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ABSTRACT
A vision-based guidance methodology is proposed for precise positioning of the tool center point
(TCP) of heavy-duty, long-reach (HDLR) manipulators. HDLR manipulators are non-rigid structures
with many nonlinearities. Therefore, conventional rigid-body–based modeling and control meth-
ods issue challenges for accurate TCP positioning. To compensate for these errors, we compute
the pose error between the TCP and an object of interest (OOI) directly in the camera frame,
while usingmotion-based local calibration to find the extrinsic sensor-to-robot correspondence. The
proposed pipeline for local calibration is twofold: first, the detected tool is oriented perpendicu-
larly with respect to the OOI. Second, range adjustment is performed in the local planar plane by
exploiting the visual measurements. Two methods for adjusting the range were examined: a line
equation–based method and a trajectory matching–based method. Real-time experiments were
conducted using a HDLR manipulator with a 5m reach, and visual fiducial markers were used as
detectable objects for the visual sensor. The experimental results demonstrated that the proposed
methodology canprovide sub-centimeter positioning accuracy, which is very challenging to achieve
with HDLR manipulators due to their characteristic uncertainties.
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1. Introduction

Visual sensors, such as cameras and laser scanners, are
becoming an essential part of robotic systems. Tradi-
tionally, robots’ work tasks have been pre-programed by
utilizing precise joint sensors with high repeatability [1].
However, emerging intelligent algorithms combinedwith
visual detection and pose (3 DOF position and 3 DOF
orientation) estimation provide a way for autonomous
robotic systems performing work tasks based on non-
contact visual sensing [2]. A typical scenario is visual
servoing, in which an object of interest (OOI) is detected
using a visual sensor, and then the tool center point
(TCP) of themanipulator is guided toward theOOI based
on the visual feedback [3, 4]. Methods of visual servo-
ing are generally classified into position-based (PBVS)
[5], image-based (IBVS) [6], and hybrid systems [7]. In a
PBVS system, the control error is defined in Cartesian 3D
coordinates, and the control algorithmutilizes the robot’s
kinematic model along with camera calibration parame-
ters. In an IBVS system, the control law is defined in the
2D image plane using image features directly. The rela-
tionship between the image plane and the robot is estab-
lished using an image Jacobian matrix, which describes a
nonlinear mapping between the image feature errors and
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the pose of the robot [8]. Hybrid systems attempt to uti-
lize the advantages of both the PBVS and IBVS. Visual
control can also be realized in an open-loop manner,
where the continuous feedback loop is omitted. Applica-
tions for vision-based control include grasping, surgical
instruments, insertions, pick and place, and so forth.

The first of the two main causes of inaccuracies in
a robotic manipulator’s TCP positioning results from
incorrect variables in kinematic modeling, such as the
Denavit-Hartenberg (DH) parameters. The second cause
are non-kinematic errors caused by, for example, struc-
tural bending and flexibility, thermal effects, backlash,
and sensor resolution [9]. The problem of precise TCP
positioning in robotics is highlighted in the context of
heavy-duty, long-reach (HDLR) manipulators that are
utilized in mobile machines. For economic reasons, it
is desirable that HDLR manipulators are constructed
to be as lightweight as possible while able to handle
significant load masses. Such conditions result in high
structural flexibility and other uncertainties that are not
an issue with small and compact industrial robots. For
HDLR manipulators, traditional rigid-body kinematics-
based control is not sufficient for precise TCP position-
ing due to the non-rigid structures. However, precise
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positioning is an essential requirement for automated
work tasks even with a human-in-the-loop and even-
tually fully autonomous machines. Therefore, HDLR
manipulators could benefit considerably from camera-
based guidance that is utilized to minimize the posi-
tioning error between the TCP and an OOI, which thus
bypasses the weaknesses of the imprecise yet compu-
tationally efficient rigid-body–based kinematics, along
with non-kinematic error sources.

