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Abstract. The K Nearest Neighbors (KNN) classifier is widely used in many fields such as

fingerprint-based localization or medicine. It determines the class membership of unlabelled

sample based on the class memberships of the K labelled samples, the so-called nearest
neighbors, that are closest to the unlabelled sample. The choice of K has been the topic of

various studies and proposed KNN-variants. Yet no variant has been proven to outperform

all other variants. In this paper a new KNN-variant is proposed which ensures that the K
nearest neighbors are indeed close to the unlabelled sample and finds K along the way. The

proposed algorithm is tested and compared to the standard KNN in theoretical scenarios

and for indoor localization based on ion-mobility spectrometry fingerprints. It achieves a
higher classification accuracy than the KNN in the tests, while requiring having the same

computational demand.

1. Important note by the author

As of October 2023 the author has been aware that the concept behind the introduced
Flexible K Nearest Neighbors classifier has been proposed and used before un-
der the name Fixed Radius Near Neighbor search or Radius Neighbor classifier.
According to a survey by Bentley [1], the method was first used in 1966 by Levinthal in an
”interactive computer graphics study of protein molecules”, but from Levinthal’s paper [2] nei-
ther a clear mentioning nor a derivation of the Fixed Radius Near Neighbor technique could be
found. Hence it is unclear to the author where the underlying idea of the Flexible K Nearest
Neighbors classifier was proposed for the first time.

To the authors knowledge, the application of the concept for ion-mobility spectrom-
etry fingerprint-based indoor localization is novel. In addition, the paper provides
an insight into the strengths and the weaknesses of using only training samples
within a predefined distance to the test sample for inferring the latter one’s label,
which might be of interest for readers new to fixed radius-based nearest neighbors classifiers.
Recent articles using the concept include, for example, [3], [4], and [5].
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2. Introduction

The K Nearest Neighbors (KNN) classifier is a widely used and thoroughly studied machine
learning algorithm due to its simplicity, ease of implementation and being parameter-free [6].
It is an extension of the nearest neigbor rule, which is a suboptimal classifier whose error rate
is at most twice the Bayes rate [7, p. 177].

In classification the label of so-called test samples is derived from the labels of so-called
training samples. If the training and test samples follow the same distribution then support
vector machines, Fuzzy and Bayesian classifiers, as well as neural-network-based classifier per-
form well. However, if the distributions of training and test samples vary even slightly then
the performance of these methods can degrade significantly and KNN and its variants are
commonly used [8]. The main idea of the KNN is to find the K training samples that are
closest, with respect to a predefined distance measure, to the test sample and infer the class
membership from class memberships of these K training samples.

One application where differences between distributions of training and test samples can
be observed is fingerprint-based indoor localization. For example, in [9] the weighted KNN
outperformed several parametric classifiers for indoor localization based on Wireless Local
Area Network (WLAN) measurements if the WLAN access point density was high. However,
if the density was low then the accuracy level of the weighted KNN degraded considerably.
One reason for the lowered performance was the lack of training sample locations in which the
same access points were observed as in the test sample (see [9] for details). In such a case
choosing a different K might help to improve the accuracy and numerous KNN-variants have
been proposed that focus on optimizing K.

However, in some situations even optimizingK is of little use. If there are no training samples
within the close neighborhood of the test sample than any KNN-variant will yield a wrong class
membership label for the test sample. Examples of such situations can be found, for example,
in indoor localization (test sample from a room or area of a building for which no training
data has been collected) or medicine (classification of a disease for which no training data is
available). In order, to handle also such situations well and avoid time-consuming optimizations
this paper proposes a KNN-variant in which the allowed distance between training and test
samples is limited from above. Only training samples that are within the limit are used for
inferring the label of the test sample. This way, a different K will be found for each test sample,
and therefore the proposed classifier is named Flexible KNN (FlexKNN). If K = 0 then the
FlexKNN will simply yield information that no training sample is close enough to the test
sample to provide a reliable estimate of class membership for the test samples. This is, in the
authors opinion, more useful than an untrustworthy label provided by KNN and its existing
variants. To the authors knowledge no such KNN-variant has been published in earlier papers.

