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ABSTRACT 
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Bachelor’s thesis 
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January 2024 

 

 
This thesis investigates control systems and steering models that are used to control steering 

of the automated vehicles. The aim of the study is to gain insight into the current control system 
of the research vehicle, to identify its basic challenges and to look for areas of improvement. 
Although automated driving is undergoing continuous technological advancements, the 
nonlinearity of the system and other challenges complicate the design process, making it difficult 
to find a single optimal solution. 

The work is divided into two parts: a theoretical part and an experimental part. The theoretical 
part covers various types of controllers as well as dynamic and kinematic models. The use of 
models enables to study properties of the system under investigation and the design of the control 
system. Therefore, it is important to obtain the most suitable model for design purposes. In 
addition, the theoretical part of the thesis discusses different performance measures that can be 
used to study the performance of a closed-loop control system. These performance indices focus 
on the calculation of error accumulation in different ways, which makes them well suited to study 
the servo performance of the control system. 

Control systems are often based on negative feedback, where the measured output is fed 
back to the input and then the error is calculated. With the error, the controller generates a control 
signal that controls the system and tries to mitigate the error between the setpoint and the 
measurement. Therefore, the limitations and uncertainties of the measurement and control 
system must be taken care of as well as possible. In the theoretical part, the sensors and 
hardware of the automated driving system are discussed and the constraints they impose are 
examined. 

The experimental part presents the measurements carried out with the three different types of 
controllers. In the experimental part the performance of the control system was evaluated using 
P (Proportional), PI (Proportional-Integral), and PID (Proportional-Integral-Derivative) controllers. 
The results showed that the best performance was achieved with P and PI controllers. The PID 
controller caused significant oscillation in the vehicle steering, which resulted in poorest 
performance in the controller comparison. 
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Tässä työssä keskitytään automatisoitujen ajoneuvojen ohjaamiseen käytettyjen mallien ja 

säätömenetelmien tarkasteluun. Tutkimuksen päämääränä on syventyä testiajoneuvon 
nykyiseen säätöjärjestelmään, tunnistaa sen haasteet ja etsiä kehityskohteita, joilla järjestelmää 
voitaisiin kehittää. Tällä hetkellä automatisoitu ajaminen kehittyy teknisesti jatkuvasti, mutta 
järjestelmän epälineaarisuus ja muut haasteet hankaloittavat suunnitteluprosessia eikä 
automaattiseen ajamiseen ole yhtä oikeaa ratkaisua löydettävissä. 

Työ on jaettu kahteen osaan: teoriaosuuteen ja kokeelliseen osuuteen. Teoriaosuudessa 
käsitellään erilaisia säädintyyppejä sekä dynaamisia ja kineettisiä malleja. Mallien käyttö 
helpottaa tutkittavan systeemin ominaisuuksien tutkimista sekä säädinsuunnittelua, minkä vuoksi 
mahdollisimman sopivan mallin saaminen on tärkeää. Lisäksi teoriaosuudessa käsitellään 
erilaisia hyvyyslukuja, joilla voidaan tutkia säätöjärjestelmän suorituskykyä. Kyseiset hyvyysluvut 
keskittyvät virheen kertymisen laskemiseen erilaisin tavoin, jonka vuoksi ne soveltuvat hyvin 
tämän työn säätöjärjestelmän servotehtävän hyvyyden tutkimiseen. 

Säätöjärjestelmät perustuvat usein negatiiviseen takaisinkytkentään, jossa asetusarvosta 
vähennetään ulostulon mittaus. Tätä kutsutaan erosuureeksi, joka muodostetaan säätimessä. 
Erosuureen avulla säädin muodostaa ohjaussignaalin, joka säätää järjestelmää ja pyrkii 
pienentämään asetusarvon ja mittauksen välisen virheen. Tämän vuoksi mittaus – ja 
ohjausjärjestelmän rajoitteet ja epävarmuudet on tunnettava mahdollisimman hyvin. 
Teoriaosuudessa arvioitiin automaattisen ajoneuvon antureita ja laitteistoa sekä tutkitaan näiden 
aiheuttamia rajoitteita. 

Kokeellisessa osuudessa esitellään kolmella eri säädintyypillä suoritetut mittaukset ja niiden 
tulokset. Tutkimuksen kokeellisessa osuudessa arvioitiin säätöjärjestelmän suorituskykyä 
käyttäen P- (Proportional), PI- (Proportional-Integral), ja PID (Proportional-Integral-Derivative) -
säätimiä. Tulosten perusteella havaittiin, että parhaimmat suoritusominaisuudet saavutettiin P- ja 
PI-säätimillä. PID-säätimen käyttö aiheutti ajoneuvon ohjaukseen merkittävää värähtelyä, joka 
johti sen heikkoon suorituskykyyn säädinvertailussa. 
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1. INTRODUCTION 

In recent years, there has been a significant increase in research on autonomous driving. 

