup, the data can be handled in various ways.
However, the last step of the ControlApp is to send data to the cloud database. All
three types of data gathering constructions implement these two programs 4.1 and
4.2; the programming language varies depending on the working environment.

1 setup{
2 environment configuration
3 }
4

5 loop{
6 data = read_sensor;
7 send(data);

48

8 sleep (1000);
9 }

Program 4.1 Pseudocode for SensorApp implementation

1 void read_send_data{
2 receive data
3 if check==true
4 check data
5 if store==true
6 store data locally
7 if modify data==true
8 modify data
9 Send data
10 }

Program 4.2 Pseudocode for ControlApp implementation

Table 4.2 presents all three types and the relevant software aspects. The list of
software components goes from sensing to storing the data. Low-level programming
with C++, Python, or Perl scripts is suitable in Types 1 and 2 for sensing and sensor
software for reading, reviewing, and storing the data. (Publication VI)

SBCs can serve the dual purpose of sensing and data gathering. In Type 1, for
example, the Raspberry Pi is connected to the sensors and utilizes sensor software
to read values from them. If a Type 2 construction is used, the gathering software in
the SBC can handle the data collection from several SBM sensor nodes. Also, Type
2 SBC devices should be equipped with the full OS if data gathering and preprocess-
ing software are more complex. In the data storing and preprocessing phases, the
SW/HW framework utilizes pre-made software and libraries. For example, Rasp-
berry Pi could offer the gathered data to the Internet with a server application. Pre-
processing could be, for example image recognition using image recognition soft-
ware. (Publication VI)

The assumption in the SW/HW framework is that the collected data are stored
in a cloud server. In addition to this, the data could be temporarily saved to the
master node using a suitable database format. If the data meet the definition of a
time series: "A sequence of numbers collected at regular intervals over a period of
time" then a time series database is a good choice (Namiot, 2015). For example,
the open-source time series database InfluxDB3 is suitable for SBC hardware and is

3https://www.influxdata.com/

49

Table 4.2 Software features and examples of the three different types of data gathering construction.

Type 1 Type 2 Type 3
Construction
type

SBC with sensor(s) SBC master node
and group of SBM
sensor nodes with
sensors

Smartphone

Sensor soft-
ware - code

Collect data from
sensors - C/C++
or Python

Collect and send
data - C/C++

Collect, store and
send data - Android
(service) program

Data gath-
ering and
preprocess-
ing software

Python, suitable
program library

Communication
and processing,
Python

The same as above

Data storage
software

Filesystem Filesystem or
database

Filesystem,
database or cloud
storage

Data Photos or similar
large data chunks

Temperature, hu-
midity or similar
low data chunks

Photos or numeri-
cal sensor values

widely used in IoT solutions (Bader, Kopp and Falkenthal, 2017). Also, the relational
database model is suitable for storing the collected data locally in a sensor device, for
example a combination of Raspberry Pi with Linux OS, MariaDB4 database, and
a RESTful API. REST (REpresentational State Transfer) is an architectural style
for distributed hypermedia systems (R. Fielding, 2000), (R. T. Fielding and Taylor,
2002). The RESTful API5 (Application Programming Interface) is a web service
which follows REST guidelines. With a RESTful API, the service allows remote
control or management of a device over the network. There are other alternatives to
the RESTful API technique, such as CoAP6 and MQTT7. The study by Saari et al.
(2020a) deals with the storage of sensor data more comprehensively.

Android smartphones have been used with this SW/HW framework. The An-
droid OS software development kit (SDK) enables the wide use of smartphone capa-

4https://mariadb.org/
5https://restfulapi.net/
6https://www.rfc-editor.org/rfc/rfc7252.html
7https://datatracker.ietf.org/doc/html/rfc9431

50

bilities. For example, the SDK enables usage of a smartphone camera (Publication
IV) and the smartphone’s accelerometer sensor (Sillberg et al., 2018).

Also, Android OS facilitates data storage on smartphones via files and databases,
enabled by the SDK.The SDKalso enables users to utilize the datawithin the SW/HW
framework, as well as transferring the data to cloud services. (Publication VI)

When considering data storage, cloud storage for data is a better choice than local
storage in the master node because of security and availability. Cloud storage, such
as the commercial Google Firebase or a self maintained Linux server, has more ca-
pabilities to store a larger amount of data than the local database in a Raspberry Pi.
(Publication VI)

This section presented the developed SW/HW framework, as well as the proto-
type implementations. The SW/HW framework can be used as a guideline, with
which it is possible to rapidly construct a data gathering prototype system for dif-
ferent purposes. The main limitation, but also advantage, is relying on off-the-shelf,
open source, and community supported components. This is a limitation if produc-
ing a commercial product, but an advantage when rapidly prototyping a new data
gathering system.

4.3 Use of the SW/HW framework with three types of

systems

This section gives an overview of the developed prototype systems and lists the main
findings made during the research. The prototypes are divided into Types 1 and 2,
which are SBC and Linux OS based data gathering prototype systems, and Type 3
which is a smartphone based solution. (Publication VI)

In Type 1 constructions, one or more sensors are connected directly to the SBC.
The four different studies and main findings related to the SW/HW framework are
presented briefly below. (Publication VI)

• Publication I presented the first implementation: a data collector service. In
this prototype, a Beaglebone Black SBC gathered temperature, humidity, and
brightness data. The data were stored in the SBC and server software offered
the data to users. The SBCs used an Ethernet connection for data transfer.
The main goal of the study was to test how well a cost-efficient off-the-shelf

51

SBC could collect, store, and provide data. This goal was reached successfully,
and the designed system was tested and found to work as planned. The study
proved that fully operating, data gathering prototypes can be developed with
off-the-shelf devices and open source tools. (Publication I)

• The study by Saari, Baharudin and Hyrynsalmi (2017) focused on the usage of
off-the-shelf devices when prototyping a sensor network solution in academic
research. In addition, the study determined the advantages and limitations
of prototyping when the Raspberry Pi was used. The study showed that the
Raspberry Pi SBC is a widely used device in research implementations of dif-
ferent kinds. Some prototype system testing methods were found: software
testing, software performance testing, and validation of data tests. The study
by Saari, Baharudin and Hyrynsalmi (2017) clarified the operating environ-
ment for the SW/HW framework. (Publication VI)

• The third (Publication IV) and fourth (Grönman et al., 2019) studies were
based on Raspberry Pi and camera combination prototypes. Both prototypes
used 3G/4G communication. The data and photos were stored and processed
in cloud storage. The SBC based prototypes collected and sent data for sev-
eral weeks in the customer’s environment, which raised the need for a remote
control channel (for example the SSH service and terminal). (Publication IV)

AType 1 construction typically consists of programs for data fetching, data check-
ing, and data storing. An SBC environment has an OS and some programming lan-
guage options for programming and implementing the software. The example use
case, Program 4.3 uses Python programming language to read, modify, and store
data. The function readData() reads two temperature values (the data) from an Ar-
duino, which is connected with a USB cable8 to a Raspberry Pi. The function write-
Data(values) modifies and stores data temporarily in an internal text file and sends
the data to the Firebase Cloud Storage. This use case demonstrates data collection
with a sensor, storing on the document database, and using a smartphone applica-
tion, as described in the study by Saari et al. (2020a). The example is not a typical
Type 1 construction because the sensors are used with an Arduino. The reason for
selecting this kind of approach was educational - this example was used as a real-

8USB (Universal Serial Bus) is an industry standard for cables for the connection, communication
and power supply between computers and peripherals.

52

world data gathering example in an Embedded Systems9 course. Furthermore, the
collected temperature data in the Firebase cloud service were used as an example in
a course on Mobile Programming10. Both courses were held at Tampere University
in 2019.

1 import time
2 from firebase import firebase
3 firebase = firebase.FirebaseApplication(
4 ’https :// kevat2019 -b8e28.firebaseio.com/’)
5 ser = serial.Serial(’/dev/ttyACM0 ’ ,9600, timeout =0)
6

7 def readData ():
8 data=ser.readline ()
9 temp1=’’
10 for value in data:
11 temp1=temp1+chr(value)
12 writeData(data)
13

14 def writeData(values):
15 time_hhmmss = time.strftime(’%H:%M:%S’)
16 date_mmddyyyy = time.strftime(’%Y/%m/%d’)
17 data=date_mmddyyyy+’;’+time_hhmmss+’;’+arvot
18 print(data)
19 filename=’Output.txt’
20 with open(filename , "a") as text_file:
21 print(data , file=text_file)
22

23 #Data saving to Firebase
24 line=data.split(’;’)
25 try:
26 result = firebase.post(
27 ’https :// kevat2019 -b8e28.firebaseio.com/Pikkuasevelitie ’
28 ,{’pvm’:str(line [0])
29 ,’Kello ’:str(line [1])
30 ,’alalampo ’:str(line [2])
31 ,’ylalampo ’:str(line [3])})
32 except:
33 print(’Error ’)

9PLA-32311 Embedded Systems, 5 op
10PLA-32820 Mobile programming, 5 op

53

34 pass

Program 4.3 Python functions for data modifying and storing on Firebase Cloud Storage. First the

Firebase Cloud Storage address is defined. The timestamp and collected measurements

are combined into one line with a separator for local storing. In the last step "firebase.post"

data are split and sent to the cloud. This prototype system is presented in a study by Saari

et al. (2020a)

The Type 2 construction was evaluated in three prototypes which had one SBC
as a master node and several sensor nodes. These constructions use one-way com-
munication from sensor nodes to the master node. This configuration was evaluated
in several research cases:

• The first study, Publication II, concerned an Intel Galileo Gen 2 development
board which functioned as a SBC master node. The sensor nodes were Ar-
duino SBMs, which collected and sent data to the master node using wireless
XBee11 technology. The targets of the study were threefold: to test the multi
node architecture model, to determine how well cost-efficient, off-the-shelf
SBCs could be used to gather sensory data from several SBM sensor nodes,
and how to deliver collected data to clients over the Internet. The study shows
the usefulness of a Type 2 construction when several sensor nodes collect data
from a small area (the size of area depends on the ability of the selected commu-
nication technology between the master node and sensor node). (Publication
II)

• In the second use case, Rantanen and Saari (2020) presented a prototype system
for monitoring indoor living or working conditions. The area of the sensor
nodes was extended by using LoRa technology as a communication channel.
In this prototype system, the Raspberry Pi master node with a LoRa expan-
sion board received and stored data from several Sodaq sensor nodes12. The
goal of the tests was to validate the prototype system construction. In addi-
tion, the study shows LoRa technology to be a good choice for sensor appli-
cations within concrete buildings (Rantanen and Saari, 2020).

• The third use case (Saari et al., 2020a) used a RuuviTag13 consumer product

11Brand name forwireless connectivitymodules, based on the IEEE 802.15.4-2003 standard designed
for point-to-point and star communications

12https://support.sodaq.com/Boards/ExpLoRer/
13RuuviTag technical specifications, https://ruuvi.com/files/RuuviTag-tech-spec-2019-7.pdf

54

as sensor node. RuuviTags collect temperature, humidity, pressure, and mo-
tion data and use Bluetooth communication to send data to the Raspberry Pi
master node. The master node has an InfluxDB14 database for data storing,
and Grafana15 for data visualization. The advantage of ready-to-use consumer
products is that the prototype system is quick to configure. The master node
needs configuring, but the re-using of previously utilized software keeps the
development effort low. These prototype systems showed that, even though
the gathered data were small in quantity, the visualization required a lot of
processing by the Raspberry Pi. The second issue raised was a restriction on
the number of memory operations that could be performed using a memory
card on a Raspberry Pi. Therefore the data had to be stored and processed
on a cloud server. Regarding the SW/HW framework, this prototype system
demonstrated the effectiveness of modular development and the interchange-
able nature of both the sensor nodes and the master node. (Publication VI)

The software in Type 2 is divided into two types– sensor node and master node
devices. The program 4.4 is an Arduino type solution for data gathering from sen-
sors: First, the environment is configured in the setup loop. Second, two arrays are
introduced in the loop: a "buffer" array variable for the message and a "tbuf" ar-
ray for the sensor values. This construction consists of two sensors: SGP3016 and
BME68017. The data are fetched by means of functions. The last function "send-
LoRa(buffer, strlen(buffer))" sends data to the master node using a LoRa wireless
network.(Rantanen and Saari, 2020)

1 void setup()
2 {
3 setupLoRa ();
4 setupBME680 ();
5 setupSGP30 ();
6 }
7 void loop()
8 {
9 char buffer[LORAWAN_MESSAGE_MAX];
10 if(! getSodaqBuiltInData(buffer)){

14https://www.influxdata.com/
15https://grafana.com/oss/grafana/
16https://learn.adafruit.com/adafruit-sgp30-gas-tvoc-eco2-mox-sensor
17https://learn.adafruit.com/adafruit-bme680-humidity-temperature-barometic-pressure-voc-gas

55

11 return;
12 }
13 char tbuf[LORAWAN_MESSAGE_MAX];
14 if(! getSGP30Data(tbuf)){
15 return;
16 }
17 strcat(buffer , tbuf);
18 if(! getBME680Data(tbuf)){
19 return;
20 }
21 strcat(buffer , tbuf);
22 sendLoRa ((uint8_t *) buffer , strlen(buffer));
23 }

Program 4.4 Data gathering code for the sensor node. (Rantanen and Saari, 2020)

The master node software in the use case in Rantanen and Saari (2020) was im-
plemented in a Raspberry Pi equipped with an additional LoRa shield device18. The
program code was based on the GitHub project19 described in Semtech S.A (2021)
with several modifications. A pseudo code program 4.5 clarified the procedure of
the master node functions. First, the message is received from a sensor node and
checked. Then, if the message is approved it is divided into parts (timestamp, device
ID, sensor value) and stored on the database.

1

2 loop{
3 configurate LoRa device IDs
4 Listen the LoRa communication
5 If messages LoRa device ID is known
6 saveMessage(message)
7 }
8 saveMessage(message){
9 if message not ok
10 return
11 data = parseToSQLTable(message)
12 send data to SQL
13 }

Program 4.5 Data processing and storing SQL code. (Rantanen and Saari, 2020)

18WiMOD Lite Gateway Data Sheet, https://wireless-solutions.de/downloadfile/lite-gateway-
documents/

19https://github.com/Lora-net/packet_forwarder

56

Programs 4.4 and 4.5 describe the functioning of the data gathering system. This
prototype system (Rantanen and Saari, 2020) showed the inconvenience of using
ready-made code. The "Lora-net/packet_forwarder" GitHub project offers code ex-
amples, but the code implementation in one’s own implementation is not always
straightforward, due to missing code libraries or dependencies. Furthermore, the
project’s last commit (=update) was done in 2017 and there were only two main-
tainers for the project. However, the general conclusion remains that it is easier to
modify existing code than to create entirely new code.

Type 3 uses smartphone related prototype systems because they are suitable for
WSN sensor nodes. Smartphones come equipped with essential hardware compo-
nents such as power source, communication capabilities, and sensor devices. Ad-
ditionally, their operating system is well-suited for extensive utilization of the hard-
ware. Our first attempt of using a smartphone as a sensor was presented in Sillberg et
al. (2009). The research question of the studywas "How to utilizemobile technology
to supply disaster information to both mobile terminals and desktop computers?"
(Sillberg et al., 2009).

Android smartphones were used in the two documented data gathering proto-
types and their features are discussed from the perspective of the SW/HW frame-
work. (Publication VI)

• The study by Sillberg et al. (2018) presented the initial prototype implementa-
tion for data collection, which relied on smartphone sensors, including GPS
and an accelerometer, to identify changes in road surface conditions. An An-
droid smartphone was the preferred choice for data acquisition as the study
was conducted by a group of individuals who were driving on roads located
in western Finland, and the majority of them possessed smartphones that met
the requirements for prototyping purposes. The use of smartphones also fo-
cused on crowdsourced data collection. The developed software, ShockApp,
was a combination of a user interface application and background service. The
interface shows the state of the application and the background service tracks
the location and gathers data from the sensors embedded in a smartphone.
However, some issues arose concerning manufacturer-dependent features. Re-
garding the SW/HW framework, the prototype exhibited the capability of
employing a smartphone as a sensor node for WSN. (Sillberg et al. (2018),
Publication III)

57

• The second data gathering prototype was a solution for concept testing. The
prototype system (software in a smartphone) consists of tracking a bus travel-
ing on a route by collecting images, location data, and timestamps. The pro-
totype is fully autonomous. The stops on the bus route were assigned to the
prototype as GPS coordinate targets. The program code reads the GPS coor-
dinates continuously and compares them to the assigned targets. When the
coordinates match, a picture is taken. The working prototype solution for
this problem is presented in Publication IV. For the SW/HW framework, this
prototype again showed that a smartphone can be used as aWSN sensor node.
(Publication IV)

The software differs significantly from that of Types 1 and 2. In Type 3, the An-
droid smartphone environment is a sophisticated OS for mobile phones and it has
several services and libraries available for software developers to use. On the other
hand, the Android OS is limited due to security issues and the software has to be ap-
proved in order to use certain services with permissions. For example, the workflow
of permission requests is clarified in programs 4.6 and 4.7. First, the necessary per-
mission is declared - Camera in Program 4.6. After the permission configuration in
4.7, the program asks the user for permission to use the camera with a method (line
2) and collects the answer of the user with a method. When permission is approved,
the software listens to the changes of service and, when a change of picture happens,
the software should respond to the change if needed. After permission approval, a
background function takePicture() is called whenever needed.

1 <uses -permission android:name="android.permission.CAMERA"/>

Program 4.6 A Permission declaration in manifest.xml configuration file

1 private boolean checkCameraHardware(Context context) {...}
2 private void requestCameraPermission () {
3 if (shouldShowRequestPermissionRationale(Manifest.permission.

CAMERA)){
4 ActivityCompat.requestPermissions(
5 this , new String []{ Manifest.permission.CAMERA},
6 REQUEST_CAMERA_PERMISSION);
7 } else {
8 requestPermissions(new String []{ Manifest.permission.CAMERA

},
9 REQUEST_CAMERA_PERMISSION);

58

10 }
11 }
12 @Override
13 public void onRequestPermissionsResult(int requestCode ,
14 @NonNull String [] permissions ,
15 @NonNull int[] grantResults) {
16 if (requestCode == REQUEST_CAMERA_PERMISSION) {
17 if (grantResults.length != 1 || grantResults [0]
18 != PackageManager.PERMISSION_GRANTED) {
19 requestPermissions(new String []{ Manifest.permission.

CAMERA},
20 REQUEST_CAMERA_PERMISSION);
21 }
22 } else {
23 super.onRequestPermissionsResult(requestCode ,
24 permissions , grantResults);
25 }
26 }
27

28 protected void takePicture () {
29 CameraManager manager = (CameraManager)
30 getSystemService(Context.CAMERA_SERVICE);
31 ...
32 ImageReader.OnImageAvailableListener readerListener
33 = new ImageReader.OnImageAvailableListener () {
34 @Override
35 public void onImageAvailable(ImageReader reader) {
36 ...
37 }
38 }
39 }

Program 4.7 Java file for Android environment and permission request.

Program codes 4.6 and 4.7 give a certain example of coding in an Android OS en-
vironment. The environment contains dozens of sensors20 (depending on the device)
and it has all the necessary features for the working sensor device (communication,
battery, and programmable environment). Therefore, if values can bemeasuredwith
a smartphone, it should be used.

20https://developer.android.com/reference/android/hardware/Sensor

59

4.4 Discussion and summary

This chapter outlines the impact and significance of the framework, and aimed to
resolve the research question: RQ2: How can IoT data gathering be generalized
into a framework of required software and hardware components? To answer the
question, several data gathering prototypes were made.

The research and the prototype system development projects presented above
show that it is possible to categorize prototype systems into three different types of
construction depending on the use case. Type 1 constructions are suitable for large
amounts of data from a few sensor type systems, for example camera applications.
In addition, Type 1 prototype systems are freely modifiable unlike Type 3 systems.
TheType 2 construction collects simple data from several pointswith separate sensor
nodes, for example living conditions from a residential building. In Type 3 construc-
tions, a smartphone is used as a data gathering sensor device, and this is a suitable
construction if the smartphone’s sensors are appropriate for the selected use case.

In the realm of developing IoT data gathering systems, studies have highlighted
several aspects regarding the construction of a SW/HW framework. The utiliza-
tion of off-the-shelf devices offers significant advantages, particularly in terms of
lightweight development and cost efficiency. These devices, including readily avail-
able hardware like Android smartphones and Raspberry Pi Single Board Computers
(SBCs), provide a versatile and cost-effective solution for rapid prototyping and de-
velopment. (Publication V)

The operating systems of the selected devices support the usage of sensors, fur-
ther enhancing their applicability in IoT environments. Off-the-shelf devices enable
a quick start to development, eliminating the need for extensive custom hardware
design, thereby reducing the initial time and investment required. This approach is
especially advantageous in the early stages of a project, where the focus is on validat-
ing ideas and concepts through prototyping. (Publication IV

The idea of the framework is not new and there have been a few closely re-
lated studies (Kreiner et al., 2001), (Srivastava and Brodersen, 1991), (Mäntyniemi,
Pikkarainen and Taulavuori, 2004). Nevertheless, the main idea was to give a new
perspective on developing a framework for data gathering using off-the-shelf com-
ponents, both software and hardware. The related research provided the building
blocks, e.g., Xu, He and Li (2014) and Vakaloudis and O’Leary (2019) introduced

60

IoT layers: sensing, networking, service, and interface, which fit our framework
architecture. In addition, Chapter 3 and the design factors (Akyildiz, Sankarasubra-
maniam and Cayirci, 2002) provided a basis for developing the SW/HW framework.

The SW/HW framework development raises several new research topics. As the
first topic, all the prototypes discussed in this context feature sensor software, which
is responsible for reading the sensor’s output. For instance, in the case of a temper-
ature sensor, the software converts the byte value into an integer using a suitable
formula, and either sends or saves the data at an appropriate location. Sensor soft-
ware is mentioned several times in this thesis, but its algorithm has not been dis-
cussed in detail. This low-level algorithm is programmed using C/C++, Python,
Java, or a similar programming language. It should be noted that the initial data
processing could be performed at this level, e.g., averaging the accelerometer sensor
values within one second. How should low-level software be programmed in order
to improve performance without data loss? (Publication VI)

For the second topic, a large amount of sensor data were collected by the pro-
totypes. Data processing and data mining are important aspects, which this study
leaves for future research. Data visualization has been touched on briefly in the stud-
ies by Sillberg et al. (2018) and Saari et al. (2020a). In addition, sensor data will be-
come more usable if merged with other publicly available data such as weather data
or map data (Sillberg et al., 2018), (Soini et al., 2019).

The third topic would be performance issues, which have not been extensively
addressed in this research. In the Type 2 data gathering construction, the amount
of sensor nodes is limited, but no exact limit can be set because it depends on the
range, communication channel, transferred data, and so on. Performance problems
may also be affected by data processing such as in the case of photos or especially
motion detection. This raised the point of what should be processed in SBC devices
and what should be processed in the cloud service? (Publication VI)

The quality criteria for components is not defined in the SW/HW framework.
This raises the question of how to select good components and devices for proto-
types. This question is left to the framework user.

The vulnerability issues of the data are worth considering. What happens if data
are not available and second, if the data are critical? What would the consequences be
if the data weremanipulated? The SW/HW framework ignores thematter, but these
are significant issues. Furthermore, security issues for IoT devices are important to

61

note. The study by Babar et al. (2011) discusses security vulnerabilities and attacks
on IoT systems. (Publication VI)

The SW/HW framework was presented in this chapter as the second artifact of
the research. It was proved in this chapter that the architecture models presented
previously in Chapter 3 can be extended to the SW/HW framework, which more
precisely determines the guidelines for constructing an IoT data gathering prototype
system. With the SW/HWframework guidelines, it is possible to rapidly construct a
data gathering prototype system for different purposes. Furthermore, this SW/HW
framework together with Chapter 3 "Architecture model for sensor node" provides
a base for developing a model for the prototyping process, which is presented in the
next chapter.

62

5 MODELING THE PROTOTYPE

DEVELOPMENT PROCESS

The purpose of this chapter is to discuss the development of the prototype develop-
ment process model, the Descriptive Model for the Prototyping Process (DMPP),
described in Publications VI-VIII.

During the research phase of the thesis, several data gathering prototypes were
developed using the same development process. The focus of this chapter is the de-
scription and assessment of the prototype development process itself. This chapter
answers the research question presented in the introduction: RQ3: What kind of
process model can be developed from prototype development practices that have
been applied in research projects between university and enterprises?

The subject is approached by introducing a modeling procedure with example
prototype pilot cases. An eight-step process modeling approach was utilized to rec-
ognize instances of activity, artifact, resource, and role. With these instances, the
artifact DMPP was developed.

The main result of this modeling – the developed prototype development process
model – can be used as a guideline when building prototype systems with a client.
An evaluation of the DMPP is presented in Publication VIII and Section 5.3.

5.1 Developing the process model

During the research it was noticed that the same procedure was followed when con-
ducting the process. This observation led to a further development idea: How to
model the development process? The prototype development projects and their re-
sults demonstrated the ability to execute projects quite effectively. Also, both the
customer and the project group were satisfied with the results, i.e., prototypes, doc-
uments, and data.

63

Role

Artifact

ResourceActivity

produces
consumes
modifies

 uses involves

contains

contains

Figure 5.1 Fundamentals of the prototype development process. Adapted from Publication VII.

In this section, the aim is to present the creation process of the DMPP. The De-
scriptive Process Model (DPM) approach proposed by Becker, Hamann and Verlage
(1997) was followed. This approach consists of eight steps grouped into two phases:

Setup phase

1. Objectives and Scope

2. Define Schema

3. Select Language

4. Select and Tailor Tools

Execution phase

5. Elicitation

6. Create Model

7. Check Model

8. Check Process

The DPM approach was applied in the following way: To collect data for the
models, the developers involved in the processes were interviewed. The schematic
diagram shown in Figure 5.1 guided the data collection, the results of which were
shown on stickers on the wall during the work (Figure 5.2). In the resulting model

64

Figure 5.2 The modeling of the bus case development process with whiteboard and notes. The bus case
prototype system is introduced in Publication IV.

(Figures 5.3 and 5.4), the activities are represented as rectangles with rounded cor-
ners. The roles are represented by stick figures and resources are represented by dif-
ferent icons. Parallelograms, cylinders, and document symbols represent artifacts.
Continuous arrows represent the associations between activities and artifacts, while
the links between activities and roles and resources are dashed. Graphical represen-
tations of the models were produced using free online diagram software: draw.io1.
(DPM Steps 2-4). (Publication VII)

The objectives and scope of the modeling were presented in the introduction of
this chapter (DPM Step 1). The following section provides an example of data elicita-
tion (DPM Step 5) and the modeling results (DPM Step 6). After that, the possibili-
ties for improving themodeled processes are discussed (DPMSteps 7-8). (Publication
VII)

The DPM approach handles process elicitation in Step 5 and creates the process
model in Step 6. This section highlights the process knowledge by introducing one
of the prototype development processes – the bus case – as an example. The bus
case prototype system is described in Publication IV. The development process prac-
tices can be highlighted using a whiteboard and Post-It notes (Figure 5.2) (Raninen
et al., 2013)]. Publication VII presents three other prototype development processes,
which were used as a knowledge base when developing the DMPP.

The bus case was established to address customer complaints received by a bus

1https://app.diagrams.net/

65

Design on
Whiteboard

Construct
Software

Code
incl. Docs

Development
 Group

Test
System

Collected
Data

Discuss
Design

Requirement
Notes

Data Format
Description

API
Definition

Figure 5.3 Bus case development process. The project group developed a working prototype introduced
in Publication IV. Adapted from Publication VII.

company. Customers had complained that buses were not stopping to pick them
up or not coming at all. To collect photos with timestamps at specified bus stops,
a prototype was developed and implemented on mobile phones. The main idea of
the prototype was to collect photos of the bus stops as the bus approached. The
university’s project group developed a working prototype, which was then tested in
the buses. (Publication IV)

The bus case prototype system development process is illustrated in Figure 5.3.
The development group in this process consisted of the university’s research group.
The development process began with a design discussion, which was the first activ-
ity (rounded corner rectangle) that produced the first artifact (parallelogram): the
whiteboard sketch. The artifacts or results were subsequently utilized in the soft-
ware construction phase activity. (Publication VII)

The activity steps "Construct Software" and "Test System" were later combined
into the "Develop Software" activity (Figure 5.4). The resources used during the
development process, including the programming language, test device with GPS,
camera, and network, were involved in the activity step. The activity step "Test
System" included the testing environments: the laboratory and the bus itself. The
artifact step "Code including Docs" consisted of the prototype device and software
code with documentation. It also included the API definition and Data Format De-
scription. After that the testing activity started, which produced the collected data
artifact. The coding and testing activities could be iterated several times. (Publica-
tion VII)

66

University
Representatives

1. Discuss
Requirements

Company
Representatives

3. Develop
Software

2. Requirement
Notes

6. Presentation
Slides4. Developed

Artifacts

5. Prepare &
Conduct

Presentation

Iterations

Figure 5.4 Process model for prototype development. The rounded corner rectangles represent activi-
ties and the parallelograms represent artifacts. Adapted from Publication VII.

The presented bus case development process produced a working prototype. In
this case, the prototype was then presented to the customer, i.e, the bus company.
(Publication VII)

5.2 The DMPP

The Descriptive Model for the Prototyping Process (DMPP) is a result of DPM Step
6. The process model describes the prototype development practices that were ap-
plied in research projects between university and enterprises. Figure 5.4 presents the
developed DMPP and gives an overview of the steps included in the process. The
process model developed seeks to present the methods and practices used in proto-
type development projects in general terms.

The DMPP is not limited to a specific type of artifact, so it can be extended to
include hardware. Therefore, in this thesis, the term "process" generally refers to
all types of artifacts, whether software or hardware, produced in the prototype de-
velopment process. Although the DMPP primarily models the prototyping process
within a research context, it is not restricted to this context. (Publication VI)

The fundamental concepts related to processes are role, activity, resource, and
artifact. For example, in a software development activity, a developer (role) uses a
programming tool (resource) to create software (artifact), which is later employed in
the prototype system. (Publication VII)

The DMPP is based on the six main steps (Figure 5.4) presented below. The use

67

of previously presented architectural models and the SW/HW framework is also
described in steps (Publication VII):

1. The Discuss Requirements step is initiated with the collaborative require-
ments definition discussion between the developer group and the client. Dur-
ing this discussion, the client specifies the type of data they require, while the
developer group establishes the hardware and system architecture, as well as
how the software will collect the data. The choice of hardware mainly influ-
ences the software environment and tools that will be utilized.

2. The first artifacts,Requirement Notes, are the outcome of the discussion: the
first architecture model of the component interconnections, which includes
the prototype system requirements within the discussion notes. The thesis
focuses on the idea of selecting an architecture model between single node or
multi node, but naturally more architecture models are possible. (Publication
VI)

3. TheDevelop Software step involves the research group, including the project
manager, in the development of the software/hardware prototype. The client’s
representatives are involved in the development process in the role of instruc-
tor. In this step, the selected architecture model and the SW/HW framework
are used as the guidelines for selecting the components for the developed pro-
totype. (Publication VI)

4. The Development Artifacts step introduces the working prototype artifact.
It contains the developed software and hardware components. The intercon-
nections of the components are tested, and the prototype system is function-
ally tested. The gathered data are also inspected and, if possible, compared
with the expected results. Iterations are possible especially in situations where
the prototype functionality has been tested in a laboratory environment be-
fore the field tests. (Publication VI)

5. The Prepare & Conduct Presentation step includes preparing the outcome
of the development process. Possible results include a prototype system and
documentation, collected data, and project documentation. Also, the SW/HW
framework can be complemented if necessary. (Publication VI)

6. The Presentation step is to publish the results, for example, the prototype
system, collected data, and analysis of the project. The audience for the publi-

68

cation is at least the client, and in most cases the results are freely available for
further development. (Publication VI)

Prototyping is a powerfulway to figure out the possibility of implementation. Other
benefits of prototyping include cost estimation and workload estimation. The pro-
cess model shown in Figure 5.4 is a simplified presentation of the prototype devel-
opment process and therefore it does not mention common procedures such as iter-
ations, testing, and customer testing (Publication VI).

When analyzing the process model and the selection processes (DPM Steps 7 and
8), the lack of iteration notation arose. Iteration is used in most prototype devel-
opment projects when configuring, constructing, or testing a prototype. The use
of iterations is an efficient way to test and develop an idea. The first iteration starts
with a basic prototype, which consists of simple and basic components. For instance,
the hardware could be chosen solely for the purpose of testing the idea. If the ini-
tial prototype works, subsequent iterations improve upon it by replacing the basic
components withmore suitable ones, including hardware and software components.
Iterations can help identify flaws and limitations, and thus refine the prototype until
it meets the requirements. (Publication VI)

5.3 Evaluation of the DMPP

Publication VIII focuses on the KIEMI research project and its use of the DMPP
to facilitate collaboration between university and enterprises. The project included
23 pilot case projects where prototypes were developed in collaboration with en-
terprises to address real-world issues. The term "pilot case project" is used here to
distinguish individual prototype projects from the KIEMI project. This section re-
views Publication VIII which evaluates the suitability of the DMPP for usage in a
research project.

Clarifying the benefits of the different stages of the DMPP and their applicability
to collaboration pilot case projects, the following points are discussed:

Discuss Requirements: Most prototype development pilot case projects involve
an external partner in discussing objectives, with varying levels of collaboration. In
low-level collaboration, the partner provides the premises formeasurementswithout
making any special requests. The output is typically a report that may or may not
lead to further actions.

69

Inmid-level or high-level collaboration, the partner takes amore active role in dis-
cussions and directs the starting point towards a specific issue they want to research.
High-level collaboration often involves expanding the original task assignment and
bringing in additional partners or stakeholders.

The DMPP is well-suited for this type of activity because the non-commercial
leader, i.e., the university research team, is focused on research goals rather than fi-
nancial goals. Additionally, any additional research or technical goals set by partners
are shown to be applicable to the model’s operation within the iteration rounds. In
these cases, the university research team led the pilot case project and collaborated
with necessary partners. (Publication VIII)

The main purpose of Requirement Notes is to guide the pilot case project in
the selected direction, making them an important part of the documentation. The
DMPPdemonstrates the advantage of "light documentation" for getting started quickly,
using previously defined architecture models and device configurations to speed up
operation. This approach also involves reusing technological choices and definitions
from earlier pilot case projects, based on the idea that "SomeThings Are Better Done
than Described" by Hunt and Thomas, 2000.

Light documentation and process modeling are particularly suitable for univer-
sity and other research institution environments focused on prototyping, rather than
commercial product development. However, this approach may require more work
if technology transfer to a partner begins with a prototype. Internal requirements
are also mentioned in several cases, such as when the research group wants to change
or update a specific feature. (Publication VIII)

TheDevelop Software phase uses the artifacts of previous requirements as a loose
guideline. For example, user interface software by Nurminen et al., 2021 and back-
end software by Nurminen, Saari and Rantanen, 2021 developed in early stage pi-
lot case projects were used in several subsequent pilot cases. The DMPP allows for
changes to requirements if they are deemed beneficial. These changes are not typi-
cally discussed with partners unless their input is required. While the DMPP does
not specify requirements for software or hardware components, it was observed that
using off-the-shelf components accelerated prototype development. Additionally,
this approach offers the advantage of flexibility in adapting prototype solutions to
conform to the requirements of selected components. (Publication VIII)

The main goal of the DMPP phase is to develop fully working prototype sys-

70

tems, which are considered as Development Artifacts. In the KIEMI project, this
phase typically involved installing the prototype at a target location provided by the
partner to collect data. The majority of the prototypes were working SW/HW pro-
totypes, although some were only SW prototypes used for analyzing and visualizing
the partner’s collected data. TheDMPP aims to produce a functional prototype, and
as such, only the primary functions of the prototype are utilized, with documenta-
tion or testing done only partially. While this approach speeds up development, it
could potentially slow down technological transfer later on. (Publication VIII)

The phase of Prepare & Conduct Presentation is intended for reporting the
results of the pilot case project. In longer pilot case projects, it was observed that
the reuse of skeleton reports accelerated this phase of the pilot case project. The
automation of this process significantly sped up the reporting phase. This highlights
the fact that when using the DMPP model, reporting will typically consist of the
same components. (Publication VIII)

The final phase of the DMPP involves Presenting and publishing the pilot case
project results. In successful pilot case projects, partners often express interest in
further developing the prototype, and technology transfer continues from this point.
One significant advantage of the DMPP model is that it ultimately aims to publish
scientific and other public material from the pilot case projects. (Publication VIII)

Overall analysis: The KIEMI project demonstrated the usability of the DMPP
and its suitability for pilot case projects. The project utilized two approaches: soft-
ware development style and collaboration style. The software development style
emerged during the prototype system development with the goal of implementing
new systems to collect, process, and present environmental data. The collaboration
style was a result of cooperation with various partners during the prototype devel-
opment process. The DMPP is able to connect both styles. (Publication VIII)

The project successfully demonstrated collaboration between a university and en-
terprise in the context of prototype development. In most cases, the DMPP process
was in the background and invisible to the partners, but it provided support for col-
laboration throughout all six phases. The DMPP can support technology transfer,
especially in phases 1, 3, 4, and 5, where cooperation with the partner is necessary.
(Publication VIII)

To improve collaboration, it is beneficial to add a step where the company pro-
vides a suitability assessment of the prototype’s general level and associated return

71

on investment (ROI). With the feedback received, the research team can accumulate
expertise in designing the next prototype and produce a result that is more interest-
ing to the company. The ability to rapidly produce prototypes valued by companies
is a significant strength and advantage for a university that organizes projects. (Pub-
lication VIII)

5.4 Discussion and summary

This chapter’s related studies in Chapter 2 started with a discussion about software
development processes: Waterfall, Agile, and rapid prototyping. Of these, rapid
prototyping was the closest to the process model. However, rapid prototyping did
not include everything we needed as a definition, e.g., customer contact or presenta-
tion of final outputs, so we developed our own. The process of model development
is strongly related to prescriptive and descriptive process models. A prescriptive
model describes how the process should be performed, whereas a descriptive model
describes how a process is performed in a particular environment. The outcome of
this chapter is the process model that was developed in a descriptive way. Previous
prototype development projects were used to develop the model.

Another related model – the DPM process model – was used as a guideline for
developing software. This chapter showed the ability of the selected models and
methods to build up the DMPP. In addition, using the three major parts of devel-
oping embedded systems – model-design-analysis (Lee and Seshia, 2017) was a good
approach: first, select the data to collect, next build a prototype to collect the data,
and finally, analysis, to determine whether the outcome was successful.

This chapter introduced theDMPP – amodel for the prototype development pro-
cess by modeling a procedure with example prototype cases. The research method
used and presented here was an eight-step process modeling system. The basic con-
cepts relating to the prototype development process included four factors: activity,
artifact, resource, and role. The outcomes of the modeling procedure were conveyed
through textual and graphical representations, and the process knowledge obtained
during the model creation was described. Furthermore, certain shortcomings in the
existing practices were discovered. Based on the findings, both the model and the
prototype development process and practices could be further improved in the fu-
ture. (Publication VII)

72

The DMPP was developed to guide the prototype development process. The
process model in Fig. 5.4 is a representation of the prototype development process.
It gives the abstract instructions for the operation with defined steps to implement
data gathering IoT prototypes from start to finish. If all steps are performed, the level
of the outcome is predictable. Themodel is sufficient for developing prototypes, but
it also makes it possible to add more activities if needed. For example, procedures
such as iterations, testing, and customer testing could be included in the process.

The model presents the basic concepts: customer and developer team Roles; the
Activity phases of the project; Resources, e.g., the software and hardware to use;
and Artifacts such as notes, software, hardware, prototype, published reports, and
presentations. More specifically, it provides the necessary steps for handling require-
ments and specifications, including the implementation phase and the publishing of
the developed prototype. When the model steps are followed, this produces the ar-
tifacts: notes, prototypes, and collected data, and finally the published results of the
project. If the developer team, or at least the project manager, knows these concepts
the project can be expected to be successful.

The modeling work environment presented in this chapter was focused on a uni-
versity environment and similar research organizations. This raised the question,
which could even be the research question of the thesis: How to generalize the use
of the process model and the development process? Furthermore, the prototypes
were developed with quite a small group – even when customers were included the
number of participants was below twenty. What if the number of participants were
fifty for example, would themodel still be applicable? These questionsmust be taken
into account in the selection of future research topics.

When considering the process model research and validating the results presented
in this chapter, the question of timeline arises, and more specifically the question: Is
the process model the desired output of the thesis or is it a side result of the overall
thesis research project? The article "Threats to validity of Research Design" points
out the "reactive or interaction effect of testing" thread, where pretest arrangements
jeopardize the test input and results (Shadish, W., Cook, T., Campbell, T. (2002) as
cited in Chong-ho (2021)). To prevent this effect, previously executed case studies
were selected when developing the DMPP.

In summary, the DMPP provides a concrete and systematic example of how col-
laboration between university and enterprise can be executed in practice. Thus,

73

based on the observed results, the model can be considered successful and fit for
the needs of the development cases in question.

74

6 CONCLUSION

This thesis began with an introduction of the DS method and the six phases it con-
tained (Figure 1.4) that were used during the research. At first, the problem was
identified and the research questions set, and the scope was defined. The design and
development phase was described in Publications I - VII. Chapters 3-5 presented the
artifacts: the architecture model, SW/HW Framework, and DMPP. The evaluation
of the work was done when the publications went through the review processes.
This is part of the last phase of the research process: communication.

This final chapter summarizes the thesis research work and presents the final con-
clusions of the outcome. This chapter revisits the research theorem, discusses its se-
lection, and how it was approached. The research theorem was developed further
into three research questions. These questions and how the answers were found are
also revisited. Furthermore, the limitations of the presented models, framework,
and process are discussed. Finally, future directions for research are introduced.

6.1 Revisiting the research questions

The research theorem and the main question in the thesis was: How to construct a
system architecture model of wireless sensor network nodes and process models for
the prototyping process to efficiently develop data gathering for IoT applications?
The answer to the question is divided in this thesis into three chapters: 3, 4, and 5.
The thesis chapters are constructed by dividing the main question into three sub-
questions.

Chapter 3 focused on answering the research question: RQ1: What kind of sen-
sor model architecture can be developed for data gathering in a wireless sensor net-
work? The research started by exploring the subject and by constructing data gath-
ering prototypes in the period from 2014 to 2018. The results were first published
in Publications I – III.

75

The architecture model contains software and hardware components, and their
interconnections. Two different architecture models: multi node and single node
have been presented. The architecture models present the basic approach when con-
structing the first implementations of data gathering prototype systems using off-
the-shelf components, hardware or software. The use of these fundamentally simple
models enabled the creation of highly practical and interoperable sensor applica-
tions to gather data on environment conditions. Furthermore, the models provided
a strong background to start the development of the SW/HW framework.

The focus of Chapter 4 was on answering the question RQ2: How can IoT data
gathering be generalized into a framework of required software and hardware com-
ponents? The research started by collecting and summarizing the features of the data
gathering prototypes. Three publications, IV –VI, built up a general framework and,
in addition, Chapter 4 summarized the different aspects. Chapter 4 introduced the
software / hardware framework for IoT data gathering. The SW/HW framework
generalizes data gathering prototype development into a group of required compo-
nents and, more precisely, the framework defines guidelines for constructing proto-
type systems to collect data for different purposes. The framework presents three
concrete examples (Types 1-3)with software and hardware components to help devel-
opers to get started. The lessons learned from the SW/HW framework are suitable
when starting to develop a data gathering prototype. With these instructions, the de-
velopment process can be guided toward selecting the components for constructing
a prototype system.

Chapter 5 answered the last question RQ3: What kind of process model can be
developed from prototype development practices that have been applied in research
projects between university and enterprises? The method for this research was an
eight-step process modeling approach, which was selected from the software pro-
cess modeling area. The selected research method gives reasonable solutions to the
research problem.

