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Abstract

Fascination in topological materials originates from their remarkable response proper-
ties and exotic quasiparticles which can be utilized in quantum technologies. In partic-
ular, large-scale efforts are currently focused on realizing topological superconductors
and their Majorana excitations. However, determining the topological nature of super-
conductors with current experimental probes is an outstanding challenge. This short-
coming has become increasingly pressing due to rapidly developing designer platforms
which are theorized to display very rich topology and are better accessed by local probes
rather than transport experiments. We introduce a robust machine learning protocol for
classifying the topological states of two-dimensional (2D) chiral superconductors and in-
sulators from local density of states (LDOS) data. Since the LDOS can be measured with
standard experimental techniques, our protocol contributes to overcoming the almost
three decades standing problem of identifying the topological phase of 2D superconduc-
tors with broken time-reversal symmetry.
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1 Introduction

The problem of determining the topological states of superconductors dates back three decades
to the discovery of Sr2RuO4. Despite the abundance of accumulated data, the topological state
of Sr2RuO4 remains under lively debate [1–7]. Time-reversal breaking 2D topological insula-
tors and superconductors are classified by an integer-valued Chern number C [8–10] and thus
the determination of the topological state boils down to the identification of it. In contrast
to insulators, where C determines the value of quantized Hall conductance [8], in supercon-
ductors it gives rise to quantized thermal Hall conductance [11, 12]. This difference is at the
heart of the problem of determining C of a superconductor. While the quantization of elec-
tronic Hall conductance has been observed in remarkable accuracy [13], thermal conductance
measurements in superconductors have not reached the required sophistication to observe the
quantization.

While it is unclear whether 2D topological superconductivity exists in any naturally occur-
ring material, there is accumulating evidence that it can be realized in the lab [14–16]. The
various topological designer platforms can realize rich topological phase diagrams [17–19],
and this is exemplified in a Shiba lattice formed by magnetic impurities on a superconducting
surface (Fig. 1(a)), which supports a large number of topologically distinct phases (Fig. 1(b))
[17]. A recent experimental study of a Shiba lattice found signatures consistent with chiral Ma-
jorana edge modes and the accompanying theory calculation suggested that the system could
be in a C ∼ 20 state [15]. However, the value of the C could not be experimentally confirmed,
because of the absence of a diagnostic tool to experimentally access the Chern number.

The long-standing impasse in the determination of topological invariants in superconduc-
tors has also become an obstacle in developing quantum technologies. Topological supercon-
ductors can harbor unpaired Majorana states at vortex cores, point defects and edge vortices,
and they could be employed in quantum computing [12,20–22]. However, the lack of a robust
and unbiased protocol for the identification of the topological state is hindering the progress
of the field and has led to many debates about the interpretation of the experiments.

For the above reasons, it is imperative to devise a generic protocol for extracting Chern
numbers of superconductors from experimentally feasible data. Recently, it has been demon-
strated, that machine learning can be used to discriminate quantum phases of matter, based
on theoretically simulated data [23–25] or combinations of theoretical and experimental data
[26]. Unsupervised methods [27] and combinations of supervised and unsupervised meth-
ods [28] are other interesting directions in the classification of phases of quantum matter and
determination of phase transitions, for an extended review see [29]. However, to our knowl-
edge, so far machine learning methods have not been applied to determine the Chern number
from data which is accessible with standard experimental techniques in superconductors.
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Figure 1: (a) Illustration of a magnetic impurity lattice immersed in a s-wave su-
perconductor which supports topological phases with high Chern numbers C . The
modulus of the Chern number |C | determines the number of chiral edge modes show-
ing up in the LDOS measured using an STM tip. (b) Phase diagram of the Shiba lattice
model as a function of Fermi momentum kF and Shiba energy ε0 expressed in units of
coherence length ξ and superconducting bulk gap∆0, respectively. We have assumed
a square lattice of impurities with a lattice constant a = ξ and a Rashba spin-orbit
coupling λ = αR/(ħhvF ) = 0.1, where vF is the Fermi velocity. The box indicates the
region of parameters used for creating the dataset for testing the neural network pre-
dictions. (c) Random examples of the LDOS for various |C | in the presence of strong
disorder V0 = 0.8∆shiba, where ∆shiba is the average bulk gap in the Shiba model
dataset. The LDOS is averaged over a symmetric energy window around zero energy
[−∆shiba/6,∆shiba/6], and therefore, the tunneling density of states is proportional
to the quasiparticle density of states. Hence, STM measurements in the weak cou-
pling limit will produce the type of pictures illustrated here.

