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a b s t r a c t

Emergency department (ED) crowding is a significant threat to patient safety and it has
been repeatedly associated with increased mortality. Forecasting future service demand
has the potential to improve patient outcomes. Despite active research on the subject,
proposed forecasting models have become outdated, due to the quick influx of advanced
machine learning models and because the amount of multivariable input data has been
limited. In this study, we document the performance of a set of advanced machine
learning models in forecasting ED occupancy 24 h ahead. We use electronic health
record data from a large, combined ED with an extensive set of explanatory variables,
including the availability of beds in catchment area hospitals, traffic data from local
observation stations, weather variables, and more. We show that DeepAR, N-BEATS, TFT,
and LightGBM all outperform traditional benchmarks, with up to 15% improvement. The
inclusion of the explanatory variables enhances the performance of TFT and DeepAR but
fails to significantly improve the performance of LightGBM. To the best of our knowledge,
this is the first study to extensively document the superiority of machine learning over
statistical benchmarks in the context of ED forecasting.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Emergency department (ED) crowding is a well-known
hreat to patient safety (Boyle, Beniuk, Higginson, & Atkin-
on, 2012), and the documented adverse effects range
rom a decrease in the work satisfaction of ED staff (Eriks-
on, Gellerstedt, Hillerås, & Craftman, 2018) to increased
ength of stay (McCarthy et al., 2009) and increased mor-
ality (Berg et al., 2019; Guttmann, Schull, Vermeulen, &
tukel, 2011; Jo et al., 2014; Richardson, 2006). In contrast
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to outpatient clinics1 or elective surgery, EDs are unable
to adjust the inflow of patients and are thus exposed to
both a stochastic incidence of diseases and changes in
patients’ care-seeking behavior. Moreover, EDs are usu-
ally unable to freely adjust the outflow of patients, since
they depend on other healthcare facilities to organize
follow-up care when necessary. The only component that
an ED can independently adjust is throughput, which
is mostly affected by the quantity (Bucheli & Martina,
2004) and quality (Trotzky et al., 2021) of staff. These
restrictions lead to repeated crowding which has devel-
oped into a global public health crisis (Pearce, Marchand,

1 An outpatient clinic is a healthcare facility where patients receive
treatment without being admitted to the hospital
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Shannon, Ganshorn, & Lang, 2023). Sufficiently accurate
forecasts of future service demand would enable proactive
administrative decisions aiming to alleviate or even pre-
vent crowding, and has the potential to improve patient
outcomes. This rationale has motivated an increasing
amount of ED forecasting articles (Gul & Celik, 2018), but
for some reason, readily available commercial solutions
have not emerged. We believe this to be due, at least in
part, to increasingly outdated forecasting methods and
the lack of relevant multivariable input.

First, a significant amount of ED forecasting literature
as focused on the autoregressive integrated moving av-
rage (ARIMA) or its variants (Gul & Celik, 2020). The
endency to favor an ARIMA model over advanced mod-
ls is understandable, as it has up to very recent years
epeatedly defended its place over more complex solu-
ions (Cheng et al., 2021; Whitt & Zhang, 2019; Zhou,
hao, Wu, Cheng, & Huang, 2018) and has been con-
idered a pinnacle of the statistical approach in time
eries forecasting in general (Oreshkin, Carpov, Chapa-
os, & Bengio, 2019). This has been changing rapidly.
n 2020, a statistical and deep learning (DL) hybrid pro-
osed by Smyl (2020) outperformed statistical bench-
ark models in the renowned M4 time series forecasting
ompetition for the first time in the history of the com-
etition (Makridakis, Spiliotis, & Assimakopoulos, 2020).
ollowing this result, several time-series-specific DL ar-
hitectures have been introduced, such as the temporal
usion transformer (TFT) by Lim, Arık, Loeff, and Pfister
2021), neural expansion analysis for interpretable time
eries forecasting (N-BEATS) by Oreshkin et al. (2019), and
eepAR by Salinas, Flunkert, Gasthaus, and Januschowski
2020). In the latest M5 competition in 2022 (Makri-
akis, Spiliotis, & Assimakopoulos, 2022), all of the best-
erforming models were pure ML implementations, and
ut of the five best-performing solutions, four utilized a
ultivariable LightGBM model (Ke et al., 2017). In addi-

