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A B S T R A C T   

The complex interaction between laser and material in Laser Wire Direct Energy Deposition (LW-DED) Additive 
Manufacturing (AM) benefits from process monitoring methods to ensure process stability and final part quality. 
Understanding the relationship between process parameters and melt pool geometrical characteristics can be 
used to effectively monitor and in-process control the process, as the melt pool geometrical characteristics serve 
as crucial indicators of process stability and quality. 

This study presents a novel in-situ monitoring approach for LW-DED, utilizing process images for melt pool 
segmentation, melt pool geometrical characteristics estimation, process stability assessment, and bead geometry 
prediction. The segmentation of melt pool objects was successfully accomplished using Convolutional Neural 
Networks (CNN)-based models, enabling the prediction of essential parameters such as melt pool area, height, 
width, center of area, and the center point of the bounding box enclosing the melt pool. Multiple models were 
compared regarding the accuracy and processing speed using a controlled central composite design and random 
experiments. We used an Inconel alloy 625 wire and two distinct substrate materials for deposition, a coaxial 
laser welding head with a 3 kW fiber laser, and an off-axis welding camera for monitoring. 

Among the CNN architectures evaluated, YOLOv8l demonstrated superior accuracy with mean Average Pre
cision (mAP) values of 0.925 and 0.853 for Stainless Steel (SS) and low carbon steel (S355) substrates, respec
tively. Additionally, YOLOv8s exhibited a notable processing speed of over 114 frames per second, which 
indicates its suitability for real-time process control. Furthermore, the results indicate a significant correlation 
between process parameters and melt pool geometry variables. Notably, a clear correlation was established 
between melt pool characteristics and bead geometries obtained through microscopic examinations, including 
penetration depth and heat-affected zone. The analysis revealed a significant correlation for the bead area and 
width parameters. In relation to the bead height, while the correlation exhibited a lower magnitude compared to 
bead area and width, it remained responsive. In addition, the tensor masks derived from the developed models 
have proven to be highly effective in accurately predicting bead geometries. 

The results demonstrate the effectiveness of YOLO-based algorithms for detecting and segmenting the melt 
pool. Statistical analysis confirms the significance of stabilized process data and the accuracy of melt pool 
geometric models. We demonstrate that integrating advanced monitoring and control techniques using artificial 
intelligence methods like CNN can facilitate process stability and quality control.   

1. Introduction 

Additive Manufacturing (AM) has revolutionized metal part pro
duction, presenting a powerful alternative approach to traditional 
manufacturing processes such as milling or casting [1–4]. Direct Energy 

Deposition (DED) emerges as a highly viable option for large-scale AM 
applications, with its potential extending across numerous industrial 
processes [5–8]. DED is an additive manufacturing technique that em
ploys focused energy mainly powered by a source such as a laser beam, 
electron beam, and plasma arc to deposit material onto a substrate, 
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facilitating the production of intricate 3D structures [9,10]. Laser-based 
DED (L-DED) employs a laser beam to generate a small melt pool on a 
substrate material’s surface and is utilized to produce precision com
ponents demanding higher dimensional accuracy [11]. In L-DED, the 
laser melts filler material in powder or wire and adds it to the melt pool. 
Laser Wire-Deposition (LW-DED), a notable variant, capitalizes on 
wire-based processes, combining the benefits of DED and wire-based 
methodologies. LW-DED finds extensive applications in areas such as 
repair, cladding, and near-net shape part manufacturing [12]. 

The wire-based filler material in LW-DED processes offers several 
advantages over powder, including (i) higher deposition rates (i.e., up to 
40 lb/h (18.1437 kg/h) for titanium alloy, while the powder-fed depo
sition system achieves a lower rate of 1.6 lb/h (0.7257 kg/h) [9]), (ii) 
enhanced repeatability levels, attributed to the simplified setup and 
operation of the process, (iii) lower material costs, (iv) superior material 
utilization, achieving levels close to 100 %, and (v) enhanced surface 
quality of the deposited material, resulting in superior surface charac
teristics [12]. In addition, resistance heating of the wire in LW-DED 
processes has been proven to enhance melting rates and process stabil
ity. On the other hand, LW-DED processes have limitations to consider: 
restricted material availability in wire form compared to Laser Powder 
DED, challenges in achieving precise details and intricate features in 
complex geometries due to factors like wire diameter and deposition 
strategies, the need for precise control and monitoring systems for 
consistent wire feeding, and potential heat-related issues from the high 
laser energy input [13]. 

This study examines LW-DED processes where the laser source fo
cuses on the substrate to melt the wire and heat the substrate while 
utilizing Argon gas. In laser-wire DED, the wire is introduced into the 
process either laterally or coaxially. The process heads commonly used 
for powder-DED, which utilize coaxial laser beam guidance, can also be 
adapted for LW-DED systems with lateral wire feed [12]. The directional 
dependence of lateral wire feeder in LW-DED processes limits its 3D 
capability, making it challenging to effectively coat and 3D print com
plex surfaces [14]. A coaxial feeding wire is employed to enhance the 
performance of LW-DED processes by mitigating the directional 
dependence. By guiding the wire through the center of the process head, 
laser beams can be precisely focused on a common working point [14]. 

The rapid solidification of the melt pool in L-DED processes creates 
temperature gradients, leading to residual stresses, warping, and de
fects. These issues affect the local microstructure and mechanical 
properties, highlighting the necessity for online monitoring and control 
in such processes [15]. Besides, precise adjustment of controllable pro
cess parameters such as Wire Feed Rate (WFR), Travel Speed (TS), and 
Laser Power (LP), and their impact on the melt pool characteristics is 
essential for determining the printed part geometries and surface char
acteristics [16]. 

Experimental findings highlight the requirement for an in-situ 
monitoring and control system in LW-DED processes. Formation of 
non-uniform build morphology, including bead width increase, uneven 
bead height, and increased melt pool depth, necessitates monitoring 
systems [11,17]. Considering these factors, researchers have actively 
advanced sensing, modeling, monitoring, and control techniques for 
DED, particularly L-DED processes. 