In this work we present a protocol which is using local density of states (LDOS) data
as input and supervised machine learning to extract the topological state information. In
our numerical experiments, we train ensembles of artificial neural networks with generic
tight-binding Hamiltonians and show that the topological phases with Chern number mod-
uli 0, 1, 2, 3 of a Shiba lattice system are classified correctly with a high probability (> 96%)
in a representative part of the phase diagram. Since the LDOS data is accessible with stan-
dard scanning tunneling microscopy (STM), our work constitutes an important step towards
solving the long-standing problem of identifying the topology of 2D superconductors with bro-
ken time-reversal symmetry. Moreover, we describe how the reliability of the predictions can
be estimated, and we find, that when the criteria for a reliable prediction are satisfied, the
prediction accuracy reaches values exceeding 99%.

2 Shiba lattice model and test dataset

To demonstrate the performance of our machine learning assisted Chern number extraction
protocol, we identify the Chern numbers of a complex Shiba lattice system from its LDOS data.
The Shiba model describes a superconducting surface decorated with a two-dimensional lattice
of ferromagnetic adatoms as illustrated in Fig. 1(a). This model contains the generic ingredi-
ents of topological superconductivity and supports a complex pattern of topological phases as a
function of the system parameters [17]. For the applicability of the machine learning protocol,
however, the detailed assumptions of the model and its relationship to a specific physical sys-
tem are not important. The Bogoliubov-de Gennes (BdG) Hamiltonian for the bulk electrons
in the Nambu basis (Ψ̂↑, Ψ̂↓, Ψ̂

†
↓ ,−Ψ̂

†
↑) is

H(bulk)
k = τz

�

ξkσ0 +αR(kyσx − kxσy)
�

+∆0τxσ0 , (1)
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where ξk =
ħh2k2

2m − µ is the kinetic energy, µ is the chemical potential, αR is the Rashba spin-
orbit coupling strength, ∆0 is the superconducting pairing amplitude, and τi and σi are the
Pauli matrices for the particle-hole and spin degrees of freedom, respectively. The electrons
couple to the magnetic impurities by the exchange interaction J as

H(imp)(r) = −J
∑

j

S j ·σδ(r− r j) , (2)

where r j are the positions of the magnetic moments and S j their spins. The total Hamiltonian
is given by H = H(bulk) +H(imp). A single magnetic impurity binds one fermionic state at
energy ε0 within the superconducting gap, and in the derivation of the effective Hamiltonian
we consider the limit ε0 ≪ ∆0 for simplicity. The coupling between the impurity states at ri
and r j is described by effective hopping hi j and pairing∆i j amplitudes, which decay as 1/

p

ri j
at short distances and exponentially at distances larger than the superconducting coherence
length ξ of the substrate (see Sec. 6.1). By transforming the Hamiltonian to momentum space
we obtain

H(k) = d(k) ·τ , (3)

dx(k) = Re
∑

i j

e−ik·ri j∆i j ,

dy(k) = −Im
∑

i j

e−ik·ri j∆i j ,

dz(k) =
∑

i j

e−ik·ri j hi j ,

where ri j = ri − r j . The effective Hamiltonian H(k) generally defines a gapped band structure
and satisfies particle-hole symmetry τx H(k)∗τx = −H(−k). Thus the model belongs to the
Altland-Zirnbauer class D and the topological phases are classified by Chern numbers

C =
1

4π

∫

BZ

d2k d̂ ·
�

∂ d̂
∂ kx
×
∂ d̂
∂ ky

�

, d̂= d/|d| . (4)

In all calculations we assume a square lattice of impurities with a lattice constant equal to
the superconducting coherence length a = ξ. While in typical experiments the lattice constant
is shorter than the coherence length, we choose this slightly longer lattice constant to obtain
a simple phase diagram containing large patches of topological phases. Moreover, in experi-
ments the magnetic atoms are typically placed on the surface of a 3D superconductor, reducing
the coupling between the Shiba states in comparison to our 2D model calculations. Therefore,
the magnitudes of the effective couplings between the Shiba states in our model are probably
quite realistic although we set the distance between the impurity atoms larger than in exper-
iments. We set a Rashba coupling λ = αR/(ħhvF ) = 0.1, where vF is the Fermi velocity in the
absence of spin-orbit coupling. The qualitative features of the phase diagram do not depend
on the exact value of λ [30]. Under these constraints the low-energy theory is fully defined
by two dimensionless parameters ε0/∆0 and kFξ, where kF is the Fermi wave vector in the
absence of Rashba coupling (see Sec. 6.1). By varying these two parameters we obtain a rich
topological phase diagram, and in the following we concentrate on a representative portion of
the parameter space containing topological phases with |C |= 0,1, 2,3, as shown in Fig. 1(b).
The modulus of the Chern number |C | determines the number of chiral edge modes, and there-
fore the LDOS data contains information about |C | but it reveals nothing about the sign of C .
We calculate LDOS maps for systems of size Nx = Ny = 24 lattice sites averaged over an en-
ergy window [−∆shiba/6,∆shiba/6], where ∆shiba is the average bulk gap in the Shiba dataset.
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We calculate ∆shiba by first determining the average gap of the clean and infinite systems sep-
arately for each Chern number |C | and then taking the mean. In these calculations we have
also introduced a disorder potential sampled from uniform distributions [−V0, V0]. To avoid
excessive finite size effects, we generate the data by considering only systems where the bulk
gap is at least 3.5/Nx ≈ 0.15 and the strength of the disorder potential satisfies V0 ≤ ∆shiba
(see Sec. 6.3). As shown in Fig. 1(c), the nontrivial phases |C | ̸= 0 can be easily distinguished
from the trivial phase C = 0 by the LDOS at the boundaries due to the edge modes. How-
ever, whether one can identify the value of |C | only from the LDOS, which can be accessed by
standard experimental methods, is a highly nontrivial question. Below we demonstrate that a
high-accuracy determination of |C | is possible using a machine learning-assisted protocol.

