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Abstract Background and aims: Menopause may reduce fat oxidation. We investigated whether
sex hormone profile explains resting fat oxidation (RFO) or peak fat oxidation (PFO) during incre-
mental cycling in middle-aged women. Secondarily, we studied associations of RFO and PFO with
glucose regulation.
Method and results: We measured RFO and PFO of 42 women (age 52e58 years) with indirect
calorimetry. Seven participants were pre- or perimenopausal, 26 were postmenopausal, and nine
were postmenopausal hormone therapy users. Serum estradiol (E2), follicle-stimulating hor-
mone, progesterone, and testosterone levels were quantified with immunoassays. Insulin sensi-
tivity (Matsuda index) and glucose tolerance (area under the curve) were determined by glucose
tolerance testing. Body composition was assessed with dual-energy X-ray absorptiometry; phys-
ical activity with self-report and accelerometry; and diet, with food diaries. Menopausal status or
sex hormone levels were not associated with the fat oxidation outcomes. RFO determinants were
fat mass (b Z 0.44, P Z 0.006) and preceding energy intake (b Z �0.40, P Z 0.019). Cardiore-
spiratory fitness (b Z 0.59, P Z 0.002), lean mass (b Z 0.49, P Z 0.002) and physical activity
(self-reported b Z 0.37, P Z 0.020; accelerometer-measured b Z 0.35, P Z 0.024) explained
PFO. RFO and PFO were not related to insulin sensitivity. Higher RFO was associated with poorer
glucose tolerance (b Z 0.52, P Z 0.002).
Conclusion: Among studied middle-aged women, sex hormone profile did not explain RFO or
PFO, and higher fat oxidation capacity did not indicate better glucose control.
ª 2022 The Author(s). Published by Elsevier B.V. on behalf of The Italian Diabetes Society, the
Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition and the
Department of Clinical Medicine and Surgery, Federico II University. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
rve; COVID-19, coronavirus disease; E2, estradiol; FSH, follicle-stimulating hormone; HT, hormone
ids; OGTT, oral glucose tolerance test; PFO, peak fat oxidation; POST, postmenopause; PRE/PERI, pre-
xchange ratio; RFO, resting fat oxidation.
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1. Introduction

Menopause follows the loss of ovarian follicular activity
and leads to circulating 17b-estradiol (E2) decline with
concomitant follicle-stimulating hormone (FSH) increase
[1]. The E2 deficiency has been thought to reduce fat
oxidation capacity [2,3]. Premenopausal women depend
more on fat oxidation than men during exercise [4e7] but
not necessarily at rest [8]. Whether the sex-related dif-
ference is lost [9,10] or not [11] after menopause is un-
certain. However, E2 supplementation increases fat
oxidation in men [12,13], and estrogen receptor a regulates
myocellular fatty acid metabolism [14], supporting the role
of E2 as a fat oxidation capacity determinant.

Only a few human studies have directly investigated
whether fat oxidation responds to menopause. Lovejoy
et al. [15] found that 24-h fat oxidation decreased in
women who transitioned from premenopause to post-
menopause during a 4-year follow-up. However, they
could not show that the decrease differed from women
who were still premenopausal at the time of the end
measurements. In contrast, Albildgaard et al. [16] reported
premenopausal women to use fatty acids more than
postmenopausal participants while cycling for 45 min at
50% of the V_O2MAX intensity and the FSH levels to nega-
tively correlate with fat oxidation rate. Notably, the relative
exercise intensity at which individuals reach their peak fat
oxidation (PFO) rates varies [4e7]. Using incremental ex-
ercise testing may therefore improve the assessment of fat
oxidation capacity compared with single-stage testing
[17]. To our knowledge, this approach has not been used to
study associations between sex hormone profile and fat
oxidation in middle-aged women.

The E2 levels can be raised with menopausal hormone
therapy (HT). Nevertheless, fat oxidation did not differ be-
tween HT users and non-users during a 30-min treadmill
test performed at 80% of V_O2MAX intensity [18]. The effects
of HT on resting fat oxidation (RFO) have been suggested to
depend on the administration route. Dos Reis et al. [19]
reported lower RFO in women taking oral conjugated es-
trogens than in transdermal E2 users, perhaps because of
the liver first-pass effect. However, randomized controlled
crossover trials could not confirm this observation when
conjugated estrogens were compared with transdermal E2
[20] or placebo [21] treatments. Moreover, whether
administered orally or transdermally, E2-therapy did not
affect RFO in hypogonadal girls with Turner syndrome [22].

Poor fat oxidation capacity may induce lipid interme-
diate accumulation and impaired insulin signaling in
oxidative tissues [23]. Menopause is associated with dis-
turbances in blood glucose regulation [24]. Therefore,
investigating the relationship between fat oxidation and
glucose control is especially relevant in middle-aged
women. Both RFO [25] and PFO [26] have been associ-
ated with insulin sensitivity in other populations. How-
ever, the findings are not universal [7,27,28], and the
studies have relied on fasting-based outcomes.