The literature review encompassed various measurement systems 
that capture melt pool and temperature information, such as thermo
couples, pyrometers, and cameras. The existing studies on DED process 
monitoring and control primarily concentrate on assessing melt pool 
geometry, deposition geometry, and thermal management aspects [17, 
18]. In [19], a coaxial monitoring system containing a custom laser 
triangulator, a near-infrared camera, and a ratio pyrometer is utilized to 
measure the melt pool height, area, and temperature in Laser Powder 
DED. However, the recorded signals by camera proved to be noisy. 
Prediction of melt pool temperature, track geometries and hardness 
based on the process parameters in Laser Powder DED processes is 
evaluated in [20], where melt pool temperature data was obtained using 

an optical fiber infrared thermometer. In [21], the utilization of a 
high-speed camera enabled the observation and analysis of bubble 
generation occurring within the melt pool during laser cladding pro
cesses. Moreover, single process parameter was utilized to monitor and 
control the bead or clad height, melt pool width, area, and temperature 
[17,22–24]. One limitation of the introduced control methods was their 
reliance on a single process parameter, which may restrict their effec
tiveness in fully capturing and regulating the complex dynamics of the 
process. 

The limitation of relying on a single process parameter for control in 
DED processes has prompted researchers to explore the development of 
monitoring and control models that consider multiple process parame
ters. Artificial Intelligence (AI) methods offer the potential to incorpo
rate multiple parameters and model DED processes. The development of 
Machine Learning (ML) and Convolutional Neural Networks (CNN), as 
subsets of AI-based methods, has had a significant impact on AM by 
enabling advanced data analysis, image recognition, and predictive 
modeling, leading to improved process monitoring, control, quality 
assurance, and material optimization [2]. In monitoring L-DED pro
cesses, multimodal strategies were used. In [25], different ML methods, 
including NNs, predicted process quality and defects. However, the ac
curacy and the impact of the accuracy of extracting geometric features 
from CCD camera-captured melt pool images were not thoroughly 
analyzed. 

CNNs, widely applied in image and signal processing domains, 
effectively transform input image features into abstract representations, 
facilitating precise regression, classification, and segmentation tasks 
across diverse applications [18,26]. In the AM, CNNs have been 
deployed for classification [27,28], detection [29,30], segmentation 
[31], and regression [18,32–35] applications. For instance, in [28], a 
CNN-based classification algorithm was utilized to classify and to detect 
porosity with 91.2 % accuracy. In [30], automatic defect detection and 
classification in Wire Arc Additive Manufacturing processes were 
assessed. The proposed datasets, incorporating enhanced images, ach
ieved a Recall criterion surpassing 88 %, indicating a high level of ac
curacy in correctly identifying relevant information. In [18,32,33], melt 
pool images were fed into a CNN and the output was fed alongside with 
melt pool temperature or power, voltage, and one-hot-encoded three 
phases (accelerating, stable, decelerating) to a fully connected Neural 
Network (NN) to predict the bead geometries and process parameters. In 
[31], it has been tried to develop a pixel-wise classification network as a 
segmentation algorithm to predict the welding speed and laser power. 
However, the accuracy and speed of the segmentation model were not 
well discussed since the main aim of the research was on the prediction 
accuracy of laser power and welding speed. 

The existing literature reveals a knowledge gap regarding the 
comprehensive consideration and monitoring of the melt pool, its 
geometrical characteristics in AM processes, and the lack of correlation 
between these details and process inputs and outputs. Previous studies 
mainly relied on feeding image data without explicitly specifying the 
melt pool and leveraging other parameters, while the significance of 
melt pool characteristics remained undetermined. Furthermore, limited 
research has explored feature extraction and segmentation methods for 
melt pool monitoring in AM processes, with a lack of discussion on the 
accuracy, speed of the utilized architectures, and the aforementioned 
correlations. In this study, we develop a segmentation method based on 
You Only Look Once (YOLO) architecture for LW-DED processes. 

The paper contributes by: (i) conducting preliminary tests using a 
Central Composite Design (CCD) of experiments to determine feasible 
process parameter ranges in a single layer LW-DED process, (ii) anno
tating acquired image data for YOLO-based algorithms and providing a 
comprehensive dataset that can be used by researchers in this field, (iii) 
training and testing performance of the proposed architectures in terms 
of speed and accuracy, (iv) defining a stability criterion for melt pool 
characteristics, identifying and distinguishing types of instabilities and 
filtering the results accordingly, and (v) conducting statistical analyses 
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on the sensitivity of the melt pool to process and response parameters. 
The present study is structured as follows: Section 2 outlines the 

research methodology, including experimental and theoretical details. 
Section 3, discusses the performance of the proposed YOLO-based 
methods, stability analysis, statistical analysis, and bead geometry pre
diction model. Finally, Section 4 concludes with remarks on the pre
sented solution. 

2. Methodology 

This section is divided into three parts. Section 2.1 provides the 
details regarding the devices, sensors, and measurement facilities by 
which the experiments on LW-DED are conducted. In Section 2.2, the 
details regarding the plan for conducting experiments are provided. 
Section 2.3 is assigned to describing the utilized CNN-based segmenta
tion architecture for melt pool monitoring, the related details for its area 
calculation and sensitivity assessment of the acquired data from the 
proposed method to a variation of process parameters and mechanical 
characteristics of the printed samples. 

2.1. Experimental setup 

In the context of the LW-DED process, two different setups have been 
considered: 

2.1.1. In-situ measurements and manufacturing setup 
The experimental setup employed for the study, as it is shown in 

Fig. 1(a), involves an Aerotech 3-axis gantry with a working area of 300 
× 300 mm, which is outfitted with a Fraunhofer CoaxWire laser welding 
head and a Dinse FDE 100 L wire feeder. The energy source utilized in 
the experiments is a 3 kW Coherent Corelase fiber laser. It is worth 
mentioning that the welding head utilized in this study is a direction- 
independent head with coaxial wire feeder and 3 laser beams 
converged from three peripheral points with a difference of 120◦ on the 
focal point. 

To capture the LW-DED process, a Cavitar welding camera model 
C300 is affixed to the setup. The camera is mounted at a default working 
distance of 200 ± 15 mm and has a maximum frame rate of 100 frame 
per second (fps). The camera’s configuration, as illustrated in Fig. 1(b 
and c), entails its placement at a 45◦ angle with respect to the central 
axis of the welding head. 

In this study, a UTP A 6222Mo-3 wire feedstock material with a 
diameter of 1.14 mm, identified as alloy 625 is selected, and its chemical 

composition, proposed by the wire manufacturer, is presented in 
Table 1. 10 mm plates of 316 L (1.4404) SS according to EN10088–2 and 
S355 (1.0577) low carbon steel according to EN10025–2 are selected as 
substrates. The study aims to analyze single beads of Inconel 625 with a 
length of 35 mm (Fig. 2(c)), which are printed under various process 
parameter levels without in-situ or ex-situ thermal treatment, using the 
selected wire feedstock material. 