ion to LightGBM, DeepAR and N-BEATS were highlighted
or showing forecasting potential. However, these models
ave not been tested using ED data.
Second, the amount and quality of used input data

ave been limited. This is an important deficit because
f the highly interdependent nature of the ED. As sug-
ested by Asplin et al. (2003), ED crowding is a sum of
hree operational components: input (number of arrivals),
hroughput (length of stay, mainly affected by staffing
esources), and output (mainly affected by the availability
f follow-up care beds). A disturbance in one of these
omponents alone can lead to crowding, but the most
evere situations are observed when two or more of them
re detrimentally affected. This is in line with findings
f M5, in which one of the seven key implications of
he competition was the importance of exogenous vari-
bles (Makridakis et al., 2022). Regardless, ED forecasting
nput data have repeatedly consisted of simple calendar
nd weather variables, mounting up to 29 input vec-
ors in total (Holleman, Bowling, & Gathy, 1996; Jiang,
hin, & Tsui, 2018; Whitt & Zhang, 2019), which leaves a
ignificant proportion of Asplin’s model unaccounted for.
Third, the studies that have suggested the utility of

ovel input variables, such as website visits (Ekström
2

et al., 2015), road traffic flow (Rauch, Hübner, Denter,
& Babitsch, 2019), or the emergency department sever-
ity index (Cheng et al., 2021), have done so by utilizing
only one of them at a time. This runs the risk of an
overoptimistic evaluation of variable importance, due to
the inevitable multicollinearity between them. We thus
believe that a data-centric approach with a high number
of input variables has the potential to increase predictive
accuracy, provide a better understanding of the factors
underlying crowding, and even inform policies among
local healthcare providers. This is a continuation of our
previous work, in which we used simulated annealing
and floating search to perform feature selection in order
to enhance accuracy when using conventional statistical
models (Tuominen, Lomio, & Palomäki, 2022).

To conclude, our contributions are as follows: (1) we
investigate the performance of state-of-the-art ML models
in predicting ED occupancy using data spanning over two
years in a large, combined ED; (2) we use the largest-
to-date collection of explanatory variables, containing not
only weather and calendar variables but also the avail-
ability of hospital beds, traffic information, local public
events, website visits, and more, and (3) we analyze the
proportional importance of these variables when used in
conjunction with one another. We show that ML models
outperform statistical benchmarks with ED data, repro-
duce the well-established superiority of LightGBM over
other ML models, and show that while the explanatory
variables enhance the performance of TFT and DeepAR,
they do not significantly improve the performance of
LightGBM.

2. Materials and methods

2.1. Datasets and data splitting

Tampere University Hospital is an academic hospi-
tal located in Tampere, Finland. It serves a population
of 535,000 in the Pirkanmaa Hospital District and, as
a tertiary hospital, an additional population of 365,700,
providing level 1 trauma center capabilities. The hospi-
tal ED, Acuta, is a combined ED with a total capacity
of 111–118 patients, with 70 beds (and an additional
seven beds in reserve) and 41 seats for walk-in patients.
Approximately 100,000 patients are treated annually. For
this study, all registered ED visits were obtained from a
hospital database created during the sample period from
January 1, 2017, to June 19, 2019. All remote consulta-
tions and certifications of death without prior medical
interventions, as well as hourly duplicates, were excluded.

Data splitting for hyperparameter optimization. To opti-
mize hyperparameters, we divided the dataset into train-
ing and validation sets. To account for yearly seasonal
patterns, we ensured that the training set covered a 12-
month period, capturing the complete spectrum of sea-
sonal variations. The training set spanned January 1, 2017,
to December 31, 2017, comprising 8760 data points, while
the validation set extended from January 1, 2018, to June
19, 2018, containing 4080 data points. During hyperpa-
rameter optimization, the models were trained on the
training set, and their performance was assessed using
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the validation set. The optimal hyperparameters were
determined based on the validation set’s performance. All
models underwent hyperparameter optimization via the
tree-structured Parzen estimator (TPE) method (Bergstra,
Bardenet, Bengio, & Kégl, 2011), using the optimization
framework by Akiba, Sano, Yanase, Ohta, and Koyama
(2019). Details on the number of tested hyperparameter
combinations and search spaces can be found in Appendix
A.