Autonomous systems are based on complex control and decision-making technologies 

that allow vehicles to move safely and efficiently without a human driver [1]. A key part 

of this technology is the control of the steering of a self-driving car, which allows the car 

to control and adapt to changes in the environment in real time. 

Self-driving car steering control covers a wide range of methods and strategies used to 

control the movement of the car in different situations. Control systems can be based on 

traditional control theory methods or deep machine learning algorithms and must be able 

to react quickly to changing environmental factors. [2]  

Steering control is an essential part of the implementation of autonomous driving, aiming 

to achieve optimal performance and safety in different traffic situations [2]. At the same 

time, vehicle modelling provides the basis for steering control, as an accurate modelling 

of vehicle dynamics is essential for optimal steering design. 

Vehicle modelling is another key aspect of autonomous driving research. An accurate 

and realistic vehicle model allows experimentation and testing in simulation 

environments without the need for a physical vehicle. Modelling involves challenges such 

as the complexity of vehicle dynamics and the variability of the environment. [1]  

Various control methods have been used to control the lateral steering of the vehicle. 

For example, gain-scheduling, model-based control and neural network-based 

controllers have been developed for automated vehicles. Each control method has its 

own advantages, such as operating over large speed ranges or at large turning angles. 

On the other hand, some methods can be difficult to implement, but are robust and 

efficient. [3][4][5]  

The purpose of this thesis is to examine the different types of vehicle motion models and 

control methods for lateral vehicle motion. Additionally, the work examines how an 

automatic car behaves with three different controllers and uses this information to 

provide suggestions for improvements to the current system. The controllers to be 

considered are the P (Proportional), PI (Proportional-Integral) and PID (Proportional-

Integral-Derivative) controllers. However, not everything related to the research vehicle 

and technology will be examined for confidentiality reasons. 
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The thesis describes the underlying theory behind the steering of the autonomous 

vehicles. Chapter 2 discusses the control of the steering of a self-driving car and the 

control models. Chapter 3 discusses the research vehicle and the implementation of the 

field test. Finally, Chapter 4 presents the results of the measurements that describe the 

performance of the P, PI, and PID controllers. 
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2. STEERING CONTROL 

One of the most significant challenges encountered within the realm of autonomous 

driving steering control pertains to the nonlinearity inherent in steering systems. Different 

steering models and controllers have been developed and each of them has different 

features. Certain methods exhibit good performance during low-speed manoeuvres and 

cornering scenarios, while others demonstrate effectiveness when addressing high-

speed situations and executing minor turns. 

2.1 Steering models 

The vehicle's motion can be explained through either more complex four-wheel models 

or simplified two-wheel bicycle models. Within the bicycle model, the four-wheel 

configuration is substituted with a dual-tire arrangement comprising a front and a rear 

tire. Moreover, two distinct classifications of models exist: dynamic and kinematic. Each 

of these models have uses in different scenarios. [6, p. 20]  

Mathematical models 

Steering models can be described in various ways. In this thesis, models are presented 

using time-depend differential equations. A differential equation is an equation that 

includes a function and its derivatives. These equations are especially valuable for 

modelling dynamic phenomena, such as car’s steering. [7, p. 724]  

State-space representation is a method used to express differential equations, and it can 

be used to monitor how states evolve over time. The Linear Time Invariant (LTI) state-

space representation can be expressed in the form of equation 

�̇�(𝑡) = 𝑨𝒙(𝑡) + 𝑩𝒖(𝑡)

𝒚(𝑡) = 𝑪𝒙(𝑡) + 𝑫𝒖(𝑡)
, (1) 

where 𝒙(𝑡) is n-dimensional state vector, �̇�(𝑡) is n-dimensional first-order time derivative 

of 𝒙(𝑡), 𝒖(𝑡) is m-dimensional input vector and 𝒚(𝑡) is r-dimensional output vector. [8, p. 

12] A system is an LTI system when it is time invariant and adheres the superposition 

principle. The superposition principle holds when each input 𝑢𝑛 produces an output 𝑦𝑛 

and these outputs are not dependent on other inputs. [9, p. 87] Other elements of the 

state-space representation are matrices 𝑨 𝜖 ℝ𝑛×𝑛, 𝑩 𝜖 ℝ𝑛×𝑚, 𝑪 𝜖 ℝ𝑟×𝑛 and 𝑫 𝜖 ℝ𝑟×𝑚. 