Aging is a confounder in menopause-related studies.
Therefore, our primary aim was to investigate whether sex
hormone profile is related to fat oxidation in women of
similar ages but varying menopausal states. Our premise
was that circulating E2 would be positively associated and
FSH would be negatively associated with fat oxidation,
especially during exercise. We also presumed that women
with higher E2 levels, due to endogenous production or HT
use, would exhibit higher fat oxidation than post-
menopausal women. Our secondary aimwas to investigate
whether RFO and PFO are associated with blood glucose
control during glucose challenge. We expected higher PFO
to be associated with lower insulin release.

2. Methods

A detailed description of the study methodology is in the
Supplement. The study was approved by the ethics com-
mittee of the Central Finland Health Care District (KSSHP
Dnro 9U/2018) and complied with the Declaration of
Helsinki. The participants provided informed consent.

2.1. Study population

We recruited participants from the ERMA (The Estrogenic
Regulation of Muscle Apoptosis) cohort [29] during its
fourth-year follow-up, the EsmiRs (Estrogen and micro-
RNAs as Modulators of Women’s Metabolism) study. In
total, 304 women participated in the basic EsmiRs mea-
surements at the Health and Sports Laboratory of the
University of Jyväskylä between January 2019 and March
2020. The measurements ended prematurely because of
the coronavirus disease (COVID-19) pandemic.

For this EsmiRs Metabolism substudy, we recruited
women who were either premenopausal or perimeno-
pausal (PRE/PERI), postmenopausal (POST), or post-
menopausal HT users (HT). The exclusion criteria were: 1)
body mass index <18 or >30 kg/m2, 2) oophorectomy or
hysterectomy, 3) disease or medication use affecting
metabolism, 4) hormonal contraception, and 5) regular
smoking. A study nurse checked the participants’ eligi-
bility and group allocation during the basic EsmiRs mea-
surements. We expected the PRE/PERI and HT groups to
have higher systemic E2 levels and, therefore, higher PFO
than the POST group. Using the data of Abildgaard et al.
[16], we performed an a priori power calculation showing
that 12 participants per group would be needed to detect a
between-group difference in lean mass adjusted PFO with
an alpha level of 0.05 and 80% power.

This substudy included two laboratory visits
(Supplementary Fig. 1). At the first visit, the focus was on
resting metabolism and glucose tolerance, and at the
second visit, on exercise metabolism. The median (inter-
quartile range) duration between the visits was 2 weeks
(1e3 weeks).

2.2. Participants’ hormonal status and final group
assignments

Our sample was 13 PRE/PERI, 20 POST, and nine HT par-
ticipants when the recruitment prematurely ended. In
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the final menopausal status determination, the partici-
pants’ self-reported menstrual data were supplemented
with FSH measurements to ensure correct status assign-
ment defined by the Stages of Reproductive Aging
Workshop þ10 guidelines [30]. During the process, we
needed to reclassify six PRE/PERI women to be post-
menopausal owing to their high FSH levels. Of the
remaining seven PRE/PERI women, two were premeno-
pausal, three were early perimenopausal, and two were
late perimenopausal. Four POST women had extreme
mean E2 levels ranging from 0.27 to 0.54 nmol/l, more
than four times over the third quartile of 0.09 nmol/l. As
we aimed to study the influence of E2 deficiency, we
excluded these participants from the group comparisons.
Of the HT users, seven used oral and two transdermal HT
containing E2 and progestogen (see the Supplement for
details). We considered combining women using
different HT administration routes acceptable as oral E2
did not seem to limit RFO in a previous randomised
controlled trial [22] or our sample (Supplementary
Fig. 2).

We did not fully reach our recruitment goal owing to
the COVID-19 pandemic. Therefore, we also performed an
explorative analysis to test whether pooling the PRE/PERI
(n Z 7) and HT groups (nZ 9) into a larger HIGH E2 group
(n Z 16) for comparison against the E2 deficient post-
menopausal women (LOW E2 group, n Z 22) would
change our inferences from the primary analyses.

2.3. Diet and physical activity

We instructed the participants to avoid lifestyle changes
during the study, abstain from exercise and alcohol for
48 h and caffeine for 12 h, and eat the last meal between
8:00 and 10:00 p.m. before the measurements. The par-
ticipants drank 100 ml and 150 ml of water after waking
up and after the body composition measurements,
respectively. They minimised activities in the morning on
the day of the measurements and arrived at the laboratory
by car. The participants declared that they had followed
the instructions.

Leisure-time physical activity was assessed with a
structured questionnaire [31] and with a seven-day Acti-
Graph accelerometer (Pensacola, Florida, USA) wear be-
tween the basic EsmiRs and first substudy measurements
[32,33]. The participants kept food diaries for 2 days and
matched their diet 24 h before the substudy measure-
ments. The intraclass correlation coefficients for energy
intake and food quotient, the metabolisable respiratory
quotient of the diet reflecting its macronutrient distribu-
tion, were 0.71 and 0.92, respectively (P < 0.001 for both).