The remainder of this paper is organized as follow. Section 3 discusses the standard KNN
in detail and provides an overview on proposed KNN-variants. The Flexible KNN is intro-
duced and explained in detail in Section 4. In Section 5 the performances of FlexKNN and
standard KNN are compared for indoor localization based on ion-mobility spectrometry (IMS)
measurements. Section 6 contains concluding remarks and an outlook on further research.

3. Related work

The standard K Nearest Neighbors classifier is a model-free classifier that returns a label for
an n-dimensional vector x = [x1, . . . , xn] ∈ Rn, which indicates that the so-called test sample
x belongs to a class m (m = {1, . . .M}). The label is derived by finding the K closest samples
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from a database Y containing N training samples Y = [y1, . . . ,yN ] ∈ Rn×N for which their
class affiliations (i.e. their labels) are known. The label that occurs most frequently amongst
the labels of the K closest training samples (i.e. the K nearest neighbors) is then chosen as
label for the test sample.

Closeness between test sample x and a training sample yi is often measured by the Euclidean
distance dE, which is defined as

(1) dE(x,yi) =

√√√√ n∑
j=1

(xj − yi,j)
2
.

For x,Y ∈ Rn Euclidean distance is a reasonable choice because Rn is a Euclidean space. For
non-Euclidean spaces a different distance measure should be used. Furthermore, alternative
distance measures have been proposed and tested also for use in Euclidean space. For example,
[10] proposed the Hassanat distance, which uses maximum and minimum vector points. It out-
performed the standard KNN and eight KNN-variants over eight machine learning benchmark
datasets from the field of medicine in [11]. One of the KNN-variants it outperformed was the
Generalised Mean Distance KNN, which finds the K closest training samples from every class
m, converts lists of these samples to local mean values, and then computes multiple mean dis-
tances to obtain distances between x and all M classes [11]. In [12] the Euclidean distance was
compared to 66 alternative distance measures, such as Minkowski and Manhattan distances,
inside a KNN for indoor localization based on ion-mobility spectrometry fingerprints.

The choice of K has been target of numerous studies. For fixed K all neighbors of the test
sample would converge towards x if N would converge to infinity [7, p. 183] and any value of
K would be acceptable. However, in the real world N << ∞ and choosing a suitable K is not
straightforward.

For K → ∞ the K nearest neighbors rule would be optimal [7, p. 183] as it eliminates any
measurement noise, so a largeK is desirable. The drawback is that for largeK classes with large
numbers of samples would be preferred over classes with small numbers of samples [6], which
could weaken the classification accuracy. Therefore, a small K would be desirable to ensure
that all nearest neigbors are close to x, but here class outliers might cause false labelling [6].
Furthermore, having the same or at least similarly number of samples for each class is desirable,
but still a compromise needs to be found. One option would be to calculate the error rates for
a large range of feasible K values and then choose the one with the minimal error rate.

In general, an odd value is chosen for K as it limits the large-sample two-class error rate
from above [7, p. 183] and helps to avoid ties in the majority vote in classification problems
where the K closest training samples are from two classes. This does not ensure, however, that
the KNN always finds a label. Consider the case where K = 9 and M > 3. Then it would be
possible that the nine nearest training samples consist of three times three samples from three
different classes, which would result in a tie. One approach to avoid such ties is using weights

wk (k = {1, 2, ..,K}) for the nearest neighbors such that
∑K

k=1 wk = 1. A common approach is
to use the inverses of distances between test sample and nearest neighbors and normalize them
to sum up to one.

Besides finding optimal K values that would be used for classification of any test sample
independent on its location and the training samples in its neighborhood, attempts have been

For a two-category classification problem the error rate converges to the lower bound, known as the Bayes

rate if K → ∞ [7, p. 184.].
What values are feasible depends, for example, on the total number of training samples N and classes M .
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made to use flexible K values. For example, Wettschereck and Dietterich [13] proposed four
KNN variants that determine optimal K values for each training sample. Their first approach
stores for each training sample a list of K values that would correctly classify the training
sample using leave-one-out cross-validation. For classifying a test sample x its K̃ nearest
neighbors are searched. Next Kopt, which is the K value that would correctly classify most

of the K̃ neighbors, is determined. Kopt is then used to determine the label of x based on
majority vote as in the standard KNN. Thus, the Kopt differs locally, and hence is called by
the authors a locally adaptive KNN method. The three remaining KNN variants in [13] are
modifications of this adaptive KNN. All four variants are suitable for applications in which
patterns differ considerably for different regions. For example, in [?] K values estimated to be
optimal ranged from 1 to 10 for regions with low training sample density, while for regions with
high intensity optimal K values ranged from 30 to 50. Numerous adaptive KNN variants have
been proposed since the publication of [13]. One example is the locally adaptive KNN based
on discrimination class (DC-LAKNN), which first determines the discrimination classes of the
first and second majority class for various K values. It then uses quantity and distribution
information in the discrimination classes to find the optimal K to be used in classification [14].