The last research question RQ3 was examined in publications VI-VIII. Publi-
cation VII introduced the prototype development process in a university environ-
ment. The prototypes were made in collaboration with companies, which offered
real-world use cases. The prototype development process was introduced using a
modeling procedure with four example prototype cases. Publication VI combined
the development process from Publication VII with the SW/HW framework and

76

showed that the framework and process model could be used together. Publica-
tion VIII showed that the model is practically usable in collaborative environments,
particularly in enterprise-university research projects and can support such develop-
ments in similar environments.

At the beginning of the thesis, Figure 1.3 illustrated how the research questions
and contributions were connected to each other. The first subject to discuss when
a project group follows the DMPP is the requirements. At this point, decisions on
the collected data and further on the architecture model of the data gathering device
are needed. The architecture model guides the selection of SW/HW framework data
gathering device type. The project group can continue to develop the system after
these fundamental decisions have been taken. The rest of the DMPP should proceed
flawlessly with the selected technologies. If not, the DMPP gives the possibility to
return and perform a second iteration round, as was done in Publication IV, where
the original technology (smartphone) was switched to another (Raspberry Pi) due
to a reliability problem.

6.2 Contributions and summary

The thesis scope and contributions were described in Chapter 1.3. The methods and
approaches proposed in this thesis were implemented and experimentally verified
by prototyping different kinds of data gathering systems. The results of the research
have been documented and presented to the scientific community. The contribu-
tions of this thesis are as follows:

• Single node and multi node architecture for guiding the design of data gather-
ing IoT sensor devices.

• The SW/HW framework for guidance when selecting suitable components
for building data gathering IoT sensor devices.

• The DMPP, which allows the guidance and control of IoT prototype develop-
ment projects in university - enterprise collaboration.

Chapter 3 focused on the architecture model for the data gathering sensor node
and presented a concise overview of the subject. The main contributions of the
chapter are the multi node and single node architecture models. The multi node

77

architecture model is designed to collect simple environmental data with an unlim-
ited number of sensor nodes. These sensor nodes are controlled by the master node,
which controls and manages the sensor nodes. The single node architecture model
was developed to represent more complex data acquisition systems.

Themain components of bothmodels were described: sensor node, master node,
communication, and the Internet as a communication channel for user applications.
Furthermore, the purpose of themodels and possible applications as a data collection
tool were presented. The possibilities for the architecture models are much more
than the two presented instances. Nevertheless, with these two architecture models
the thesis subject remained sufficiently narrow; additionally, these two provide a
strong background to Chapter 4.

In Chapter 4 the framework for IoT prototype development was presented and
defined – several prototypeswere built and the framework is the generalization of the
software and hardware components used. The main contribution of the framework
is the generalization of the necessary components. The software components for
collection, preprocessing, and storage were presented. The hardware components
for different purposes were also presented. For a developer, the framework gives a
starting point for building a data gathering prototype system.

Chapter 5 introduced the DMPP to guide the prototyping process. The main
contribution is a concrete process model of prototype development for university –
enterprise collaboration in practice. The development process was examined and an-
alyzed by introducing the roles, activities, resources, and artifacts involved. Further,
it described how the prototypes were developed independently or with an external
partner.

6.3 Limitations and future work

Chapter 3 focused on the architecture model and Chapter 4 focused on the SW/HW
framework. The hardware to test both of these was based on a selected set of off-the-
shelf devices, with limited variation. Furthermore, no quality requirements (e.g.,
performance) were set for the hardware components. Therefore, in future the varia-
tion should be expanded, and the quality requirements would have to be defined to
find more suitable devices.

Chapter 5 introduced the DMPP for guiding prototype development in collabo-

78

ration between university and enterprises. Also, an evaluation of the process in an
academic research project was presented. However, it did not describe how to gener-
alize the process to the real world – outside a university or other research institution
environment.

Thesis was closely linked to prototypes and projects, though its primary aim was
not to delve into the commercialization of these prototypes. A key goal in these
projects was to disseminate developed technology to the general public and for cor-
porate use. We frequently discussed within project teams how small and medium-
sized enterprises, and startups should manage the prototype for its continued devel-
opment and support. Despite these discussions, we did not find an easy, clear-cut
solution. Nevertheless, several prototypes were eventually deployed in production.
An interesting aspect of these production-deployed prototypes was the significant
involvement of the client or company in identifying issues and participating actively
in the prototype’s development(e.g., (Rantanen et al., 2021)).

As future work, ways should be found to extend and utilize the architecture node
model, the SW/HW framework, and the development model of the prototyping
process in new areas of the IoT environment.

The architecture model described in Chapter 3, and the SW/HW framework in
Chapter 4, are based on the idea of building sensor nodes, but what if reasonable
(and open-source) off-the-shelf devices were used? This kind of approach has already
been tested in an ongoing research project where RuuviTag sensor nodes were used
for data collecting and the research focused on the construction of an architectural
system with data storage, visualization, and analysis (Nurminen et al., 2021), (Nur-
minen, Saari and Rantanen, 2021). One of the research conclusions from those stud-
ies was that there are several ready-to-use components available for an IoT system
developer. In addition, these two models were designed for general purposes, and
specific industrial cases were avoided. In the future, one possible variation of the
models may be for example an evaluation of industrial data collection.

The main focus of the thesis was the testing of the ideas of models, architectures,
and processes. In the future, there will not be any limitations to support the theory
of the thesis and the use cases can be expanded to new fields. One such example
is the study by Rantanen et al. (2021) where the basic configuration described in
Chapter 4 represented a Type 1 construction - sensors connected directly to an SBC.
The specialties in this case were the hardware and software: the hardware was an

79

NB-IoT capable SBC and the software was based on libraries from the hardware user
community. In these cases, the goal was low power and long-term usage. The study
shows that the basics of this thesis are suitable for a variety of use cases.

All of the data gathering prototype development processes have been based on
light documentation. This could have been due to the laziness of the developer group
but, as stated inHunt and Thomas (2000) (page 218), "Some Things Are Better Done
thanDescribed": it was a workingmethod used in data gathering prototype develop-
ment. The light documentation and the process modeling environment focused on
university and other research institution environments where the focus was on pro-
totyping rather than the development of commercial products. One further study
topic could be: How to generalize the use of the process model and the development
process so it could be used in the business world?

80

REFERENCES

Akyildiz, I., Sankarasubramaniam, Y. and Cayirci, E. (2002). A survey on sensor
networks. IEEE Communications Magazine 40.8, 102–114. DOI: 10.1109/MCOM.
2002.1024422.

Android (operating system) (2021). Accessed February 26, 2021. URL: https://en.
wikipedia.org/wiki/Android_(operating_system).

Arduino (2020). Arduino - Home. Accessed December 21, 2020. URL: https://
www.arduino.cc/.

Ashton, K. (2009). That ’Internet of Things’ Thing. RFID Journal. Retrieved 28th
of February, 2023. URL: https://www.itrco.jp/libraries/RFIDjournal-
That%20Internet%20of%20Things%20Thing.pdf.

Atlam,H. F. andWills,G. B. (2020). IoT Security, Privacy, Safety andEthics. Springer
International Publishing, 123–149. DOI: 10.1007/978-3-030-18732-3_8.
URL: http://link.springer.com/10.1007/978-3-030-18732-3_8.

Atzori, L., Iera, A. andMorabito, G. (2010). The Internet of Things: A survey.Com-
puter Networks 54.15, 2787–2805. DOI: 10.1016/j.comnet.2010.05.010.

Babar, S., Stango, A., Prasad, N., Sen, J. and Prasad, R. (2011). Proposed embedded
security framework for Internet of Things (IoT). 2011 2nd International Confer-
ence on Wireless Communication, Vehicular Technology, Information Theory and
Aerospace & Electronic Systems Technology (Wireless VITAE). IEEE, 1–5. ISBN:
978-1-4577-0786-5. DOI: 10.1109/WIRELESSVITAE.2011.5940923. URL: http:
//ieeexplore.ieee.org/document/5940923/.

Babich, N. (2019). What is Rapid Prototyping? Accessed November 16, 2020. URL:
https://xd.adobe.com/ideas/process/prototyping/rapid-prototyping-

efficient-way-communicate-ideas/.
Bader, A., Kopp, O. and Falkenthal, M. (2017). Survey and comparison of open

source time series databases. Lecture Notes in Informatics (LNI), Proceedings - Series
of the Gesellschaft fur Informatik (GI) 266, 249–268. ISSN: 16175468.

81

https://doi.org/10.1109/MCOM.2002.1024422
https://doi.org/10.1109/MCOM.2002.1024422
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Android_(operating_system)
https://www.arduino.cc/
https://www.arduino.cc/
https://www.itrco.jp/libraries/RFIDjournal-That%20Internet%20of%20Things%20Thing.pdf
https://www.itrco.jp/libraries/RFIDjournal-That%20Internet%20of%20Things%20Thing.pdf
https://doi.org/10.1007/978-3-030-18732-3_8
http://link.springer.com/10.1007/978-3-030-18732-3_8
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1109/WIRELESSVITAE.2011.5940923
http://ieeexplore.ieee.org/document/5940923/
http://ieeexplore.ieee.org/document/5940923/
https://xd.adobe.com/ideas/process/prototyping/rapid-prototyping-efficient-way-communicate-ideas/
https://xd.adobe.com/ideas/process/prototyping/rapid-prototyping-efficient-way-communicate-ideas/

Baharudin, A. M. bin, Saari, M., Sillberg, P., Rantanen, P., Soini, J., Jaakkola, H. and
Yan,W. (2018). Portable Fog Gateways for Resilient Sensors Data Aggregation in
Internet-less Environment. Engineering Journal 22.3, 221–232. ISSN: 01258281.
DOI: 10.4186/ej.2018.22.3.221.

Baharudin, A. M. bin, Saari, M., Sillberg, P., Rantanen, P., Soini, J. and Kuroda, T.
(2016). Low-energy algorithm for self-controlledWireless Sensor Nodes. 2016 In-
ternational Conference on Wireless Networks and Mobile Communications (WIN-
COM). IEEE, 42–46. ISBN: 978-1-5090-3837-4. DOI: 10.1109/WINCOM.2016.
7777188.

Barnett, R. H., O’Cull, L. D. and Cox, S. A. (2003). Embedded C Programming And
the Atmel AVR. Thomson, 495.

Barr, M. (2020). Embedded Systems Glossary. Accessed December 14, 2020. URL:
https://barrgroup.com/Embedded-Systems/Glossary.

Barrenetxea, G., Ingelrest, F., Schaefer, G., Vetterli, M., Couach,O. and Parlange,M.
(2008). SensorScope: Out-of-the-Box Environmental Monitoring. 2008 Interna-
tional Conference on Information Processing in Sensor Networks (ipsn 2008). IEEE,
332–343. ISBN: 978-0-7695-3157-1. DOI: 10.1109/IPSN.2008.28. URL: http:
//ieeexplore.ieee.org/document/4505485/.

Becker-Kornstaedt, U. and Webby, R. (1999). A comprehensive schema Integrating
Software ProcesModeling and SoftwareMeasurement. IESE-ReportNo. 047.99/E.

Becker, U., Hamann, D. and Verlage, M. (1997). Descriptive Modeling of Software
Processes. IESE-Report No. 047.97/E.

Brooks, F. P. (1995).TheMythicalMan-Month (Anniversary Ed.)USA:Addison-Wesley
Longman Publishing Co., Inc. ISBN: 0201835959.

Brown, A. and Short, K. (1997). On components and objects: the foundations of
component-based development. Proceedings Fifth International Symposium on As-
sessment of Software Tools and Technologies. IEEE Comput. Soc. Press, 112–121.
ISBN: 0-8186-7940-9.DOI: 10.1109/AST.1997.599921. URL: http://ieeexplore.
ieee.org/document/599921/.

Buchenrieder, K. (2000). Rapid prototyping of embedded hardware/software sys-
tems.Proceedings. Ninth InternationalWorkshop onRapid SystemPrototyping (Cat.
No.98TB100237). Vol. 5. IEEEComput. Soc, 2–3. ISBN: 0-8186-8479-8. DOI: 10.
1109/IWRSP.1998.676660. URL: http://ieeexplore.ieee.org/document/
676660/.

82

https://doi.org/10.4186/ej.2018.22.3.221
https://doi.org/10.1109/WINCOM.2016.7777188
https://doi.org/10.1109/WINCOM.2016.7777188
https://barrgroup.com/Embedded-Systems/Glossary
https://doi.org/10.1109/IPSN.2008.28
http://ieeexplore.ieee.org/document/4505485/
http://ieeexplore.ieee.org/document/4505485/
https://doi.org/10.1109/AST.1997.599921
http://ieeexplore.ieee.org/document/599921/
http://ieeexplore.ieee.org/document/599921/
https://doi.org/10.1109/IWRSP.1998.676660
https://doi.org/10.1109/IWRSP.1998.676660
http://ieeexplore.ieee.org/document/676660/
http://ieeexplore.ieee.org/document/676660/

Chong-ho, Y. (2021). Threats to validity of Research Design. Accessed February 24,
2021. URL: http://www.creative-wisdom.com/teaching/WBI/threat.
shtml.

Cockburn, A. (2007). Agile software development : the cooperative game. Eng. 2nd ed.
Agile software development series. Place of publication not identified: Addison
Wesley. ISBN: 0-321-63007-6.

Coley, G. (2014). BeagleBone Black System Reference Manual. BeagleBoard.org.
Embley, D. W. and Thalheim, B. (2011). Handbook of Conceptual Modeling: Theory,

Practice, andResearchChallenges. eng. 1.Aufl. Berlin,Heidelberg: Springer-Verlag.
ISBN: 3642158641.

Fielding, R. (2000). Architectural Styles and the Design of Network-based Software Ar-
chitectures. University of California, Irvine. ISBN: 0-599-87118-0.

Fielding, R. T. and Taylor, R. N. (2002). Principled design of the modernWeb archi-
tecture. ACM Transactions on Internet Technology 2.2, 115–150. ISSN: 1533-5399.
DOI: 10.1145/514183.514185. URL: https://dl.acm.org/doi/10.1145/
514183.514185.

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M. and Ayyash, M. (2015).
Internet of Things: A Survey on Enabling Technologies, Protocols, and Applica-
tions. IEEE Communications Surveys Tutorials 17.4, 2347–2376. DOI: 10.1109/
COMST.2015.2444095.

Galkin, P. (2016). Analysis models of collection data in wireless sensor networks.
2016 Third International Scientific-Practical Conference Problems of Infocommuni-
cations Science and Technology (PIC S&T). IEEE, 233–236. ISBN: 978-1-5090-5715-
3. DOI: 10.1109/INFOCOMMST.2016.7905392.

Grönman, J., Rantanen, P., Saari, M., Sillberg, P. and Jaakkola, H. (2018). Lessons
learned from developing prototypes for customer complaint validation. Proceed-
ings of the SQAMIA 2018: 7th Workshop of Software Quality, Analysis, Monitoring,
Improvement, and Applications. Vol. 2217, 27–30. ISBN: 9788670314733.

Grönman, J., Sillberg, P., Rantanen, P. and Saari, M. (2019). People Counting in a
Public Event—Use Case: Free-to-Ride Bus. 2019 42nd International Convention
on Information and Communication Technology, Electronics and Microelectronics
(MIPRO). IEEE.

GSMA Intelligence (2020). IoT connections update: impact of Covid-19 on our forecast.
Accessed December 17, 2020. URL: https://www.gsmaintelligence.com/

83

http://www.creative-wisdom.com/teaching/WBI/threat.shtml
http://www.creative-wisdom.com/teaching/WBI/threat.shtml
https://doi.org/10.1145/514183.514185
https://dl.acm.org/doi/10.1145/514183.514185
https://dl.acm.org/doi/10.1145/514183.514185
https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1109/INFOCOMMST.2016.7905392
https://www.gsmaintelligence.com/product-news/iot-connections-update-impact-of-covid-19-on-our-forecast/
https://www.gsmaintelligence.com/product-news/iot-connections-update-impact-of-covid-19-on-our-forecast/
https://www.gsmaintelligence.com/product-news/iot-connections-update-impact-of-covid-19-on-our-forecast/

product-news/iot-connections-update-impact-of-covid-19-on-our-

forecast/.
Gulati, K., Boddu, R. S. K., Kapila, D., Bangare, S. L., Chandnani, N. and Saravanan,

G. (2022). A review paper on wireless sensor network techniques in Internet of
Things (IoT). Materials Today: Proceedings 51, 161–165. ISSN: 22147853. DOI:
10.1016/j.matpr.2021.05.067. URL: https://linkinghub.elsevier.
com/retrieve/pii/S2214785321036439.

Hamdan, S., Ayyash, M. and Almajali, S. (Nov. 2020). Edge-Computing Architec-
tures for Internet of Things Applications: A Survey. Sensors 20 (22), 6441. ISSN:
1424-8220. DOI: 10.3390/s20226441. URL: https://www.mdpi.com/1424-
8220/20/22/6441.

Harjamäki, J., Saari, M., Nurminen, M., Rantanen, P., Soini, J. and Hästbacka, D.
(2023). Lessons Learned from Collaborative Prototype Development Between
University and Enterprises. Proceedings of the 33th International Conference on In-
formation Modelling and Knowledge Bases. Ed. by T. Welzer Družovec, M. Hölbl,
L. Nemec Zlatolas and S. Kuhar. University of Maribor, 273–300. DOI: https:
//doi.org/10.18690/um.feri.5.2023.13. URL: https://press.um.si/
index.php/ump/catalog/view/785/1118/3128-2.

Healy,M.,Newe, T. and Lewis, E. (2008).Wireless SensorNode hardware: A review.
2008 IEEE Sensors. IEEE, 621–624. ISBN: 978-1-4244-2580-8. DOI: 10.1109/
ICSENS.2008.4716517. URL: http://ieeexplore.ieee.org/document/
4716517/.

Hevner, A. R., March, S. T., Park, J. and Ram, S. (2004). Design Science in Informa-
tion Systems Research. MIS Quarterly 28.1, 75–105. DOI: 10.2307/25148625.

HMD Global (2021). Nokia 7.2. Accessed February 26, 2021. URL: https://www.
nokia.com/phones/en_int/nokia-7-2.

Hunt, A. and Thomas, D. (2000). Addison-Wesley.
IEEE Standard for an Architectural Framework for the Internet of Things (IOT) (2019).

NewYork, USA: The Institute of Electrical and Electronics Engineers, Inc. DOI:
10.1109/IEEESTD.2020.9032420.

Intel Corporation (2014). Intel Galileo Gen 2 Development Board. Accessed Decem-
ber 14, 2020. URL: http://www.intel.com/content/www/us/en/embedded/
products/galileo/galileo-g2-datasheet.html.

84

https://www.gsmaintelligence.com/product-news/iot-connections-update-impact-of-covid-19-on-our-forecast/
https://www.gsmaintelligence.com/product-news/iot-connections-update-impact-of-covid-19-on-our-forecast/
https://www.gsmaintelligence.com/product-news/iot-connections-update-impact-of-covid-19-on-our-forecast/
https://www.gsmaintelligence.com/product-news/iot-connections-update-impact-of-covid-19-on-our-forecast/
https://doi.org/10.1016/j.matpr.2021.05.067
https://linkinghub.elsevier.com/retrieve/pii/S2214785321036439
https://linkinghub.elsevier.com/retrieve/pii/S2214785321036439
https://doi.org/10.3390/s20226441
https://www.mdpi.com/1424-8220/20/22/6441
https://www.mdpi.com/1424-8220/20/22/6441
https://doi.org/https://doi.org/10.18690/um.feri.5.2023.13
https://doi.org/https://doi.org/10.18690/um.feri.5.2023.13
https://press.um.si/index.php/ump/catalog/view/785/1118/3128-2
https://press.um.si/index.php/ump/catalog/view/785/1118/3128-2
https://doi.org/10.1109/ICSENS.2008.4716517
https://doi.org/10.1109/ICSENS.2008.4716517
http://ieeexplore.ieee.org/document/4716517/
http://ieeexplore.ieee.org/document/4716517/
https://doi.org/10.2307/25148625
https://www.nokia.com/phones/en_int/nokia-7-2
https://www.nokia.com/phones/en_int/nokia-7-2
https://doi.org/10.1109/IEEESTD.2020.9032420
http://www.intel.com/content/www/us/en/embedded/products/galileo/galileo-g2-datasheet.html
http://www.intel.com/content/www/us/en/embedded/products/galileo/galileo-g2-datasheet.html

International Telecommunication Union (2012). Overview of the Internet of things
(Recommendation ITU-T Y.2060).

ISO/IEC/IEEE 42010:2011, Systems and software engineering — Architecture descrip-
tion (2011).

Jaakkola, H., Henno, J. and Thalheim, B. (2016). Why Information Systems Mod-
elling Is Difficult. English. CEUR Workshop Proceedings. Ed. by Z. Budimac,
Z. Horvath and T. Kozsik, 29–40.

Jin, X., Chun, S., Jung, J. and Lee, K.-H. (2014). IoT Service Selection Based on
Physical Service Model and Absolute Dominance Relationship. 2014 IEEE 7th
International Conference on Service-Oriented Computing and Applications, 65–72.
DOI: 10.1109/SOCA.2014.24. URL: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=6978172.

Kernighan, B. W. and Ritchie, D. M. (1978). The C Programming Language. 2nd ed.
Prentice-Hall, 1–228. ISBN: 9780131101630.

Kitchenham, B. and Charters, S. (2007). Guidelines for Performing Systematic Liter-
ature Reviews in Software Engineering. Version 2.3. EBSE Technical Report EBSE-
2007-01.

Kreiner, C., Steger, C., Teiniker, E. andWeiss, R. (2001). AHW/SW codesign frame-
work based on distributed DSP virtual machines. Proceedings - Euromicro Sympo-
sium on Digital Systems Design: Architectures, Methods and Tools, DSD 2001, 212–
219. DOI: 10.1109/DSD.2001.952284.

Kruger, C. P., Abu-Mahfouz, A. M. and Hancke, G. P. (2015). Rapid prototyping of
a wireless sensor network gateway for the internet of things using off-the-shelf
components. 2015 IEEE International Conference on Industrial Technology (ICIT),
1926–1931. DOI: 10.1109/ICIT.2015.7125378.

Laukkarinen, T. (2015).AbstractingApplicationDevelopment for ResourceConstrained
Wireless Sensor Networks, 190. ISBN: 9789521535420.

Lee, E.A. and Seshia, S.A. (2017). Introduction to Embedded Systems. ACyber-Physical
Systems Approach. Second Edition. Vol. 195, 537. ISBN: 978-0-557-70857-4.

Liou, F. F. (2019). Rapid Prototyping and Engineering Applications. 2nd ed. Boca Ra-
ton: Taylor & Francis, CRC Press, aa.2009.03329cae.001. ISBN: 9780429029721.
DOI: 10.1201/9780429029721.

85

https://doi.org/10.1109/SOCA.2014.24
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6978172
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6978172
https://doi.org/10.1109/DSD.2001.952284
https://doi.org/10.1109/ICIT.2015.7125378
https://doi.org/10.1201/9780429029721

Mäntyniemi, A., Pikkarainen, M. and Taulavuori, A. (2004). A framework for off-
the-shelf software component development andmaintenance processes.VTTPub-
lications 525, 3–127. ISSN: 12350621.

Marković, D., Vujicic, D., Jovanovic, Z., Pesovic, U., Randik, S. and Jagodic, D.
(2016). Concept of IoT System for Monitoring Conditions of Thermal Confort.
International Scientific Conference “UNITECH 2016”. November. Gabrovo.

Mishra, D. and Mishra, A. (2011). Complex software project development: agile
methods adoption. Journal of Software Maintenance and Evolution: Research and
Practice 23.8, 549–564. ISSN: 1532060X. DOI: 10.1002/smr.528. URL: http:
//doi.wiley.com/10.1002/smr.528.

Namiot, D. (2015). Time series databases. Data Analytics and Management in Data
Intensive Domains (DAMDID/RCDL2015) 1536, 132–137. ISSN: 16130073.

Nemeth, E., Snyder, G. and Hein, T. R. (2002). Linux Administration Handbook.
Prentice Hall PTR, 890.

Nguyen-Duc, A., Cabrero-Daniel, B., Przybylek, A., Arora, C., Khanna, D., Herda,
T., Rafiq, U., Melegati, J., Guerra, E., Kemell, K.-K., Saari, M., Zhang, Z., Le, H.,
Quan, T. and Abrahamsson, P. (Oct. 2023). Generative Artificial Intelligence for
Software Engineering – A Research Agenda. URL: http://arxiv.org/abs/
2310.18648.

Nunamaker, J. F., Chen, M. and Purdin, T. D. M. (1991). Systems Development in
Information Systems Research. Journal of Management Information Systems 7, 89–
106. DOI: 10.1080/07421222.1990.11517898.

Nurminen, M., Lindstedt, A., Saari, M. and Rantanen, P. (2021). The Requirements
and Challenges of Visualizing Building Data. 2021 44th International Convention
on Information and Communication Technology, Electronics and Microelectronics
(MIPRO). IEEE.

Nurminen, M., Saari, M. and Rantanen, P. (2021). DataSites: a simple solution for
providing building data to client devices. 2021 44th International Convention
on Information and Communication Technology, Electronics and Microelectronics
(MIPRO). IEEE.

Ojo, M. O., Giordano, S., Procissi, G. and Seitanidis, I. N. (2018). A Review of
Low-End, Middle-End, and High-End Iot Devices. IEEE Access 6, 70528–70554.
ISSN: 2169-3536. DOI: 10.1109/ACCESS.2018.2879615. URL: https://
ieeexplore.ieee.org/document/8528362/.

86

https://doi.org/10.1002/smr.528
http://doi.wiley.com/10.1002/smr.528
http://doi.wiley.com/10.1002/smr.528
http://arxiv.org/abs/2310.18648
http://arxiv.org/abs/2310.18648
https://doi.org/10.1080/07421222.1990.11517898
https://doi.org/10.1109/ACCESS.2018.2879615
https://ieeexplore.ieee.org/document/8528362/
https://ieeexplore.ieee.org/document/8528362/

Oracle (2021). Java. Accessed February 26, 2021. URL: https://www.java.com/.
Peffers, K., Tuunanen, T., Rothenberger, M. A. and Chatterjee, S. (2007). A De-

sign Science ResearchMethodology for Information Systems Research. Journal of
Management Information Systems 24.3, 45–77. ISSN: 0742-1222. DOI: 10.2753/
MIS0742-1222240302. URL: https://www.tandfonline.com/doi/full/10.
2753/MIS0742-1222240302.

Perera, C., Zaslavsky,A., Christen, P. andGeorgakopoulos,D. (2014). ContextAware
Computing for The Internet of Things: A Survey. IEEE Communications Surveys
Tutorials 16.1, 414–454. DOI: 10.1109/SURV.2013.042313.00197.

Perkovic, L. (2012). Introduction to Computing Using Python, An Application Devel-
opment Focus. John Wiley & Sons, 484. ISBN: 9780470618462.

Petersen, K., Vakkalanka, S. and Kuzniarz, L. (2015). Guidelines for conducting sys-
tematic mapping studies in software engineering: An update. Information and
Software Technology 64, 1–18. ISSN: 09505849. DOI: 10.1016/j.infsof.2015.
03.007. eprint: arXiv:1011.1669v3. URL: http://dx.doi.org/10.1016/
j.infsof.2015.03.007%20http://linkinghub.elsevier.com/retrieve/

pii/S0950584915000646.
Porras, J., Khakurel, J., Knutas, A. and Pänkäläinen, J. (2018). Security Challenges

and Solutions in theInternet of Things. Nordic and Baltic Journal of Information
and Communications Technologies 2018 (1), 177–206. ISSN: 1902-097X. DOI: 10.
13052/nbjict1902-097X.2018.010. URL: http://www.riverpublishers.
com/journal_read_html_article.php?j=NBJICT/2018/1/10.

Python Software Foundation (2021). Python. Accessed February 26, 2021. URL:
https://www.python.org/.

Raninen, A., Ahonen, J. J., Sihvonen, H.-M., Savolainen, P. and Beecham, S. (2013).
LAPPI: A light-weight technique to practical process modeling and improvement
target identification. Journal of Software: Evolution and Process 25.9, 915–933.
ISSN: 20477473. DOI: 10.1002/smr.1571. URL: http://doi.wiley.com/
10.1002/smr.1571.

Rantanen, P., Mäkivaara, J., Saari, M., Sillberg, P. and Jaakkola, H. (2021). Utilizing
Cost-effective NB-IoT-based Sensors for DetectingWater Temperature and Flow.
25rd IEEE International Conference on Intelligent Engineering Systems 2021. Sub-
mitted. IEEE.

87

https://www.java.com/
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.2753/MIS0742-1222240302
https://www.tandfonline.com/doi/full/10.2753/MIS0742-1222240302
https://www.tandfonline.com/doi/full/10.2753/MIS0742-1222240302
https://doi.org/10.1109/SURV.2013.042313.00197
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1016/j.infsof.2015.03.007
arXiv:1011.1669v3
http://dx.doi.org/10.1016/j.infsof.2015.03.007%20http://linkinghub.elsevier.com/retrieve/pii/S0950584915000646
http://dx.doi.org/10.1016/j.infsof.2015.03.007%20http://linkinghub.elsevier.com/retrieve/pii/S0950584915000646
http://dx.doi.org/10.1016/j.infsof.2015.03.007%20http://linkinghub.elsevier.com/retrieve/pii/S0950584915000646
https://doi.org/10.13052/nbjict1902-097X.2018.010
https://doi.org/10.13052/nbjict1902-097X.2018.010
http://www.riverpublishers.com/journal_read_html_article.php?j=NBJICT/2018/1/10
http://www.riverpublishers.com/journal_read_html_article.php?j=NBJICT/2018/1/10
https://www.python.org/
https://doi.org/10.1002/smr.1571
http://doi.wiley.com/10.1002/smr.1571
http://doi.wiley.com/10.1002/smr.1571

Rantanen, P. and Saari, M. (2020). Towards the utilization of cost-effective off-the-
shelf devices for achieving energy savings in existing buildings. 2020 International
Conference on Intelligent Systems (IS). IEEE.

Raspberry Pi Foundation (2020). Teach, Learn, andMake with Raspberry Pi. Accessed
December 21, 2020. URL: https://www.raspberrypi.org/.

Rojas, D. and Barrett, J. (2017). A hardware-software WSN platform for machine
and structural monitoring. 2017 28th Irish Signals and Systems Conference (ISSC).
IEEE, 1–6. ISBN: 978-1-5386-1046-6. DOI: 10.1109/ISSC.2017.7983626. URL:
http://ieeexplore.ieee.org/document/7983626/.

Roman, R., Lopez, J. and Mambo, M. (Jan. 2018). Mobile edge computing, Fog et
al.: A survey and analysis of security threats and challenges. Future Generation
Computer Systems 78, 680–698. ISSN: 0167739X. DOI: 10.1016/j.future.
2016.11.009. URL: https://linkinghub.elsevier.com/retrieve/pii/
S0167739X16305635.

Royce, D. W. W. (1970). Managing the Development of large Software Systems. Ieee
Wescon August, 1–9.

Saari, M., Baharudin, A. M. bin, Sillberg, P., Hyrynsalmi, S. and Yan, W. (2018).
LoRa — A survey of recent research trends. 2018 41st International Convention
on Information and Communication Technology, Electronics and Microelectronics
(MIPRO). IEEE, 0872–0877. ISBN: 978-953-233-095-3. DOI: 10.23919/MIPRO.
2018.8400161. URL: https://ieeexplore.ieee.org/document/8400161/.

Saari, M., Baharudin, A. M. bin and Hyrynsalmi, S. (2017). Survey of prototyping
solutions utilizing Raspberry Pi. 2017 40th International Convention on Infor-
mation andCommunication Technology, Electronics andMicroelectronics (MIPRO).
IEEE, 991–994. ISBN: 978-953-233-090-8.DOI: 10.23919/MIPRO.2017.7973568.
URL: http://ieeexplore.ieee.org/document/7973568/.

Saari, M., Baharudin, A. M. bin, Sillberg, P., Rantanen, P. and Soini, J. (2016). Em-
bedded Linux controlled sensor network. 39th International Convention on Infor-
mation andCommunication Technology, Electronics andMicroelectronics (MIPRO).
IEEE, 1185–1189. DOI: 10.1109/MIPRO.2016.7522319.

Saari, M., Grönman, J., Soini, J., Rantanen, P. andMäkinen, T. (2020a). Experiment-
ing with Means to Store andMonitor IoT based Measurement Results for Energy
Saving. 2020 43rd International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO). IEEE.

88

https://www.raspberrypi.org/
https://doi.org/10.1109/ISSC.2017.7983626
http://ieeexplore.ieee.org/document/7983626/
https://doi.org/10.1016/j.future.2016.11.009
https://doi.org/10.1016/j.future.2016.11.009
https://linkinghub.elsevier.com/retrieve/pii/S0167739X16305635
https://linkinghub.elsevier.com/retrieve/pii/S0167739X16305635
https://doi.org/10.23919/MIPRO.2018.8400161
https://doi.org/10.23919/MIPRO.2018.8400161
https://ieeexplore.ieee.org/document/8400161/
https://doi.org/10.23919/MIPRO.2017.7973568
http://ieeexplore.ieee.org/document/7973568/
https://doi.org/10.1109/MIPRO.2016.7522319

Saari, M., Nurminen,M. and Rantanen, P. (2022). Survey of Component-Based Soft-
ware Engineering within IoT Development. 2022 45th International Convention
on Information and Communication Technology, Electronics and Microelectronics
(MIPRO). IEEE.

Saari, M., Rantanen, P. and Hyrynsalmi, S. (2020). Software hardware combination
for data gathering. Proceedings of 2020 IEEE 10th International Conference on In-
telligent Systems (IS2020).

Saari, M., Rantanen, P., Hyrynsalmi, S. and Hästbacka, D. (2022). Framework and
Development Process for IoT Data Gathering. Advances in Intelligent Systems
Research and Innovation. Ed. by V. Sgurev, V. Jotsov and J. Kacprzyk. (Exten-
sion of peer reviewed conference publication Saari, Rantanen and Hyrynsalmi,
2020). Springer International Publishing, 41–60. ISBN: 978-3-030-78124-8. DOI:
10.1007/978-3-030-78124-8_3. URL: https://doi.org/10.1007/978-3-
030-78124-8_3.

Saari, M., Sillberg, P., Grönman, J., Kuusisto, M., Rantanen, P., Jaakkola, H. and
Henno, J. (2019a). Reducing Energy Consumption with IoT Prototyping. Acta
Polytechnica Hungarica 16.9, SI, 73–91. ISSN: 1785-8860. DOI: 10.12700/APH.
16.9.2019.9.5.

Saari,M., Sillberg, P.,Grönman, J., Rantanen, P., Jaakkola,H. andHenno, J. (2019b).
Survey of Applications for Apartment Energy Consumption Monitoring. 23rd
IEEE International Conference on Intelligent Engineering Systems 2019. IEEE.

Saari, M., Sillberg, P., Rantanen, P., Soini, J. and Fukai, H. (2015a). Data collector
service - practical approach with embedded linux. 38th International Convention
on Information and Communication Technology, Electronics and Microelectronics
(MIPRO), 1037–1041. DOI: 10.1109/MIPRO.2015.7160428.

Saari, M., Soini, J., Grönman, J., Rantanen, P., Mäkinen, T. and Sillberg, P. (2020b).
Modeling the Software Prototyping Process in a Research Context. Information
Modelling and Knowledge Bases XXXII. Ed. byM. Tropmann-Frick, B. Thalheim,
H. Jaakkola, Y. Kiyoki and N. Yoshida. Vol. 333. IOS Press, 107–118. ISBN:
9781643681405. DOI: 10.3233/FAIA200823. URL: http://ebooks.iospress.
nl/doi/10.3233/FAIA200823.

Saari, M., Turunen, J., Linna, P., Aramo-Immonen, H. and Huhtala, M. (2015b).
Explorative study of teaching programming to vocational teachers in Finland.

89

https://doi.org/10.1007/978-3-030-78124-8_3
https://doi.org/10.1007/978-3-030-78124-8_3
https://doi.org/10.1007/978-3-030-78124-8_3
https://doi.org/10.12700/APH.16.9.2019.9.5
https://doi.org/10.12700/APH.16.9.2019.9.5
https://doi.org/10.1109/MIPRO.2015.7160428
https://doi.org/10.3233/FAIA200823
http://ebooks.iospress.nl/doi/10.3233/FAIA200823
http://ebooks.iospress.nl/doi/10.3233/FAIA200823

7th International Conference on Education and New Learning Technologies, 2860–
2869.

Saha, D., Mitra, R. and Basu, A. (1997). Hardware software partitioning using ge-
netic algorithm. Proceedings Tenth International Conference onVLSIDesign. IEEE
Comput. Soc. Press, 155–160. ISBN: 0-8186-7755-4. DOI: 10.1109/ICVD.1997.
568069. URL: http://ieeexplore.ieee.org/document/568069/.

Scacchi, W. (2002). Process Models in Software Engineering. Encyclopedia of Soft-
ware Engineering. Hoboken, NJ, USA: JohnWiley & Sons, Inc. DOI: 10.1002/
0471028959.sof250. URL: http://doi.wiley.com/10.1002/0471028959.
sof250.

Semtech S.A (2021). Lora network packet forwarder project. Accessed March 2, 2021.
URL: https://github.com/Lora-net/packet_forwarder.

Shadish, W., Cook, T., Campbell, T. (2002). Experiments and generalized causal in-
ference. Vol. 100. 470, 1–81. ISBN: 0395615569. URL: http://impact.cgiar.
org/pdf/147.pdf.

Sillberg, P., Gronman, J., Rantanen, P., Saari,M. andKuusisto,M. (2018). Challenges
in the Interpretation of Crowdsourced Road Condition Data. 2018 International
Conference on Intelligent Systems (IS). IEEE, 215–221. ISBN: 978-1-5386-7097-2.
DOI: 10.1109/IS.2018.8710571. URL: https://ieeexplore.ieee.org/
document/8710571/.

Sillberg, P., Rantanen, P., Saari, M., Leppäniemi, J., Soini, J. and Jaakkola, H. (2009).
Towards an IP-based alert message delivery system. ISCRAM 2009 - 6th Inter-
national Conference on Information Systems for Crisis Response and Management:
Boundary Spanning Initiatives andNew Perspectives. Ed. by J. Landgren and S. Jul.
June 2015. Information Systems for Crisis Response andManagement, ISCRAM,
8 p. ISBN: 978-91-633-4715-3.

Sillberg, P., Saari, M., Grönman, J., Rantanen, P. and Kuusisto, M. (2020). Inter-
pretation, Modeling and Visualization of Crowdsourced Road Condition Data.
Intelligent Systems: Theory, Research and Innovation in Applications. Ed. by R.
Jardim-Goncalves, V. Sgurev, V. Jotsov and J. Kacprzyk. (Extension of peer re-
viewed conference publication Sillberg, Gronman, Rantanen, Saari and Kuusisto,
2018). Springer International Publishing, 99–119. ISBN: 978-3-030-38704-4. DOI:
10.1007/978-3-030-38704-4_5. URL: https://doi.org/10.1007/978-3-
030-38704-4_5.

90

https://doi.org/10.1109/ICVD.1997.568069
https://doi.org/10.1109/ICVD.1997.568069
http://ieeexplore.ieee.org/document/568069/
https://doi.org/10.1002/0471028959.sof250
https://doi.org/10.1002/0471028959.sof250
http://doi.wiley.com/10.1002/0471028959.sof250
http://doi.wiley.com/10.1002/0471028959.sof250
https://github.com/Lora-net/packet_forwarder
http://impact.cgiar.org/pdf/147.pdf
http://impact.cgiar.org/pdf/147.pdf
https://doi.org/10.1109/IS.2018.8710571
https://ieeexplore.ieee.org/document/8710571/
https://ieeexplore.ieee.org/document/8710571/
https://doi.org/10.1007/978-3-030-38704-4_5
https://doi.org/10.1007/978-3-030-38704-4_5
https://doi.org/10.1007/978-3-030-38704-4_5

Soini, J., Kuusisto, M., Rantanen, P., Saari, M. and Sillberg, P. (2019). A Study on an
Evolution of a Data Collection System for Knowledge Representation. Informa-
tion Modelling and Knowledge Bases XXXI. Ed. by A. Dahanayake, J. Huiskonen
and Y. Kiyoki. Vol. 321. IOS Press, 161–174. DOI: 10.3233/FAIA200013.

Sommerville, I. (2016). Software Engineering (10th edition). 10th ed. ISBN: 978-1-292-
09613-1.

Srivastava, M. and Brodersen, R. (1991). Rapid-prototyping of hardware and soft-
ware in a unified framework. 1991 IEEE International Conference on Computer-
AidedDesignDigest of Technical Papers. IEEEComput. Soc. Press, 152–155. ISBN:
0-8186-2157-5.DOI: 10.1109/ICCAD.1991.185217. URL: http://ieeexplore.
ieee.org/document/185217/.

Stroustrup, B. (2013).TheC++Programming Language. Fourth edi. Addison-Wesley,
1366. ISBN: 9780321563842.

The Industrial Internet of Things Volume G1: Reference Architecture, v1.9 (2019). In-
dustrial Internet Consortium, a program of Object Management Group, Inc.
URL: https://www.iiconsortium.org/pdf/IIRA-v1.9.pdf.

Vakaloudis, A. and O’Leary, C. (2019). A framework for rapid integration of IoT
Systems with industrial environments. 2019 IEEE 5th World Forum on Internet
of Things (WF-IoT). IEEE, 601–605. ISBN: 978-1-5386-4980-0. DOI: 10.1109/
WF-IoT.2019.8767224. URL: https://ieeexplore.ieee.org/document/
8767224/.

Weiser, M. (1991). The Computer for the 21 st Century. Scientific American 265.3,
94–105.

Xu, L. D., He, W. and Li, S. (2014). Internet of Things in Industries: A Survey.
IEEE Transactions on Industrial Informatics 10.4, 2233–2243. ISSN: 1551-3203.
DOI: 10.1109/TII.2014.2300753. URL: http://ieeexplore.ieee.org/
document/6714496/.

91

https://doi.org/10.3233/FAIA200013
https://doi.org/10.1109/ICCAD.1991.185217
http://ieeexplore.ieee.org/document/185217/
http://ieeexplore.ieee.org/document/185217/
https://www.iiconsortium.org/pdf/IIRA-v1.9.pdf
https://doi.org/10.1109/WF-IoT.2019.8767224
https://doi.org/10.1109/WF-IoT.2019.8767224
https://ieeexplore.ieee.org/document/8767224/
https://ieeexplore.ieee.org/document/8767224/
https://doi.org/10.1109/TII.2014.2300753
http://ieeexplore.ieee.org/document/6714496/
http://ieeexplore.ieee.org/document/6714496/

92

PUBLICATIONS

93

PUBLICATION

I

Data collector service - practical approach with embedded linux
Saari, M., Sillberg, P., Rantanen, P., Soini, J. and Fukai, H.

38th International Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO)2015, 1037–1041

DOI: 10.1109/MIPRO.2015.7160428

Publication reprinted with the permission of the copyright holders

https://doi.org/10.1109/MIPRO.2015.7160428

Data Collector Service – Practical Approach with

Embedded Linux

M. Saari*, P. Sillberg*, P. Rantanen*, J. Soini* and H. Fukai**
* Tampere University of Technology/Department of Software Engineering, Pori, Finland

** Keio University/Faculty of Policy Management, Fujisawa-shi, Japan

mika.saari@tut.fi

Abstract - Nowadays embedded systems are one of the most

important application areas in information technology.

