
AVX2-Optimized Interpolation Filters for

HEVC Inter Encoding

Alexandre Mercat, Ari Lemmetti, Joose Sainio, and Jarno Vanne

Ultra Video Group, Tampere University

Tampere, Finland

Abstract—High Efficiency Video Coding (HEVC) sets the

stage for economic video transmission and storage, but its

inherent computational complexity calls for powerful

implementations. This paper addresses the principal

performance bottleneck of HEVC codecs by introducing AVX2-

vectorized algorithms for HEVC interpolation filters. The

proposed speed-up techniques include 1) a data permutation

scheme for the horizontal interpolation stage; 2) a sliding

window strategy for the vertical interpolation stage; 3) optimal

usage of horizontal and vertical interpolation during fractional

motion estimation; and 4) a lane-based approach to double the

vector lengths from 128-bit legacy vector extensions to 256bits

of AVX2. Our AVX2-optimized interpolation filters were

benchmarked as part of the practical Kvazaar open-source

HEVC encoder. On an Intel 8-core Xeon processor, they were

shown to be 9.7 and 8.5 times as fast as scalar interpolation with

the Kvazaar ultrafast and veryslow presets, respectively. In both

cases, changing over from scalar to vectorized interpolation

increases the coding speed of Kvazaar by more than 50%, which

stresses the importance of interpolation optimizations in

modern video encoders.

Keywords— High Efficiency Video Coding (HEVC), single

instruction multiple data (SIMD), Advanced Vector Extensions

2 (AVX2), interpolation filter, Kvazaar HEVC encoder

I. INTRODUCTION

A plurality of media applications has made digital video
ubiquitous in our multimedia-driven society. The
skyrocketing video transmission and storage needs of these
applications is being met by a series of international video
coding standards, of which Advanced Video
Coding (AVC/H.264) [1], High Efficiency Video
Coding (HEVC/H.265) [2], and Versatile Video
Coding (VVC/H.266) [3] currently dominate the landscape.

This work focuses on HEVC that is one of the most
widespread video formats nowadays [4]. HEVC is able to
double the coding efficiency over that of AVC for the same
objective visual quality, but its computational complexity [5]
tends to act as a barrier for developing practical applications.
Therefore, implementing high-speed video encoders calls for
high-performance computing platforms and designing them in
compliance with green computing also requires efficient
speed-up techniques that tend to provide power savings [6].

HEVC coding gains stem mainly from the new block

partitioning structure and improved motion compensated

prediction (MCP). In MCP, interpolation filters are used to

obtain samples between integer pixels for blocks with

fractional pixel motion, which is why many encoders also use

them for fractional motion estimation (FME). The accuracy

of the HEVC interpolation filters was improved over that of

AVC [7], but at the cost of higher complexity. For example,

the interpolation was reported to account for 38% of the total

encoding complexity of HEVC test model (HM) [8].

In software implementations, the HEVC interpolation
filters can be accelerated through multithreading and
vectorization. A couple of single instruction multiple
data (SIMD) optimizations [9]–[11] have been proposed in
the literature. However, they were limited to older vector
extensions, the decoder side of the codec, or HM that is not
designed for practical coding.

This work uses Advanced Vector Extensions 2 (AVX2) to
accelerate the interpolation filters and FME of the practical
open-source HEVC encoder called Kvazaar [12], [13]. The
widespread Intel Broadwell microarchitecture was selected as
the primary target hardware. To the best of our knowledge, the
proposed solutions are the sole AVX2-optimized HEVC
interpolation filters that are distributed under the permissive
3-clause BSD license [13]. Please refer to [14] for the
implementation details.

The remainder of the paper is outlined as follows.
Section II gives an overview of the HEVC interpolation and
existing optimization techniques for it. The proposed filter
optimizations are detailed in Section III and evaluated in
Section IV. Finally, Section V concludes the paper.

II. HEVC INTERPOLATION

In HEVC, the highest granularity of luma is 1/4-pixel
(quarter-pixel, QPEL), but an encoder may limit the fractional
motion vector (MV) accuracy to 1/2-pixel (half-pixel, HPEL)
or integer precision. HEVC uses separable one-dimensional 8-
tap (or 7-tap) filters for luma and 4-tap filters for chroma.