2.1.2. Ex-situ weld bead geometry measurements 
Once all the experiments were conducted, the printed weld beads 

underwent laser scanning using a Romer Absolute Arm with an inte
grated laser scanner model RA-7525 SE (Fig. 2(a)), which boasts a 2.5 m 
measuring range, 0.020 mm point repeatability, and 0.029 mm volu
metric accuracy. The scanner was utilized for point cloud inspection and 
the calculation of bead geometry measurements, including bead width, 
height, and area. 

To conduct cross-sectional macrostructural examinations, the sam
ples underwent a sample preparation procedure involving grinding and 
polishing with 1 µm diamond particles. The objective was to achieve a 
smooth and consistent surface on the samples. Subsequently, a 2 % Nital 
etchant was applied to the samples to reveal the microstructure and 
enhance the differentiation between the weld bead and the base mate
rials. The primary goal was to facilitate interpretation for image anal
ysis, specifically in the identification of contours related to penetration 
depth and heat affected zone. The samples were then subjected to 
analysis using a Leica MZ7.5 microscope, and the resulting images were 
further analyzed using the ImageJ software [36]. Fig. 2(d) provides 
details regarding the calculated areas, width and height for bead, 
penetration and heat affected zones in printed beads. 

2.2. Experimental plan 

To conduct the experiments, three categories of parameters are 
relevant. (i) The first category, known as process parameters or input 
parameters, is established to facilitate the experiments. Table 2 lists the 
viable ranges and the levels of assumed Design of Experiments (DoE) for 
process parameters, including WFR, TS, and LP, after the completion of 
preliminary screening tests. (ii) Response parameters, or output pa
rameters which are measured as the outcome of the experiments. Bead 
height, width, area, penetration height, and area, and the area of the 
heat-affected zone (HAZ) are considered as response parameters. (iii) 
Feedback parameters help to use in-situ measurements as the criteria for 
evaluating the outputs. Melt pool images and videos acquired from a 

Fig. 1. Experimental setup (a) LW-DED setup, (b) schematic view of camera settings, (c) camera setup implemented on LW-DED.  
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welding vision system (Cavitar C300) at 30–70 fps and 1440 × 1080 
pixels resolution are the proposed feedback data. 

For each substrate material, a CCD DoE is considered. CCD is a sta
tistical method for experimental design proposed by Box and Wilson in 
1951 [37]. It uses a set of experimental conditions to fit a second-order 
response surface model, enabling optimization of input parameter set
tings and investigation of their effects on the response variable [38,39]. 
The incorporation of DoE in combination with Deep Neural Networks 
(DNNs) enables a systematic and efficient exploration of the parameter 
space in LW-DED experiments, ensuring comprehensive coverage and 
optimization of process variables while leveraging the capabilities of 
DNNs for accurate modeling. 

For a CCD DoE with 3 process parameters and 5 center point repli
cates, a total of 19 data points is required, with 14 data points at the 
factorial and axial positions and 5 replicates at the center point to esti
mate pure error and assess response surface curvature. Fig. 2(b) shows 
the CCD DoE experimental levels for the proposed process parameters. 
As it is demonstrated in Fig. 2(c), the mentioned 19 single-bead exper
iments, with a length of 35 mm, were conducted on the aforementioned 
substrates using alloy 625 wire feedstock material with a diameter of 
1.14 mm and varying levels of process parameters. Pure Argon was 
selected as shielding with gas flow of 12 l/min. To ensure the inde
pendence of the printed beads, a 10 mm distance was maintained be
tween them. Additionally, after printing each bead, the process was 
paused to allow it to cool down to ambient room temperature. 

2.3. Theoretical details 

This study evaluated the correlation between process parameters and 
responses through the application of CNN-based methods for monitoring 

melt pool behavior, and predicting bead geometries using the extracted 
melt pool characteristics obtained through the segmentation methods. 
To accomplish this objective, the theoretical underpinnings of these 
methods are presented in this section. 

2.3.1. Segmentation architectures and model selection rationales 
Image segmentation involves classifying pixels individually and has 

three subsets: semantic, instance, and panoptic segmentation. Semantic 
assigns object class labels to each pixel, instance identifies and segments 
individual objects, while panoptic combines both. For melt pool moni
toring, instance segmentation is ideal, offering detailed analysis without 
panoptic’s exhaustive details. Fully supervised instance segmentation 
methods can be categorized into three groups based on the stages 
required for object positioning and mask generation: multi-stage, two- 
stage, and single-stage methods. Multi-stage and two-stage methods 
involve sequential object positioning and mask generation, whereas 
single-stage methods enable simultaneous positioning and mask gener
ation. Two-stage and multi-stage methods often prioritize accuracy over 
computational cost [40]. In contrast, single-stage object detection and 
segmentation methods achieve a more favorable balance between speed 
and accuracy [41]. 

Single-stage methods prioritize high accuracy within real-time con
straints, even if it involves a slight reduction in accuracy, making them a 
suitable choice for melt pool monitoring. In single-stage instance seg
mentation methods, both prototype mask generation and per-instance 
mask coefficient production occur simultaneously. This approach pri
oritizes the equal importance of location information and mask repre
sentation, distinguishing it from two-stage and multi-stage methods 
where they are interdependent. The trade-off between speed and accu
racy in single-stage methods may slightly reduce accuracy but prioritizes 
achieving the highest accuracy within low latency or real-time 
constraints. 

Due to the scarcity of research addressing the performance of the 
melt pool segmentation methods, the evaluation of these models’ pre
dictive performance on benchmark datasets is being taken into account. 
Table 3 presents the performance results for a selection of the most 
renowned single and two-stage methods on the COCO dataset [42]. 
However, it’s worth noting that two-stage methods tend to have slower 

Table 1 
Chemical composition of the wire.  

Wire chemical composition - UTP A 6222Mo-3, wt%   
C Si Mn Ni Cr Mo Cu Ti Al Nb P S Fe Ta 

<0.01 0.12 0.02 64.66 22.30 8.71 0.02 0.22 0.13 3.45 0.004 0.001 0.29 0.004  

Fig. 2. Details of (a) laser measurement device with preliminary test plates, (b) CCD DoE for LW-DED experiments, (c) the scanned CCD experiments on S355 and SS 
substrates, and (d) measurements in macrostructural examinations. 

Table 2 
Process parameters feasible ranges and CCD DoE levels.  