Attaching a camera near the tip of a robotic manip-
ulator is known as an eye-in-hand configuration [10].
The rigid relation between the camera frame (eye) and
the TCP of the manipulator (hand) is described with
a transformation matrix estimated using extrinsic cal-
ibration [11]. This static mapping allows information
obtained using the camera, or another visual sensor, to
be expressed in the robot’s coordinate system. Typically,
the extrinsic calibration procedure requires a predefined
object with a set world frame, such as a checkerboard
or a circular grid [12–15], which is used to estimate the
hand-eye transformation. The procedure also requires
taking images from different distances and angles with
respect to the calibration object. Consequently, this setup
is mostly feasible for structured environments in con-
trolled factory settings. A key differentiation between
mobilemachineswith on-boardHDLRmanipulators and
conventional industrial robots is that the former oper-
ate in dynamic, unstructured environments. Thus, using
a predefined calibration object to estimate the hand-eye
transform in mines, fields, or plantations, is not realistic
or practical.

Vision-based control in mining applications, includ-
ing the classic peg-in-hole problem, was discussed in
[16–18]. In the peg-in-hole problem, the positioning of
the tool to a desired OOI is essentially reduced to a pla-
nar positioning problem in the vicinity of theOOI, which
is also exploited in our methodology. Visual servoing has
been widely employed to solve the peg-in-hole problem
in repetitive assembly tasks related to factory automation
[19]. Thus, these methods have mostly focused on struc-
tured scenes [20], whereas HDLR manipulators work in
dynamic and unstructured environments. Othermining-
related studieswith visual sensors include [21], inwhich a
laser scanner was utilized for collision avoidance. Studies
utilizing laser scanners in mines also include [22, 23]. In
[24], an eye-to-hand configurationwas used for position-
based visual guidance of a heavy-duty rock-breaking
manipulator. Specific markers for calibration purposes
were distributed into the workspace and a considerable
number of measurements were conducted to estimate
the extrinsic camera-to-robot calibration parameters. In
[25], PBVS using an RGB-D camera was investigated for
a multi-joint hydraulic manipulator, but the camera was

rigidly mounted at a known location along the manipu-
lator’s kinematic chain, and no explicit hand-eye calibra-
tionwas described. In [26], sub-centimeter absolute posi-
tioning accuracy was achieved with aHDLRmanipulator
by using a total station network. This method requires
a large space in which to operate and a considerable
investment in the sensors.

In this paper, the objective was to drive the tool of a
HDLR manipulator to an OOI using a low-cost camera.
HDLR manipulators would benefit from vision-based
guidance systems especially in auxiliary tasks requir-
ing precise (sub-centimeter) TCP positioning accuracy.
Potential tasks for increased levels of automation include,
for example, swapping tools or navigating the TCP to a
pre-drilled hole. The desired positioning accuracy in this
type of application is +/ − 5mm, which is very difficult
to achievewithout a highly skilled human operator due to
the characteristic uncertainties of HDLR manipulators.
To solve this problem, we propose computing the pose
error between the tool and an OOI directly in the cam-
era frame (which relates our approach to PBVS), while
using motion-based local calibration to align the camera
frame with the TCP frame. Notably, the procedure does
not require placing dedicated calibration objects in the
environment. The pipeline for motion-based local cali-
bration is twofold: First, the tool’s torsion axis is oriented
perpendicularly w.r.t. the OOI. Then, range adjustment
is performed in the local (planar) plane while the per-
pendicular configuration ismaintained. Twomethods for
adjusting the range are presented: a line equation–based
method and a trajectory matching–based method. The
first method is simple and easy to implement, while the
second method is more specific and complex to imple-
ment. Real-time experimentswere conducted on aHDLR
manipulator with a 5m reach, and a low-cost stereo cam-
era was attached near the tip. In the experiments we
used ArUco markers [27] as ‘generic’ representations of
a tool and an OOI. The long-term goal is to use real-
world objects. A key assumption of our methodology
is that the tool and the OOI are visible to the camera,
they can be detected, and their 6 DOF poses can be
estimated. As the main contribution, it is shown that
the image-based positioning error between the tool and
the OOI can be reduced to the sub-centimeter range
using the proposed methods, which is very challeng-
ing to achieve with HDLR manipulators due to their
characteristics.