A. Basic Operating Principle

The interpolation is carried out by first applying the
horizontal filter and then the vertical filter. For luma samples,
the horizontal and vertical filtering steps are defined as

 hor = (∑ 𝑤𝑥 × ref [𝑥0 + 𝑥]4
𝑥=−3) ≫ (B − 8) ()

ver = (∑ 𝑤𝑦 × im [𝑦0 + 𝑦]4
𝑥=−3) ≫ 6 ()

where hor and ver denote horizontally and vertically filtered
samples, respectively. The weights 𝑤𝑥 and 𝑤𝑦 belong to a

predefined filter coefficient set. They are selected by the
fractional part of the MV. A pixel row of the reference picture
(ref) is horizontally indexed by 𝑥0 and 𝑥 that are given by the
integer part of an arbitrary MV and a filter tap offset,
respectively. Correspondingly, a horizontally filtered
intermediate sample column (im) is vertically indexed by 𝑦0

and 𝑦. B is the reference sample bit depth and the ≫ operator
denotes a bitwise right shift.

B. Existing Optimizations

A couple of SIMD-optimized HEVC interpolation filters
have been announced in the past decade, but they all suffer
from functional or performance limitations. Most of them also
stick to 128-bit legacy SIMD optimizations and give very little
to no details about the vectorized implementation.

Chi et al. [9] presented SIMD optimizations up to AVX2
for the whole HEVC decoder and analyzed them on several

…

This work was supported in part by the AI for situational Awareness (AISA)

project led by Nokia and funded by Business Finland, and the Academy of Finland

(decision no. 349216).

instruction set architectures and microarchitectures. However,
as the work was limited to HEVC decoding, no encoder
specific optimizations were considered.

The existing open-source HM [8] and x265 [15] encoders
employ SIMD optimizations in interpolation. Nevertheless,
HM settles for less intensive vectorization, whereas x265
optimizations are written in assembly for a large set of HEVC
features, which results in code that is more laborious to read
and maintain.

Additional SIMD optimizations were published for the
HM encoder in [10], [11], of which the former interpolated
fixed-sized blocks for motion compensation by using 128-bit
SIMD extensions of the x86 architecture. The latter
implemented a frame-level interpolation filtering scheme,
where all fractional pixels were interpolated once and stored
into buffers to avoid redundant operations. Parallelization
with OpenMP or GPU offloading was suggested, but
vectorization was not considered. It is also noteworthy that the
complexity distribution of HM may differ from that of a
practical encoder.

III. PROPOSED VECTORIZATION TECHNIQUES

The proposed SIMD algorithms are implemented using
AVX2 intrinsics, which are also used to specify the applied
instructions in this paper. The focus is set on luma
interpolation of 8-bit content, since chroma interpolation
consumes significantly less CPU time in practical coding.
Both luma and chroma prediction blocks (PBs) are filtered
with similar techniques. The luma PB sizes range from 4×8
(or 8×4) to 64×64, whereas the 4:2:0 subsampled chroma PB
dimensions are half of that.

A. Vectorization of Horizontal Interpolation

The proposed implementation is based on [10] and its
novelty lies in an altered data permutation scheme that allows
to replace the horizontal additions (_mm_hadd_epi16) of

the original implementation with their regular counterparts
(_mm_add_epi16). This approach reduces the number of

issued micro-operations and thereby improves
microarchitectural performance [16] [17]. Furthermore, the
128-bit design is extended to utilize 256-bit AVX2 operations.

The proposed approach is depicted in Fig. 1. It loads
consecutive samples from a reference sample row to a vector
register using _mm_loadu_si128. The samples are then

replicated and shuffled into appropriate positions in four
registers with _mm_shuffle_epi8 and the corresponding

shuffle control masks, s01–s67, as presented in Fig. 2. The

vector of horizontally filtered 16-bit intermediate samples is
obtained by first multiplying the samples with predefined
filter coefficients, w01–w67, and adding the products

pairwise while doubling the word size with
_mm_maddubs_epi16. Then, _mm_add_epi16 is used

to sum up these parts in different registers until each group of
eight multiplied input samples have been reduced to a single
element in the 8-tap filtering. The filter weights are denoted in
Fig. 2 by indices to a filter coefficient set that is specified by
the fractional part of the MV.

Extending the method to 256 bits can be achieved without
significant overhead by using the philosophy based on 128-bit
lanes [16]. The extended functions can filter two rows at a
time, one in both 128-bit lanes of a full 256-bit register. First,
the data used in the 128-bit shuffle mask and filter weight
registers is duplicated to both lanes of the register. Then,
elements from the second row are loaded and inserted to the
upper lane (_mm256_inserti128_si256). The

modifications in shuffles and arithmetic operations are limited
to replacing the 128-bit operations with their 256-bit
counterparts. Similarly, contents of the upper lane are
extracted to store the results into memory
(_mm256_extracti128_si256).