Re-training protocol and testing. Due to the temporal na-
ture of data, it is important to train the final models on the
recent data available. For that reason, after optimizing the
model’s hyperparameters, we adopted the data-splitting
principle for subsequent re-training.

We evaluated the models using data from June 20,
2018, to June 19, 2019, a span of 365 days. To facilitate pe-
riodic re-training, the data were divided into 13 folds. The
first 12 folds each consisted of 720 data points, equivalent
to 24 h multiplied by 30 days, roughly approximating a
month. The final fold consisted of a residual of 120 h.
The models were re-trained at the start of each month
using the preceding 12,840 data points. For instance, the
training duration for the initial fold ranged from Jan-
uary 1, 2017, to June 19, 2018. This period, which totals
12,840 data points (8760 + 4080), matched the dataset
used for hyperparameter optimization. The re-training
window was then rolled forward for evaluations on the
subsequent folds.

Each prediction spanned a horizon of 24 h. Every day, a
24 h forecast was generated at 00:00 based on the models
re-trained at the start of the respective month (fold).
Given that the testing phase encompasses 365 days across
all folds, this produces matrices of dimensions 365 × 24
for each model. For DL models, the data were normalized
to fit within the range [0, 1] before analysis.

.1.1. Explanatory variables
For the purposes of this study, we collected 167 ex-

lanatory variables from multiple data sources with the
oal of covering as much of the three components of
splin’s model as possible. These variables as summarized
n Table 1 and briefly introduced below. All covariates
re divided into two categories: past covariates (P) and

future covariates (F ). P features refer to variables that are
ot known in the future (e.g. hospital bed capacity), in
ontrast to F features, which are always known both in
the future and in the past (e.g. hour of the day).

Hospital beds. The temporal availability of hospital beds
n 24 individual hospitals or healthcare centers in the
atchment area was included as provided by the patient
ogistics system Uoma

®
by Unitary Healthcare Ltd. in

ourly resolution. The impact of the availability of beds
n ED service demand is two-fold. First, a low availability
f beds leads to a prolonged length of stay, since patients
emain in the ED after initial treatment while they wait
or an available follow-up care bed. This kind of access
lock leads to the accumulation of patients in the ED, and
oth clinical and empirical evidence has shown that this
ffect is a significant contributor to overcrowding (Mor-
ey, Unwin, Peterson, Stankovich, & Kinsman, 2018). Sec-

nd, a low availability of beds sometimes forces primary

3

healthcare physicians to refer patients to an ED merely to
organize the bed that the patient requires, which again
contributes to occupancy. Bed capacity statistics are visu-
alized in Fig. 1, and the locations of the facilities, along
with their distance from the study hospital, are provided
in Appendix C.

Traffic. Hourly traffic data were obtained from an open
database maintained by Fintraffic Ltd., a company oper-
ating under the ownership and direction of the Finnish
Ministry of Transport and Communications (Fintraffic: Dig-
itraffic open data from Finnish roads, 2021). Data from
all 33 bidirectional observation stations in the Pirkan-
maa Region were included, resulting in 66 traffic feature
vectors, each containing the number of cars that passed
the observation station each hour. The acquisition of
traffic variables was motivated by the work by Rauch
et al. (2019), which suggested that traffic variables might
increase predictive accuracy when used as an input in an
ARIMAX model. The locations of the observation stations,
along with their distance from the study hospital, are
provided in Appendix C.

Weather. Ten historical weather variables were collected
from the nearest observation station located in Härmälä,
Tampere, 600 meters from the city center, using open data
provided by the Finnish Meteorological Institute (Finnish
Meteorological Institute Open Weather Data, 2020). The
inclusion of weather variables was inspired by the work
by Whitt and Zhang (2019). We assumed that weather can
be forecasted with satisfying accuracy one day in advance
and, for this reason, used next-day weather variables as
future covariates.

