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Reproducibility analysis 
of automated deep learning based 
localisation of mandibular canals 
on a temporal CBCT dataset
Jorma Järnstedt 1,2*, Jaakko Sahlsten 3, Joel Jaskari 3, Kimmo Kaski 3,6*, Helena Mehtonen 1, 
Ari Hietanen 4, Osku Sundqvist 4, Vesa Varjonen 4, Vesa Mattila 4, Sangsom Prapayasatok 5 & 
Sakarat Nalampang 5

Preoperative radiological identification of mandibular canals is essential for maxillofacial surgery. This 
study demonstrates the reproducibility of a deep learning system (DLS) by evaluating its localisation 
performance on 165 heterogeneous cone beam computed tomography (CBCT) scans from 72 patients 
in comparison to an experienced radiologist’s annotations. We evaluated the performance of the DLS 
using the symmetric mean curve distance (SMCD), the average symmetric surface distance (ASSD), 
and the Dice similarity coefficient (DSC). The reproducibility of the SMCD was assessed using the 
within-subject coefficient of repeatability (RC). Three other experts rated the diagnostic validity twice 
using a 0–4 Likert scale. The reproducibility of the Likert scoring was assessed using the repeatability 
measure (RM). The RC of SMCD was 0.969 mm, the median (interquartile range) SMCD and ASSD were 
0.643 (0.186) mm and 0.351 (0.135) mm, respectively, and the mean (standard deviation) DSC was 
0.548 (0.138). The DLS performance was most affected by postoperative changes. The RM of the Likert 
scoring was 0.923 for the radiologist and 0.877 for the DLS. The mean (standard deviation) Likert 
score was 3.94 (0.27) for the radiologist and 3.84 (0.65) for the DLS. The DLS demonstrated proficient 
qualitative and quantitative reproducibility, temporal generalisability, and clinical validity.

The identification of bilateral mandibular canals from preoperative radiological examinations is important before 
oral and maxillofacial surgical operations in the lower jaw area, such as implantology, impacted teeth operative 
extraction, and pathological lesion resection or  enucleation1. The mandibular canals are seen as radiolucent 
structures surrounded by cortical bony borders with two openings; the foramen mentale in the anterior and 
foramen mandibulae in the posterior part. The thickness, location, and shape of the mandibular canal can have 
a number of anatomical variations, and some of them are impossible to be identified due to difficult bone qual-
ity and pathological  changes2,3. These canals host a neurovascular bundle that includes an artery, veins, and the 
inferior alveolar nerve that supplies motoric and sensory innervations to the chin, lower lip, and teeth. Damaging 
the mandibular canals may cause excessive bleeding, and temporary or permanent neurological  complications4. 
The challenging and labour intensive localisation of these canals is currently done manually, which poses a 
challenge, as there are not enough specialists to meet the diagnostic  needs5. Automated tools show promise to 
alleviate the manual  burden6,7.

In order to locate the mandibular canals accurately, three dimensional (3D) radiological imaging is the recom-
mended approach. For this purpose, Cone Beam Computed Tomography (CBCT) is commonly  used8. However, 
there are diagnostic challenges due to technical and patient related artefacts, as well as heterogeneities. In 2020, 
the International Society for Strategic Studies in Radiology published recommendations for technical validation 
in radiological AI research with four crucial properties: accuracy, robustness, generalisability, and reproducibility. 
The accuracy provides insight to the expected performance, robustness to the invariance to small perturbations 
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in the data, and generalisability to the behaviour with various medical imaging  variabilities9. The reproducibility 
is defined as invariance to measurement variability on the same subject under changing conditions, which can 
be evaluated from time-wise separated  scans10. There are several reasons for scanning patients multiple times, 
such as pathological changes, operation planning, and treatment follow-up11. Without evaluating reproducibility, 
there is no evidence that a same image derived feature or element could be used in a longitudinal  assessment9.

Imaging-based deep learning models perform computations on the voxels of a scan. When a patient is 
scanned at different times, there are always at least slight changes in the voxel intensities, even when the patient 
is scanned again using the same device and imaging parameters. These changes alter the internal computations 
of the deep learning models, but the effect on the model output should be negligible in the case of a robust and 
reproducible model. Therefore, there is a close relationship between the reproducibility and the overall perfor-
mance of the  model12.