Specifically, matrix A is the dynamic matrix, matrix B is the input matrix, matrix C is the 

output matrix, and matrix D is the direct transfer matrix. Of these matrices, matrix A is 

the most relevant when describing vehicle lateral control models. Matrix B defines which 
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states are controlled, matrix C describes which states are measured and matrix D 

describes which inputs affects directly to the output of the system. [8, p. 12] 

Kinematic bicycle model 

Kinematic model has been derived based on geometric relationships of the vehicle 

without any forces. This approach has proven applicable and robust in situations where 

precise dynamic parameters are unavailable, or the identification of the model is too 

complicated. Kinematic bicycle model is illustrated in Figure 1. 

 

Figure 1. Vehicle's kinematic motion. Edited from source. [6, p. 21] 

Based on Figure 1, differential equations of the vehicle’s kinematic motion can be derived 

from 

{
 
 

 
 �̇� = 𝑉 cos(𝜓 + 𝛽)

�̇� = 𝑉 sin(𝜓 + 𝛽)

�̇� =
𝑉 cos( 𝛽)

𝑙𝑓 + 𝑙𝑟
(tan(𝛿𝑓) − tan(𝛿𝑟))

 , (2) 

where �̇� and �̇� are horizontal and vertical velocities, 𝑉 is the velocity of the vehicle, and  

𝜓 is yaw angle. Yaw angle describes how much vehicle is rotated around the global Z 

axis. Parameters 𝑙𝑓 and 𝑙𝑟 are the lengths from the vehicle's centre of mass to the front 

and rear axles. The parameters 𝛿𝑟 and 𝛿𝑓 represent the rear and front steering angles, 

and 𝛽 is vehicle’s slip angle. [6, p. 26] In a kinematic bicycle model, the coordinates, 

dimensions, and direction of the vehicle are used for modelling. 

Dynamic bicycle model 

The dynamic 2-Degree-of-Freedom (2-DOF) bicycle model demonstrates the motion of 

a vehicle, accounting for its dynamic traits. This model provides a more comprehensive 

analysis than the basic kinematic model, requiring the consideration of more states and 
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parameters. A dynamic bicycle model can be described, for example, by a state-space 

model as: 

[
 
 
 
�̇�
�̈�

�̇�

�̈�]
 
 
 

=

[
 
 
 
 
 
 
0 1 0 0

0 −
2𝐶𝛼𝑓 + 2𝐶𝛼𝑟

𝑚𝑉𝑥
0 −𝑉𝑥 −

2𝐶𝛼𝑓𝑙𝑓 − 2𝐶𝛼𝑟𝑙𝑟
𝑚𝑉𝑥

0 0 0 1

0 −
2𝑙𝑓𝐶𝛼𝑓 − 2𝑙𝑟𝐶𝛼𝑟

𝐼𝑧𝑉𝑥
0 −

2𝑙𝑓
2𝐶𝛼𝑓 + 2𝑙𝑟

2𝐶𝛼𝑟

𝐼𝑧𝑉𝑥 ]
 
 
 
 
 
 

[

𝑦
�̇�
𝜓

�̇�

] +

[
 
 
 
 
 

0
2𝐶𝛼𝑓
𝑚
0

2𝑙𝑓𝐶𝛼𝑓
𝐼𝑧 ]

 
 
 
 
 

𝛿. (3) 

In the state-space model, the parameters 𝐶𝛼𝑓  and 𝐶𝛼𝑟   represent the cornering stiffness 

values of the tires, while 𝑚 is the mass of the vehicle. Additionally, 𝑙𝑓 and 𝑙𝑟 represent 

the distances from the front and rear axles to the vehicle's center of gravity, and 𝑉𝑥 

represents the longitudinal velocity of the vehicle. Variable 𝐼𝑧 signifies the moment based 

on the z-axis. Parameter �̇� is lateral velocity, �̈� denotes lateral acceleration, �̇� and �̈� 

refer to yaw angular velocity and angular acceleration. The variable 𝛿 is the steering 

angle of the front wheel. [6, p. 30] 

The dynamic model is more challenging to implement because, for instance, cornering 

stiffness values require identification and are specific to the vehicle, road surface, and 

tires. These stiffness values can be estimated using the Pacejka magic formula [10, p. 

7]. Using a dynamic vehicle model may not be a robust way to model vehicles, as the 

model relies on the vehicle's mass and the tire-road friction coefficient  [6, p. 31]. For 

example, weather conditions can influence the friction coefficient, causing variations in 

model parameters [11]. Moreover, a basic linear model does not function effectively 

when dealing with significant steering angles, because linearization is made using small 

angle approximation [6, p. 30]. In scenarios requiring substantial steering angles, an 

alternative tire model is necessary. 