Process parameters Range Levels in CCD DoE 

A: WFR (m/min) [0.4 - 1.1] [0.40, 0.54, 0.95, 0.74, 1.09] 
B: TS (mm/s) [3 - 8 ] [3, 4.01, 5.5, 6.99, 8] 
E: LP (kW) [1.4 - 2.1] [1.46, 1.6, 1.8, 2, 2.13]  
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processing speeds, making them less suitable for real-time applications 
like melt pool monitoring. In most cases, two-stage methods exhibit 
higher accuracy compared to their single-stage counterparts. Never
theless, recent versions of the YOLO model, particularly YOLOv8, have 
successfully struck a more favorable balance between accuracy and 
processing speed. The computational speed of YOLOv5 and YOLOv8 is 
sufficiently high to support real-time monitoring objectives while 
maintaining impressive accuracy levels on benchmark datasets. As a 
result, YOLOv5 and YOLOv8 are considered two promising versions of 
the YOLO framework for applications in melt pool monitoring. 

2.3.2. Introducing you only look once (YOLO) 
YOLO is a popular real-time object detection algorithm and instance 

segmentation based on a single convolutional neural network that 
simultaneously predicts bounding boxes and class probabilities for each 

object in an image. The first version of YOLO was introduced in 2016 
[41] and since then several improved versions have more parameters, 
designed to achieve higher accuracy. Fig. 3 showcases the architecture 
of a segmentation head, which combines the object detection capabil
ities of YOLOv8 with an added segmentation branch for simultaneous 
object detection and segmentation. 

Within this study, each YOLO architecture is analyzed through the 
examination of two distinct variations: the smaller version (s) and the 
larger version (l). Comprehensive information outlining the dissimilar
ities between these proposed architectural versions is provided in 
Table 4. Evidently, the small and large versions have varying numbers of 
layers and parameters. 

2.3.3. Dataset 
The crucial components of a deep learning-based approach are the 

data preparation and training processes, particularly in image process
ing applications where image annotation plays a central role. Given the 
lack of publicly available imagery datasets in the domain of LW-DED, it 
is necessary to perform experiments to generate suitable data for these 
processes. To this end, two sets of experiments were conducted on two 
different substrates, namely SS and S355. The procedure for experi
ments, data collection and training, testing and validation is illustrated 
in Fig. 4. Each experiment set consisted of a CCD DoE with three process 

Table 3 
The performance of the most well-known single and two-stage segmentation 
methods on COCO dataset.  

Model Type Backbone dataset AP FPS Ref 

Mask R- 
CNN 

Two- 
stage 

DetNet-59 COCO AP =
37.1 

5 [43] 

FPN Two- 
stage 

FRCN COCO AP =
36.2 

5 [44] 

SSD Single- 
stage 

VGG-16 COCO AP =
23.2 

46 [45] 

RetinaNet Single- 
stage 

ResNet-101-FPN COCO AP =
34.3 

11 [46] 

YOLOv5 Single- 
stage 

Modified CSPv7 COCO AP =
23.2 

45 [47] 

YOLOV8 Single- 
stage 

EfficientNet, 
ResNet, and 
CSPDarknet 

COCO AP =
53.9 

280 [40]  

Fig. 3. Yolo v8 architecture.  

Table 4 
Number of layers and the trainable parameters for the proposed architectures.  

YOLO version Number of layers Number of parameters 

YOLOv5s 225 7,408,214 
YOLOv5l 379 47,499,542 
YOLOv8s 261 11,790,483 
YOLOv8l 401 45,936,819  
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parameters and five repetitions at the center of the box, in addition to a 
set of 20 random tests within the specified range listed in Table 2. 

All images captured during each test, from one second before 
deposition to one second after, were included in the dataset. Dataset 
includes 10 % of images captured before and after deposition, 20 % of 
images captured at the beginning and end of deposition (non-steady 
states for printing), and 70 % of captured images during the steady 
depositing phase. The dataset was created by selecting the same number 
of images from each experimental test, while ensuring that the pro
portions of data from each test in the dataset were maintained. After 
obtaining a dataset of more than 1500 images for each substrate, 25 % 
were reserved for validation and 75 % for training the networks. Testing 
data, obtained from independent random tests, comprised 300 images 
for each substrate. The dataset underwent annotation for malt pool 
boundaries using the labelme library [48], a Python package that pro
vides an image annotation tool as well as functionality for reading, 
writing, and converting the resulting JSON format. The dataset is 
available at [49]. 

2.3.4. Monitoring system evaluation and sensitivity assessment 
An instance segmentation model is a type of computer vision model 

that can identify and segment individual objects within an image. 
However, instance segmentation models can also be used as object 
detection models since they can identify and localize objects in an 
image. Such models do this by generating pixel-level masks than 
distinguish between different instances of same object class. By using an 
instance segmentation model for melt pool monitoring, precise pixel- 
level masks of the melt pool region can be obtained. This can provide 
valuable insights into the behavior and properties of the melt pool 
during printing processes. In this study, YOLO-based instance segmen
tation models are being used primarily for melt pool segmentation. The 
models are trained on the dataset of images obtained from LW-DED 

process that contain examples of annotated melt pools, and they learn 
how to classify each pixel in each image. Given our study’s primary 
emphasis on segmentation, and the exclusive consideration of a single 
object class i.e., melt pool, it is obvious that the performance criteria for 
classification and detection including classification precision and recall, 
exhibit remarkably high values close to 100 percent. This outcome is 
anticipated and, therefore, no further assessment of these criteria is 
warranted, aligning with the study’s core focus on segmentation. 

Here are the main evaluation criteria for segmentation algorithms: 
(i) Segmentation loss: In YOLO models, the binary cross-entropy (BCE) 
loss is employed asan evaluation criterion for image segmentation, as 
expressed in Eq. (1): 

BCE loss = − ylog(ŷ) − (1 − y)log(1 − ŷ) (1) 

In this equation, ‘y’ denotes the ground-truth binary label for a pixel, 
signifying its association with either the object of interest (in this study, 
the melt pool) or the background. ‘ŷ’ corresponds to the predicted 
probability assigned to the object of interest for that specific pixel, 
achieved through the application of the sigmoid activation function. The 
sigmoid activation function transforms the model’s output into a range 
of [0, 1] for each pixel. This is essential for the BCE loss calculation, as it 
facilitates the comparison between the predicted probability of the 
positive class (in this case, the melt pool) and the corresponding ground- 
truth binary label for that pixel. 

The BCE loss quantifies the disparity between the predicted proba
bilities of the model and the true binary labels, guiding YOLO models 
during training to minimize this discrepancy. This optimization process 
contributes to the achievement of accurate segmentation of the object of 
interest within the image. The exact BCE loss values may depend on the 
dataset and model architecture, but a decreasing BCE loss indicates that 
the model is learning and improving its segmentation performance. 

