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ABSTRACT The magnetoquasistatic simulation of large power converters, in particular transformers,
requires efficient models for their foils windings bymeans of homogenization techniques. Using the standard
solid and stranded conductor models is not computationally feasible for a foil winding. In this article,
the classical foil conductor model is derived and, for the first time, an inconsistency in terms of circuit
theory is reported, which may lead to time-stepping instability. The inconsistency can be related to the
differential-algebraic nature of the resulting system of equations. A new modified definition of the turn-
by-turn conductance matrix of the foil conductor model is shown to mitigate this problem. The different
structure of the systems using the alternative turn-by-turn conductance matrix definitions is examined in
detail. Numerical results are presented to demonstrate the instability of the original foil conductor model
and to verify the effectiveness of the new proposed model.

INDEX TERMS Foil conductor model, foil winding, differential algebraic equation, differential index, finite
element method.

I. INTRODUCTION
Low-frequency electromagnetic field models are typically
connected to a circuit model consisting of lumped elements
to excite them [1]. This is done by means of conductor
models that distribute circuit voltages and currents as electric
fields and currents over the spatially resolved computational
domain back and forth. The well-known terms solid and
stranded conductor model have been coined in [2] and refined
over the years, see e.g. [3] and [4] and the references therein.

In the design of e.g. transformers and magnetic compo-
nents, foil windings are used [5], [6]. In comparison to litz
windings, foil windings are easier to construct [7], and have
better mechanical and thermal properties [6], [8]. However,
for foil windings, the conventional conductor models become
cumbersome because they require the individual thin sheets
to be resolved on the computational domain. This leads to a
very fine mesh and thus to a high, sometimes unmanageable
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number of degrees of freedom. As a remedy, foil conductor
models [9], [10], [11] have been proposed. Figure 1 illustrates
the foil winding geometry.

Sometimes field equations and conductor models are
embedded into circuit simulations, for example if a power
converter controller is simulated along with the device of
interest [12]. The numerical treatment of such coupled prob-
lems has been investigated in [13], [14], [15], [16], and
[17]. Two types of approaches can be distinguished: mono-
lithic methods, where all equations are solved together in
one large system, and co-simulation approaches, where the
equations are solved separately with limited (possibly iter-
ative) exchange of information. The numerical behavior of
the resulting field/circuit coupled system has been analyzed
in [18], [19], [20], and [21]. In conclusion: low-frequency
magnetoquasistatic field models based on solid and stranded
conductors shall be driven by voltages rather than currents
to avoid numerical difficulties. This is consistent with their
lumped equivalent model like (nonlinear) inductors, and it is
independent of their potential formulation, i.e., A⃗−φ or T⃗−�.
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FIGURE 1. Illustration of the geometry of a foil winding. Left: A 3D sketch. Middle: Cross-section of
the foil winding domain inside the computational domain with the local coordinate system
(α, β, γ ). Right: Cross-section of a single foil. The conducting material is colored in gray and the
insulation material in white.

This paper extends the analysis of field/circuit coupled
systems to the case of foil conductor models. We observe an
issue with the conventional finite element (FE) approxima-
tion of the foil winding turn-by-turn conductance matrix and
propose a new variant that restores the consistency with the
inductance-like behavior of solid and stranded conductors.

The structure is as follows: Section II introduces the foil
conductor model and describes its proposed modification.
Section III examines how the model behaves as a part of an
external circuit. In Section IV, numerical results are presented
to verify the findings of the previous sections.

II. FOIL CONDUCTOR MODEL
Foil conductor models have been originally proposed
in [9] and [10]. However, the following derivation follows
mainly [11]. The model is derived for the three-dimensional
setting as a natural generalization to special cases found in
literature, for example the two-dimensional model in [9],
and it coincides with the model of Dular and Geuzaine
in [10]. Let us consider themagnetoquasistatic approximation
of Maxwell’s equations on a domain �, using the A⃗ − φ-
formulation with the magnetic vector potential A⃗ and the
electric scalar potential φ. Consequently, the electric field can
be written as

E⃗ = −∂t A⃗− gradφ . (1)

We choose the scalar potential such that

− gradφ = 8ζ⃗ =: E⃗s , (2)

with the voltage function 8 and a distribution function ζ⃗
defined in the foil winding domain �fw := supp(ζ⃗ ), where
ζ⃗ corresponds to the winding function for solid conductors
from [22]. We assume that its direction is perpendicular to a
constant rectangular cross-section