Recently, multiple studies have introduced deep learning based automatic mandibular canal segmentation 
systems that have shown impressive accuracy and  robustness13–16. Two of these studies also reported the effect 
of heterogeneities on the performance of deep learning  systems13,16, and one of them the deep learning general-
isability and interobserver  variability16. However, none of these works have analysed the reproducibility of the 
deep learning systems.

The aim of this study is to validate the reproducibility and temporal generalisation of a previously introduced 
deep learning based automatic mandibular canal localisation  system13,16, both quantitatively and qualitatively. 
Our study contributes substantially to the field by demonstrating the reproducibility of the deep learning system 
that is required for follow-up clinical validation of the system and its use in longitudinal studies.

Methods
In this section, we present a detailed description of the deep learning system and its components, describe the 
patient data used for the results, and the quantitative and qualitative evaluation measures we use to evaluate 
reproducibility.

Deep learning model. The deep learning system (DLS) we study was proposed in two recent  studies13,16. 
This model was also used as a basis in the work of publicly available voxel level annotated 3D mandibular canal 
 dataset14. The DLS consists of two algorithms; a deep learning neural network that segments the voxels con-
taining the mandibular canals from 3D CBCT volumes, and a postprocessing algorithm that extracts the two 
most likely mandibular canal curves from the segmentation volume. For our analysis, we utilise the previously 
trained  model16, which was developed on a heterogeneous, multi-device, and multiethnic dataset of 1082 scans 
to evaluate its temporal generalisability and reproducibility with a new dataset, focused on challenging clinical 
heterogeneities.

The deep learning model of DLS is a type of fully convolutional neural network with a U-net style 
 architecture17. The model utilises three dimensional convolutional layers that enable the recognition of pat-
terns simultaneously in the axial, coronal, and sagittal planes. The deep learning model produces approximate 
segmentations of the mandibular canals, which are then postprocessed using connected component analysis for 
the purpose of reducing false positives as well as connecting partial segmentations to form a single canal. Seg-
mentation is then reduced into a curve using a skeletonisation  routine18, and a heuristic concatenation algorithm 
is used to select and combine curve segments in order to extract the two mandibular canals based on correct 
anatomical characteristics and symmetry.

Patient data. The data was collected retrospectively from the Tampere University Hospital (TAUH) in Tam-
pere, Finland. The patients whose data had been previously used in the development, validation, or testing of 
the DLS were excluded. Every patient has at least two CBCT scans imaged for medical reasons. These reasons 
include benign lesions follow-up, operation planning and control for orthognathic surgery and temporomandib-
ular joint prosthesis, trauma controls, computer assisted surgery planning, and bone destructive lesions includ-
ing malignancies. The collected dataset of 165 CBCT scans consisted of 72 patients with a mean age of 45.2±17.0 
and a range from 17 to 89 years, having 47% males with a mean age of 43.7±15.8 and a range from 20 to 72 years, 
and 53% females with a mean age of 46.7±18.3 and a range from 17 to 89 years. Patients’ age information was 
collected according to age at the last repeated scan. The scans were pseudonymised and categorised into four 
main subgroups to evaluate the effects of different heterogeneities. In addition, the dataset included immediate 
postoperative scans that were categorised into a separate heterogeneity subgroup, to examine the effect of the 
surgical operation before the healing process.

Three scanners with different imaging parameters were used; KAVO OP 3D PRO, VISO G7, and Scanora 3Dx 
with 7, 66, and 92 scans, respectively. The voxel spacing of the scans ranged from 0.2 mm to 0.5 mm with the 
most common ones being 0.2 mm, 0.3 mm, and 0.4 mm with 57%, 29%, and 7% of the scans, respectively. The 
dataset consisted of 107 high resolution (HR), 33 standard resolution (SR), 12 low dose (LD), and 13 ultra-low 
dose (ULD) scans. The distribution of different devices, voxel spacings, and doses are presented in Supplementary 
Table S1. All the scans were whole facial imaging, large field-of-view scans, due to the aforementioned diagnostic 
needs in radiological imaging. There were 39 patients with two CBCT scans, and 33 patients with multiple (three 
to five) scans in the study material. There were 11 patients who were scanned with the same CBCT device and 
the same imaging parameters, 16 scanned with the same device but different imaging parameters, and 45 who 
were scanned with different devices and different imaging parameters. All the scans were taken in TAUH from 
2015 to 2020.