In [15] authors proposed a KNN-variant based on an ensemble approach. It classifies the

test sample
√
N times with KNN classifiers for which K = {1, 2, ..,

√
N}. The overall label is

obtained by using the weighted sum of the results from the
√
N KNNs. In [16] a KNN variant

that demands the user to define a confidence level p (p ∈ [0, 1]) rather than K is proposed.
The algorithms adjusts K such that the probability for the label of x to be correct is at least
p. In [17] sparse learning is used. The proposed KNN-variant accounts for correlation between
samples and reconstructs x as a linear combination of training samples before determining the
label by majority vote. The drawback of most methods that search for optimal K values is
that the optimization process is often time-consuming.

To avoid the need for optimization Fuzzy KNN-variants could be used, which provide prob-
abilities of x belonging to any of the classes present amongst the K nearest neighbors. Thus,
it is less likely to get ties and similarly to the approach in [16] a confidence level on the overall
label is available. However, even for Fuzzy KNN identifying a suitable K is nontrivial and if
training samples are uncertain or ambiguous then using a fixed K is unreliable [8]. Therefore,
[8] proposes to derive an optimal K for any test sample, increasing the computational demand
considerably. In [18] the standard KNN is extended by a training stage in which a decision
tree is build for predicting an optimal K for any test sample. In the classification stage first
the optimal K is derived from the decision tree for a test sample, before the standard KNN
with K set to the optimal value is used to obtain the label for the test sample. In [19] the
N-Tuple Bandit Evolutionary Algorithm [20] is used to obtain the optimal combination of K
and distance metric or a combination close to the optimum.

Various furtherKNN-variants have been proposed. The reader is referred to surveys (e.g., [11,
21]) that provide a thorough overview on the topic. The algorithm proposed in the next section
does not require any optimization of K. Instead it works exactly like the standard KNN except
for requiring a different number as input.

4. Flexible K Nearest Neighbors

One limitation of the KNN-variants mentioned above is that they assume that a test sample
belongs to one of the classes for which training data is available. However, this assumption

In case
√
N /∈ N then

√
N rounded to the nearest integer towards −∞ is used as upper value for K.
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Figure 1. Illustration of the working principle of the Flexible KNN for
two-dimensional data.Training samples from two classes are visualised by red
crosses (class 1) and blue asterisks (class 2) in all three subfigures. The max-
imum allowed distance dmax between test sample (black diamond symbol) is
set to one and is visualized by the black circle around the test sample. The
Flexible KNN classifies the test sample belonging to class 1 in (a) or class 2 in
(b). For the KNN the yielded label depends on the choice of K. In subfigure
(c) samples from a third class are visualized by grey circles. These samples are
unknown to the classifier. The test sample clearly belongs to this unknown
class. The Flexible KNN returns information that no label can be provided
because no training sample lies within dmax. Contrary, the KNN would clas-
sify the test sample wrongly as belonging to either class 1 or 2 depending on
the choice of K.

does not hold in the real world all the time. Furthermore, many variants aim at optimizing the
value of K without considering the distances between nearest neighbors and the test sample
for anything other than weighting the impact of the nearest neighbors on the final label for the
test sample.

Figure 1 illustrates why this approach is not appropriate all time. Here all samples are
assumed, for simplicity, to be n = 2. However, it is straightforward to extend the example
to higher dimensional spaces. In Figure 1(a) and (b) training samples from two classes are
visualised by red crosses (class 1) and blue asterisks (class 2), and each class consists of 20
training samples. The test sample is visualized by the black diamond. The circle around it has
a radius of one. The standard KNN would classify the test sample in Figure 1(a) as belonging
to class 1 for any K = {1, 2, .., 5}. For the test sample in Figure 1(b) KNN would classify it
as belonging to class 2 for, at least, any K = {1, 2, .., 12} (there are twelve training samples
inside the black circle, with ten of them belonging to class 2). Figure 1(c) now contains also
samples from class 3 illustrated by 20 grey circles. Clearly the test sample would now belong
to class 3 (eleven training samples from class 3 are inside the circle with radius one). However,
if these training samples were not available to the classifier then the standard KNN and the
variants presented before would label the test sample as being a member of either class 1 or
class 2, depending on the choice of K and whether distance-based weights are used.