Embedded systems are often used in life critical situations,

where reliability and safety are more important criteria

than performance. This paper presents a data collector

service that has been developed based on embedded Linux,

which operates as a key element in a larger intelligent alarm

system. The target of this study was to test out how well a

cost-efficient single-board computer could be used to gather

sensory data, and how this data can be provided for the

client over the public Internet. The paper describes the data

collector service currently in use and its functionality and

also gives a concrete example of how to utilize a

microcontroller with an embedded Linux distribution. The

paper presents one solution on how to utilize embedded

systems for managing and controlling conditions in

buildings and also environmental conditions in a smart and

cost-effective way.

I. INTRODUCTION

Sensors are commonly utilized components including
various kinds of warning and alarm systems. With the
huge development of sensor technology, it has been
possible to create minuscule, reasonably priced
components, sensors and controllers with ultra-low power
consumption. These kind of components are enabled for
the rapidly improvement of the sensor networks and
therefore it can be seen how sensor network
implementations have been applied in numerous different
fields of operation. A sensor network consists of single
sensors, with the purpose of sensing the surroundings and
to forward the collected data. There is a great variety of
sensors available and their classification is based mainly
on the features of the information collected. These kinds
of physical features include temperature, humidity,
brightness or air pressure.

In this research, one particular subject was to sense the
condition changes in indoor spaces and data collection and
entry related to their authentication as well as transmitting
them forward. The objective of the research was to
construct an automatic service – i.e. a data collector
service – for collecting condition data that would, in turn,
enable the collection and transmission of condition data
for a backup system that exploits and analyzes
measurement data as flexibly as possible in real-time. The
starting point was the development of a system optimally
attending to an independent, selected backup system for
collecting, recording and transmitting condition data. The

aim was to study and develop a solution that was as
simple, reliable, cost-effective and easy to maintain as
possible for the defined purpose. In this case, it was
decided to implement the solution by adapting a
microcontroller with embedded Linux for data collection
and distribution. Embedded systems usually adopt
embedded Linux as the operating system because of the
numerous economic and technical benefits – the Linux
kernel sources are well structured so that CPU-specific
code is easy to find and is minimized. A prototype for
realizing the service in question, which will be presented
in detail in this paper, was created during the KiiauData
research project in 2014.

The study presented here is part of the intensive
collaboration between the Tampere University of
Technology (TUT) in Finland and Keio University in
Japan. The Global Environmental System Leaders
(GESL) Program, ongoing in Keio University’s Shonan
Fujisawa Campus (SFC), and the Alert system for
detecting anomalous situations developed as one of its
outcomes serve as the background of the research. One
main part of the alert system under development is the
data collector service which was developed in
collaboration by the university partners in TUT Pori,
enabled by the ongoing KiiauData (Smart analysis of
property systems data) project. One of the main aims of
this two-year (2013-2014) project, funded by TEKES [1],
was to study potential new technologies for managing and
controlling conditions in buildings in a smart way. The
expected results of the project will enable providers of
products and services in the built environment to form
wider and more automated solutions both for new
breakthroughs and recognized problems in the smart built
environment. The data collector service presented here is
one concrete example of the studied and piloted solutions
produced during the joint project.

Related research in this specific area – i.e. utilization
of a microcontroller with embedded systems – has been
conducted by Rakesh et al. [2], for example, who have
introduced a system which implements an embedded
system for monitoring wireless sensor nodes and a camera
installed inside a building for security surveillance.
Toshniwal and Conrad [3] have studied how to make a
cost-effective network-based sensor monitoring system
which is portable for various applications. They have
developed Linux-based systems based on desktop
architecture with a sensor package, and also another
system which used an embedded Single Board Computer

(SBC) together with sensors. In addition, Cheng and Shen
[4] have introduced a wireless sensor network
communication terminal based on embedded Linux.
Voinescu et al. [5] describe a device which can work as a
network connection to a single board computer
(BeagleBone or similar), where the target was to make an
easy-to-use wireless networking device. Sawant et al. [6]
studied a device that is capable of making file manager
operations with two USB flash drives. Their study gives
basic knowledge of using of an ARM-based embedded
Linux and touch screen. Banerjee et al. [7] proposed and
implemented the design of a secure sensor node prototype.
They built the prototype using a single board computer
(Raspberry Pi in this case), accelerometer, and Bluetooth
dongle. The above-mentioned studies deal with the same
research area and have a very close connection to the
specific research topic presented in this paper.

The following section (Section 2) briefly describes the
background system and Section 3 gives a detailed
explanation of how its first part – the data collector service
– has been carried out. Section 4 includes a discussion and
suggestions for future research on the topic and finally
section 5 summarizes the study.

II. BACKGROUND – THE INTELLIGENT ALERT SYSTEM

The basis of the study is the alert system under
development in Keio SFC. With this planned system it is
possible to collect environmental data for different
purposes. The system will make environmental sensing
easier in various places by using small sensors, and there
are many ways to utilize this collected data. One of the
intended applications for using the system is for detecting
anomalous situations. The aim of such a system is to
handle environmental sensor data collected from multiple
locations. In practice, it is not easy to understand the
problems inherent in a given place just by looking over a
graph of sensor data. Therefore, an alert system is need for
interpreting the environmental changes in the space in
question and associated problems.

This intelligent alert system consists of three (3) main
parts shown in Fig. 1: the first part is the collection of
environmental sensor data via the new data collector
service. The second part is the detection of anomalous
situations by utilizing the sensor data. The third part is
sending the alert to where the situations were detected.

This particular system targets indoor spaces utilized by
the public such as offices, meeting rooms, stations, trains,
etc. In this case, the variables being sensed include
temperature, light, and humidity. The system
automatically collects the sensor data from sensors placed
in various places, and analyzes changes over time. As
environmental sensor data is collected for a given place
over a long time-span, the results become more useful, not
only by evaluating the results at one location but also by
comparing the results from the sensor data from many
locations. Each type of sensor data has four (4) feature
values: location information, time, data type, and sensing
value. The alert system registers the collected sensing data
with an active database system in real time. The active
database (upper left corner in Fig. 1) automatically reacts
in response to detected state change rules that have been
pre-defined by the users of the alert system. If an
anomalous situation is detected as specified in the active
database’s rule set, the database system sends alerts to the
anomalous location. In this case, the role of the active
database is to support rule definition, compare data
between sensors, compare similar data at different time-
points, and compare between different sensor types.

This paper deals with the first part of the alert system,
i.e. the data collector service (lower left corner in Fig. 1),
and does not describe the Intelligent Alert System as a
whole. The paper presents the features and architecture,
hardware and software components of the developed
service, and also the physical connections between the
components. The structure of the developed software used
for data collection is also described.

III. DATA COLLECTOR SERVICE – IMPLEMENTATION

The architecture of the Data Collector Service is
shown in Fig. 2. The purpose of the service is to measure
light, temperature, and humidity. The sensors used are
shown in Fig. 2 (right side). The data can be collected
continuously, up to six times a minute. The collected data
is then provided as a service for clients, who access the
service using the Internet (left side of Fig. 2). In our use
case the clients can also be other service providers.

The physical device itself is placed in a public space –
TUT’s laboratory in this case – to collect data. Attention
had to be paid to the physical size of the device as a
device smaller than an ordinary PC is easier to install in a
public area. In this implementation, the device must also
have Ethernet or Wi-Fi capabilities in order to be remotely
accessible. These two requirements lead to the use of a
device with embedded Linux. The embedded Linux in this
context means Linux that can run on ARM-based
processors. The embedded Linux devices often have
database and web server capabilities, or they can be easily
added afterwards. The size of the device’s internal mass
memory is not critical as long as the device has peripheral
ports for external flash memory or Secure Digital (SD)
cards.

The integral component of the Data Collector Service,
the BeagleBone Black [8], is a low-cost, high-expansion
focused SBC using an ARM Cortex-A8 based processor.
It can host a Linux operating system and has a 10/100
Ethernet connection and a microSD connector, with 512

Figure 1. Overview of the Alert system

MB system memory and 2 GB of embedded
MultiMediaCard (eMMC) memory.

The BeagleBone Black has two expansion headers,
labeled P8 and P9, which allows the integration of
BeagleBone electronics projects [8, 9], and in this research
the features of these expansion headers were used. The
sub system developed utilizes GND (Ground), 3.3V and
1.8V power, two GPIO (General Purpose Input/Output),
and AIN (analog input) pins to drive light, humidity, and
temperature sensors.

A. BeagleBone Black with Embedded Linux

The BeagleBone board comes with a pre-installed
operating system called Ångström Linux, which is a stable
and user-friendly distribution for embedded devices and is
categorized in the Embedded Linux category. [10] Despite
being designed for embedded devices, the Ångström
Linux has many of the capabilities that can be found in
other full-fledged Linux distributions, such as the X11
windowing system and a substantial amount of software
packages in its package repositories.

Some basic Linux server hardening configurations
were made to the Ångström Linux for more secure
network operation. For example, the system time
management was changed to use ntpdate [11], the X11
service was disabled, direct root user access was removed
and a new basic user was created which could be used for
remote Secure Shell (SSH) access. Python programming
language was used together with an Adafruit-BeagleBone-
IO-Python library, to utilize the I/O operations of the
sensors [12].

The Data Collector Service itself does not utilize the
data it collects, as this was to be done by a remote
computer with more computing capacity. Thus the Data
Collector Service only collects the data and serves it over
the Internet for use or as input to the next part of the alert
system. We chose to store the data to persistent memory
so it could be later accessed by one or more clients. In this
case there were no special requirements on how, when and
how often the data should be delivered to the remote
computer, so the decision was to implement relatively
simple server software utilizing the client-server
architecture. This way the consumer of the sensor data can
decide the most convenient update cycle.

The Data Collector Service provides the data to the
clients over a representational state transfer (REST)
HTTP/GET [13] interface. Clients may access the
interface for historical data from a chosen time interval, or

if they choose to, poll periodically for the newest data. By
using a short enough polling interval, it would be possible
to get near real-time data from the service within the
limitations of the computing performance of the
BeagleBone platform. The number of new data points per
minute would be limited by how often the sensors are read
on the Data Collector Service.

The server software was deployed on an Apache
Tomcat web server [14] and the sensor readings stored in
a MySQL database [15]. In Fig. 2, these two components
are called Web Service and Database, respectively. A
third major software component called SensorApp also
runs on the BeagleBone Black platform. The task of the
SensorApp is to communicate with the Expansion headers
which are used to drive the physical sensors attached to
the BeagleBone Black.

The SensorApp and the Web Service running on top of
the servlet container were written by the project team. The
Database and Servlet Container were written by a third
party. Ångström’s own package manager provided
MySQL, while Apache Tomcat and Java Virtual Machine
(Oracle’s Java in this case) were installed using their latest
available installation packages for Linux operating
systems.

Fig. 2 also illustrates the directions of data flow which
happen between the components. The Web Service can
only read data from the Database, while the SensorApp
has read and write access to the device’s GPIO headers in
order to operate the sensors, and it also directly writes the
collected data into the Database. For the completeness of
the REST interface, the full CRUD (Create, read, update
and delete) operations could have been implemented
through the interface, but that would have increased the
total code complexity of the system. In addition, it would
have raised security issues, such as the malicious removal
or modification of the collected data. Unauthorized access
could be mitigated by the use of access control such as
passwords or certificates. In the end, the prime interest
was on collecting the data, so keeping outside access as
“read only" was the most effective method in terms of
computational capacity and code complexity.

Fig. 3 shows the architecture of the physical device
with the sensors attached. BeagleBone expansion header

Figure 2. System Architecture of Data Collector Service

Figure 3. Sensor device used for Data Collector Service

P9 was used to connect the sensors – a photoconductive
cell (NSL-19M51 [16]) and humidity and temperature
sensor (SHT11 [17]). The photoconductive cell is
connected by using a typical application circuit [18]. The
humidity and temperature sensor is connected to the
BeagleBone by using a datasheet application circuit [17].

B. System Functionality

The web service provides the collected data through
one read-only interface. The interface can be accessed by
using a simple HTTP GET request. The default query
without any parameters returns the ten latest data points.
By using different parameters (such as begin_date,
end_date, limit and paging) one can request a desired data
set from the service. Fig. 4 shows the sequence of
accessing the data from the web service. The Client
connects to the device’s Web Service interface, which in
turn retrieves the requested data from the Database. The
data is then marshaled into XML format by utilizing
JAXB (Java Architecture for XML Binding) annotations
and sent back to the client.

As the data is stored to the device’s persistent
memory, the data can be requested when needed and as
often as needed. However, due to the limited computing
resources of the platform, a request for a large data set
may take a long time or even fail. The code for the web
service was not specially written nor optimized for this
use case, but merely as a generic proof-of-concept
implementation. The marshaling of the XML output at
least could have been done in a more memory-efficient
way, or a different approach such as JSON serializing
could have been used instead. An often-used paradigm is
to limit the maximum measurement count to a known safe
figure, and use the paging parameter to retrieve the rest of
the results. The current implementation appears to cap at
around 40000 measurements (or about five days of
collected data) on the device, while a desktop machine
was able to double that amount (both are with the default
Java VM settings). Requesting any more than the
aforementioned number of measurements either causes
serious degradation of performance, or results in an out-
of-memory situation because of the limited memory
capabilities of the BeagleBone platform.

The sensor data is collected in a separate process to the
web service. Fig. 5 is an illustration of one loop of the
sensor reading process. Each loop corresponds to a single
measurement point. The humidity and temperature sensor
used has its own built-in circuit, and the measurements
can take up to 80 or 320 milliseconds at the default
accuracy (12 bits for humidity and 14 bits for

temperature). Also, in order to avoid excess self-heating of
the sensor, a maximum of one measurement per second at
12 bit accuracy should be made. [17] These limitations set
a theoretical maximum of 15 measurements per minute at
default accuracy (when the communication with the
sensor is not taken into account). When a lower accuracy
(20ms/8bit and 80ms/12bit) is used, a maximum of 60
measurements per minute can be achieved. For this
application, it was decided to use the default accuracy and
an interval of six measurements per minute.

As can be seen in Fig. 5, first the application reads the
raw temperature value for the combined humidity and
temperature sensor, and then pauses for a while to let the
sensor cool down, after which the raw humidity value is
read from the same sensor. Then the raw value from the
photoconductive cell is read. The raw signal values have
to be converted before they can be stored to the database
by using the conversion formulas provided by the
manufacturer. After the database has been updated, the
application enters sleep mode to attain the desired
measurement interval.

IV. DISCUSSION & FUTURE RESEARCH

This paper presents a data collector service, which
utilizes BeagleBone Black development board with an
embedded Linux distribution. The goal was to experiment
how well a cost-efficient SBC can be used to gather
sensory data, and how this data can be provided to the
client over the public Internet. This goal was reached
successfully, and the designed system was tested and
found to work as planned. Nevertheless, the development
process raised several improvement ideas, which could be
realized in the future.

One of the issues is the packaging of the sensor
system. The current version was a prototype version, and
consequently the focus was on making the system
functional, both by testing the sensor connections and
readings, as well as benchmarking the functionality of the
REST API and the software components. This limited the
practical usability of the system, for example, making it
unfit for use outdoors. In addition, the current software
consists of various libraries, programming languages and
components, and is as such slightly tricky to install. The
software components could be packaged into a single
application for easier installation. There is also the
possibility to release the source code as an open source
release.

Figure 4. Sequence diagram for accessing the data from the web

service

Figure 5. Sensor device used for Data Collector Service

The chosen sensor components could also be
improved. The serial interface of SHT11 offers good
power efficiency, but it cannot be addressed by standard
I2C (Inter-Integrated Circuit) protocol, which would make
programming tasks easier. In this use case the system is
always provided with a continuous power supply and thus
better programmability would be a major asset in future
studies. In our case, the limited amount of sensor devices
to be deployed makes the cost of the single board
computer largely irrelevant, though it should be noted that
there are other SBCs that are slightly cheaper, but still
offer reasonable computing performance. One popular
choice is the RaspberryPi (e.g. [19]), which would work –
specification-wise – equally well in this use case. Both of
these boards offer excellent extension capabilities and can
be expanded with additional sensors. The addition of
multiple sensors raises another issue, which has not been
studied in this research. It is unclear how well the board
and the developed system would cope with a very large
number of sensors. Also, in this system, all sensors are
located very close to the actual board, and thus, the signal
degradation can be thought negligible, but this is not
necessarily true in large-scale monitoring systems. One
example of this kind of system would be the monitoring of
an entire apartment complex, where sensors are physically
located very far apart and connected to the board by long
wires or cables. In this case, it would be possible to deploy
a multiple sensor system, but simply using multiple
sensors with a single board is a more cost-efficient
solution.

In addition to the aforementioned improvement ideas,
our future research will focus on topics only briefly
discussed in this paper, such as the utilization of the
collected data using the designed REST API in various
end-user applications.

As can be seen, there are many ways to continue and
improve this study. However, the current service produces
real-time data regularly and reliably for the benefit of the
main system. The prototype developed has proven to be
stable and reliable in practice. Work on building the final
alarm system is currently ongoing at Keio University.

V. SUMMARY

The paper introduced a prototype system created for
sensor data collection and transmission. The presented
data collector service is part of a larger alarm system and
provides sensor data for the main system. The aim of the
study was to test how a single board computer can be used
to gather sensory data and how this data can be provided
to clients over the public Internet. The paper presented the
features and architecture of the developed service, the
used hardware and software components, the physical
connections between the components, and also the
structure of the software. The paper gives a concrete
example of how to utilize a microcontroller with an
embedded Linux distribution.

REFERENCES

[1] Finnish Funding Agency for Technology and Innovation, Tekes,
http://www.tekes.fi/en. Retrieved February 6th, 2015.

[2] V. S. Rakesh, P. R. Sreesh, and S. N. George, “An improved real-
time surveillance system for home security system using

BeagleBoard SBC, Zigbee and FTP webserver,” In India
Conference (INDICON), 2012 Annual IEEE, pp. 1240–1244,
December 2012.

[3] K. Toshniwal, and J. M. Conrad, “A web-based sensor monitoring
system on a Linux-based single board computer platform,”
Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon), pp.
371–374, March 2010.

[4] X. Cheng, and F. Shen, “Design of the wireless sensor network
communication terminal based on embedded Linux,” 2011 IEEE
2nd International Conference on Software Engineering and
Service Science, pp. 598–601, July 2011.

[5] A. Voinescu, D. Tudose, and D. Dragomir, “A lightweight,
versatile gateway platform for wireless sensor networks,” In
Networking in Education and Research, RoEduNet International
Conference 12th Edition, pp. 1–4, September 2013.

[6] T. Sawant, B. Parekh, and N. Shah, “Computer independent USB
to USB data transfer bridge,” 6th International Conference on
Emerging Trends in Engineering and Technology, pp. 40–45,
December 2013.

[7] S. Banerjee, D. Sethia, T. Mittal, U. Arora, and A. Chauhan,
“Secure sensor node with Raspberry Pi,” Impact-2013, pp. 26–30,
November 2013.

[8] G. Coley, BeagleBone Black System Reference Manual. 2014.

[9] M. Richardson, Getting Started with BeagleBone. Sebastopol, CA:
Maker Media, 2014.

[10] L. Merciadri, and K. Koen, Angstrom Manual. 2010.

[11] D. L. Mills, ntpdate - set the date and time via NTP,
http://doc.ntp.org/4.2.6p5/ntpdate.html. Retrieved February 6th,
2015.

[12] J. Cooper, “Setting up IO Python library on BeagleBone Black,”
https://learn.adafruit.com/downloads/pdf/setting-up-io-python-
library-on-beaglebone-black.pdf. Retrieved February 6th, 2015.

[13] R. T. Fielding, Architectural Styles and the Design of Network-
based Software Architectures. Doctoral dissertation, University of
California, Irvine, 2000.

[14] The Apache Software Foundation, Apache Tomcat,
http://tomcat.apache.org. Retrieved February 6th, 2015.

[15] Oracle Corporation, MySQL, http://www.mysql.com. Retrieved
February 6th 2015.

[16] L. Curvan, Data Sheet NSL-19M51, TO-18 Open Plastic
Encapsulated. 2008.

[17] SENSIRION AG, Datasheet SHT1x. 2011.

[18] PerkinElmer Optoelectronics, Photoconductive Cells and Analog
Optoisolators (Vactrols®). 2001.

[19] V. Vujović, and M. Maksimović, “Raspberry Pi as a wireless
sensor node: performances and constraints,” 37th International
Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO) , pp. 1247–1252, 2014.

102

PUBLICATION

II

Embedded Linux controlled sensor network
Saari, M., Baharudin, A. M. bin, Sillberg, P., Rantanen, P. and Soini, J.

39th International Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO)2016, 1185–1189

DOI: 10.1109/MIPRO.2016.7522319

Publication reprinted with the permission of the copyright holders

https://doi.org/10.1109/MIPRO.2016.7522319

Embedded Linux Controlled Sensor Network

M. Saari *, A.M. Baharudin **, P. Sillberg *, P. Rantanen * and J. Soini*
* Tampere University of Technology/Pori Department, Pori, Finland

** Keio University, Tokyo, Japan

mika.saari@tut.fi

Abstract - This study utilizes a simple model for

constructing sensor nodes – master controller combinations

in the Internet of Things. The model combines hardware

and software for embedded systems which measure a

predefined set of parameters. The master controller

manages several sensor nodes, collects data from them and

provides data for clients. The paper introduces a proof-of-

concept implementation based on the model. The

implementation uses an embedded Linux based small

computer and microcontroller based sensor nodes in the

context of condition measurement, and represents a way to

use wireless data transfer between controller and nodes. The

target of this study was to test the model, to determine how

well a cost-efficient single-board computer could be used to

gather sensory data from several sensor nodes, and how this

data can be provided for clients over the public Internet.

I. INTRODUCTION

Wireless sensor networks have developed at a fast
pace in recent years and have also been one of the major
focuses of research in wireless technology. This rapid
development has been facilitated by the evolution of
electronics miniaturization, growth in performance and
energy efficiency, and the development of protocols.
Through the fast performance, optimization and
miniaturization technology of hardware, the sensors that
collect environmental information from the surroundings
have been miniaturized. The developments of ever smaller
processors and falling prices have enabled brand-new uses
for electronics.

Embedded systems are typically designed for a
specific application or purpose and come in a variety of
shapes and sizes. Moreover, embedded systems are
suitable for application systems with strict requirements
for functionality, reliability, cost, size, and power
consumption. One application of embedded systems that
is in constant demand and under continuous development
is telecommunications components. The price of wireless
components in particular has fallen so much that experts
can see clear potential there. In regards to rising energy
costs and energy savings, regulation and control
technology for buildings would seem to offer considerable
potential for embedded solutions. In addition, the
property, safety and surveillance technology sector offers
growth in the area of embedded systems.

Because of the numerous economic and technical
benefits, embedded systems usually adopt embedded
Linux as the operating system. This paper introduces a
proof-of-concept implementation that uses a small
embedded Linux based computer and microcontroller

based sensor nodes in the context of condition
measurement, and represents a way to use wireless data
transfer between controller and nodes. The paper
introduces the implementation of a sensor network
solution for sensor data collection and transmission. This
study was performed in intensive collaboration between
Tampere University of Technology (TUT) in Finland and
Keio University in Japan. The implementation was created
in the TUT Pori department in 2015.

The construction of this paper is as follows. In section
II, we review related work. The model of our system is
introduced in Section III. In section IV we describe the
proof-of-concept implementation. Section V includes a
discussion and suggestions for future research on the topic
and finally, section VI summarizes the study.

II. BACKGROUND

The Internet of Things (IoT) is the expansion of
Internet services, which connects everyday physical
objects to the network. This connection between network
and physical objects makes it possible to access remote
sensor data and to control the physical world from a
distance. The first mention of the term IoT is said to have
come from Kevin Ashton in 1999. There are also several
books about IoT. The Amazon web store found 3114
instances with the phrase “Internet of Things” in January
2016. In this paper we introduce one implementation of
the IoT-world.

In our earlier research [1], the focus was on collecting
data from one sensor packet which was connected by wire
directly to a single-board computer. This was done by
using embedded Linux and BeagleBone Black hardware,
which is a credit card–sized single-board computer similar
to Raspberry Pi. The focus of the research was to collect
data and to deliver it over the network. The plan was to
build several of these data collector service computers and
use them in a specific alarm system.

In this research the focus has been redirected toward
the Wireless Sensor Network (WSN) type of solution. A
survey conducted in 2002 compiled the basic features of
sensor networks [2]. The aim was to collect data from
several points to one master node. The collected data are
provided to the network. This data could be used in smart
house type construction. For example [3] presented a
small smart house system, based on one Arduino
development board. In that research, the proposed system
monitored the environment and also controlled lights,
temperature, alarms, and other household appliances. In
Finland, where heating is necessary most of the year, a

low cost sensor network could be used for monitoring and
controlling the heating and air ventilation systems.

The research started with modeling the construction of
a system with one master and several nodes. We
introduced an abstract model of the sensor network. There
are several studies about more complex models designed
for IoT. For example, one research study [4] introduced
the Physical Service model, where they described a device
model, resource model, and service model. Another piece
of research [5] introduced a Wireless Sensor network
abstraction model that has three levels: node abstraction,
network abstraction and infrastructure abstraction. If this
is compared to our research, we focused on the simpler
infrastructure abstraction and we used low-cost off-the-
shelf equipment available from a local store for our
example implementation. The choice of hardware supports
rapid prototyping and the test configurations are easily
repeatable. For example, [6] and [7] use the Raspberry Pi
kind of approach in their wireless sensor network gateway
prototyping. The model itself does no set any limitations
but one target was to use low-cost and easy-to-use
hardware. Also, open hardware and open source software
were the selection criteria for the components of the
implementation.

The security issues are an important part of wireless
sensor networks – How to prevent information leakage or
whether the transferred data is vulnerable. The research
about security issues of wireless data communication was
made by [8]. They focused on ZigBee [9], which we also
used in the proof-of-concept implementation.

III. MODEL OF THE SENSOR NETWORK

The model of the sensor network is shown in Fig. 1.
The sensor nodes are used to gather measurements such as
temperature, humidity and air pressure from the
environment. The number of sensor nodes is not limited to
any particular amount and in theory there can be an
unlimited number of nodes. The nodes are meant for
simple tasks which consist only of passive data collection
without the need for advanced data analysis or
preprocessing. The Master node, in general, has the
capability to run a full-feature operating system, and its
job is to control the sensor nodes and manage the data
collection process. The collected data is stored on the
master and provided for client devices over the public
Internet or using a more restricted local network.

Figure 1 Model of sensor network.

In an earlier research study, we concluded that when
using cost-effective single-board computers, such as the
BeagleBone, the limited computing performance could
cause issues [1]. Problems arise when a single computer
(i.e. the master node) runs the web service and database,
and also measures the sensor data, in which case the
requirements for the hardware can simply be too much. To

mitigate this issue, separate sensor nodes are added, which
manage the actual process of collecting the data. This way
the number of sensors can be increased without additional
strain on the limited processing capabilities of the master
node.

Figure 2 Sequence of operations.

The collection, storing, providing and usage of the
sensor data are carried out by four components – or roles.
Fig. 2 shows the sequence of operations of each of the
components. The Client is the consumer of the collected
data. The client retrieves the data by accessing the Master
Node, which consists of two software components to
facilitate the collection, the storage and delivery of the
sensor data. The master node is a centralized gateway for
the Sensor Nodes. They include the software that collects
and relays the sensor data to the master node. In our
prototype system, the client is simply a web browser
accessing the data for visualization purposes. The rest of
this section describes the details of the model and the three
other components – SensorApp, ControlApp, and Web
Service.

A. Sensor Nodes

The sensor nodes are devices that provide the raw
data. They should be inexpensive, easy to deploy and
replaceable. Each sensor node may have a different sensor
configuration, and they should operate independently from
other sensor nodes.

It was determined that the sensor node should
implement the following features (steps denoted in italics
are not part of the prototype implementation):

1) Detect attached sensors.

2) Associate with the master node and synchronize
configuration data.

3) Read raw data from the attached sensors.

4) Convert the raw data to a transferable format.

5) Send the data over a wireless network to the
master node.

6) Sleep and start over from the third step.

The choice of data format used between the sensor
nodes and the master node depends on: the available
network, bandwidth, and computational resources;
developer preference; and use case. Especially for testing
and debugging, a human readable format is recommended,
but not strictly required.

B. Master Node

The requirements for the master node are higher than
for a sensor node. The master node is specified to be a
gateway between data consumers (clients) and data
producers (sensor nodes). The master node should be
powerful enough to execute multiple processes, such as:

 communications with sensor nodes,

 database operations and

 web services.

As the master node is powered on, it will run the code
to listen for sensor nodes to associate and send the data. It
will also start the Web Service for processing the data and
delivering it to the outside world over the Internet.

When the master node receives the data packet, it will
inspect the address and details of the sender, compare it to
the associated sensor nodes, and parse the data. As a
security measure, the master node could be instructed to
discard all data sent by an unknown sensor node or by a
sensor node that does not provide the correct
configuration.

If the data received from sensor nodes is not in a
structured format it should be transformed to allow easier
use. Commonly used formats for Internet applications are
JSON and XML, and both are good choices for delivery of
data to clients.

IV. EXAMPLE SYSTEM IMPLEMENTATION

The example works as a proof-of-concept
implementation, and we do not have a particular use case
for it as such. In our earlier publication [1], we presented a
system for environment sensing, which utilizes various
sensors for collecting measurements (e.g. temperature,
humidity), and the case is still equally valid. In fact, the
model presented in this paper can be seen as an
improvement on the system described, and the model has
also been developed based on the findings of the studies
performed earlier. The primary purpose of the prototype
solution was to show that a feasible system for remotely
collecting sensor data can be constructed based on the
model.

For the master node we chose an Intel Galileo Gen 2
Development Board [10], which is based on Intel x86
architecture. The Galileo is a single-board computer
similar to Beagle Bone or Raspberry Pi. Each of the three
boards has the features required to implement our example
use case, and in principle, either of the other boards could
have been chosen instead. We chose Arduino Uno for the

sensor nodes. Galileo, BeagleBone and Raspberry Pi
belong to a higher price category than Arduino Uno.
Because of the lower price, Arduino Uno makes a more
feasible platform for numerous sensor nodes.

Galileo includes a 10/100 Ethernet connection, which
we use to connect to the public Internet for the purpose of
delivering the collected data to the clients. The web
services are provided by a server built on Node.js [11].
The Node.js instance can be somewhat resource intensive,
but it seemed to work acceptably in our tests with a small
number of concurrent users.

The internal memory of the Galileo is quite limited, so
we installed the Yocto Linux operation system [12] on a
microSD card to provide a larger storage space. This is
especially important, as the database is also located on the
master node, and the built-in memory may not be capable
of holding all of the collected data. Additionally, the
embedded Linux based operation systems usually include
common Linux software such as Secure Shell (SSH)
server for easier configuration of the node and they are
also capable of running other applications primarily
targeted for full-feature desktop or server computers (e.g.
Apache Tomcat, Java virtual machine).

One advantage of the Galileo board is the support for
ready-made hardware expansions shields designed for
Arduino. In our example implementation we used the less
powerful Arduino Uno [13] for the sensor nodes, which
allows us to use the same expansion components for both
the master node and the sensor nodes. In this construction
we used the Arduino Wireless Proto Shield with XBee
modules [14] to implement the communication between
the master node and the sensor nodes. The XBee modules
are based on ZigBee and are designed for low-power
wireless networks. The expansion modules make it
possible to add and remove components easily reducing
the need for soldering.

Communication with XBee can be done using the
basic AT or the more advanced API mode [15]. In our
implementation, the XBee API mode was utilized. Using
the API mode with packet communication allows the
transport layer to handle collision situations and possible
data corruption.

Communication between sensor nodes and the master
was tested indoors for finding out the average operation
range. At a range of one to two rooms (about 15 to 20
meters) the communication did not drop any packets. At
larger distances (about 30 to 40 meters) with a few walls
between the sensor node and the master node, some
packages were dropped, but the communication still
worked at an acceptable level. When the distance was
about 50 meters and there were several walls no packets
were received. The most significant factor of operating
range was the thickness and amount of walls. In the worst
case, no packets were received when the sensor was on
another floor and the distance was less than 30 meters.
Our test environment was an old factory building
converted to office use. The walls and floors are
somewhat thicker than in an average building, which
could affect the results.

We also ran stress tests against the master node's web
service interface. The concurrent communications
between master node and sensor nodes had only a minor
effect on the overall performance of the web service.
Based on our observations the Galileo board reserved
about half of the CPU time for the Arduino process that
performed the communication between the nodes. For use
cases with low amount of clients, the limited CPU
capabilities were not a problem. With a larger amount of
concurrent clients (more than 50) the service experienced
a noticeable increase in response times. Even higher
amount of clients (more than 150) the latency became
excessive and the server occasionally dropped the client
connections.

Each of our sensor nodes contains three types of
sensors: an air pressure sensor [16]; a photoconductive
cell luminosity sensor (NSL-19M51) [17]; and a
combined humidity and temperature sensor (AM2302)
[18]. There are plenty of community created libraries and
drivers for interacting with the attached hardware on
Arduino, though in our case, we had some difficulties in
finding useful code examples of how to utilize the sensor
components we had chosen.

For the visualization of the data we utilized the
methods presented in [19]. Importantly, the visualization
is performed by the client’s web browser displaying the
JavaScript-based web page hosted on the master node.
This approach is useful as it conserves the limited
resources of the master node by off-loading the
visualization work-load to the client side.

V. DISCUSSION

The model presented in this paper does not define the
requirements for data encryption. The reason is that
whether encryption is required or not largely depends on
the use case. In our case, we chose ZigBee for data
transmission between the master and the sensor nodes.
ZigBee provides encryption by default, which is strong
enough for our case. In fact, in our example use case, no
encryption would be required simply because the data is
not sensitive - for example, temperature and humidity can
be measured by anyone, simply by entering the sensor
location (room). If the sensor nodes autonomously send
the details to the master node, and the master does not
actively control the sensors, the requirements for
encryption are lower than in the case where the master
node actually controls the slaves. If any control data –
orders on if, what, and how often – are sent by the master
node, more thought should be put into the encryption, as
well as into the authentication methods to reduce the risk
of malicious use of the nodes. Often the chosen
transmission method (e.g. ZigBee, Bluetooth and WLAN)
can offer hardware based authentication and encryption
options fit for most cases.

Another equally important issue not discussed in this
paper is energy efficiency. The components chosen for the
example system have low power consumption, but we
have not performed extensive measurements for the power
usage of the implemented system. Similarly to encryption,
the model defines the requirements. In practice, the master
node can usually be placed in a location, which has access

to a constant power source, but the remote nodes may
need to be run on battery power. For this reason one
should carefully choose which components to use in the
remote sensors to minimize the power consumption. In
addition to component choices, the energy efficiency can
be improved by the device software. The measurements
performed by the sensors do not necessarily use much
power, and most of the energy is spent on the wireless
transmission of data. In our case, we control the power
consumption by limiting the frequency and number of
data transfers. In this case, there is no need to gather the
measurements strictly in real-time. This makes it possible
either to take measurements at a more relaxed pace (for
example, every few minutes) or take measurements more
often, but send the results infrequently in larger result sets.
If control data is sent between the master and the sensors,
the master can also control the rate of transmission. Also,
if the data is preprocessed on the sensor nodes, the nodes
themselves can make simple decisions on the frequency of
communication. For example, if the nodes detect that
there is a larger change in the measured values, there
might be a need for more frequent transmission of data,
but if the values stay the same, the data can be sent less
frequently. In principle, there is no need to transfer any
data as long as there is no change in the measurements,
although in practice, status checks between the master and
the sensor nodes should be performed to ensure that the
sensors are alive and well.

One possible future research topic this paper does not
analyze in depth is the matter of scalability. From the
model’s point of view, there can be an unlimited amount
of sensor nodes for each master node, but often the chosen
technologies pose limitations on the actual number of
devices. In our tests the networks have been relatively
small with a single master and only a few (less than ten)
sensor nodes. With these kinds of small configurations the
model has been proven to work, but it would be
interesting to see what problems would arise in larger
networks. Of course, reaching the technical device limits
for the communication methods for testing purposes may
be difficult simply because the required number of devices
can be so high that it would cost too much to ever acquire
enough sensor nodes. In fact, it is possible that the master
node’s capacity to process and store the received data
would run out sooner simply because of the limited
computing performance of the master’s hardware.

VI. SUMMARY

This paper introduced a model for sensor networks
used for gathering and distributing sensor measurements.
The model consists of several sensor nodes and of a
master node. The sensor nodes collect the raw sensor data,
and the master node gathers the data from each of the
sensor nodes, and provides the data for clients in a
structured format. A proof-of-concept implementation
based on the model was also introduced.

REFERENCES

[1] M. Saari, P. Sillberg, P. Rantanen, J. Soini, and H. Fukai, “Data
collector service - practical approach with embedded linux,” in
2015 38th International Convention on Information and
Communication Technology, Electronics and Microelectronics
(MIPRO), 2015, pp. 1037–1041.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless sensor networks: a survey,” Comput. Networks, vol. 38,
no. 4, Mar. 2002, pp. 393–422.

[3] A. Adriansyah and A. W. Dani, “Design of Small Smart Home
system based on Arduino,” in 2014 Electrical Power, Electronics,
Communicatons, Control and Informatics Seminar (EECCIS),
2014, pp. 121–125.

[4] X. Jin, S. Chun, J. Jung, and K.-H. Lee, “IoT Service Selection
Based on Physical Service Model and Absolute Dominance
Relationship,” 2014 IEEE 7th Int. Conf. Serv. Comput. Appl.,
2014, pp. 65–72.

[5] T. Laukkarinen, Abstracting Application Development for
Resource Constrained Wireless Sensor Networks. Tampere, 2015.

[6] C. P. Kruger, A. M. Abu-Mahfouz, and G. P. Hancke, “Rapid
prototyping of a wireless sensor network gateway for the internet
of things using off-the-shelf components,” Proc. IEEE Int. Conf.
Ind. Technol., vol. 2015-June, no. June, 2015, pp. 1926–1931.

[7] Lukas, W. A. Tanumihardja, and E. Gunawan, “On the application
of IoT: Monitoring of troughs water level using WSN,” in 2015
IEEE Conference on Wireless Sensors (ICWiSe), 2015, pp. 58–62.

[8] J. Dos Santos, C. Hennebert, and C. Lauradoux, “Preserving
privacy in secured ZigBee wireless sensor networks,” in 2015
IEEE 2nd World Forum on Internet of Things (WF-IoT), 2015, pp.
715–720.

[9] Zigbee Alliance, “ZigBee Specification, Document 053474r20,”
2012, Retrieved February 19, 2016 from
http://www.zigbee.org/download/standards-zigbee-specification/

[10] Intel Corporation, “Intel Galileo Gen 2 Development Board,”
2014. Retrieved February 19, 2016 from

http://www.intel.com/content/www/us/en/embedded/products/galil
eo/galileo-g2-datasheet.html

[11] Node.js Foundation, “Node.js v5.6.0 Documentation.” Retrieved
February 19, 2016 from https://nodejs.org/api/

[12] Yocto Project and Linux Foundation, “Yocto Project.” Retrieved
February 19, 2016 from https://www.yoctoproject.org/

[13] M. Banzi and Shiloh, “Getting Started with Arduino,” 3rd ed., vol.
11. Maker Media, Inc, 2014.

[14] MaxStream, “XBee TM Series 2 OEM RF Modules,”. 2007, pp.
1–60.

[15] M. Kooijman, Building Wireless Sensor Networks Using Arduino.
Packt Publishing Limited, 2015.

[16] Freescale Semiconductor, “Miniature I2C Digital Barometer
MPL115A2,” 2013. Retrieved February 19, 2016 from
http://cache.freescale.com/files/sensors/doc/data_sheet/MPL115A
2.pdf.

[17] L. Curvan, “Data Sheet, NSL-19M51, TO-18 Open Plastic
Encapsulated,” 2008. Retrieved February 19, 2016 from
http://docs-europe.electrocomponents.com/webdocs/002e/
0900766b8002e0d5.pdf.

[18] Aosong Electronics Co Ltd, “Digital-output relative humidity &
temperature sensor/module DHT22/AM2302,” 2015. Retrieved
February 19, 2016 from https://www.sparkfun.com/
datasheets/Sensors/Temperature/DHT22.pdf.

[19] J. Soini, P. Sillberg and P. Rantanen, “Prototype System for
Improving Manually Collected Data Quality,” 2014 Proceedings
of the 3rd Workshop on Software Quality Analysis, Monitoring,
Improvement, and Applications, SQAMIA 2014, September 19-
22, 2014, pp. 99-106.

110

PUBLICATION

III

Interpretation, Modeling and Visualization of Crowdsourced Road
Condition Data

Sillberg, P., Saari, M., Grönman, J., Rantanen, P. and Kuusisto, M.

Intelligent Systems: Theory, Research and Innovation in Applications. Ed. by
Jardim-Goncalves, R., Sgurev, V., Jotsov, V. and Kacprzyk, J. 2020, 99–119. (Extension of

peer reviewed conference publication Sillberg et al., 2018)
DOI: 10.1007/978-3-030-38704-4_5

Publication reprinted with the permission of the copyright holders

https://doi.org/10.1007/978-3-030-38704-4_5

Interpretation, Modeling, and Visualization of
Crowdsourced Road Condition Data

Pekka Sillberg, Mika Saari, Jere Grönman, Petri Rantanen, and Markku
Kuusisto

Tampere University, Faculty of Information Technology and Communication Sciences, Pori,
Finland

Abstract Nowadays almost everyone has a mobile phone and even the most
basic smartphones often come embedded with a variety of sensors. These sensors,
in combination with a large user base, offer huge potential in the realization of
crowdsourcing applications. The crowdsourcing aspect is of interest especially in
situations where users’ everyday actions can generate data usable in more com-
plex scenarios. The research goal in this paper is to introduce a combination of
models for data gathering and analysis of the gathered data, enabling effective da-
ta processing of large data sets. Both models are applied and tested in the devel-
oped prototype system. In addition, the paper presents the test setup and results of
the study, including a description of the web user interface used to illustrate road
condition data. The data were collected by a group of users driving on roads in
western Finland. Finally, it provides a discussion on the challenges faced in the
implementation of the prototype system and a look at the problems related to the
analysis of the collected data. In general, the collected data were discovered to be
more useful in the assessment of the overall condition of roads, and less useful for
finding specific problematic spots on roads, such as potholes.

1 Introduction

It is important to keep road networks in good condition. These days, technology
and mobile devices in particular enable the automation of environmental observa-
tion [1, 2]. Mobile phones can be deployed for a particular purpose for which they
were not originally designed. In addition, applications that combine road mainte-
nance and mobile devices have already been developed [3]. In Finland, there has
been a similar study on how to utilize mobile phones for collecting road condition
information [4]. In the study, bus companies tested mobile phone soft-ware that
sends real-time weather condition data to road maintainers in winter time. Never-
theless, traditional road condition monitoring requires manual effort – driving on

2

the roads and checking their condition, observing traffic cameras, and investigat-
ing reports and complaints received from road users. Automation of the monitor-
ing process, for example by utilizing crowdsourcing, could provide a more cost-
efficient solution.
Data gathering is an important part of research related to the Internet of Things

(IoT) [5]. In this research, the focus of data gathering has been redirected toward a
Wireless Sensor Network (WSN) [6] type of solution. Previously, we have studied
technologies related to applications that automate environmental observations uti-
lizing mobile devices. In a recent research study [7], we introduced two cases: the
tracking and photographing of bus stops, and the tracking and photo-graphing of
recycling areas. The first case used mobile phones and the second used a Raspber-
ry Pi embedded system. Our other study [8] facilitated the utilization of infor-
mation gathered from road users. As part of the research work, a mobile applica-
tion was developed for gathering crowdsourced data.
The gathered data per se are not very usable and therefore some kind of pro-

cessing is necessary. Ma et al. discussed IoT data management in their paper [9]
and focused on handling data in different layers of WSN. Also, they discussed da-
ta handling challenges, approaches, and opportunities. In this study we use our
previously introduced Faucet-Sink-Drain model [10]. In this model the data pro-
cessing and data sources are combined in a controlled and systematic way.
This paper is an extension of Sillberg et al. [11], where the focus was on intro-

ducing the prototype system. In this extension paper, more emphasis is placed on
the models behind the prototype system. We have developed a mobile application
for sensing road surface anomalies (called ShockApplication). The purpose of this
application is to sense the vibration of a mobile phone installed in a car. The ap-
plication was tested by gathering data on real-life scenarios. The data were stored
in a cloud service. In addition, we present methods that utilize the free map ser-
vices available on the Internet for visualization of the data.
The research goal in this paper is to combine models of 1) data gathering and 2)

analysis of the gathered data that enables effective data processing of large data
sets. Both models were applied and tested in the developed prototype system. Our
previous studies related to the models are presented in Section 3, where the data
gathering model and the modifications made for this study are introduced in sub-
section 3.1. Data processing produces useful information for the user. Subsection
3.2 describes the processing model used in the prototype system. This model is
designed as a general-purpose tool for systematic control and analysis of big data.
With the use of these fundamentally simple models it is possible to create practical
and interoperable applications.
The rest of this paper is structured as follows. In Section 2, we introduce the re-

lated research on crowdsourcing efforts in the collection of road condition data.
Section 4 integrates the models presented in Section 3. In Section 5, we present
the test setup and results. Section 6 includes a discussion and suggestions for fu-
ture research on the topic and finally, the study is summarized in Section 7.