The mandibular canals were annotated using clinical software: Romexis 4.6.2, of Planmeca, Finland, by a 
senior radiologist with over 35 years of experience in dentistry, similarly to previous  works13,16. In the annotation 
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process, a CBCT panoramic reconstruction was made (Fig. 1a), cross-sectional images against panoramic curves 
were reconstructed (Fig. 1b), and the midline of the canals were marked with standard 1.5 mm diameter control 
points placed in 3 mm intervals. The whole path of the mandibular canal was marked starting from the foramen 
mentale opening and ending at the foramen mandibulae opening. Multiple control points were used for each of 
the canals, especially in the foramen mentale curvature area and in complicated cases (Fig. 1c). An approximate 
segmentation was created when computing segmentation measures, in which the path of the canal was expanded 
to a 1.5 mm static diameter tube.

The four main subgroups manifest various clinical and operative situations in dental and maxillofacial radiol-
ogy, including pre- and postoperative, and follow-up CBCT scans. These subgroups were determined as Normal 
group, Prosthetic group, Orthognathic surgery group, and Pathological group with 23, 13, 22, 14 patients and 51, 
35, 46, 33 scans, respectively.

The patients of Normal group were scanned for reasons having no major influence in the mandibular canal 
area, but 14 of the 51 scans (27%) were reported to have difficult bone structure. The patients of Prosthetic group 
have major temporomandibular joint (TMJ) disorders and have at least one preoperative scan and one postopera-
tive scan after full prosthetic metallic TMJ-reconstruction. An example of a patient from TMJ Prosthetic group is 
shown in (Fig. 2). The patients of Orthognathic surgery group have undergone a bilateral sagittal split osteotomy 
(BSSO), where the mandible is split bilaterally and moved forward or backward, to correct malocclusion and 
 functionality19, and have at least one preoperative and one postoperative scan taken six to 12 months after the 
operation. The BSSO changes the path of the mandibular canal and fixation materials cause metallic artefacts in 
the imaged area, both seen as differences between the preoperative scan and postoperative scan of the patient. The 
effect of this heterogeneity is shown in three dimensional (3D) reconstructions models of preoperative (Fig. 3a) 
and postoperative (Fig. 3b) cases. The patients of Pathological group have severe pathological bone destructive 
diseases in the mandible, which may partly or completely destroy the visibility of the mandibular canals, and 
have at least one preoperative, and one postoperative or follow-up scan. Eight of the 14 patients (57%) had a 
malignant bone destruction on the right side of the mandible.

The immediate postoperative scans, i.e. those imaged less than five days after the BSSO surgery, were excluded 
from the main analysis. The visibility of mandibular canal is extremely poor in these  scans20 and there are changes 
to the path of the mandibular canal due to BSSO. Thus, the localisation of the mandibular canal is challenging in 
these scans. However, the task of localising the mandibular canal in these cases is rarely clinically relevant and 
thus the analysis is included in the Supplementary.

This study is based on a retrospective and registry-based dataset, and as such does not involve experiments 
on humans and/or the use of human tissue samples and no patients were imaged for this study. A registration 
and retrospective study does not need ethical permission or informed consent from subjects according to the law 
of Finland (Medical Research Act (488/1999) and Act on Secondary Use of Health and Social Data (552/2019)) 

Figure 1.  (a) CBCT panoramic reconstruction showing the annotation control points in the left and the 
interpolated mandibular canal in right side of the mandible, (b) an axial slice with cross-sectional slices along 
the panoramic curve shown in red, (c) annotation control points in the cross-sectional slices 3 mm apart with 
multiple annotation points in the foramen mentale area.
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and according to European General Data Protection Regulation (GDPR) rules 216/679. The use of the data was 
accepted by the Tampere University Hospital Research Director, Tampere, Finland, 1st of October, 2019 (vote 
number R20558).

Quantitative analysis approach. In the quantitative analysis, the outputs of the DLS were compared to 
the senior radiologist’s annotations. The mandibular canal localisation accuracy of the DLS was evaluated using 
the Symmetric Mean Curve Distance (SMCD)16. In the SMCD, the average deviation between the full path of the 
radiologist’s annotation and the DLS output is determined. It thus measures how far apart the two curves are on 
average. In addition, the segmentation performance of the DLS was evaluated using the Dice similarity coeffi-
cient (DSC), which is a normalized measure of the intersection of two segmentations, and the average symmetric 
surface distance (ASSD) that measures the average error between the surfaces of two segmentations. However, 
these metrics are computed using the senior radiologist’s approximate segmentation of the canal as the ground 
truth, and thus they only approximate the true segmentation performance.