(ii) Mean Average Precision (mAP): In instance segmentation algo
rithms, the mAP is a widely used evaluation metric. mAP combines two 
fundamental metrics: Precision and Recall, both of which are calculated 
separately for each class (in our study, the class of interest is the melt 
pool). Precision (Eq. (2)) measures the accuracy of the model’s pre
dictions for a given class. It quantifies the ratio of true positive instances 
(correctly predicted instances of the class) to the total predicted in
stances (true positives and false positives). 

Precision =
True Positives

True Positives + False Positives
(2) 

On the other hand, Recall assesses the model’s ability to detect all 
actual instances of the class. It calculates the ratio of true positive in
stances to the total actual instances (true positives and false negatives). 
The formula for Recall is provided in Eq. (3)). 

Recall =
True Positives

True Positives + False Negatives
(3)  

mAP is a comprehensive metric that considers the precision-recall trade- 
off across various confidence thresholds. It provides a single summary 
score reflecting the overall model accuracy. To compute mAP, precision 
values are averaged across different recall levels, each associated with a 
specific Intersection over Union (IoU) threshold. In YOLO segmentation 
models, IoU is used to evaluate the accuracy of object segmentation. It 
measures the overlap between the predicted and ground truth segmen
tation masks, with a value of 1 indicating a perfect overlap. Typically, a 
detection is considered positive when the IoU exceeds a predefined 
threshold, often set at 0.5 or higher [50]. 

The standard mAP metrics of instance segmentation are defined as 
Eqs. (4) and (5) [51]: 

mAP(y, y) = 1/Nc

∑

c
A(PR − curve) (4)  

Fig. 4. Dataset collection and melt pool monitoring procedure.  
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PR − curve =
∑

α

∑

ij

(
yi, yj

)
.I
[
IoU

(
yi, yj

)
> α

]
(5) 

Where y and y denote the predicted and ground-truth instance 
masks, respectively. Nc represents the total number of object classes 
under consideration. The function A(⋅) calculates the area under the 
Precision-Recall curve, while the PR-curve refers to the smoothed 
precision-recall curve. I(⋅) denotes the indicator function. Lastly, the 
symbol ’α’ signifies the Intersection over Union (IoU) threshold, ranging 
from 0.5 to 0.95 with increments of 0.05. 

Following the evaluation of deep learning-based segmentation 
techniques, the subsequent objective is to assess the sensitivity of pro
cess and response parameters to the segmented melt pool data derived 
from Cavitar camera images. This sensitivity analysis is conducted uti
lizing statistical methods rooted in Analysis of Variance (ANOVA), 
encompassing the utilization of the coefficient of determination (R2) for 
sensitivity evaluation, as well as the examination of p-values derived 
from hypothesis tests and correlation matrices to elucidate relationships 
within the acquired melt pool data and parameters [37]. 

Significant sensitivity to experimental parameters is indicated by R2 

values exceeding 0.80, providing insights into the impact of the inde
pendent variables, represented by melt pool segmentation data, on the 
dependent variables, encompassing process parameters and bead ge
ometries. Furthermore, p-values from ANOVA are employed to rigor
ously evaluate the statistical significance of observed effects, with a 
threshold of 0.05 signifying a level of statistical significance denoting a 
5 % or lower probability of results arising from random chance. Addi
tionally, correlation matrices are generated using the Pearson method, 
with coefficients represented by "r” values spanning from − 1 to +1. 
These "r” values quantify both the strength and direction of linear re
lationships between variables, facilitating the identification of associa
tions among them [52]. These integrated statistical techniques 
collectively serve to quantify parameter influences and unveil latent 
patterns within the dataset. 

3. Results and discussions 

This section presents the evaluation outcomes concerning the 
training of the proposed models, the assessment of stability and sensi
tivity in relation to the results obtained from the melt pool monitoring 
models, and the outcomes of a CNN-based bead geometry prediction 
model using the acquired tensor mask from the YOLO models. 

3.1. Performance of proposed models 

After the experiments based on the CCD DoE were conducted, the 
data collected during the experiments were evaluated. The synchroni
zation between the acquired frames and bead geometry was performed 
as the camera was set to 60 fps. The proposed dataset for training and 
validation of the network consisted of all the images obtained from 19 
tests for each substrate. The complete dataset, including the training, 
validation, and testing sets of images, as well as the annotation in the 
format of YOLO versions, has been prepared and is available at [49]. The 
training process for the YOLO-based methods was assumed to run for 
300 epochs, but it was stopped if there were no improvements. The 
chosen optimizer was Stochastic Gradient Descent (SGD), coupled with a 
cyclic learning rate scheduler. Each cycle, representing learning rate 
transition from lower to upper bounds and back, was integral. The initial 
learning rate stood at 0.0005, with a maximum of 0.02. Training 
adhered to a precisely structured cyclic learning rate schedule, with 
1500 evenly distributed iterations per cycle for balanced and efficient 
learning. Additionally, a constant of 0.985 determined the exponential 
range for maximum learning rate reduction. 

Fig. 5 depicts the mAP and segmentation loss values obtained during 
the training process of both the small and large versions of YOLOv5 and 
YOLOv8 models applied to LW-DED experiments on SS and S355 sub
strates. As it can be observed, the segmentation loss for all the models 
has diminishing trend. The optimal epochs for training the networks on 

Fig. 5. Segmentation loss and mAP50–95 values for training process of proposed (a) Yolov8-based and (b) Yolov5-based methods in LW-DED on SS and 
S355 substrates. 
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the SS substrate were 299, 205, 299, and 218 for YOLOv5s, YOLOv5l, 
YOLOv8s, and YOLOv8l, respectively. Similarly, the corresponding 
optimal epochs for the S355 substrate were 259, 96, 169, and 174. To 
compare the performances of the different models, mAP is the most 
relevant parameter. 

The overall performance of the proposed models can be assessed by 
referring to Fig. 5 and Table 5, which provide information on FPS and 
mAP50–95 values. The derived FPS value is determined by averaging 
the processing time, measured in milliseconds, for all frames in our 
experiments and subsequently converting this average into the number 
of frames processed per second. Generally, it is evident that all archi
tectures exhibit superior performance when applied to the SS substrate 
compared to the S355 substrate. This distinction could be attributed to 
the surface properties and the impact of light reflection resulting from 
the polishing of the S355 substrate. Moreover, the YOLOv8 models 
demonstrate higher accuracy than the YOLOv5 models in both sets of 
experiments. For all the models except for YOLOv5 in segmenting melt 
pool in S355 substrate, the mAP50–95 criterion for large models is 
higher with respect to small models. However, the small models 
demonstrate faster processing speed for Cavitar images, as indicated by 
FPS. The YOLOv8l models achieve the highest accuracy, while the 
YOLOv8s models obtain the highest FPS among the proposed models. 