The rest of the paper is organized as follows. Robotics
and control-related preliminaries are given in Section 2,
the methods used are detailed in Section 3, the exper-
imental setup is described in Section 4, the results are
discussed in Section 5, and finally, the paper is concluded
in Section 6.
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2. Robotics and control preliminaries

The pose x ∈ R
6 of a robotic manipulator in its opera-

tional space describes the position and orientation of the
TCP frame w.r.t. the base frame of the manipulator. The
transition between the operational space and the joint
space can be written using forward kinematic equations
when individual joint variables q ∈ R

n are known:

x =
[
p
θ

]
= f(q), q =

⎡
⎢⎣
q1
...
qn

⎤
⎥⎦ , (1)

where p ∈ R
3 represents the TCP position and θ ∈ R

3 its
orientation. The rotation of the TCP frame is expressed
usingminimal representation (i.e. Euler angles). The rela-
tion between the TCP’s linear and angular velocities and
the joint velocities is computed as follows:

ẋ =
[
ṗ
θ̇

]
= J(q)q̇, (2)

where J(q) ∈ R
6×n is the Jacobian matrix describing the

linear mapping from joint space velocities q̇ ∈ R
n to the

operational space velocities ẋ ∈ R
6. If the TCP velocities

are known, the joint velocities can be obtained by using
the inverse Jacobian as follows:

q̇ = J−1(q)ẋ. (3)

Assuming that the desired TCP position pd and the ori-
entation θd are known, along with the respective desired
linear velocities ṗd and angular velocities θ̇d, the desired
joint velocities q̇d can be computed using Equation (3) as
follows:

q̇d = J−1(q)
[
ṗd + Kp(pd − p)

θ̇d + Kθ δr

]
, (4)

where Kp and Kθ are the control gains associated with
the incorporated position and orientation feedback. Fur-
thermore, δr denotes the orientation error, expressed in
terms of quaternion. The desired joint positions are then
integrated from the desired joint velocities:

qd =
∫

J−1(q)ẋd dt. (5)

The control input vector u is then formulated as follows:

u = Kv(qd − q), (6)

where Kv is a matrix containing the joint control gains.

3. Methods

The overall procedure for guiding the tool to an OOI
using local calibration is to first orient the tool’s tor-
sion axis perpendicularly w.r.t. the OOI based on the
visual measurements. Then, motion-based range adjust-
ment is conducted in the local (planar) plane while the
perpendicular configuration is maintained. Two meth-
ods for adjusting the range were examined: a line
equation–basedmethod and a trajectorymatching-based
method.

The line equation–based method utilizes a circular
path and a line equation to compute the desired TCP
position. The OOI is required to be visible to the cam-
era at all times. This method relies on the uniformity of
the camera frame and the TCP frame, so that the plane of
motion is planar in both frames. The depth parameter is
not directly considered.

In contrast, the trajectory matching–based method
employs visual odometry/simultaneous localization and
mapping (VO/SLAM). VO/SLAM-based TCP pose
tracking of a HDLRmanipulator in a confined space was
studied in [28]. Thus, this method does not require the
OOI to be visible during the calibration. This method is
alsomore robust in the camera placement, as the camera’s
rotation w.r.t. the manipulator’s base frame is included in
the computed calibrationmatrix. Furthermore, the depth
parameter is considered although the calibration path is
planar.

The objective of the local calibration procedure is to
obtain a reference pose xref ∈ R

6 for the TCP, while the
perpendicularity is maintained. Then, using the basic
rigid-body–based kinematics and control methods pre-
sented in Section 2, the tool is driven to the desired
OOI based on the positioning error measured directly
from the image. The methodologies for adjusting the
orientation and the range are detailed below.

3.1. Orientation adjustment

In the case of the ArUco markers, the goal was to ori-
ent the tool marker to match the OOI’s orientation so
that the last joint’s torsion axis was perpendicular w.r.t.
to the OOI. The poses of the OOI frame CTO and the
tool frame CTT are obtained from image-based compu-
tations. The rotation components are formulated as unit
quaternions, rO and rT . Then, the rotation difference r�
between the frames is computed as the product of the two
quaternions, while inversing the tool frame quaternion:

r� = rOr−1
T . (7)

The last joint’s torsion axis is oriented in a perpendicu-
lar configuration w.r.t. the OOI frame by computing the
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manipulator’s reference TCP pose xref in the form of a
transformation matrix as follows:

Tref = BTT

[
R� 0T

0 1

]
, (8)

where R� ∈ R
3×3 denotes the rotation matrix computed

from the quaternion product in Equation (7), and 0 =
[0, 0, 0].

