Mechanosensitive Channel Piezo1 in R403Q Hypertrophic Cardiomyopathy: A Computational Study

Mohamadamin Forouzandehmehr¹, Soudabeh Ghosi², Michelangelo Paci^{1,3}, Jari Hyttinen¹, Jussi Koivumäki¹

¹Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
 ²School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
 ³Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, Italy

Abstract

Piezol is a tension-gated cation channel with a voltagedependent inactivation and Ca²⁺-permeability. In mice, cardiac Piezo1 shows maladaptive dynamics and evokes a hypertrophic response to pressure overload. Mutationspecific hypertrophic feedback to Piezo1 has not been addressed before. Here, we present a novel mechanistic model of Piezo1 current and add it to our in silico wholecell model of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to study the mechanotransduction in the presence of MYH7^{R403Q/+} condition. Our biophysical model of Piezo1 has a tensiondependent activation and a novel voltage-dependent inactivation gate. We modeled MYH7^{R403Q/+} hypertrophic cardiomyopathy (HCM) following our previous model by altering DRX/SRX myosin ratio and elevating myofilament MgADP and inorganic phosphate. Normalized currenttension relationships of Piezo1 showed a 27.9% increase in Boltzmann slope due to MYH7^{R403Q/+} HCM. However, the half-maximal activation (P50) elevated 16.7%. This work contributes to investigations on the capacity of mechanotransduction, particularly cardiac Piezo1 channel, as a potential drug target for mutation-specific HCM.

1. Introduction

Mechanotransduction plays a pivotal role in many cascades of human physiology. The expeditious detection of mechanical forces, which transpires within milliseconds, is accomplished through force-gated ion channels that transform mechanical energy into electrochemical signals [1]. Cardiac Piezo1 is a cation channel that is activated by mechanical forces and has the ability to detect membrane tension with a remarkable level of sensitivity [2]. Aberrant Piezo1 channel activity, resulting from hereditary mutations, genetic manipulation, or physiological regulation, has been associated with a range of pathological disorders, including xerocytosis, lymphedema, arthrogryposis, and abnormal vascular development [3]. In addition, Piezo1's significant proarrhythmic role in cardiac remodeling has been reported for hiPSC-CMs [4]. However, Piezo1 dynamics in mutation-specific HCM has not been addressed before. Theoretical frameworks capable of providing mechanistic insights and predictions on the pathophysiology of Piezo1 would be of great importance [2].

In this study, we aim to provide a novel *in silico* biophysical model of cardiac Piezo1 and incorporate it in our electro-mechano-energetic model of hiPSC-CMs [5] (hiMCE; Figure 1). We parameterize the voltage-current and voltage-inactivation time constant relationships with *in vitro* data from different labs. Finally, we aim investigate the tension-sensitivity of cardiac piezo1 in the presence of MYH7^{R403Q/+} HCM condition.

2. Methods

2.1. Piezo1 model

Extending previous mechano-sensitive channel formulations [7], we defined I_{Piezo1} with a tension-dependent activation gate, m_a , and a new voltage dependent inactivation [2] gate, Xn, as follows:

$$I_{Piezo1} = g_p m_a X n (V - E_p)$$
(1)

$$J_{Piezo1} = c |I_{Piezo1}|$$
(2)

$$X n_{inf} = \frac{2}{1 + e^{\frac{-Vm}{16}}}$$
(3)

$$\alpha_{Xn} = \frac{1}{\sqrt{1 + e^{\frac{-60 + Vm}{50}}}}$$
(4)

$$\beta_{Xn} = \frac{270}{1 + e^{\frac{171 - Vm}{72}}}$$
(5)

$$\tau_{Xn} = \alpha_{Xn} \beta_{Xn}$$
(6)

$$\frac{dXn}{dt} = \frac{X n_{inf} - Xn}{\tau_{Xn}}$$
(7)

$$m_{ainf} = \frac{1}{\frac{1+e^{-(d-2.5)}}{0.25}}$$
(8)
$$\frac{dm_a}{d_t} = \frac{m_{ainf} - m_a}{\tau_c}$$
(9)

The voltage-dependent inactivation (Eqs. 3-7) was reparametrized from slow delayed rectifier K⁺ current, I_{Ks}, inactivation gate in [6]. The tension-dependent activation (Eqs. 8-9) was introduced following [7]. The constants and the corresponding references have been given in Table 1. Eq. 2 represents Piezo1 Ca²⁺ flux and *c* is a factor converting A/F to mM/s. Eq. 8 represents Piezo1 activation gate open probability where *d* denotes the normalized active tension developed by hiMCE model [5]. We set the default open channel probability equal to 50% consistent with human Piezo1 evoked current-tension *in vitro* findings [8]. *Vm* is voltage in mV, and τ_a and τ_{Xn} represent activation and inactivation gate time constants, respectively.