S =

[
−
ℓα

2
,
ℓα

2

]
×

[
−
ℓβ

2
,
ℓβ

2

]
, (3)

see Fig. 1. To further simplify the notation, we introduce a
local coordinate system α ∈ Lα , β ∈ Lβ , γ ∈ Lγ in the
foil winding domain �fw and use the (invertible) mapping
f : (α, β, γ ) 7→ (x, y, z) to transform local to global coordi-
nates. We assume f to be linear in both α and β and to map

the rectangle S to a rectangle in �. Note that not all of these
assumptions are mathematically necessary but they cover all
practical relevant cases. Finally, in the third dimension, the
distribution function fulfills the property∫

f(α,β,Lγ )
ζ⃗ · ds⃗ = 1 , ∀α ∈ Lα , ∀β ∈ Lβ . (4)

Let us denote the number of turns withN . Then the domain
of the k-th turn is described by �k ⊂ �fw such that �fw =

∪
N
k=1�k . On each turn we define a restricted distribution

function as

ζ⃗k =

{
ζ⃗ in �k ,

0 else .
(5)

The cross-section of a single foil (see the right side of
Fig. 1), consists of a conducting material of width bc and an
insulation material of width bi. The total width of one foil
is b. The fill factor is defined λ :=

bc
b . We assume, due to

insulation, that the electric field perpendicular to the foils,
i.e., in α-direction of the local coordinate system, does not
generate a current density.

To ensure that the total current flowing through every foil
is equal to a lumped current i, it must hold

i =
∫
�

J⃗ · ζ⃗k dV (6)

for all turns k , with J⃗ being the current density. We assume
that the foils are thin with respect to the skin depth, i.e., bc ≪

δ =

√
2

ωµσ
, with the angular frequency ω, the permeability

µ and the conductivity σ . With that, the current density can
be assumed constant over the thickness of a foil. Since the
conductivity in the insulation material σi is zero, the current
density is only present in the conducting material. Conse-
quently, (6) can be approximated using the conductivity of
the conducting material σc with

i ≈ bc

∫
0(αk )

J⃗ · ζ⃗ dS = bc

∫
0(αk )

σcE⃗ · ζ⃗ dS . (7)

Herein, 0(α) is the surface through the foil winding domain
at position α, i.e.

0(α) :=
{
f(α, β, γ ) : β ∈ Lβ , γ ∈ Lγ

}
⊂ �fw , (8)
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and αk is the midpoint coordinate of the k-th turn. Lastly,
we insert the expression for E⃗ and write

i ≈ b
∫
0(αk )

λσc

(
−∂t A⃗+8ζ⃗

)
· ζ⃗ dS . (9)

In the homogenized model, the single foils are not resolved
anymore. The foil winding domain has constant anisotropic
material parameters of a homogenized conductivity and
reluctivity that are determined with a mixing rule [23]. There-
fore, in the foil winding domain, we write

σα = 0 , (10a)

σβ = σγ = λσc + (1 − λ)σi = λσc , (10b)

να = λνc + (1 − λ)νi , (10c)

νβ = νγ =

(
λ

νc
+

(1 − λ)
νi

)−1

. (10d)

The current condition (9) has to hold for all αk . For
N → ∞, we impose (9) for all α ∈ Lα . We end up with
the final, homogenized system of equations

curl
(
ν curl A⃗

)
+ σ∂t A⃗− σ8ζ⃗ = 0 , in � (11a)∫

0(α)
σ

(
−∂t A⃗+8ζ⃗

)
· ζ⃗ dS =

i
b
, in Lα (11b)

with adequate initial values and boundary conditions on ∂�.
We choose, for simplicity of notation, a homogenous Dirich-
let condition, i.e., A⃗ × n⃗ = 0 on ∂� where n⃗ is the outward
pointing normal vector.

A. DISCRETIZED MODEL
In the following, (11) is discretized using the Galerkin pro-
cedure [24], [25]. The vector potential A⃗ is discretized with
a finite set of standard FE edge functions w⃗j ∈ H0(curl, �).
We assume that the distribution function ζ⃗ can be expressed
in terms of the same w⃗j or is approximated by L2 projection.
Finally, the voltage function8 is discretized with another set
of basis functions p̂l ∈ H1(Lα) which are defined in the local
coordinate system but can be transformed with

pl(x, y, z) =

{
p̂l ◦ f −1

α (x, y, z) if (x, y, z) ∈ �fw ,

0 otherwise ,

(12)

where f −1
α (x, y, z) denotes the α-component of the inverse of

f. This allows us to expand the fields in terms of the basis
functions defined on � as

A⃗ =

Nw∑
j=1

ajw⃗j, ζ⃗ =

Nw∑
j=1

xjw⃗j and 8 =

Np∑
l=1

ulpl , (13)

where we do not distinguish between the exact fields and
their FE approximations. The unknown coefficients of the
system are [a]i = ai and [u]i = ui. The discretization of ζ⃗
does not introduce additional unknowns as it is determined
beforehand, e.g., by solving a stationary current flow prob-
lem, see [22] and [26].