3.2. Range adjustment

3.2.1. Line equation–basedmethod
In accordance with [29], the transformationmatrix relat-
ing the base of the manipulator to the TCP frame com-
prises unit orientation vectors (n, s, a) and the position
vector p:

BTT(q) =
[BnT(q) BsT(q) BaT(q) BpT(q)

0 0 0 1

]
. (9)

As discussed, the control problem in the OOI’s vicin-
ity is treated as a planar positioning problem. Thus, the
local 2D plane for the range adjustment is defined by the
unit orientation vectors by using the current pose of the
manipulator resulting from the orientation adjustment.
For the line equation–based method, a circular path is
designed using point-to-point motion in Cartesian 3D
space as follows:

x(φ) = p1 + r cos(φ)n1 + r sin(φ)s1, (10)

y(φ) = p2 + r cos(φ)n2 + r sin(φ)s2, (11)

z(φ) = p3 + r cos(φ)n3 + r sin(φ)s3, (12)

where r denotes the circle’s radius, pinit = [p1, p2, p3]T
denotes the initial TCP position, the unit orientation vec-
tors n ∈ R

3 and s ∈ R
3 are extracted from Equation (9),

and φ ∈ [0, 2π]. The first and last points of the path are
set to the center of the designed circular path.

The path is executed while holding the current TCP
orientation. During the path execution, the image-based
distance error between the tool and the OOI is main-
tained in metric form:

dε =
√

(Opx − Tpx)2 + (Opy − Tpy)2, (13)

where px and py denote the metric positions of the
detected tool and theOOImeasured in the camera frame,
respectively. After the path is completed, the minimum
distance error dε,min is obtained. The algorithm saves the
initial pose of themanipulator (the circle’s center) and the
pose corresponding to the measured minimum distance

error:

xinit =
[
pinit
θ init

]
, xε =

[
pε

θ ε

]
. (14)

The normalized unit vector pointing toward the OOI is
then computed using the two points as follows:

pu = pε − pinit
‖pε − pinit‖ . (15)

The reference TCP pose xref ∈ R
6 is expressed using the

following transformation matrix:

Tref =
[BRT pinit + pu(r + dε,min)

0 1

]
, (16)

where the current TCP orientation is held. The reference
position is computed with the line equation using the ini-
tial position (the circle’s center), the deduced directional
unit vector, the circle’s radius, and theminimumdistance
error between the tool and the OOI. The circular path
and related variables are illustrated in Figure 1.

3.2.2. Trajectorymatching–basedmethod
Trajectory matching was explored as an alternative
method for adjusting the range. This method is more
complex but does not require detection of theOOIduring
the motion-based calibration. It is also not dependent on
the orientation adjustment, although the perpendicular
configuration is helpful when computing the pose error
between the tool and an OOI.

First, a point-to-point calibration path in planar space
is designed using the following equations:

xi+1 = xi + Li cos(ξ)n1 + Li sin(ξ)s1, (17)

yi+1 = yi + Li cos(ξ)n2 + Li sin(ξ)s2, (18)

zi+1 = zi + Li cos(ξ)n3 + Li sin(ξ)s3, (19)

where [x1, y1, z1]T = BpT, the unit orientation vectors
n ∈ R

3 and s ∈ R
3 are obtained from Equation (9), the

angle ξ is altered between 0 and π
4 , and Li denotes the

length of the ith path segment. The path was designed to
be asymmetric to improve the matching outcome.

The asymmetric path is executed, and two pose tra-
jectories are saved: (i) The camera’s pose trajectory is
estimated using a VO/SLAM algorithm, and (ii) the
TCP pose trajectory based on the kinematics model
and the joint sensors is also obtained. The camera-to-
kinematic model transformation matrix is then obtained
using robust point set matching. The overall formalism
is detailed in [30], which has two steps: (1) Coarse frame
alignment is used to roughly orient the two point sets
containing the pose trajectories to avoid an incorrect
(e.g. mirrored) matching result and (2) fine matching
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Figure 1. The principle of the line equation–based range adjustment.

using probabilistic hybridmixturemodel-based point set
matching [31]. This method utilizes the full 6 DOF pose
data in the trajectory matching procedure, whereas most
algorithms utilize only the 3 DOF position data. How-
ever, other accurate point set matching methods should
also suffice.