B. Vectorization of Vertical Interpolation

This work proposes an original algorithm for the vertical
interpolation stage. The main differences between the
vectorized horizontal and vertical implementations are the
memory access pattern and the arrangement of elements in the
registers. Vertically aligned pixels from the intermediate array
of horizontally filtered samples need to be transformed into a
horizontal pairwise order. This way, the arithmetic operations
can be performed with _mm_madd_epi16 as in the

horizontal filtering stage, but with larger element sizes due to
the bit width requirements of the HEVC standard.

The vertical filtering scheme minimizes unnecessary
memory operations with a sliding window stored in a set of
registers. Conceptually, a block is stored in the vector registers
so that a single register contains a group of adjacent samples
from one row and different registers contain samples from
consecutive rows. One output row can be filtered from 8 input
rows for luma. The sliding window allows reusing the last 7
rows for the interpolation of the next result row, so only one
new row needs to be loaded from memory to gather all input
samples. Replacing the current row with the next one only
requires one vector load and 7 register-to-register move
instructions that are exceptionally quick to execute on
Broadwell [17]. In this approach, the window traverses the
data vertically one row at a time before processing the next
group of columns. However, it also allows reusing the results
of shuffle operations besides the previously loaded rows.

Unlike the horizontal step, the vertical step uses
_mm_unpacklo_epi16 to arrange data elements

pairwise. It interleaves 16-bit elements of the low 64 bits of
two 128-bit registers. The appropriate arrangement is
achieved by interleaving the elements from two consecutive
rows. When a result row is interpolated, the original 8 rows
are transformed into 4 vector registers containing element
pairs from the four adjacent columns. The window approach

Fig. 1. Vectorized horizontal step to compute a 128-bit chunk of a row.

Fig. 2. Paired data arrangement for the horizontal interpolation stage.

is further refined to store the samples in this modified
arrangement instead of storing them by rows. The window can
be shifted with register-to-register moves as before, but
without the need for unpacking for the next iterations.
However, four registers cannot maximize the reuse since they
only contain pairs, where elements from even rows come first.
That is, the first output row is filtered from input row pairs 01,
23, 45, and 67, whereas the second row requires row pairs 12,
34, 56, and 78. Thus, two rows are filtered at the same time to
make even-odd and odd-even pairs available for the next
iterations.

Before entering the loop for shifting the window and
filtering rows, a separate initialization stage is used to ensure
the completeness of the window on the first iteration. Each
iteration completes two rows and shifts the window.

There are two versions of the vertical filtering algorithm,
called filter backends: one that keeps high precision (hi) for
blending in bidirectional prediction, and another that rounds
the filtered samples back into pixel precision (px). The px
backend of the vertical step performs the bit-shift and add
operations to round the samples according to the HEVC
standard before finishing. On top of regular vector additions,
this is achieved with _mm_srai_epi32,

_mm_packs_epi32, and _mm_packus_epi16.

Similar to the horizontal step, the 256-bit dual-lane
implementation does not require many changes, except that
the 128-bit algorithm is extended to 256 bits that filters the
even output rows in the low lanes and the odd output rows in
the upper lanes simultaneously. Fig. 3 visualizes the steps
needed to set up the sliding window in both lanes. As
illustrated in Fig. 3(a), _mm256_set1_epi64x loads data

from memory and broadcasts it into the whole vector register
by filling it with the same 64-bit elements (made up of four
16-bit samples in this case). After broadcasting, the upper lane
is deferred by one row with _mm256_blend_epi32 so

that the lower lane is selected from the first register and the
upper lane from the second, as shown in Fig. 3(b). After this
step, data is already in the correct arrangement for the
interleaving which is performed using
_mm256_unpacklo_epi16. In Fig. 3(c), jagged arrows

visualize the eight consecutive samples of the same column.
Before interleaving, the upper 64 bits of both lanes contain the
same data as the low 64 bits. Thus, they are considered “don’t
care” values, as visualized by crosses in Fig. 3. In the end,
_mm256_extracti128_si256 is used to extract the data

of the upper lane and the filtered rows are stored separately.
The dual-lane approach requires slight changes to the window
moving and initialization. For example, a single register-to-
register move shifts the window by two rows at a time in both
lanes.