2.4. Body composition

At the basic EsmiRs measurements, body composition was
assessed using dual-energy X-ray absorptiometry (DXA
Prodigy, GE Lunar Corp., Madison, WI, USA). Body
composition was also assessed with InBody720 (Biospace,
Seoul, Korea) at each visit.
2.5. Resting metabolism

Indirect calorimetry data were collected with a Vmax
Encore 92 metabolic cart (Sensormedics, Yorba Linda, CA,
USA). First, the participants rested for 30 min. Gas ex-
change was then measured for 30 min with the canopy
method. The data collected during the first 10 min were
discarded. Steady-state periods were determined as seg-
ments at which the coefficients of variation between the
subsequent minutes and during the segments were �10%
for V_O2 and V_CO2, and �5% for respiratory exchange ratio
(RER). The median (interquartile range) steady-state
duration was 20 min (13e20 min). RFO was calculated
with the Frayn [34] equation, assuming that the urinary
nitrogen excretion was negligible. The measurement of
RFO was unreliable in three participants (PRE/PERI, n Z 2;
POST, n Z 1) on the basis of high RER (�0.91) values [35].

2.6. Exercise metabolism

The exercise testing was performed with an Ergoselect 200
bicycle ergometer (Ergoline GmbH, Germany) with a
cycling cadence of 70 � 5 rpm. The protocol included the
PFO and V_O2PEAK phases. Venous blood samples were
drawn before and after the test.

The PFO phase started at 20 W. The workload was
increased by 20Wevery 4 min until RER reached 1.0 or the
seventh test stage. Two participants completed the PFO
phase without reaching a RER of 1.0., but their fat oxida-
tion had started to decline before the last stage. Gas ex-
change was measured breath by breath and recorded as
rolling 30-s averages. Fat oxidation for the last minute of
each stage was calculated with the Frayn equation [34].
PFO was determined as the highest calculated fat oxidation
rate; and FATMAX (%V_O2PEAK), as the exercise intensity at
which PFO was reached.

The V_O2PEAK phase directly followed the PFO phase. The
phase started at 100 W, and the workload was increased
by 1 W/3 s. Gas exchange was recorded as 10-s rolling
averages. We determined the V_O2PEAK as the highest V_O2

average during a 30-s period and WMAX as the highest
workload reached. The exercise test ended with a 5-min
cooldown at 50 W. The gas exchange data were unreli-
able in two HT participants because of metabolic cart
failure or mask-wearing difficulties. One PRE/PERI partic-
ipant could not continue to the V_O2PEAK phase due to fa-
tigue resulting from low energy diet.

2.7. Blood glucose control and biomarkers

An oral glucose tolerance test (OGTT) followed the resting
metabolism measurement. Venepuncture samples were
drawn before and 30, 60, 90, and 120 min after ingestion of
a 75-g glucose solution (GlucosePro 250 ml, Comed Oy,
Ylöjärvi, Finland). The plasma glucose levels were analyzed
with Konelab 20 XT (Thermo Fisher Scientific, Vantaa,
Finland); and the serum insulin levels, with IMMULITE
2000 (Siemens Medical Solution Diagnostics, Los Angeles,
CA, USA). We determined insulin sensitivity with the
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Matsuda index and glucose tolerance by calculating the
total glucose area under the curve (AUC). We also calcu-
lated fasting-based homeostatic model assessment for in-
sulin resistance (HOMA-IR) index and AUC for insulin.

For the quantification of other biomarkers, serum was
stored at �80 �C. The levels of sex hormones (E2, FSH,
progesterone, and testosterone) and sex hormone-binding
globulin were analyzed with IMMULITE 2000. Non-
esterified fatty acids (NEFA) levels were analyzed with
Indiko (Thermo Fisher Scientific, Vantaa, Finland). Glycerol
and 3-hydroxybutyrate levels were measured using nu-
clear magnetic resonance spectroscopy (Nightingale
Health Ltd., Helsinki, Finland) [36].

2.8. Statistical analyses

We used the R statistical environment (version 4.0.5) for
analyses. The code is available at https://osf.io/afmu7. We
performed analyses using linear regression, analysis of
variance, or analysis of covariance, confirmed the model
assumptions before accepting the results, and used an
alpha level of 0.05 for statistical significance (detailed
description in the Supplement). The main models
Table 1 Participant characteristics in the whole study sample and in t
postmenopausal hormone therapy user (HT) groups. Four POST women w

Full sample (N Z 42) PRE/P

Age, years 55.3 (1.6) 54.9 (
Sex hormones, mean of two measurements
E2, nmol/l 0.11 (0.06e0.25) 0.18 (
FSH, IU/l 66.0 (37.4) 20.8 (
Progesterone, nmol/l 0.35 (0.23e0.57) 3.27 (
Testosterone, nmol/l 0.54 (0.30) 0.61 (
SHBG, nmol/l 75.2 (33.1) 72.3 (
Body composition
Height, cm 166.0 (4.9) 166.7
Body mass, kg 67.8 (8.1) 69.9 (
BMI, kg/m2 24.6 (2.5) 25.1 (
Lean mass, kg 41.2 (3.8) 42.4 (
Fat mass, kg 24.1 (6.1) 24.8 (
Percent body fat, % 36.5 (5.5) 36.4 (
Leisure-time physical activity
Self-reported, MET-h/d 4.5 (2.3e7.5) 4.5 (3
Accelerometry, MVPA min/da 49.0 (26.0), n Z 40 71.5 (
Glucose tolerance
Fasting glucose, mmol/l 5.3 (5.1e5.5) 5.5 (5
2-h glucose, mmol/l 5.6 (4.7e6.9), n Z 41 6.1 (5
Fasting insulin, IU/l 4.0 (2.4e5.7) 3.1 (1
2-h insulin, IU/l 45.4 (38.5e57.9), n Z 41 41.0 (
HOMA-IR 0.85 (0.49e1.36) 0.81 (
Glucose AUC, mmol/l/h 12.9 (11.3e14.5) 13.8 (
Insulin AUC, IU/l/h 75.7 (66.8e112.2) 75.8 (
Matsuda index 7.3 (5.4e9.4), n Z 41 8.5 (6
Cardiorespiratory fitness
V_O2PEAK, l/min 2.1 (0.3), n Z 39 2.2 (0
V_O2PEAK, ml/kg/min 31.7 (5.1), n Z 39 31.3 (
V_O2PEAK, ml/kg LM/min 51.9 (6.9), n Z 39 51.2 (
WMAX, W 183 (26), n Z 41 188 (2