In order to prevent such a misclassification, this paper introduces a KNN variant that does
not use K as a parameter chosen by either the user or an optimization algorithm. Instead the
maximum distance dmax between test sample and training samples is used as the only input
parameter. Thus, the value of K is here an output rather than input parameter as in the KNN.
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It varies for each test sample and depends on the locations of the test sample and the training
samples in the d-dimensional space. Hence, the proposed KNN-variant is called Flexible KNN
(FlexKNN).

Let us revisit the examples in Figure 1 and assume that dmax = 1 based on prior knowledge
on the training data. In the example Figure 1(a) five training samples from class 1 are inside
the circle with radius dmax. Thus, K = 5 and FlexKNN would classify the sample as being
a member of class 1. In the example in Figure 1(b) ten samples from class 2 and two from
class 1 are inside the circle, hence K = 12 and FlexKNN would classify the sample as being
a member of class 2. For the example in Figure 1(c) no training samples are inside the circle
with radius dmax. Hence, FlexKNN would return information that the test sample is either an
outlier or does not belong to either of the two classes for which training samples are available
to the classifier. Only by increasing dmax to 2 (dotted circle) one training sample from class 1
would be inside the maximum allowed distance. However, based on the distances of this red
cross to other red crosses it might be an outlier itself. Further increasing dmax to 3 (dashed
circle) would result in two samples from each class 1 and class 2 inside the circle. In such a
situation the normalized, inverse distance between test sample and training samples could be
used as weights.

Algorithm 1 provides the pseudo-code for the FlexibleKNN. The only difference compared to
the standard KNN is that instead of K maximum distance dmax is required as input parameter.
As mentioned before the maximum distance could be chosen randomly, but it is advisable to
use prior knowledge. For example, one could calculate for each class the average distance over
all training samples from class l using leave-one-out cross-validation. This means, for each
sample xi (i = {1, 2, .., Nl}) in the class distances to samples xj (j = {1, 2, .., Nl}, j ̸= i) are
calculated and the average distance di for sample xi is stored. Finally, the average over all
di (i = {1, 2, .., n}) is calculated to obtain dl. Assuming that there are M classes dmax =
1
m

∑M
l=1 dl. Alternative definitions for dmax, such as the median over all dl, are also possible.

Algorithm 1 Pseudo-code of Flexible KNN

Input: training samples Y = [y1, . . . ,yN ] ∈ Rn×N from M classes, test sample x =
[x1, . . . , xn] ∈ Rn, maximum distance between test and training samples dmax.
Output: label for test sample x, number of training samples K within distance dmax of test
sample x.
Step 1: Calculate Euclidean distances di between x and yi (i = {1, . . . N}) using equation (1).

Step 2: Search all training samples for which di ≤ dmax. Training samples fulfilling the
condition form the set of K nearest neighbors.
Step 3: Determine label of x based on the labels of the K nearest neighbors using majority
vote. If K = 0, return information that no training samples are within dmax from x and that
no label can be provided.

Although Euclidean distance yields in general good performance, alternative distance mea-
sures could be employed in Algorithm 1 to potentially improve accuracy levels (for a thorough
overview on distance measures see, e.g. [22]). For example, in [12] 66 alternative distance
measures were compared to the Euclidean distance for indoor localization based on IMS fin-
gerprints. Ruzicka, Canberra, and Vicis Symmetric χ2 were Pareto optimal in the tests and

Grey dots illustrate training samples that are not available to the classifier.
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achieved higher localization accuracy than the Euclidean distance while requiring less compu-
tation time. However, other metrics can require additional parameters to be defined by the
user.