3 Machine learning-assisted determination of the Chern number

Topological properties of physical systems are global in nature and cannot be deterministi-
cally identified by a local measurement. However, it remains an open problem how reliably
a topological state can be inferred from local data, such as the LDOS, measured across the
whole sample. This data contains information about (i) the non-local correlations of quasipar-
ticle states at the opposite sides of the sample that are utilized in various topological tests and
(ii) interference patterns that are known to be different for the unconventional pairing states
where the Cooper pairs carry finite angular momenta. The intimate relationship of the Chern
number, topological edge states, and Cooper pair angular momenta suggests that the LDOS
contains information about the Chern number.

In this work we employ artificial neural networks for the identification of the Chern num-
ber from LDOS data while making only rough assumptions about the underlying system. For
this purpose a LDOS map is propagated through the neural networks, which output a “pre-
diction vector” assigning a weight (“predicted probability”) to each element in a predefined
set of Chern number moduli (see Fig. 2). We use convolutional neural networks (CNNs) [31],
because they are efficient in identifying features in the interference patterns independently
of their spatial positions in the LDOS maps. Our neural network architecture is described
in Sec. 6.4, but we emphasize that our results do not depend strongly on the details of the
network as long as it is expressive enough.

To train the neural networks we employ well established supervised learning techniques.
A loss function compares the neural network’s predictions to the labels of the training data,
and we utilize stochastic gradient descent in the parameter space of the neural network with
the objective of minimizing the loss. While this approach works well across a large range
of applications [32], it relies on the existence of the training data. We generate a labeled
training dataset, consisting of LDOS maps and corresponding Chern numbers, by using a dis-
tribution over all low-energy models which fulfill the necessary symmetry requirements and
other relevant physics motivated constraints. This is tractable, because the low-energy physics
of topological superconductors and insulators can typically be described reasonably well with
simple models, where only the quasiparticle bands closest to the Fermi energy are taken into
account. We discuss the details of these models in Sec. 6.2.

In typical machine learning problems, the training data is sampled from the same distribu-
tion as the test data to which the neural network will be applied after the training. Therefore,
when the average error on the training data decreases smoothly, the same is true for the aver-
age error on the test data if the data sets are large enough so that overfitting is not a problem.
In our case, however, the test data is generated using a distribution Dt of Shiba lattice model
Hamiltonians whose support is a tiny fraction of the support of the training model Hamilto-
nians’ distribution D. As a consequence, even if the prediction error (i.e. the generalization
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Figure 2: (a) Schematic depiction of an ensemble of neural networks. Each ensemble
member gets as input a LDOS map and outputs a prediction vector assigning a weight
to each element in a set of predetermined possible values of the Chern number modu-
lus. These prediction vectors are then averaged, resulting in a joint prediction vector
which is schematically illustrated by the histogram. (b) Demonstration of the advan-
tage of ensembles over individual neural networks. Gray: Performance of a single
neural network. In color: Performance of ensembles of size n > 1. The mean pre-
diction accuracy (line) and the standard deviation (shaded region) have each been
calculated for sets of 13 unique ensembles drawn randomly out of a pool of 13 in-
dividually trained networks. The histograms on the right summarize the statistics of
the prediction accuracy over the training epochs 21-50. The average accuracies of
the ensembles over these epochs are n = 1 : 0.927± 0.015, n = 2 : 0.950± 0.008,
n= 4 : 0.961±0.005, and n= 8 : 0.966±0.004. (c) Confusion matrix for ensemble
size n= 8 averaged over 13 unique ensembles and the training epochs 21-50.

error) averaged over the training distribution decreases smoothly, the prediction error on the
test set can, and in our numerical experiments does, fluctuate wildly between adjacent training
epochs (see Fig. 9). Minimizing these fluctuations is paramount for robust identification of the
Chern number and for being able to decide when to stop the training of the neural networks
without access to the test data.

To solve this problem we employ not just a single neural network, but an ensemble of
neural networks [33,34]. Each network is trained individually on a slightly different training
data set, and then the prediction vectors are averaged to give a collective prediction vector. The
averaging effect of the ensemble reduces the fluctuations between training epochs strongly.