After the point set matching sequence is completed,
information measured in the camera frame can be
expressed w.r.t. the manipulator’s base frame. The locally
calibrated position error between the tool and the OOI is
written as follows:

Tlc =
[
Rfm 0T
0 1

] [
Rcfa 0T
0 1

]
CT�, (20)

where Rfm denotes the rotation matrix related to the fine
matching, and Rcfa denotes the rotation matrix related to
the coarse frame alignment. The transformation matrix
CT� contains the positioning error between the OOI and
the tool frame, measured in the camera frame, as follows:

CT� =

⎡
⎢⎢⎣
1 0 0 Opx − Tpx
0 1 0 Opy − Tpy
0 0 1 Opz − Tpz − b
0 0 0 1

⎤
⎥⎥⎦ , (21)

where b is a small offset to avoid collision between
the tool and the OOI. Then, the reference TCP pose
xref ∈ R

6 is obtained using the following transformation
matrix:

Tref =
[BRT plc + BpT

0 1

]
, (22)

where the tool orientation is held, and the locally cali-
brated image-based positioning error plc ∈ R

3 is incor-
porated into the current position. While maintaining the
local calibration, the reference TCP pose can be updated
using the visual sensor and Equation (22) as often as
required (within the limitations of the sensor’s refresh
rate). The principle for the trajectory matching–based
method is illustrated in Figure 2.

4. Experimental setup

4.1. Vision system

ArUco marker detection and pose estimation were real-
ized using OpenCV functions, which employ monocular
methods. The metric scale was obtained based on the
known marker size. The experimental setup is illustrated
in Figure 3. A single marker representing the tool was
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Figure 2. The pipeline for the trajectory matching–based range
adjustment.

Figure 3. The experimental setup. The OOI was in the middle of
the three ArUco markers, and the marker attached at the end of
the HDLR manipulator represented a detectable tool.

attached parallel to the torsion axis of the last joint of the
manipulator. Additionally, the marker was set at approxi-
mately a 90◦ angle w.r.t. to the axis. A three-marker setup
was used to construct the OOI. Specifically, the OOI was
in themiddle of the threemarkers, and theOOI detection
algorithm was designed so that one detected marker out
of the three is sufficient to deduce the pose of the OOI.
The objective was to drive the tool marker to the OOI,
with a depth offset to avoid collision.

A low-cost ZED2 stereo camera was attached near the
TCP and parallel to the torsion axis of the last joint. The
left lens was used to detect the marker and estimate the
pose. Therefore, the pose error between the tool marker
and the OOI was known in the camera frame. As for the
VO/SLAM utilized in Subsection 3.2.2, the open-source
ORB-SLAM2 stereo algorithm [32] was employed. An
adequate surface for the VO/SLAM algorithm’s feature
extraction was provided by a textured wall. A PC run-
ning ROS was used to handle the vision system, and the
required informationwas sent to themanipulator’s Beck-
hoff control system viaUDP. The camera settingswere set
to 720p at 60 FPS, and it was assumed that the intrinsic
parameters were known.

Table 1. DH parameters of the HIAB033 with a 3 DOF wrist.

Joint αi ai θi di

rotation π/2 a1 θ1 d1
lift 0 a2 θ2 0
tilt π/2 a3 θ3 d3
wrist 1 π/2 0 θ4 d4
wrist 2 −π/2 0 θ5 0
wrist 3 π/2 0 θ6 d6
link 7 π/2 0 0 0

4.2. Hydraulic manipulator with a 3 DOFwrist

A laboratory-installed HDLR manipulator with an
approximately 5m reach was used in the experiments.
Using the DH convention, the forward kinematic model
of the manipulator is formulated. The symbolic DH
parameters are shown in Table 1, where ‘Link 7’ is amock
frame to unify the last framewith the toolmarker’s frame.

The rigid transformation matrix from the base of the
manipulator to the TCP is computed as follows:

BTT =
7∏

i=1
Ti, (23)

whereTi denotes the joint-specific transformationmatri-
ces, formulated as follows:

Ti =

⎡
⎢⎢⎣
cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi cαi di
0 0 0 1

⎤
⎥⎥⎦ , (24)

while using the respective DH parameters of each joint.
Additionally, s = sin, and c = cos.