2.2 Controllers 

The nonlinearity of a vehicle introduces challenges when it comes to steering control. 

Various controllers and controller design approaches are employed, yielding different 

results. Some controllers are straightforward to design and are suitable for various 

situations, specific speeds, and steering angles. On the other hand, certain aspects of 

controller design are more complex but offer greater utility and robustness compared to 

simple controllers. This chapter presents a few controllers used in literature to control a 

lateral motion of vehicle. All these controllers are based on feedback systems. In a 

feedback system, the measured output is fed back to the controller’s input, according to 

which the controller tries to decrease the control error [12, pp. 33–34].  
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2.2.1 1-DOF PID-controller 

The PID controller stands out as well-known and extensively utilized controller, 

characterized by its P, I, and D components. The P-term of the control component is 

proportional to the error, the I-term is proportional to the error of the integral and the D-

term is proportional to the derivative of the error. Summing these terms gives the control 

function 𝑢. [9, p. 64] The block diagram of PID-controller is shown in the Figure 2. 

 

Figure 2. Block diagram of the PID-controller. [9, p. 71]  

In Figure 2, the PID controller employs a control algorithm that generates a control signal 

by adding together the contributions of the Proportional (P), Integral (I), and Derivative 

(D) terms. While various alternatives have been devised, the illustration in Figure 2 

represents the prevailing standard. 

Terms of the PID-controller works in different ways. Figure 3 illustrates how the PID 

controller utilizes error information at different times. 

 

Figure 3. PID controller uses past and present error information and predicts future by 

linear extrapolation. Edited from source [13]. 
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In PID control, the P-term is static and responsible for real-time operation, providing 

control action in proportion to the current error. The proportional term does not guarantee 

accurate control by itself, as the error may not converge to zero. In contrast, the I-term 

employs integral values of past errors to primarily reduce control errors. The D-term, 

forecasts the future using derivatives, aiming to accelerate the controller's response and 

enhance closed-loop stability and damping of step response. [12, p. 64–69]  

The operation of the 1-DOF-PID controller's output can be written as 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(τ)
𝑡

0

 𝑑τ + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
, 𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡), (4) 

where 𝐾𝑝 is the proportional gain, 𝐾𝑖 and 𝐾𝑑 are the integration and derivative gains 

respectively, and 𝑢(𝑡) is the control signal and 𝑒(𝑡) is error, 𝑟(𝑡) is reference value and 

𝑦(𝑡) is output of the system. PID controller in discrete time can be represented by the 

equation 

𝑢(𝑘) = 𝐾𝑝𝑒(𝑘) + 𝐾𝑖ℎ∑(
𝑒(𝑖) + 𝑒(𝑖 − 1)

2

𝑛

𝑖=1

) +
𝐾𝑑
ℎ
(𝑒(𝑘) − 𝑒(𝑘 − 1)), (5) 

where ℎ is the sampling interval and 𝑘 is an integer. In this thesis, discrete PID controller 

is used because the explored system is discrete. [14, pp. 193–195] The gains 𝐾𝑖 = 𝐾𝑝/𝑇𝑖 

and 𝐾𝑑 = 𝐾𝑝𝑇𝑑 are used in this study, where 𝑇𝑖  and 𝑇𝑑 represent integration and 

derivative times. 

PID-controllers are well-suited for LTI systems. Various combinations of PID terms are 

also available. For instance, you can use only the P-term, or you can use P-term and I-

term together. The choice of terms depends on the system's dynamics and desired 

functionalities. [9, p. 87]  

2.2.2 State-feedback control 

The state of a dynamical system refers to how the system will evolve in the future. State-

feedback controllers can be designed in several ways. In pole placement method, the 

main idea is to make use of the system's states and the matrixes A and B to position the 

eigenvalues of the closed-loop system. The eigenvalues are obtained from the equation 

det(𝝀𝑰 − 𝑨𝑐𝑙) = 0, (6) 

where 𝝀 is eigenvalue vector, and 𝑨𝑐𝑙 is the dynamics matrix of a feedback system. 

Matrix I is identity matrix with the same dimensions as the matrix 𝑨𝑐𝑙. [15][16, pp. 175–

178] State-feedback controller’s output is mathematically represented by (7) 
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𝒖 = −𝑲𝒙 + 𝑅𝑠𝑟, (7) 

where 𝒖 is control input, 𝒙 is state-vector and 𝑲 is a gain matrix where the dimensions 

depend on the number of variables to be controlled. Parameter 𝑅𝑠 is the calibration value. 