3

2 Background

Nowadays almost everyone has a mobile phone and even the most basic
smartphones often come embedded with a variety of sensors [2]. This opens up the
possibility of crowdsourcing through the use of mobile phones. The term
crowdsourcing was defined by [12] in 2006. When several users use their devices
for gathering data for a specific purpose, it can be considered a crowdsourcing ac-
tivity. The idea of utilizing crowdsourcing as a model for problem solving was in-
troduced in [13]. Furthermore, crowdsourcing can be used to support software en-
gineering activities (e.g., software development). This matter has been widely
dealt with in survey [14].
There have been several studies on using a mobile phone to detect road sur-face

anomalies. One piece of research [15] presented an extensive collection of related
studies. Further, the research introduced an algorithm for detecting road anomalies
by using an accelerometer and a Global Positioning System (GPS) integrated into
a mobile phone. The application was described as easy-to-use and developed for
crowdsourcing, but the crowdsourcing aspects were not elaborated. The tests were
performed with six different cars at slow speeds (20 km/h and 40 km/h). The route
used in the test was set up within a campus area. The research paper did not dis-
cuss the visualization aspect nor the application itself and focused primarily on the
algorithm that was presented.
The research presented in [16] and [17] was aimed at finding particular holes in

a certain road. [16] used a gyroscope instead of an accelerometer and looked for
spikes in the data. The other information logged was sampling time, speed, and
GPS locations. The test was conducted on a route that was about four kilometers
long and the test was repeated five times to ensure consistency and repeatability.
The crowdsourcing aspect was not mentioned and, according to the paper, the da-
ta were collected “through a common repository.” The research [17] presented an
Android application for detecting potholes, but did not provide much detail on the
technical implementation.
There are several studies where the research was performed in a real-life sce-

nario using taxis [18, 19] or buses [20]. In study [18], the data were gathered by
seven taxis in the Boston area. The data collection devices were embedded com-
puters running on a Linux-based operating system. In study [19], the data were
gathered by 100 taxis in the Shenzhen urban region. The devices consisted of a
microcontroller (MCU), a GPS module, a three-axis accelerometer, and a GSM
module. The devices were mounted inside the cars and sent the data to servers
over a wireless connection. The main idea of the research [18] was to collect data
and then train a detector based on the peak X and Z accelerations and instantane-
ous velocity of the vehicle. The result reported in the paper was that over 90% of
the potholes reported by the system were real potholes or other road anomalies.
The crowdsourcing aspect was not mentioned, and the visualization was limited to
showing a set of detections on a map. In study [20], the data were gathered by
phones installed in buses. The data were projected on a map, but the amount of da-

4

ta collected (100 MB/week) and how this would affect a larger crowd were not
discussed.

3 Two-phased Model of Data Processing

The research goal in this paper is a combination of models for 1) data gathering
and 2) analysis of the gathered data which enables effective data processing of
large data sets. Both models were applied and tested in the developed prototype
system. With the use of these fundamentally simple models, it is possible to create
highly practical and interoperable applications that can improve the overall quality
of software.
The data gathering model and the modifications made for this study are intro-

duced in subsection 3.1. The model is one type of Wireless Sensor Network
(WSN) solution. In addition, the usage of the model in our previous research is in-
troduced.
Subsection 3.2 describes the processing model used in the prototype system.

The processing model is designed as a general-purpose tool for systematic control
and analysis of big data. However, the model is very flexible and should fit a wide
range of applications.

3.1 Data Gathering

Data gathering is an important part of research on the Internet of Things (IoT). In
this research, the focus of data gathering has been redirected toward the WSN type
of solution. Because we use mobile phones as sensor nodes, it could be catego-
rized as a mobile sensor network. The advantages of a mobile sensor network have
been discussed by Dyo [21]. In addition, Leppänen et al. [22] discuss using mobile
phones as sensor nodes in data collection and data processing. A survey conducted
in 2002 compiled the basic features of sensor networks [23].
In this study, we used the previously presented data gathering model. This

model was introduced by Saari et al. [24] and it has three main parts: sensor node,
master node, and cloud. The sensor node sends data to the master node. The mas-
ter node collects and saves data, but does not process the data significantly. The
master node sends data to the cloud service which stores the data. The data gather-
ing model includes the following WSN features presented in [23]:

• Sensor nodes can be used for continuous sensing - When using a mobile phone
as a sensor node, this is enabled by dedicated software.

• The mobile phone includes the basic components of a sensor node: sensing
unit, processing unit, transceiver unit, and power unit.

5

• A sensor network is composed of a large number of sensor nodes - The proto-
type design presented in this study does not limit the number of mobile phones
used.

• The network - Mobile phones have the communication network provided by
telecommunications companies.

The model has been tested with an off-the-shelf credit card sized computer and
other instruments [24-26]. The data collector service [25] used a BeagleBone
Black computer and sensors. The embedded Linux controlled sensor net-work
[24] used Arduino boards and sensors for the sensor nodes and an Intel Galileo
Computer for the master node. Communication between sensor nodes and master
nodes was handled with ZigBee expansion boards. The third study [26] used the
model to test a low-energy algorithm for sensor data transmission from sensor
nodes to master node.
Fig. 1 shows the modified data gathering model. The present study differs from

previous research in that we used mobile phones for data gathering, which caused
changes to the data gathering model. Another difference from the previous model
[24] is that the sensor nodes and master nodes are combined into one entity. This
was due to the use of mobile phones as sensor devices. The mobile phone includes
the necessary sensors, data storage, and communication channels for this proto-
type system. In addition, the mobile phones use the Android operating system
(OS), which has enough capabilities to gather and store data. Also, the communi-
cation protocols are supported by OS. We developed the testing software during
this research. This software, called the ShockApplication, and its properties are
described later in Section 5.1.

Fig. 1. The modified data gathering model.

The usage of mobile phones enabled the crowdsourcing idea. The developed
ShockApplication can be installed on all modern Android phones. The user has an
identification mark which helps to order the data points in the cloud. The data are
stored in a cloud service.

6

3.2 Data Processing: Manageable Data Sources

For the data processing part, the Faucet-Sink-Drain model introduced in [10] is
applied to the system architecture. The ultimate goal of the model is to enable re-
alization of a framework that is able to manage data and data sources in a con-
trolled and systematic way [10]. In this study, the model was applied to the proto-
type system, but the implementation of the framework was not carried out. This
prototype is the first instance of the model in a real-world use case and will help in
the further evaluation and development of the model.
The model considers that data processing can be modeled with a water piping ap-
paratus consisting of five components: faucets, streams, sink, sieves, and drains
[10]. The data flow through the model as many times as is deemed necessary to
achieve the desired information. At each new cycle, a new set of faucets, sieves,
and drains are created, which generate new streams to be stored in the sink. [10]

Fig. 2. Abstract data processing model. [10]

The components of the Faucet-Sink-Drain model are shown in Fig. 2. The fau-
cet is the source of the data (e.g., original source or processed source). The run-
ning water (i.e., strings of numbers and characters) are instances of data streams,
and the sink is used for storing of the data. The sieve is a filter component with the
capability of selecting and processing any chunk of any given data stream. The
drain is a piping system to transfer data to other locations. The drain may also be
utilized for removal of excess data. [10]
The Faucet-Sink-Drain model, by design, does not specify how the data are

gathered into it. As shown in Fig. 2, the initial data simply appear in the model by
means of the attached faucet (or faucets). The gap can be filled by utilizing models
that are stronger in this respect, such as the data collection model described in
subsection 3.1.

7

4 Integration of the Models in the Prototype System

The models used lay out the basis for measurement and data analysis. By follow-
ing them, it is then possible to implement the artifacts of the prototype system.
The implemented prototype system has five identifiable high level tasks:

1. Acquisition: The data are gathered by a mobile device, which acts as a com-
bined sensor-master node as it is capable enough for both of those tasks.
2. Storage: The cloud service receives and parses the data (communicated by
the master node). Parsing of the data is the first task to be done on the system
before the received data can be fully utilized. After parsing is finished, the ser-
vice can then proceed by storing and/or by further processing the data.
3. Identification and Filtering: The data will be identified and filtered when the
service receives an HTTP GET query on its REST (Representational State
Transfer) interface. The selection is based on the rules that are passed in the re-
quest as parameters.
4. Processing: The selected data are processed further by the rules given out by
the program.
5. Visualization: The data provided by the service are finally visualized in a
client's user interface, e.g., web browser.

The data gathering is performed by a mobile phone by utilizing several of its
available sensors. Secondly, the collected data are communicated to the cloud ser-
vice where storage, selection, and further processing of the data are implemented.
Once the data have been processed the last time, they are ready to be presented to
the user, for example, to be visualized in a web browser or provided to another
service through a machine-to-machine (M2M) interface.

Fig. 3. System deployment diagram.

8

Fig. 3 shows the deployment diagram of the implemented system. It also de-
picts where the aforementioned tasks are carried out. These tasks can also be iden-
tified from the incorporated models, the Data Gathering model and the Faucet-
Sink-Drain model. The first task, data acquisition, corresponds to the whole data
gathering model and also to the combination of the (leftmost) faucet and stream
icons in Fig. 2. The storage task matches the sink icon in Fig. 2. The (right-most)
sieve in Fig. 2 represents the third task, identification and filtering whereas the
combination of (rightmost) drain and faucet represent the processing task. The fi-
nal step, visualization, is said to be handled by the sink as it is "used to store and
display data" [10]. However, the visualization step could begin as early as when a
data stream has emerged from a faucet and could last until the moment the data
have finally been drained out from the sink.

5 Testing

The high-level description of our testing setup is illustrated in Fig. 4. The purpose
was to gather data from mobile devices – primarily smartphones – that could be
used to detect the surface condition of the road being driven on. These data could
be further refined into more specific data, such as reports of bumps on the road,
uneven road surfaces, roadworks, and so on. The traffic signs visualize the possi-
ble roadside conditions that users might be interested in. The data are sent to a
central service and can be later browsed using a user interface running in a web
browser.

Fig. 4. High-level diagram of the test setup.

In our case, the users travelled by car. In principle, other road users such as cy-
clists or motorcyclists could be included, but in the scope of this study, only pas-
senger car users were considered.

9

5.1 Setup

Existing studies often assume that the device is firmly attached in a specific place
inside the vehicle, and in a specific way, but for crowdsourcing purposes this is
not a feasible scenario. It should be possible to attach the device in a way that is
the most convenient for the user, and in an optimal scenario the device could also
be kept, for example, inside the pockets of the user. In our benchmarks, the device
holder was not limited although we presumed that the devices were placed in a
fairly stable location, and did not move about the vehicle in an unpredictable fash-
ion (e.g., sliding along the dashboard).
In addition to the attachment of the device, several other factors (e.g., suspen-

sion, tires, vehicle load, and weight) may affect the sensor reading. It can be chal-
lenging to implement measurement of these factors in crowdsourcing scenarios.
Due to these limitations, we decided to focus on sensors available in commonly
used mobile devices.

Fig. 5. The Android test client.

The testing software itself was a simple Android application, usable on any rea-
sonably recent Android phone. Most of the newer smartphones generally contain
all the necessary sensors required in our use case. The application consists of a
single main view, shown on the left side of Fig. 5. In our case, the user only needs

10

to input his/her credentials (in the example, “user”) and use the start and stop but-
tons to control when the sensors are active. The user interface also contains a few
convenience functions: the possibility to attempt manual transmission of all col-
lected data; a count, which shows the total number of measurements (a single
measurement contains all sensor data collected at a particular point in time, in the
example pictures taken from an Android emulator the value is shown simply as
“0”); the option to create all measurements as “public”, which means that any
logged-in user can see the travelled route and the collected measurements; the op-
tion to save the updated settings, mainly authentication details; and two debug op-
tions that the users do not generally need to use. The software will automatically
select between the linear accelerometer (which is used, if available) and the basic
accelerometer. If the device is set on a stable surface the linear accelerometer
should show zero for all axes and the accelerometer should show gravity, but in
practice the devices showed slight variances from the expected values. The “show
systematic error” option can be used to show the currently measured values and to
select whether the systematic error should be removed from the values before
sending the results to the service. The “print log” can be used to show a debug log
of the events (such as errors) detected since application startup. It would have also
been a minor matter to simply hide the debug options from the user interface, but
as the primary purpose of the application was to collect data and this version of
the application would not be made available for public down-load and installation
(e.g., in an application store), there was no specific need to polish the user inter-
face. Thus, the users were simply instructed to input their credentials and use the
start and stop buttons, and to ignore the other options.
The sensor measurements are collected by an Android foreground service,

which runs as a background process. After the service has been started, the main
application can be freely closed and the statistics of the collected data (number of
measurements) can be seen in the Android’s pull-down menu, which is visible on
the right side of Fig. 5. In the trial, the users kept the sensors on while driving (i.e.,
when “participating” in the trial) and off at other times. In addition to changing the
user credentials, no further configuration was required by the users.
The application was used to measure accelerometer data (X, Y, and Z accelera-

tion), direction, speed, location (GPS coordinates), and timestamps. The collect-
ed information was automatically sent to the service at pre-defined intervals (eve-
ry 30 minutes) by the background process. In addition, gyroscope and rotation da-
ta were stored on-device in an SQLite database for possible future debugging or
testing purposes (e.g., for detecting braking or acceleration events, or the orienta-
tion of the device in general), but these data were not synchronized with the ser-
vice.
For practical reasons (e.g., limitations in the available server capacity), the user

trial was not open to an unlimited number of users. A total of ten users participat-
ed in the trial, of which half were university personnel and the other half volun-
teers from the staff of the City of Pori and from a company participating in our re-
search project. The users either used their own smartphones or borrowed one from
the university. The user’s choice of car was not limited, but as the users generally

11

drove their own cars, the selection of cars driven turned out to consist of smaller
personal cars. A couple of users reported driving two different cars, so the number
of cars was slightly higher than the number of users. The routes driven were a
mixed set of commuting, work-related trips, and leisure. The majority of the driv-
ing involved consisted of driving from home to work, as reported by the users.
This can also be seen in the collected data, as the same (identical) routes were
driven on a daily basis.
Most of the driving was concentrated around the cities of Pori and Rauma, lo-

cated on the west coast of Finland. Additional driving was done around the city of
Tampere, which is located further inland, including the highway connecting Pori
to Tampere. The distances were approximately 110 kilometers between Pori and
Tampere and 50 kilometers between Pori and Rauma. Pori and Rauma are slightly
smaller cities (with populations of about 85 000 and 40 000, respectively) whereas
Tampere is the third largest city in Finland (with a population of about 232 000),
although in the case of Tampere the routes driven were located mostly outside the
city center. The routes are also illustrated in Fig. 6 (Section 5.3). The total dura-
tion of the testing period was about three months (from March 2018 to June 2018).

5.2 Results

The number of data points can be seen in Table 1, where the count and percentage
figures of the data are grouped by different Shock Levels. The shock levels are ar-
bitrary levels used for breaking down the data from the accelerometer readings.
The first row (LN/A) indicates the data points where the test device did not calcu-
late the shock level. The highest level (L4) represents the most intense values re-
ported by the accelerometer. The levels can be recalculated afterwards for each
device if needed. The shock levels are further discussed in Section 5.3.

Table 1. Breakdown of shock data points.

Shock Level

v ≥ 0 m/s v ≥ 1 m/s
n % n %

LN/A 334730 69.3 312334 68.3

L0 98367 20.4 98320 21.5

L1 45083 9.34 42101 9.20

L2 3419 0.71 3413 0.75

L3 904 0.19 904 0.20

L4 368 0.08 368 0.08

Total Count 482871 100 457440 100

Total Count with Level 148141 30.7 145106 31.7

12

The data point count on the left side of Table 1 includes all data regardless of
the speed, and the right side omits speeds below 1 m/s. We have arbitrarily chosen
1 m/s to be the lowest speed recorded and taken into account in our test. This pre-
vents the device from collecting data when the vehicle ought to be stationary, and
helps to reduce the amount of unnecessary data.
In the further analysis of the data, only the pre-calculated shock level data

where the speed is at least 1 meter per second are included (nLEVEL = 145106).
This represents approximately 30 percent of the total data collected. No further da-
ta have been eliminated from this data set. The relative percentage figures for each
level in nLEVEL are L0 = 67.7, L1 = 29.0, L2 = 2.35, L3 = 0.62, and L4 = 0.25.
Tables 2 and 3 illustrate how the speed affects the measured shock intensity in

the collected data. Rows 1 to 5 display the data of each individual level, while the
last row (L0—4) indicates the summarized information including each level. Table
2 indicates the average speed (vAVG) and the standard deviation (vSTD) in each
group. The average speed is quite similar on each level, while the standard devia-
tion is only slightly lower on levels L0 and L1 than on the others. Additionally, the
average speed and standard deviation of all data points (i.e., data with and without
shock levels) was 68.0 km/h and 23.4 km/h. The respective values for data points
without a shock level were 69.2 km/h and 21.6 km/h. The average speed and
standard deviation information alone seem to support the fact that the reported
shock levels occur around a speed of 65 km/h. However, when the data are further
divided into speed-based intervals, the average speeds can be seen to be slightly
higher, and about two-fifths of the data points are located above the 80 km/h limit.
Based on the data, it can be observed that algorithms used for detecting vibra-

tions and road condition anomalies should cover at least the common urban area
speed limits (from 40 km/h to 60 km/h) and preferably up to highway speeds
(from 80 km/h to 100 km/h). In the area around the city of Pori, lower speeds were
less represented than higher speeds. Thus, algorithms developed only for slower
speeds would not be feasible for practical implementations.

Table 2. Average speed per shock level.

Shock
Level

Speed (km/h)

vAVG vSTD

L0 63.7 27.2

L1 70.5 24.4

L2 64.3 30.2

L3 59.6 32.4

L4 55.0 32.3

L0—4 65.6 26.8

Table 3 displays the distribution of data points belonging to a given speed in-
terval. There are six right-open intervals starting from 3.6 km/h (i.e., 1 m/s), and

13

ending at 120 km/h. The last row (L0—4) indicates the percentage share of data in
each speed interval of all data points. The bulk of the data belongs to the lowest
level. The lowest level (L0) appears to be over-represented in the lowest three
speed intervals (3.6—60 km/h) whereas a small amount of the percentage share
seems to have shifted from the lowest level (L0) to the next level (L1) in the last
two speed intervals (80—120 km/h).
It seems logical that higher speeds (i.e., greater energy) create more variance in

the vibration detected by the sensor, but on the other hand, levels L2, L3, and L4
appear slightly less often at higher speeds. It can only be speculated whether the
reason is – for example – due to the better overall condition of roads with higher
speed limits, or the fact that the phone/sensor is simply not able to record every-
thing because it is not necessarily mounted in the car securely.

Table 3. Distribution of data points per shock level.

Shock
Level

Data Point Distribution Based on Speed (%)
Right-Open Intervals; km/h

[3.6, 20[[20, 40[[40, 60[[60, 80[[80, 100[[100, 120[

L0 76.9 70.8 78.2 68.2 60.8 63.0

L1 17.8 25.5 19.1 29.5 35.9 32.9

L2 3.50 2.51 1.90 1.74 2.53 2.87

L3 1.28 0.76 0.53 0.43 0.54 0.91

L4 0.56 0.40 0.25 0.14 0.20 0.29

L0—4 7.83 13.6 14.8 22.1 36.7 4.99

Speeds above 120 km/h account for a negligible amount of data points (totaling
38 data points), thus the information is not shown in Table 3. Almost three-fifths
(58.8 percent) of the data points are distributed between 60 and 100 kilometers per
hour. The phenomena can be explained by two facts. First, the data collection was
conducted mostly on longer distance journeys on the highways between major cit-
ies, corresponding to higher speed limits and a longer time spent on the road. Sec-
ond, heavy traffic in the tested area is not commonly observed. More detailed in-
formation may be retrievable if the data are observed on the user/device level
rather than on the global level. In future, it might also be worthwhile re-
calculating the data in four levels instead of five to obtain a clearer distinction be-
tween “good road condition” data and “bad road condition” data. Currently, levels
L0 and L1 seem to overlap, and contain both data types.

5.3 Visualization

Five levels (0-4) were used for describing the detected condition of the road. The
number of levels has no specific meaning, and another amount of levels could be

14

chosen for more coarse or fine-tuned results. The levels are dynamically calculat-
ed per device, with level L0 being the “normal” of the device and L4 being the
most extreme. In the current version of our application, the calculations do not
take speed into consideration, even though speed does have an effect on the inten-
sity of the measured values (e.g., variance). An exception to this is the exclusion
of very low speed values (e.g., < 1 m/s), which could be caused by the user tempo-
rarily leaving the vehicle to walk about or be erroneous values caused by GPS in-
accuracies when the vehicle is not in fact moving. In any case, even with-out uti-
lizing the velocity data, the measured levels seem to correspond fairly accurately
to the overall road conditions. Still, improved analysis of speed data could perhaps
be used to further increase the accuracy of the level calculations.
In our case, the levels can be calculated either from the long-term data collect-

ed on the device (or from the data stored for testing purposes on the server), or by
using a smaller data set, such as the data collected within the last 30 minutes. Ul-
timately, we decided to use smaller data sets when calculating the levels and
showing the visualization on the map. The primary purpose of this was to mini-
mize the effects caused by the user’s change of vehicle as well as the cases where
the user kept his/her device in a different holder or location on different trips. The
test users also reported a few times when they had accidentally dropped the de-
vice, or the device had come loose from its holder. The former cases were fairly
easy to recognize based on the reported, much higher than normal, acceleration
values, but the latter cases tend to be erroneously detected as road condition prob-
lems.
In any case, the calculated levels should be fairly comparable regardless of the de-
vices used, even when the individual values reported by the accelerometers are
not. Unfortunately, rare cases where a user often changes vehicles remain a prob-
lem for detection. This problem would also be present if data were to be collected
from, for example, public transportation utilizing the user’s mobile devices.
The level markers and their use are illustrated in Fig. 6, Fig. 7, and Fig. 8. Fig.

6 shows a map using OpenStreetMaps, whereas Fig. 7 and Fig. 8 use Google
Maps. The OpenStreetMaps implementation is slightly newer, but the features of
both implementations are basically the same. One exception is the Street View
functionality shown in Fig. 8, which is available only when using Google Maps.
Both implementations also utilize the same underlying Representational State
Transfer (REST) Application Programming Interfaces (API) provided by the
cloud service.
The routes driven by the users are visualized in Fig. 6. The shock levels are il-

lustrated by five colors (green, yellow, orange, red, and black – green being the
best road condition, black the worst). The areas on the map are: the cities of Pori
(top left), Rauma (bottom left), and Tampere (right). The various markers are also
of slightly different sizes with the green “good condition” markers being the
smallest and the black “bad condition” markers being the largest. This is in order
to make the “bad condition” markers easier to spot among the data, which largely
consist of green markers.

15

Fig. 6. Visualization of routes driven.

The user interface contains basic features for filtering data: viewing data from
only a single user; excluding undesired shock levels, calculating highlights; select-
ing a specific date or time to observe; selecting the area to view; and the possibil-
ity to limit the number of level markers by only returning an average or median of
the reported values within a certain area.

Fig. 7. Visualization of the route between the cities of Pori and Tampere.

The exclusion of undesired shock levels and highlights are illustrated in Fig. 7.
The upper part of the figure shows basically the “raw data” selected from an area,
in this case from a route between the cities of Pori and Tampere. In the lower part,

16

the individual markers are removed and only the calculated highlights (exclama-
tion marks) can be seen. The highlights represent an area where the measurements
contain a large number of certain types of shock levels. The highlights can be cal-
culated for any level, but naturally, are more useful for spotting places where there
is a high concentration of “bad condition” markers. It would also be possible to
show any combination of level markers with the highlights, e.g., red or black
markers without green, yellow, and orange markers.

Fig. 8. Visualization in Google Maps Street View.

Finally, Fig. 8 shows the shock level markers in the Street View application.
The Street View photos are not always up-to-date so the feature cannot be used as
such to validate the results, but it can be used to give a quick look at an area. In
this case, the cause of several orange, red, and black – “bad condition” – markers
can be seen to be the bumps located on the entrance and exit sections of a bridge
located on the highway.

6 Discussion

The basic programming task of creating a simple application for tracking the us-
er’s location and gathering data from the basic sensors embedded in a mobile de-
vice is, in general, a straightforward process. Nevertheless, a practical implemen-
tation can pose both expected and unexpected challenges.

17

6.1 Technical Difficulties

We chose to use the Android platform because the authors had previous experi-
ence in Android programming. Unfortunately, the Android devices have hardware
differences, which can affect the functionality of the application. In our case, there
were two major issues. First, one of the older devices we used in our benchmarks
lacked the support of a linear acceleration sensor, despite including a basic accel-
erometer. In practice, this means that all measured acceleration values included a
gravity component without an easy or automated means of filtering the output. Fil-
tering can be especially difficult on older models that do not contain proper rota-
tion sensors that could be used to detect the orientation of the device.
Second, as it turned out, devices from different manufacturers and even differ-

ent device models from the same manufacturer had variations in the reported ac-
celerometer values, making direct comparison of values between devices challeng-
ing at best. Larger bumps are visible from the results regardless of the device, but
smaller road surface features can become lost due to the device inaccuracies.
In practice, differences in the devices required the calculation of a “normal” for

each device, against which variations in the data would be compared. Calculating
a universal normal usable for all devices and users would probably be very diffi-
cult, if not entirely impossible. In any case, in laboratory conditions or in a con-
trolled environment finding this normal is not a huge problem, but where a large
crowdsourcing user and device base is concerned, finding the normal for each de-
vice can be a challenge. Additionally, the vehicle the user is driving can have a
major impact on the detected values; after all, car manufacturers generally prefer
to provide a smooth ride for the driver, and on the other hand, a car with poor sus-
pension or tires can cause data variations that can be difficult to filter out. This al-
so means that, if the user drives multiple vehicles, there should be a way for the
application to either detect the vehicle used or adapt to the altered conditions.
In principle, the collected data could be analyzed to determine the device’s

normal, for example, if known “good condition” roads have been driven on. In
practice, the data amounts (and the required server and network capacity) can be
too extreme for this approach to be feasible. A better option would be to analyze
the data on-device and the devices should only send the variances that exceed the
calculated threshold values (i.e., detected potholes, roads of poor quality).

6.2 Interpretation of the Data

When examining the collected data set, the known places of data variance are vis-
ible, and in expected places. These include, among others, known roadworks,
speed bumps, and bridge ramps, i.e., spots that the drivers cannot avoid can be
easily seen in the collected data. Unfortunately, the same cannot be said about
potholes or other larger, but in general, more infrequent road condition issues

18

which are not always detected. We did not perform extensive studies to discover
the driving habits of the users participating in our trial, although a quick interview
revealed (perhaps unsurprisingly) that the drivers had tried to avoid driving into
potholes.
In the initial phase of data analysis, validating the findings proved trouble-

some. As the drivers could drive along any road they wished, we did not have a
clear idea of which of the roads driven were in bad shape or where on the road the
bumps were located, nor was there available any conclusive database of speed
bumps or other purpose-built road features that could be accidentally identified as
road surface problems. Driving to the location of each detected bump for valida-
tion purposes in the case of a larger data set would be quite impractical. To get a
basic idea of where the “bumpy” roads were located, the preliminary results were
shared with the department of the City of Pori responsible for road maintenance
and compared with their data. The data collected by the city are based on com-
plaints received from road users or reported by the city maintenance personnel
driving on the city roads. Thus, maintaining the data requires a lot of manual labor
and the data are not always up-to-date. Nevertheless, this did give us some insight
into the known conditions of the roads around the city. Furthermore, the discus-
sion with the maintenance department gave a clear indication that an automated
method for the collection of road condition data around the city would be a great
help for the people responsible for road maintenance.
Moreover, collecting a sufficiently large data set with a very large user base

could ultimately help in finding individual road problems as drivers would, for ex-
ample, accidentally drive into potholes, but in our trials identifying specific road
problems turned out to be quite challenging. On the other hand, the results
showed, in a more general fashion, which of the driven roads were in the worst
condition, and furthermore, which parts of a single road were in worse condition
than the road on average. Both findings can be used for assessing road conditions,
and with a much larger data set, even individual bumps could perhaps be more re-
liably detected.
A larger database is also advantageous in the elimination of unwanted data

caused by individual random events – such as the user moving or tapping the
phone during driving, sudden braking events or accidents – which could be erro-
neously detected as road condition problems. On the other hand, larger sets in-
crease computing resource requirements and challenges in managing the data. In
fact, even the amount of data collected in our user trials can be problematic. One
of the main challenges is the visualization of large data sets.
For testing and validation purposes, all data generated by the mobile devices

were stored on our server. Storing the “good condition” data can also help to map
the roads the users have driven on as opposed to only reporting detected variations
from the normal. Unfortunately, serializing the data – using JavaScript Object No-
tation (JSON) or Extensible Markup Language (XML) – and showing the meas-
urements on a map in a web browser may be quite resource-intensive. Even when
measurements are combined and indexed on the server to reduce the amount of
transferred data, there can still be thousands of markers to be drawn on the map,

19

especially if “good condition” data are included. Showing multiple roads in a large
area simultaneously on a map can be a good method from a visualization point of
view, but it can also make the web user interface sluggish or slow to load. For ref-
erence, loading and showing the map visible in Fig. 6 consisting of 100 000 meas-
urement markers takes approximately 3—4 minutes, which is not an entirely im-
practical length of time for constructing the visualization, but can be an annoying
delay when performing repeated work on the data set. Con-structing visualizations
with smaller data sets (e.g., less than 10 000 data points), depending on the chosen
filter settings, takes anything from a couple of seconds to almost half a minute.

6.3 Future Studies

One possible future action could be to open up the collected data for further analy-
sis by other researchers. In general, the data are relatively easy to anonymize and
do not contain any hard-coded user details. A method of generating anonymous
data is also an advantage if a larger, more public user trial is to be performed in
the future. Running the trials with a larger userbase would be one possible course
of future action, although acquiring sufficient server resources for a wide-scale us-
er trial could pose a challenge.
A less resource-intensive option could be to collect data for a longer period on

a specific set of roads with the goal of discovering whether a gradual worsening of
road conditions can be detected or how the results differ between winter and
summer. Our current trials were run in spring and summer, and it is unknown how
winter conditions would affect the results. Furthermore, the roads driven on were
primarily paved and gravel roads were not included in the analysis of the data.
In addition, the increase in the number of dashboard cameras installed in vehi-

cles, and the decrease in the prices of 360-degree cameras could provide an inter-
esting aspect for data collection. The utilization of cameras could also make data
validation easier during the trial phase, as there would be no need to go and check
the detected road condition problems locally, or to use Google Street View or sim-
ilar applications that may contain outdated images.
The Faucet-Sink-Drain model was used for the first time in an actual use case,

and it could prove useful in other applications as well. However, the model re-
quires more research and development to fully unlock its potential. Also, the
framework [10] that is based on the model would require an actual implementation
before more conclusions can be drawn of the model’s usefulness.
Data security is an important factor that has not been addressed in this study.

The prototype has basic user identification with username and password, but this
was not used for filtering input data. Issues of data security, privacy, and anony-
mization of data need to be solved before commercialization.

20

7 Summary

This paper introduced a study that utilized data collected by sensors – primarily
from an accelerometer and GPS – embedded in smartphones for detecting the
condition of road surfaces. The data were obtained from a group of users driving
on paved roads in western Finland. Furthermore, the test setup was described in-
cluding a discussion on the challenges faced.
This paper showed how to combine a data gathering model and a data analysis

model. Both of the models were applied and tested in the developed prototype sys-
tem.
The results achieved from the trial period showed that even though the chosen

methods could, in principle, find individual road surface problems (such as pot-
holes), the results were more useful in the assessment of the overall condition of
the road. In addition, the paper presented methods for visualizing road condition
data collected from test users.

References
1. Krommyda, M., Sdongos, E., Tamascelli, S., Tsertou, A., Latsa, G., Amditis, A.: To-
wards Citizen-Powered Cyberworlds for Environmental Monitoring. In: 2018 Interna-
tional Conference on Cyberworlds (CW), pp. 454–457 (2018)

2. Satoto, K.I., Widianto, E.D., Sumardi., S.: Environmental Health Monitoring with
Smartphone Application. In: 2018 5th International Conference on Information Tech-
nology, Computer, and Electrical Engineering (ICITACEE), pp. 281–286 (2018)

3. Pyykonen, P., Laitinen, J., Viitanen, J., Eloranta, P., Korhonen, T.: IoT for Intelligent
Traffic System. In: 2013 IEEE 9th International Conference on Intelligent Computer
Communication and Processing (ICCP), pp. 175–179 (2013)

4. Yle Uutiset: Lapin Ely lupaa vähemmän lunta ja polanteita – Bussinkuljettajat keräävät
tietoa Lapin teiden kunnosta. https://yle.fi/uutiset/3-9277596 (2016) Retrieved 27th.
June 2018

5. Vermesan, O., Friess, P., Guillemin, P., Gusmeroli, S., Sundmaeker, H., Bassi, A., Ju-
bert, I., Mazura, M., Harrison, M., Eisenhauer, M., Doody, P.: Internet of Things Strate-
gic Research Roadmap. http://www.internet-of-
things.no/pdf/IoT_Cluster_Strategic_Research_Agenda_2011.pdf (2009) Retrieved
23rd. March 2019

6. Hać, A.: Wireless Sensor Network Designs. Chichester, UK: John Wiley & Sons, Ltd.
(2003)

7. Grönman, J., Rantanen, P., Saari, M., Sillberg, P., Jaakkola, H.: Lessons Learned from
Developing Prototypes for Customer Complaint Validation. Software Quality Analysis,
Monitoring, Improvement, and Applications (SQAMIA), Serbia (August 2018)

8. Rantanen, P., Sillberg, P., Soini, J.: Towards the utilization of crowdsourcing in traffic
condition reporting. 2017 40th International Convention on Information and Communi-
cation Technology, Electronics and Microelectronics (MIPRO), Croatia, pp. 985–990
(May 2017)

9. Ma, M., Wang, P., Chu, C.-H.: Data Management for Internet of Things: Challenges,
Approaches and Opportunities. In: 2013 IEEE International Conference on Green Com-
puting and Communications and IEEE Internet of Things and IEEE Cyber, Physical and
Social Computing, pp. 1144–1151 (2013)

21

10. Sillberg, P.: Toward Manageable Data Sources. Information Modelling and Knowledge
Bases XXX, Frontiers in Artificial Intelligence and Applications, vol. 312, IOS Press,
pp. 101–111 (2019)

11. Sillberg, P., Grönman, J., Rantanen, P., Saari, M., Kuusisto, M.: Challenges in the In-
terpretation of Crowdsourced Road Condition Data. In: International Conference on In-
telligent Systems (IS) (2018)

12. Howe, J.: The Rise of Crowdsourcing. https://www.wired.com/2006/06/crowds (2006)
Retrieved 27th. June 2018.

13. Brabham, D.C.: Crowdsourcing as a Model for Problem Solving. Convergence: The In-
ternational Journal of Research into New Media Technologies, vol. 14, no. 1, pp. 75–90
(February 2008)

14. Mao, K., Capra, L., Harman, M., Jia, Y.: A Survey of the Use of Crowdsourcing in
Software Engineering. Technical Report RN/15/01, Department of Computer Science,
University College London (2015)

15. Yi, C.-W., Chuang, Y.-T., Nian, C.-S.: Toward Crowdsourcing-Based Road Pavement
Monitoring by Mobile Sensing Technologies. IEEE Transactions on Intelligent Trans-
portation Systems, vol. 16, no. 4, pp. 1905–1917 (August 2015)

16. Y. A. Alqudah and B. H. Sababha, “On the analysis of road surface conditions using
embedded smartphone sensors,” in 2017 8th International Conference on Information
and Communication Systems (ICICS), pp. 177–181, Jordan, April 2017.

17. Carrera, F., Guerin, S., Thorp, J.B.: By the People, for the People: The Crowdsourcing
of "STREETBUMP": An Automatic Pothole Mapping App. International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS), vol.
XL-4/W1, no. 4W1, pp. 19–23 (May 2013)

18. Eriksson, J., Girod, L., Hull, B., Newton, R., Madden, S., Balakrishnan, H.: The Pothole
Patrol. In: Proceedings of the 6th International Conference on Mobile systems, applica-
tions, and services - MobiSys ’08, Colorado, USA, p. 29 (June 2008)

19. Chen, K., Lu, M., Tan, G., Wu, J.: CRSM: Crowdsourcing Based Road Surface Moni-
toring. In: 2013 IEEE 10th International Conference on High Performance Computing
and Communications & 2013 IEEE International Conference on Embedded and Ubiqui-
tous Computing, China, pp. 2151–2158 (November 2013)

20. Alessandroni, G., Klopfenstein, L., Delpriori, S., Dromedari, M., Luchetti, G., Paolini,
B., Seraghiti, A., Lattanzi, E., Freschi, V., Carini, A., Bogliolo, A.: SmartRoadSense:
Collaborative Road Surface Condition Monitoring. The Eighth International Conference
on Mobile Ubiquitous Computing, Systems, Services and Technologies (UBICOMM),
Italy (August 2014)

21. Dyo, V.: Middleware design for integration of sensor network and mobile devices. In:
Proceedings of the 2nd International Doctoral Symposium on Middleware - DSM ’05,
New York, New York, USA: ACM Press, pp. 1–5 (2005)

22. Leppanen, T., Perttunen, M., Riekki, J., Kaipio, P: Sensor Network Architecture for
Cooperative Traffic Applications. In: 2010 6th International Conference on Wireless
and Mobile Communications, pp. 400–403 (2010)

23. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless Sensor Net-
works: a Survey. Computer Networks, vol. 38, no. 4, pp. 393–422 (March 2002)

24. Saari, M., Baharudin, A.M., Sillberg, P., Rantanen, P., Soini, J.: Embedded Linux Con-
trolled Sensor Network. In: 2016 39th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1185–
1189 (2016)

25. Saari, M., Sillberg, P., Rantanen, P., Soini, J., Fukai, H.: Data Collector Service - Prac-
tical Approach with Embedded Linux. In: 2015 38th International Convention on In-
formation and Communication Technology, Electronics and Microelectronics (MIPRO),
pp. 1037–1041 (2015)

22

26. Baharudin, A.M., Saari, M., Sillberg, P., Rantanen, P., Soini, J., Kuroda, T.: Low-
Energy Algorithm for Self-controlled Wireless Sensor Nodes. In: 2016 International
Conference on Wireless Networks and Mobile Communications (WINCOM), pp. 42–46
(2016)

PUBLICATION

IV

Lessons learned from developing prototypes for customer complaint
validation

Grönman, J., Rantanen, P., Saari, M., Sillberg, P. and Jaakkola, H.

Proceedings of the SQAMIA 2018: 7th Workshop of Software Quality, Analysis, Monitoring,
Improvement, and Applications2018, 27–30

Publication reprinted with the permission of the copyright holders

Lessons Learned from Developing Prototypes for
Customer Complaint Validation
JERE GRÖNMAN, PETRI RANTANEN, MIKA SAARI, PEKKA SILLBERG AND HANNU
JAAKKOLA, Tampere University of Technology

This research introduces two prototypes installed in vehicles and a cloud service for autonomous collection of data. The
prototypes utilize camera, location data, and timestamps to help those responsible for managing customer complaints, and to
improve the overall quality of the provided customer service. The use of the system is illustrated by two cases: tracking and
photographing bus stops, and tracking and photographing recycling areas. The first prototype is implemented for the Android
mobile platform and the second one for the Raspberry Pi single-board computer. This paper discusses the differences and
challenges faced in designing and implementing the two prototypes for different platforms.

1. INTRODUCTION

The Internet of Things (IoT) is the expansion of Internet services, which connects everyday physical
objects to a network. This connection between network and physical world objects makes it possible
to access remote sensor data and to control the physical world devices from a distance. One study
addressing the IoT, which is cited quite often, is “The Internet of Things: A survey” [Atzori et al.
2010].
In this research, the focus has been redirected toward the Wireless Sensor Network (WSN) type of

solution. The basic features of sensor networks were compiled in a survey by Akyildiz et al. in 2002.
In this research, we present two different prototypes for collecting data. These prototypes were
designed as nodes of WSN. The design processes were iterative and the main goal was to improve the
prototype in every iteration round. This study is a “lessons learned” type of research on software
quality and prototype testing, where we present the problems encountered and the solutions to them.
This research is a continuation of our research into different areas of IoT [Saari et al. 2016; Saari et
al. 2017; Grönman et al. 2018]. Often, the Agile method is used more than the traditional plan-
driven methods (such as the Waterfall method) when developing prototype systems. The authors of
this paper have discussed the challenges of modeling in an earlier study [Jaakkola et al. 2016].
The motivation for this study came from two transportation companies. Their customers often

complain that the service is not at an acceptable level (e.g. the bus was not on time, or did not stop;
trash was not collected on time). For companies, it can be difficult to ascertain the validity of the
complaints, possibly causing unnecessary expenses when repeated complaints occur. This study and
the two use cases presented in this paper illustrate configurable conditions for area observations
(based on location, speed of the vehicle, cameras, and other sensors). In the past, the drivers
photographed locations and made observation reports manually, but this process turned out to be
tedious and error-prone. Thus, it was decided to design a system that could work autonomously
without input from the driver. The companies can use the collected data to validate customer service
requests/complaints, and to improve the overall quality of the provided customer service.

Author's address: J. Grönman, Tampere University of Technology, Pori, P.O. Box 300, FI-28101 Pori, Finland; email:
jere.gronman@tut.fi.

Copyright © by the paper’s authors. Copying permitted only for private and academic purposes.
In: Z. Budimac (ed.): Proceedings of the SQAMIA 2018: 7th Workshop of Software Quality, Analysis, Monitoring,
Improvement, and Applications, Novi Sad, Serbia, 27–30.8.2018. Also published online by CEUR Workshop Proceedings
(http://ceur-ws.org, ISSN 1613-0073)

4

4:2 • Jere Grönman et al

There has been a lot of research on position systems such as vehicle tracking systems. For
example [Lee et al. 2014; Jisha et al. 2017] introduced vehicle tracking systems, where the location
data are stored to the database or cloud and the data could be shown with an Android mobile
application. Jisha et al. deal with bus tracking systems. In these studies, the focus was on real-time
tracking using the Global Positioning System (GPS). The main idea was a tracking service for
customers, and the quality assurance of the transportation service was not discussed.
In our use cases the sensor nodes (mobile phones and Raspberry Pi 3 computers) send the data to

the cloud service. The idea and the model of the data gathering node system were introduced in
[Saari et al. 2015]. The rest of this paper is structured as follows. In Section 2, we outline the
research environment and its components. In Section 3, we describe the “bus stop” case and in
Section 4 the “garbage truck” case. Section 5 includes a discussion where the findings of this
prototype development process are handled. The study is summarized in Section 6.