C. Vectorized Interpolation for FME

To improve accuracy and coding efficiency after integer
motion estimation, Kvazaar performs FME in several steps as
illustrated in Fig. 4. Each step searches for four new fractional
MVs. The first half of the search looks for the optimal HPEL-
precision MV. The second half repeats the process by
searching for the optimal QPEL-precision MV around the
HPEL position. Both stages are further split into two parts to
enable more fine-grained control over coding efficiency and
complexity. PBs given by the MVs are illustrated in green at
sample level in Fig. 4.

The computational complexity of FME is reduced by
taking advantage of separable interpolation filters and the
significant overlap of the blocks instead of interpolating the
four blocks separately. For example, the PBs with vertical
HPEL displacements share all but one row with the other, so
only the bottom row needs to be filtered for the bottom PB and
the rest can be reused from the top PB. Essentially,
interpolating these two N×M blocks equals interpolating a
single N×(M+1) block instead. The same applies for
horizontally displaced blocks and reusing columns of filtered
samples. Furthermore, the input samples for the vertical
filtering stage can be reused in a similar way, since
horizontally aligned but vertically displaced fractional-
position PBs share most of the horizontally filtered samples.

Joint interpolation of four blocks complicates the efficient
vectorization of FME with the aforementioned functions
because one additional column of reference samples needs to
be interpolated for PBs that have negative horizontal
fractional displacement. However, the AVX2 implementation
interpolates at least four columns since the luma PBs of HEVC
have widths that are multiples of four. This simplifies
vectorization, since the vector registers contain a power of two
number of elements. However, after introducing the extra
column, the input and intermediate data have an odd number
of samples. To that end, the extra columns are filtered and
written in contiguous memory separately from the other
intermediate blocks after the horizontal filtering stage. This
enables reusing the AVX2 interpolation functions for most
samples, optimal memory alignment for the intermediate
blocks, and efficient memory accesses to the columns with
vector memory operations.

Since the column sample count is relatively low,
optimizing the column filtering has less significance.
Therefore, the column filtering follows the approach
presented in this paper, but it utilizes 128-bit registers partially

Fig. 3 Setting up the dual-lane filtering window of the vertical filtering step.

Fig. 4. FME search pattern and steps in Kvazaar at sample level.

to interpolate a single sample at a time. Even though the full
capacity is not utilized, many operations, especially the
multiplications, are computed in parallel using the
MapReduce pattern akin to Fig. 5, where the results of the
operations in grey are ignored and the final value is obtained
after the last step. The contiguous data layout also enables
vectorizing vertical filtering of the extra columns efficiently
with the same “horizontal” scheme. How the blocks are
composed after the vertical filtering, depends on the MVs.

IV. PERFORMANCE RESULTS AND ANALYSIS

Table I tabulates the hardware and software setups as well
as Kvazaar encoder configurations [13] used in our
experiments. The ultrafast configuration was specified to
perform two steps of FME with the --subme command-line

option, whereas the veryslow preset implicitly includes four
steps. The test set was composed of 24 HEVC common test
sequences grouped into classes A–F according to resolution,
content, and bit depth [18]. Encoding speeds were measured
with uvgVenctester [19] and the relative CPU time of
functions with the Hotspots analysis of VTune [20].

Table II presents the CPU times and speedups of
individual functions and logical function groups when
Kvazaar was run with and without SIMD extensions. The
results are hierarchically tabulated by grouping the entries of
the same abstraction level with indentation and shading.

In all-scalar Kvazaar, the functions of interest to this work
account for 81.5% and 75.0% of the total encoding time with
the ultrafast and veryslow presets, respectively. Altogether,
the proposed techniques yield roughly a 7-fold speedup with
both configurations and reduce the share of these functions
down to 46.4% and 33.8% of the total encoding time.

The luma sample interpolation for PBs gains up to a 14-
fold speedup over the scalar equivalents, whereas the filtering
for FME accelerates the operation by a factor of five at HPEL

precision. Even if almost the same low-level interpolation
functions are utilized in FME and PB generation, the
interpolation of extra column inflates the proportion of scalar
and less intensively optimized vector code in FME.
Furthermore, the scalar implementation of HPEL block
interpolation exploits algorithm-level optimizations, like
specializations for horizontal- or vertical-only filtering, that
are not available in the vectorized implementation. Similarly,
the speedups of chroma filtering with the px backend are more
moderate. For example, more than one third of chroma
interpolation with the px backend is spent by the scalar
functions in the veryslow case, but its infrequent usage reduces
the need for optimizations.