To visually demonstrate the process of melt pool segmentation per
formed by the proposed models, Fig. 6(a) and Fig. 6(b) illustrates two 
sample experiments conducted on SS substrate with WFR of 0.74 m/ 
min, TS of 5.5 mm/s, LP of 1.46 kW, and S355 substrate with WFR of 
0.74 m/min, TS of 5.5 mm/s, LP of 1.8 kW respectively. The regions 
corresponding to the perimeters of the segmented parts are highlighted 
in the Figure. As anticipated, the disparities between the ground truth 
segmentations and the segmented parts obtained from YOLOv8 are 
comparatively smaller than those obtained from YOLOv5. Additionally, 
within the same YOLO models, the prediction accuracy is higher for the 
larger version of the model, resulting in segmentations that are closer to 
the ground truth. 

3.2. Stability and sensitivity assessment of LW-DED experiments 

Following the assessment of the performance of the proposed CNN- 
based models for monitoring the melt pool in LW-DED processes, it is 
essential to investigate the stability of the process and the sensitivity of 
process/response parameters to the segmented melt pool. To facilitate 
these assessments, image processing methods are employed to calculate 
metrics such as melt pool width, height, area, Center of Area (CoA), and 
the center of the melt pool bounding boxes. As shown in Fig. 7, for each 
feature (here melt pool area is considered) extracted from melt pool 
monitoring model, there are five different states: before deposition, 
starting, steady, finishing, and after deposition. Among the mentioned 
states, the steady state is selected for assessment as the most reliable 
state. 

While statistical analysis primarily focuses on the steady state, it is 
crucial to acknowledge the occurrence of instabilities during the print
ing processes. These instabilities can result from various factors, 
including defective experiments, such as when the LP is insufficient to 
melt the wire and substrate effectively, leading to wire wobbling, as well 
as inherent uncertainties in the LW-DED processes. Therefore, 

understanding the cause of each instability is crucial for the purpose of 
either filtering it out if it is inherent or implementing process control 
measures to prevent defects. To address this challenge, a method 
involving calculating the distance between the developed models’ 
segmented melt pool CoA and the bounding box center has been 
employed to detect unstable melt pool conditions (Fig. 8). 

For evaluating distance variations in CCD-based experiments con
ducted under stable conditions, Fig. 9 presents box plots for all frames of 
each experiment on SS substrate. These distances were calculated using 
the YOLOv8l model as the model with highest accuracy. It can be 
inferred that in a stable process, the CoA of the segmented melt pool and 
the center of the melt pool bounding box are consistently situated within 
a certain threshold in stable mode, without experiencing significant 
deviations compared to other stable frames. The median and mean 
distances for all printed beads are consistently below 100 µm, with some 
even below 75 µm. All printed beads exhibit upper quantiles of the 
distance below 100 µm, except for tests 1 and 15, where slight wire 
vibration during the experiments may account for deviations. 

Additionally, to evaluate the statistics concerning the mentioned 
distance in defective tests, additional experiments were conducted. 
These experiments maintained a constant ED, defined as LP/TS, while 
proportionally adjusting the LP and TS. The WFR was kept constant 
throughout these experiments. Table 6 provides the details regarding the 
process parameter values for the experiments. 

Fig. 10 provides box plots of the conducted tests based on constant 
ED. The results of the first four experiments closely aligned with the 
CCD-based experiments, all conducted under stable conditions, yielding 
mean and median distances below 100 µm. However, proportional re
ductions in LP and TS values resulted in wire wobbling defects (tests 
number 5 and 6). The figure clearly shows a substantial increase in 
mean, median, upper quantile, and maximum distances for experiments 
with defects, with mean and median distances exceeding 150 µm and 
200 µm, respectively. Consequently, a stability threshold of 100 µm is 
considered for stable processes while the values more than 200 µm is a 
sign of defective experiments. In Fig. 7 as a sample test, the distance 
variations among the frames are illustrated. With the exception of 
transient states during the start and finish of the deposition process, the 
distance values consistently stay within the stable threshold. However, 
during these transient states, wire vibration occurs, causing the distance 
values to surpass the stable threshold. 

After applying a 100 µm threshold to filter frames acquired during 
the steady state of CCD experiments, ANOVA is employed to evaluate 
the sensitivity of process parameters (WFR, TS, and LP) to variations in 
melt pool geometries (width, height, and area). Table 7displays this data 
for all YOLOv8-based models, including the highly accurate YOLOv8l 
and the faster YOLOv8s, used with two distinct substrate materials. 

The results reveal that the YOLOv8l model demonstrates higher p- 
values and R2 values compared to the YOLOv8s model for the SS plate. 
Specifically, the R2 values for melt pool width, height, and area are 5.23, 
3.25, and 4.75 % higher, respectively, for the YOLOv8l model. A similar 
trend, except for melt pool height, is observed for the S355 plate. 
Nevertheless, the model p-values for all melt pool geometries in the 
process considering the stable frames are below 5 % for YOLOv8-based 
models. Moreover, in all cases, the processes with stable frames yields 
higher statistical significance when compared to normal processes that 
consider all frames. Additionally, for the considered substrates, the 
modeling of melt pool width and area proves to be more accurate and 
statistically significant compared to melt pool height. 

For acquiring more insight into the melt pool segmentation and 
monitoring, the correlation between segmented melt pool geometries 
(including width, height, and area) and bead geometries determined by 
the introduced microstructural investigation system is analyzed. 

Fig. 11 presents the macrographic examination of the beads’ cross- 
sections. The solidified weld metal corresponds to the dark areas and 
is characterized by a mixture of Inconel 625 and fused base material. The 
area highlighted in blue delineate the HAZ and is characterized by the 

Table 5 
FPS and mAP50–95 values for proposed models.  

Model SS substrate S355 substrate  
FPS mAP50–95 FPS mAP50–95 

Yolov5s 73.53 0.90137 66.2 0.83222 
Yolov5l 42.37 0.91353 42.55 0.82892 
Yolov8s 120.48* 0.92242 114.94* 0.84686 
Yolov8l 28.6 0.92502** 28.57 0.85357** 

*The highest FPS **The best accuracy. 
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thermally affected part of the base material. The visual examination 
with optical microscope did not reveal defects such as macro-cracks, and 
porosities. Additionally, prior to sample preparation, surface non- 
destructive testing, e.g., color dye penetrant method, has been per
formed following the ISO 3452 standard and did not reveal any indi
cation of lack of fusion on the surface, cracks, or open porosity. 