5. Application for IMS-based localization

5.1. Test with full training data. This section compares the performances of the proposed
FlexKNN and standard KNN for positioning based on IMS fingerprints. For evaluation the
dataset from [23] is used, as the KNN performed in that paper poorly for part of the test
samples due to training and test samples being too dissimilar. The FlexKNN is believed to
mitigate this problem.

Ion-mobility spectrometry is a technique for measuring volatile organic compounds (VOCs).
To the authors knowledge, the possibility to localize based on VOC fingerprints was studied for
the first time in [23]. The dataset contained 8,736 IMS fingerprints from seven different rooms
on the campus of Tampere University of Technology, Finland. For each room data was collected
once during weekend when the university buildings were (almost) empty and once during the
week when staff and students were present. This was done to investigate the temporal stability
of IMS fingerprints. It is known that especially humidity and temperature, but also air currents
and barometric pressure influence the mobility of molecules [24, p. 250 ff.] and thus have an
impact on the IMS readings.

The data from [23] were collected using a ChemPro100i from Environics Oy (Mikkeli, Fin-
land), which yielded IMS fingerprints of dimension n = 14. For each room approximately
600 fingerprints were collected for both empty (ie., during weekend) and crowded (i.e., on a
weekday) conditions.

In [23] the KNN performed well (classification accuracies close to 100%) for K = {1, 3, 5, 7}
when training and test samples were collected on the same day but performed poorly (clas-
sification accuracies between 28.21% and 37.38%) when training and test data were collected
on different days, in different conditions. The analysis confirmed that IMS fingerprints depend
strongly on the environmental conditions and normalizing the data was insufficient to mitigate
the impact.

5.2. Test with full training data. For evaluating FlexKNN and standard KNN in this sec-
tion normalized data from crowded (4,375 samples) and empty conditions (4,361 samples) were
used for training and testing respectively. Distances between samples were measured by the
Euclidean distance (1). The KNN with K = 3 classified 37.38% of the training samples cor-
rectly. For the FlexKNN the classification performance was checked for dmax = {0.1, 0.2, .., 8}
and the accuracies are shown in Figure 2. The blue line illustrates the ratio of test samples
for which the FlexKNN yielded a correct label. Between dmax = 1.3 and dmax = 4.2 (vertical
dotted lines) the accuracy level is higher or approximately the same than that of the KNN
(dash-dotted black line), with the highest accuracy at dmax = 1.5 (vertical solid line). How-
ever, the more important line is the red, dashed line in Figure 2. It illustrates the ratio of test
sample for which the FlexKNN yielded either the correct label or returned information that
no training samples within dmax were found and no label could be provided. In the latter case
the KNN yielded a label, but its trustworthiness was low and this resulted, in general, in a
misclassification.

Data was normalized in [23] by subtracting the mean and dividing by the standard deviation of all measure-
ments for each of the 14 dimensions.
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Figure 2. Classification accuracy of FlexKNN for varying dmax. The blue,
solid line shows ratio of accurately classified test samples for which FlexKNN
returned a label. The red, dashed line shows the ratio of test samples that
were either correctly classified or for which FlexKNN did not yield a label
because no training sample was within dmax. For comparison the classification
accuracy of the KNN with K = 3 is shown (black, dashed-dotted line).

Figure 3. Number of training samples K inside dmax for FlexKNN. Label of
test sample is derived from labels of these K training samples.

As dmax increases the red and blue lines converge. This indicates that the ratio of test
samples that cannot be classified due to missing training samples within dmax decreases. For
dmax = 8 all test samples were classified, but the classification accuracy of the FlexKNN
already dropped at dmax = 2.5 below that of the KNN. This can be, partly, explained by the
fact that the number of training samples within dmax steadily increase as dmax increases and
that it is considerably higher than the K value usually used inside the KNN. For example, at
dmax = 1.5 the average K over all 4,361 test samples was already 181.24 and at dmax = 4.2
it was 2,176.83. Considering that for each room there were only roughly 600 training samples
it is not surprising that the classification accuracy decreases once dmax > 4.2. For dmax = 4.2
at most ≈28% of the training samples inside dmax could be from the correct class, making a
misclassification likely. To conclude, for the presented dataset choosing dmax ≈ 1.5 provides
the best compromise between high accuracy of provided labels and low number of non-classified
test samples.
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5.3. Test with missing room data. For the data from [23] it was noted that IMS mea-
surements differed most noticeably for training and test samples collected in rooms 6 and 7.
Therefore, in this section only training samples from rooms 1 to 5 were used for determining
the labels of the same 4,361 test samples as in Section 5-A, of which 1,234 were collected in
rooms 6 and 7. For the KNN K = 3 and for the FlexKNN dmax = 1.5.