Testing (11a) with edge functions w⃗i and integration over
the computational domain � yield the standard FE matrices
Kν,Mσ ∈ RNw×Nw and the vector Xσ ∈ RNw×Np . Their
entries are

[Kν]i,j =

∫
�

ν curl w⃗j · curl w⃗i dV , (14)

[Mσ ]i,j =

∫
�

σ w⃗j · w⃗i dV , (15)

[Xσ ]i,l =

∫
�

σpl ζ⃗ · w⃗i dV . (16)

Following the naming convention from mechanics, we call
Kν the stiffness matrix and Mσ the mass matrix. Since the
distribution function ζ⃗ can be expressed in terms of the FE
edge functions w⃗j, see (13), it holds

[Xσ ]i,l =

∑
j

xj

∫
�

σplw⃗j · w⃗i dV (17)

=
[
Mσ,lx

]
i , (18)

with [x]i = xi being the coefficients of the distribution func-
tion and [Mσ,l]i,j =

∫
�
σplw⃗j · w⃗i dV the (modified) mass

matrix containing the extra basis functions.
The current condition (11b) is tested with the basis func-

tions pk and integrated over the one-dimensional domain
f(Lα, β, γ ) of homogenization, i.e.∫

�

σ
(
−∂t A⃗+8ζ⃗

)
· ζ⃗pk dV =

∫
f(Lα,β,γ )

i
b
pk ds . (19)

This yields the transpose of the already defined matrix Xσ ,
the vector c ∈ RNp and the turn-by-turn conductance matrix
G ∈ RNp×Np , whose entries are defined as

[c]k =
1
b

∫
f(Lα,β,γ )

pk ds =
N
ℓα

∫
f(Lα,β,γ )

pk ds , (20)

and

[G]k,l =

∫
�

σ ζ⃗ · ζ⃗plpk dV (21)

=

Nw∑
i,j=1

xixj

∫
�

σ w⃗i · w⃗jplpk dV (22)

= x⊤Mσ,k,lx . (23)

The turn-by-turn conductance matrix can be expressed using
the (modified) mass matrices

[
Mσ,k,l

]
=

∫
�
σ w⃗i · w⃗jplpk dV

involving both pk and pl .
The voltage drop v over the foil winding domain is the sum

of the voltage drops over each foil, i.e.

v =

N∑
k=1

vk . (24)

With the voltage function, we can approximate the voltage
drop over foil k as vk = 8(f(αk , ·, ·)). From there, it follows

v =

∑
k

8(f(αk , ·, ·)) ≈

∑
k

1
δ

∫ αk+
δ
2

αk−
δ
2

8(f(α, ·, ·)) dα (25)

1410 VOLUME 12, 2024



E. Paakkunainen et al.: Stabilized Circuit-Consistent Foil Conductor Model

=
1
δ

∫
Lα
8(f(α, ·, ·)) dα (26)

=
1
b

∫
f(Lα,β,γ )

8 ds. (27)

Consequently, the voltage can be expressed with v = c⊤u.
Finally, the discretized foil conductor model can be expressed
in terms of the matrices above as

Mσ

d
dt
a + Kνa − Xσu = 0 (28a)

−X⊤
σ

d
dt
a + Gu − ci = 0 (28b)

−c⊤u + v = 0 (28c)

with appropriate initial values at some time t0.