Table 1. Piezo1 model constants.

Parameter	Value	Ref.
$E_p(mV)$	0	[9]
с	0.116	[6]
$ au_a$	0.1	N/A
$g_p(S/F)$	0.304	[10]

We integrated Piezo1 into our hiMCE model as a sarcolemmal current:

 $C\frac{dv}{dt} = -(I_{Na} + I_{NaL} + I_{CaL} + I_f + I_{K1} + I_{Kr} + I_{Ks} + I_{to} + I_{NaCa} + I_{NaK} + I_{pCa} + I_{bNa} + I_{bCa} + I_{Piezo1} - I_{stim})$ (10)

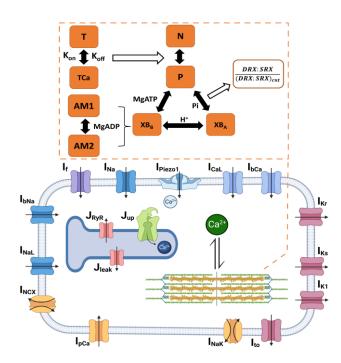


Figure 1. The schematic of hiMCE+Piezo1 model giving the electrophysiology, the metabolite-sensitive contractile component, and Piezo1 in hiPSC-CMs (Created with BioRender.com).

2.2. MYH7^{R403Q/+} cardiomyopathy model

The pathophysiology of MYH7^{R403Q/+} HCM was simulated following the method in [5]. We altered the metabolic and the crossbridge (XB) cycling parameters in hiMCE model as given in Table 2.

Table 2. The contractile element parameters used in modeling MYH7^{R403Q/+} cardiomyopathy following [5].

Parameter	Control	MYH7 ^{R403Q/+}
Piref (mM)	2	18.9
MgADP	0.036	0.072
ap2 coef.	1	0.315
R	1	1.3

 Pi_{ref} represents the reference value of inorganic phosphate in the hiMCE model, ap2 influences the forward transition between XB_A and XB_B states and also impacts XB detachment, R denotes the myosin disordered relaxed state to super relaxed state (DRX:SRX) ratio (Figure 1).

3. **Results**

3.1. Validations of the model

The hiMCE+Piezo1 model simulates action potential (AP) morphology and fractional cell shortening (FCS) consistently with the previously validated model and *in vitro* data (Figure 2A&C). We parametrized the I_{Piezo1} formulation with respect to the *in vitro* data of current vs membrane potential (Figure 2B) and voltage-dependent inactivation time constant (τ_{Xn}) vs voltage (Figure 2D) relationships. As a semiquantitative validation, the simulated I_{piezo1} morphology (Figure 2E) aligns with *in vitro* data [11]. The new model also simulates key contractile and electrophysiological biomarkers within hiPSC-CMs *in vitro* ranges (Table 3).

Table 3. Select electrophysiological and biomechanical simulated biomarkers and the *in vitro* ranges. APA: AP amplitude, MDP: maximum diastolic potential, CL: AP cycle length, APD₉₀: AP duration at 90% of repolarization, DRT: Ca²⁺ transient (CaT) duration, RT₁₀₅₀: rise time from 10 to 50% of maximum threshold in CaT, DT₉₀₁₀: decay time from 90 to 10% of maximum threshold in CaT, ATM: active tension magnitude, CRT₅₀: time from peak contraction to 50% of relaxation.

Biomarker	hiMCE	hiMCE+	in vitro [12]
	[5]	Piezo1	
APA (mV)	103	103	104±6
MDP (mV)	-75.0	-75.2	-75.6±6.6
CL (ms)	1644	1695	1700±548
APD_{90} (ms)	403	413	415±119
DRT (ms)	693	694	805±188
RT1050 (ms)	45.9	54.1	82.9±50.5
DT ₉₀₁₀ (ms)	343	317	410±100
ATM (kPa)	0.055	0.0557	0.055±0.009
CRT ₅₀ (ms)	158	155	158±12.1
FCS (%)	3.23	3.46	3.27±0.37

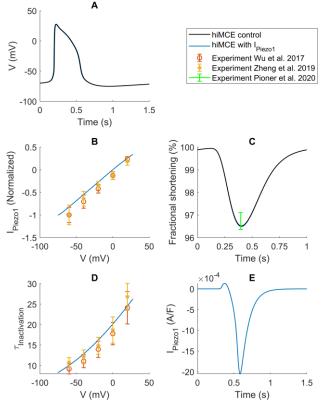


Figure 2. The hiMCE+Piezo1 model readouts against *in vitro* data [11]–[13]. Action potentials (A), Piezo1 current-voltage relationship (B), fractional cell shortening (C), Piezo1 voltage-dependent inactivation vs voltage (D), and Piezo1 current morphology (E).