Data as means (standard deviation) or medians (interquartile range).
AUC, area under the curve; BMI, body mass index; E2, 17b-estradiol; FSH, fo
of insulin resistance; LM, lean mass; MET, metabolic equivalent of task;
WMAX, maximal workload.
a moderate-to-vigorous intensity leisure-time physical activity minutes
included lean mass as a covariate to control the analyses
for the oxidative tissue mass. We refrained from using
ratio scaling as it misrepresents the relationship between
the numerator and denominator [37,38].

First, we identified the RFO and PFO determinants by
using the fat oxidation measures as the outcomes and the
variable of interest as the exposures. We also constructed
multivariable explanatory models on the basis of previous
research. Next, we tested the associations between sex
hormone levels and fat oxidation measures and whether
the sex hormones improved the explanatory models. We
then compared RFO and PFO between the menopausal
groups. We also performed an explorative analysis by
comparing the HIGH E2 and LOW E2 groups.

Lastly, we studied the associations between fat oxida-
tion and blood glucose regulation by using OGTT measures
as the outcomes and RFO or PFO as the exposure. The
OGTT measures were log-transformed to improve residual
normality. We also performed sensitivity analyses by
excluding participants with incomplete OGTT data or
including NEFA levels as a covariate. NEFA levels were used
as a proxy for participants’ energy balance and metabolic
state.
he pre- or perimenopausal (PRE/PERI), postmenopausal (POST), and
ere excluded from group comparisons for having high estradiol levels.

ERI (n Z 7) POST (n Z 22) HT (n Z 9)

1.5) 55.6 (1.6) 55.4 (1.4)

0.15e0.22) 0.06 (0.05e0.09) 0.27 (0.25e0.42)
14.2) 89.2 (31.5) 49.8 (25.7)
1.23e7.55) 0.31 (0.17e0.39) 0.35 (0.26e0.39)
0.29) 0.47 (0.29) 0.65 (0.33)
14.4) 69.0 (29.2) 93.4 (47.4)

(4.6) 165.8 (5.0) 166.6 (6.0)
8.9) 67.2 (7.7) 68.9 (10.1)
2.8) 24.4 (2.4) 24.8 (3.2)
3.0) 40.9 (3.6) 40.2 (3.7)
6.4) 23.8 (6.1) 26.2 (6.6)
5.1) 36.3 (5.8) 38.9 (4.4)

.4e6.8) 4.4 (2.3e7.5) 2.9 (1.5e4.5)
28.8), n Z 5 49.2 (23.6) 32.4 (15.8)

.2e5.7) 5.2 (5.0e5.5) 5.4 (5.2e5.5)

.3e7.0) 5.1 (4.7e6.3), n Z 21 7.4 (6.0e7.8)

.5e4.4) 4.3 (2.2e7.0) 3.8 (3.2e8.0)
36.6e52.2) 44.6 (35.0e51.6), n Z 21 57.9 (49.0e72.5)
0.37e1.06) 0.75 (0.46e1.44) 0.91 (0.62e1.94)
12.0e15.0) 12.3 (10.8e13.5) 16.0 (13.8e16.4)
64.2e101.2) 72.0 (61.4e114.9) 106.7 (76.1e131.2)
.9e10.7) 7.2 (5.4e11.1), n Z 21 6.3 (3.7e8.8)

.4), n Z 6 2.2 (0.3) 2.0 (0.3), n Z 7
4.0), n Z 6 32.5 (5.3) 27.7 (3.5), n Z 7
5.4), n Z 6 53.0 (7.7) 48.3 (6.4), n Z 7
3), n Z 6 185 (24) 167 (29)

llicle-stimulating hormone; HOMA-IR, homeostatic model assessment
SHBG, sex hormone-binding globulin; V_O2PEAK, peak oxygen uptake,

per day.

https://osf.io/afmu7
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3. Results

The participants were 52- to 58-year-old women, free of
chronic diseases and metabolism affecting medication veri-
fied by a medical examination performed at the first visit
(Table 1). On the basis of OGTT, two HT users had elevated
fasting glucose levels (>6.0 mmol/l), and five women (POST,
nZ2;HT,nZ3)had impairedglucose tolerance (2-hglucose
measurement value, 7.8e11.0 mmol/l).