[16, pp. 175–178] 

The values within the gain matrix 𝑲 have an impact on various properties of the system’s 

step response, including overshoot, stability and settling time, which are desirable 

characteristics for the system's performance. Furthermore, the choice of parameters 

within the gain vector depends on the specific type of controller desired. [17, pp. 237–

239]  

2.2.3 Gain-scheduling  

Nonlinearity of real-world systems makes control system design challenging. Traditional 

methods such as linear controllers may not work. Therefore, different approaches to the 

problem have been developed. Gain-scheduling is one example how to control nonlinear 

systems.  

Gain-scheduling is a method that utilizes a set of linear controllers. These linear 

controllers are designed using linearized models derived from a nonlinear system model. 

Linearized models can be used in the design of a linear controller, such as PID 

controllers. [18, p. 1107]  

A linear controller provided through gain-scheduling is an eligible choice because the 

design methods and control theory for linear control are well-established. In such cases, 

controller types like the ones mentioned above can be applied. [18, p. 1107] 

2.3 Performance indicators 

The quality of control can be measured and examined in different ways. There are 

various indicators that provide information on the performance of the system. In addition, 

performance of control can be investigated by simply measuring the error, control signal, 

setpoints and response of the system. 

The two indicators used in this work are The Integral of Squared Error (ISE) and The 

Integral of Absolute Error (IAE). Both ISE and IAE describe the accumulation of error, 

which refers to the amount of area that accumulates between the error curve and the x-

axis. ISE is calculated as follows  

𝐼𝑆𝐸 = ∫ (𝑒(𝑡))
2

𝑇

0

 𝑑𝑡, (8) 
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where T signifies the time period which the error is being evaluated over. On the other 

hand, IAE is calculated 

𝐼𝐴𝐸 = ∫ |𝑒(𝑡)|
𝑇

0

 𝑑t. (9) 

The primary distinction lies in the squaring of error values for ISE, which gives more 

weight to larger errors, while IAE treats all errors equally, regardless of their size. [19][20] 

Time-weighted versions of IAE and ISE can also be expressed as Integral of Time 

multiplied Absolute Error (ITAE) and Integral of Time multiplied Squared Error (ITSE). 

ITAE is determined using 

𝐼𝑇𝐴𝐸 = ∫ 𝑡|𝑒(𝑡)|
𝑇

0

 𝑑t. (10) 

ITSE is calculated using  

𝐼𝑇𝑆𝐸 = ∫ 𝑡(𝑒(𝑡))
2

𝑇

0

 𝑑𝑡. (11) 

Time-weighted performance measures are used when system design values a short 

settling time and a reasonable percentage overshoot more than a short rise time and a 

high overshoot. [19][20] 

In addition to the previous values, the rise time, settling time, overshoot and stability 

margins of the control system must be verified. Figure 4 illustrates settling time, 

overshoot and rise time. 

 

Figure 4. Indicators of the step response. 
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The rise time describes swiftness of the transient stage. Typically, this value is calculated 

as the time taken from ten to ninety percent of the final value of the response. Settling 

time describes the time it takes for the response to settle within a certain limit, for 

example within ±2% of the final value. [12, pp. 328–329] The overshoot describes how 

much the system response exceeds the target end value [21, pp. 474–478]. The 

characteristics of a system can also be studied using, for example, a Bode diagram. 

Figure 5 shows an example of a Bode diagram and stability margins. 

 

Figure 5. Stability margins presented in the Bode diagram. 

With Bode diagram, for example, system’s stability margins in frequency domain can be 

explored. [12, pp. 523–525]. Stability margins describes how much the values of gain, 

delay or phase can change before the system becomes critically stable [21, pp. 474–

478].  
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3. STRUCTURE OF THE AUTOMATED VEHICLE 

Autonomous driving needs complex systems to work. VTT Technical Research Centre 

of Finland researches autonomous driving, and in this thesis one of the automated 

vehicles, the Volkswagen Touareg, called "Martti", is used as a research vehicle. The 

automated vehicle has a wide range of different sensors and algorithms which are 

introduced in this chapter.  

3.1 Architecture, Algorithms, Hardware and Sensors 

The architecture of an autonomous vehicle includes many different algorithms, 

computers, and radars. Figure 6 shows the operational architecture of an automated car. 

 

Figure 6. Control architecture of self-driving car. 

The most relevant piece in Figure 6 for this work is the "Actuator control" block. It includes 

low-level control, such as actuator control algorithms. The actuator controller contains 

the control algorithms for the car's brake, steering wheel, and accelerator actuators. It 

also contains the motion control logic of the vehicle. 