Moreover, if two Chern numbers are equally possible for a given LDOS we expect that the
average prediction vector gives roughly equal weights to both Chern numbers, and we can
exploit this knowledge by discarding all predictions where the ensemble is divided between
multiple Chern numbers. This reduces the number of miss-classified examples and allows us
to estimate the reliability of each individual prediction.

4 Results

The results of our numerical experiments are summarized in Figs. 2 and 3. To evaluate the
robustness of the performance, we trained the networks for many more epochs than necessary
and evaluated them on the Shiba dataset after each epoch. We find that there is a dramatic
advantage of using an ensemble of networks instead of a single network (see Fig. 2 b)). The
ensemble does not only average out the fluctuations (see Fig. 9) in the prediction accuracy but
it also has a higher prediction accuracy than any of the individual networks on its own. This
counter-intuitive result occurs because during ensemble averaging the uncorrelated part of the
error in the predictions of the individual networks averages out to a certain degree [33, 34].
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Figure 3: (a) Prediction accuracy as a function of certainty threshold. (b) Fraction
of data for which the certainty threshold is met. In both panels, we show curves for
the same ensemble configurations as in Fig. 2. The mean and standard deviation are
obtained as in the histograms of Fig. 2.

In addition, we empirically see that networks predicting the Chern number correctly tend to
be more confident about their predictions (the prediction vector has a very large weight on the
correct Chern number) than the networks which are predicting the Chern number incorrectly
(the prediction vector typically has significant weight on at least two Chern numbers). In
the ensembles this effect is pronounced. As can be seen in Fig. 2 the ensemble of networks
predicts the Chern number correctly with a very high average probability> 96%. Furthermore,
in the case of a sufficiently large ensemble the prediction accuracy varies very little during the
epochs 21-50. Therefore, the utilization of the ensemble of networks also solves the problem
of deciding when to stop training the networks without access to the test data, because the
training can be stopped at any time after the networks have been trained sufficiently. The
general convergence and stopping point of the neural network training can be determined
using only the numerically generated data and standard methods from machine learning, such
as early stopping [35]. The confusion matrix shows that the ensemble of networks predicts all
Chern numbers |C |= 0,1, 2,3 correctly with high accuracy > 92% (see Fig. 2(c)).

The prediction vector also allows us to gain insights into the reliability of the predictions.
Namely, we can consider the largest weight in the prediction vector divided by the sum of
all weights as a measure of the certainty of the prediction. Fig. 3 shows that the prediction
accuracy indeed increases significantly if we introduce a certainty threshold larger than 0.5
and discard the samples that do not satisfy this criterion. In the case of reliable predictions,
where the ensembles are almost certain about their predictions, the average accuracy of the
identification reaches values exceeding 99%.

The use of an ensemble of neural networks, and the observation that the networks pre-
dicting the Chern number correctly from the LDOS tend to be more confident about their
predictions, makes our protocol applicable to realistic systems. It is of course advantageous to
generate the training data from a distribution that has large weight on the models expected to
describe the physical system, and therefore knowledge of the system can be utilized in the sam-
pling of the training Hamiltonians, but it is also important to sample them from a sufficiently
broad distribution to make sure that the system of interest is covered by the distribution over
training Hamiltonians. Therefore, the uncertainties related to the physical system determine
the optimal broadness of the distribution of the training models. Our numerical experiments
resemble a realistic setting because we have introduced only rough global constraints which
could be deduced from experimental systems. In our numerical experiments, we employed
a very broad distribution of training models compared to the distribution of Shiba models to
demonstrate that a detailed knowledge about the physical system is not needed. In the case of
our numerical experiments, the prediction accuracy converges as a function of the size of the
ensemble already at approximately n∼ 10 networks, but we expect that larger ensembles are
needed in the case of broader distributions of the training models. In this work, the collective
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prediction vector was obtained by averaging the prediction vectors of the ensemble but for a
broader distribution of the training models it may be beneficial to give larger weight on the
confident predictions.

We emphasize that our protocol has fundamental limitations in the sense that it cannot de-
termine the Chern numbers of all mathematically possible class D Hamiltonians, which is also
not our goal because almost all of these Hamiltonians strongly violate the symmetries, smooth-
ness or locality constraints of physical systems. Rather, it provides a practical approach for
classification of topological states, in particular in topological designer platforms. Because the
key property of topological superconductors is an integer-valued topological invariant which
is insensitive to many system details, one might expect that the amount of experimentally
accessible information can be sufficient for probabilistic determination of the invariant, and
our protocol provides a way to efficiently extract and utilize the essential information for that
purpose.