2. HIGH-LEVEL ARCHITECTURE

The goal of the system is to provide a tool for those processing customer complaints. In our case, two
use cases acted as pilot studies for testing the functionalities of the system. The first case, “bus
stops,” consists of tracking a bus traveling on the route by collecting images, location data, and
timestamps. The bus company participating in our pilot study reported that common complaints
reported by customers are about the bus not arriving on schedule (too early, too late or not arriving
at all) or the bus not stopping even though there were people waiting at the bus stop. The latter
issue especially can be difficult to validate, and the bus company was interested in improving the
quality of their bus service by finding out if and when the complaints reported a real problem.

The second use case, “garbage truck,” collected the same data (images, location, timestamps). The
purpose was to keep track of when the garbage truck visited the recycling area and if the bins were
not emptied, and whether there was something in the area that prevented the truck from doing its
work. In some cases, pictures were already being taken by the garbage truck drivers in the area
around Pori, but this is, in general, manual work, and capturing and managing the pictures can be
tedious and error-prone. Similarly to the bus company, the company running the garbage collection
receives complaints about the quality of the work, and the company was interested in an automatic
system for collecting data around the recycling sites to validate the complaints.

Fig. 1. High-level diagram of the system.

Figure 1 illustrates the high-level architecture. The system consists of a central service, which
provides representational state transfer (REST) application programming interface (API) for client-
side interaction and remote procedure call (RPC) functionality for delivering tasks to (back end)
devices or for submitting task results. A simple web portal is implemented using Hypertext Markup
Language (HTML) and JavaScript, which interacts with client-side methods. The web user interface

 Lessons Learned from Developing Prototypes for Customer Complaint Validation • 4:3

allows the user to create tasks (#1, Figure 1), which contain the pre-conditions for device operation,
the selection of devices that participate in the tasks, and the desired output parameters. The tasks
are delivered to the target devices (#2, Figure 1).
The pre-conditions contain options such as coordinates (or areas), time intervals (e.g., only take

pictures during working hours), and velocities (e.g., should the device be moving at a certain speed or
stationary). The output parameters notify the devices as to what information should be returned in
the result responses (#3, Figure 1), such as pictures or location data – by default, all responses must
contain timestamps.
The results can be returned in near real-time or in batches. In our use cases, there is no need for

immediate responses and in general, the results can be returned at a time most convenient for the
device as long as the results arrive within a reasonable time period (for example, within 24 hours). In
general, the tasks do not contain information on the expected amount of output data. In our use case,
most of the transmitted data consists of captured images. The amount of images is highly dependent
on the speed at which the vehicle is moving and how long the vehicle stays within the designated
area. The prototype application will attempt to compensate for the vehicle velocity (e.g., by capturing
more pictures when the device is moving faster), but the tasks themselves do not contain any
guidance for this functionality. The primary reason for this is that the device is better equipped to
estimate its own capabilities and features than the service and providing overly detailed parameters
would only complicate the tasks by requiring individual customization for each device.
The submitted results (#3, Figure 1) are indexed in the service and can be freely browsed by the

user (#4, Figure 1), for example, by selecting a bus stop (coordinate) and the time reported in the
complaint. The core service uses a platform developed in a previous project [Iftikhar et al. 2018], and
for historical reasons messages based on the Extensible Markup Language (XML) are used, though
other formats (e.g., JavaScript Object Notation) could be used in our use case as well.
In our current implementation no further image analysis is performed either on-device or in the

service. In principle, it would be beneficial if image processing could be utilized to detect problems
reported in customer complaints. In practice, the variations in environments (location, time of day,
snow, rain, etc.) and different use cases (detection of people, undesired objects) make it very
challenging to develop a reliable algorithm. As long as a reasonable amount of pictures is shown to
the person responsible for processing the complaints, a human observer can detect problems by
looking at the pictures

3. USE CASE: BUS STOPS

In the first use case, a prototype was installed in a bus traveling along a bus route within the City of
Pori. The prototype is fully autonomous and does not require any input from the bus driver. The
stops on the route were assigned to the prototype as GPS coordinate targets. The program code reads
GPS coordinates continuously and compares them to the assigned targets. When the coordinates
match, a picture is taken. The program code utilizes an implementation of the Haversine Formula,
which determines the great-circle distance between two locations and is relatively simple to
implement yet accurate enough for our use cases. The application can be installed on any reasonably
new Android device and takes advantage of the built-in sensors and camera of the device.
The prototype keeps taking pictures in a predefined interval as long as it remains within the

range of the target. The prototype scales both the time interval and the range from the target based
on the speed of the bus to enable taking pictures at varying speeds, and also to compensate for the
delay in waking up the camera. The idea was to take pictures of the approach to the bus stop to find
out whether customers were present at the bus stop and also to obtain evidence (photos, timestamps,
and location data) that the bus had passed – or stopped at – the bus stop on a certain date. The
approach to one bus stop is illustrated in Figure 2.

4:4 • Jere Grönman et al

Fig. 2. Approach to a bus stop showing pictures taken at varying distances from the target.

A background process was created in the application for sending the pictures after capture,
although, depending on the network connection speed, the upload may not be real-time. A route with
fewer bus stops and a smaller number of customers was chosen for the first prototype. In our case,
the route had a few dozen stops, but within the city limits some routes may have several hundred
stops (especially if the route is traveled in both directions). Furthermore, the local bus company was
instructed to provide us routes with higher than average amount of complaints.

4. USE CASE: GARBAGE TRUCK

In this use case, a prototype was installed in a garbage truck. The truck has a predefined route
where there are certain recycling areas nearby shopping centers. The locations were assigned to the
prototype as GPS coordinate targets. A route with frequently visited targets was provided by the
garbage truck company participating in our project. The goal was to select targets of varying size (a
gas station, a supermarket, and a larger shopping center) located around the City of Pori. The
location tracking was performed in an identical fashion to the “bus stop” case, with the applicable
code re-written in Python. Similarly, the prototype is fully autonomous and does not require any
input from the driver.
The prototype consists of a combination of a Raspberry Pi 3 single-board computer and commonly

available sensor components (Adafruit Ultimate GPS HAT and Raspberry Camera Module V2 NoIR).
Its operating system is Raspbian Stretch and the program code was made in Python, which is one of
the commonly used languages for prototyping with Raspberry Pi. The prototype requires a 3G/4G -
wireless modem to establish an Internet connection via Wi-Fi.

Fig. 3. Three pictures taken from the recycling area. On the left: in daylight; in the center: at night; on the right: a blocking
obstacle.

In this use case, a connection to the cloud service was established once a day. During the test
period of three months, more than 6500 pictures were taken of the targets. Pictures were taken both
in daylight and at night. Figure 3 presents a comparison between day and night. Figure 3 also shows

 Lessons Learned from Developing Prototypes for Customer Complaint Validation • 4:5

a situation where an obstacle, in this case, a car, is blocking the truck’s access to the recycling bins.
The first two pictures in Figure 3 present normal daily operation, but in the case of the third picture,
the car could have prevented the truck from emptying the garbage bins, possibly causing later
complaints from customers about full containers.

5. LESSONS LEARNED

The development process for the use case prototypes was iterative in nature. Our goals were to both
validate our ideas and to ascertain in a short period of time which technical solutions would work in
realizing the prototypes.
One approach would have been to install cameras at each location, but in practice this was not

feasible. In both cases all locations were outdoor locations and it would have required a considerable
effort to guarantee the availability of electricity, and that the devices would not get wet, vandalized,
or broken in the cold weather. The assumption was that installation in-vehicle would be easier. A
minor concern was the operating temperature as the vehicles would be stored outside in Finnish
winter when not in use. The Android implementation was not tested in wintertime, but there were
no problems with the Raspberry Pi during the three-month trial run. The device itself did not
contain ambient air temperature sensors, but the average temperature during the December-
February period was slightly below zero Celsius with the coldest nighttime temperature reaching -21
°C in February [Foreca 2018]. The device was always on during the trial, running on the continuous
power provided by the vehicle batteries. This approach also reduced the risk of the device failing to
boot up due to cold weather. In the case of the garbage truck, obtaining constant power was a simple
matter of using the cigarette lighter plugs, but, in the bus, re-wiring was necessary as the connectors
inside the bus did not provide electricity when the main power was turned off.
A bigger problem than electricity was the attachment of the devices (both Android and Raspberry

Pi) to the vehicle. In our case we selected a garbage truck that loaded the trash using a lift located in
the front of the vehicle. The company also had vehicles that were loaded from the back, but this
would have meant that the truck would have approached the recycling area in reverse, requiring
camera installation at the back of the vehicle – possibly on the outside of the vehicle. For simplicity,
it was decided to only use a camera to take photos through the windscreen. This left the rare case
when the vehicle would be approaching the location from an unusual angle, e.g., around the corner of
a building, from the side or from an otherwise bad direction for taking pictures through the
windscreen. Especially in the bus stop case, there were no pictures available of every bus stop, and
even if there had been, we did not want to make individual setups for hundreds of locations. Thus, it
was impossible to know how the vehicle would approach each location. Regardless, it was decided to
choose the windscreen approach to get the testing underway.
In practice, this approach provided more problems than expected. Initially, there was slight

concern about reflections on the glass surface. In practice, this turned out not to be a big problem,
because the camera would take several pictures when the vehicle was approaching the location and
major reflections did not occur often enough to pose a real problem. However, a more serious problem
was how to install the devices in the vehicles.
The curved windscreen of the truck and bus made the traditional suction cup-based attachments

unusable. The vibration and movement of the vehicle caused the device to fall off of the window.
Additionally, a permanent installation of the prototype was not desirable as there might have been a
need to remove the device during testing. It would also have been impractical to make extensive
modifications to the vehicles because the vehicles were in regular use by the companies. The
installation of the Raspberry Pi was slightly easier as the camera as well as the GPS antenna could
be detached and installed in a different place to the device itself. This meant that the components
that needed to be installed near the windscreen were more lightweight than a smartphone, which

4:6 • Jere Grönman et al

contains all the components in one package. The ideas for a final prototype installation ranged from
ordering various attachment holders from the Internet to using a 3D printer to create a custom
casing. In the end, the installation consisted of a lot of two-sided tape. The solution was not pretty
and was passable at best. All in all, our primary concern was the device itself, the software, and
testing our idea, but perhaps a little more thought should have been put into how to setup the device
in a real environment regardless of the trial nature of the tests.
The members of our research team had previous experience in programming applications for the

Android platform and also in using the Java programming language. Furthermore, our research
team had readily available Android devices - both personal devices and devices provided by the
university – that could be used in prototype development and testing. This meant that the prototype
development process could be started without the need to learn the basics for a new platform. The
two most popular mobile platforms (Android and iOS) provide similar starting points for our use case
requirements: APIs for controlling the camera, accessing the Internet, and tracking the device
location, making the choice mostly about developer preference.
Creation of a simple application for tracking the location, firing the camera in pre-designated

coordinates, and uploading the pictures to a remote service was relatively simple – the APIs are well
documented and a simple web search provides plentiful examples for common use cases. In general,
only two problems were met related to the programming.
Firstly, we used a pre-existing service developed for previous research projects, which utilized the

XML-based data format. Unfortunately, by default, the Android platform does not support standard
annotation-based class definitions (e.g., Java Architecture for XML Binding), which meant that we
could not directly use the same Java code as we had used in previous Java applications. This is an
example of one of the generally minor problems caused by the fact that Android does not provide full
API compatibility with Oracle’s Java. The problem was fixed by creating an XML parser using the
Android’s XML pull parser and serializer, which are relatively simple to use though perhaps are
slightly more error-prone by requiring modifications to the parser code when the format is modified
as opposed to annotation-based solutions, which only require modifications to the class declarations.
The second programming related issue was with our implementation of the camera use. For some

unknown reason, especially on older Android devices (Nexus 7 tablet and Samsung A5), using the
camera repeatedly and sometimes in quick fashion caused application crashes or the camera got
“stuck,” capturing only a black screen. Fixing the issue required several attempts with various
programming solutions and the implementation was never as stable as we had hoped for.
The issues with stability caused an additional problem. In our initial trials, a member of our

research team was present in the bus, and could make corrections or restart the application when
problems occurred, but in the future this would not be the case. In the next phase, the device would
be installed in the vehicle for a period of three months, during which there could be a need for fixing
problems and to further improve the prototype software. Repeatedly visiting the company for
prototype maintenance would be a tedious process for the research team and also problematic for the
company as their vehicles were in use on a daily basis.
Remotely accessing the mobile device, for example, for restarting an application or installing a

new application version was a real challenge. As our application was not available in the Google
application store, we could not take advantage of the remote installation options provided by the
store, and directly accessing the device over the public Internet – i.e. accessing the dynamically
assigned Internet protocol (IP) address – would have been difficult without developing extensive
support mechanisms. This was one of the primary reasons (in addition to the unstable camera
implementation and problems with installing the device to the vehicle) for dropping the Android
implementation and looking for alternative options.
The Raspberry Pi-based solution provided much needed help for the remote access problem. The

device is, in practice, a Linux-enabled computer, which means that many of the methods available

 Lessons Learned from Developing Prototypes for Customer Complaint Validation • 4:7

for desktop application development are available. In our previous projects we have had some
experience with Raspberry Pi in particular, making it a logical choice, though many of the other
single-board computer solutions available on the market should work as well. In any case, by using a
dynamic Domain Name System (DNS) update it was possible to keep track of the public IP address
assigned by the Internet provider. It was also possible to directly use version control (in our case,
sub-version) as a “cheap alternative” for deploying new application versions on the device, and access
to the device can be achieved using Secure Shell (SSH). On Linux, the applications can also be easily
set up to start up on boot or at designated intervals either as services or by utilizing crontab.
Crontab was also utilized to run scripts that periodically checked whether our application was still
alive, logging the application status, and restarting the application if it had crashed.
OpenJDK is readily available for Linux and can also be used with the Raspbian operating system,

enabling the use of Java applications. The advantage was that most of our previously written utility
code (accessing the Internet, XML parsing from our server-side implementation, etc.) could be
directly used on Raspberry. The disadvantage was that all code that accessed the device sensors and
the camera would be re-written as no compatible APIs existed, and the preferred programming
language was different (Java vs. Python). Accessing the camera (using the raspistill command line
tool) or GPS data (using the gpsd service daemon) with Python is not difficult, though the level of
API documentation is not on a par with the Android documentation. It can also be more challenging
to find pre-made examples. Many of the example projects found online are, for the lack of a better
word, “hacks”, and the re-usability of code is more difficult than on the commonly used mobile
platforms. This is also one issue that one should keep in mind when deciding which platform to use
for rapid prototyping. On the positive side, a more low level API access is available on Raspberry Pi,
if such functionality is required.
An important note is that remote access also creates a potential security vulnerability, which

should be taken into account, especially when using potentially unstable or vulnerable prototype or
development versions of applications. Using a dynamic DNS service also seems to create a hot spot
for attempts at breaking into the device using dictionary and brute-force attacks. As a minimal
configuration, the default SSH port and passwords should be changed and remote root access
disabled. In our case, we used a separate 4G modem because Raspberry Pi does not provide a 3G/4G
connection, and the modem was also set up to work as a firewall.
This remote access approach worked fairly well even though there were a few minor problems.

Around the heavy industry area and the power plant located in Pori there were problems with cell
reception and data transfer. The modem initially chosen also had issues with energy management.
Regardless of the configuration options, after a longer period of inactivity the modem would go into a
power-safe state, cutting remote access to the Raspberry Pi and sometimes the modem would “hang”
requiring a physical restart. Periodically pinging the remote server seemed to fix both issues, though
it would have been better if the modem had been configured to function as intended. Another minor
issue with the modem was that if power were lost for whatever reason, the modem would not
automatically connect to the Internet, and would instead require the user to press a button on the
device. In our case a continuous power supply was made available both in the bus and in the truck to
fix the issue. Nevertheless, it became clear that it can be challenging to figure out without testing
how well a specific modem will work in various conditions and what configuration options are
available, especially if cheaper devices targeted to end-user customers are utilized.

6. CONCLUSIONS

This paper presented a high-level diagram for a service designed to help those responsible for
managing customer complaints, and to improve the overall quality of the provided customer service.
The use of the system was illustrated by two cases: tracking and photographing bus stops, and

4:8 • Jere Grönman et al

tracking and photographing recycling areas. Both cases utilized cameras installed in vehicles and
location data. Furthermore, this paper discussed the issues faced in the design and implementation
of the use cases. Based on a brief discussion with the companies, the initial reaction towards the
prototype applications was positive, and the system was seen as an improvement over the previously
utilized manual data collection. Still, to fully assess how the system contributed on the improvement
of the customer complaint validation process, a more in-depth study would be required.
In any case, the use cases show that mobile platforms can work as a quick starting point for rapid

prototyping – documentation and examples are easily found and the devices contain a number of
built-in sensors. The disadvantage of mobile platforms is the lack of options for remote management,
and single-board computers (e.g., Raspberry Pi) could provide a better platform if remote access is
required. Unfortunately, it can be more challenging to find applicable examples and documentation
when compared to commonly used mobile platforms. Additionally, both cases highlighted the
importance of environmental factors – such as the availability of electricity, telecommunications, and
installation of the prototype – even in cases when the primary goal of prototyping is in software
testing or running short trials. The importance is seen especially when the testing is done in a real
environment and should not disrupt the daily operation of the participating companies.

REFERENCES

Ian F. Akyildiz, Su Wy, Yogesh Sankarasubramaniam, and Erdal Cayirci. 2002. Wireless sensor networks: a survey.
Computer Networks 38, 4 (Mar 2002), 393–422.

Luigi Atzori, Antonio Iera, and Giacomo Morabito. 2010. The Internet of Things: A survey. Computer Networks 54, 15 (Oct
2010), 2787–2805.

Foreca. 2018. Havaintohistoria. Website. Retrieved May 14, 2018 from https://www.foreca.fi/Finland/Pori/havaintohistoria
Jere Grönman, Petri Rantanen, Mika Saari, Pekka Sillberg, and Juha Vihervaara. 2018. Low-cost ultrasound measurement

system for accurate detection of container utilization rate. In 2018 41st International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO). IEEE.

Ahmad Iftikhar, Petri Rantanen, Pekka Sillberg, Jorma Laaksonen, Shuhua Liu, Thomas Forss, Aqdas Malik, Marko
Nieminen, Rakshith Shetty, Satoru Ishikawa, Jarno Kallio, Jukka P. Saarinen, Moncef Gabbouj, and Jari Soini. 2018.
VisualLabel Integrated Multimedia Content Management and Access Framework. Information Modelling and Knowledge
Bases XXIX (2018), 321 – 342.

Hannu Jaakkola, Jaak Henno, Tatjana Welzer Družovec, Bernhard Thalheim, and Jukka Mäkelä. 2016. Why information
systems modelling is difficult. CEUR Workshop Proceedings 1677 (2016), 29–39.

R.C. Jisha, Aiswarya Jyothindranath, and L Sajitha Kumary. 2017. IoT based school bus tracking and arrival time prediction.
In 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE, 509–514.

SeokJu Lee, Girma Tewolde, and Jaerock Kwon. 2014. Design and implementation of vehicle tracking system using
GPS/GSM/GPRS technology and smartphone application. In 2014 IEEE World Forum on Internet of Things (WF-IoT).
IEEE, 353–358.

Mika Saari, Ahmad Muzaffar bin Baharudin, and Sami Hyrynsalmi. 2017. Survey of prototyping solutions utilizing Raspberry
Pi. In 2017 40th International Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO). IEEE, 991–994.

Mika Saari, Ahmad Muzaffar bin Baharudin, Pekka Sillberg, Petri Rantanen, and Jari Soini. 2016. Embedded Linux
controlled sensor network. In 2016 39th International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO). IEEE, 1185–1189.

Mika Saari, Pekka Sillberg, Petri Rantanen, Jari Soini, and Haruka Fukai. 2015. Data collector service - practical approach
with embedded Linux. In 38th International Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO), 2015, 25-29 May 2015, Opatija, Croatia (International convention on information and
communication technology, electronics and microelectronics). IEEE, 1037–1041.

PUBLICATION

V

Reducing Energy Consumption with IoT Prototyping
Saari, M., Sillberg, P., Grönman, J., Kuusisto, M., Rantanen, P., Jaakkola, H. and

Henno, J.

Acta Polytechnica Hungarica 16.9, SI (2019), 73–91
DOI: 10.12700/APH.16.9.2019.9.5

Publication reprinted with the permission of the copyright holders

https://doi.org/10.12700/APH.16.9.2019.9.5

Acta Polytechnica Hungarica Vol. 16, No. 9, 2019

 – 73 –

Reducing Energy Consumption with IoT
Prototyping

Mika Saari*, Pekka Sillberg*, Jere Grönman*, Markku
Kuusisto*, Petri Rantanen*, Hannu Jaakkola*, Jaak Henno**
*Tampere University, Faculty of Information Technology and Communication
Sciences, Pohjoisranta 11A, 28101 Pori, Finland, mika.saari@tuni.fi,
pekka.sillberg@tuni.fi, jere.gronman@tuni.fi, markku.kuusisto@tuni.fi,
petri.rantanen@tuni.fi, hannu.jaakkola@tuni.fi

**Tallinn Technical University, School of Information technologies, Ehitajate tee
5, 19086 Tallinn, Estonia, jaak.henno@ttu.ee

Abstract: Nowadays, energy consumption and especially energy saving, are topics of great
importance. Recent news regarding global warming has increased the need to save energy.
In Finland, one of the major sources of energy consumption is housing. Furthermore, the
heating of residential buildings accounts for up to 68% of housing energy consumption.
Therefore, it is not surprising that apartment energy consumption and ways to save energy
in housing are a popular research topic in Finland. In this paper, two different research
areas are introduced: First, a literature survey is presented on the research subjects of
energy saving in the area of real estate and housing. The goal is to gain overall knowledge
of the current state of energy saving research. The overall conclusion is that knowledge of
energy consumption improves efforts toward energy saving. Second, rapid prototyping with
off-the-shelf devices and open source software are described. These devices are cheap to
install, and a wide range of sensors are available. Consequently, it is important to deal
with these topics together. The former studies provide knowledge about the usage of open
hardware, open software, and open architectures with the development of prototype
systems for gathering data. The literature survey gives us new information on the
specialties of energy consumption measuring, offering a new area for modeling and
developing prototype systems. These experiences will be taken forward and utilized in
energy saving and environmentally sustainable solutions, such as Green Computing.

Keywords: IoT; Prototyping; Energy saving

1 Introduction
In the modern world, energy saving has become an important issue, in almost
every aspect of life. Global warming is forcing people to search for low-energy
solutions. It is important to be aware of the living comfort when thinking about the

M. Saari et al. Reducing Energy Consumption with IoT Prototyping

 – 74 –

low-energy solutions. For example, most people want the living temperature to be
comfortable - not too low and not too high. Furthermore, the awareness of one's
energy consumption has been proven to reduce overall energy usage. Thus, in the
context of this paper, the research problem can be formulated as:

How to reduce energy consumption by collecting and serving suitable data?

For this problem, we are looking for a solution for two questions.

1) How to categorize the energy consumption related studies?

2) How to utilize free and open solutions in the energy consumption context
preserving adequate living conditions?

In our use cases, we are especially looking for solutions that utilize open-source
components and open hardware, architectures and interface specifications. This
study belongs to the Internet of Things (IoT) research area and to studies focusing
on Wireless Sensor Networks (WSN). In addition, one of the focus areas of this
paper is rapid prototyping in the IoT world by using off-the-shelf devices. An
example of rapid prototyping method was described by [1] for the automotive
industry.

This paper introduces the application architectures and system models for IoT
prototyping. Furthermore, sensors and sensor networks that collect data into the
cloud are discussed, and more specifically, wireless sensor network (WSN)
systems that can be utilized in testing data collection in rapid prototyping are of
interest. In our use cases, the prototypes are built using off-the-shelf devices and
tools. Additionally, Green ICT (Information and Communication Technology)
should be part of the developing process when either the goal is to save energy or
make systems which help to save energy.

Figure 1
Finland's energy consumption by sectors in 2018 [2]

Acta Polytechnica Hungarica Vol. 16, No. 9, 2019

 – 75 –

According to official statistics, collected and published by Statistics Finland,
energy in Finland is produced mostly in three ways: wood, oil, and nuclear fission.
These three sources combined add up to 66% of the energy produced in Finland.
Various other sources of energy production include but are not limited to: coal,
gas, water, peat, and wind. In their report, Statistics Finland [2] profile the Finnish
energy consumption as shown in Fig. 1: Industry uses the most energy (48%)
while heating comes in second place with 25% of energy consumed. Traffic is also
a major consumer with 16% of the total energy used in Finland. Other sources
then add up to the remaining 12%.

This research is focused on Finland (and further applicable in other northern
countries), in which energy is often used for heating, instead of cooling (as is
common in many other countries). The "Cold weather raised energy consumption
in housing in 2016" report by Statistics Finland [3] shows that heating residential
buildings consumed 46 TWh of energy in Finland during 2016. Furthermore, the
heating of residential buildings was reported to account for up to 68% of the total
energy consumption of housing with the second largest consumer of energy being
heating water, accounting for 15%. Other notable energy consumers in Finnish
households were electrical appliances, saunas, and lighting. The most common
source of energy for heating was electricity, at 34%. The next most common
source of energy was district heating (29%) and the third most common heating
energy source was wood, at 22%, followed by heat pumps, at 9%. The usage of
heat pumps in Finland has grown significantly since the start of the millennium
because of their efficiency, saving energy and money compared to direct heating
sources. All together, these four sources of energy made up about 95% of the
energy used for heating in Finland. The remainder was mostly heating oil at
approx. 5%, with other technologies accounting for less than 1%.

Our former research focus has been IoT and prototyping. This preliminary
research will show how existing studies could be applied to a new research area.
The structure of paper follows the research process: Section 2 includes a brief
introduction to studies related in energy consumption. Section 3 continues with
further analysis and categorization of energy consumption papers. Section 4 will
present our studies and those findings, which could be combined with energy
consumption monitoring. Further, the combined ideas of reducing energy
consumption and prototype developing are introduced. Finally, Section 5
concludes the study.

2 Related Studies in Energy Consumption

This section deals with studies related to energy consumption. One important
point of view is the awareness aspect of energy consumption. In [4], it was found
that dormitory residents reduced electricity consumption when exposed to real-

M. Saari et al. Reducing Energy Consumption with IoT Prototyping

 – 76 –

time visual feedback and incentives. This study examined electricity and water
usage. In the study, two dormitories were equipped with automated monitoring
systems that provided high-resolution, real-time feedback. The study showed that
the residents’ awareness, knowledge, and behavior regarding energy saving
improved after they were provided with relevant information and exposed to
campaigns.

The study [5] examined the effects of energy saving, by analyzing the changes in
the awareness and behavior of apartment residents after the promotion of energy-
saving activities and their proper usage, and the provision of relevant information.
In this study, the questionnaire included topics such as energy awareness and the
knowledge and practice of energy conservation. In addition, this study performed
an additional survey, which was conducted for women who were given energy-
saving information and asked to participate in energy-saving activities after
submitting the initial questionnaire. The results showed that energy-saving
behavior improved after being provided with relevant information.

In the third study [6], the focus was on the meaning of comfort and comfort
practices, barriers to and motivators for saving energy, and knowledge about the
heating system. Data were collected from social housing tenants and university
staff using surveys, interviews, and monthly energy meter readings. This study
showed that warmth was mentioned most often as the meaning of comfort. In
addition, comfort practices were to a large extent defined as temperature-related
actions that were low in energy consumption. This study also found that
willingness to change behavior was the greatest when the motivation was to save
money.

The study [7] focused on energy-saving awareness, by using In-Home Display
(IHD) devices. These devices provide real-time data about the use of electricity in
specific appliances. Also, the costs of these devices were shown, and the users had
the opportunity to reduce their electricity consumption. The result of this study
was that the direct feedback provided by IHDs encouraged consumers to make
more efficient use of energy. In addition, active IHD users were able to reduce
their electricity consumption by about 7%, on average.

All these studies show that knowledge of energy consumption improves efforts
toward energy saving.

3 Literature Survey

The introduction posed the research question: how to categorize the energy
consumption related studies? To answer this research question, a literature review
was performed, in order to map the existing knowledge in this domain.

Acta Polytechnica Hungarica Vol. 16, No. 9, 2019

 – 77 –

3.1 Research Approach

The literature review used the Systematic Literature Review (SLR) method for
collecting relevant primary studies and followed the guidelines given by
Kitchenham and Charters [8]. For the SLR, an electronic literature search was
executed. The databases used were IEEE Xplore Digital Library (IEEE) and
Google Scholar. The survey was started by using the main search term: "Energy
consumption". During the pilot study and related research [4-7], several other
research terms arose such as "Temperature comfort", "Learning temperature
comfort", “Apartment temperature comfort", "Smart home communication",
"Real-time energy consumption monitoring," and "Energy apartment sensor".
With a combination of these keywords, a good coverage of potential studies was
obtained. The target amount of related studies was a total of fifty publications, as
this amount would provide enough information for categorization and
determination of research trends. Of these fifty publications a small number of
papers were selected, which were considered to include the most relevant papers
for the energy consumption or energy savings.

3.2 Categories for Existing Studies

To get an overview of the existing studies, the papers included in the study were
analyzed for common topics. Most of the papers were relatively distinctive in
terms of research objective, methodology, and application. Ultimately, based on
the analysis of the research papers, we selected four categories taking into
consideration the variations in research themes. The reason for choosing a
relatively small amount of categories was to enable the examination of the details
of research papers falling under the same category systematically. Selecting too
many categories would have made it difficult to compare the trends or research
methodologies. It is worth noting that some of the papers could be classified into
more than one category. The research categories identified from the source
material are:

• Comfort

• Retrofitting

• Network APIs

• IoT

The categories are listed according to the importance of the background research.
The category ‘Comfort’ contains studies that discuss the basic elements for living
comfort, which are often considered to be more important than energy saving. In
general, comfort is an important aspect of energy saving. Too much saving means
that the comfort of the living environment, such as thermal comfort and humidity,
decreases. The most important factor is thermal comfort, which is taken into

M. Saari et al. Reducing Energy Consumption with IoT Prototyping

 – 78 –

account in several studies [9-14] in this category. Most of the research addressed
previous studies, but [9] in particular reviewed thermal comfort research work and
discussed the implications for the energy efficiency of buildings.

In our use cases, focus is on existing building stock and therefore the ‘Retrofitting’
category contains the research on applications or solutions installed in existing
buildings. A different approach is used for monitoring energy consumption
monitoring in new buildings and old buildings. In new buildings, monitoring
applications and systems are included in the design phase of the building. For
example, the heating system could be selected by weighing up the energy aspects.
In old buildings, the main structure (e.g. the heating system) already exists, and
the monitoring must fit this structure. This category consists of studies [15-20]
where the presented application or solution was installed in existing buildings.

The study [15] focused on the problems of buying or renting a house. The
potential purchaser or renter of the property does not know its living comfort
factors such as temperature and lighting. This study introduced IoT sensors for the
evaluation of the comfort levels of real estate properties. Another study [16]
focused on studying and determining the cost-optimal renovation measures to
decrease both the supplied and primary energy consumption of the building. This
study encouraged apartment building owners to conduct thorough renovations
toward nearly zero-energy apartment buildings.

The third category focuses on Application Programming Interfaces (APIs) and
other methods that allow remote control or management of devices over networks.
In addition, devices including a network API can provide (web) services usable by
application developers or by client devices. A RESTful API is an architectural
style for communications used in web service development, which was mentioned
in [21] although the usage was not described in detail. The second study [22]
present four RESTful services: one developed in Arduino and three mobile
applications. A third study [23] integrated smart power outlets into the web and
facilitated the development of extensions and novel features. They were
implemented in a web user interface and a mobile phone interface for
demonstration purposes. In addition, this was confirmed with a 12-month pilot
deployment.

The study [24] described the construction of a smart outlet network as a system for
automated energy-aware services utilizing humidity, temperature and light
sensors, and motion sensor data. The sensors were installed on smart outlets and
the appliances were under policy-based automatic control. This study also
presented the deployed system in real-life environments.

The last category, ‘IoT’, includes the studies which do not fit in any of the other
categories, but are nevertheless related to our focus area. This category is the
widest and most of the papers could be included in it. Therefore, this research only
introduces studies which: (i) collect the data in some way; (ii) save the data; and
(iii) the saved data are then used or processed.

Acta Polytechnica Hungarica Vol. 16, No. 9, 2019

 – 79 –

The survey [25] explored state-of-the-art control systems in buildings. The ref.
[26] focused on intelligent control systems for energy and comfort management in
smart energy buildings. The study [27] presented the wireless, smart comfort
sensing system that they developed. This system consists of sensor nodes, which
send data to a sink node that sends data to a PC. Another, lower-cost
implementation was presented and discussed in [28], describing the hardware IoT
infrastructure providing real-time monitoring in multiple school buildings. The
sensor nodes and gateway node were based on Arduino boards or similar. A
further study [29] also used low-cost devices in their HVAC and sensor system.
IoT is also discussed in several studies [10], [13] and [21], which have been
mentioned above.

Table 1
Breakdown of the papers reviewed

The results of the literature survey and the selected categories (Comfort,
Retrofitting, Network APIs and IoT) can be seen in Table 1. The table also shows
how the authors’ own contribution related to the categories.

4 Prototype Systems and Models

This section gives a brief summary of our earlier studies related to rapid prototype
development. The proof-of-concept demonstrations and prototype applications
have been developed to illustrate how to utilize cost-effective, open, and modular
solutions. The studies have been chosen based on their potential for including
methods or technologies that could be transferred or exploited in the energy
consumption monitoring or energy saving context.

4.1 Rapid Prototyping

In the context of rapid prototype development (and in the context of IoT devices in
general), a working solution for gathering data needs:

• Hardware – a device or devices running the software
• Software to work with the data – collect, save, and transmit
• Technologies–choosing the right technologies for a use case makes things

easier for both the developer and the user.

M. Saari et al. Reducing Energy Consumption with IoT Prototyping

 – 80 –

In our use cases, the prototype development has had more of software than
hardware orientation. Data are gathered with embedded software, which controls
the action of sensor devices. The data transfer to the cloud can be made in various
ways and requires applicable software to control the sending and receiving of data.
The WSN and sensor networks have several possible technologies for data
transfer, for example: Ethernet [30], WiFi, ZigBEE [31] and LoRa [32]. In
addition, power saving algorithms for WSN [33] and network topology related
issues of Portable Fog Gateways [34] can be considered important topics.

The prototype systems gathered data which was saved to cloud-based services. In
a basic example, the cloud service could be implemented with a Linux-based
server and database [35], which has been modeled in [36].

Software development was carried out in several areas: data gathering software,
data processing software, visualization of results, etc. The software development
consisted of small-to-medium sized applications written in C/C++, Java,
JavaScript or Python. The operating systems were generally chosen from the Open
Source selection. For example, the Raspberry Pi is usually equipped with Linux–
based operating systems (e.g. the Debian-based Raspbian). Also other software,
such as databases, communication and web server software, was typically Open
Source software.

Hardware development can be an integral part of prototype system development,
but in our use cases the prototypes used off-the-shelf devices. In the past few years
the price of microcontrollers, small computers and sensors has become much
lower. At the same time, more and more features have been added to the off-the-
shelf devices. These factors have made utilizing off-the-shelf devices both cheaper
and easier, and it has also reduced the need to construct (or design) sensor or
device packages from the ground-up using basic electronic components. Often
used off-the-shelf devices include:

• Smartphones and tablets

• Single-board computers: Raspberry Pi, Beagle Bone, Intel Galileo, etc.

• Single-board microcontroller: Arduino Uno

• Sensors: Heat, humidity, pressure, movement, position, etc.

Using these off-the-shelf devices for the manufacturing and up scaling the number
of prototype devices is more rapid than implementing a prototype based on printed
circuit board design. In addition, the Raspberry Pi has been shown to be good
choice for research projects and is a widely used device [37].

Furthermore, nowadays mobile phones have the ability to act as sensor devices.
Even the basic Android smartphone has several of the following sensors: light,
proximity, camera, microphone, touch, position (GPS, WiFi, Cellular),
accelerometer, gyroscope, pressure, temperature, humidity. The data collection
and processing can be handled in a smartphone. In addition, a basic smartphone

Acta Polytechnica Hungarica Vol. 16, No. 9, 2019

 – 81 –

usually has more than adequate communication features: Bluetooth, WiFi, GSM,
GPRS, 3G, 4G, etc. are often available.

4.2 Data Gathering with Sensor Network–Modeling, Piloting,
and Testing

The sensor networks can be modeled as is illustrated in Fig. 2 [31]. The sensor
nodes gather data and send it without processing to the master node. The master
node may validate the received data, it may also process it, and send the data to
the cloud. The data are usable from the cloud for various purposes.

Figure 2
Basic model of sensor network [32]

This model was tested during the study [31], and a proof-of-concept solution was
implemented and presented. Based on a survey of prototyping solutions that utilize
Raspberry Pi the commonly used solutions were observed to adhere to this basic
model even when no specific model was described in the studies [37]. However,
the model shown in Fig. 2 has to be modified if smartphones are used as sensor
nodes. Fig. 3 shows a combined presentation of the sensor node and master node
model.

Figure 3
The combined sensor node—master node model for data gathering [36]

M. Saari et al. Reducing Energy Consumption with IoT Prototyping

 – 82 –

The model presented in Fig. 3 was developed especially for data collection with
smartphones. The smartphone includes the necessary sensors, data storage, and
communication channels for the data gathering prototype system. In addition, the
Android operating system (OS) was used, which has enough capabilities to gather
and store data. Also, the commonly used communication protocols are directly
supported by the APIs provided by the OS. [36]

The studies [30-31] [36-37] show several important results:

• Study [30] introduced an example of how a cost-efficient single-board
computer (SBC) can be used to gather sensory data, and how this data
can be provided to the client over the public Internet. In addition, the use
of standard protocols makes development easier, but not all development
boards support all standards (in this case the I2C protocol).

• Study [31], mentioned that master nodes often have access to a constant
power source, but one should carefully choose which components to use
in remote sensors to minimize power consumption. In addition, most of
the energy is consumed in the wireless transmission of data and
consequently it is important to only send what is required (optimization
of the nodes). The energy consumption issue was handled more
specifically by [33].

• The survey about prototyping with Raspberry Pi was introduced in [37].
This paper shows that there is a lack of formalized approaches, methods,
and tools in the research studies. Often only a single use case and a single
system are described in the paper with a minimal use of testing practices
and methods. The commonly used testing methods are software testing,
software performance testing, and validation of data tests.

The conclusion from the results of the papers [30-31] [35-36] is that rapid
prototyping with off-the-shelf devices is possible, but requires guidelines that
include an architecture model of components—both software and hardware.

4.3 Prototype System: Road Condition Analysis and
Visualization

Nowadays, almost everyone has a mobile phone and even the most basic
smartphones often come embedded with a variety of sensors. In [38], smartphones
were utilized to collect road condition data. The smartphone application developed
during the research collects data from the phone’s built-in sensors. The application
can be installed in a common Android smartphone. This collected data could be
further refined into more specific data, such as reports of bumps in the road,
uneven road surfaces, roadworks, and so on. The data are sent to the cloud where
they are processed. Fig. 4 shows the visualization of the captured data and the
routes where the data were collected.

Acta Polytechnica Hungarica Vol. 16, No. 9, 2019

 – 83 –

Figure 4
Visualization of the routes driven [38]

This research shows that it is possible to use a commonly used consumer product
for data collecting. However, it turned out that, even though modern
smartphones/devices are fairly similar by functionality, hardware differences can
cause unexpected problems for implementation. Further, the embedded sensors are
often not "calibrated" across devices and manufacturers. This can cause variances
in the results and therefore comparison of data can be difficult if accuracy is of
high concern. In addition, non-system-related effects and interference
(environmental factors) may affect the final results e.g., when measuring shocks or
vibrations different vehicles provide slightly different results. In addition, it is
often necessary to perform pre-processing and filtering on-device, versus a fully
service-implemented analysis.

A further result of this research is connected to the visualization of collected data.
This is often no minor issue when measuring the quality of the user experience.
Also, a fluent execution of visualization of a large dataset can be challenging,
especially on a web browser.

4.4 Prototype: Approach to Image Data Collection

Customer complaints can be resolved by means of image and data collection. The
research [39] introduces two prototypes installed in vehicles and a cloud service
for autonomous collection of data. The first prototype—an Android application—

M. Saari et al. Reducing Energy Consumption with IoT Prototyping

 – 84 –

was implemented for a smartphone to take pictures of a bus as it approaches the
bus stop. The second prototype was implemented for the Raspberry Pi single-
board computer by using off-the-shelf devices such as a camera, GPS sensor, and
3G/4G wireless modem. The prototype was installed in a garbage truck to take
pictures of recycling areas, as shown in Fig. 5.

Figure 5
Three pictures taken of a recycling area. Left: in daylight; center: at night; right: blocking obstacle [40]

The prototypes use a camera and GPS. The collected data—picture, location, time,
etc.—were sent to the cloud server. The paper [39] discusses the differences and
challenges faced in designing and implementing the two prototypes for different
platforms.

The main conclusions were that mobile platforms (i.e., smartphones, tablets) can
work as a quick starting point for rapid prototyping. These have embedded
sensors, proper documentation, and the availability of examples, all of which
support rapid prototyping. On the other hand, small computers like Raspberry Pi
and microcontrollers offer a better option for use cases requiring remote
management. Of course this has disadvantages, such as requiring more "hands-on"
labor, and being more difficult to find examples or production quality code. In
addition, both mobile platforms and small computers highlight the importance of
environmental factors—such as the availability of electricity, telecommunications,
and installation of the prototype [39].

4.5 Prototype: Counting Passengers from Image Data

The research [40] was the result of a real-life need for counting passengers. In the
summer of 2018 a large public event was organized in the city of Pori, Finland.
The event had free-to-ride buses and the organizer wished to collect statistics
about the bus passengers: Where they got in and where they got out. The use case
utilized cost-effective and off-the-shelf components such as the Raspberry Pi 3
computer, position sensors, and cameras. In this use case, the software used was
Open Source Computer Vision Library version 3.

Acta Polytechnica Hungarica Vol. 16, No. 9, 2019

 – 85 –

Figure 6
An example of the detection area of the bus, as seen by the device [40]

During the research, a prototype system was developed, consisting of hardware
and software components. The prototype takes pictures, as shown in Fig. 6. The
pictures are processed by the system, which was based on image analysis and
shape detection. The data are processed in the Raspberry Pi and the results of the
processed data are sent to the cloud server. [40]

4.6 Toward Reducing Energy Consumption with IoT
Prototyping

An important part of achieving energy usage reductions is a reliable way of
collecting data about current environmental conditions. The research presented in
this section (Section 4) illustrated simple models that could be used when
implementing a sensor network for collecting data. Furthermore, Section 4.2
illustrated certain pitfalls related to currently used approaches and highlighted the
lack of existing model for rapid prototyping in the IoT domain. Sections 4.3 and
4.4 showed advantages of using smartphones as tools for data collection. Modern
smartphones contain a huge variety of built-in sensors and the available devices
range for low-cost affordable models to more expensive high-end devices. Today,
almost everyone already has a smartphone, and thus, the cost of using
smartphones for environmental monitoring can be negligible. Additionally, even
the low-end devices are capable of running simple applications, that can be used to
show statistics about current living conditions, and at least in theory, to provide
the user with interfaces for controlling the environment. Unfortunately, there are
challenges related to installing devices to real-life scenarios, such as, creating
solid, durable packaging for the sensors and the availability of electricity and

M. Saari et al. Reducing Energy Consumption with IoT Prototyping

 – 86 –

telecommunications. Specifically when dealing with rapid prototype development
and actual locations, there can be unexpected challenges, even when not
considering the interoperability issues with existing structures and systems. More
advanced scenarios can be realized with customizable devices. Section 4.5
described how Raspberry Pi could be used to monitor passenger ridership, an
approach that could be easily expanded to energy consumption domain. Detecting
whether rooms or buildings are occupied can have huge effect on the cooling and
heating requirements. Furthermore, all of the presented prototypes use free and
open software and low-cost modular components proofing that rapid prototyping
with off-the-shelf devices is possible.