The actuator control receives control commands, such as the steering angle setpoints 

and the desired speed, from the control commands block. The control commands block 

combines location, obstacle, and route information, and provides control values to the 

actuator control block. In this case, only the control command and the actuator control 

blocks are considered. 
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The vehicle can be driven in different ways. For example, driving can be done using a 

pre-recorded route. In this work, the car is driven based on the position and direction of 

the car. This method is particularly convenient in this work, as it reduces the number of 

external error factors and provides more accurate information for the analysis of the 

control. 

Autonomous vehicles require specific control, planning, and sensing algorithms to 

operate efficiently. The path controller is responsible for charting a course based on a 

pre-defined point-to-point route. It exploits real-time car position data and anticipates a 

point a short distance ahead, towards the direction of which the vehicle should steer at 

any given moment. By considering the car's current direction, velocity and curvature, the 

path controller calculates the necessary car curvature value. This value serves as the 

basis for determining essential parameters, including the required steering angle for the 

tires. 

The vehicle controller considers various limiting factors, such as extreme steering angles 

and acceleration values. In addition to control functions, it incorporates logic for 

managing parameter adjustments needed for actions like braking. The vehicle controller 

also enforces constraints imposed by these limiting factors. An example of such 

constraints is the acceptable range for the steering angle of the tires, indicating that the 

tires cannot be turned arbitrarily but must remain within a specific angle range. 

A wide range of sensors and equipment are needed to operate a car, but this thesis will 

only present the most relevant ones for control and steering. The most relevant data for 

steering are velocity, direction, and position of the vehicle. This data is obtained with 

three different instruments which are Odometry, Inertial Measurement Unit (IMU) and 

Global Navigation Satellite System (GNSS). 

Odometry refers to the measurement and tracking of motion using a device's movement, 

such as wheels or treads. It is particularly important in the context of autonomous 

vehicles, where it helps predict the vehicle's position and motion based on the 

movements of its components. For example, in the case of a differential drive vehicle 

with two independently controlled wheels, odometry helps calculate the vehicle's 

trajectory and position. It plays a crucial role in navigation and tracking, especially in 

autonomous movements and distance measurement. [22]  

Odometry is used in this work to measure the angle of the car's tyres, steering wheel, 

and the speed of the car. These are all read directly from the car's own Controller Area 

Network (CAN) to make the information as readable as possible. CAN is a 
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communication protocol that was originally designed for the automotive industry but is 

also widely used in other industries, for example, it’s commonly used in factories [23]. 

IMU is a device that measures and estimates the relative position, velocity, and 

acceleration of a moving vehicle. IMUs require real-time integration of data from sensors, 

for example accelerometers and gyroscopes, to determine the vehicle's motion relative 

to its initial frame. Modern IMUs can estimate a vehicle's 9-DOF. It consists of three 

primary components: accelerometer, gyroscope and magnetometer, each 3-DOF. 

Accelerometer measures acceleration, gyroscope measures the object's angular velocity 

or rotational movement, and magnetometer gives heading. [22][24]  

GNSS is a widely used technology for determining precise location on Earth. It offers a 

three-dimensional position estimate, time and date information, and is accessible 

globally. Standard GNSS provides a position estimate an accuracy of about 20 meters. 

GNSS is widely used in various applications, such as vehicle navigation, outdoor activity 

and fleet tracking. Various techniques have been developed to increase the accuracy of 

GNSS. This work uses the RTK Fixed GNSS, which accuracy is between 1 to 3 

centimetres. [22]  

The control system in the test vehicle is distributed, which is why Data-Distributed 

System (DDS) is used for data transfer and communication between the different control 

units. DDS is a standardised way of communicating information in a distributed system. 

It is based on the "publisher/subscriber" method. In this method, each control unit can 

publish messages on the DDS network on a given topic and a control unit can subscribe 

messages from other units. In addition to the decentralisation of DDS, the system has 

the advantage of real time. [25]  

3.2 Instrumentation constraints 

When controlling any instrument, the accuracy of the measurement and other limitations 

of the instrumentation must be considered. Measurement inaccuracies and delays can 

cause problems and challenges for control. This subsection examines the sources of 

error and constraints of the test vehicle’s system. 

The measurement and control system has been designed to be as delay-free as 

possible. However, delays can still occur due to factors like DDS, communication buses, 

and computation. Even every effort to minimize these delays are made, there will always 

be some delay in processing data from measurement to control value change. For 

instance, the car's speed and tire direction data come from the odometry, which is 

obtained from the car's own CAN bus. The control computer then calculates the 



 
 

14 

necessary steering commands. After this calculation is completed, the steering 

commands are transmitted over the bus to an actuator, which also introduces its own 

delay and time constant. There are many steps to the change in steering from a 

measured quantity in a single steering control cycle, during which uncertainty arises. 