After the desired pose xref for the TCP was obtained
using Equations (8), (16), or (22), point-to-point paths
were generated using a quintic polynomial [33]. Open-
loop visual control (looking and then moving) was uti-
lized, as for HDLR manipulators in dynamic environ-
ments, safety is a significant concern and cameras are
subject to robustness and reliability issues in such condi-
tions. Instead, only the joint controllers work in closed-
loop. Closed-loop visual control (looking and moving)
is also possible by continuous usage of the camera feed,
but requires constant and reliable vision of the tool and
the OOI. By performing several ‘looking and then mov-
ing’ steps, the open-loop method can provide the same
final positioning accuracy as the closed-loop method.
The control system is described in Figure 4. For joint
control, Equation (6) was utilized. For the two joints con-
tributing the most (lift and tilt), PT-1 control was used,
for which the transfer function is written as follows:

G(s) = Kp

τ s + 1
, (25)
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Figure 4. The control loop for the image-based reference pose. Image processing is conducted on a dedicated PC running ROS, whereas
the rest of the process is handled on the Beckhoff control system. The numbers refer to the main related equations.

Figure 5. Image-based orientation errors between the tool marker and the OOI before and after the orientation adjustment, expressed
in Euler XYZ angles. The control input was given at approximately 5.6 s, and the zero errors represent failed samples.

where Kp is the proportional gain, and τ is a time delay
term, which enables larger gain values compared to pure
P-control. This reduces static errors when positioning to
a specific target point.

5. Measurements and results

5.1. Orientation adjustment

The first step in each measurement was to perform the
orientation adjustment as in Subsection 3.1. An example
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Figure 6. An example of the circular path and the computed line equation–based range adjustment. The black line shows the reference
path, whereas the red line shows the completed path.

Figure 7. Image-based position errors between the tool marker and the OOI. The objective was to reach zero errors w.r.t. the X-axis and
the Y-axis, but the depth along the Z-axis is also shown.
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result is illustrated in Figure 5, which shows the image-
based rotation errors between the tool marker and the
OOI. The errors are expressed as XYZ Euler angles for
clarity. As shown, two of the errors are successfully driven
close to zeros by using a single control input. The objec-
tive was to achieve zero orientation errors so that the
tool’s torsion axis is perpendicular w.r.t. the OOI. The
perpendicularity is important in the peg-in-hole task and
for line equation–based range adjustment.

The measurements were performed repeatedly, with
the error behaviors resembling the illustrated example.
In general, the orientation signals were not of good qual-
ity, and the initial rotation difference was assumed to be
small. The orientation adjustment also assumed the uni-
formity of the tool marker’s frame and the TCP frame
based on the kinematicmodel. In the experimental setup,
some errors existed in the alignment.

5.2. Range adjustment

5.2.1. Line equation–basedmethod
After the orientation adjustment, the line equation–based
range adjustment was initiated by executing the circular
path. The circular path in Equations (10)–(12) was real-
ized using 18 points, with the first and last points set at
the center of the circle. The radius was set to 20 cm. After
the path was successfully completed, the reference TCP
pose was obtained using Equation (16). This method
was designed as a single point-to-point problem, as it is
expected that the OOI will be occluded toward the end of
the final approach.

An example execution of the circular path and driv-
ing to the reference TCP pose is illustrated in Figure 6.
The black line represents the reference path, whereas the
red line shows the completed path. Generally, this was
the typical result achieved with the experimental setup.
As shown, the completed path clearly resembles a cir-
cle; however, it is not completely planar as required to
compute the line equation–based range adjustment as
precisely as possible.

The image-based position errors between the tool
marker and the OOI are illustrated in Figure 7. Notably,
this method did not account for the depth parameter
(Z-axis), yet it is still shown. The X-axis and Y-axis posi-
tioning errors, estimated by the camera, were reduced to
a range of a few centimeters. The measurements were
performed repeatedly, and the results are documented
in Table 2, which also shows the image-based absolute
rotation errors resulting from the previous orientation
adjustment. The mean absolute rotation errors between
the tool marker frame and the OOI frame were reduced
to less than 2◦, except for the Z-axis, which contained
more errors. The mean absolute positioning accuracy

Table 2. The results for the line equation–based range adjust-
ment.

eθX [deg] eθY [deg] eθZ [deg] eX [mm] eY [mm] eZ [mm]

meas. 1 1.40 2.75 14.25 27 21 404
meas. 2 0.71 0.94 3.11 37 66 334
meas. 3 0.72 1.33 5.91 45 42 321
meas. 4 2.40 1.52 8.59 4 28 387
meas. 5 2.03 2.21 11.59 4 11 342
meas. 6 2.83 1.50 9.18 12 23 611
meas. 7 0.77 1.83 1.82 3 2 338
meas. 8 1.28 1.25 3.50 27 29 303
meas. 10 1.74 1.08 2.07 36 37 424
mean 1.58 1.57 6.64 24 29 338