Public events. City of Tampere officials provided us with
an exhaustive historical event calendar, containing all
public events ranging from small to large gatherings that
were organized during the sample period in the Tampere
area. Using these data, we created a time series containing
the number of public events organized each day in the
sample period. Hypothetically, an increased number of
citizens engaging in festivities—often with increased sub-
stance consumption—might be associated with ED service
demand.

Website visits. Data on website visits to two hospital do-
mains were provided by the hospital IT department. Data
were available on two domains: tays.fi (Domain 1, D1)
and tays.fi/acuta (Domain 2, D2), the former being the
hospital’s homepage and the latter the homepage of the
hospital’s ED. D1 visit data were available in hourly res-
olution, whereas D2 data were only available in daily
resolution. Using D1 visits, we also summed up visits
between 18:00 and 00:00 in an identical manner to that
proposed by Ekström et al. (2015) (Domain 1EV ). In ad-
dition, we included a stationary version of this variable
by dividing evening visits by earlier visits during the
day (Domain 1ER). The number of Google searches for
the search term Acuta were also extracted from Google

Trends (Google Trends, 2020).
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Fig. 1. Hospital bed capacity statistics. HC = health center, RH = regional hospital, UH = university hospital. Red color indicates that no beds are
available, and number of available beds is shown with hues of green.
Calendar variables. Weekdays and months were included
as categorical variables. Timestamps of national holidays
were provided by the University Almanac Office (Univer-
sity of Helsinki Almanac Office, 2020), and each of them
was included as a binary vector. Inspired Whitt and Zhang
(2019), we included so-called holiday lags, which en-
code whether the three previous or three following days
were holidays. We also included the number of previous
consecutive holidays, encoding how many consecutive
holidays preceded the day of interest. A binary encoding
of a day’s status as a working or non-working day was
also included.

Technical analysis. In addition to the exogenous explana-
tory features described above, we engineered 30 features
using the endogenous signal of the target variables. These
variables range from a set of moving averages and mathe-
matical moments to econometric indicators, and they are
introduced in detail in Appendix B.

2.1.2. Feature sets
Using a high number of input features from multiple

data sources poses a significant challenge if the predictive
model is to be implemented in a real-life clinical setting,
which increases the cost of building and maintaining the
system as well as its fragility. For this reason, we tested
the models with two sets of inputs: one containing all
variables listed above (feature set A, n = 167), and one
containing nothing but the target variable history (feature
set U) as an input. Each multivariable model was tested
with both A and U inputs, and they are distinguished from
one another with naming convention of MF , in which M
stands for the model name and F for the feature set. For
example, LGBMA refers to a LightGBM model trained and
tested with all available data.

2.1.3. Target variable
In this study we focus on predicting absolute non-

stratified hourly ED occupancy. This includes both bed-
occupying and walk-in patients in all treatment spaces
4

Table 1
Explanatory variable list. P = past covariate, i.e. a value that is not
known into the future at the prediction time; F = future covariate,
i.e. a value that is known both in the past and in the future. Some
variables are provided in the appendices for brevity.
Feature group Name Number

Hospital beds See Appendix C P1–33
Calendar variables Holiday name F34

Holiday lags F35–41
Hour F42
Working day F43
Month F44
Preceding holidays F45
Weekday F46

Public events All events F47
TA indicators See Appendix B P48–85
Traffic See Appendix C P86–151

Google Trends P152
Weather Air pressure F153

Air temperature F154
Cloud count F155
Day air temperature max F156
Day air temperature min F159
Dew point temperature F158
Rain intensity F159
Relative humidity F160
Slipperiness F161
Snow depth F162
Visibility F163

Website visits Domain 1 P164
Domain 1EV P165
Domain 1ER P166
Domain 2 P167
Total A167

of the ED. Occupancy was selected as the target variable
because it is affected by all three components of Asplin’s
model, since input, throughput, and output all contribute
to total occupancy—in contrast to arrivals, which is by
definition affected primarily by input.
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Table 2
Hourly seasonality of the absolute occupancy.