Conclusions

One of the initial research questions for this study was “How to categorize the
energy consumption related studies?” Based on the literature review carried out,
the existing studies can be roughly divided into four distinct categories: studies
related to measuring and ensuring occupant comfort in buildings; research on how
to extend existing systems with modern sensor and optimization solutions
(retrofitting); studies on the usage and description of network-based APIs; and
studies on IoT-based devices in general. All of these categories—comfort,
retrofitting, network APIs, and IoT—include a wide array of existing research and
provide numerous examples of applications and systems for monitoring and
optimizing energy consumption. Several conclusions can be drawn from the
results of the literature review, and from our previous experience in prototype
development in the various research projects presented in this paper.

Our second research question was “How to utilize free and open solutions in the
energy consumption context preserving adequate living conditions?” In the scope
of this paper, the solutions for this question answered more on the basic technical
problems. The paper gave insights on available software and hardware options,
but the aspect of preserving living conditions was given less focus, and would
require more extensive research.

In existing studies, IoT often consists more of "proof-of-concept" style research.
The studies present a use case, various testing methods, and results, but often no
formal model for testing or benchmarking is described. Without further studies it
is difficult to say why there is an apparent lack of a standardized or de facto model
for rapid IoT prototype development, but research on developing such a model or
applying an existing model for the IoT context could be one potential direction for
future studies.

Mobile devices (i.e., smartphones, tablets) can work as a good starting point for
prototype development—they are ubiquitous, and they come embedded with
various built-in sensors. Documentation and application examples are, in general,
easy to find, and the utilization of mobile devices can be combined with off-the-
shelf devices to create more complex systems. Off-the-shelf products—such as the
Raspberry Pi single-board computer and wide multitude of available sensors—

Acta Polytechnica Hungarica Vol. 16, No. 9, 2019

 – 87 –

have become much cheaper in recent years and offer adequate performance with a
relatively good set of features and expansion capabilities. The market has also
seen an increase in cheaper commercial sensor products targeted at consumers
(end users). This price and market development has caused an increase in research
utilizing cost-effective off-the-shelf devices as opposed to building and designing
devices (e.g., sensor nodes) from the "ground up". Additionally, the increase in
commercial products has enabled people with lesser technical knowledge to buy
and set up sensor devices in their homes. Unfortunately, the interoperability of
existing systems (air conditioning systems installed in older buildings, commercial
products lacking proper interfaces or APIs, etc...) is often less than seamless and
connecting the systems to available off-the-shelf devices can be challenging. With
more barebone devices (Raspberry Pi, Arduino, etc.), packaging, designing a case,
and installing the sensor node in a real-life environment or for outdoor use can
pose further difficulties.

Finally, the paper attempted to answer the question: “How to reduce energy
consumption by collecting and serving suitable data?” Based on the existing
studies, the availability of energy consumption information can have a huge effect
on people's habits, and properly presented usage statistics can lead to energy
savings. In existing systems, the information is often limited to simple statistics
(numerical details, graphs). Unfortunately, meaningful visualization can be
challenging: How to select what is "meaningful"? How detailed should the
statistics be? And how should the information be presented? In some cases, the
user cannot affect the energy consumption and occupant comfort as desired. The
user may not have access to the building's air conditioning or the building may not
have devices capable of altering the indoor air quality (i.e., CO2 levels, humidity,
temperature, etc.)—should these statistics still be shown to the user? Furthermore,
a building seldom has only a single occupant, and taking the possibly conflicting
preferences of the users fully into account may in practice even be impossible.
One potential research topic could be how to tackle the aforementioned issues,
perhaps by utilizing A.I. or modern smart devices.

Acknowledgements

This work was supported by the European Regional Development Fund. These
results were used when planning the ongoing “KIEMI” research project by
Tampere University.

References

[1] Dubar, I. G., Bogdan, R., & Popa, M. (2017) External rapid prototyping
validation system for the automotive development cycle. Acta Polytechnica
Hungarica, 14(6), 41-57, https://doi.org/10.12700/APH.14.6.2017.6.3

[2] Official Statistics of Finland (OSF): Energy supply and consumption [e-
publication] ISSN 1799-7976. 4th quarter 2018, Helsinki: Statistics Finland
[referred: 24.6.2019] Access method: http://www.stat.fi/til/ehk/2018/04/
ehk_2018_04_2019-03-28_tie_001_en.html

M. Saari et al. Reducing Energy Consumption with IoT Prototyping

 – 88 –

[3] Official Statistics of Finland (OSF): Energy consumption in households [e-
publication] ISSN 2323-329X. 2016. Helsinki: Statistics Finland [referred:
24.6.2019] Access method: http://www.stat.fi/til/asen/2016/
asen_2016_2017-11-17_tie_001_en.html

[4] J. E. Petersen, V. Shunturov, K. Janda, G. Platt, and K. Weinberger,
“Dormitory residents reduce electricity consumption when exposed to real-
time visual feedback and incentives,” International Journal of Sustainability
in Higher Education, Vol. 8, No. 1, pp. 16-33, 2007

[5] N. N. Kang, S. H. Cho, and J. T. Kim, “The energy-saving effects of
apartment residents’ awareness and behavior,” Energy and Buildings, Vol.
46, pp. 112-122, 2012

[6] G. M. Huebner, J. Cooper, and K. Jones, “Domestic energy consumption -
What role do comfort, habit, and knowledge about the heating system
play?” Energy and Buildings, Vol. 66, pp. 626-636, 2013

[7] A. Faruqui, S. Sergici, and A. Sharif, “The impact of informational
feedback on energy consumption - A survey of the experimental evidence,”
Energy, Vol. 35, No. 4, pp. 1598-1608, 2010

[8] B. Kitchenham and S. Charters, “Guidelines for performing Systematic
Literature Reviews in Software Engineering Version 2.3,” EBSE Tech.
Rep. EBSE-2007-01, 2007

[9] L. Yang, H. Yan, and J. C. Lam, “Thermal comfort and building energy
consumption implications – A review,” Applied Energy, Vol. 115, pp. 164-
173, 2014

[10] D. Marković, D. Vujicic, Z. Jovanovic, U. Pesovic, S. Randik, and D.
Jagodic, “Concept of IoT system for monitoring conditions of thermal
comfort,” in International Scientific Conference “UNITECH 2016,” 2016,
November

[11] M. Taleghani, M. Tenpierik, S. Kurvers, and A. van den Dobbelsteen, “A
review into thermal comfort in buildings,” Renew. Sustain. Energy Rev.,
Vol. 26, pp. 201-215, Oct. 2013

[12] F. Salamone, L. Belussi, C. Curro, L. Danza, M. Ghellere, G. Guazzi, B.
Lenzi, V. Megale, and I. Meroni, “Integrated Method for Personal Thermal
Comfort Assessment and Optimization through Users,” Sensors, 2018

[13] L. Ciabattoni, F. Ferracuti, G. Ippoliti, S. Longhi, and G. Turri, “IoT based
indoor personal comfort levels monitoring,” in 2016 IEEE International
Conference on Consumer Electronics (ICCE), 2016, December 2015, pp.
125-126

[14] A. Ghahramani, F. Jazizadeh, and B. Becerik-Gerber, “A knowledge based
approach for selecting energy-aware and comfort-driven HVAC

Acta Polytechnica Hungarica Vol. 16, No. 9, 2019

 – 89 –

temperature set points,” Energy and Buildings, Vol. 85, pp. 536-548, Dec.
2014

[15] Y. Obuchi, T. Yamasaki, K. Aizawa, S. Toriumi, and M. Hayashi,
“Measurement and evaluation of comfort levels of apartments using IoT
sensors,” IEEE International Conference on Consumer Electronics (ICCE),
2018, pp. 1-6

[16] T. Niemelä, R. Kosonen, and J. Jokisalo, “Cost-effectiveness of energy
performance renovation measures in Finnish brick apartment buildings,”
Energy Build., Vol. 137, pp. 60-75, Feb. 2017

[17] B. E. Medina and L. T. Manera, “Retrofit of air conditioning systems
through a Wireless Sensor and Actuator Network: An IoT-based application
for smart buildings,” IEEE 14th International Conference on Networking,
Sensing and Control (ICNSC), 2017, pp. 49-53

[18] S. R. West, J. K. Ward, and J. Wall, “Trial results from a model predictive
control and optimisation system for commercial building HVAC,” Energy
and Buildings, Vol. 72, pp. 271-279, Apr. 2014

[19] S. Gupta, M. S. Reynolds, and S. N. Patel, “ElectriSense: single-point
sensing using EMI for electrical event detection and classification in the
home,” in UbiComp, 2010

[20] C. A. Björkskog, G. Jacucci, L. Gamberini, T. Nieminen, T. Mikkola, C.
Torstensson, and M. Bertoncini, “EnergyLife: Pervasive Energy Awareness
for Households,” in Proceedings of the 12th ACM International Conference
Adjunct Papers on Ubiquitous Computing - Adjunct, 2010, pp. 361-362

[21] M. Weiss, A. Helfenstein, F. Mattern, and T. Staake, “Leveraging smart
meter data to recognize home appliances,” IEEE International Conference
on Pervasive Computing and Communications, 2012, pp. 190-197

[22] L. Özgür, V. K. Akram, M. Challenger, and O. Dağdeviren, “An IoT based
smart thermostat,” 5th International Conference on Electrical and Electronic
Engineering (ICEEE), 2018, pp. 252-256

[23] M. Weiss and D. Guinard, “Increasing Energy Awareness Through Web-
enabled Power Outlets,” in Proceedings of the 9th International Conference
on Mobile and Ubiquitous Multimedia, 2010, p. 20:1-20:10

[24] N. Morimoto, Y. Fujita, M. Yoshida, H. Yoshimizu, M. Takiyamada, T.
Akehi, and M. Tanaka, “Smart Outlet Network for Energy-Aware Services
Utilizing Various Sensor Information,” 27th International Conference on
Advanced Information Networking and Applications Workshops, 2013, pp.
1630-1635

[25] B. L. Risteska Stojkoska and K. V. Trivodaliev, “A review of Internet of
Things for smart home: Challenges and solutions,” J. Clean. Prod., Vol.
140, pp. 1454-1464, Jan. 2017

M. Saari et al. Reducing Energy Consumption with IoT Prototyping

 – 90 –

[26] P. H. Shaikh, N. B. M. Nor, P. Nallagownden, I. Elamvazuthi, and T.
Ibrahim, “A review on optimized control systems for building energy and
comfort management of smart sustainable buildings,” Renewable and
Sustainable Energy Reviews, Vol. 34, pp. 409-429, Jun. 2014

[27] A. Kumar and G. P. Hancke, “An Energy-Efficient Smart Comfort Sensing
System Based on the IEEE 1451 Standard for Green Buildings,” IEEE
Sensors Journal, Vol. 14, No. 12, pp. 4245-4252, Dec. 2014

[28] L. Pocero, D. Amaxilatis, G. Mylonas, and I. Chatzigiannakis, “Open
source IoT meter devices for smart and energy-efficient school buildings,”
HardwareX, Vol. 1, pp. 54-67, Apr. 2017

[29] S. Godo, J. Haase, and H. Nishi, “Air conditioning control using
selfpowered sensor considering comfort level and occupant location,” in
IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics
Society, 2015, pp. 002497-002502

[30] M. Saari, P. Sillberg, P. Rantanen, J. Soini, and H. Fukai, “Data collector
service - practical approach with embedded linux,” 38th International
Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO), 2015, pp. 1037-1041, IEEE

[31] M. Saari, A. M. Baharudin, P. Sillberg, P. Rantanen, and J. Soini,
“Embedded Linux controlled sensor network,” 39th International
Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO), 2016, pp. 1185-1189, IEEE

[32] M. Saari, A. M. bin Baharudin, P. Sillberg, S. Hyrynsalmi, and W. Yan,
“LoRa — A survey of recent research trends,” 41st International
Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO), 2018, May, pp. 0872-0877, IEEE

[33] A. M. bin Baharudin, M. Saari, P. Sillberg, P. Rantanen, J. Soini, and T.
Kuroda, “Low-energy algorithm for self-controlled Wireless Sensor
Nodes,” International Conference on Wireless Networks and Mobile
Communications (WINCOM), 2016, pp. 42-46

[34] A. M. bin Baharudin, M. Saari, P. Sillberg, P. Rantanen, J. Soini, J.
Jaakkola, W. Yan, “Portable Fog Gateways for Resilient Sensors Data
Aggregation in Internet-less Environment,” Eng. J., Vol. 22, No. 3, pp. 221-
232, Jun. 2018

[35] I. Ahmad, P. Rantanen, P. Sillberg, J. Laaksonen, S. Liu, “VisualLabel: An
Integrated Multimedia Content Management and Access Framework,” in
Proceedings of the 27th International Conference on Information Modelling
and Knowledge Bases, EJC 2017, 2017, pp. 332-353

[36] P. Sillberg, M. Saari, J. Grönman, P. Rantanen and M. Kuusisto,
”Interpretation, Modeling and Visualization of Crowdsourced Road
Condition Data”, IS-TRIA2019, Submitted

Acta Polytechnica Hungarica Vol. 16, No. 9, 2019

 – 91 –

[37] M. Saari, A. M. bin Baharudin, and S. Hyrynsalmi, “Survey of prototyping
solutions utilizing Raspberry Pi,” 40th International Convention on
Information and Communication Technology, Electronics and
Microelectronics (MIPRO), 2017, pp. 991-994, IEEE

[38] P. Sillberg, J. Gronman, P. Rantanen, M. Saari, and M. Kuusisto,
“Challenges in the Interpretation of Crowdsourced Road Condition Data,”
International Conference on Intelligent Systems (IS), 2018, pp. 215-221

[39] J. Grönman, P. Rantanen, M. Saari, P. Sillberg, and H. Jaakkola, “Lessons
Learned from Developing Prototypes for Customer Complaint Validation,”
in CEUR Workshop Proceedings, 2018

[40] J. Grönman, P. Sillberg, P. Rantanen, and M. Saari, “People Counting in a
Public Event—Use Case: Free-to-Ride Bus,” 42th International Convention
on Information and Communication Technology, Electronics and
Microelectronics (MIPRO), 2019, IEEE

166

PUBLICATION

VI

Framework and Development Process for IoT Data Gathering
Saari, M., Rantanen, P., Hyrynsalmi, S. and Hästbacka, D.

Advances in Intelligent Systems Research and Innovation. Ed. by Sgurev, V., Jotsov, V. and
Kacprzyk, J. 2022, 41–60. (Extension of peer reviewed conference publication Saari,

Rantanen and Hyrynsalmi, 2020)
DOI: 10.1007/978-3-030-78124-8_3

Publication reprinted with the permission of the copyright holders

https://doi.org/10.1007/978-3-030-78124-8_3

Framework and Development Process for IoT

Data Gathering

Mika Saari, Petri Rantanen, Sami Hyrynsalmi and David Hästbacka

Abstract The Internet of Things (IoT) is a growing area in everyday life. New
applications under the umbrella term IoT are being developed continually. This
development has raised the need for framework definitions for di�erent purposes.
This research introduces a special software/hardware framework for data gathering
systems to be used in IoT related systems. The purpose of the research is to show the
usability of a certain software/hardware combination in prototype development. The
software/hardware framework has been developed during several research projects by
following the same prototype development process. This is proposed as a descriptive
model for the prototyping process. The main contribution of this research is the
framework itself. The framework consists of a model of the system with selected
components. The placement of the sensor network is also presented. The purpose of
the framework is to guide and assist the construction of data gathering prototypes.
Furthermore, the advantages of the framework are to support re-usability, portability,
and interchangeability. This research introduces the framework, itsmain components,
and their interconnections. In addition, the prototype development process used is
presented.

Mika Saari
Tampere University, Computing Sciences, Pori, Finland e-mail: mika.saari@tuni.fi

Petri Rantanen
Tampere University, Computing Sciences, Pori, Finland e-mail: petri.rantanen@tuni.fi

Sami Hyrynsalmi
LUT University, Department of Software Engineering, Lahti, Finland e-mail:
sami.hyrynsalmi@lut.fi

David Hästbacka
Tampere University, Computing Sciences, Hervanta Campus, Finland e-mail:
david.hastbacka@tuni.fi

1

2 Mika Saari, Petri Rantanen, Sami Hyrynsalmi and David Hästbacka

1 Introduction

The Internet of Things (IoT) is a growing area in everyday life. New applications
under the umbrella term IoT are being developed continually. The IoT paradigm
is the integration of several technologies and communications solutions [1]. This
development has raised the need for framework definitions for di�erent purposes.
For example, the draft of the IEEE standard [2] defines an architectural framework
for the Internet of Things (IoT).

This article introduces a special software/hardware (SW/HW) framework for data
gathering systems to be used in IoT related systems. The research question can
be stated as follows: How to generalize the prototyping of IoT data gathering in a
framework of required software and hardware components?

The research question was formulated during previous data gathering prototype
system development projects. The main purpose of these prototypes is to gather data,
for example environmental data such as temperature, humidity, or carbon dioxide
levels. The aim was to focus on the reproducibility of components within the devel-
opment process. This study presents guidelines for selecting the required software
and hardware components. The purpose of the SW/HW framework is to guide and
assist when constructing data gathering prototypes. Furthermore, the advantages of
the framework are that it supports re-usability, portability, and interchangeability.

This study is part of the research related to the Internet of Things (IoT) carried
out by the Software Engineering and Intelligent Systems (SEIntS) group at Tampere
University, Pori. The SW/HW framework has been developed during several research
projects. These projects have contained multiple iteration rounds. Many of these
rounds have produced a research article, whose main target was to describe the
working prototype. The first prototype system was introduced by Saari et al. [3]
in 2015. That research introduced the initial idea of a framework and a working
implementation from it. Research on reducing energy consumption [4] presented the
advantages of rapid prototyping with o�-the-shelf devices and open source software.

The main idea of prototype development has been to start with o�-the-shelf
devices and open source software. These key software and hardware components
are then modified in the desired direction and usually a working prototype system is
produced.

The main result from our research is the framework itself. This has the ability to
act as a guiding principle when developing new prototypes for gathering data. This
framework also aims to represent the development of software and hardware usage
in data gathering systems; in particular the evolution in the usage of both software
and hardware is considered in di�erent parts of the system. The framework could be
used as a model when planning new data gathering prototypes for sensor networks.

The second finding made during the research is a descriptive model for the
prototyping process (DMPP). This is a model of prototype development practices
that have been applied in several research projects between university and enterprises
(mostly small and medium-sized enterprises (SMEs)) in Finland. The purpose of the
model is to introduce how academic research can conduct prototype development
with regional enterprises.

Framework and Development Process for IoT Data Gathering 3

Fig. 1 The overall architecture of a data gathering IoT prototype system.

The structure of this paper is as follows: In Section II, we review the related
research about prototyping, the development process, and related frameworks. In
Section III, we introduce an implementation of university-enterprise collaboration
in prototype development described by means of process modeling notation. Section
IV introduces the SW/HW framework for IoT data gathering. Section V continues
by describing the validation and testing of the framework. Section VI includes a
discussion and suggestions for future research on the topic and finally, Section VI
summarizes the study.

2 Related research

The importance of prototyping embedded SW/HW systems was introduced by [5].
The reason for this was because system di�erences had increased, and the product
relied mainly on variations in software and system features. In addition, involving
users in the specification process is important because more and more customers
expect solutions and services tailored exactly to their particular needs. In a more
recent study, [6] developed a working prototype using o�-the-shelf components.
This also showed that a lengthy product development life cycle is not required when
using a rapid prototyping process.

Rapid prototyping could be presented as a circle (Fig. 2). Rapid prototyping
includes three stages: making a prototype, reviewing the result, and refining and
iterating [7]. We used the idea of rapid prototyping in our projects. The working
prototype solution in the context of IoT requirements is as follows: hardware to run
the software; software to collect, save, and transmit the data; the right technologies
for the use cases to make things easier for both developer and user. [4]

4 Mika Saari, Petri Rantanen, Sami Hyrynsalmi and David Hästbacka

Fig. 2 The circle of the rapid prototyping process. Adapted from [7]

2.1 Development process of the prototypes

The IoT prototyping process can be viewed from two perspectives: a software de-
velopment process and an embedded hardware development process. Furthermore,
the authors have researched the IoT data gathering prototype development process
by collecting data from several prototyping processes.

A development process from the area of software development is suitable for this
study. The developed prototypes and the presented SW/HW framework include a lot
of software development. The process model could be descriptive or prescriptive. A
prescriptive model tells how the process should be performed, whereas a descriptive
model tells how a process is performed in a particular environment. The third
option, a proscriptive model, also describes the activities that could be done [8].
The descriptive process model (DPM) [9] [10] introduces an eight step approach
for producing a process model. These steps are divided into two phases: the set-up
phase and the execution phase. The eight step approachwas usedwhen the descriptive
model for the prototyping process (DMPP) was developed. The DMPP is presented
in Section 3.

The book "Introduction to Embedded Systems - A Cyber-Physical Systems Ap-
proach" by Lee and Sashia is based on the idea that designing and implementing
an embedded system consists of three major parts of the process: modeling, design,
and analysis [11]. The modeling phase specifies what a system does by defining the
system model and the set of requirements. The artifacts, such as a combination of
software and hardware components, are produced in the design phase. An artifact
is a working system and it describes how the system works. In the analysis phase,
information on the system is obtained to specify why the system works as it works.
[11]

Framework and Development Process for IoT Data Gathering 5

Fig. 3 Example of basic concepts related to the prototype development process. Adapted from [18]

2.2 The framework for prototyping

The SW/HW framework idea is not a new issue in the research field. For example,
earlier studies [12], [13], [14] have addressed the framework subject from a real-
time system perspective. In these studies, the design was at micro-controller level,
whereas our prototypes use o�-the shelf single-boardmicro-controllers. For example,
Srivastava and Brodersen handled board level module generation, system software
generation, and hardware-software integration in a unified framework [14]. Their
study mentions a rapid prototyping method, but it was not explained further.

IoT architecture consists of several components, which can be divided into layers
as follows: sensing layer, networking layer, service layer, and interface layer [15],
[16]. The SW/HW framework is focused on the sensing and service layers. The
networking layer exists but is not the focus of our research. The interface layer is
described to the user in the SW/HW framework but is excluded from the study.

A wireless sensor network (WSN) can be used in various application areas. A
WSN includes sensor nodes, which consist of sensing, data processing, and com-
municating components. A sensor network is composed of a large number of sensor
nodes, which send data to the data storage. Since sensor nodes have data processing
ability, the uploaded data can be either raw or pre-processed [17].

3 Descriptive model for the prototyping process (DMPP)

We introduced our descriptive software process model for IoT prototyping in [18].
The purpose of this section is to present how the selected processmodel has supported
the development of the framework.

The DMPP [18] could be extended to include hardware, because the model itself
does not limit the type of artifact. Therefore, when the process is mentioned in this
study, it generally means every kind of artifact, i.e., software or hardware, made

6 Mika Saari, Petri Rantanen, Sami Hyrynsalmi and David Hästbacka

Fig. 4 Process model for prototype development. Adapted from [18].

in the prototype development process. The focus is on modeling the prototyping
process in a research context, but its use in general is not restricted.

The DMPP was developed using the aforementioned descriptive process model
(DPM) approach [10]. The basic concepts related to processes are role, activity,
resource, and artifact. The example is illustrated by the developer (role) involved
in software developing (activity) using a programming tool (resource). The activity
produces some software (artifact) used in the prototype system. The process data
for the model is collected through interviews with the developers involved in the
four di�erent prototype development processes. These four prototype development
projects and their outcomes are reported in several studies [19], [20], [21], [22].
Common to all of the studies are that they present developed IoT prototype systems
that gather data. Although the software and hardware components in the prototypes
vary, overall they can be used to model the prototype development process.

Fig. 4 presents the developed DMPP [18]. The model includes six steps. These
steps support or use the SW/HW framework in the following ways:

1. The first step starts from the requirements definition, a collaborative discussion
between the developers and the client. The client defines what kind of data
would be useful. The developer group starts to define the hardware and overall
architecture of system and how the data will be collected by the software. The
selected hardware mostly determines the software environment and tools used.

2. The outcome of the discussion is the first artifacts: for example, the prototype
system requirements within the discussion notes. The developer group constructs
the first architecture model of the component interconnections.

3. The third step is the software/hardware prototype development made by the
research group including the project manager and software/hardware developers.
The clients’ representatives are involved in the development process in the role
of instructor. In this step the SW/HW framework is used as the guideline for
selecting the components for the developed prototype.

4. The fourth step introduces theworking prototype artifact. It contains the developed
software and hardware components. Also, the interconnections of the components
are tested. The testing process overall is usually only the functional testing of the

Framework and Development Process for IoT Data Gathering 7

Fig. 5 Relationships of the SW/HW framework.

prototype system. Additionally, the gathered data are inspected and if possible,
compared to the expected results.

5. The fifth step includes preparing the outcome of the development process. The
SW/HW framework can be complemented if necessary.

6. The sixth step is to publish the results, for example, the prototype system, the
collected data, and the analysis of the project.

The process model in Fig. 4 is a simplified presentation of the prototype de-
velopment process and therefore it does not mention common procedures such as
iterations, testing, and customer testing.

Iterations are an e�cient way to test and develop an idea. The first working
prototype is made as simple as possible with basic components. For example, the
hardware could be chosen at first only for testing the idea. If the idea works, the
hardware is changed for more suitable hardware in the next iteration round. A good
example of this is the application where we tested the use case [23]: Is it possible to
take a photo in selected GPS coordinates automatically and send this photo to the
cloud storage? This idea was tested with the Android application in a smartphone and
the idea was found to be a workable solution. The smartphone had some limitations
with the automation: The developed photographing application had to be started,
it was not possible to be aware of the application crashing, and the possibility of
remote control was not easily implemented. The second iteration round to solve the
same use case was carried out with the following hardware: Raspberry Pi, camera,
battery, GPS sensor, WiFi, and 4G modem. This time the Raspberry Pi OS made
it possible to implement the automated operations and remote control with Linux
tools.

4 SW/HW Framework for IoT data gathering

In this section we introduce the SW/HW framework for an IoT data gathering sys-
tem. The framework consists of several hardware and software components. The
purpose and advantage of the framework is to support re-usability, portability, and

8 Mika Saari, Petri Rantanen, Sami Hyrynsalmi and David Hästbacka

interchangeability. Another purpose of the framework is to guide and assist the
construction of data gathering prototypes.

The definition of the SW/HW framework has been made in several academic
research projects where the focus has been the collection of data using self-made
prototype systems. Fig. 5 illustrates the framework and its relationships. The pre-
viously presented model in Section 3 has connections to the framework and its
development. DMPP step 1 gives guidelines for data handling. The client tells the
developers what kind of data are useful. In step 3 the developers make the decisions
on what kinds of software and hardware components are needed to fulfill the clients’
data gathering expectations.

Furthermore, Figure 5 clarifies the interconnections of the framework compo-
nents. These interconnections guide the selection of software and hardware compo-
nents when constructing a prototype. The framework relies on o�-the-shelf devices,
because this speeds up development by minimizing hardware design and implemen-
tation [24]. The information that is to be collected determines the collection and
structure used by the software and hardware components. Optional features are also
used when selecting the components. In hardware, open hardware and o�-the-shelf
devices are preferable, because they are reasonably priced, quickly available, and
have community support. The software components should have similar features:
open source and community support. Please note that these criteria are not preferred
when implementing the final application for production use.

The first question for the constructor of an IoT data gathering system when
implementing the prototype is what information or data to collect. The answer to
the question should be clear and it should also be the motivator of constructing the
system. The next three questions are presented after the decision to collect data:

• How to gather data?
• How to store data?
• How to process data?

For an end user or client the availability of the data is important. Therefore the
preferable place to store and process the data is in some cloud storage or server.
Cloud storage could be some old Linux server or fully optimized commercial cloud
computing service. However, before the data are in cloud storage, they have to be
collected and stored temporarily in a sensor device or gateway device. Furthermore,
the first data processing and storing should be managed by the sensor device or
gateway device. For example, if the network has a communication problem, there is
the possibility of losing data unless the data are forwarded rather than being stored
temporarily. The SW/HW framework focuses on data storage and processing in the
sensor or gateway layers.

Fig. 6 shows the overall layer architecture of the IoT data gathering prototype
system in a sensor network. The presented SW/HW framework is located in the lower
part, containing the sensors, gateways, and preferable means of communication to
operate with cloud storage. A few explanations of the Fig. are given below:

• The user and client layer utilizes the collected data.

Framework and Development Process for IoT Data Gathering 9

Fig. 6 Layer diagram of IoT data gathering and how the SW/HW framework is placed in it.

• A processing layer is needed in most use cases. The data are processed in the way
the clients require. The user can use the raw, unprocessed data.

• The storage layer collects and saves the data. The purpose of this level is to ensure
data retention.

• The outbound communication layer belongs to the SW/HW framework. Its pur-
pose is to o�er a suitable data transfer method.

• Data gathering has three di�erent hardware constructions: Type 1 - master node-
sensor node combination; Type 2 - several sensor nodes collect the data in one
master node; Type 3 - Fully operational sensor device - a smartphone collects the
data.

• The data flow from the sensors to the client or user. The data could be temporarily
stored on the gateway level. The data processing could be also done on then
gateway level if it is necessary and possible.

• Configurations and monitoring are enabled to ensure faultless operation and for
testing purposes.

The division of the master node - sensor node into three di�erent types of con-
struction supports the versatility of the SW/HW framework. The main idea is that
these three types make it possible to collect a wide range of data.

4.1 Hardware of the SW/HW Framework

The data gathering hardware can be divided on a higher level into three type of
constructions, as can be seen in Fig. 6. The framework uses o�-the-shelf hardware
and devices. This limitation accelerates prototype development as at least partially
tested devices can be used. The hardware can be categorized in two parts:

• Sensor node - Sensor hardware consisting of a combination of sensors and control
device.

• Master node - data gathering and storing device that has the capability of collect-
ing, storing, and processing data.

10 Mika Saari, Petri Rantanen, Sami Hyrynsalmi and David Hästbacka

Table 1 The main features of three di�erent types of data gathering constructions
Type 1 Type 2 Type 3

Basic construction SBC with sensor(s) SBC master node and
group of sensor nodes
with sensors

Smart phone

Data gathering No limitations – suit-
able for large data
chunks such as photos

Suitable for low data
transfer – SBC limita-
tions

Device sensors – no
hardware modifications

Data processing SBC limitations Mean value calculus,
visualizing

Mean value calculus

Data storage No limitations tempo-
rary storage

No limitations database
storage

No limitations tempo-
rary storage

The division into two parts is enough for hardware when compared to the three
types of data gathering devices in Table 1. On the hardware side, types 1 and 3 are
embedded together - the sensors and processing capabilities are in one device. In
type 2 the master node can control several sensor nodes.

The sensor node collects the data with sensors. The data could be simple data,
such as temperature and humidity.On the other hand, the data could bemore complex,
such as photos. The hardware is selected according to the data requirement. The
separation of sensor node is made because of type 2 where the idea is to use several
sensor nodes with one master node. In type 2 construction sensors are connected
to a single-board micro-controller, such as Arduino or similar, which can handle
a lot of simple data. Simple data are numerical values. Type 2 sensor nodes are
simple, low-cost devices. These are connected to the master node and the amount
of transferred data should be in bytes or kilobytes. The preferred communication
methods include Bluetooth, ZigBee, and LoRa for short distance, low rates, and low
power consumption [25], [26]. Types 1 and 3 are similar to each other; both are
physically one entity: Type 1 consists of sensors and an SBC such as Raspberry Pi.
The collected data could be complex and may need processing power, for example,
photos. Type 3 is smartphone based solutions. A typical smartphone has several
sensors, e.g., gyroscope, accelerometer, and ambient light sensor [27]. For example,
Android phones could handle a lot of simple data from their own sensors, or complex
data such as photos from the phone’s own camera.

The master node collects data from the sensor nodes. The master node has
the capability to pre-process or temporarily store data if needed. The master node
has a communication channel for a larger data transfer rate and long distance, for
example, 3G / 4G / 5G, or WiFi are suitable. Depending on the master node’s
communication channel, remote control and configuration are possible. For example,
with the Raspberry Pi the remote configuration is easily constructed with a suitable
communication channel and Linux OS tools. The idea of a master node in type
3 smartphone based solutions is implemented with a self-made application, which
handles data collection, storage, and processing. The application limitations come
from the phone’s OS and the fact that hardware changes or modifications have not
been made.

Framework and Development Process for IoT Data Gathering 11

Fig. 7 Diagram of software component interconnections in the SW/HW framework.

This SW/HW framework relies on communication to the public Internet. The
collected data is transferred via the Internet to the data storage devices. These could
be cloud servers with a database or dedicated open source Linux servers for saving
data. There are several database models for storing sensor data and each of these has
a special use case where they are best. The SW/HW framework can be applied to all
of these techniques.

4.2 Software of the SW/HW Framework

The hardware of the SW/HW framework also requires software. The software used
is mostly open source. In this way the selected software is community tested and the
source code is freely available. Open source software is also free to use. Therefore,
several software combinations can be used for testing purposes without extra costs.

The software components are divided into three parts:

• Sensor software - gets sensor data from sensors
• Data gathering and pre-processing software
• Data storage software

Regarding how these three parts work together, the diagram in Fig. 7 is a guideline
for dividing software components between the master node and sensor node on
the abstract level. This kind of approach supports the modular development and
interchangeability of components. The diagram also illustrates the input from the
sensors and the output to the cloud.

The list of software components starts from the sensor node with sensor software
and ends with data storage software for the master node. The sensing and sensor
software typically have low-level programming with C++, Python, or Perl scripts,
which are dedicated to do a few tasks, for example reading sensor data, reviewing
the data, and storing the data. Sensor devices, such as Arduino with sensors, are

12 Mika Saari, Petri Rantanen, Sami Hyrynsalmi and David Hästbacka

typically a micro-controller board that runs a dedicated program. Types 1 and 2 in
Fig. 6 represent this kind of approach.

The Raspberry Pi based SBCs can perform both sensing and data gathering.
In type 1 for example, the sensors could be connected to the Raspberry Pi and
the sensor software reads the values from the sensors. If the construction is type
2, the gathering software handles the data collection from sensor nodes. The data
gathering and preprocessing software are more complex and usually type 2 SBC
devices are equipped with the full Linux operating system (OS). In the data storing
and preprocessing phases, the SW/HW framework utilizes pre-made software and
libraries. For example, Raspberry Pi could o�er the gathered data to the Internet
with a server application. Preprocessing in this scenario could be image recognition
with image recognition software and library.

The gathered data are stored in the cloud server - this is the assumption of the
SW/HW framework. Temporarily, the data could be saved to the master node using
a suitable database. If the data meet the definition of a time series: "A sequence
of numbers collected at regular intervals over a period of time" then a good choice
is a time series database [28]. For example, the open-source time series database
InfLuxDB is suitable for SBC hardware and is widely used in IoT solutions [29].

The other suitable database model for data storage is a relational model. The col-
lected data could be stored locally in the sensor device, for example Raspberry Piwith
Linux OS, MariaDB database, and a RESTful API combination. The RESTful API
(Application Programming Interface) method allows remote control or management
of a device over the network.

Smartphones equipped with the Android OS have been tested with this SW/HW
framework. The Android OS has a software development kit (SDK), which enables
thewide use of smartphone capabilities. For example, the SDKenables phone camera
usage [23]. The SDK also enables usage of the smartphone’s accelerometer sensor
[30].

Data storage on the mobile phone is enabled by the OS. The SDK provides the
capabilities to use files and databases for data storage. In terms of the SW/HW
framework, the user should be able to use the data. The SDK also enables data
transfer to cloud services.

Cloud storage for data is a better choice than local storage. Cloud storage could
be, for example, a Linux server or maintained commercial cloud service such as
Google Firebase. Both of these have more capabilities to store a larger amount of
data than the local database in Raspberry Pi.

5 Validating the SW/HW Framework by prototyping

The SW/HW framework has been developed and tested during several research
projects. The majority of IoT data gathering prototype systems and their findings
have been reported in di�erent studies [3], [31], [32], [30], [23], [22], [33]. The
timeline of studies is presented in Fig. 8. The timeline also includes the first release of

Framework and Development Process for IoT Data Gathering 13

Fig. 8 Prototypes and validation in the SW/HW framework timeline.

the SW/HW framework study [34]. These projects have contained multiple iteration
rounds. Each iteration has produced a working prototype system. This section gives
an overview of the systems and lists the main findings during the development of the
system. The systems are divided into the previously presented types 1, 2, and 3.

5.1 Type 1 and type 2 with SBC related prototype systems

Types 1 and 2 are SBC and Linux OS based data gathering prototype systems. Type
1 usually contains one sensor connected directly to the SBC.

• A data collector service [3] was the first implementation. The SBC was a Beagle-
bone Black which gathered temperature, humidity, and brightness data. The data
were stored in the SBC and there was a service to o�er the data to users. The SBCs
were connected with an Ethernet connection. The main goal of the study was to
experiment how well a cost-e�cient SBC could be used to gather sensory data,
and how this data could be provided to the client over the public Internet. This goal
was reached successfully, and the designed system was tested and found to work
as planned [3]. The study proved that fully working data gathering prototypes can
be developed with o�-the-shelf devices and open source tools.

• The ability to use o�-the-shelf devices prompted us to find out how others have
used these devices in academic research. A survey of prototyping was made to
find out the benefits and limitations of Raspberry Pi [32]. Also, we searched for
the testing methods of these prototypes. The study showed that the Raspberry
Pi is a widely used device in research implementations of di�erent kinds. Some

14 Mika Saari, Petri Rantanen, Sami Hyrynsalmi and David Hästbacka

testing methods of prototype systems were found: software testing, software
performance testing, and validation of data tests [32]. This study clarified the
operating environment for the SW/HW framework.

• The third [23] and fourth [22] studies were similar to each other. Both prototypes
presented in the studies were based on a Raspberry Pi and camera combination in
a vehicular environment. The power supply was a battery backup and both used
a 3G/4G communication channel. The data, photos, were transferred to the cloud
storage where the data processing was handled. The focus of the studies was to
analyze and process the data on a cloud server but the functionality of the SBC
based prototype system was also ensured. Both of the systems were located in
a client’s environment for several weeks to collect data. The long testing time
clearly showed that the SW/HW framework needs a configuration channel from
user to device. In these systems, the SSH service and terminal were used as a
remote channel.

5.2 Type 2 with SBC related prototype systems

The type 2 configuration has been tested in three real-world projects. The common
construction of type 2 data gathering prototypes is that one master node SBC works
with several sensor nodes. The communication is one-way from sensor nodes to the
master nodes. The master node with a group of sensor nodes was tested in several
research cases:

• Thefirstwas [31]where one SBCmaster node, an IntelGalileoGen 2 development
board, communicated using wireless XBee technology with several sensor nodes,
on an Arduino development board. The collected data were environmental. The
targets of the study were threefold: to test the model, to determine how well cost-
e�cient SBCs could be used to gather sensory data from several sensor nodes, and
how to deliver this data to clients over the public Internet [31]. The study showed
that SW/SW frameworks need a separate sensor node - master node architecture.
This is useful when several sensors are required in a small area.

• The second use case [33] presented a wireless sensor system for monitoring
indoor living or working conditions. The study expanded the range of sensors by
using wireless LoRa technology in communication between the master node and
sensor nodes. In the main construction, the master node Raspberry Pi received
environmental data from several Sodaq sensor nodes. The data were stored in the
master node for analysis and processing. The primary purpose of the tests was to
validate the sensor system construction. Based on the experiments, we found that
LoRa was a good choice for sensor applications within concrete buildings [33].

• The third use case used commercial, but open hardware and open source, Ru-
uviTag sensor nodes [35]. These cost-e�cient sensors collected temperature,
humidity, pressure, and motion information. The data were sent using Bluetooth
communication to the Raspberry Pi master node. The data were stored on an
InfluxDB database and visualized with Grafana visualizing software. One of the

Framework and Development Process for IoT Data Gathering 15

RuuviTag experiments is documented in a study [36]. This prototype system is
quickly configurable, because RuuviTags do not need a configuration; only the
Raspberry Pi needs a setup. These prototype systems showed that even though the
gathered data were small in quantity, the Raspberry Pi limited the visualization.
The second issue raised was a limitation in the amount of memory operations
with a Raspberry Pi memory card. Therefore the prototype system experiment
showed that data should be transferred and stored on a cloud server. From the
perspective of the SW/HW framework, this prototype system showed the usability
of modular development and the fact that the sensor nodes and master node are
interchangeable.

5.3 Type 3: Smartphone related prototype systems

The smartphone is an excellentWSN sensor node. It has aworking hardware package:
power source, communication skills, and sensor devices. It also has a suitable OS,
which allows the wide usage of the hardware. Our first ideas of using the smartphone
as a sensor were presented in [37]. The main question presented was "How to
utilize mobile technology to supply disaster information to both mobile terminals
and desktop computers?" [37].

In the recent type 3 prototype systems, we used Android smartphones. These two
documented data gathering prototypes are next discussed from the perspective of the
SW/HW framework.

• The first data gathering prototype implementation was presented in study [30],
which utilized data collected by smartphone sensors, such as an accelerometer
and GPS, to detect variations in road surface conditions. The use of a smartphone
was preferred because the data were obtained from a group of users driving on
roads in western Finland and most of these people owned a smartphone that was
good enough for prototyping purposes. The data gathering device was therefore
an o�-the-shelf Android smartphone without any hardware modifications. The
software was a combination of user interface application and background service.
The results of the study were that the basic programming task of creating a simple
application for tracking the user’s location and gathering data from the basic sen-
sors embedded in a mobile device is a straightforward process. Minor di�culties
arose because of variations in the phones’ basic software and hardware depending
on the manufacturer. In relation to the SW/HW framework, the prototype showed
the ability to use a smartphone as a WSN sensor node.

• The second data gathering prototype was a solution for idea testing. The question
asked was: Is it possible to take a photo if the phone is in a selected GPS
position? Study [23] presents the working prototype solution for this problem.
For the SW/HW framework, this prototype again showed the ability to use a
smartphone as aWSN sensor node. The program code utilized an implementation
of the haversine formula, which determines the great circle distance between two
locations and is relatively simple to implement yet accurate enough for our use

16 Mika Saari, Petri Rantanen, Sami Hyrynsalmi and David Hästbacka

cases. The application can be installed on any reasonably new Android device
and takes advantage of the built-in sensors and camera of the device.[23]

6 Discussion

This study aims to resolve the research question: How to generalize the prototyping
of IoT data gathering in a framework of required software and hardware components?

To answer the question, we made a reasonable number of data gathering proto-
types and reported on them in academic research papers. Thus, our earlier research
answered the question. The studies highlighted several aspects in constructing a
SW/HW framework. The framework describes the main findings from developed
prototypes. The framework brings out three di�erent approaches for di�erent use
cases. The research papers presented how prototyping development can be made
cost e�ciently. This was enabled by using o�-the-shelf embedded devices such as
smartphones and Raspberry Pi SBCs. The devices have the type of OS that can be
modified for sensor usage.

Furthermore, the prototype highlighted the knowledge we have about the process
of prototyping. Themodel can be used as guidancewhen designing a newprototyping
project together with a customer who wants to obtain information about some target
environment.