Age (P Z 0.56), percent body fat (P Z 0.46), and self-
reported leisure-time physical activity (P Z 0.74) did not
significantly differ across the menopausal groups
(Supplementary Table 1). As expected, the PRE/PERI and
Figure 1 The associations of log-transformed E2 levels with adjusted restin
(PFO; Fig. 1B), and comparison of female sex hormone levels (Fig. 1C and
menopausal groups. The adjusted residuals represent the difference between
regression when adjusted for fat oxidation main determinants (RFO: lean
fitness, and self-reported leisure-time physical activity).
HT groups had higher E2 levels and lower FSH levels than
the POST group (Fig. 1). Testosterone (P Z 0.25) and sex
hormone-binding globulin levels (P Z 0.39) did not differ
between the groups; however, the PRE/PERI group had
higher progesterone levels compared with the POST group
(P Z 0.002) and the HT group (P Z 0.026) (Supplementary
Table 1).

3.1. Resting and peak fat oxidation determinants and
mediators

The indirect calorimetry, dietary, and metabolite data are
shown in Table 2. Fat mass was positively, and prior energy
g fat oxidation residuals (RFO; Fig. 1A) and peak fat oxidation residuals
D) and adjusted RFO and PFO residuals (Fig. 1E and F) between the
the measured fat oxidation and the fat oxidation predicted by the linear
mass, fat mass, and energy intake; PFO: lean mass, cardiorespiratory
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intake was negatively associated with RFO (Table 3). The
explanatory model including lean mass (b Z 0.26;
P Z 0.075), fat mass (b Z 0.47; P Z 0.002) and energy
intake (b Z �0.43; P Z 0.005) explained 40% of the RFO
variance (adjusted R2 Z 0.35, P < 0.001). NEFA and 3-
hydroxybutyrate levels were positively associated with
RFO (Table 3).

RFO and PFO, measured on separate days, were not
significantly associated with each other (b Z 0.10,
P Z 0.53). V_O2PEAK, WMAX, FATMAX, and self-reported and
accelerometer-measured leisure-time physical activity
were positively associated with PFO (Table 3). In the
explanatory model, lean mass (b Z 0.16; P Z 0.33), WMAX

(b Z 0.46; P Z 0.032) and self-reported leisure-time
physical activity (b Z 0.21; P Z 0.23) explained 43% of the
PFO variance (adjusted R2 Z 0.39; P < 0.001). Pre-exercise
NEFA and pre- and post-exercise glycerol levels were
positively associated with PFO when post-exercise ana-
lyses were adjusted for metabolite pre-exercise concen-
tration (Table 3).

3.2. Sex hormone profile associations with resting and
peak fat oxidation

Neither E2 (Fig. 1) nor the other sex hormone levels
(Supplementary Fig. 3) were significantly associated with
RFO or PFO. Moreover, they did not contribute to RFO or
Table 2 Fat oxidation, preceding diet, and lipolysis-related metabolites in
postmenopausal (POST), and postmenopausal hormone therapy user (HT)
having high estradiol levels.

Full sample PRE/PER

Resting metabolism n Z 39 n Z 5
RER 0.83 (0.03) 0.83 (0.0
RFO, g/min 0.050 (0.010) 0.053 (0
RFO, mg/kg LM/min 1.22 (0.23) 1.25 (0.1
Diet two days before testing
Energy intake, kcal/d 1795 (394) 1884 (3
Energy intake, kcal/kg/d 27 (6) 26 (5)
Food quotient 0.86 (0.03) 0.83 (0.0
Metabolites
Non-esterified fatty acids, mmol/l 351 (255e493) 216 (21
Glycerol, mmol/l 123 (92e150), n Z 36 89 (82e
3-hydroxybutyrate, mmol/l 47 (23e83) 93 (38e
Exercise metabolism n Z 40 n Z 7
PFO, g/min 0.22 (0.07) 0.23 (0.1
PFO, mg/kg LM/min 5.3 (1.4) 5.4 (2.1)
FATMAX, %V_O2PEAK 34 (9) 37 (15),
Diet two days before testing
Energy intake, kcal/d 1887 (360) 1984 (3
Energy intake, kcal/kg/d 28 (6) 29 (5)
Food quotient 0.86 (0.03) 0.85 (0.0
Metabolites pre-exercise
Non-esterified fatty acids, mmol/l 408 (319e566) 336 (27
Glycerol, mmol/l 99 (84e136), n Z 34 93 (86e
3-hydroxybuturate, mmol/l 61 (24e102), n Z 39 46 (28e
Metabolites post-exercise
Non-esterified fatty acids, mmol/l 503 (428e817), n Z 38 601 (46
Glycerol, mmol/l 269 (219e315), n Z 34 240 (20
3-hydroxybuturate, mmol/l 102 (83e128), n Z 38 107 (94

Data as means (standard deviation) or medians (interquartile range).
LM, lean mass; PFO, peak fat oxidation; RER, respiratory exchange ratio; R
PFO explanation when included in the explanatory models
with the main fat oxidation determinants (Table 4).