3.2. Model response to MYH7^{R403Q/+} cardiomyopathy

The response of hiMCE+Piezo1 model to MYH7^{R403Q/+} condition was evaluated through simulating APs, I_{Piezo1} vs time, and Normalized I_{peizo1} vs tension relationships (Figure 3). The simulated P₅₀ for control condition, 0.534, in current-tension relationships (Figure 3C) is quantitatively consistent with P₅₀=0.5 (normalized)

reported *in vitro* for human Piezo1 [8]. The current-tension relationships revealed 27.9% increase in the Boltzmann slope as a result of MYH7^{R403Q/+} HCM (0.0182 to 0.0233). On the other hand, the P₅₀ also increased by 16.7% in response to MYH7^{R403Q/+} HCM condition. The hiMCE+Piezo1 model did not predict a significant impact on Piezo1 voltage-dependent inactivation in response to MYH7^{R403Q/+} HCM condition.

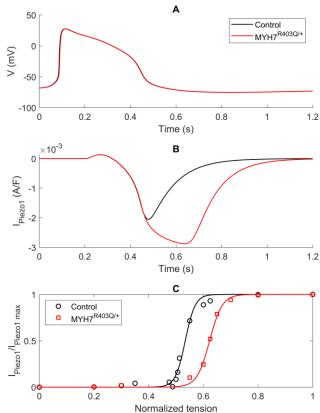


Figure 3. The hiMCE+Piezo1 model in response to $MYH7^{R403Q/+}$ cardiomyopathy condition detailing the action potentials (A), I_{piezo1} current profile (B), and tension-sensitivity of Piezo1 channel (C).

4. Discussion

Piezo ion channels are known to be responsive to mechanical stimuli, including localized membrane stretch, whole-cell poking, and fluid flow, specifically shear stress [14]. Furthermore, it has been observed that intracellular traction forces, which are produced through the phosphorylation of myosin II by myosin light chain kinase, are capable of generating localized Ca^{2+} fluctuations mediated by Piezo1, even in the absence of externally applied force [14]. Our new *in silico* model of hiPSC-CMs featuring a validated biophysical mechanistic model of Piezo1 current can be used as a tool to predict the impact of abnormal electrophysiological and contractile functions on the mechanosensitivity, especially, mutation-specific

HCM.

Cardiac Piezo1 has been reported to initiate a hypertrophic response in pressure overload in adult mice cardiomyocytes [15]. Furthermore, the removal of Piezo1 was reported to correlate with reduction in the hypertrophic response [15]. Our model takes a new step toward deepphenotyping MYH7^{R403Q/+} HCM by mapping Piezo1 domain of impact in presence of MYH7^{R403Q/+} cardiomyopathy. The findings here indicating losing tension-sensitivity of Piezo1 due to MYH7^{R403Q/+} HCM while gaining faster dynamic (increase in the slope) could be potentially insightful for developing HCM drugs targeting Peizo1 for inhibition of the channel activity in presence of MYH7^{R403Q/+} HCM condition.

Although limited availability of hiPSC-CM Piezo1 in vitro data restricted the validation of the current formulation, the presented framework provides the first biophysical description robust for cardiac mechanosensitivity at cellular level. A promising future direction can be studying the Piezo1-SERCA crosstalk [16] regarding the HCM-induced metabolite changes affecting SERCA. Moreover, Piezo1 has been reported to function as the upstream and mediator of Na⁺-Ca²⁺ exchanger (NCX) in pressure-overload induced hypertrophy pathway [15]. Thus, the crosstalk could also be refined by considering the effect of Piezo1 on NCX dynamics.

As a step toward deep-phenotyping mutation-specific HCM, probing the pathological feedback to Piezo1 and its role in the MYH7^{R403Q/+} cardiomyopathy pathway can increase the current understanding for the design of therapeutics targeting cardiac mechanosensitive channels.

Acknowledgments

MF was supported by the graduate school of Faculty of Medicine and Health Technology, Tampere University and the Pirkanmaa fund of Finnish Cultural Foundation.