Table III highlights the speedups of the vectorized luma
interpolation stages over the corresponding scalar
implementations. Similar speedups are obtained with both
configurations and the minor deviation between them stems
from different block sizes and shapes. The 16-fold speedup
achieved at the horizontal filtering stage can be considered
satisfactory, since the vectorization makes it possible to
compute 16 or 32 elements in parallel when the 256-bit
registers are filled with 16-bit or 8-bit elements, respectively.
The vertical stages are not more than 10 times as fast after
vectorization, because they involve extra data arrangement.
Altogether, the proposed filter vectorizations accelerate
Kvazaar ultrafast configuration by 1.67× and veryslow
configuration by 1.58× over the all-scalar anchor
configuration of Kvazaar.

V. CONCLUSION

This work presented AVX2-vectorized interpolation
filters for HEVC and implemented them into Kvazaar
software encoder. The proposed optimizations included a
novel data permutation scheme for the horizontal interpolation
filters and a sliding window strategy for the vertical
interpolation filters. In addition, it was shown that they can be
efficiently utilized in FME. All these optimizations also
support a lane-based approach for doubling the vector lengths
from 128-bit legacy vector extensions to full 256-bit AVX2
instructions. The entire interpolation was accelerated by 9.7
and 8.5 times with high-speed and high-quality coding
settings of Kvazaar. The proposed techniques are virtually
agnostic to coding block sizes and shapes, so they can be used
as is or with minimal changes to boost practical VVC encoders
as well. Additionally, similar approach could be used with
AVX512, by processing four rows at a time instead of two.

TABLE I. EXPERIMENTAL SETUP

Hardware

CPU Intel Xeon Processor E5-2620 v4
of Cores | Threads 8 | 16

Base Frequency 2.10GHz

RAM 32 GB / DDR4 2133 MHz
L1 | L2 | L3 cache 512 KB | 2.0 MB | 20.0 MB

Storage SanDisk SSD X400 (540 MB/s read)

Software

Encoder Kvazaar 2.0 (c36d423)
Compiler MSVC 2017 (19.16.27025.1)

Profiler Intel VTune Profiler 2020 (Update 2)

Test Framework uvgVenctester
Operating System Microsoft Windows 10 (18363.1440)

Encoder configuration

Config. Parameters

Ultrafast --preset ultrafast --threads 16 -q{QP} --[no-]cpuid --subme 2

Veryslow --preset veryslow --threads 16 -q{QP} --[no-]cpuid

Fig. 5. Filtering a single sample with partial vector utilization.

TABLE II. COMPARISON OF SCALAR AND VECTORIZED CODING TOOLS

 Ultrafast Veryslow

 CPU time
Speedup

CPU time
Speedup

Coding tool Scalar SIMD Scalar SIMD

Vectorized functions 81.5% 46.4% 7.1× 75.0% 33.8% 6.8×

 Interpolation 34.8% 14.5% 9.7× 23.3% 8.0% 8.5×

 Interpolation, PB 27.4% 8.6% 12.9× 8.0% 2.1% 11.5×

 Luma, px backend 3.1% 1.0% 12.4× 1.2% 0.4% 10.4×

 Luma, hi backend 22.5% 6.5% 14.1× 6.1% 1.4% 13.6×

 Chroma, px backend 0.3% 0.2% 6.0× 0.2% 0.2% 3.5×

 Chroma, hi backend 1.4% 0.8% 6.9× 0.5% 0.2% 7.3×
 Interpolation, FME 7.4% 5.9% 5.1× 15.3% 6.3% 7.5×

 Luma, 1/2-px 7.4% 5.9% 5.1× 4.0% 2.6% 4.7×

 Luma, 1/4-px - - - 11.3% 3.7% 9.4×

TABLE III. SPEEDUPS OF LUMA FILTER AND ENCODER VECTORIZATION

 Speedup ultrafast Speedup veryslow

 Luma, horizontal 16.4× 15.2×
Filter Luma, vertical, px 10.6× 09.2×

 Luma, vertical, hi 11.7× 11.4×

Kvazaar encoder 1.67× 1.58×

REFERENCES

[1] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview

of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst.

Video Technol., vol. 13, no. 7, Aug. 2003, pp. 560–576.