B. ALTERNATIVE DISCRETIZATION OF THE TURN-BY-TURN
CONDUCTANCE MATRIX
We propose an alternative discretization of the turn-by-turn
conductance matrix (21). We start by introducing the source
electric field corresponding to voltage vl as an explicit vari-
able

E⃗s,l = pl ζ⃗ =

Nw∑
j=1

el,jw⃗j (29)

and use this in (21) such that

[Ge]k,l =

∫
�

σpk ζ⃗ · E⃗s,l dV (30)

=

∑
i,j

xiel,j

∫
�

σpk w⃗i · w⃗j dV (31)

= x⊤Mσ,kel (32)

and for all j = 1, . . . ,Nw∫
�

σ w⃗j · E⃗s,l dV =

∫
�

σ w⃗j ·
(
pl ζ⃗

)
dV (33)∑

i

el,i

∫
�

σ w⃗j · w⃗i dV =

∑
i

xi

∫
�

σplw⃗j · w⃗i dV (34)

Mσ el = Mσ,lx . (35)

Plugging el into the above equation yields another variant of
the turn-by-turn conductance matrix, i.e.,

[Ge]k,l = x⊤Mσ,kM+
σMσ,lx , (36)

where M+
σ denotes the (Moore-Penrose) pseudo-inverse of

Mσ . This mass matrix is singular because it only acts on
degrees of freedom that are located in conductive domains.
However, this is sufficient since the source electric fields are
located exactly there.

Note that both definitions, i.e., (21) and (36), lead in gen-
eral to different matrices for finitely many basis functions.
However, for a given voltage discretization with polynomial
degreeNp, both converge to the same solution forNw → ∞ as
will be demonstrated in the numerical example in Section IV.

C. COMPATIBILITY WITH SOLID CONDUCTOR MODEL
In [11], it is stated that the foil conductor model behaves as a
solid conductor if a constant voltage function is chosen, i.e.,
p1 = 1 is the only basis function (Np = 1). In this special case
the definitions (14) and (15) do not change but (18) naturally
simplifies to

xsol = Mσx . (37)

Both the original (21) and the new discretization (36) of the
turn-by-turn conductance matrix reduce to

Gsol = x⊤Mσx (38)

= x⊤MσM+
σMσx . (39)

From this, it follows that the foil conductor model is equiva-
lent to the classic solid conductor model [22] for both variants
of the conductance matrices. It reads

Mσ

d
dt
a + Kνa − xsolv = 0 (40a)

−x⊤

sol
d
dt
a + Gsolv− i = 0 . (40b)

since the third equation (28c) becomes trivial, i.e., u1 = v,
and can be plugged into the second (28b).

III. CIRCUIT COMPATIBILITY
The conductor models, i.e., foil (28) and solid (40), provide
the necessary coupling conditions for circuits, i.e., they allow
to excite the electromagnetic fields in terms of currents and
voltages. Since the mid 70s, the most common formalism
implemented in circuit simulators is the modified nodal anal-
ysis (MNA) [27]. Its main advantages are sparse system
matrices that are easy to assemble and its robustness with
respect to topological changes, e.g., switching. While the
MNA is formulated in less unknowns than for example sparse
tableau analysis [28], it does not aim for a minimal set of
degrees of freedom. One consequence of this redundancy is
that the resulting system consists of differential and algebraic
equations (DAEs) rather than ordinary differential equations
(ODEs). Common issues related to the numerical treatment of
DAEs are the difficulty of finding consistent initial conditions
and the sensitivity towards perturbations [29].

A. SENSITIVITY WITH RESPECT TO PERTURBATIONS
To illustrate these numerical difficulties, we consider a simple
inductor model in flux-oriented form, i.e.,

d
dt
ψ(t) = v(t) (41a)

ψ(t) = Li(t) (41b)

for t ∈ (t0, tend]. The equations describe a relation between
currents and voltages. Let us investigate the voltage- and
current-driven-case separately, see Fig. 2.
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FIGURE 2. Voltage- (left) and current-driven (right) inductor.

1) VOLTAGE-DRIVEN CASE
For a given voltage v the problem is described in terms of
a differential equation defining the flux ψ and an algebraic
equation for the current i. After time-differentiation of (41b)
one obtains a purely differential problem. The solution is

i(t) =
1
L

(
ψ0 +

∫ t

t0
v(s)ds

)
(42)

with an arbitrary flux ψ(t0) = ψ0 as initial condition.

2) CURRENT-DRIVEN CASE
If the current i is given, thenψ is fixed by an algebraic relation
and the solution is

v(t) = L
d
dt
i(t). (43)

This is an algebraic equation that does not allow to freely
specify an initial condition or more precisely: only v(t0) =

v0 := L d
dt i(t)|t0 is consistent. Note that this equation is

obtained with one time-differentiation of (41b). Only after
a second differentiation an explicit ODE for d

dt v can be
obtained.