Notes: The first three columns show the image-based absolute rotation errors
between the tool marker and the OOI after the orientation adjustment. The
respective absolute position errors after the range adjustment are shown in
the next two columns. The depth (along the Z-axis) between the toolmarker
and the OOI in each measured case is also documented in the last column.

w.r.t. the XY plane was less than 3 cm per axis, which did
not satisfy the desired sub-centimeter accuracy. In mea-
surement 7, the desired accuracy of the sub-centimeter
range was achieved; however, the result was clearly not
reliably reproducible. Based on the results, no clear con-
nection between a successful orientation adjustment and
the resulting final positioning accuracy can be seen.How-
ever, the performance also relies on accurate execution of
the circular path, for example.

A servo-type implementation variant was also tested
by applying the currently measured variables to
Equation (16) and then providing a second control input
to the system. However, this did not improve the end
result as the dictating factor is the computed directional
unit vector.

5.2.2. Trajectorymatching–basedmethod
For the trajectory matching–based range adjustment, the
manipulator was first aligned with the OOI using the
orientation adjustment. However, the trajectory match-
ing–based method itself is not reliant on the orientation
adjustment, unlike the line equation–based method.

The motion-based local calibration was conducted by
first completing the planar path designed using Equa-
tions (17)–(19). The two pose trajectories were obtained
using theVO/SLAMalgorithm and the kinematicmodel-
based TCP computation with joint encoders. The result-
ing point sets were matched, and the reference pose for
the TCP was obtained using Equation (22). An exam-
ple of the completed path is shown in Figure 8. The
respective mean and maximum absolute errors after the
point set matching in a single measurement are docu-
mented in Table 3. As shown, the matching errors are
small, and the calibrated camera signals correspond to
the encoder-based TCP pose. The results were similar for
the measured cases.
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Figure 8. An example of trajectory matching. The green line denotes the reference path, the black line shows the encoder-based TCP
position, and the red line illustrates the VO/SLAM-based camera position after the camera-to-kinematic model local calibration.

Table 3. The mean and maximum absolute errors after point set
matching.

Cartesian
X-axis [mm]

Cartesian
Y-axis [mm]

Cartesian
Z-axis [mm]

mean error 3.7 1.8 14.2
maximum error 21.9 25.4 58.2

Notes: Theerrors are computedbetween the calibratedVO/SLAMpoint set and
the encoder-based TCP point set.

After obtaining the local calibration, the manipulator
was driven to the computed reference pose. An example
result is shown in Figure 9, which shows the image-
based position errors between the tool marker and the
OOI. The final positioning is also shown in Figure 10,
where the tool marker was driven to the OOI. As with
the line equation–based method, the goal was to achieve
precise positioning with a single point-to-point control
input, meaning the camera would look and then move
only once. However, two control inputs were required for
precise positioning: The first was given at approximately
8 s, which did not result in the desired sub-centimeter
accuracy. The second control input was given at approx-
imately 45 s, which reduced the errors to the desired
range, with the exception of the depth variable. It had
an offset of b = 10 cm in Equation (21), and the depth is
allowed more tolerance than the other axes, as position-
ing in the XY plane holds the most significance.

The measurements were performed repeatedly, start-
ing from the orientation adjustment followed by the point
set matching, and each measurement demonstrated uni-
form behavior, as shown in Table 4. Two updates for the
visual control input were required in each measured case
to achieve sub-centimeter position errors, meaning the
camera was used to look and then move twice. For each
case, the second update clearly resulted in sub-centimeter
position errors, whereas with just one control update, the
desired accuracy was not achieved, especially in the Y-
axis direction. This suggests that the image-based pose
estimation of themarkers becomesmore accurate as their
distance to the camera is reduced, although the camera is
relatively close initially.