The classification accuracy of the KNN was 71.70%, which is a clear improvement over the
result in Section 5-A and supports the hypothesis that larger differences in the samples from
rooms 6 and 7 collected for training and testing caused a large portion of the misclassifications.
The FlexKNN yielded for 3,648 test samples a label, of which 76.75% were correct; for the
remaining 713 test samples no training sample was within dmax (i.e., K=0) and hence the
FlexKNN did not return a label. The overall accuracy, which accounts for test samples being
correctly classified as belonging to rooms 1 to 5 or having no label due to K=0, was 80.55%.

Test samples without label stem mostly from rooms 6 and 7. However, 42.22% of the samples
from these two rooms were also misclassified by the FlexKNN, which indicates that either a
smaller dmax should be used or that some IMS fingerprints between rooms 6 and/or 7 and one
of the remaining five rooms were too similar to be distinguished reliably. It also shows that
choosing a suitable dmax is non trivial. A thorough analysis of the training data investigating
the density of training samples, the closeness of training samples from the same class as well
as the closeness of training samples from different classes could help find the dmax that yields
the highest accuracy.

6. Concluding remarks

This paper introduced a modification of the widely used K Nearest Neighbors classifier for
which the maximum allowed distance between the sample to be classified (test sample) and
training samples is used as input parameter. Hence, K is flexible and can differ considerably
between different training samples. Consequently, the algorithm was named Flexible KNN
(abbreviated as FlexKNN). The reasoning behind the FlexKNN is that the standard KNN
and its variants will always yield a label for a test sample even if the K closest training samples
are far away from the test sample. This might occur, for example, if the test sample is from a
class for which no training data is available. In such scenario existing KNN-variants will yield
a wrong label while the FlexKNN will provide information that no label could be determined
due to all training samples being too dissimilar and that it is reasonable to assume that the
test sample belongs to a yet unknown class.

In Section 5, the FlexKNN was compared to the standard KNN for localization based on
ion-mobility spectrometry fingerprints. The dataset from [23] was chosen because it highlighted
the limitation of the KNN, in situations where training samples were very dissimilar to the test
sample, and the capability of the FlexKNN to solve or at least mitigate this limitation.The
test showed that the FlexKNN can outperform the KNN for reasonable choices of dmax, even
when training data are available for all classes observed in the test data.

The maximum allowed distance dmax between the test sample and training samples can
be determined, for example, from the training data using leave-one-out cross-validation or by
simply testing the FlexKNN’s performance for various values of dmax to find the one yielding the
highest accuracy. In future work also techniques for systematically or dynamically determining
the optimal dmax will be studied. Alternatively, other prior information on the data could be
used. An advantage of the FlexKNN is that the number of training samples K inside dmax

The KNN misclassified all samples from rooms 6 and 7 due to missing training data from these two rooms.
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provides information how well the test sample fits into the existing clusters of training data.
Large K and/or K closest training samples mostly from one class indicate a good fit and
high confidence in the yielded label; low K and/or K closest training samples from various
classes indicate a poor fit and low confidence in the yielded label. A reasonable requirement,
to avoid the latter case, would be to demand that K is above a certain threshold to avoid
misclassification based on some outlier data.

Several methods that have been proposed for improving existing KNN-variants have been
discussed in Section 3. Part of their ideas could also be used within the FlexKNN. For uneven
class distribution it would be advisable to calculate the ratio of training samples from a certain
class inside dmax [6] and either choose the label based on the class with the highest ratio or use
normalized ratios of all classes to assign the test samples fuzzy memberships for all classes. In
order to avoid ties the concept of the weighted KNN could be used, meaning that each of the
samples inside the maximum allowed distance is given a weight that is inverse proportional to
its distance to the test sample.

The usefulness of all these potential modifications to the FlexKNN will be tested in the
future with various datasets. Also, a thorough comparison with other KNN-variants will be
carried out. This comparison will provide an insight into the pros and cons of each KNN-
variant, their computational efficiency, and in which scenarios to use which variant.
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