Mean Std Min 25% 50% 75% Max
Hours

00:00–03:00 24.70 10.00 2 17 24 31 75
04:00–07:00 16.27 6.22 2 12 16 20 57
08:00–11:00 31.56 10.97 5 23 31 39 82
12:00–15:00 59.14 13.12 22 50 59 68 117
16:00–19:00 62.74 14.86 22 52 62 73 124
20:00–23:00 46.58 13.85 11 37 46 56 99

2.1.4. Performance metrics
Continuous metrics. We provide three continuous error
etrics: the mean absolute error (MAE) and root mean
quared error (RMSE) for point forecasts, and the mean
caled interval score (MSIS) for prediction intervals. The
AE is calculated as follows:

AE =
1
n

n∑
t=1

|yt − ŷt |, (1)

where yt is the ground truth, and ŷ is the prediction. The
MAE was used to calculate the proportional difference
between the models and relevant benchmark, and for
statistical tests.

Point forecasts were also evaluated using the RMSE:

RMSE =

√1
n

n∑
t=1

(yt − ŷt )2 (2)

All the models investigated in this study are proba-
bilistic in nature and were configured to produce 95%
prediction intervals in addition to point forecasts. We
thus also quantify the performance of these prediction
intervals using the MSIS, as proposed by Gneiting and
Raftery (2007):

MSIS =
Σn+h

t=n+1(ut − lt ) +
2
α
1{yt < lt} +

2
α
(yt − lt )1{yt > ut}

h ×
1

n−mΣn
t=m+1|yt − yt−m|

(3)

where ut and lt are the upper and lower bounds, respec-
tively, xt is the ground truth, and α is the significance level
which, was set to 0.05 based on the levels of the generated
prediction intervals.

Statistical significance. Statistical significance testing of
hourly absolute error rates between ARIMA and the other
models was performed using Kruskal–Wallis one-way
analysis for variance with Dunn’s post hoc test and Holm’s
correction for multiple pairwise comparisons. This aimed
to provide a similar approach to that for the M3 com-
petition (Koning, Franses, Hibon, & Stekler, 2005). The
significance level was specified as p < 0.05. Statistical
tests were performed using software by Virtanen et al.
(2020) and Terpilowski (2019).

2.1.5. Feature importance analysis
Studying how the model selects and weights the fea-

tures the predictions are based upon can provide
insight into the factors affecting occupancy and the rea-
sons underlying good or bad forecasting performance.
5

In this study, this was performed using Shapley addi-
tive explanations (SHAP), as proposed by Lundberg and
Lee (2017). SHAP assigns a unique importance value to
each feature in a prediction by quantifying its contribu-
tion to the prediction outcome. SHAP values are based
on cooperative game theory principles, calculating the
average marginal contribution of each feature across dif-
ferent coalitions of features and providing a unified and
interpretable explanation for individual predictions. For
brevity, we limit our attention to the importance statistics
of the best-performing model.

2.2. Models

Model definition, training, and backtesting were han-
dled using software by Herzen et al. (2022), which pro-
vided a unified interface to the underlying models and
their implementation, unless otherwise stated. We doc-
ument the performance of four forecasting models:

• TFT (the temporal fusion transformer) is a deep
learning model designed for interpretable time se-
ries forecasting, combining recurrent layers, multi-
variable attention mechanisms, and static covariate
encoders to capture complex temporal patterns and
interdependencies (Lim et al., 2021).

• N-BEATS (neural basis expansion analysis) is a deep
learning architecture that decomposes the past val-
ues of a time series using a set of basis expansion
blocks, eliminating the need for prior knowledge of
the underlying temporal patterns (Oreshkin et al.,
2019).

• DeepAR is a probabilistic forecasting model utiliz-
ing an autoregressive recurrent network structure,
typically trained on large collections of related time
series, to produce point and probabilistic forecasts
(Salinas et al., 2020).

• LightGBM is a gradient boosting framework that
employs a histogram-based algorithm, optimized for
speed and efficiency, while handling large datasets
and supporting both classification and regression
tasks (Ke et al., 2017).