B. DIFFERENTIAL INDEX
The sensitivity of the solution with respect to perturbations
is very different in the systems of Section III-A1 and III-A2.
Let us consider the following particular current excitation for
the current-driven case

i(t) = I1 sin(2π f1t) + I2 sin(2π f2t) (44)

where the second amplitude shall be almost negligible
I2 ≪ I1 but at very high frequency f2 ≫ I1/I2f1. Due to
the time-derivative in (43) the solution in the current-driven
case will be seriously perturbed, i.e., the second term with
amplitude 2π f2I2 becomes dominant. On the other hand,
a similarly perturbed voltage source would not significantly
affect the current of the voltage-driven case (42) since there,
in the solution, the sum of the sine waves appears integrated
in time instead of differentiated.

This motivates the introduction of the number of
time-differentiations as a measure of sensitivity and classifi-
cation of DAEs. In this context, the notion of index of a DAE
is proposed. Several definitions exist. We use the following:

Definition 1. (Differential index [30]) A solvable and suf-
ficiently smooth system of DAEs f(x′, x, t) = 0 is said to
have differential index m, if m is the minimum number of
differentiations

d
dt
f(x′, x, t) = 0, . . . ,

dm

dtm
f(x′, x, t) = 0 ,

that allow the extraction of an explicit ordinary differential
system with only algebraic manipulations.

For circuits modeled with MNA containing classical
lumped circuit elements, the differential index is known and
depends on the topology of the circuit [31]. The index is 2 at
maximum. The following theorem states the condition for this
case, however, without formulating all necessary assumptions
for which the reader is referred to the original paper.

Theorem 1. (Differential index of circuits [31]) Circuits
modeled with MNA lead to systems of DAEs with differential
index 2 if, and only if, at least one of the following conditions
is fulfilled. The circuit contains
(i) cutsets of branches which contain only inductors and

current sources. (‘‘LI -cutsets’’).
(ii) loops of branches which contain only capacitors and

voltage sources (‘‘CV -loops’’) with at least one voltage
source.

Otherwise, the circuit has differential index 1.
The theorem is immediately applicable to our two simple

inductor examples. The first case, Section III-A1, is a series
connection of an inductor and a voltage source which is at
most index 1 and harmless. The second example, Section III-
A2, forms a LI -cutset and may lead to numerical problems,
e.g., high sensitivity towards noise as observed.

C. CLASSIFICATIONS
Generalized circuit elements have been introduced in [32] to
classify field models as refined elements and to include them
in the index result of Theorem 1. Resistance-like, inductance-
like and capacitance-like elements are defined. Classical
resistances, capacitors and inductors, as well as charge formu-
lated capacitances and flux formulated inductances have been
shown to correspond to their generalized circuit elements.
The type of generalized element, that the field model is, gives
an intuition how the model will behave in an external circuit.
Given the intuitively inductive nature of the foil conductor
model, we focus on the introduction of the inductance-like
element. The resistance-like element is briefly remarked.

In the following, a simplified version of the (strongly)
inductance-like element definition [32] will be used. The
definition ismore restrictive but still sufficient for the analysis
of linear systems such as the foil conductor model discussed
here.

Definition 2. (Inductance-like element) A circuit element is
called inductance-like, if with only one time differentiation its
constitutive equations can be transformed into the form

d
dt
x = fx(x, i, v, t) (45a)

d
dt
i = gL(x, i, v, t) (45b)

where x are ‘internal’ variables that are not explicitly coupled
to the circuit (e.g., vector potentials). Additionally,

∂vgL(x, i, v, t) := L (46)

is required to be positive (definite).
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In addition to inductance-like, [32] defines resistance-like
and capacitance-like elements. Roughly speaking, a (sim-
plified) resistance-like element is defined similarly to the
inductance-like element in Definition 2, with the key differ-
ence being that the implicit relation between the current i and
the voltage v is

d
dt
i = gR(

d
dt
v, x, i, v, t), (47)

where ∂v′gR(v′, x, i, v, t) := GR is positive (definite). For a
formal definition of resistance-like aswell as capacitance-like
elements we refer to [32].

The conclusions drawn in Section III-B for the differential
index of the circuits containing only an inductance and a
source as well as Theorem 1 remain unchanged if the ele-
ments are replaced with their generalized definitions.

D. INDUCTANCE-LIKE BEHAVIOR
In this section, the previously introduced mathematical con-
cepts are utilized to analyze the foil conductor model which
uses the proposed turn-by-turn conductance matrix (36).
We seek to prove that themodel is an inductance-like element.

Assumption 1. Gauged field formulation with consistent
excitation
(i) Xσ has full column rank.
(ii) The field formulation is adequately gauged such

that the matrix pencil τMσ + Kν is regular, i.e.,
det(τMσ + Kν) ̸= 0 for τ ∈ R.