In Fig. 12(a) the region denoted as A3 represent the area covered by 
the HAZ. The determination of this parameter is specifically limited to 
the observations conducted on S355 base material due to its suscepti
bility to recrystallization, which aids in the delineation using optical 
microscopy. Conversely, the use of SS as substrate does not exhibit 
distinct identification of the HAZ, thereby justifying the exclusion of 
parameter A3. In addition, the value W0.3 corresponds to the bead width 
measured at 0.3 mm from the substrate’s surface. It is worth noting that 
the geometry of welds, such as convexity and wetting angle, variates 
across the different weld beads. The main advantage conferred by the 
inclusion of W0.3 in the analysis is its ability to mitigate the impact of the 
notable diversity in weld toe shapes. Indeed, the width of the weld bead 
on the surface, referred to as W, can be significantly impacted despite 
causing a slight change in the volume of deposited metal. Hence, a 
comparison between W and W0.3 is pertinent for the purpose of refining 
the measurement of weld bead width within the framework of the 
model. The statistics related to the correlation map in Fig. 12(b) and (c), 
reveal the higher correlation between W0.3 and melt pool geometrical 
characteristics compared to W. 

Fig. 6. Visual comparison of the result of proposed networks on sample experiments conducted on (a) S355 and (b) SS plates.  

Fig. 7. Different printing states shown in melt pool area calculation and the distance values between CoA and bounding boxes in a sample experiment with WFR =
0.74, TS = 5.5, and LP = 1.8. 

Fig. 8. Measured distance between CoA and center of bounding box for sta
bility assessment in a sample experiment with WFR = 0.74, TS = 5.5, and LP 
= 1.8. 
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Fig. 12, presents the correlation map, based on Pearson’s coefficient, 
between YOLOv8l-based segmented melt pool geometries (comprising 
melt pool height, width, and area) and bead geometrical details 
including bead width (W, and W0.3), height (h1), area (A1), penetration 
height (h2), penetration area (A2), HAZ area (A3), and the overall area 
and height (A, and H). Fig. 12(a) presents a schematic depiction of the 
considered geometrical characteristics. This analysis covers experiments 
conducted on two substrate materials, SS (Fig. 12(b)) and S355 (Fig. 12 
(c)). 

As it can be observed, the correlation coefficient between melt pool 
height and other geometrical features is not as high as the coefficients 
for melt pool area and width. This can also be inferred from statistics in 
Table 7. However, the highest related value for SS substrate is the 

correlation with h1, and for S355 substrate is the correlation with A3 
with 0.65 and 0.6 respectively. The correlation between melt pool (M. P. 
in the Fig. 12) area and width and geometrical features for SS substrate is 
more significant than the correlation for S355 substrate. As it is shown in 
Fig. 12(b), for SS, the correlation coefficient between M.P. area and A, 
A1, h1, and H are considered the highest in magnitude. In the mentioned 
substrate, A1, A, H, h1, and W0.3 are the geometrical features with cor
relation coefficient of more than 0.80 with M.P. area. While most of the 
geometrical features in SS have correlation of more than 0.7 with M.P. 
width, only A has a correlation value higher than 0.8. The same trend 
exists for S355 substrate (Fig. 12(c)), with the difference that the coef
ficient values are mostly between 0.5 and 0.7. The highest correlation 
for M. P. area in this substrate is attributed to A3, A, H, and W0.3 with 
values of 0.71, 0.66, 0.65, and 0.62 respectively. M. P. width in S355 
substrate is highly correlated with penetration features includingA2 and 
h2 with values of 0.63 and 0.69 respectively. 

3.3. Bead geometry prediction 

As the final step, developing a predictive model based on the ac
quired melt pool characteristics by YOLO models for bead geometry as a 
use case of the segmentation models has been considered. The data 
obtained from CCD-based experiments on SS substrate have been 
considered. In the developed segmentation models, tensor masks are 
generated consisting of binary values that indicate whether a given pixel 

Fig. 9. Box plots illustrating the computed distance between the CoA of the melt pool and the center of bounding boxes in the CCD-based experiments on SS acquired 
by YOLOv8l. 

Table 6 
The constant ED experiment’s process parameter values.  

Test number WFR TS LP 

1 0,74 1.8 5.5 
2 0,74 1.2 3.67 
3 0,74 1 3.06 
4 0,74 0.8 2.44 
5* 0,74 0.7 2.14 
6* 0,74 0.6 1.83 

* Tests with defects (wobbling wire). 

Fig. 10. Box plots illustrating the computed distance between the CoA of the melt pool and the center of bounding boxes in the ED constant experiments on SS 
acquired by YOLOv8l. 
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in a frame belongs to the melt pool or not. In the predictive model, such 
tensors are fed to the developed CNN-based model to predict the bead 
geometrical characteristics, namely its width, height, and area. For the 
prediction model, the mask tensors acquired from YOLOv8l model as the 
most precise model have been considered. 

The architecture of the CNN-based model is presented in Fig. 13. The 

model consists of two convolutional layers, each one integrated with 
Rectified Linear Unit (ReLU) activation function and batch normaliza
tion. After each convolutional layer, a max-pooling layer is applied, and 
the model is completed with three fully connected layers. 2000 images 
extracted from the stable states in the conducted experiments, including 
CCD-based and randomly generated experiments. The training process 
employed the Adam optimizer as the model optimizer and Mean Square 
Error (MSE) as the chosen loss function. Throughout the network 
training procedure, a batch size of 16 instances of data was used in each 
iteration to implement model training and optimization. 

Fig. 14 provides the details regarding the accuracy of the bead ge
ometries predictions. Fig. 14(a) illustrates a representative prediction 
stemming from CCD-based experiments, featuring process parameters: 
WFR = 0.54 m/min, TS = 4 mm/s, and LP = 2 kW. Notably, the 
parameter displaying the highest level of accuracy is the bead area, as 
corroborated by its depiction in the correlation map found in Fig. 12. 

Furthermore, Fig. 14(b) displays a box plot that provides an over
view of the average MSE values across the printing of each bead for all 
CCD-based experiments. The computed mean values for bead area, 
height, and width are 0.082, 0.111, and 0.334, respectively. These 
findings emphasize the model’s accuracy in predicting bead area, 
although the precision in predicting bead height is relatively lower when 
compared to predictions for bead width and area. In conclusion, the 
methodology of modeling bead geometries utilizing melt pool images 
has demonstrated its feasibility and effectiveness. 