Benchmark models. Four models were used for bench-
marking purposes: seasonal naïve (SN); the autoregres-
sive integrated moving average (ARIMA); and two ETS
models, namely Holt–Winter’s seasonal damped method
(HWDM) and Holt–Winter’s additive method (HWAM). A
168-hour sliding window was used for all models. ARIMA
parameters were defined with AutoARIMA as initially de-
scribed by Hyndman and Khandakar (2008), using the
stepwise approach and Python implementation by Garza,
Canseco, Chall, and Olivares (2022). A priori known hourly
seasonality was provided to the AutoARIMA model as a
parameter.

3. Results

Descriptive statistics. The inclusion criteria resulted in a
sample of 210,019 individual visits that occurred during
the 21,600-hour sample window. The hourly seasonal-

ity of the absolute occupancy demonstrated a sinusoidal
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Table 3
Continuous performance of the tested models. FS = feature set, MAE = mean absolute
error, RMSE = mean squared error, MSIS = mean scaled interval score. 95% confidence
intervals in parenthesis.

FS MAE Delta (%) p RMSE MSIS
Model

SN U 9.53 (9.39–9.67) −22 <.001 12.58 (12.40–12.76) –
HWAM U 9.44 (9.30–9.55) −21 <.001 12.20 (12.03–12.39) 56
HWDM U 9.20 (9.06–9.34) −18 <.001 11.91 (11.76–12.08) 55
DeepAR U 8.56 (8.43–8.68) −10 <.001 11.50 (11.34–11.68) 56
ARIMA U 7.78 (7.67–7.89) 0 – 10.50 (10.33–10.64) 65
TFT U 7.18 (7.06–7.30) 8 <.001 9.58 (9.42–9.72) 43
DeepAR A 7.10 (6.98–7.20) 9 <.001 9.39 (9.25–9.54) 62
N-BEATS U 6.98 (6.89–7.08) 10 <.001 9.33 (9.20–9.47) 45
TFT A 6.86 (6.74–6.96) 12 <.001 9.04 (8.92–9.16) 48
LightGBM U 6.66 (6.54–6.75) 14 <.001 8.95 (8.80–9.07) 55
LightGBM A 6.63 (6.52–6.73) 15 <.001 8.77 (8.64–8.90) 54
shape (see Table 2), with the lowest median occupancy
of 16 between 04:00 and 07:00 and the highest median
occupancy of 62 between 16:00 and 19:00 The minimum,
median, and maximum occupancies were 2, 38, and 124,
respectively.

Missing data. There was a significant amount of missing
ata in the case of available hospital beds, as can be seen
n Fig. 1. In total, data were missing for 77,636 h (11%)
ut of the total 518,400 h for all facilities combined. The
mount varied significantly between facilities, from 0–
486 h (0%–35%), due to the gradual introduction of the
oma

®
software to each facility. All missing data were

mputed with the mean of the other hospitals at a given
ime.

.1. Model performance

ggregated performance. Continuous performance results
are provided in Table 3. Kruskall–Wallis showed statis-
tically significant differences between the models with
p = 0.0. LightGBMA was the best-performing model,
ith MAE and RMSE values of 6.63 and 8.77, respectively,
ielding a 15% improvement over ARIMA (p < 0.001).
ightGBMU was the second-best model, with an MAE of
.66 and a proportional improvement of 14% over ARIMA
p < 0.001). TFTA outperformed ARIMA, with an MAE of
.86 (p < 0.001) yielding a 12% proportional improve-
ent. N-BEATS was the fourth-best model, with an MAE
f 6.98 (p < 0.001) and a 10% proportional improvement,
ollowed by DeepARA with 9% (p < 0.001) and finally
FTU with 8% (p < 0.001). DeepARU was 10% worse than
RIMA (p < 0.001). TFTU , N-BEATS, and TFTU had the
owest MSISs of 43, 45, and 48, respectively, compared to
RIMA’s 65.

orizontal performance. The hourly accuracy of each
odel stratified by the forecasting horizon is provided

n Fig. 2. The figure shows that both the absolute errors
nd the differences between the errors are greatest in
he afternoon, which follows the sinusoidal shape of the
ariance of the target variable (see Table 2). LightGBMU
as consistently the best univariable model regardless
f the forecast horizon. Multivariable models performed

n a very similar manner to one another, except for the
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very short forecast horizons, during which LightGBMA
outperformed the others.