The reproducibility was evaluated by measuring the temporal variability in SMCD for each canal, i.e. the two 
canals of each patient were treated as independent subjects of interest. The reproducibility measures we used 
were the within-subject standard deviation (wSD) and the repeatability coefficient (RC), and we also report the 

Figure 2.  Three dimensional reconstruction images with manually annotated mandibular canals shown 
in red, (a) preoperative CBCT scan, (b) postoperative CBCT scan with right side temporomandibular joint 
reconstruction on the angulus area of the mandible.

Figure 3.  Three dimensional reconstruction images of an orthognathic surgery patient showing changes in the 
postoperative scan with manually annotated mandibular canals shown in red, (a) preoperative CBCT scan, (b) 
postoperative CBCT scan 1 year after the operation.
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within-subject mean and ranges of values. The wSD estimates the variability in SMCD values for the canals and 
the RC the largest difference between two SMCD values for the same canal with 95% confidence. These quantities 
are computed in Eqs. (1) and (2) as  follows21:

where WMS is the within-subject mean squared error, computed as:

n is the number subjects, Ki the number of repetitions for subject i, Yik the kth measurement of subject i, and Ȳi 
the mean of replications of subject i. As our dataset includes variable number of repetitions per subject, the K is 
computed by applying a downward correction to reduce overestimation of the variation among smaller groups 
compared to larger groups: K= 1

n−1

(

N −
∑n

i=1K
2
i

N

)

 , where N is the total number of  scans22.

Qualitative analysis approach. For the qualitative analysis, the annotations by the senior radiologist and 
those produced by the DLS were assessed by three experts; two dental and maxillofacial radiologists with 15 and 
13 years of working experience, and one resident of dental and maxillofacial radiology with 8 years of working 
experience in dentistry.

There were in total 636 mandibular canal segmentations in the comparison: 318 annotated by the radiologist 
and 318 DLS outputs, which were provided to the three experts independently and in a random order, without 
informing whether the segmentation was done by the radiologist or by the DLS. In addition, the segmentations 
were assessed two times by each expert in separate sessions with a two week interval. The observers assessed the 
quality of each segmentation and its feasibility for clinical diagnostics using a five-point Likert scale defined with 
0: not usable for diagnostics, 1: partly usable for diagnostics, canal visibility below one half, 2: minor issues with 
almost fully usable for diagnostics, 3: almost perfect, fully diagnostically usable, and 4: perfect, fully diagnosti-
cally usable. The Likert ratings were also used to form a binary scale for the diagnostic suitability of a canal seg-
mentation. It was defined as Likert ratings 3 and 4 being fully suitable for diagnosis and 0–2 as not fully suitable.

The observers justified their ratings using five pre-selected error types: fully missing, major parts of the seg-
mentation missing, slightly off the centre of the canal, short at the mandibular foramen, and short at the mental 
foramen. The first and second error types are considered clinically relevant resulting in Likert rating of 0-2 and 
diagnostically not fully usable. The other three error types have less clinical importance and they can be explained 
by the anatomy of the mandible, and the nature of the heterogeneity subgroups.

The reproducibility was evaluated using the Likert scores of the first annotation session. Due to the discrete 
and ordinal nature of the Likert scores, as well as the high consistency of the given scores in the dataset, Gauss-
ian random effects models and analysis of variance methods were deemed unsuitable. In addition, the number 
of temporal scans varied between the patients, and thus methods that require paired data, such as the Kendall 
rank correlation coefficient, could not be used to analyse the reproducibility. We utilised a Bayesian statistical 
analysis approach for the reproducibility of ordinal measurements, proposed in a recent  study23. In short, it 
uses a random effects model, with subject-dependent random effects, combined with the Master’s partial credit 
 model24. It defines the probability that the subject i’s Likert score yi is equal to the number h, given the random 
effect of the subject xi and grader j specific parameters αj and δj , as follows:

It should be noted that in computing the probabilities, the Likert scores were mapped from 0–4 to 1–5. A detailed 
description of the approach is given in the Supplementary material.