In real systems the shapes and sizes of the samples will not be exactly as planned, and it
can therefore be beneficial to generate training data using various shapes and sizes of samples
and then use padding to make the input fit the neural networks’ requirements, or to introduce
strong disorder near the system boundary. Moreover, away from the boundary the low-energy
LDOS of a topological superconductor is fairly featureless, and therefore one could probably
transform the measured LDOS map of a physical system in a smart way to fit the input size of
the neural network by cutting and reconstructing an LDOS map of suitable size.

5 Discussion

In this work, we have outlined a protocol for extracting the Chern number of superconduc-
tors via machine learning assisted analysis of the LDOS data. In our numerical experiments,
we showed that an ensemble of neural networks, trained using generic tight-binding Hamil-
tonians, can identify the topological phases with |C | = 0, 1,2, 3 in a representative part of
the Shiba lattice model phase diagram, away from the phase boundaries, correctly with an
average probability of > 96%. Since the LDOS can be measured with standard experimental
techniques, our protocol constitutes an important step in overcoming the long-standing prob-
lem of identifying the topology of 2D superconductors. In the future it would be important to
extend testing of the protocol beyond the single model and restricted parameter space used in
this work.

The key advantage of our method is that, in the generation of the training data, we only
need very rough information on the Hamiltonian corresponding to the system of interest. This
allows us to parametrize a distribution of training models which covers the low-energy physics
of this system as a special case. Importantly, as illustrated in our numerical experiments, the
set of possible models describing the system can be a tiny fraction of the distribution of the
training models. For these reasons our method works well even if there exist large uncertainties
regarding the details of the studied system and sets it apart from earlier work [25] which
required specific knowledge about the physical system and was hence not applicable to real
physical systems.

The ultimate goal of our research is to make reliable predictions of the Chern number
from experimental data. We expect our method could be applied almost directly to many
of the experimentally realized designer platforms because they are expected to share many
qualitative features of the Shiba lattice models. For future research it would be interesting to
generalize our method to higher Chern numbers and to explore its limits. Another interesting
avenue of research would be to utilize additional experimental data, in particular non-local
transport measurements, where two scanning tunneling microscope tips are used instead of
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one. We expect that this could help to improve the accuracy and robustness of the predictions
and it would allow the determination of the sign of the Chern number. Finally, we expect that
our method could be utilized also in the determination of other topological invariants and
employed in quality control of topological materials and quantum devices.

6 Methods

6.1 Details of the Shiba lattice model

To make our analysis self-contained, we summarize here the details of the Shiba lattice model
derived in Ref. [17]. Starting from the BdG Hamiltonian H = H(bulk) +H(imp), described in
the main text, the equation for the eigenstate Ψ at energy E can be written as

�

E −H(bulk)(r)
�

Ψ(r) = −J
∑

j

S j ·σδ(r− r j)Ψ(r) . (5)

This equation can be solved for Ψ(r) using Fourier transform yielding

Ψ(r) = −
∑

j

JE(r− r j) Ŝ j ·σΨ(r j) , (6)

with S = |S|, Ŝ = S/S and the integral

JE(r) = JS

∫

dk
(2π)2

eik·r�E −H(bulk)
k

�−1
.

The propagator can be written as the sum of two helical components
�

E−H(bulk)
k

�−1
= 1

2

�

G−+G+
�

,
where

G± =

�

Eτ0 + ξ±τz +∆0τx

��

σ0 ± sinϕσx ∓ cosϕσy

�

E2 − ξ2
± −∆

2
0

,

with ξ± = ξk ±αRk and k= k(cosϕ, sinϕ).
For the case of a single impurity that is deep inside the gap |E| < ∆0 it is possible to

determine the integration over JE(0) which leads to an equation for the wave-function at
r= 0

�

1−
α
q

∆2
0 − E2

(Eτ0 +∆0τx)Ŝ ·σ
�

Ψ(0) = 0 ,

where α= πJSN is a dimensionless quantity characterizing the impurity strength depending
on the density of states at the Fermi level N = 1

2π
m
ħh2 in the absence of Rashba coupling. From

this equation, the states induced by the single impurity can be determined. They are given
by |τx+〉| ↑〉 with eigenvalue E = ∆0

1−α2

1+α2 and |τx−〉| ↓〉 with eigenvalue E = −∆0
1−α2

1+α2 . The
actions of the spin operator are Ŝ ·σ| ↑〉= | ↑〉 and Ŝ ·σ| ↓〉= −| ↓〉, and the operator τx acts in
the Nambu space as τx |τx±〉= ±|τx±〉. In the following, we denote the energy of an isolated
impurity state as ε0 =∆0

1−α2

1+α2 and concentrate on the limit α≈ 1 so that ε0 ≈∆0(1−α).
For a lattice of impurities where the impurity separation a is large enough so that E≪∆0

for all impurity band energies, the impurity band can be found from equation

�

1−
�

E
∆0
τ0 +ατx

�

Ŝi ·σ
�

Ψ(ri) = −
∑

j ̸=i

lim
E→0
α→1

JE(ri − r j) Ŝ j ·σΨ(r j) . (7)
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In the special case that the impurity lattice is a ferromagnetic arrangement of spins Si = Sêz ,
Eq. (7) can be projected on the decoupled Shiba states |τx+〉| ↑〉 and |τx−〉| ↓〉. It then follows
that