We could not show that women with different meno-
pausal statuses differed in absolute (F [2,32] Z 1.46,
P Z 0.25, h2p Z 0.08) or lean mass adjusted (F
[2,31] Z 1.68, P Z 0.25, h2p Z 0.10) RFO. The lack of group
differences appeared even more clear when we included
the main RFO determinants as covariates (F [2,29] Z 0.25,
P Z 0.78, h2p Z 0.02) (Fig. 1). Neither did the menopausal
groups differ in PFO (F [2,33] Z 0.32, P Z 0.73,
h2p Z 0.02), whether adjusted for lean mass (F
[2,32] Z 0.18, P Z 0.84, h2p Z 0.01), or the main PFO
determinants (F [2,29] Z 0.01, P Z 0.99, h2p Z 0.00)
(Fig. 1). The explorative analyses pararelled the results
from primary analyses and did not reveal significant RFO
or PFO differences between the HIGH E2 and LOW E2
groups (Supplementary Table 2).

3.3. Associations of resting and peak fat oxidation with
blood glucose regulation

Neither RFO nor PFO was significantly associated with
Matsuda on HOMA-IR indexes (Table 5, Supplementary
Fig. 4). However, RFO was positively associated with
glucose and insulin AUCs. The associations between RFO
and glucose AUC (b Z 0.50; P Z 0.007) and insulin AUC
(b Z 0.39; P Z 0.042) remained significant when adjusted
the whole study sample and in the pre- or perimenopausal (PRE/PERI),
groups. Four POST women were excluded from group comparisons for

I POST HT

n Z 21 n Z 9
3) 0.84 (0.03) 0.81 (0.02)
.009) 0.048 (0.010) 0.054 (0.009)
9) 1.18 (0.25) 1.34 (0.18)

24) 1853 (458) 1595 (197)
28 (6) 23 (2)

5) 0.86 (0.02) 0.87 (0.01)

3e256) 379 (255e489) 482 (325e727)
95), n Z 4 123 (94e153), n Z 19 129 (125e166)
168) 35 (19e54) 73 (58e117)

n Z 22 n Z 7
0) 0.22 (0.06) 0.21 (0.05)

5.3 (1.3) 5.0 (1.2)
n Z 6 33 (8) 33 (5)

88) 1898 (356) 1624 (224)
28 (6) 23 (2)

4) 0.86 (0.03) 0.88 (0.03)

7e553) 400 (266e531) 444 (382e724)
112), n Z 6 103 (89e142), n Z 19 103 (84e164), n Z 6
213) 42 (22e78), n Z 21 74 (37e138)

3e659) 486 (429e861), n Z 21 688 (427e927), n Z 6
1e265), n Z 6 278 (221e323), n Z 21 304 (259e338), n Z 6
e167) 94 (82e117), n Z 21 125 (83e152), n Z 6

FO, resting fat oxidation.
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for NEFA levels. Excluding participants with incomplete
OGTT data did not influence the association of RFO and
glucose AUC (b Z 0.51; P Z 0.007). The association with
insulin AUC did not remain significant (b Z 0.31;
P Z 0.12).

4. Discussion

This study investigated the associations between sex hor-
mone profile and fat oxidation in middle-aged women. We
were unable to show that menopausal status or sex hor-
mone levels explain RFO or PFO in the study sample. We
also examined the associations of RFO and PFO with blood
glucose regulation during glucose challenge. Higher fat
oxidation at rest or during exercise did not relate to insulin
sensitivity; however, higher RFO preceded poorer glucose
tolerance.

4.1. Sex hormone profile and resting fat oxidation

Fasting substrate use depends on the energy balance and
diet composition [39,40]. In agreement, the RFO de-
terminants in this study were variables describing tissue
mass and energy intake. NEFA and 3-hydroxybutyrate
levels were also positively associated with RFO, further
linking RFO to lipolysis rate and energy balance. Therefore
unsurprisingly, we did not observe associations between
sex hormone levels and RFO. Previous studies also ques-
tioned the relationship between E2 levels and RFO in
premenopausal [41] and postmenopausal women [42].
Table 3 Associations between potential fat oxidation determinants, med
using linear regression models adjusted for lean mass.

Resting fat oxidation

b 95% CI P-va

Univariable model
Lean mass, kg 0.24 �0.08 to 0.56 0.132
Multivariable models with lean mass as a covariate
Fat mass, kg 0.44 0.14e0.75 0.006
Leisure-time physical activity
Self-reported, MET-h/d �0.17 �0.50 to 0.16 0.300
Accelerometery, min/d 0.11 �0.24 to 0.45 0.530
Diet two days before the assessment
Energy intake, kcal/d �0.40 �0.73 to �0.07 0.019
Food quotient �0.09 �0.41 to 0.24 0.600
Exercise test outcomes
V_O2PEAK, l/min �0.13 �0.53 to 0.28 0.526
WMAX, W �0.03 �0.44 to 0.37 0.864
FATMAX, %V_O2PEAK �0.16 �0.53 to 0.20 0.364
Lipolysis-related metabolites at rest or pre-exercise
NEFA, mmol/l 0.46 0.16e0.75 0.003
Glycerol 0.26 �0.07 to 0.59 0.122
3-hydroxybuturate, mmol/l 0.52 0.24e0.81 0.001
Lipolysis-related metabolites post-exercise, also adjusted for metabol
NEFA, mmol/l
Glycerol
3-hydroxybutyrate, mmol/l

P-values < 0.05 are in bold.
b, standardized regression estimate; CI, confidence interval; MET, metab
dardized; V_O2PEAK, peak oxygen uptake; WMAX, maximal workload.
Resting substrate use was also unaltered by conjugated
estrogens when the diet was controlled before measure-
ments [43].