Property (i) describes a consistent excitation. The condition
for (ii) is automatically fulfilled when the calculation is done
in 2D. In 3D, an additional gauging condition needs to be
imposed, such as, e.g., a tree-cotree gauge [33].

Using Property (i) of Assumption 1 leads to Ge being
invertible. Consequently, the system of equations (28) can be
written as

(
Mσ − XσG−1

e X⊤
σ

)
︸ ︷︷ ︸

:=M̄

d
dt
a + Kνa = XσG−1

e c︸ ︷︷ ︸
:=x̄

i (48a)

c⊤G−1
e X⊤

σ︸ ︷︷ ︸
=x̄⊤

d
dt
a + c⊤G−1

e c︸ ︷︷ ︸
:=R

i = v (48b)

by solving (28b) with respect to u, and substituting it
in (28a) and (28c). Note that (48) has the same structure
as the stranded conductor model, which is known to be an
inductance-like element [20].

Proposition 1. The foil conductor model according to (48)
using the proposed turn-by-turn conductance matrix (36) is
an inductance-like element.
Proof. The proof is presented in Appendix I. □

Note that u is part of the internal variables of the
inductance-like element in the foil conductor model and is
not explicitly coupled to the circuit. Therefore, its behavior
will not influence the circuit itself, and it can be left out of

FIGURE 3. Simulation domain for the numerical tests.

the proof. Examinations suggest that it is an index-2 variable.
This, however, does not influence the index of the circuit’s
variables.

E. (SINGULARLY PERTURBED) RESISTANCE-LIKE
BEHAVIOR
Similarly to the analysis for (48), the original system (28)
with the original turn-by-turn conductance matrix G as
defined in (21) can be classified according to the generalized
circuit elements of [32].

Proposition 2. The foil conductor model (28) with the origi-
nal turn-by-turn conductance matrix (21) is a resistance-like
element.
Proof. The proof is given in Appendix II. □

The key difference between both cases is that, whereas
in our redefined conductance we replace G with Ge and,
therefore, ∂gR

∂v′ = (c⊤(G−Ge)−1c)−1
= 0 (see Appendix II),

in the original conductance computation, G ̸= Ge. Intu-
itively, this inconsistency arises as G corresponds to the
natural discretization of the foil conductor’s conductance but
only Ge is consistent with the discrete spaces spanned by the
finite element matrices.

Remark. We say the foil conductor model (28) with the
original turn-by-turn conductance matrix (21) is singu-
larly perturbed resistance-like, as its resistance-like behav-
ior depends on the positive definiteness of ∂gR

∂v′ =

(c⊤(G − Ge)−1c)−1. This expression imposes the (linear)
relation between d

dt i and
d
dt v in (47). Thus, if the term is

positive definite, the element is resistance-like. However,
when refining the finite element discretization Nw → ∞

for a given voltage discretization with polynomial degree Np,
that term tends to zero, and the model degenerates into an
inductance-like element.

IV. NUMERICAL RESULTS
A numerical implementation of the foil conductor model
according to (28) is done for both of the turn-by-turn conduc-
tance matrix definitions (21) and (36) using the FE simulation
framework Pyrit [34]. The considered modeling domain is
shown in Fig. 3. Table 1 contains the simulation specifications
and the values used for the material parameters.

VOLUME 12, 2024 1413



E. Paakkunainen et al.: Stabilized Circuit-Consistent Foil Conductor Model

TABLE 1. Simulation specifications and material parameters.

FIGURE 4. Comparison of the simulated impedance Z of the foil winding
using the foil conductor model and the fully resolved model. (a) The
amplitude of the impedance. (b) The angle of the impedance.

The implemented foil conductor model is first validated
against a model where the individual turns are modeled as
solid conductors and each foil and insulation layer is spatially
discretized. The implementation of this resolved model is not
further discussed here as it follows well established practices.
The models are compared in the frequency domain in a
Cartesian 2D setting, and a sufficiently fine mesh is used to
keep the discretization error small. The foil conductor model
is simulated with a mesh of 78 093 nodes and Np = 7 voltage
basis functions, whereas the mesh of the fully resolved model
consists of 221 482 nodes. Figure 4 shows the simulated
impedance Z of the foil winding as a function of frequency.
An excellent agreement between the models is observed. The
result demonstrates the validity of the foil conductor model
which is generally accepted in the literature, for example,
see [6], [8], [9], [10], and [11].