JE=0(r) = −
α

2

¦

�

I−1 (r) + I+1 (r)
�

∆0τxσ0 −
�

I−2 (r)− I+2 (r)
�

τzσx

+
�

I−3 (r)− I+3 (r)
�

τzσy

©

+ g(τz ,σx/y ,τxσx/y) ,

I±1 (r) =
1

2π2

N±
N

∫

dϕ

∫

dξ
eik±(ξ) r cosβ

∆2
0 + ξ2

,

I±2 (r) =
1

2π2

N±
N

∫

dϕ

∫

dξ
eik±(ξ) r cosβ ξ sinϕ

∆2
0 + ξ2

,

I±3 (r) =
1

2π2

N±
N

∫

dϕ

∫

dξ
eik±(ξ) r cosβ ξ cosϕ

∆2
0 + ξ2

,

where N± = N
�

1 ∓ λ
�

p

1+λ2
�

, λ = αR/(ħhvF ), vF is the Fermi velocity in the absence of

Rashba coupling, k±(ξ) = k±F + ξ/(ħhṽF ), k±F = kF

�

p

1+λ2 ∓ λ
�

, ṽF = vF

p

1+λ2, r = |r|,
β is the angle between r and k, and g(τz ,σx/y ,τxσx/y) denotes terms proportional to
τzσ0,τ0σx ,τ0σy ,τxσx , or τxσy whose matrix elements between the low-energy basis states
vanish. The solution of the integrals can be expressed in terms of Bessel Jn and Struve func-
tions Hn, yielding

I±1 (r) =
N±
N

1
∆0

Re
�

J0

�

k±F r + ir/ξ
�

+ iH0

�

k±F r + ir/ξ
�

�

,

I±2 (r)≡ i I±0 (r) sinϕ
′, I±3 (r)≡ i I±0 (r) cosϕ′ ,

I±0 (r) =
N±
N

Re
�

iJ1

�

k±F r + ir/ξ
�

+H−1

�

k±F r + ir/ξ
�

�

,

where r = r(cosϕ′, sinϕ′) and ξ = ħhṽF/∆0. Assuming that the impurities are far away from
each other, we can use the asymptotic expressions

I±0 (r)≈ −
N±
N

�

√

√

√
2/π
k±F r

sin
�

k±F r − 3π
4

�

e−r/ξ + 2/π
(k±F r)2

�

,

I±1 (r)≈
N±
N

1
∆0

√

√

√
2/π
k±F r

cos
�

k±F r − π4
�

e−r/ξ . (8)

Projecting on the low-energy states yields an effective Hamiltonian
∑

j

�

hi j ∆i j
∆∗ji −hi j

��

u(r j)
v(r j)

�

= E

�

u(ri)
v(ri)

�

, (9)

where the two components of the wave functions are u(r j)≡ 〈τx+|〈↑ |Ψ(r j)〉 and
v(r j)≡ 〈τx−|〈↓ |Ψ(r j)〉, and the entries of the Hamiltonian are given by

hi j =







ε0 , i = j ,

−
∆2

0

2

�

I−1 (ri j) + I+1 (ri j)
�

, i ̸= j ,

∆i j =







0 , i = j ,
∆0

2

�

I+0 (ri j)− I−0 (ri j)
� x i j − i yi j

ri j
, i ̸= j .

In all numerical calculations we use the asymptotic expressions for I±0,1(r).
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6.2 Details of the training model Hamiltonians

The low-energy physics of topological superconductors and insulators can always be described
with models, where only the quasiparticle bands closest to the Fermi energy are taken into
account. The Hamiltonian H(k), describing the lowest bands of a particle-hole symmetric
τx H∗(k)τx = −H(−k) system, has a generic form

H(k) =

�

ξ(k) ∆(k)
∆∗(k) −ξ(−k)

�

, ∆(−k) = −∆(k) . (10)

Because it is beneficial to have large energy gaps, we consider models obeying inversion and
mirror symmetries (w.r.t. the high-symmetry axes and the diagonal)

ξ(kx , ky) =
∑

q

n2
x+n2

y≤d

ξnx ,ny
ei(nx kx+ny ky ) ,

ξ∗nx ,ny
= ξnx ,ny

, ξ−nx ,ny
= ξnx ,ny

,

ξnx ,−ny
= ξnx ,ny

, ξny ,nx
= ξnx ,ny

,

and

∆(kx , ky) =
∑

q

n2
x+n2

y≤d

∆nx ,ny
ei(nx kx+ny ky ) ,

∆−nx ,ny
=∆∗nx ,ny

, ∆nx ,−ny
= −∆∗nx ,ny

,

∆ny ,nx
= −i∆∗nx ,ny

.