We used the repeatability measure (RM) proposed in the aforementioned study to measure the reproducibility. 
For grader j, it is defined as the probability that two Likert scores for the same segmentation will be the same, 
averaged over the data in Eq. (3):

The Bayesian analysis produces a distribution of possible parameter values αj and δj , which we used to compute 
the posterior average RMj = Aveαj ,δj ( ˆRMj) and the 95% credibility intervals for each Expert. The analysis was 
performed for the full dataset, as well as for each heterogeneity group independently. We implemented the 
analysis using the  Stan25 programming language with the Python interface  PyStan26, and using the default set-
tings described in the original  study23.

To analyse the intra- and interobserver variability, we calculated the accuracy of Likert ratings. The interob-
server variability was evaluated by comparing the assessments between each pair of experts, and the intraobserver 
variability by comparing the ratings of the first and second assessment session.

(1)wSD =
√
WMS,

(2)
RC = 1.96

√
2 wSD

≈ 2.77wSD,

WMS =
n

∑

i=1

Ki
∑

k=1

(Yik − Ȳi)
2

n(K − 1)
,

pj(yi = h | xi ,αj , δj) =
exp (

∑h−1
m=1 αj(xi − δjm))

∑H
n=1 exp (

∑n−1
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.
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∑
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5
∑
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Results
This section presents the results for the quantitative analysis of the DLS performance, and for the qualitative 
analysis approach for the radiologist’s annotations and the DLS performance.

Quantitative analysis. The DLS had a repeatability coefficient of 0.969 mm for the full dataset, and when 
evaluated for each heterogeneity group, the RC was 0.329  mm for Normal, 0.574  mm for TMJ Prosthetic, 
1.707 mm for Orthognathic, and 0.648 mm for Pathological group. Full results are shown in Table 1. The overall 
localisation performance of the DLS, measured using the median and interquartile range (IQR) of SMCD on 
valid canals, was found to be 0.643 (0.186) mm for the full dataset, and 0.638 (0.151) mm, 0.683 (0.197) mm, 
0.617 (0.178) mm, and 0.639 (0.201) mm for Normal, TMJ Prosthetic, Orthognathic, and Pathological hetero-
geneity groups, respectively. The segmentation performance of the DLS measured using the median and IQR 
of average symmetric surface distance (ASSD) on valid canals was 0.351 (0.135) mm for the full dataset, and 
0.328 (0.088) mm, 0.356 (0.133) mm, 0.365 (0.148) mm, and 0.355 (0.145) mm for Normal, TMJ Prosthetic, 
Orthognathic, and Pathological heterogeneity groups, respectively. The Dice similarity coefficient (DSC) on all 
the canals was 0.567 (0.133) for the full dataset, and 0.597 (0.121), 0.550 (0.114), 0.540 (0.163), and 0.579 (0.108) 
for Normal, TMJ Prosthetic, Orthognathic, and Pathological heterogeneity groups, respectively. Full results of 
the localisation and segmentation performance of the DLS for each of the heterogeneity groups are shown in 
Fig. 4. In addition, the patient level reproducibility is presented in Fig. 5. Moreover, analysis of the overall quan-
titative DLS performance when grouped by age, gender, device, and dose as well as quantitative reproducibility 
analysis of DLS and radiologists, when grouped by age, gender, and device are reported in the Supplementary.

Qualitative analysis. In the qualitative analysis, the reproducibility of the Likert rating for the radiolo-
gist and the DLS, measured in the repeatability measure, was found to be 0.958 and 0.895 for Normal, 0.841 
and 0.887 for TMJ Prosthetic, 0.945 and 0.913 for Orthognathic, and 0.916 and 0.886 for Pathological groups, 
respectively. In terms of diagnostically fully usable canal paths, the RM values for the radiologist and the DLS 
were 0.992 and 0.954 for Normal, 0.963 and 0.974 for TMJ Prosthetic, 0.978 and 0.922 for Orthognathic, and 
0.997 and 0.980 for Pathological groups, respectively. Full results are shown in Table 2. Additional qualitative 
overall performance and reproducibility analysis when grouping by age, gender, and device are reported in the 
Supplementary.