In addition to the delay, the control is constrained by the actuators. The servo motor used 

to steer the car in this application is not self-controlled but uses a proprietary interface 

and control system. Therefore, the readability and speed of the servo operation is not 

known of causing steering uncertainty. 

One important factor that affects the quality of the control is the measurement. In a 

feedback system, control relies on measurements. Therefore, it is essential to consider 

factors that impact measurement accuracy within the control system. Measurement 

accuracy can be evaluated and analysed in various ways and multiple indicators can be 

used to assess the accuracy of measurements. However, in this specific application, 

many of these factors remain unknown. For instance, the sensor surface and 

measurement methods for the car's own speed and direction data are not well-

documented. 

In addition to the constraints mentioned above, certain types of sensors themselves pose 

constraints that need to be considered. IMUs are sensitive to measurement errors, which 

can lead to drift in orientation and position, which occur in the automotive environment 

often. External references, such as GNSS, are often used to correct these errors over 

time. [22] 
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4. VEHICLE TEST SCENARIOS WITH VARIOUS 
CONTROLLERS 

This chapter focuses on the experimental section, which involves conducting tests on a 

test vehicle using various controllers. The aim is to use the results to examine the 

functionality of the control system, identify areas for improvement, and investigate the 

current characteristics of the car's steering. 

4.1 Test methods 

Three different control algorithms were implemented in the test vehicle: the P, -PI, - and 

PID controllers. These control types were used for practical measurements on the test 

track. The test track is depicted in Figure 7, with the x-axis representing longitude and 

the y-axis representing latitude coordinates. 

 

Figure 7. Test track depicted in longitude and latitude coordinates. 

The test track includes a variety of bends to test the performance of the controllers in a 

wider range of situations. Each test is run at the same speed, 20 km/h, starting from the 

same point. At the beginning, the car is not at its target speed, but accelerates before 

the first corner. At the end of the route, the vehicle stops on its own. 

The measurements have been made using XSENS MTi-630R IMU, Ublox ZED F9P 

RTK-GNSS and odometry. The measurement frequency for IMU is 100 Hz and for GNSS 

is 10 Hz. The odometry provides the angle between the tyres and the steering wheel and 

the vehicle speed at each moment. Steering control is achieved by adjusting the angular 



 
 

16 

velocity of the servomotor. Steering values in degrees of wheel angle are calculated by 

integrating the angular velocity of the wheel and tyres. The numerical integration was 

performed using the cumtrapz function in MATLAB software. Samples are collected at 

10 ms intervals. 

The controllers initially used contained the original gain values, which were later adjusted 

during the tests to enhance control performance. The structure of the controller is shown 

in the equation (5). The gain values of the controllers can be found in Table 1. 

Table 1. Used PID gain values. 

CONTROLLER 𝐾𝑝 𝐾𝑖 𝐾𝑑 

P 0.09 - - 

PI 0.08 0.03 - 

PID 0.05 0.04 0.01 

For each controller, the tire angle’s target reference, the measured tire angle, timestamp 

and the steering control value were measured. The target reference value was obtained 

from the path planning algorithm. 

4.2 Results 

Figure 8 shows the measured values when driving with the P controller.

 

Figure 8. Measured values when using P controller. 
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The graph shows that the angle of the tyres oscillates, especially for small changes in 

the target reference. This is due to the relatively high value of gain required for larger 

curves, because with larger target reference changes, the oscillation is smaller. It is also 

typical for P control that the control error never reaches zero, and the control can remain 

oscillating.  

A delay was determined between the reference value and the measured value. This 

delay represents the time taken by the control system to reach the target reference. For 

different controllers, the delay varied between 0.25 and 0.30 seconds. In other words, 

the measured values are delayed by a certain amount relative to the target reference. 

Delays increase the value of the error. 

Oscillation is not only caused by the control but is also heavily influenced by the routing 

algorithm. The current P controller keeps up relatively well with changes in set values, 

but due to delay and interference, it does not reach the full target reference. The graph 

also shows how much the target reference oscillate; this degrades the control. 

The same measurements were also repeated with the PI controller. The results can be 

seen in Figure 9. 

 
Figure 9. Measured values when using PI controller. 

Compared to the P controller, the PI controller mitigates error at lower setpoints. The 

additional oscillation that occurs is smaller compared to the P controller. From the graph, 

it can be concluded that the PI controller performs better in this application. The third test 

was performed with a PID controller, the measurement results of which are shown in 

Figure 10. 