Ultimately, menopause will unlikely affect RFO directly.
In this study, RFO was indeed very similar between the
menopausal or HIGH and LOW E2 groups, especially after
confounder adjustment. The laws of conservation of mass
and energy also make it challenging to accept that the
menopause-associated increase in fat mass [44,45] results
from decreased fat oxidation ability [39].

4.2. Sex hormone profile and peak fat oxidation

The sex hormone levels or menopausal and E2 group
statuses were not associated with PFO. Therefore, we could
not reproduce the findings of Abildgaard et al. [16] by
using incremental testing. Besides the testing approaches,
a key difference between the studies is that our study did
not have a pure premenopausal group. Our results agree
with those reported by Johnson et al. [18], who observed
similar fat oxidation rates in HT users and non-users,
although, their selected testing intensity (80% of V_O2MAX)
likely influenced their results [46].

Factors other than female sex hormone levels seem to
determine PFO in women of all ages. The menstrual cycle
phase or circulating E2 levels were not associated with PFO
in reproductive women [47]. Moreover, controlling for the
menstrual cycle phase did not improve the day-to-day
reliability of PFO assessment [48]. In this study, PFO was
associated with its known determinants: cardiorespiratory
iators, and resting fat oxidation or peak fat oxidation during exercise

Peak fat oxidation

lue n b 95% CI P-value n

39 0.49 0.20e0.79 0.002 40

39 �0.03 �0.33 to 0.27 0.855 40

39 0.37 0.06e0.68 0.020 40
39 0.35 0.05e0.65 0.024 38

39 0.05 �0.28 to 0.37 0.760 40
39 0.07 �0.22 to 0.37 0.613 40

36 0.47 0.14e0.79 0.006 39
38 0.59 0.23e0.94 0.002 39
36 0.33 0.03e0.62 0.033 39

39 0.33 0.05e0.61 0.024 40
36 0.31 0.04e0.57 0.024 34
39 0.19 �0.10 to 0.47 0.189 39

ite pre-exercise concentration
0.19 �0.12 to 0.50 0.222 38
0.42 0.16e0.68 0.003 34
0.37 �0.05 to 0.80 0.084 36

olic equivalent of task; NEFA, non-esterified fatty acids; Std, stan-
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fitness, lean mass, and leisure-time physical activity [4e7].
Genetic pleiotropy contributes to the associations, and
higher PFO does not result solely from an active lifestyle
[28,49]. Still, 12-week endurance-focused training
increased fat oxidation during exercise but not at rest in
postmenopausal women [50], showing that fat oxidation
capacity can be improved in E2 deficiency.

Overall, we could not show that the sex hormone pro-
file influences PFO in middle-aged women. Our finding
possesses uncertainty, and more work is needed to clarify
whether menopause modifies fat oxidation during exercise
and, if so, whether the effect has clinical significance.
Cross-sectional designs may not be sensitive enough to
accomplish this task. Ideally, longitudinal fat oxidation
changes over the menopausal transition or after HT initi-
ation should be measured. Duplicate measurements would
benefit PFO assessment [7,48].

4.3. Fat oxidation and blood glucose regulation

The role of RFO as a metabolic health marker is controver-
sial [51]. Some [25] but not all [52] studies have reported
that RFO is inversely associated with fasting insulin levels.
The relationship is believable as insulin levels decline and
fat oxidation increases according to fasting duration [53].
However, these findings are likely caused by differences in
metabolic status rather than metabolic health. In this study,
higher RFO preceded poorer glucose tolerance when OGTT
followed the RFO assessment, as in our previous study in
30-year-old men [28]. Because NEFA and 3-
hydroxybutyrate levels were positively associated with
RFO, we thought the observed association resulted from fat
oxidation-induced inhibition of glucose use [54]. However,
we could not explain the association by NEFA adjustment.

The rationale for PFO as a metabolic health marker is
more robust compared with RFO because it reflects fiber
Table 4 Associations between serum sex hormone levels and resting fat ox
study sample, with the adjusted R2 values representing the variance prop
the last column showing the statistical significance of the whole model a

RFO (n Z 39) Lean mass adjusted

b 95% CI P-value R2adj

Model without the sex hormone 0.03
logE2 0.22 �0.10 to 0.53 0.170 0.06
FSH �0.21 �0.54 to 0.12 0.200 0.05
logP4, n Z 34 0.20 �0.15 to 0.56 0.251 0.01
Testosterone 0.27 �0.06 to 0.59 0.105 0.08
SHBG 0.07 �0.26 to 0.40 0.667 0.01