Monthly performance. The performance of the univariable
models over different months of the test set is provided
in Fig. 3. TFT, LightGBM, and N-BEATS outperformed the
benchmarks consistently, whereas DeepAR was several
times bested by statistical models. Overall, the errors
were higher in December and October—compared to April
or January, for example.

3.2. Feature importance analysis

The proportional absolute mean SHAP values for the
20 most important features for LightGBMA model are
visualized in Fig. 4 separately for horizons t+1 and t+24.
For t + 1, the target variable itself at lag t − 1 was the
most important variable, followed by the CMO and RSI
indicators and 16 traffic variables. For t + 24 predictions,
18 traffic variables were included in the top 20, along with
website visit statistics to domain 1 and the AO indicator.

4. Discussion

In this study, we establish four main findings regarding
the use of ML and multivariable input data for forecast-
ing aggregated ED occupancy. We discuss each of these
separately below.

ML models outperform statistical models. All of the tested
ML models significantly outperformed the ARIMA bench-
mark with 8%–15% proportional improvements. In the
case of N-BEATS, Oreshkin et al. (2019) initially reported
a 10% improvement over statistical models, which aligns
with the 10% improvement reported here. For DeepAR,
Salinas et al. (2020) reported an average 15% improve-
ment over innovation-state space and autoregressive mod-
els, which is higher than the 8% reported here. This might
be due to our relatively small dataset, since DeepAR is
designed to work at scale. TFT outperformed the other
DL models, which aligns with both Lim et al. (2021) and
Elsayed, Thyssens, Rashed, Jomaa, and Schmidt-Thieme
(2021). However, it was outperformed by LightGBM, which
contradicts Elsayed et al. (2021), who documented TFT

to be superior to gradient boosting regression trees such
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Fig. 2. Horizontal error, as measured by the mean absolute error (MAE). The errors follow the sinusoidal shape of the standard deviation of the
target variable (see Table 2), which peaks at 16:00–19:00 and then decreases towards the end of the day.

Fig. 3. Performance of the univariable models over different months of the test set.

Fig. 4. Feature importance SHAP statistics for the 20 most important features used with the LightGBMA model.
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as LightGBM. Regardless, the breakthrough of ML in time
series applications seems to apply to ED data as well.

LightGBM outperforms DL models. LightGBM was the best-
performing model using both univariable data and
multivariable data. In fact, the univariable LightGBMU
outperformed multivariable DL models, which highlights
the performance of the model and undermines the value
of multivariable data in this problem setting, as discussed
in more detail below. The performance of the model is
in line with that of the M5 competition (Makridakis et al.,
2022) and serves to show that ED statistics do not differ in
terms of predictability from other time series of interest.
The superior performance of tree-based methods over
deep learning algorithms in processing tabular data is a
recognized phenomenon. This advantage can be linked
to two factors: their proficiency in managing uninforma-
tive features, and their ability to identify and leverage
irregular patterns within the target function. Additionally,
tree-based methods can exploit the specific structure of
the data as it is, even with data whose descriptors are not
invariant to transformations, such as rotation, translation,
and scaling (Grinsztajn, Oyallon, & Varoquaux, 2022).

Regardless, LightGBM is a good candidate for a model
that is not only excellent in performance but also efficient
in terms of required computation, since the univariable
LightGBM took only 18 min to execute on a CPU, which is
86%–96% less than the DL models on a GPU (see Appendix
D).

Exogenous multivariable data are of limited importance.
Exogenous variables improved the performance of both
TFT and DeepAR by 4% and 17%, respectively. However, for
the top-performing model, LightGBM, there was negligi-
ble difference between its multivariable and univariable
versions. This indicates that richer models do not nec-
essarily outperform when applied to out-of-sample data.
The observed limited importance of exogenous variables,
along with LightGBM’s superiority, aligns with Occam’s
razor. This principle, also called the law of parsimony,
advocates for the use of models and procedures that
contain all that is necessary for modeling but nothing
more (Hawkins, 2004).