We choose the cut-off in the hopping distance as d = 2 and sample the Hamiltonians from a
distribution where the hopping amplitudes decrease with the distance as

ξnx ,ny
= ξ̃nx ,ny

e−
r

n2
x+n2

y
ξ , ∆nx ,ny

= ∆̃nx ,ny
e−
r

n2
x+n2

y
ξ ,

and ξ̃nx ,ny
∈ [−1, 1], |∆̃nx ,ny

| ∈ [0, 1] and arg(∆̃nx ,ny
) ∈ [0,2π] are random variables restricted

by the symmetry requirements. For the decay length ξ in the training models it is beneficial to
use an estimate based on the studied system, so that in our case we set ξ= 1 corresponding to
the coherence length ξ= a in the Shiba lattice model. We calculate the LDOS maps for systems
of size Nx = Ny = 24 lattice sites averaged over an energy window [−∆training/6,∆training/6],
where ∆training is the average bulk gap in the training dataset. We generate the training data
by considering only systems where the bulk gap is at least 3.5/Nx ≈ 0.15 and the strength of
the disorder potential satisfies V0 ≤ ∆training (see Sec. 6.3). To be computationally efficient
and since high precision is not important, we determine the bulk gap size only with an average
accuracy of ≈ 99%. Because of the requirement of large energy gaps, there is a tendency of
generating examples of strong coupling superconductivity. To avoid this problem, we only
accept samples with superconducting order parameters describing weak or moderate coupling

r

∑

|∆nx ,ny
|2 ≤
r

∑

|ξnx ,ny
|2 − |ξ0,0|2 .

6.3 Data generation protocol

We generate clean system Hamiltonians from the distributions described in Secs. 2 and 6.2,
calculate their Chern numbers C and energy gaps, and pre-select subsets so that the bulk gap
is at least 3.5/Nx . For each subset we calculate the Chern number dependent average bulk gap
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Figure 4: Histograms showing the number of states in the energy window
[−∆̄ν/6, ∆̄ν/6] (ν = training, shiba) for |C | = 0, 1,2, 3 on an arbitrary scale. The
average number of states for each |C | is shown in the legend of the corresponding
figure. For most samples the number of states is significantly larger than 2|C | which
is the minimal requirement to be able to detect |C | from the LDOS data.

Figure 5: Average number of states in the energy window [−∆̄ν/6, ∆̄ν/6]
(ν = training, shiba) for |C | = 0, 1,2, 3 as a function of disorder amplitude. The
dots denote average values and the colored regions depict one standard deviation
around the averages. Left: Training models; Right: Shiba models.

∆̄ν,|C | (ν = training, shiba) and define ∆̄ν as their respective average. Note that according to
our convention the gap appears in the energy interval E = [−∆/2,∆/2].

We discretize these Hamiltonians on a lattice of size Nx = Ny = 24 and add an onsite disor-
der potential sampled from uniform distributions [−V0, V0]with V0/∆̄ν={0, 0.2,0.4, 0.6,0.8, 1.0}.
We verified the construction of the training tight-binding Hamiltonians using an alternative im-
plementation based on the KWANT toolbox [36]. In the case of the Shiba models, we obtain a
balanced dataset by choosing the number of disorder realizations per Hamiltonian such that
the resulting dataset has approximately the same number of samples for each Chern number.
The Shiba dataset contains 11k datapoints in total [37]. In the case of the training data we
choose the same number of Hamiltonians for each Chern number and then use one disor-
der configuration per Hamiltonian and disorder strength resulting in 75k data points for each
Chern number |C | = 0,1, 2,3. In addition we generate a smaller validation dataset with 7.5k
data points per Chern number. For each disorder realization, we calculate the LDOS

ρ(x , y)∝
∑

Ei∈E
|〈x , y|ψi〉|2 , (11)

using an energy window E = [−∆̄ν/6, ∆̄ν/6] which is chosen so that we have a reasonable
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number of edge states without getting too many disorder-induced bulk states (see Figs. 4
and 5). We normalize the LDOS maps so that the standard deviation across each sample is
one, except if there are no states in the LDOS window, then all values of the LDOS map are
zero. This is not only beneficial for the neural network training, but also removes the ambiguity
of the typically unknown prefactor in LDOS measurements.