The development of the SW/HWFramework raised several new ideas for research
topics. These topics are briefly discussed here.

Each of the prototypes discussed has sensor software: software that reads the
sensor, a temperature sensor for example, changes the value form bytes to an integer
with a reasonable formula, and sends or stores the value somewhere. The study men-
tions the sensor software several times, but its construction has not been discussed
in detail. This low-level program is coded using C/C++, Python, Java, or a similar
programming language. It should be noted that at this level the initial data process-
ing could be done, e.g., the mean value of accelerometer sensor values within one
second. Is it possible to get improved performance without data loss? How should
this low-level software be programmed? These would be suitable questions for future
study.

The topics of user and user experience are beyond the scope of this study. Our
prototypes were developed due to the needs of some project partner. The prototypes
were tested with use case testing and once the customer had received a reasonable
answer to a certain need, the development was stopped (except for one example [21]
where there was a long piloting period in a real usage environment). The project
outputs and prototypes are freely exploitable by the project partners.

The sensor prototypes produce a large amount of sensor data. Data processing
and data mining are important issues, which this study leaves for future research, as
it is such an extensive area. The issues of data visualization have been handled in
some studies [30]. In addition, sensor data will become more usable if merged with

Framework and Development Process for IoT Data Gathering 17

other publicly available data. This kind of data could be weather data or map data
[38], [21].

Performance problems have not been extensively addressed in this study, but
when using the SW/HW framework they have to be taken into account. In data
gathering construction type 2, the amount of sensor nodes is limited, but no exact
limit can be set. The limit is changed by the range, communication channel, data
to be transferred and so on. The data processing can also a�ect the performance
problems. For example, in this study photos are oftenmentioned as di�cult regarding
performance, especially motion detection. For example, photos should be transferred
to a cloud server for processing.

The SW/HW framework does not set the quality criteria for components, but how
can the selection of high-quality components be ensured? "The hardware quality
depends on the price" is one claim, which in most situations makes sense. The
second level for selection is "good enough". The SW/HW framework does not set
these kinds of selection criteria for software or hardware components and therefore
these decisions are left to the framework user.

The vulnerability of data is worth considering. Is the data critical and what
happens if we cannot obtain the data? Is it possible to manipulate the data and what
would the consequences be in that case? For example, what happens if somebody
changes the data. This SW/HW framework does not take a position on the matter,
but these are significant issues. Furthermore, security issues are important for IoT
devices. Security vulnerabilities and attacks on IoT systems have been covered
extensively by [39]. The SW/HW framework does not pay attention to security
except for the communication channel. This concern was raised in [31] and the
proposed, more secure, communication technology LoRa has been discussed by
[40].

7 Summary

This paper introduced the software/hardware framework and a descriptive model
for the prototyping process. The framework was developed during several research
projects by following the same prototype development process. The model pre-
sented the process for constructing and testing a data gathering prototype with six
steps, starting from discussion of requirements and ending with the presentation of
collected data. The main aspects of these steps were presented briefly.

A sensor network consists of several layers, from data gathering devices to data
users. The framework is placed in the data gathering layer. The three types of data
gathering constructions were presented by introducing the software components, the
hardware components, and their interconnections.

Research findings: The model and the framework were validated by presenting
several previous research projects and studies.

18 Mika Saari, Petri Rantanen, Sami Hyrynsalmi and David Hästbacka

Acknowledgements This work is part of the KIEMI (“Vähemmällä Enemmän – Kohti Kiinteistö-
jen Energiaminimiä”, or “Less isMore: Towards EnergyMinimumof Properties” in English) project
and has been funded by the European Regional Development Fund and the Regional Council of
Satakunta.

References

1. Luigi Atzori, Antonio Iera, and GiacomoMorabito. The internet of things: A survey. Computer
Networks, 54(15):2787–2805, 2010.

2. Ieee approved draft standard for an architectural framework for the internet of things (iot),
2019.

3. Mika Saari, Pekka Sillberg, Petri Rantanen, Jari Soini, and Haruka Fukai. Data collector
service - practical approach with embedded linux. In 2015 38th International Convention
on Information and Communication Technology, Electronics and Microelectronics (MIPRO),
International convention on information and communication technology, electronics and mi-
croelectronics, pages 1037–1041. IEEE, 2015.

4. Mika Saari, Pekka Sillberg, Jere Grönman, Markku Kuusisto, Petri Rantanen, Hannu Jaakkola,
and Jaak Henno. Reducing energy consumption with iot prototyping. Acta Polytechnica
Hungarica, 16(9, SI):73–91, 2019.

5. Klaus Buchenrieder. Rapid prototyping of embedded hardware/software systems. In Pro-
ceedings. Ninth International Workshop on Rapid System Prototyping (Cat. No.98TB100237),
volume 5, pages 2–3. IEEE Comput. Soc, 2000.

6. C P Kruger, A M Abu-Mahfouz, and G P Hancke. Rapid prototyping of a wireless sensor
network gateway for the internet of things using o�-the-shelf components. In 2015 IEEE
International Conference on Industrial Technology (ICIT), pages 1926–1931, 2015.

7. Nick Babich. What is rapid prototyping?, 2019. Accessed: 2020-11-16.
8. Chris Jensen and Walt Scacchi. Discovering, modeling, and re-enacting open source software

development processes: a case study. In New Trends in Software Process Modeling, number
February 2006 in Series on Software Engineering and Knowledge Engineering, pages 1–20.
World Scientific Publishing Company, 2006.

9. UlrikeBecker, DirkHamann, andMartinVerlage. DescriptiveModeling of Software Processes.
IESE-Report No. 047.97/E, 1997.

10. Ulrike Becker-Kornstaedt and Richard Webby. A comprehensive schema Integrating Software
Proces Modeling and Software Measurement. IESE-Report No. 047.99/E, 1999.

11. Edward Ashford Lee and Sanjit A. Seshia. Introduction to Embedded Systems. A Cyber-
Physical Systems Approach. Second Edition, volume 195. 2017.

12. C. Kreiner, C. Steger, E. Teiniker, and R. Weiss. A HW/SW codesign framework based on
distributed DSP virtual machines. Proceedings - Euromicro Symposium on Digital Systems
Design: Architectures, Methods and Tools, DSD 2001, pages 212–219, 2001.

13. D. Saha, R.S. Mitra, and A. Basu. Hardware software partitioning using genetic algorithm. In
Proceedings Tenth International Conference on VLSI Design, pages 155–160. IEEE Comput.
Soc. Press, 1997.

14. M.B. Srivastava and R.W. Brodersen. Rapid-prototyping of hardware and software in a unified
framework. In 1991 IEEE International Conference on Computer-Aided Design Digest of
Technical Papers, pages 152–155. IEEE Comput. Soc. Press, 1991.

15. Li Da Xu, Wu He, and Shancang Li. Internet of Things in Industries: A Survey. IEEE
Transactions on Industrial Informatics, 10(4):2233–2243, 2014.

16. Alex Vakaloudis and Christian O’Leary. A framework for rapid integration of IoT Systems
with industrial environments. In 2019 IEEE 5th World Forum on Internet of Things (WF-IoT),
pages 601–605. IEEE, 2019.

17. IF Akyildiz, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor networks. IEEE
Communications Magazine, 40(8):102–114, 2002.

Framework and Development Process for IoT Data Gathering 19

18. Mika Saari, Jari Soini, Jere Grönman, Petri Rantanen, Timo Mäkinen, and Pekka Sillberg.
Modeling the software prototyping process in a research context. 2020. Accepted for publica-
tion.

19. Jere Grönman, Petri Rantanen, Mika Saari, Pekka Sillberg, and Juha Vihervaara. Low-cost
ultrasound measurement system for accurate detection of container utilization rate. In 2018
41th International Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO). IEEE, 2018.

20. Jari Soini, Pekka Sillberg, and Petri Rantanen. Prototype system for improving manually
collected data quality. In Zoran Budimac and Tihana Galinac Grbac, editors, Proceedings of
the 3rd Workshop on Software Quality Analysis, Monitoring, Improvement, and Applications,
SQAMIA 2014, September 19-22, 2014, Lovran, Croatia, Ceur workshop proceedings, pages
99–106. M. Jeusfeld c/o Redaktion Sun SITE, 2014.

21. Jari Soini, Markku Kuusisto, Petri Rantanen, Mika Saari, and Pekka Sillberg. A Study on
an Evolution of a Data Collection System for Knowledge Representation. In A. Dahanayake,
J. Huiskonen, and Y. Kiyoki, editors, Information Modelling and Knowledge Bases XXXI,
volume 321, pages 161 – 174. IOS Press, 2019.

22. Jere Grönman, Pekka Sillberg, Petri Rantanen, and Mika Saari. People Counting in a Public
Event—Use Case: Free-to-Ride Bus. In 2019 42th International Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO). IEEE, 2019.

23. Jere Grönman, Petri Rantanen, Mika Saari, Pekka Sillberg, and Hannu Jaakkola. Lessons
learned from developing prototypes for customer complaint validation. In Proceedings of the
SQAMIA 2018: 7th Workshop of Software Quality, Analysis, Monitoring, Improvement, and
Applications, volume 2217, pages 27–30. CEUR Workshop Proceedings, 2018.

24. Fuewen Frank Liou. Rapid Prototyping and Engineering Applications. Taylor & Francis, CRC
Press, Boca Raton, second edition, feb 2019.

25. Marco Centenaro, Lorenzo Vangelista, Andrea Zanella, and Michele Zorzi. Long-range com-
munications in unlicensed bands: the rising stars in the IoT and smart city scenarios. IEEE
Wireless Communications, 23(5):60–67, oct 2016.

26. Usman Raza, Parag Kulkarni, and Mahesh Sooriyabandara. Low Power Wide Area Networks
: An Overview. IEEE Communications Surveys & Tutorials, 19(2):855–873, 2017.

27. Kodrat Iman Satoto, EkoDidikWidianto, and Sumardi. Environmental HealthMonitoringwith
Smartphone Application. In 2018 5th International Conference on Information Technology,
Computer, and Electrical Engineering (ICITACEE), pages 281–286. IEEE, 2018.

28. Dmitry Namiot. Time series databases. Data Analytics and Management in Data Intensive
Domains (DAMDID/RCDL2015), 1536:132–137, 2015.

29. Andreas Bader, Oliver Kopp, and Michael Falkenthal. Survey and comparison of open
source time series databases. Lecture Notes in Informatics (LNI), Proceedings - Series of
the Gesellschaft fur Informatik (GI), 266:249–268, 2017.

30. Pekka Sillberg, Jere Gronman, Petri Rantanen, Mika Saari, and Markku Kuusisto. Challenges
in the Interpretation of Crowdsourced Road Condition Data. In 2018 International Conference
on Intelligent Systems (IS), pages 215–221. IEEE, 2018.

31. M. Saari, A. M. Baharudin, P. Sillberg, P. Rantanen, and J. Soini. Embedded Linux controlled
sensor network. In 2016 39th International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), pages 1185–1189. IEEE, 2016.

32. Mika Saari, Ahmad Muza�ar bin Baharudin, and Sami Hyrynsalmi. Survey of prototyping
solutions utilizing Raspberry Pi. In 2017 40th International Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO), pages 991–994.
IEEE, 2017.

33. Towards the utilization of cost-e�ective o�-the-shelf devices for achieving energy savings in
existing buildings. IEEE, 2020.

34. Mika Saari, Petri Rantanen, and Sami Hyrynsalmi. Software hardware combination for data
gathering. In Proceedings of 2020 IEEE 10th International Conference on Intelligent Systems
(IS2020), 2020.

35. Ruuvitag technical specifications, https://ruuvi.com/files/ruuvitag-tech-spec-2019-7.pdf,
2019. Accessed: 2020-11-23.

20 Mika Saari, Petri Rantanen, Sami Hyrynsalmi and David Hästbacka

36. Mika Saari, Jere Grönman, Jari Soini, Petri Rantanen, and Timo Mäkinen. Experimenting
with Means to Store and Monitor IoT based Measurement Results for Energy Saving. In 2020
43th International Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO). IEEE, 2020.

37. Pekka Sillberg, Petri Rantanen, Mika Saari, Jari Leppäniemi, Jari Soini, and Hannu Jaakkola.
Towards an IP-based alert message delivery system. In J Landgren and S Jul, editors, ISCRAM
2009 - 6th International Conference on Information Systems for Crisis Response and Man-
agement: Boundary Spanning Initiatives and New Perspectives, number June 2015, page 8 p.
Information Systems for Crisis Response and Management, ISCRAM, 2009.

38. Pekka Sillberg, Mika Saari, Jere Grönman, Petri Rantanen, and Markku Kuusisto. Interpre-
tation, Modeling, and Visualization of Crowdsourced Road Condition Data. In R Goncalves,
V Sgurev, V Jotsov, and J Kacpzyk, editors, Intelligent Systems: Theory, Research and Inno-
vation in Applications, Intelligent Systems: Theory, Research and Innovation in Applications,
pages 99–119. Springer, 2020.

39. Sachin Babar, Antonietta Stango, Neeli Prasad, Jaydip Sen, and Ramjee Prasad. Proposed
embedded security framework for Internet of Things (IoT). In 2011 2nd International Confer-
ence on Wireless Communication, Vehicular Technology, Information Theory and Aerospace
& Electronic Systems Technology (Wireless VITAE), pages 1–5. IEEE, 2011.

40. M. Saari, A. Muza�ar bin Baharudin, P. Sillberg, S. Hyrynsalmi, and W. Yan. LoRa — A
survey of recent research trends. In 2018 41st International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), pages 0872–0877.
IEEE, 2018.

PUBLICATION

VII

Modeling the Software Prototyping Process in a Research Context
Saari, M., Soini, J., Grönman, J., Rantanen, P., Mäkinen, T. and Sillberg, P.

Information Modelling and Knowledge Bases XXXII. ed. by Tropmann-Frick, M.,
Thalheim, B., Jaakkola, H., Kiyoki, Y. and Yoshida, N. 2020, 107–118

DOI: 10.3233/FAIA200823

Publication reprinted with the permission of the copyright holders

https://doi.org/10.3233/FAIA200823

Modeling the Software Prototyping Process
in a Research Context

Mika SAARI, Jari SOINI, Jere GRÖNMAN, Petri RANTANEN, Timo MÄKINEN
and Pekka SILLBERG

Tampere University, Faculty of Information Technology and Communication Sciences,
Pori, Finland

Abstract. The paper examines the Third Mission of universities from the point of
view of company collaboration in the prototype development process. The paper
presents an implementation of university-enterprise collaboration in prototype
development described by means of process modeling notation. In this article, the
focus is on modeling the software prototyping process in a research context. This
research paper introduces prototype development in a university environment. The
prototypes are made in collaboration with companies, which offered real-world use
cases. The prototype development process is introduced by a modeling procedure
with four example prototype cases. The research method used is an eight-step
process modeling approach. The goal was to find instances of activity, artifact,
resource, and role. The results of modeling are presented using textual and graphical
notation. This paper describes the data elicitation, where the process knowledge is
collected using stickers-on-the-wall technique. Furthermore, the paper describes the
creation of the model.

Keywords. Software process, process modeling, knowledge management,
modeling methods, prototyping, modeling

1. Introduction

It is a common conception that the modern university serves three main purposes:
teaching, research, and a broader social function. The latter of these functions, commonly
dubbed “The Third Mission” [1-4], is considered to include measures contributing to
social influencing and interaction. Nevertheless, multiple views in terms of defining the
Third Mission exist, and Henry Mugabi [5] for example, compiled a selection of the
varying definitions present in recent research literature in his dissertation. Moreover, the
concept has been increasingly integrated into university strategies as well as operations
pertaining to regional development [6]. Universities serve to produce and share
knowledge and technological expertise, contributing in their part to the modernization
and success of enterprises, and the “Third Mission” is often associated with tech-driven
collaboration between the university and enterprises in addition to its social function.

The social significance of the Third Mission is widely acknowledged, and an
international evaluation indicator conducted by UNESCO [7] places Finland among the
top countries regarding collaboration between university and enterprises. In Finland, the
most common manifestations of this kind of collaboration are various research and
development projects that are often funded externally, examples of which include
contributions by the Academy of Finland, Business Finland, various foundations, the

European Union, and other international sources. For small and medium-sized
enterprises (SMEs) [8] in particular, collaborative projects with a university offer
significantly better opportunities to participate in R&D activities for instance, as opposed
to relying on internal funding and expertise only.

This paper introduces the model of prototype development practices that have been
applied in research projects between university and enterprises (mostly SMEs) in Finland.
The model has been used for many years in several collaborative projects between
Tampere University, Pori unit, and regional enterprises with good success. In this paper,
the model is presented at a detailed level with the help of a few cases serving as concrete
examples. Promoting and contributing to the Third Mission of the university from the
perspective of regional development, the format introduced in the present paper is but
one example of collaboration between the university and enterprises.

The paper is structured as follows: In Section 2, background information along with
work related to the subject are presented. The research approach in terms of the applied
model is presented in Section 3. Section 4 introduces the process knowledge with the
help of examples, after which Section 5 describes the creation of the Prototype
Development Process (PDP) model in selected cases. Section 6 discusses the
observations and challenges confronted during the use of the model. Finally, Section 7
summarizes the paper.

2. Related studies on the subject

This section describes some points of view, factors, and experiences, which relate to the
collaboration context between universities and enterprises. Earlier research results in this
field are examined below.

In their research, Basili et al. propose guidelines on how collaborative research could
succeed between public sector research and industry. In [9], a couple of arguments are
present, which are worthy of examination. First, they say that there is not enough research
considering real development contexts. Second, they suggest that software engineering
research needs to foster context-driven research if it seeks to evolve towards a brighter
future. The main contextual factors are human, organizational, and domain-related. In
[9], they believe that practical software engineering, the big picture, and suitable
solutions are mostly born from bottom-up research and a succession of case studies rather
than from top-down research.

In context-driven research it is necessary to have intense collaboration between
industry and academia. There need to be cycles of model building, experimentation, and
learning in software engineering research. Usually researchers face some problems in
identifying the challenges of collaborating organizations. After overcoming these
challenges, the gap between the state of the art and the requirements for a solution must
be assessed. In developing a solution, it is important to clearly define working
assumptions in order to achieve applicability and scalability in context [9].

Another major part of this collaboration relates to funding. There are a couple of
ways to start funding a research project between industry and academia. Companies can
give grants to students/researchers for a specific project, build collaborative projects with
academia in short- or long-term existing relationships, and there is an opportunity to
build up a wider network of partners between industry and academia [10]. Also,
governments are encouraging this kind of collaboration because it improves innovation

efficiency and thereby enhances wealth creation [11]. As a result, several countries have
already put innovative programs in place [9].

Industry-academia collaboration benefits those organizations that do not have their
own R&D facilities. Companies can utilize the knowledge of academic resources to
understand their modern-day software engineering problems. Industry has noted that it
can support innovation and development processes when collaborating with researchers
[9].

Companies are increasingly investing in software development, although their core
areas of expertise are defined around business areas and systems rather than software.
However, most companies do not have the necessary resources and know-how to develop
effective solutions to software engineering problems. This makes collaboration between
industry and academia very useful [9].

The aim of a study by Wohlin [12] was to gather experiences and lessons learned
from successful collaboration between industry and academia in two different
environments. First, it was performed in Sweden and included a six-year collaborative
project. The collaboration partners were five different-sized companies from various
sectors and the Blekinge Institute of Technology. Later the study was replicated in
Australia. Industry roles included product managers, project managers, developers, and
testers. Academic roles included professors, researchers, and students at different levels.

The results from Wohlin’s study [12] were that support from company management
is crucial. There must be a champion at the company who argues for the cause, and not
only a person assigned the responsibility for the project. There are different levels of
understanding between different categories of people (for example, people in industry,
senior researchers, and students). Social skills are particularly important in long-term
collaboration.

In the study by Carver [10], there is an example of industry-academia collaboration.
The background of the study was that the challenges faced by the companies were too
labor intensive, lacked context-specific validation, or were not embedded into existing
tools or design processes. Collaboration between industry and academia produces
successful results when there is a good connection between academic and industry
partners, there are the right collaborators on both sides, the timing of the interaction fits
the requirements on both sides, and it is understood that the process from research
prototypes and an academic publication to a deployed solution takes time.

In [13], the author interviewed researchers to understand their needs and problems
in research-based projects. University research was more concerned with community
issues, and companies had clients that were constrained by formal agreements. The
industry groups had defined roles and responsibilities; the research teams were more
dynamic. Industrial companies used formal development methods, but most university
projects did not. The milestones for industrial projects were set by the customer, while
the milestones for university projects were usually set by the funding partners. After the
interviews, the author decided, for a number of reasons, including the uncertainty about
the research objectives, that university researchers were unable to use a well-defined
software development method.

The above-described examples provide the research background for the context that
is discussed in this paper. The following section concentrates on explaining the basis of
the process modeling, which is relevant background information for the description later,
in Section 4, of the implementation of the university-enterprise collaboration with the
help of the process modeling notation.

3. Research approach – An eight-step model

This section deals with software process modeling in a research context. Modeling is an
approach for analyzing and understanding a complex phenomenon resulting in a model,
which is a simple and familiar structure that can be used to interpret some part of reality
[14]. When the phenomenon to be analyzed is a software process, information is captured
and classified into a model with the help of a process-modeling schema [15], i.e., a meta-
model specifying the concepts, relationships, and rules [16] used when modeling
processes. The basic concepts related to the software process include activity, artifact,
resource, and role [17].

Figure 1. The basic concepts related to software processes.

The results of modeling are presented using a textual or graphical notation. There
are several approaches for eliciting information for process models [15] such as
interviews and artifact analyses. Process modeling can be prescriptive or descriptive.
While a Prescriptive Process Model (PPM) describes how a process should be
performed, a Descriptive Process Model (DPM) describes how it actually is performed
[18].

In this study our aim is to model software development practices performed in an
academic context. We follow the DPM approach proposed by Becker & al. [19]. The
approach consists of eight steps grouped into two phases:

Set-up phase

1. Objectives and Scope
2. Define Schema
3. Select Language
4. Select and Tailor Tools

Execution phase

5. Elicitation
6. Create Model
7. Check Model

8. Check Process

We will apply the DPM approach in the following way: The data for the models is
collected through interviews with the developers involved in the processes. The schema
shown in Figure 1 guides the data collection, the results of which are shown on stickers
on the wall during the work (Figure 2 in Section 4). In the resulting models, the activities
are represented as rectangles with rounded corners. Stick figures represent roles and
different icons represent resources. Artifacts appear as parallelograms, cylinders, and
document symbols. The associations between activities and artifacts are represented by
continuous arrows and the links between activities and roles and resources are dashed.
Gray symbols and dashed rectangles represent aggregations (Figures 3-6 in Section 4).
Graphical representations of the models are produced by a free online diagram software,
draw.io. (DPM Steps 2-4).

The objectives and scope of the modeling are presented in the introduction of this
paper (Step 1). The following section provides an example of data elicitation (Step 5)
including the modeling results (Step 6). The last section of the paper discusses the
possibilities of improving the modeled processes (Steps 7-8).

4. Process elicitation and resulting models

This section describes the steps 5 and 6 of the DPM approach. Process knowledge is
highlighted in this section, which introduces four different prototype development
processes (PDP 1-4).

Information for the process models is collected from four cases:

PDP 1 - Verification of customer complaints related to bus routes [20].
PDP 2 - Verification of customer complaints related to garbage collection. [20].
PDP 3 - Data collection in a public indoor swimming pool [21, 22].
PDP 4 - Passenger counting in a free-to-ride bus [23].

Common to all of these example cases is the software development resulting in a

working prototype. The development process starts from the idea of collecting certain
data with certain equipment. Then the idea is validated – can it be viably implemented?
If the answer is yes, the implementation phase produces the first working prototype.
Usually prototype implementation includes software coding and the implementation of
hardware from off-the-shelf devices. The working prototype is tested in a laboratory and
if the device displays sufficient reliability, the device is moved to real-world testing. The
development processes and testing phases usually produce data. The overall outcome
from these prototype development processes has been academic output such as a research
paper. Knowledge of the prototyping process is visualized as illustrated in Figure 2.

Figure 2. Whiteboard and notes.

This whiteboard and the Post-It notes are one way to highlight development process

practices [24]. The notes are color-coded: Yellow markers are roles, green denotes
activity, red is for resources, and the blue notes are artifacts. The orange notes describe
issues and improvement ideas that came up during the data elicitation process.
Knowledge of the development process is collected by means of this whiteboard and
note notation (stickers-on-the-wall technique).
Further, this section presents the creation of a model for each of the PDPs. First we
introduce the developed model for PDP 1 and 2. Figure 3 presents the university –
company interaction. The model includes six steps which have been identified from the
development process. The steps start from requirements definition and end with the
publication of results. The gray boxes – the software development step and the
development artifacts – are discussed more in the subsections on the bus case and the
garbage collection case.

Figure 3. The illustration of university – company interaction during development (common to all PDPs).

The model includes all the main factors. The university representatives are the
research group including the project manager and software/hardware developers. This

group has the main responsibility for the prototype development. The company
representatives are involved in the development process in the role of instructor. In the
presented PDPs 1-4, the company representatives are active at the starting and ending
points: at the start with the definition of requirements and at the end where the results are
presented to them. They also provide the testing environment if the testing is done at
their company. However, they are not involved in the development process itself.

4.1. Verification of customer complaints related to bus routes (PDP 1)

The bus case (PDP 1) was established for handling customer complaints. The bus
company had received complaints from customers that the buses did not stop to pick up
customers or did not come at all. The prototype was developed to collect photos with
time stamps at defined bus stops. This prototype was implemented in mobile phones and
the main idea of prototype was to collect photos of the bus stops as the bus approached.
The project group at the university developed a working prototype, which was then tested
in the buses [20].

The development process is illustrated in Figure 4, expanding the previously
presented steps “Develop Software” and “Develop artifacts”. The development group in
this process consists of only university personnel. The development process starts with
a design discussion – the first activity, which produces the first artifact: the whiteboard
sketch. The results are then used in the software construction phase. This activity
produces the second artifact: software code with documentation. After that the test
activity starts, which produces the collected data artifact. The coding and testing
activities could be iterated several times. Figure 4 also includes the resources used during
the development process: programming language, test device with GPS, camera and
network, and the testing environment – the bus itself.

Figure 4. The development process of the bus case.

The presented development process produces a working prototype. In this case, the

prototype was introduced to the customer – the bus company.

4.2. Verification of customer complaints related to garbage collection (PDP 2)

The garbage collection case (PDP 2) was similar to PDP 1. The use case was also
intended for managing customer complaints. The garbage collection company had
received complaints from their customers that the trashcans had not been emptied. In
most cases the reason was a vehicle blocking the garbage collection truck or similarly
that the truck was unable to empty the trashcan. The prototype solution in this case used
the same idea as in the bus case: namely, put the camera in the truck and take pictures
when the GPS registers the right location [20].

Figure 5 shows the activities and artifacts. The biggest difference was in the
resources: the cellphone was replaced by a Raspberry Pi with a camera, GPS, and
network device. The data collector resource was the MySQL server instead of the phone.
In addition, the testing environment was the garbage collection truck itself.

Figure 5. The development process of garbage collection case.

The developed prototype worked and the piloting phase in the garbage truck lasted
several weeks. The development process captured data, which in this case were photos.
In addition, the device – a Raspberry Pi, generated a test log during the pilot phase.

4.3. Combined model of bus and garbage collection cases

PDP 1 and PDP 2 should be presented together because the second prototype – the
garbage truck camera system – utilized the definitions and results of the first prototype.
They were also implemented very close to each other in time.

Figure 6. The combined model of the bus and garbage collection cases.

The outcomes of these PDPs were a public repository and research publication [20].
The public repository includes all the developed software code.

4.4. Data collection in a public indoor swimming pool (PDP 3)

PDP 3 handled a prototype system with the purpose of improving the quality of manually
collected data. The prototype was a mobile application that the maintenance personnel
used to collect and store data from several different meters in a public swimming pool.
More information on the prototype can be found in the research articles by Soini [21,
22].

The Prototype Development Process was similar to the one shown in Figure 3.
Activities included the discussion of requirements, software coding, and the presentation
of the results. In addition, the artifacts were similar: discussion notes, software, and a
research publication. The biggest difference to the other cases was that the implemented
prototype remained in use after the pilot phase. This “extended piloting” period is
handled in the research paper by Soini [22] along with aspects of software evaluation.
Also, long-term piloting is examined from the point of view of system developers,
administrators (maintenance), and end users [22].

4.5. Passenger counting in a free-to-ride bus (PDP 4)

PDP 4 handled a prototype system with the aim of counting passengers on a free-to-ride
shuttle bus. Unlike an ordinary people counter, the customer wanted more information
on where and when passengers got on and off [23].

The Prototype Development Process was similar to the one shown in Figure 3.
Activities included the discussion of requirements, software coding, and the presentation
of the results. Again, the artifacts were similar: discussion notes, software, and a research
publication. The difference compared to PDP 1-3 was that this prototype was developed
for a real-life use case of collecting statistics about bus passengers on a free-to-ride
shuttle bus route at a large public event in the summer of 2018 in Pori, Finland. In this
case, the development process ended in the one-month pilot. The outcome of the pilot
was the presentation of the pilot results to the customer.

5. Discussion

The process introduced and modeled in this paper has been used to create multiple
prototypes and pilot experiments during recent years. Thus, based on the observed results,
it can be considered to be successful and fit the needs of our development cases. However,
while discussing past projects with the team members several challenges did come up.
Furthermore, while collecting data for the model, notes were made of issues that the team
members pointed out (the orange notes on the whiteboard in Figure 2).

The first issue was the documentation of intermediate specifications described on
whiteboards. The funding or goals of the projects do not especially require extensive
intermediate documentation, and in practice, only very rarely has there been the need to
study the intermediate specifications created during the process. The low requirements

for documentation have probably been one of the main reasons for the bad habits in
documentation practices. Generally, the decision of whether to prepare any
documentation has been based on the developer teams' "gut feeling" about how complex
the specification was. In other words, "proper" documentation has been created for more
complex intermediate specifications, but simpler specifications and drawings have not
been documented in any way. Nowadays, it is quite simple to use a smartphone to capture
the information on whiteboards, so in the future, it might be better to document
everything systematically.

The second issue was the interaction with the customers (e.g., companies) - or the
lack of it - during the actual prototype development process. The interaction has often
been limited to the use case definition phase, to the organization of practical
arrangements of pilots (e.g., agreements on which bus lines could be used for testing
prototypes), and to the presentation of the research findings. In the final presentation
meetings, the companies have never indicated that they would have liked to be more
involved in the process. The feedback from the companies has mainly been related to the
research findings, and the developed prototypes, and not to the development process
itself. In our case, the companies have often not been software-oriented, which could
have had an effect on their interest in the process, and it could also have limited the
advantages achievable by involving them further in the process. In addition, the
companies did not (directly) invest any resources (money or personnel) in the projects.
This might have further reduced their interest in participating more deeply in the
development process. Furthermore, as the companies had their actual business to run,
there could have been challenges in creating a common schedule for meetings for all the
parties involved. Of course, depending on the outcome of the research and pilots the
companies can obtain knowledge, business ideas, or even working software to use in
their actual business, but during the development these results may be too abstract to
evoke deeper interest. In addition, the fact that the issue was not brought up in the
meetings does not necessarily mean that there is a lack of interest in deeper involvement
from the company side. As the university team did not especially raise the issue, it might
be that the companies felt that they simply did not want to interfere in the university
practices. Thus, to improve our model, the actual company interest in the prototype
development process should be further studied.

Third, the subject of the usability of the project results came up. In principle, anyone
can use the results because the codes and documentation are published as open source,
but no studies have been performed on how or if the results are actually used. In general,
after the projects (and thus, funding) has ended, the results have been left "as is" without
maintenance, bug fixes, or feature improvements. The purpose of the projects was not
to create "end products", and usually productization is not one of the project goals,
leaving the created software and hardware applications in a state that would require
further development into an end-user quality product. Also, it can be slightly challenging
to find the material from, for example, the GitHub repository if one does not know
exactly what one is looking for. Internally, the published codes and specifications have
been reused in future projects when applicable. One potential future direction for
research would be a study on how the results of university projects should be published
to be most useful for outside parties, and what the crucial elements are that should be
published — or are the elements practically the same as in any other prototype
development project?

Finally, the participation of university students was discussed. The advantage of
involving the students more deeply would be to give the students more meaningful task

assignments (for example, for programming or other software engineering courses), but
in practice, in the past the participation of students has been rare, and has mainly been
limited to PhD students who have been hired by the university or worked at the university
on their own funding. In the future, the model introduced in this paper could also be
expanded to describe the involvement of students.

6. Summary

The paper examined the Third Mission of universities from the point of view of company
collaboration in the prototype development process. The paper presented an
implementation of university-enterprise collaboration in prototype development
described by means of process modeling notation. The process introduced and modeled
in this paper has been used to create multiple prototypes and pilot experiments over
recent years. Thus, based on the observed results it can be considered to be successful
and fit the needs of our development cases. The prototypes were made in collaboration
with companies, which offered real-world application problems. The prototype
development process were introduced by a modeling procedure with four example
prototype cases. The research method used and presented here was an eight-step process
modeling schema. The basic concepts relating to the software process included four
factors: activity, artifact, resource, and role. The results of the modeling were presented
using textual and graphical notation. This paper described the elicitation of process
knowledge. Furthermore, the paper described the creation of a model. The PDP model
provides one concrete and systematic example of how university-enterprise collaboration
can be executed in practice. Moreover, the model presented is a real-life indication of
how the Third Mission task set for universities can be successfully implemented.

References

[1] F. Schutte, and P. C. van der Sijde, “The University and its region”. Examples of regional development
from the European Consortium of Innovative Universities. Twente University Press, Enschede,
Netherlands. 2000.

[2] T. Vorley, and J. Nelles, “Building Entrepreneurial Architectures: a conceptual interpretation of the Third
Mission”, Policy Futures in Education, Vol. 7, No. 3, pp. 284-296, 2009.

[3] I. Niiniluoto, “Yliopistot ja ammattikorkeakoulut yhteiskunnallisina vaikuttajina”, In the publication
Vastuullinen ja vaikuttava. Opetus- ja kulttuuriministeriön julkaisuja 2015:3, pp. 11-30, 2015.

[4] K. Kankaala, E. Kaukonen, P. Kutinlahti, T. Lemola and M. Nieminen (2004), Yliopistojen kolmas
tehtävä ?, Edita Publishing Oy. Helsinki, pp.15-42, 2004.

[5] H. Mugabi, Institutionalisation of the ”Third Mission” of the University. The case of Makerere University.
Academic Dissertation, Tampere University Press, Finland 2014.

[6] A. Zomer, and P. Benneworth, “The Rise of the University’s Third Mission”, Reform of Higher Education
in Europe, (eds.) Enders, J., de Boer H.F. ja Westerheijden, D.F., Sense Publishers. Netherlands, pp. 81-
102, 2011.

[7] UNESCO (2015), UNESCO science report: Towards 2030, p. 74,
https://unesdoc.unesco.org/ark:/48223/pf0000235406/PDF/235406eng.pdf.multi (Retrieved 4/1/2020
World Wide Web)

[8] M. Marchesnay, “Fifty years of entrepreneurship and SME: A personal view”. Journal of Small Business
and Enterprise Development, Vol. 18, No. 2, pp. 352-365, 2011.

[9] V. Basili, L. Briand, D. Bianculli, S. Nejati, F. Pastore and M. Sabetzadeh, "Software Engineering
Research and Industry: A Symbiotic Relationship to Foster Impact," in IEEE Software, Vol. 35, No. 5,
pp. 44-49, 2018.

[10] J. C. Carver and R. Prikladnicki, "Industry–Academia Collaboration in Software Engineering," in IEEE
Software, Vol. 35, No. 5, pp. 120-124, 2018.

[11] T. Barnes, I. Pashby, A. Gibbons, “Effective University – Industry Interaction: A Multi-case Evaluation
of Collaborative R&D Projects,” in European Management Journal, Vol. 20, Issue 3, pp. 272-285, 2002.

[12] C. Wohlin, A. Aurum, L. Angelis, L. Phillips, Y. Dittrich, T. Goschek, H. Grahn, K. Henningsson,
S.Kagstrom, G. Low, P. Rovegard, P. Tomaszewski, C. van Toorn and J. Winter, "The Success Factors
Powering Industry-Academia Collaboration," in IEEE Software, Vol. 29, No. 2, pp. 67-73, 2012.

[13] D. M. P. Dias, "Managing research based software product development in Sri Lankan universities",
University of Colombo School of Computing, 2016.

[14] M. Boman, J. Bubenko, P. Johannesson and B. Wangler, “Conceptual Modeling”. Prentice Hall, 1997.
[15] U. Becker-Kornstaedt, “Prospect: a Method for Systematic Elicitation of Software Processes”. PhD

dissertation. Technische Universität Kaiserslautern, 2004.
[16] ISO/IEC 24744:2006. Software Engineering — Metamodel for Development Methodologies. Draft

International Standard ISO/IEC FDIS 24744:2006(E), ISO/IEC JTC1/SC7, Montréal, Québec, Canada.
[17] U. Becker-Kornstaedt and R. Webby, “A Comprehensive Schema Integrating Software Process Modeling

and Software Measurement”. Research Report 047.99/E, Fraunhofer IESE, Kaiserslautern, Germany,
1999.

[18] C. Jensen and W. Scacchi, "Discovering, Modeling, and Re-enacting Open Source Software Development
Processes: A Case Study”. In Silvia T Acuña, S. T. and Sánchez-Segura, M. I. (eds.). New Trends in
Software Process Modeling. World Scientific Pub. Co., 2006.

[19] U. Becker, D. Hamann, D and M. Verlage, “Descriptive Modeling of Software Process”. Research Report
ESE-Report, 045.97/E, Fraunhofer IESE, Kaiserslautern, Germany, 1997.

[20] J. Grönman, P. Rantanen, M. Saari, P. Sillberg, and H. Jaakkola, “Lessons Learned from Developing
Prototypes for Customer Complaint Validation”, Software Quality Analysis, Monitoring, Improvement,
and Applications (SQAMIA), Novi Sad, Serbia, August 27-30, 2018.

[21] J. Soini, P. Sillberg, and P. Rantanen, “Prototype System for Improving Manually Collected Data Quality,”
in Proceedings of the 3rd Workshop on Software Quality Analysis, Monitoring, Improvement, and
Applications, SQAMIA 2014, Lovran, Croatia, pp. 99–106, 2014.

[22] J. Soini, M. Kuusisto, P. Rantanen, M. Saari and P. Sillberg, “A Study on an Evolution of a Data
Collection System for Knowledge Representation”, EJC 2019: Proceedings of the 29th International
Conference on Information Modelling and Knowledge Bases, 2019.

[23] J. Grönman, P. Sillberg, P. Rantanen and M. Saari, “People Counting in a Public Event—Use Case: Free-
to-Ride Bus”, 2019 42th International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), Opatija, Croatia, 2019.

[24] A. Raninen, J. J. Ahonen, H.-M. Sihvonen, P. Savolainen, and S. Beecham, “LAPPI: A light-weight
technique to practical process modeling and improvement target identification,” Journal of Software
Evolution and Process, Vol. 25, No. 9, pp. 915-933, Sep. 2013.

PUBLICATION

VIII

Lessons Learned from Collaborative Prototype Development Between
University and Enterprises

Harjamäki, J., Saari, M., Nurminen, M., Rantanen, P., Soini, J. and Hästbacka, D.

Proceedings of the 33th International Conference on Information Modelling and Knowledge
Bases. Ed. by Welzer Družovec, T., Hölbl, M., Nemec Zlatolas, L. and Kuhar, S. 2023,

273–300
DOI: https://doi.org/10.18690/um.feri.5.2023.13

Publication reprinted with the permission of the copyright holders

https://doi.org/https://doi.org/10.18690/um.feri.5.2023.13

J. Harjamäki et al. /

Lessons Learned from Collaborative
Prototype Development Between

University and Enterprises

Janne HARJAMÄKI a,1, Mika SAARI a, Mikko NURMINEN a, Petri RANTANEN a,
Jari SOINI a and David HÄSTBACKA a

a
Tampere University

ORCiD ID: Janne Harjamäki https://orcid.org/0000-0002-4595-7231, Mika Saari
https://orcid.org/0000-0001-7677-2355, Mikko Nurminen
https://orcid.org/0000-0001-7609-8348, David Hästbacka

https://orcid.org/0000-0001-8442-1248

Abstract. In this article, the focus is on the KIEMI research project (“Less is More:
Towards the Energy Minimum of Properties” in English) conducted in Tampere
University during the period of 2019-2022. In this project, we used the earlier de-
veloped Descriptive Model of Prototyping Process (DMPP) to guide university-
enterprise collaboration. The project consisted of several pilot cases, with proto-
types, which were done in collaboration with companies, tackling real-world prob-
lems. In this article, we review and evaluate the suitability of the DMPP for usage in
a research project. The article explores the topic from two directions: the collabora-
tion of university and enterprises, and the reusability of artifacts within the DMPP.
The paper introduces several pilot cases made on the KIEMI project, and describes
the usage of the DMPP in them. Furthermore, the paper evaluates the model, sets
forward the challenges faced, and, finally, discusses topics for future research.

Keywords. Artifact, Reusability, Collaboration, DMPP

1. Introduction

Universities and other research organizations produce research results, typically in the
form of publications, such as papers and technical reports. In addition, applied research
produces prototypes with proofs of concept (PoC). This study presents the outcome of
one university project, where proofs of concept were mainly implemented by building
data-gathering prototypes.

The focus of this study is on the findings of the KIEMI project (“Vähemmällä
Enemmän – Kohti Kiinteistöjen Energiaminimiä”, or “Less is More: Towards the En-
ergy Minimum of Properties” in English). The aim of the project was to develop proof-
of-concept demonstrations and prototype applications that illustrate how cost-effective,
open, and modular solutions could be utilized to improve the energy efficiency of ex-

1Corresponding Author: Mika Saari, mika.saari@tuni.fi

J. Harjamäki et al. /

isting, older buildings [1]. The KIEMI project was selected for analysis in this paper
because of its large number of pilot use cases.

The goal of the KIEMI project was to save energy, and we worked towards this goal
by developing and constructing data-gathering IoT sensor systems. We used the devel-
oped SW/HW framework [2] and the formerly developed descriptive model of the proto-
typing process (DMPP) [3]. The SW/HW framework generalizes prototype development
into a group of necessary components and even more precisely the framework defines
guidelines for constructing prototype systems to collect data for different purposes by
reusing the required software and hardware components [2]. The DMPP was developed
to guide the IoT prototype development process and can be used as a guideline when
building a prototype. The DMPP contains the prototype development practices that have
been applied in research projects between our university and enterprises. With these de-
veloped IoT prototypes, developers can receive valuable feedback on the possibility of
implementing the application [3].

The following research questions were formulated during the project work. For this
study, we wished to gain insight on the following topics:

• RQ1: Collaboration. How was university-enterprise collaboration executed in
practice using the DMPP?

• RQ2: Reusability. How did the reusability of the artifacts in the DMPP steps sup-
port the workflow of the pilot cases?

University-enterprise collaboration (part of universities’ third mission [4], [5]) has
been used in previous projects and the DMPP model was developed into its current for-
mat based on the pilot cases of these previous projects. The KIEMI project also aimed
to build prototypes in collaboration with companies for IoT type data gathering. Since
we already had a completed process template, it was decided to put it to good use in this
project as well, and RQ1 looks at the success of this issue.

Further, RQ2 focuses on the operation of DMPP sub-processes and how templates
were created from them. The use of templates was intended to accelerate the operation.
At the beginning, their significance was not understood, but by following the model the
usefulness of the templates was noted. The same practices were observed when using
the process model, so reuse was included in the review. The benefit and reusability of
templates created specifically from reporting was monitored as it was expected to speed
up the implementation of some steps.