Table 1.  Within-subject mean and standard deviation (wSD), repeatability coefficient (RC), and the range 
of valid SMCD (mm) values. The results are presented for the full dataset and for each heterogeneity group 
separately. N The total number of canals, n The number of unique canals, and K The set of the number of 
canals present in the group.

Heterogeneity n N K Mean wSD RC Range

Full dataset 131 302 {2, 3, 4, 5} 0.761 0.350 0.969 [0.471, 3.014]

Normal 44 98 {2, 3, 4} 0.743 0.119 0.329 [0.554, 3.014]

TMJ Prosthetic 26 70 {2, 3, 4, 5} 0.756 0.207 0.574 [0.487, 1.172]

Orthognathic 40 84 {2, 4} 0.806 0.616 1.707 [0.471, 2.206]

Pathological 21 50 {2, 3, 4} 0.719 0.234 0.648 [0.515, 1.049]
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Figure 5.  DLS performance evaluated with SMCD for each patient. (a) Normal, (b) TMJ Prosthetic, (c) 
Orthognathic, and (d) Pathological heterogeneity group. Parentheses show the number of valid canals out of 
the total number of canals, and the square brackets the number of scans for each patient. Each patient is colored 
with the temporal imaging configuration, indicating whether the scans are from the same or different devices, 
and with the same or different voxel spacings.

Table 2.  Qualitative reproducibility results, in terms of the repeatability measure, for the Likert scoring of the 
radiologist’s annotation and the DLS output. Results shown for each heterogeneity group and radiologist, as 
well as for the full dataset and average of the Experts. CI denotes the Bayesian credibility interval.

Reproducibility Heterogeneity Radiologist mean (95% CI) DLS mean (95% CI)

Average

Full dataset 0.923 (0.842, 0.979) 0.877 (0.814, 0.932)

Normal 0.958 (0.882, 1.000) 0.895 (0.833, 0.935)

TMJ Prosthetic 0.841 (0.725, 0.925) 0.911 (0.829, 0.970)

Orthognathic 0.945 (0.844, 1.000) 0.815 (0.711, 0.907)

Pathological 0.916 (0.747, 0.996) 0.899 (0.712, 0.998)

Expert 1

Full dataset 0.964 (0.937, 0.983) 0.915 (0.887, 0.936)

Normal 0.996 (0.976, 1.000) 0.913 (0.864, 0.939)

TMJ Prosthetic 0.865 (0.776, 0.933) 0.936 (0.872, 0.977)

Orthognathic 0.995 (0.970, 1.000) 0.866 (0.796, 0.917)

Pathological 0.960 (0.881, 0.997) 0.969 (0.905, 1.000)

Expert 2

Full dataset 0.932 (0.899, 0.958) 0.874 (0.838, 0.904)

Normal 0.950 (0.893, 0.984) 0.886 (0.828, 0.925)

TMJ Prosthetic 0.856 (0.766, 0.927) 0.913 (0.841, 0.961)

Orthognathic 0.947 (0.888, 0.982) 0.793 (0.704, 0.861)

Pathological 0.959 (0.882, 0.997) 0.928 (0.842, 0.981)

Expert 3

Full dataset 0.872 (0.829, 0.907) 0.841 (0.801, 0.875)

Normal 0.928 (0.864, 0.970) 0.887 (0.827, 0.925)

TMJ Prosthetic 0.800 (0.697, 0.891) 0.885 (0.810, 0.934)

Orthognathic 0.893 (0.821, 0.944) 0.786 (0.698, 0.856)

Pathological 0.829 (0.709, 0.918) 0.798 (0.678, 0.885)
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In terms of descriptive statistics, the two ratings of the three experts resulted in 1908 ratings, both for the 
radiologist and the DLS. 1893 (99.2%) canal paths from the radiologist and 1828 (95.8%) from the DLS were 
rated diagnostically fully usable. Taking the median rating of the Experts for each canal showed that 316 (99.4%) 
canals by the radiologist and 305 (95.9%) canals by the DLS were fully suitable for diagnosis, with 1 (0.3%) canal 
for the radiologist and 2 (0.6%) canals for the DLS uncertain, and with 1 (0.3%) canal for the radiologist and 11 
(3.5%) canals for the DLS not fully diagnostically usable. The mean, standard deviation, and counts of the Likert 
ratings for each heterogeneity group are shown in Table 3.