FIGURE 5. Relative error between the turn-by-turn conductance matrix
definitions over the inverse of the mesh refinement parameter h for
multiple values of Np. The relative error is calculated using the Frobenius
norm as ∥G − Ge∥ ∥Ge∥−1.

FIGURE 6. Current- and voltage-driven foil winding. (a) The perturbations
that are added to the source current are amplified in the voltage over the
foil winding. (b) No amplification of the perturbations of the source
voltage occurs.

For the rest of the numerical tests, we will examine simu-
lations on the time domain in a 2D axisymmetric geometry.
Discretization in the time domain is done using the implicit
Euler method with a constant time-step size. Let us exam-
ine the convergence of the turn-by-turn conductance matrix
definitions (21) and (36). Figure 5 shows how the dif-
ference between the definitions decreases with increasing
mesh refinement for multiple values of Np. Convergence is
observed in all situations. However, higher order polynomial
approximations require increasingly fine meshes. We con-
clude that also the results of both foil conductor models
converge to the same solution.

Next, the consequences of Proposition 1 for the simu-
lation of the foil conductor model are demonstrated. The
proposed new turn-by-turn conductance matrix (36) is used,
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FIGURE 7. The voltage over the current driven foil winding with the
different turn-by-turn conductance matrix definitions and mesh
refinement. Different meshes with (a) 103 and (b) 1397 nodes.

and the modeling domain is spatially discretized with a mesh
consisting of 1397 nodes. A voltage-driven foil winding is
known to yield a system of DAEswith differentiation index 1,
whereas the current-driven counterpart is an index-2 system.
The sensitivity towards noise that these systems exhibit is
examined by exciting them with a sinusoidal input which is
perturbed with an additional sinusoid with small amplitude
but high frequency. The magnitude of both the source voltage
and current is given as sin(2π ft) + ϵ sin(2π fϵ t).

Figure 6a shows the voltage over the current-fed foil
winding. The perturbations of the source current are clearly
amplified in the voltage output over the foil winding, and the
amplification increases when the time-step size is reduced.
The dependency of the amplification on the time-step size is
a typical behavior of higher index DAEs, as larger time-steps
are not able to resolve the (unwanted) high-frequency noise
in the solution. When the model is excited with a voltage
source, no perturbations are visible in the current through the
foil winding, as can be seen in Fig. 6b. This corresponds to
the expected behavior of an inductance-like element, which
is less sensitive towards perturbations when excited with a
voltage source than with a current source.

In the following, we compare the numerical behavior of
the foil conductor model when using the two different turn-
by-turn conductance matrices. The mismatch between the
matrices ∥G−Ge∥ is varied by refining the mesh. The earlier
simulation setting is kept, and now only the current-driven
model is examined. A time-step size of 1t = 10−4 s is used.
Figure 7 shows the effect of reducing ∥G − Ge∥ on

the simulated voltage waveform. When ∥G − Ge∥ → 0

through mesh refinement, the models coincide (numeri-
cally). This shows how the foil conductor model with
the turn-by-turn conductance matrix G degenerates into
an inductance-like element. With increasing ∥G − Ge∥,
the model becomes increasingly unstable and eventually
diverges. A similar instability is not observed when using the
proposed matrix Ge.

V. CONCLUSION
This paper demonstrates that the classical definition of the
foil conductor model is inconsistent in terms of circuit the-
ory, i.e., the field model behaves in a circuit rather like a
(singularly perturbed) resistor instead of an inductor. For
coarse discretizations this may lead to instabilities in the
time-stepping process. Therefore, we propose a simple mod-
ification to the turn-by-turn conductance matrix. The new
formulation mitigates the problems with stability and leads
provably to an inductance-like behavior. This is consistent
with the behavior of eddy current fields excited with other
conductor models such as the solid and stranded conductor
ones. The introduced modification is always consistent, easy
to implement in existing codes, and only marginally increases
the computational cost.