The structure of this paper is as follows: In Section II, we review the related re-
search about universities’ third mission, industry collaboration. Also the background of
the KIEMI project is explained. In Section III, we introduce the DMPP and its connec-
tions with project work. Further, the implementation of university-enterprise collabora-
tion in prototype development is described by means of process modeling notation. Sec-
tion IV introduces the KIEMI project – its purpose, activities, goals, and outcome. Sec-
tion V continues by describing the prototyping pilot cases performed during the KIEMI
project. Section VI evaluates the usability of DMPP in the KIEMI project highlighting
results of the project and pilot cases. Section VII summarizes the study, and includes a
discussion and suggestions for future research on the topic.

J. Harjamäki et al. /

Figure 1. Third mission concept with the KIEMI project

2. Background

2.1. Third mission

It is a common conception that the modern university serves three main purposes: teach-
ing, research, as well as a broader social function. The latter of these functions, com-
monly dubbed ”The Third Mission” [4], [5], is regarded as including measures contribut-
ing to social impacts and interaction.

Industry-academia collaboration benefits those organizations that do not have their
own R&D facilities. For example, companies can utilize the resources of a university to
understand their modern-day software engineering problems. Industry has realized that it
can support innovation and development processes when collaborating with researchers.
[6]

Figure 1 illustrates how the process model approach can be used to align European
Union policy and Finnish universities’ missions in the form of applied research and col-
laboration.

The EU cohesion policy and EU Structural Funds (SF) are used through Operational
Programmes (OPs) to make it possible to create innovative collaboration projects for
local stakeholders. Finnish universities have extended their traditional teaching and re-
search activities within the third mission (TM) to exploit research results for peripheral
areas, i.e., in the form of collaboration with local stakeholders. [7]

The University Consortium of Pori (UC Pori) has longstanding and specialized expe-
rience of creating collaboration with local stakeholders using the EU SF and OPs through
university facilities and resources [7]. The KIEMI project represents a continuation of
the series of OPs executed at UC Pori in recent years.

In collaboration, the transfer of technology is an important part, because it innovates
development processes and innovative products achieve improved business competitive-
ness. In the study by [8], innovation is considered as a process consisting of two phases:
technology creation and technology transfer.

J. Harjamäki et al. /

As seen in Figure 1, the KIEMI project was a framework for implementing collabo-
ration and applied research methods in the form of innovative ICT application pilot cases
for local stakeholders. The descriptive model for the prototyping process (DMPP) was
the spearhead of the process, pulling all the pieces together.

2.2. Collaboration channels for interactions

Interaction between public research organizations and industry can be implemented
through many kinds of collaboration channels. One way to classify collaboration chan-
nel types was done in [9], where channels were divided into four groups: traditional,
services, commercial, and bi-directional. In this paper, collaboration in SF OPs can be
seen as bi-directional collaboration between university and industry, where both parties
benefit from the acquisition and development of the technological know-how necessary
for the prototype. In addition to the technical content, the prototype usage must take into
account the development of interconnections necessary for university-enterprise collab-
oration and their impact on future cooperation activities.

2.3. Innovation models for collaboration

In projects like KIEMI, collaboration activities are done several times; mostly each time
with different SMEs or public organizations (or some unit or department from their or-
ganization). To simplify this for the reader, we use the term industrial development (ID)
for these collaboration parties or stakeholders. In addition, in case some ID has their own
research group or department or if there is a CEO with a researcher’s mindset, their staff
can be referred to as industrial research (IR). Similarly, the university research unit, as in
the KIEMI project, can be defined as academic research (AR).

For successful collaboration management between ID and AR, it is useful to have
a framework or process model to ensure that the collaboration and innovation activities
inside it create solutions and PoC along with pilot cases and receive strong support from
all parties from the very beginning.

In the study by Punter[8], two main stakeholder groups were identified: researchers
and industrial practitioners, where the former (AR) act as a technology provider and the
latter (ID) as a technology receiver. They also pointed out that AR and ID may have
completely different values and targets for technology and collaboration activities. AR
is interested in proving concepts for technology via pilot cases during projects. ID is
looking for a statement or evaluation of the business benefits and costs of the technology
and may see AR’s PoC as a technology study without the necessity for proof, i.e., a
production proof version.

With an EU OP (such as KIEMI), the ID types of collaboration are predefined in the
OP requirements. The same set of requirements also contains targets for project results
which can be related to certain products or services through ID or a target may be related
to co-creation activities or to research and development activities between AR and ID. in
this project, a production proof version is not included, only PoCs. It is assumed that ID
will continue the production proof version from the results of the project.

The model used should take different types of ID into account. It should also take
into consideration the fact that innovation activities and technology transfer may happen
in all phases or steps. As an example, Punter [8] highlights a case where design work

J. Harjamäki et al. /

was able to add value for ID. Similarly, in projects, value can be produced in cases where
some commercial product, already designed for a certain usage, has been applied in a
new environment through pilot case activities.

Naturally, activities to develop a suitable collaboration model fall mostly to the party
responsible for the project, as here on the AR side. The model and its efficiency define
success for current and future collaboration between AR and ID.

A study by [10] presents the Certus model, which was developed at a Norwegian
research-based innovation center. Their needs for a collaboration model contained sim-
ilar elements to the DMPP model. They required deeper research knowledge of co-
creation activities via problem definition and solving tasks and more active dialog be-
tween researchers and practitioners to align their expectations. They also wanted to en-
sure that the results and outputs from research projects that are created have practical rel-
evance and benefit for their partners and that the results can be transferred and exploited
effectively by their partners.

The Certus model [10] contains seven phases, from problem scoping to market re-
search. Whereas the first four phases (problem scoping, knowledge conception, knowl-
edge and technology development, and knowledge and technology transfer) can be re-
garded as similar to proof-of-concept development, the following three phases (knowl-
edge and technology exploitation, organizational adoption, and market research) are
more related to production proof activities.

2.4. The KIEMI project

The reduction of greenhouse gas emissions is one of the most challenging global objec-
tives of the near future. Low carbon emissions, energy savings, a climate-friendly ap-
proach, and ecologically sustainable choices require new and innovative services, solu-
tions, and products. One of the biggest potential areas where savings can be made is en-
ergy use in properties in Finland. The KIEMI project, carried out by Tampere Univer-
sity Pori unit, designed and developed methods and technologies that aid in finding and
achieving the property- and situation-specific ”energy minimum”, i.e., a situation where
the minimum amount of energy is used while still preserving a comfortable environment
within the building. In the KIEMI project, the primary focus was not on new properties
or so-called ”smart buildings”, but on older buildings and apartments that do not contain
modern automatic and intelligent devices commonly used for controlling the quality of
the living and working environment.

Proof-of-concept demonstrations and prototype applications were developed in the
KIEMI project that illustrate how cost-effective, open, and modular solutions can be uti-
lized to improve the energy efficiency of buildings. Further, a decrease in overall energy
usage will lead to cost savings related to energy expenses and reduce the carbon footprint
caused by, for example, the heating, cooling, and air conditioning of buildings.

In the present world situation in 2023, the theme of the project, energy savings, is
especially topical, at least in Europe. The KIEMI project partners consisted of organi-
zations and companies who were able to take part in the pilot cases implemented dur-
ing the project by providing properties, equipment, sensors, and measurement data or by
acting as experts. The results of the project can be utilized by all those involved with the
energy and resource efficiency of properties and housing-related wellbeing as well as the
relevant private (companies) and public bodies (municipalities).

J. Harjamäki et al. /

Figure 2. Timeline of pilots in KIEMI.

The commitment of the project partners to the project activities was based on the
DMPP collaboration model developed in previous projects. In the KIEMI project, the
focal point of the partner-specific co-operation varied, depending on how the partner
wished to participate, and how they were able to contribute to the research. Collaboration
and contribution to the project pilot cases took place roughly according to the following
breakdown:

1. Identifying premises for use in the project (condition measurements in the prop-
erties)

2. Handing over existing property data for use in the project (interfaces with existing
property measurement systems)

3. Determining measurement needs and planning pilot cases together (tailored
needs for condition measurement of the target)

4. General development of condition measurement (developing sensor and mea-
surement systems in collaboration with project partner)

During the project a total of 23 different types of pilot cases were carried out related
to the energy efficiency and condition measurement of properties. The pilot cases con-
ducted during the KIEMI project as well as the prototype systems developed for them
and the technology testing have been reported extensively in the form of scientific ar-
ticles (several internationally peer-reviewed research publications). Figure 2 shows the
schedule of pilot case implementation by month and quarter over the duration of the
project. For interrupted pilot cases, the timetable describes the time interval during which
discussion and reflection took place.

3. Process model for prototyping: Descriptive model for the prototyping process
(DMPP)

The purpose of this section is to present how the selected process model has supported
the work within the projects. Our descriptive software process model for IoT prototyping
was introduced in [3]. The DMPP was developed during a previous project where the

J. Harjamäki et al. /

University
Representatives

1. Discuss
Requirements

Company
Representatives

3. Develop
Software

2. Requirements
Notes

6. Presentation
Slides4. Development

Artifacts

5. Prepare &
Conduct

Presentation

Organization
Representatives

Public community
Representatives

Figure 3. Process model for prototype development. Adapted from [3].

prototyping focused on one area. The DMPP was developed using the descriptive process
model (DPM) approach [11]. The basic concepts related to processes are role, activity,
resource, and artifact. The example is illustrated by a developer (role) involved in soft-
ware development (activity) using a programming tool (resource). The activity produces
some software (artifact) used in a prototype system. The process data for the model is
collected through interviews with the developers involved in the four different prototype
development processes. Four prototype development projects and their outcomes were
reported in several studies [12], [13], [14], [15]. The common factor in all of the studies
is that they present developed IoT prototype systems that gather data.

When the KIEMI project started, we noticed that this DMPP could be an acceptable
way to approach the subject. During the project, we actively searched for pilot cases (Step
0) where previously collected knowledge about prototyping IoT data-gathering systems
could be used. Figure3 presents the DMPP [3] including steps one to six. The pilot case
starts with an issue related to a suitable situation for the research group. The pilot case
ends after it has been presented to the customer and other reports have been published.
After the pilot case, there is also the possibility to add step 7 (Production proof mentioned
in 2.3) which consists of following up the procedure, e.g., client or someone outside of
the original pilot case group wishes to utilize the prototype or parts of it. The second
possibility is that the developed prototype system goes into production and needs further
support (this kind of situation is reported in [14]).

Figure 3 presents the DMPP model. The model includes six steps and the roles,
activities, and artifacts can be described as followed using the SW/HW framework [3]
and the DMPP [2]:

1. The first step starts from the requirements definition, a collaborative discussion
between the developers and the client. The client defines what kind of data would
be useful. The developer group starts to define the hardware and overall archi-
tecture of the system and how the data will be collected by the software. The
selected hardware mostly determines the software environment and tools used.
Benefit - Clarification of the problem item together with the customer. Limitation
- Does the development team have sufficient expertise in the subject area?

2. The outcome of the discussion is the first artifact: for example, the prototype
system requirements in the discussion notes. The developer group constructs the
first architecture model of the component interconnections. For example, in IoT

J. Harjamäki et al. /

systems, we describe the practice of how to define a system by reusing the sys-
tem definitions of previous prototypes. Light documentation has been found to
speed up stage completion, but may cause problems later if the system is put into
production.

3. The third step is the software/hardware prototype development made by the re-
search group including the project manager and SW/HW developers. The IDs’
representatives are involved in the development process in the role of instruc-
tor. In this step, the SW/HW framework is used as the guideline for selecting
the components for the prototype. The SW/HW framework gives guidelines and
speeds up development when the operating process of suitable components has at
least partially been thought through in advance. Reuse of components also makes
it easier when the number of background studies decreases.

4. The fourth step introduces the working prototype artifact, which consists of the
developed software and hardware components. Also, the interconnections of the
components are tested. The testing process overall is usually only the functional
testing of the prototype system. Additionally, the gathered data is inspected and
if possible, compared to the expected results. Another notable issue is the fact
that, if the system is later put into production, testing must be carried out more
thoroughly.

5. The fifth step includes preparing the outcome of the development process. Fur-
ther, this step includes presenting the prototype and its functionality to the ID.
The SW/HW framework can be complemented if necessary.

6. The sixth step is to publish the results, for example, the prototype system, col-
lected data, and analysis of the project. For example, in a university environment,
the the publication of results is important for supporting future research projects.

The process model in Figure 3 is a simplified presentation of the prototype devel-
opment process. It gives abstract instructions for the operation with defined steps to im-
plement the pilot case from start to finish. If all of the steps are performed, the level
of the outcome is predictable. The model is sufficient for developing a prototype, and
also makes it possible to add more activities if needed. For example, procedures such
as iterations, testing, and customer testing could be included in the process. Further, be-
cause the model is developed from university pilot cases, it combines two factors: soft-
ware/hardware prototype development and collaboration with customers. Both of these
are discussed in the following section when the usability of the DMPP in the KIEMI
project is evaluated.

4. DMPP utilization in the KIEMI project and technology transfer

The purpose of this section is to describe how the DMPP model was utilized in the work
process of the KIEMI project. This section also describes how different parties were
involved in the project, what kind of collaboration actions were taken during the DMPP
steps, and which technology transfer actions occurred during the work process. Figure 4
presents an overall picture of the project, collaboration, and DMPP process in the form
of the Business Process Model and Notation (BPMN, [16]).

J. Harjamäki et al. /

4.1. Project partners

In the overall picture (in Figure 4) four groups can be recognized in their own swimlane:

1. EU OP and its program documents and goals (via OP documents and goals) must
be taken into account for project content and implementation.

2. University within its third mission (TM) and its strategy (via University Strategy)
which gives guidelines for research group activities and publishing of project
work.

3. Project (like KIEMI) activities are carried by project team members (academic
researchers, AR) and activities can be divided into three sub categories:

(a) Project management (Management) is responsible for implementation of the
project plan (Project Plan) and reporting project results to the funding repre-
sentatives of EU OP (OP supervision) as well keeping track of research publi-
cations for university representatives (Research supervision). Project manage-
ment also acts as the selector of new prototypes in the form of collaboration
and pilot case actions.

(b) DMPP process (DMPP) and its six steps (1-6), which are linked to each other
and to collaborative actions with IDs via prototype and pilot case actions.

(c) Collaboration and Piloting (Collaboration/Piloting) which contains actions
and paths supporting DMPP process steps.

4. Collaborative Organization(s) are representatives of collaborating IDs and with
whom the content of prototypes and usage via pilot cases is co-created and co-
developed.

Technology transfer (and technology creation) takes place between AR and ID via
project work and the work process used in it.

4.2. The work process

In Figure 4 the work process of project work can be divided into the following actions
(one to eight):

1. The project starts when the project administration (Management) is organized.
The project administration defines/selects an appropriate pilot case (Select New
Pilot Case), the resources and actions required for the content, and launches the
pilot case (Start Pilot Case).

2. From the point of view of the project, a single collaborative pilot case starts
(in Collaboration/Piloting) with the invitation of the collaborator (Collaboration
Call) and the agreement on cooperation (Collaboration Ignition). For pilot cases
#17, #18, #19, and #23, invitations to collaboration IDs were sent via a 3rd party.

3. The first phase of the DMPP process (Discuss Requirements) starts when the
project has established contact with the collaborator (ID) and the actual discus-
sion of requirements and objectives begins (Requirement Discussion). For pilot
cases #17, #18, #19, and #23, we also received positive responses to collaborate.
The project utilizes the discussion base created in previous discussions (Achieved
Prototype Pilot Requirement Notes) as a basis for a new discussion. ID brings
their views (needs and support and available partners or technical vendors (TV))

J. Harjamäki et al. /

to the discussion. For example, needs can be related to certain sensors or mea-
surements and support can be related to the facilities where measurements are
made. This starts technology transfer actions between AR and ID/TV. The dis-
cussion will result in a decision to continue cooperation and (in a positive deci-
sion) the content of the next phase of the DMPP process, namely the requirement
notes (Prototype Pilot Requirement Notes).
As the discussion produces a positive decision (OK To Initiate Prototype Pilot?),
a pilot case (Prototype Pilot Ignition) and the third phase of the DMPP process
(Develop Software) will begin (Start Prototype develop). On the ID side, the cor-
responding decision (OK To Initiate Prototype Pilot?) to proceed initiates sup-
port for prototype development and supports prototype piloting activities. In the
event of a discussion producing a negative decision (or cooperation ending with-
out successful agreement), the pilot case is reported to the administration as in-
terrupted (Pilot Case Aborted), which then processes the interruption result. For
pilot cases #98 and #99, collaboration was ended in the first phase of the DMPP
process (Discussion).
§

4. In the third phase of the DMPP process (Develop Software), the prototype ar-
tifacts (software and hardware) needed in the pilot case are developed. The de-
velopment of the prototype (Develop Prototype (SW/HW)) is guided by the re-
quirements recorded in the previous phase (Prototype Pilot Requirement Notes in
Requirement Notes) and utilizes any artifacts (Development Artifacts) that may
have been generated in previous cases. Prototype development involves discus-
sions and exchanges of information (Technical Discussion) with the ID and TV
brought into the pilot case. New and advanced artifacts resulting from the pro-
totype development phase are introduced to artifact management (Manage Arti-
facts in Development Artifacts), representing the fourth stage of the DMPP pro-
cess. Pilot case #11 was an example of a case where both technology creation
and technology transfer occurred between AR and ID.

5. The completion of the prototype development phase (Prototype Develop Ready)
initiates the prototype pilot case execution phase (Execute Prototype Pilot in Col-
laboration/Piloting), where pilot case data and results are collected from the use
of the prototype at the pilot case site (received from ID). The data collected in the
prototype pilot case is included/added to the Development Artifacts (via Manage
Artifacts) generated in the third step (Development Software).
The piloting of a single prototype could take several weeks. For pilot case #19,
data was collected for a period of several months and data collection was moni-
tored online. On the other hand, pilot case #13 contained data for a period of over
one year and data was collected afterwards from ID’s database. The latter case
also contained technology transfer between AR and ID to tune up ID’s interface
about database metadata information.

6. At the end of the prototype pilot case (Start Prototype Presentation), the penul-
timate stage of the DMPP process, the preparation phase for the presentation of
the results is initiated. In this phase (Prepare Presentation in Prepare & Conduct
Presentation), the artifacts generated during the prototype pilot case are compiled
(via Manage Artifacts in Development Artifacts) into presentation materials for
the final stage of the DMPP process (via Manage publications in Presentation

J. Harjamäki et al. /

Slides) and the presentation of the materials to ID (Conduct Presentation in Pre-
pare & Conduct Presentation). In the preparatory phase, previous presentation
materials (Archieved Slides via Manage Slides) can be utilized. The presentation
schedule is discussed with ID (Call For Presentation) who gathers their team and
TV for the meeting (Receive Presentation in Collaborative Organizations(s)). The
presentation ends steps five and six of the DMPP process for collaboration tasks
(Prototype Presentation Ready). Pilot cases #17, #18, #19, and #23 were exam-
ples of technology transfer via a presentation and delivered report documents.
Case #23 also included a representative from ID’s TV side.

7. There is usually a feedback discussion (Ask Feedback/Give Feedback in Collab-
oration/Piloting) following the presentation (Prototype Presentation Ready) on
the results obtained from the use of the prototype and the implementation of its
piloting, as well as on the success of the collaboration. Feedback processing con-
cludes the collaborative pilot case (Pilot Case Ready) and technology transfer
actions between AR and ID/TV. Pilot case #10 contained a feedback discussion
where ID felt that the collaboration was very successful and they requested an-
other pilot case (#16 in the list) after the issue for the target facility had been
solved thanks to the first pilot case.

8. At the end of the pilot case (Pilot Case Ready), the information is sent to the ad-
ministration (Pilot Reporting), which records the project indicators and progress
(via Project Indicators) for reporting to the EU OP financier (OP Supervision)
on the pilot case. The administration is also responsible for sharing the research
results (Research Reporting) through communication channels (via Project Pub-
lications) and to the university (Research supervision via Research Publications).
Actions for communication tasks are also reported to the EU OP financier (OP
Supervision).
Artifacts and publication slides generated in the DPMM process may be pub-
lished or distributed in connection with the news blog. Pilot cases #17, #18, and
#19 were examples of (one way) technology transfer via news blogs for any other
ID or individual interested in the topic.
When a single collaborative pilot case has ended, management decides on the
need for another pilot case (Is Project Completed?). Once the required number
of prototypes and their piloting work have been completed (or project time is
coming to an end, it leads to the final tasks and the end of the project.

5. Pilot cases in KIEMI

The purpose of this section is to present the background or characteristics related to the
pilot cases (comparison table) as well as to compare the activity levels of collaboration
associated with the pilot cases.

Table 1 contains pilot case specific reference parameters. Pilot cases are numbered
with a running identification number according to their starting time (see pilot case time-
line in Figure 2). Comparative data has been compiled for each pilot case using six pa-
rameters. The User Group parameter describes the classification of the piloting target.
Options include company (A), public operator (B), entity (C), and others (D). The Stake-
holders parameter describes the classification of parties who joined the piloting target.

J. Harjamäki et al. /

Table 1. Properties of pilot cases in the KIEMI project

Alternatives include subscriber (E), users (F), technical vendor (G), and developer (H).
Several parties may have been involved in the piloting. The DMPP usage parameter de-
scribes the number of steps in the DMPP process utilized at the piloting site. Each pilot
case may have utilized one or more, or even all of the steps. The OTS used parameter
contains information on whether off-the-shelf components were used in the pilot case.
The Publish content parameter includes information on whether the results of the pilot
case were released in a transparently available format through a research publication (X)
or project news blog (Y) or both. Some pilot case results were only handled internally.
The Collaboration activity level parameter describes the collaboration activity of ID
during the work process (in Fig. 4). For a couple of pilots some information was not yet
available during the writing of this paper and that information is marked with (*).

5.1. Pilot cases with high-level collaboration

In high-level collaboration, the counterpart (ID) demonstrates active cooperation at all
stages of the work process. ID brings to the discussion stage a view of the features re-
quired for the prototype and its operating environment. ID also demonstrates its inter-
est in the technical content of the prototype resulting from the development phase and
is involved in the processing of observations made during the pilot case phase. In high-
level cooperation, ID shows interest in the content of the results (report) and highlights
their views on the exploitation of the results. It is clear that ID benefits from high-level
collaboration in many ways.

J. Harjamäki et al. /

Pilot case #10 is a good example of high-level collaboration. The target was a day-
care center, which had received feedback about poor air quality inside the building. The
first target was to measure the temperature, humidity, and CO2 values at different times
and report the readings to the partner. The first results showed that at certain moments the
temperature and CO2 values had risen. During the early phase meeting where the results
were shown, we decided with the partner(ID) to continue and expand the pilot case. Ex-
pansion meant contacting the air conditioning equipment supplier(TV). This gave us an
interface with the air conditioning system. In addition, they expanded the sensor number
and type to collect data that was more specifically environmental. Our project team also
used the previously developed visualization tool to this pilot case.

Outcome: This was the widest pilot case with several partners(TV and ID), using
previously used and developed components.

5.2. Pilot cases with mid-level collaboration

In mid-level collaboration, the counterpart (ID) is involved at the beginning and end
of the work process and in some way also involved in the development content of the
work process. ID support may be required, particularly in situations where part of the
prototype content is sourced from an ID-managed data source. In general, ID benefits
from mid-level collaboration, at least from the perspective of external testing obtained
for its own functions.

Pilot case #13 can be used as an example of mid-level collaboration. In this case
ID had a vast amount of facilities at their disposal and they had already implemented a
data sensor system and were using data analysis tools via their TV. For the pilot case, ID
allowed AR to use their data (collected by ID’s TV) for AR’s tools to produce another
kind of analysis from the data. ID did not participate in the actual SW development, but
the use of data via ID’s API during piloting required technical discussions. The benefit
for ID from the piloting case was related to experience gained about their API and the
knowledge received via the pilot case report.

5.3. Pilot cases with low-level collaboration

In low-level collaboration, the counterpart (ID) is involved in the work at the beginning
(Discuss Requirements) and end of the process (Presentation Slides). In these cases, the
project team has most often conducted a search for actors interested in collaboration and
provided the test target, giving the ID the opportunity to obtain new information about its
application through the report. Thus, AR also provides technology transfer to ID. For a
project, low-level collaboration can also be beneficial. Piloting over a longer time period
does not necessarily burden the project staff and the results obtained from the pilot case
can be very useful for demonstrating the functionality of the prototype.

Low-level collaboration is also no obstacle to publicizing the results of the project -
on the contrary, for example pilot cases #17, #18, and #19 (entities as user groups) and
the disclosures generated from their results have contributed to the local visibility and
reputation of the project. The presentation materials have also been utilized to obtain
new, higher-level collaborative cases.

J. Harjamäki et al. /

5.4. Failed pilot cases

In addition to the above levels of collaboration, it is also useful to point out exceptions
where piloting collaboration ended or was interrupted. In the work process, piloting can
usually be interrupted only in its initial stages.

The reason may be ID’s reluctance (or resource shortage) to initiate collaboration.
ID is not interested even in free piloting if it does not promise immediate benefit; in
practice, however, that requires some involvement. Piloting may involve TV on ID’s part,
which is necessary but TV is reluctant (similar to ID’s own reluctance).

Another reason may be that something comes up during the discussion stage (Dis-
cuss Requirements) that makes it impossible to continue or not meaningful to continue
the piloting.

Even after progressing to the technical stage of the DMPP process (Develop Soft-
ware), a situation may arise where a developed prototype is found to be unworkable.
From the point of view of collaboration, the work process is interrupted, although from
the point of view of research, a non-working prototype is also part of the results of the
research. If the idea works, the hardware can be replaced with more suitable hardware in
the next iteration round.

Pilot cases #98 and #99 are examples of cases where collaboration was interrupted.
In case #99, ID was interested in collaboration, but access to required data was managed
via ID’s TV’s API and TV had little or no interest in collaboration. For case #98, ID was
also interested in collaboration. During the discussion stage AR noticed that it would be
too difficult to produce data in such a form that would work for ID’s needs. In both cases
proceedings (in discussion stage) were paused and finally project management decided
to shelve the piloting case.

It is worth mentioning that in the work process there were also some cases where
project management was asked to help to communicate with ID to make sure that the col-
laboration would continue. Interruptions in collaboration cause serious harm to the work
process. For example, due to material limitations, when the test equipment is reserved at
one site, the next piloting target cannot be handled.

6. Usability and evaluation of DMPP in the KIEMI project

The DMPP was developed for the production of prototypes at the university. The goal
has always been to produce scientific results from the prototypes. The research group is
from non-commercial institutions and therefore the focus is not on achieving financial
goals. This subsection clarifies the advantages of different phases of the DMPP. The
KIEMI project used the DMPP model to create prototypes together with collaborative
partners. This project and its approach to the subject through prototyping demonstrated
the functionality of the DMPP model, especially in prototyping projects like this one.
The suitability of the different phases of the DMPP model can be assessed through the
KIEMI project pilot cases as follows:

Discuss requirements: Most pilot case projects involve an external partner(ID)
when discussing objectives. The level of collaboration varies a lot. In low-level collabo-
ration e.g., in pilot cases #19 and #22, the partner provided the premises to perform the
measurements. The partner does not make any special requests. The output for the part-

J. Harjamäki et al. /

ner is a report which may lead to further actions. If the collaboration is closer, as when
the partner takes part in further discussions, the starting point is also directed more by the
partner. In these cases, the partner mostly has some issue which should be researched,
e.g., they have been notified of poor indoor air quality (pilot case #10). Usually in these
cases, the original task assignment expands during the pilot case and more partners join
in. The DMPP is suitable for this kind of activity because the non-commercial leader –
the university research team – is focused on research goals rather than financial goals.
Further, the additional research/technical goals set by partners are shown to be applica-
ble to the operation of the model within the iteration rounds. The best example of this
kind of activity is pilot case #10 where the university research team led the pilot case
and collected the necessary partners (e.g., ventilation technology supplier and building
caretaker).

Requirements notes are an important part of documentation and their main purpose
is to guide the pilot case in the selected direction. The usage of the DMPP shows the
advantage of ”light documentation” for getting things started; the usage of previously
defined architecture models and device configurations also speeds up the operation. The
term ”light documentation” also means the reuse of the technological choices and def-
initions made in earlier pilot cases. The exception is pilot case #23, where the final re-
port included a section on desired goals. Internal requirements are also mentioned in
several cases, e.g., the research group wants to change or update some specific feature.
The ”light documentation” idea is based on the ”Some Things Are Better Done than De-
scribed” [18]. Light documentation and process modeling is focused on the university
and other research institution environments where the aim was prototyping rather than
the development of commercial products. Of course, this leads to a larger amount of
work if technology transfer to some partner starts from the prototype.

The Develop software phase uses the artifacts of previous requirements as a loose
guideline. For example, UI [19] and backend [20] software developed in pilot case #09
were used in all subsequent pilot cases (excluding #11). In the DMPP, changes to the
requirements are possible if it is seen to be of some benefit. Further, the requirement
changes were not normally discussed with partners unless something was needed from
them. The DMPP does not set requirements for the software or hardware components
used, but we noticed that the usage of off-the-shelf components accelerated prototype
development. The second advantage of these kinds of components is the ability to vary
the prototype solutions when we have to conform to the requirements of the selected
components.

Development artifacts are typically fully working prototype systems which are also
the main goals of this phase for the DMPP. In the KIEMI project, this phase usually in-
volved installing the prototype to collect data at a target provided by the partner. Most
of the prototypes were working SW/HW prototypes, but there were also only SW pro-
totypes for analyzing and visualizing the customer’s collected data (#12 and #13). The
main purpose of the DMPP is to produce a working prototype and therefore only the
main functions of the prototype are utilized. Additionally, the documentation or testing
could be done only partially. This kind of approach speeds up the development but could
slow down the technological transfer later on.

The Prepare & conduct presentation phase is for reporting the results. In longer
projects we noticed that the document reuse of skeleton reports accelerated this phase. In
pilot cases #20 and #23 of the final phase of the KIEMI project we collected a skeleton

J. Harjamäki et al. /

report from pilot case #19. This automation sped up the reporting phase. This shows that
when using the DMPP model, reporting will mostly include the same components.

Presentation and publishing of the results are the last phase in the DMPP. In suc-
cessful pilot cases the partners are usually interested in further developing the prototype
and the technology transfer will continue from this point. One significant advantage of
the DMPP is the ultimate purpose of publishing the scientific material (pilot cases #03,
#09, #10, #11, #15, and #16 have been published) and other public material from the
pilot cases.

Overall analysis and DMPP’s suitability for projects were shown in the KIEMI
project. Two approaches were used in the project: the software development style and
collaboration style. The DMPP is able to connect both styles. The project was shown to
be successful for university-enterprise (AR-ID) collaboration in the context of prototype
development. Further, based on the results in creating usable prototypes, the model can
be seen as a success.

7. Conclusions

RQ1: Collaboration. How was university-enterprise collaboration executed in prac-
tice using the DMPP? The DMPP process was part of a project (Fig. 4) where the con-
tent was guided by the objectives set for the project (Management) and an individual
prototype was made through collaboration (Collaboration/Piloting). The DMPP process
was in the background (invisible to ID), but it was able to provide support for collabo-
ration (AR-ID) through all of its six phases. The ability of the DMPP process to support
technology transfer was highlighted in phases 1, 3, 4, and 5.

For Step 2 (Requirement Notes), the content was usually only left up to the project
team (AR). Regarding companies (ID and their TV), it is unknown whether they had one
of their own similar methods in place. At the very least, communication (emails) enabled
ID (and their TV) to receive and store requirement-related data.

As far as Step 6 is concerned, ID received a report on the content and results of most
pilot cases. For pilot cases where content was distributed through open channels (such as
Project news blogs and Github in Presentation slides), ID (and TV) had the opportunity
to catch up, not only with their own content, but also the content of other pilot cases.

The collaboration also demonstrated that university and corporate representatives
have a very different view of technology, and therefore of pilot cases as a whole. Espe-
cially in small companies, the desire and ability to recognize the value and benefits con-
tained in the prototype is often low, and the university needs to convince the collaborator
of the benefits of a prototype that requires effort on their part.

In a longer-term project, it should be considered whether each prototype is intended
for actual technology transfer or whether that stage will only come when satisfactory pro-
totypes have been achieved. In practice, the project requires that pilot cases at the begin-
ning of the project are conducted mainly with organizations offering test environments
and only at the end does the content begin to involve technology transfer.

There was no investment in cost calculations or business models in the design of
university prototypes and this may have contributed to the amount of interest shown by
companies. To improve collaboration it is good to add a point where the company pro-
vides a (suitable general level) assessment of the prototype as well as the associated re-

J. Harjamäki et al. /

turn on investment (ROI). With the feedback received, the research team would accumu-
late expertise in designing the next prototype and opportunities to produce a result that is
of more interest to the company. The ability to produce prototypes valued by companies
is a significant strength and advantage for a university operator that organizes projects. It
is also an advantage for future project partner searches.

RQ2: Reusability. How did the reusability of the artifacts in the DMPP steps
support the workflow of the pilot case? The use of the DMPP model led to the reuse
of artifacts when the mode of operation remained the same even though the pilot cases
changed. In the prototypes, we mainly used the same software and hardware components
that had been used before. Further, we also always tried to introduce some new compo-
nents , because this increased knowledge and expanded component-based variation. The
DMPP uses light documentation to speed up prototype development, but we noticed that
separate phases in different pilot cases started to contain the same type of documents.
Therefore, the conclusion is that the DMPP leads to re-use of skeleton documents in
different pilot cases.

The findings of the research presented above represent the context of a Finnish uni-
versity and it would require more research to obtain universally applicable results. How-
ever, these observations and findings provide the basis for the possibility to extend the
research to an external comparison between universities in different countries.

8. Summary

This article focused on the KIEMI research project conducted at the Pori Unit of Tam-
pere University during 2019-2022. The project used the earlier developed Descriptive
Model of Prototyping Process (DMPP) to guide university-enterprise collaboration. The
project consisted of several pilot cases and prototypes, which were made in collaboration
with companies, and offered real-world problems. This article reviewed and evaluated
the suitability of the DMPP for this topic. The article dealt with the collaboration be-
tween university and enterprises, and reusability within the DMPP. The paper presented
several pilot cases made in KIEMI, and described the usage of the DMPP. Finally, the
paper evaluated the model, presented some of the challenges faced, and discussed future
research topics.

Acknowledgements

This work is part of the KIEMI project and was funded by the European Regional De-
velopment Fund and the Regional Council of Satakunta.

References

[1] Saari M, Sillberg P, Grönman J, Kuusisto M, Rantanen P, Jaakkola H, et al. Reducing Energy Consump-
tion with IoT Prototyping. Acta Polytechnica Hungarica. 2019;16(9, SI):73-91.

[2] Saari M, Rantanen P, Hyrynsalmi S, Hästbacka D. In: Sgurev V, Jotsov V, Kacprzyk J, editors. Frame-
work and Development Process for IoT Data Gathering. Springer International Publishing; 2022. p.
41-60. Available from: https://doi.org/10.1007/978-3-030-78124-8_3.

J. Harjamäki et al. /

[3] Saari M, Soini J, Grönman J, Rantanen P, Mäkinen T, Sillberg P. Modeling the software prototyping
process in a research context. In: Tropmann-Frick M, Thalheim B, Jaakkola H, Kiyoki Y, Yoshida N,
editors. Information Modelling and Knowledge Bases XXXII. vol. 333. IOS Press; 2020. p. 107-18.

[4] Vorley T, Nelles J. Building Entrepreneurial Architectures: A Conceptual Interpretation of the Third
Mission. Policy Futures in Education. 2009 6;7:284-96. Available from: http://journals.sagepub.
com/doi/10.2304/pfie.2009.7.3.284.

[5] Zomer A, Benneworth P. The Rise of the University’s Third Mission. Reform of Higher
Education in Europe. 2011:81-101. Available from: http://link.springer.com/10.1007/

978-94-6091-555-0_6.
[6] Basili V, Briand L, Bianculli D, Nejati S, Pastore F, Sabetzadeh M. Software Engineering Research and

Industry: A Symbiotic Relationship to Foster Impact. IEEE Software. 2018 9;35:44-9. Available from:
https://ieeexplore.ieee.org/document/8409904/.

[7] Salomaa M, Charles D. The university third mission and the European Structural Funds in peripheral
regions: Insights from Finland. Science and Public Policy. 2021 jul;48(3):352-63. Available from:
https://academic.oup.com/spp/article/48/3/352/6126876.

[8] Punter T, Krikhaar RL, Bril RJ. Software engineering technology innovation–Turning research results
into industrial success. Journal of Systems and Software. 2009;82(6):993-1003.

[9] Arza V, Carattoli M. Personal ties in university-industry linkages: a case-study from Argentina. The
Journal of Technology Transfer. 2017 8;42:814-40. Available from: http://link.springer.com/
10.1007/s10961-016-9544-x.

[10] Dusica M, Arnaud G. Industry-Academia research collaboration in software engineering: The Cer-
tus model. Information and Software Technology. 2021 4;132:106473. Available from: https:
//linkinghub.elsevier.com/retrieve/pii/S0950584920302184.

[11] Becker-Kornstaedt U, Webby R. A comprehensive schema Integrating Software Proces Modeling and
Software Measurement. IESE-Report No 04799/E. 1999.

[12] Grönman J, Rantanen P, Saari M, Sillberg P, Vihervaara J. Low-cost ultrasound measurement system for
accurate detection of container utilization rate. In: 2018 41th International Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO). IEEE; 2018. .

[13] Soini J, Sillberg P, Rantanen P. Prototype System for Improving Manually Collected Data Quality. In:
Budimac Z, Galinac Grbac T, editors. Proceedings of the 3rd Workshop on Software Quality Analysis,
Monitoring, Improvement, and Applications, SQAMIA 2014, September 19-22, 2014, Lovran, Croatia.
Ceur workshop proceedings. M. Jeusfeld c/o Redaktion Sun SITE; 2014. p. 99-106.

[14] Soini J, Kuusisto M, Rantanen P, Saari M, Sillberg P. A Study on an Evolution of a Data Collection
System for Knowledge Representation. In: Dahanayake A, Huiskonen J, Kiyoki Y, editors. Information
Modelling and Knowledge Bases XXXI. vol. 321. IOS Press; 2019. p. 161-74.

[15] Grönman J, Sillberg P, Rantanen P, Saari M. People Counting in a Public Event—Use Case: Free-to-
Ride Bus. In: 2019 42th International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO). IEEE; 2019. .

[16] Object Management Group, Inc. Business Process Model and Notation; 2023. Accessed January 13,
2023. Available from: https://www.omg.org/spec/BPMN/2.0.2/About-BPMN.

[17] Janne Harjamäki. Technology transfer in the Kiemi project; 2023. Accessed January 23, 2023. Available
from: https://cawemo.com/share/bb6b8086-13b7-4ab9-bb86-92cdaf9a5d18.

[18] Hunt A, Thomas D. The Pragmatic Programmer. Addison-Wesley; 2000.
[19] Nurminen M, Lindstedt A, Saari M, Rantanen P. The Requirements and Challenges of Visualizing

Building Data. In: 2021 44th International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO). IEEE; 2021. .

[20] Nurminen M, Saari M, Rantanen P. DataSites: a simple solution for providing building data to client
devices. In: 2021 44th International Convention on Information and Communication Technology, Elec-
tronics and Microelectronics (MIPRO). IEEE; 2021. .

J. Harjamäki et al. /

K
IE
M
IP
ro
je
ct

M
an
ag
em
en
t

D
M
P
P

6.
P
re
se
nt
at
io
n
sl
id
es

5.
P
re
pa
re
&
C
on
du
ct

P
re
se
nt
at
io
n

1.
D
is
cu
ss
R
eq
ui
re
m
en
ts

2.
R
eq
ui
re
m
en
ts
N
ot
es

3.
D
ev
el
op
S
of
tw
ar
e

4.
D
ev
el
op
m
en
tA
rti
fa
ct
s

C
ol
la
bo
ra
tio
n
/P
ilo
to
in
g

End ProjectIs Project
Competed?

Research
Reporting

Research
Publification

Start Prototype
Develop

Start Prototype
Requirement
Discussion

Start Prototype
Presentation

Prototype
Develop Ready

Pilot Case
Ready

Prepare
Presentation

Conduct
Presentation

Collaboration
ignition

Execute
Prototype Pilot Ask FeedbackPrototype Pilot

Ignition

Develop Prototype (SW/HW)

Technical
Discussion

Start
Project

Project Ignition

Pilot Case
Aborted

Pilot Case
Ready

Pilot Reporting

Project
Indicators

Project
Publifications

Requirement
Discussion

Manage
Requirements

Manage
Artifacts

Manage
Slides

Select New
Pilot Case

Start Pilot Case

Archived
Prototype Pilot
Requirement

Notes

Prototype Pilot
Requirement

Notes

Archived
Artifacts

New / Updated
Artifacts

Archived
Slides

New
Slides

Project Plan

U
ni
ve
ris
ty
(T
M
)

University
Strategy

Research
Supervision

E
U
O
P

OP Documents
And Goals

OP Supervision

C
ol
la
bo
ra
tiv
e
O
rg
an
iz
at
io
n(
s)

Collaboration
Call

Collaboration
ignition

Support
Prototype
Develop

Give Feedback

Feedback
Call

Receive
Presentation

Call For
Presentation

Support
Prototype Pilot

Collaboration
Completed

Requirement
Discussion

Start Prototype
Presentation

Call For
Presentation

Prototype
Presentation
Ready

Slide Materials

Feedback
Notes

Prototype
Presentation
Ready

Start Pilot Case
Prototype
Develop
Ready

Collaboration
Call

Feedback
Call

Contact

Working Prototype
Artifact

Pilot Data
And Results

Prototype
Requirement
Discussion
Completed

Response

Project Is not
Completed

Project Is
Completed

Start Prototype
Requirement
Discussion

Start Prototype
Develop

Pilot Case
Aborted

Prototype
Requirement
Discussion
Completed

Ok To
Proceed

Collaboration?

Ok

Ok To initiate
Prototype Pilot?

Ok

Not Ok

Not Ok

Ok

Ok

Ok To
Proceed

Collaboration?
Not Ok

Not Ok

Ok To initiate
Prototype
Pilot?

Figure 4. Technology transfer in the Kiemi project. (The figure is available in [17])

224

962/2024
M

IK
A

 SA
A

R
I Softw

are H
ardw

are C
om

bination for IoT Sensor D
ata G

athering and Prototyping

Tampere University Dissertations 962

Software Hardware
Combination for IoT

Sensor Data Gathering
and Prototyping

Architecture model, framework, and process model

MIKA SAARI

TUNI_Saari_Mika_kansi.indd 1TUNI_Saari_Mika_kansi.indd 1 24.1.2024 17:15:4024.1.2024 17:15:40

	Titlepages_Mika_Saari
	2024_01_23Saari_VK
	Introduction
	Motivation
	Research questions
	Scope and contributions
	Research methodology
	Thesis structure

	Background
	Standards for IoT architecture
	Current trends related to IoT
	Constructing a WSN sensor node architecture model
	Programming languages and hardware for prototyping WSN applications
	Data gathering prototype development process
	Summary

	Architecture model for sensor nodes in data gathering
	Architecture models for WSN data gathering
	Developing the architecture models with prototype systems
	Evaluating architecture models with prototype systems
	Discussion and summary

	Framework for IoT Prototype development
	Development of the SW / HW framework
	SW/HW framework
	Use of the SW/HW framework with three types of systems
	Discussion and summary

	Modeling the prototype development process
	Developing the process model
	The DMPP
	Evaluation of the DMPP
	Discussion and summary

	Conclusion
	Revisiting the research questions
	Contributions and summary
	Limitations and future work

	References
	Publications
	Publication I
	Publication II
	Publication III
	Publication IV
	Publication V
	Publication VI
	Publication VII
	Publication VIII

	TUNI_Saari_Mika_kansi.pdf
	Tyhjä sivu
	Tyhjä sivu

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