The error types reported by the Experts were also aggregated by majority voting for each of the canals. The 
radiologist’s annotations had errors for cases in TMJ Prosthetic group, specifically, 2 (2.9%) were short at man-
dibular foramen and 1 (1.4%) slightly off centre. The errors of the DLS were; fully missing canal for 2 (2.0%) 
cases from the Normal and 4 (4.3%) from the Orthognathic group, major parts missing in 1 (1.4%) case from 
TMJ Prosthetic group, short at mandibular foramen for 1 (1.5%) case from Pathological and 1 (1.4%) case from 
TMJ Prosthetic, and short at mental foramen for 2 (2.0%) from Normal and 2 (2.2%) from Orthognathic group.

In terms of the interobserver agreement of the Likert rating, the accuracy between Expert 1 and Expert 2 was 
found to be 94.81% and 95.91%, between Expert 1 and Expert 3 to be 91.98% and 91.51%, and between Expert 
2 and Expert 3 to be 91.04% and 90.87%. The intraobserver agreement was found to be 99.37%, 95.91%, and 
92.45% for Experts 1, 2 and 3, respectively.

Discussion
In this study, we have demonstrated the reproducibility capacity of a deep learning based automatic mandibular 
canal localisation system on a heterogeneous set of temporal clinical data. The DLS achieved both a high locali-
sation performance and reproducibility in our systematic quantitative and clinical performance evaluation of 
multiple graders. In addition, the present work is based on an out-of-distribution dataset that highlights the 
evidence of the temporal generalisation capacity of the DLS.

In the quantitative analysis, the DLS produced good repeatability coefficient values for Normal, TMJ Pros-
thetic, and Pathological groups, while the Orthognathic group had in comparison worse mean, standard devia-
tion, and repeatability coefficient value. This can be explained by the canals being affected by bilateral sagittal split 
osteotomy, which were generally difficult for the DLS. In this operation, the osteotomy lines go into the posterior 
mandibular canal areas, and after the ossification in the postoperative CBCT scans, the shapes, paths, and lengths 
of the mandibular canals may become modified. The postoperative mandibular canal can even have accessory 
openings to the surface of the mandible, and it can be asymmetrical to the contra-lateral mandibular canal. The 
generalisation performance for the BSSO cases is worse likely due to the lack of these cases in the training data. 
As for the overall generalisability results for SMCD, ASSD, and DSC, the DLS shows similar characteristics with 
the previous studies for the Normal, TMJ Prosthetic, and Pathological heterogeneity  groups13,16. Specifically, the 
median SMCD values obtained for the DLS were lower than reported interobserver  variability16. Additionally, the 
mean DSC was within the range of interobserver variability of 0.46–0.60 reported in the Supplementary section 
of that study. Furthermore, the DLS had large localisation and segmentation errors only on few canals that can 
be seen as outliers in the result figures. There is a similar proportion of outliers as in the previous  study16 and 
they are likely to be caused by some artefacts or difficult heterogeneity.

In the qualitative or clinical analysis, the radiologist had a higher probability for receiving the same Likert 
grading on two temporal segmentations, i.e. the repeatability measure, than the DLS on Normal and Orthog-
nathic groups. On the Pathological group, the radiologist had a higher repeatability measure than the DLS with 
Expert 2, Expert 3, and on average, but lower repeatability with Expert 1. However, the DLS showed higher 
repeatability measure on the TMJ Prosthetic group for all the Experts and on average. Challenges in the TMJ 
Prosthetic group for the radiologist can be caused by metallic artefacts that affect the visibility of the canal 
(Fig. 2b). The patients of the group had been operated using an individually designed full TMJ-reconstruction, 
with condylar component that consists of titanium, and fossa component of Ultra-high molecular weight poly-
ethylene, both fixed to the bone with titanium screws. These metallic structures cause major artefacts on the 
CBCT scans on the side with the operated mandible, degrading the visibility of the mandibular canal.

Table 3.  Mean, standard deviation (SD), and counts of all the Likert ratings ( NL for the Likert score L) 
grouped by the heterogeneity and the marker (the radiologist or the DLS).