4. Conclusion 

In conclusion, this study successfully conducted the detection, 
annotation, and segmentation of the melt pool in controlled CCD ex
periments within the valid range of process parameters for the LW-DED 
process. The utilization of YOLO-based algorithms proved effective in 
achieving these objectives. The obtained results underwent rigorous 
statistical analysis, allowing for meaningful insights. Moreover, the 
tensor masks generated by the segmentation models have demonstrated 
their effectiveness when employed in bead geometry prediction models. 

Table 7 
R2 and p-values of proposed YOLOv8 models for melt pool width, height, and area considering all process image frames and stable frames.     

Normal process Process with stable frames    
Width Height Area Width Height Area 

S355 substrate YOLOv8s p-value 0.127 0.023 0.021 0.013 0.014 0.012 
R2 0.6575 0.7783 0.7816 0.8053 0.8022* 0.8088 

YOLOv8l p-value 0.103 0.069 0.013 0.006 0.020 0.011 
R2 0.6765 0.7087 0.8034 0.8348* 0.7839 0.8110* 

SS substrate YOLOv8s p-value 0.174 0.137 0.046 0.007 0.025 0.012 
R2 0.6260 0.6504 0.7363 0.8310 0.7725 0.8095 

YOLOv8l p-value 0.033 0.046 0.053 0.001 0.013 0.003 
R2 0.7577 0.7373 0.7275 0.8833* 0.8048* 0.8570*  

* Most accurate model. 

Fig. 11. Cross-sectional images using optical microscopy for experiments on S355 substrate.  

Fig. 12. The correlation map between segmented melt pool geometrical fea
tures and bead geometrical features acquired by macrostructural examination 
method for (a) schematic view of geometrical characteristics (b) SS substrates 
and (c) S355. 
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The main conclusions drawn from this research are as follows:  

• The integration of data from CCD DoE experiments, including in-situ 
and ex-situ measurements, into standardized datasets proved to be a 
valuable contribution. These datasets consisted of meticulously an
notated images from 19 experiments on each substrate, following 
YOLOv5 and YOLOv8 standards. With limited comparable datasets 
available, the publication of this dataset provides researchers with a 
valuable resource, promoting further advancements in the field and 
serving as a robust reference for future research.  

• The study examined four YOLO-based algorithms, including both 
large models (YOLOv5l and YOLOv8l) and small models (YOLOv5s 
and YOLOv8s), for training datasets. The analysis demonstrated that 
modeling melt pool geometries for the SS substrate performed better 
across the same models due to distinctive visual and surface char
acteristics. The most accurate melt pool segmentation models were 
based on YOLOv8l, achieving mAP50–95 scores of 95.5 % and 85.3 
% for the SS and S355 substrates, respectively. Additionally, the 
smaller YOLO versions exhibited higher FPS rates, with YOLOv8s 
being 63.4 % and 73.4 % faster than YOLOv5s for the SS and LCS 
substrates, respectively. 

Fig. 13. Architecture of the developed CNN-based model for bead geometry prediction.  

Fig. 14. CNN-based model prediction performance: (a) Predicting bead geometries with sample process parameters (WFR = 0.54 m/min, TS = 4 mm/s, and LP = 2 
kW) on SS. (b) Box plots of average MSE for CCD-based experiments. 
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• To ensure robust statistical analysis, it is imperative to focus on the 
stable deposition conditions. To achieve this, two key aspects were 
investigated. Firstly, the analysis concentrated on the stable phase of 
the deposition process, which occurs after the initial transient phase 
and continues until the process conclusion. This approach allowed 
for an examination of consistent process behavior. Secondly, an 
instability indicator was introduced to quantify deviations, encom
passing inherent instabilities and defective tests. This was achieved 
by calculating the distance between the center of the melt pool 
bounding box and the center of the segmented melt pool area. In
stances where this distance exceeded 100 µm were flagged as 
indicative of inherent instabilities in stable process conditions where 
defects do not exist. Frames exhibiting such instabilities were 
excluded from the statistical analysis, enhancing the accuracy of the 
statistical analysis of the melt pool characteristics concerning process 
attributes.  

• The analysis of the trained YOLOv8-based melt pool segmentation 
models yielded important findings. Firstly, the analysis of variance 
confirmed higher R2 values and p-values for stabilized process data 
compared to data from processes without stable frames. Further
more, modeling melt pool width and area based on process param
eters demonstrated superior accuracy compared to height modeling, 
although the height modeling results were still acceptable. For the SS 
substrate, YOLOv8l models showed higher significance across all 
melt pool geometrical features than YOLOv8s models, with R2 values 
for large models being over 3 % higher. Similar trends were observed 
for the S355 substrate, except for melt pool height. Notably, 
YOLOv8s exhibited a p-value of 0.006 less than YOLOv8l for melt 
pool height, indicating a more accurate model in that specific case.  

• The correlation between macrographic examination results of bead 
cross-sections and melt pool geometries, calculated using melt pool 
segmentation models, was analyzed. In the SS substrate, there was no 
significant correlation between height and geometrical features. 
However, the melt pool area showed a strong correlation with bead 
area and height. Furthermore, melt pool width exhibited a high 
correlation with bead area, width, and overall height. For the S355 
substrate, the correlation values were lower compared to those for 
SS. Melt pool area correlated with the area of the heat-affected zone, 
as well as bead width, height, and area. Additionally, melt pool width 
showed its highest correlation with penetration area and height.  

• The assessment of predicting bead geometrical characteristics using 
CNN-based models fed with tensor masks obtained from the seg
mentation models was conducted. The analysis confirmed the 
capability of melt pool segmentation outputs to predict bead geom
etries with average mean squared error values of 0.082, 0.111, and 
0.334 for bead area, height, and width, respectively. 

This research was limited to single beads as the precursor to apply 
the same DNN method in multilayer DED. Further research is planned to 
focus on utilizing the proposed approach as a foundation for developing 
model predictive controllers in multilayer additive manufacturing 
particularly in the context of directed energy deposition processes. 
Additionally, we plan to explore the integration of the proposed 
framework into sensor fusion platforms, enabling comprehensive and 
real-time monitoring systems that combine imagery, acoustic emission, 
and temperature sensing for numeric and categorical data using AI- 
based and statistical methods. These advancements would contribute 
to the development of more robust and efficient monitoring and control 
systems for enhanced process performance and product quality in AM. 

APPENDIX A. Supplementary data 

The following is the supplementary material related to this article. 
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