[2] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the

high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits

Syst. Video Technol., vol. 22, no. 12, Dec. 2012, pp. 1649–1668.

[3] ITU, “New ‘Versatile Video Coding’ standard to enable next-generation

video compression,” Sep. 2020, [Online]. Available:

https://www.itu.int/en/mediacentre/Pages/pr13-2020-New-Versatile-
Video-coding-standard-video-compression.aspx.

[4] Bitmovin, “Bitmovin Video Developer Report 2019,” 2019, [Online].
Available:

https://cdn2.hubspot.net/hubfs/3411032/Bitmovin%20Magazine/Video

%20Developer%20Report%202019/bitmovin-video-developer-report-
2019.pdf.

[5] J. Vanne, M. Viitanen, T. D. Hämäläinen, and A. Hallapuro,

“Comparative rate-distortion-complexity analysis of HEVC and AVC
video codecs,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no.

12, Dec. 2012, pp. 1885–1898.

[6] G. Ramasubbu, A. Kaup, and C. Herglotz, “Modeling the HEVC
encoding energy using the encoder processing time,” in Proc Int. Conf.

on Image Process., Bordeaux, France, Oct 2022, pp. 3241-3245.

[7] K. Ugur et al., “Motion compensated prediction and interpolation filter
design in H. 265/HEVC,” IEEE J. Sel. Topics Signal Process., vol. 7,

no. 6, Dec. 2013, pp. 946–956.

[8] “HEVC Reference Software Version 16.20,” [Online]. Available:
https://vcgit.hhi.fraunhofer.de/jct-vc/HM/-/tags/HM-16.20.

[9] C. C. Chi, M. Alvarez-Mesa, B. Bross, B. Juurlink, and T. Schierl,

“SIMD acceleration for HEVC decoding,” IEEE Trans. Circuits Syst.
Video Technol., vol. 25, no. 5, May 2014, pp. 841–855.

[10] K. Chen, Y. Duan, L. Yan, J. Sun, and Z. Guo, “Efficient SIMD

optimization of HEVC encoder over X86 processors,” in Proc. Asia
Pacific Signal Inf. Process. Assoc. Annu. Summit Conf., Hollywood,

California, USA, Dec. 2012, pp. 1–4.

[11] Y.-J. Ahn, T.-J. Hwang, D.-G. Sim, and W.-J. Han, “Implementation of

fast HEVC encoder based on SIMD and data-level parallelism,”
EURASIP J. Image Video Process., vol. 16, Mar. 2014, pp. 1–19.

[12] A. Lemmetti, M. Viitanen, A. Mercat, and J. Vanne, “Kvazaar 2.0: fast

and efficient open-source HEVC inter encoder,” in Proc. ACM
Multimedia Syst. Conf., New York, New York, USA, May 2020, pp.

237–242.

[13] Ultra Video Group, “Kvazaar open-source HEVC encoder,” [Online].
Available: https://github.com/ultravideo/kvazaar.

[14] Ultra Video Group, “Kvazaar interpolation filter AVX2 optimization,”

[Online]. Available:
https://github.com/ultravideo/kvazaar/blob/c36d423a8c022c2e34c88b

be7e32e05b1fe73217/src/strategies/avx2/ipol-avx2.c.

[15] MulticoreWare, Inc., “x265 HEVC encoder / H.265 video codec,”
[Online]. Available:

https://bitbucket.org/multicoreware/x265/downloads.

[16] Intel Corporation, “Intel 64 and IA-32 architectures optimization
reference manual,” Feb. 2022, [Online]. Available:

https://www.intel.com/content/www/us/en/developer/articles/technical

/intel-sdm.html.

[17] A. Fog, “Instruction tables: lists of instruction latencies, throughputs

and micro-operation breakdowns for Intel, AMD and VIA CPUs,” Jun.

2022, [Online]. Available:
https://www.agner.org/optimize/instruction_tables.pdf.

[18] F. Bossen, “Common test conditions and software reference

configurations,” document JCTVC-L1100, Geneva, Switzerland, Jan.
2013.

[19] J. Sainio, A. Mercat, and J. Vanne, “uvgVenctester: open-source test

automation framework for comprehensive video encoder
benchmarking,” in Proc. ACM Multimedia Syst. Conf., Istanbul,

Turkey, Jun. 2021, pp. 255–260.

[20] Intel Corporation, Inc., “Intel VTune performance analyzer,” [Online].
Available:

https://software.intel.com/content/www/us/en/develop/home.html.