Heterogeneity Marker Mean SD N0 N1 N2 N3 N4

Full dataset
Radiologist 3.94 0.27 0 3 12 72 1821

DLS 3.84 0.65 35 9 35 75 1753

Normal
Radiologist 3.97 0.19 0 0 2 15 595

DLS 3.86 0.62 12 0 8 21 571

TMJ Prosthetic
Radiologist 3.88 0.42 0 3 6 28 383

DLS 3.92 0.38 0 4 2 18 396

Orthognathic
Radiologist 3.97 0.22 0 0 4 11 537

DLS 3.71 0.90 23 3 21 17 487

Pathological
Radiologist 3.94 0.23 0 0 0 18 306

DLS 3.90 0.39 0 2 4 19 299
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Overall, the DLS showed slightly worse performance than the radiologist in terms of the average Likert score 
on the fully diagnostically usable canals. The DLS produced different types of errors, such as fully missing canals 
or major parts missing, while the radiologist’s errors were mostly too short or slightly off centre canals. The error 
of too short canals can be expected, as the length of a mandibular canal is challenging to evaluate in the foramen 
mandibulae area. This is because of the anatomical features and subjective ending point of the  canals16. The error 
of a canal being slightly off centre can be caused by an interpolation artefact or human error, when marking 
the canal  manually16. There were small Likert score differences between the heterogeneity groups for both the 
radiologist’s annotations and the DLS outputs. The group with the worst performance for the radiologist was 
TMJ Prosthetic group with the average Likert score of 3.88, while the worst performing group for the DLS was 
Orthognathic group with the average Likert score of 3.70. We found that there were no major differences between 
the majority of the qualitative results for the different heterogeneity groups. Indeed, most of the differences were 
caused by a few outlier cases. In terms of the patient level performance, the DLS turned out to have low variation 
between each scan of a patient, even for most of the cases that were imaged with different scanning devices and 
voxel spacings. Lastly, we evaluated the intra- and interobserver variability of the Likert scores given by the three 
experts in the two scoring sessions. We found out that there is a very strong overall intra- and interobserver reli-
ability, but there are some differences between the Experts. Lower interobserver results can be explained by the 
subjective nature of the mandibular canal annotations, which is based on the radiologist’s experience in the  task27.

There are some limitations in this study. First, we did not report all of the possible heterogeneities affecting the 
scans, such as difficult bone structure and movement of the patient. Second, the mandibular canal regions may 
also be affected by normal dental treatment during the follow-up period, which can cause changes to the nearby 
areas, such as new implants, dental crowns, endodontic materials, and orthodontic fixed appliances. These should 
be taken into consideration when designing future follow-up studies. In addition, further development is required 
to improve the robustness of the system for most anatomically, pathologically, or surgically difficult cases.

This work demonstrates the necessary capabilities of deep learning for longitudinal follow-up studies with 
different scanners or imaging parameters, and when there are anatomical or pathological changes in the patient’s 
mandible. The next step in terms of a clinical validation will be the evaluation of the deep learning system under 
radiologist’s supervision. Once validated and accepted for clinical use, the DLS can be used as a valuable tool 
in daily radiological, surgical, and dental practices, minimising potential complications in major and minor 
surgery. This reduces the time spent on computerised surgical planning in implantology and more complex 
maxillofacial surgery. In addition, it can be used to better visualise anatomical relationships for a variety of 
radiological challenges, including impacted teeth, odontogenic cysts and tumours, and malignant tumours, 
compared to static reconstructions. This visualisation would save time and effort in the preparation and reading 
of radiological reports.

Conclusion
The reproducibility of mandibular canal localisation with a deep learning system was evaluated on a heterogene-
ous dataset of temporal cone beam computed tomography scans. The reproducibility was found to be comparable 
to a radiologist in terms of quantitative and qualitative measures. In case of localisation and segmentation, the 
generalisation performance was found to be within or better than the interobserver variability suggested in the 
literature.

Data availability
The datasets used in model training, validation, and testing were provided by TAUH and CMU, and as such is 
not publicly available and restrictions apply to their use according to the Finnish law and General Data Protec-
tion Regulation (EU) and to the Thai law, respectively. The datasets used in this study is available from the cor-
responding author upon reasonable request and with permissions of TAUH and CMU.

Code availability
The code used for pre- and postprocessing and the deep learning techniques includes proprietary parts and can-
not be released publicly. However, the approach can be replicated using the information from the cited literature 
and the evaluation measures with the equations in the “Methods” section and in Supplementary Information.
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