APPENDIX I.
PROOF OF PROPOSITION 1
Define projector Q̄ onto ker(M̄), and its complementary
P̄ = I − Q̄. The projectors enable splitting (48a)

Q̄⊤Kνa = Q̄⊤x̄i (49a)

M̄
d
dt
a + P̄⊤Kνa = P̄⊤x̄i. (49b)

The matrix M̄ + Q̄⊤Q̄ is symmetric positive definite due to
the definition of projector matrices and the symmetry of M̄.
Multiplication of (49b) with (M̄+ Q̄⊤Q̄)−1 and carrying out
only algebraic manipulations yields

P̄
d
dt
a =

(
M̄ + Q̄⊤Q̄

)−1 (
−P̄⊤Kνa + P̄⊤x̄i

)
= fP(a, i). (50)

One differentiation of (49a) with respect to time, and multi-
plication by (Q̄⊤KνQ̄ + P̄⊤P̄)−1 gives

Q̄
d
dt
a =

(
Q̄⊤KνQ̄ + P̄⊤P̄

)−1

·

(
−Q̄⊤Kν P̄

d
dt
a + Q̄⊤x̄

d
dt
i
)
. (51)

Property (ii) of Assumption 1 ensures that the matrix
Q̄⊤KνQ̄+ P̄⊤P̄ is positive definite. Substituting d

dt a in (48b)
allows solving the resulting equation with respect to the time
derivative of the current

d
dt
i =

[
− x̄⊤

(
I − Q̄

(
Q̄⊤KνQ̄ + P̄⊤P̄

)−1
Q̄⊤Kν

)
· fP(a, i)−Ri+ v

]
L−1

= fi(a, i, v), (52)
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where I is an identity matrix. The previous step required the
inversion of L = x̄⊤Q̄

(
Q̄⊤KνQ̄ + P̄⊤P̄

)−1
Q̄⊤x̄, which is

always possible when L ̸= 0. This is guaranteed as it can
be shown that Q̄⊤x̄ has full column rank. Consequently, L is
positive (definite).

Substituting d
dt i to (51) yields Q̄ d

dt a = fQ(a, i, v). The
explicit ODEs in Definition 2 have been obtained with only
one time differentiation of (48), where the internal variables
are x = a.

APPENDIX II.
PROOF OF PROPOSITION 2
Similarly as in the proof in Appendix I, we start by splitting
(this time) the original discretization of the eddy current
equation (28a) with the projectors Qσ onto kerMσ and its
complementary Pσ . This leads to

Mσ

d
dt
a + PσKνa − PσXσu = 0 (53a)

QσKνa − QσXσu = 0. (53b)

With (53a) one obtains

Pσ
d
dt
a =

(
Mσ + Q⊤

σ Qσ
)−1

(−PσKνa + PσXσu) . (54)

One time differentiation of (53b) and using the property that
QσXσ = 0 due to Xσ being zero outside the conducting
region, we have

Qσ
d
dt
a = −

(
QσKνQσ + P⊤

σ Pσ
)−1

QσKν

·

(
Mσ + Q⊤

σ Qσ
)−1

Pσ (Kνa − Xσu) .
(55)

With these two equations we obtained an ODE for d
dt a =

Pσ d
dt a + Qσ d

dt a with at most one time differentiation of the
original system. Inserting now (54) into the equation for u,
(28b) leads to

u =

(
G − X⊤

σ

(
Mσ + Q⊤

σ Qσ
)−1

Xσ

)−1

·

(
−X⊤

σ

(
Mσ + Q⊤

σ Qσ
)−1

PσKνa + ci
)
. (56)

Differentiating the latter expression once in time and
using (54)-(55) gives

d
dt
u = (G − X⊤

σ (Mσ + Q⊤
σ Qσ )

−1Xσ )−1c
d
dt
i+ fu(a,u),

(57)

which is an ODE-like expression for d
dt u. Note that, in con-

trast to the formal definition of a resistance-like element, d
dt u

depends on d
dt i. This, however, does not change the index

results of [32] and therefore the element still has the same
behavior as a resistance-like element within a circuit. Now
that we have obtained expressions for the internal variables
of the element d

dt a and d
dt u, we look for the final relation

between the current i and voltage v. This is recovered by

differentiating (28c) once and inserting (57). Hereby, the
voltage-to-current relation

d
dt
v = c⊤(G − X⊤

σM
+
σ Xσ )

−1c
d
dt
i+ c⊤fu(a,u), (58)

which corresponds to a strongly resistance-like element if
∂gR
∂v′

= (c⊤(G − X⊤
σM

+
σ Xσ )

−1c)−1 (59)

is positive definite. This is the case as long as G −

X⊤
σM

+
σ Xσ is nonsingular. In the last expressions we have

replaced X⊤
σ (Mσ + Q⊤

σ Qσ )
−1Xσ by X⊤

σM
+
σ Xσ with the

Moore-Penrose pseudoinverse M+
σ . This is done to illustrate

why Ge = X⊤
σM

+
σ Xσ has been chosen and is possible

because QσXσ = 0 due to construction and therefore both
expressions are equivalent.
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