This finding has two practical implications. First, show-
ing that one or more exogenous variables improve the
performance of a model does not mean that a better
univariable model does not exist. It is thus important
to prioritize finding high-performing univariable mod-
els before extensively collecting all potential exogenous
data. Second, from a practical standpoint, it is fortunate
that multivariable data do not significantly enhance the
overall performance in our specific context, since imple-
menting a univariable forecasting model is considerably
simpler than implementing a multivariable one, particu-
larly when the latter demands continual data collection
from multiple sources.

Lack of prominent covariates. The intuitive association be-
tween follow-up care capacity and increased occupancy
is strong, and we expected improved performance from
including these variables. However, this was not observed,
perhaps due to a non-trivial amount of missing data in
8

hospital bed variables, as described in Section 2.1. The
traffic monitoring nodes and their associated time lags ap-
pear to have been chosen somewhat arbitrarily. Moreover,
the absolute SHAP values of the traffic variables increase
in relation to the forecast horizon, as seen in Fig. 4. We
attribute this to multicollinearity between the calendar
and traffic variables. The traffic variables not only capture
the target variable’s weekly seasonality but also provide
a marginal yet beneficial signal. This marginal advantage
contrasts with Rauch et al. (2019), who suggested that
incorporating these variables could enhance forecasting
accuracy by 10%–20%.

We believe that the most important underlying reason
for the unexpectedly low value of exogenous covariates is
the unstratified sample used in this study. The ED under
consideration operates as a Nordic combined facility, serv-
ing a highly heterogeneous population that includes med-
ical, surgical, neurological, and psychiatric patients. These
patients are further categorized into walk-in versus bed-
occupying patients, as well as discharged versus admitted
patients. In this study, we combined all patient categories
into a single aggregated occupancy metric. This is im-
portant because, for example, only 39% of the presented
patients were admitted after the initial assessment, mean-
ing that follow-up care capacity had no direct impact
on the remaining 61% of the patients. It is also possible
that there are associations between the explanatory vari-
ables and some of the subgroups, but these associations
are contradicted by other opposite associations between
other subgroups. This heterogeneity has to be accounted
for in future work.

4.1. Limitations

This study is limited by its retrospective single-center
setup, and further work is required to investigate the
applicability of our approach to other facilities, prefer-
ably in a prospective setting by integrating a production
prototype to hospital information infrastructure. In the
training set, we observed missing data on hospital bed
variables, which might obscure their importance. This
study focused on an unstratified sample, meaning that
pooled occupancy statistics of all treatment rooms were
used as the target variable. This is a limitation because
occupancies of different treatment spaces might have very
different interactions with included explanatory variables.
We retrained models each month to limit the computa-
tional cost in the backtesting phase (and even with this
restriction, it took 34 h of computation to produce the TFT
results; see Appendix D). It is likely that more frequent
retraining (e.g. weekly) would enhance the performance
even more.

5. Conclusions

In this study, we set out to investigate the applicability
of advanced ML models and intuitively relevant multivari-
able data in forecasting ED occupancy. Our results suggest
that, in an ED forecasting context, (1) ML outperforms
conventional statistical models, as has been demonstrated

with other datasets; (2) LightGBM outperforms other DL
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methods, which is in line with previous work; (3) exten-
sive multivariable input data do not significantly improve
model performance when forecasting unstratified occu-
pancy statistics, and (4) a clear association of occupancy
and any of the used covariates was not observed.

We identify several directions for follow-up studies.
tratifying the total visit statistics by functional subunits
f the ED (walk-in clinic, medical, surgical, etc.) would
ikely produce different feature importance statistics, po-
entially improve model performance, and certainly be of
perational value. We also note that classification meth-
ds should be investigated in forecasting binary crowded
tates. Finally, the performance of the models has to be
valuated in a prospective setting.
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