Overall, the trajectory matching–based method per-
formedmuchmore reliably than the line equation–based
method. The results demonstrate that sub-centimeter
positioning accuracy can be achieved using a low-cost
visual sensor, despite using the simple rigid-body kine-
matic modeling and controller structures that are preva-
lent in the industry. However, the trajectory match-
ing–based method relies on the performance of the
VO/SLAM pose estimation, which requires certain con-
ditions, such as sufficient lighting and textured surfaces,
for feature extraction. There exists some research on
improving the performance of VO/SLAM in challenging
environments, for example, [34].
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Figure 9. An example of image-based position errors before and after the trajectory matching–based range adjustment. Two control
updates (manually input at approximately 8 s and 45 s) were required to achieve sub-centimeter position errors in the XY plane, with the
depth axis error slightly larger.

Table 4. Image-based absolute positioning errors between the tool marker and the OOI using the
trajectory matching–based method.

1st input eX [mm] eY [mm] eZ [mm] 2nd input eX [mm] eY [mm] eZ [mm]

meas. 1 8.1 19.3 95.4 5.9 1.9 89.4
meas. 2 11.4 30.4 67.3 2.9 3.0 112.7
meas. 3 6.4 29.4 110.1 5.1 0.8 83.8
meas. 4 4.1 35.2 91.8 5.7 1.1 105.9
meas. 5 0.4 27.6 91.5 3.6 0.7 93.9
meas. 6 5.9 26.2 111.0 2.8 0.9 79.8
meas. 7 11.3 22.3 91.8 0.5 0.2 79.0
meas. 8 6.0 25.6 110.9 1.0 0.8 97.6
meas. 9 17.1 30.8 103.9 0.6 0.8 97.6
meas. 10 5.6 26.8 85.5 4.9 1.5 89.2
mean 7.6 27.4 95.9 3.3 1.2 92.3

Notes: Two updates for the visual control input were required in each measured case to achieve sub-centimeter position
errors, meaning the camera was used to look and then move twice. The first three columns show the errors after the first
update, and the last three columns show the respective errors after the second update.

6. Conclusion

In this paper, a vision-based guidance methodology for
precise TCP positioning of HDLR manipulators was
examined. For HDLR manipulators, the conventional
extrinsic camera calibration procedure is not realistic
or practical due to the dynamic, unstructured working
environments and inaccuracies in rigid-body kinematic

modeling. Instead, local calibration and visual guid-
ance based on direct measurements in the camera frame
were proposed. Notably, placing predefined calibration
objects in the environment is not required. The pre-
sented methodology comprised orientation adjustment
followed by range adjustment, for which two methods
were explored. A key assumption is that the tool and
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Figure 10. An example of the final positioning result with the
trajectory matching–based range adjustment.

the OOI are detectable using a camera in the eye-in-
hand configuration, and that their 6 DOF poses can be
estimated. ArUco markers were used as ‘generic’ repre-
sentations of a tool and an OOI. However, for HDLR
manipulators in dynamic environments, it is not a realis-
tic option to place markers around the workspace. Thus,
for a practical application, the vision-based detection and
pose estimation of tools and OOIs have to be realized
with application specific parameters. This includes omit-
ting the markers completely and shifting to real-world
objects. This can be a challenging task depending on the
complexity of the target objects, such as tools, tool racks,
and drill holes.

Real-time experiments were conducted using a HDLR
manipulator with a 5m reach, and a low-cost stereo
camera was used for vision-based measurements. Open-
loop visual control was employed by first looking and
then moving. The motivation was to avoid closed-loop
visual control due to safety concerns. Nevertheless, sub-
centimeter positioning accuracy was achieved using the
trajectory matching–based method. For the application
of interest, the desired positioning accuracy is +/ −
5mm, as the tolerances are much larger than in indus-
trial robotics. The line equation–based method suffered
from accumulated errors beginning from the hardware
installation and orientation adjustment to the path track-
ing. Thus, the positioning accuracy with this method had
considerable variation, and the desired accuracy was not
reliably achieved in the experiments.

The main advantage of the proposed methods is
that computing the pose error between a detected tool
and an OOI directly in the image frame, using a low-
cost camera, enables precise positioning accuracy. This
is typically very challenging to achieve with HDLR
manipulators due to their characteristic uncertainties.
Moreover, the motion-based local calibration does not
require calibration objects placed in the workspace. The

main challenges lie in the robustness and reliability of
vision-based algorithms. For example, VO/SLAM sys-
tems require certain conditions and the object detection
and pose estimation for complex objects can be challeng-
ing to realize. Future research should focus on extend-
ing the proposed locally calibrated vision-based guid-
ance method into a practical application by replacing the
ArUco markers with application specific objects.
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