PFO (n Z 40) b 95% CI P-value R2adj

Model without the sex hormone 0.21
logE2 0.01 �0.28 to 0.30 0.949 0.19
FSH 0.16 �0.13 to 0.44 0.278 0.22
logP4 0.24 �0.03 to 0.51 0.085 0.25
Testosterone 0.18 �0.11 to 0.46 0.217 0.22
SHBG 0.01 �0.28 to 0.31 0.927 0.19

b, standardized regression estimate; CI, confidence interval; E2,17b-estra
hormone-binding globulin.
a RFO: lean mass, fat mass, and energy intake; PFO: lean mass, WMAX, a
type distribution [55], concentrations of lipid handling
proteins [55e57], and mitochondrial volume density [58]
in skeletal muscles. PFO has been shown to be associated
with fasting insulin sensitivity surrogates [26,52],
although the findings are not unanimous [7,27]. PFO was
not associated with insulin sensitivity or glucose toler-
ance in our present or earlier study [28]. However, PFO
was associated with lower insulin AUC in the previous
study in men, but we could not replicate the finding in
the present study in women. Besides participant char-
acteristics, a difference between our studies was OGTT
timing. In the study in men, OGTT was performed the day
after the PFO assessment, and in this study in women,
1e3 weeks before PFO testing. As PFO [48] and OGTT
outcomes [59] exhibit significant day-to-day variability,
their association may be time-dependent. Song et al. [60]
recently challenged the concept of metabolic flexibility
by showing that insulin resistance does not result from
mitochondrial substrate preference, and our results
follow their finding.

4.4. Limitations

Our study has several limitations. First, we had to dis-
continue the participant recruitment early and did not
reach our recruitment goal. Therefore, our study may have
lacked the power to detect significant group differences
between the menopausal groups. We pooled PRE/PERI and
HT women into a HIGH E2 group for explorative analyses
with larger group sizes to counteract this limitation. This
strategy has important limitations as cyclical endogenous
hormone production and daily exogenous HT likely affect
metabolism differently. For example, besides the apparent
difference in how the hormones enter circulation, the two
also have discordant temporal kinetics. Second, HT use was
not standardized and reflected real-life differences in HT
idation (RFO) or peak fat oxidation (PFO) during exercise in the whole
ortions the explanatory variables explain together and the P-values in
djusted for fat oxidation main determinants.

Adjusted for main determinantsa

b 95% CI P-value R2adj P-value

0.35 0.0004
0.10 �0.17 to 0.37 0.439 0.34 0.0010
�0.09 �0.38 to 0.19 0.504 0.34 0.0011
0.13 �0.17 to 0.43 0.381 0.32 0.0038
0.12 �0.17 to 0.40 0.412 0.34 0.0010
�0.03 �0.34 to 0.27 0.821 0.33 0.0013

b 95% CI P-value R2adj P-value

0.39 0.0002
0.04 �0.22 to 0.31 0.736 0.37 0.0005
0.14 �0.11 to 0.40 0.266 0.39 0.0003
0.19 �0.06 to 0.44 0.130 0.41 0.0002
0.20 �0.05 to 0.45 0.116 0.41 0.0002
0.01 �0.25 to 0.27 0.940 0.37 0.0005

diol, FSH, follicle-stimulating hormone; P4, progesterone; SHBG, sex

nd self-reported physical activity.



Table 5 Lean mass adjusted associations between resting fat
oxidation (RFO, nZ 39) or peak fat oxidation (PFO, nZ 40) and oral
glucose tolerance test outcomes, with adjusted R2 values repre-
senting the variance proportions that lean mass and the fat oxida-
tion measure explain together and the P-values in the last column
showing the statistical significance of the whole model.

b 95% CI P-value R2adj P-value

HOMA-IR
RFO 0.21 �0.15 to 0.56 0.244 0.04 0.496
PFO, n Z 39 �0.37 �0.79 to 0.06 0.092 0.10 0.154
Matsuda index
RFO, n Z 38 �0.33 �0.68 to 0.02 0.063 0.10 0.165
PFO, n Z 38 0.26 �0.19 to 0.72 0.249 0.04 0.507
Glucose AUC
RFO 0.52 0.21e0.82 0.002 0.27 0.004
PFO 0.02 �0.34 to 0.38 0.913 0.01 0.786
Insulin AUC
RFO 0.42 0.10e0.75 0.012 0.18 0.027
PFO �0.06 �0.44 to 0.32 0.752 0.04 0.451

P-values < 0.05 are in bold.
AUC, total area under the curve; b, standardized regression esti-
mate; CI, confidence interval; HOMA-IR, homeostatic model
assessment of insulin resistance.
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prescription. Third, even though we standardized the
participant preparation between the two laboratory visits,
the metabolic states of the participants may have varied to
some extent. The interindividual variation in metabolic
states may have also influenced the assessment of the
associations between sex hormone levels and fat
oxidation.

5. Conclusions

In this study in middle-aged women, sex hormone profile
did not explain fat oxidation at rest or during exercise.
Higher fat oxidation in either condition did not indicate
better blood glucose control. RFO was mainly related to
energy balance and PFO to cardiorespiratory fitness.
Therefore, we encourage middle-aged women interested
in improving their fat oxidation capacity to engage in
regular leisure-time physical activity.
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