References

- J. M. Kefauver, et al., "Discoveries in structure and physiology of mechanically activated ion channels," *Nature*, vol. 587, no. 7835, pp. 567–576, Nov. 2020, doi: 10.1038/s41586-020-2933-1.
- [2] A. H. Lewis and J. Grandl, "Piezo1 ion channels inherently function as independent mechanotransducers," *eLife*, vol. 10, p. e70988, Oct. 2021, doi: 10.7554/eLife.70988.
- [3] W. M. Botello-Smith *et al.*, "A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1," *Nat Commun*, vol. 10, no. 1, Art. no. 1, Oct. 2019, doi: 10.1038/s41467-019-12501-1.
- [4] S.-A. Su *et al.*, "Cardiac Piezo1 Exacerbates Lethal Ventricular Arrhythmogenesis by Linking Mechanical Stress with Ca2+ Handling After Myocardial Infarction," *Research (Wash D C)*, vol. 6, p. 0165, 2023, doi:

10.34133/research.0165.

- [5] M. Forouzandehmehr, et al., "Altered contractility in mutation-specific hypertrophic cardiomyopathy: A mechano-energetic in silico study with pharmacological insights," *Frontiers in Physiology*, vol. 13, 2022, doi: 10.3389/fphys.2022.1010786.
- [6] M. Paci *et al.*, "All-Optical Electrophysiology Refines Populations of In Silico Human iPSC-CMs for Drug Evaluation," *Biophysical Journal*, 2020, doi: 10.1016/j.bpj.2020.03.018.
- [7] A. Gupta and R. Manchanda, "Computational modeling of stretch induced calcium signaling at the apical membrane domain in umbrella cells," *Computer Methods in Biomechanics and Biomedical Engineering*, vol. 26, no. 11, pp. 1368–1377, Aug. 2023, doi: 10.1080/10255842.2022.2117549.
- [8] N. M. Blythe *et al.*, "Mechanically activated Piezol channels of cardiac fibroblasts stimulate p38 mitogenactivated protein kinase activity and interleukin-6 secretion," *Journal of Biological Chemistry*, vol. 294, no. 46, pp. 17395–17408, Nov. 2019, doi: 10.1074/jbc.RA119.009167.
- [9] M. N. Young, et al., "The energetics of rapid cellular mechanotransduction," *Proceedings of the National Academy of Sciences*, vol. 120, no. 8, p. e2215747120, Feb. 2023, doi: 10.1073/pnas.2215747120.
- [10] F. A. Peralta *et al.*, "Optical control of PIEZO1 channels," *Nat Commun*, vol. 14, no. 1, Art. no. 1, Mar. 2023, doi: 10.1038/s41467-023-36931-0.
- [11] W. Zheng, et al., "A hydrophobic gate in the inner pore helix is the major determinant of inactivation in mechanosensitive Piezo channels," *eLife*, vol. 8, p. e44003, Jan. 2019, doi: 10.7554/eLife.44003.
- [12] M. Forouzandehmehr, et al., "A mathematical model of hiPSC cardiomyocytes electromechanics," *Physiological Reports*, vol. 9, no. 22, 2021, doi: 10.14814/phy2.15124.
- [13] J. Wu, et al., "Inactivation of Mechanically Activated Piezo1 Ion Channels Is Determined by the C-Terminal Extracellular Domain and the Inner Pore Helix," *Cell Reports*, vol. 21, no. 9, pp. 2357–2366, Nov. 2017, doi: 10.1016/j.celrep.2017.10.120.
- [14] D. Douguet, et al., "Piezo Ion Channels in Cardiovascular Mechanobiology," *Trends in Pharmacological Sciences*, vol. 40, no. 12, pp. 956–970, Dec. 2019, doi: 10.1016/j.tips.2019.10.002.
- [15] Z.-Y. Yu *et al.*, "Piezo1 is the cardiac mechanosensor that initiates the cardiomyocyte hypertrophic response to pressure overload in adult mice," *Nat Cardiovasc Res*, vol. 1, no. 6, Art. no. 6, Jun. 2022, doi: 10.1038/s44161-022-00082-0.
- [16] Y. Wang, et al., "Cross-Talk between Mechanosensitive Ion Channels and Calcium Regulatory Proteins in Cardiovascular Health and Disease," *International Journal of Molecular Sciences*, vol. 22, no. 16, Art. no. 16, Jan. 2021, doi: 10.3390/ijms22168782.

Address for correspondence:

Mohamadamin Forouzandehmehr Tampere University, Tampere, Finland. mohamadamin.forouzandehmehr@tuni.fi