 



 
 

18 

 
Figure 10. Measured values when using PID controller. 

With a PID controller, the error, setpoints and response oscillate strongly, because the 

D-term of the PID controller acts as a derivator that reacts strongly to spurious errors 

and noise. Due to the excessive gain of the D-term in this measurement, the oscillation 

was too strong. 

In addition to these measurements, the performance and quality of controllers can be 

compared in several ways. Figure 11 shows the IAEs and ISEs for all three controllers.

 

 

Figure 11. IAEs and ISEs of the controllers. 

The graph shows that the P and PI controllers have the smallest errors. Towards the 

end, however, the absolute error of the P controller is lower than that of the PI controller, 
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so when looking at the error, the final value of the P controller is better, but the error 

accumulation of the PI controller is smoother. The first five seconds have been excluded 

from the calculations because the initial values distorted the results.  

From the graph, it can be observed that the accumulation of square error slows down 

around the 80-second mark for both P and PI controllers. This suggests that the error is 

relatively small compared to the error accumulation of a PID controller, which exhibits a 

higher growth rate. In comparison to the computed values of IAE, the accumulation of 

ISE is more gradual. Relative to the travelled path, it is noticeable that the largest errors 

occur in the early part of the trajectory, particularly around radical turns. Towards the 

end, the error levels off as the turns become gentler, except when using a PID controller. 

For both IAE and ISE, there is a large increase at 70-80 seconds for all regulators, as 

the target reference changes significantly at that time. 

Time-weighted versions of the IAE and ISE are not used in this work because the target 

reference values change frequently. Therefore, time weighted ratios may distort the 

calculations and thus do not add value to the calculation and to the comparison of 

regulators. 

In addition to the steering measurements, the position of the vehicle was measured. For 

the most part, the vehicle stayed on track, but there was some oversteer on all 

controllers, especially on steep bends. Figure 12 shows the route taken by the vehicle 

and the recorded route. 

 

Figure 12. Part of the ideal and vehicle-driven route. 
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The picture shows the vehicle swerving around a steep bend. This is due to an excessive 

gain value and the route tracking algorithm. In the route-following algorithm, the 

correction is due to a too high a lookahead and gain values. The lookahead term 

indicates the reference point used in steer calculations along the upcoming route. That 

is, at a turn, the lookahead is slightly above the right-angle value, which causes a 

correction.  

The distance between the recorded route and the driven route was calculated. The 

standard deviations and average values of the route deviation are shown in Table 2. 

Table 2. Standard deviation and average values of the route deviation. 

 Average value of the route 

deviation (m) 

Standard deviation 

P 0.2859 0.2037 

PI 0.2516 0.1189 

PID 0.2858 0.1750 

 

When comparing the averages, the car stayed best on its route with the PI controller and 

worst with the P and PID controllers. In addition, the PI control had the lowest standard 

deviation. 
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5. CONCLUSIONS 

The experiment aimed to assess the performance of three different controllers on a 

specific test track under varying conditions, and the results aligned with expectations. 

Notably, the nonlinearity in the vehicle's steering system had a clear influence on the 

outcomes. 

When dealing with significant changes in the steering angle, both the P and PI controllers 

demonstrated good performance. The P controller exhibited minor oscillations, even with 

small set values, while the PI controller effectively mitigated these oscillations. However, 

the PID controller consistently exhibited oscillatory behaviour across all settings.  

The lowest final IAE and ISE values was produced by the P controller, while the highest 

final values was yielded by the PID controller when the accumulated error was evaluated. 

The differences in errors between the P and PI controllers became most apparent toward 

the end of the testing. Furthermore, when it came to route deviations, the PI controller 

outperformed the P and PID controllers. Consequently, the best results were achieved 

with the P and PI controllers, with the PI controller delivering smoother performance and 

fewer oscillations. 

It is important to acknowledge that the controllers used in the experiment are linear with 

constant co-effs, which may not give good results. For example, larger changes in the 

steering angle exhibited fewer oscillations compared to smaller ones. Additionally, when 

tested at higher speeds with identical gain values, the system became prone to 

instability. Therefore, enhancing the control system, possibly through strategies like gain-

scheduling and a more precise model, could lead to overall performance improvements. 

The thesis presented a couple of different types of controllers and a vehicle modelling 

approaches. The work as a whole was successful, and information about the control 

system of the vehicle studied was obtained. The data collected was used to identify 

various areas for improvement and development of the control system of the vehicle, 

which was one of the motivations for doing this work. In the future, this work could be 

used to explore which methods could be used to modify and improve the vehicle's 

steering control system. 
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