We can study the effects of the finite size of the samples and the disorder on the topology
by computing the Chern marker Cm integrated over the bulk of the sample [38–40]. If the
system is sufficiently large to possess the topological properties Cm is approximately quantized
to the integer value of the Chern number of an infinite system. Fig. 6(a) shows the modulus
of the Chern marker |Cm| as a function of the system size for a representative set of system
parameters. Our choice of the system size Nx = Ny = 24 yields a relatively good quantization
in all considered cases. Also, manufacturing systems of size 24ξ does not pose a significant
experimental challenge. Fig. 6(b) shows the Chern marker Cm as a function of disorder am-
plitude V0 for the same set of system parameters demonstrating that |Cm| is reasonably well
quantized in the range of disorder amplitudes considered in our work V0/∆shiba ≤ 1. We also
roughly estimated the average localization lengths of the edge states (∼ 2 lattice constants in
the Shiba dataset and∼ 4 lattice constants in the training dataset) to check that they are much
smaller than the system size.

Figure 6: (a) Chern marker of clean Shiba lattice model systems as a function of sys-
tem size. (b) Chern marker for a system size Nx = Ny = 24 as a function of disorder
amplitude V0/∆shiba (averaged over 20 disorder realizations). The parameters are
kFξ = 3.68, ε0/∆0 = 0.35 for C = 1, kFξ = 2.88, ε0/∆0 = 0.29 for C = 2, and
kFξ= 3.49, ε0/∆0 = 0.16 for C = 3.

6.4 Details of the neural network and robustness to the neural network archi-
tecture

Our neural networks take as input an LDOS imageρ and output an estimated probability distri-
bution p(|C |
�

�ρ,θ ) over the Chern numbers |C | ∈ {0, 1,2, 3}, conditional on ρ and the trainable
parameters (weights) θ . We have used several different neural network architectures to test
the robustness of our results (see Table 1). To build, train and evaluate the networks, we used
the KERAS library [41] with TENSORFLOW [42] as backend and the ADAM optimization algo-
rithm [43]. The source code we used to generate the training data and to train and evaluate
the neural network ensembles can be found at [44]. For each network an individual training
dataset was created by sampling with redraw a dataset of the same size from the 300k train-
ing data points. The respective 300k training data points were randomly shuffled before each
epoch and fed into the optimizer in mini-batches of 64 samples. The validation dataset was
used to detect training convergence and overfitting (see Fig. 9). In the following, we explain
the operation of the different layers appearing in our neural networks.
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Table 1: The different neural network architectures considered for determination of
the Chern number. The naming of the layers is mostly based on the conventions used
in KERAS and their operation are discussed in the text. The results reported in the
main text are obtained using networks with the “CNN 64” architecture, but we have
checked that all networks give similar results and show the results from the other
network architectures in Figs. 7 and 8. The last row of the table shows the average
accuracies for ensembles of size n= 8.

name CNN 32 CNN 64 CNN double layer 64
layers RandomFlip RandomFlip RandomFlip

Conv2D (32x3x3) Conv2D (64x3x3) Conv2D (64x3x3)
Conv2D (64x3x3)

MaxPooling2D (32x2x2) MaxPooling2D (64x2x2) MaxPooling2D (64x2x2)
Conv2D (32x3x3) Conv2D (64x3x3) Conv2D (64x3x3)

Conv2D (64x3x3)
MaxPooling2D (32x2x2) MaxPooling2D (64x2x2) MaxPooling2D (64x2x2)
Flatten Flatten Flatten
Dense (32) Dense (64) Dense (64)
Dense (4) Dense (4) Dense (4)

weights 47k 185k 259k
avg. accuracy 96.1± 0.3 96.6± 0.4 96.3± 0.4

Figure 7: Same as Figs. 2 and 3 but for the network “CNN 32” as detailed in Table 1.

CNNs [31] are built on the idea that patterns can be efficiently identified independently on
their spatial position in the image. This is done using “filters” which traverse over the entire
image considering only a small window of pixels at a time to estimate if a certain feature is
present. The output of a convolutional layer is again an image comprising N values “channels”
for each pixel, one for each filter. We use the notation, Conv2D (N × w× w), where N is the
number of channels and w×w is the kernel size, i.e. the size of the input window of the filters.

Figure 8: Same as Figs. 2 and 3 but for the network “CNN double layer 64” as detailed
in Table 1.
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We use stride length 1 (step size in the movement of the filter), and padding (inclusion of
rows and columns of zeros around the image) such that the size of the output image is the
same as the size of the input image. After each convolutional layer, we apply an element-wise
“rectified linear” activation function

φ(x) =

¨

0 , x < 0 ,

x , x ≥ 0 ,

to the output image.
The “pooling” layers reduce the dimensionality of the image by transforming the informa-

tion in a small window of pixels into a single pixel. This operation acts independently on each
channel, and we use so called “max pooling” which returns the maximal value in each pooling
window. We use the notation MaxPooling2D (N ×w×w), where N is the number of channels
and w× w is the kernel size. We use stride length 2 and no padding, so that the image size is
reduced by a factor of 2 in each direction.

Additionally, we also have a fully connected layer denoted as Dense (N), where N is the
number of rectified linear units (i.e. neurons) in the layer.

The other layers are used for technical purposes. The RandomFlip layers augment the data
by randomly flipping the image w.r.t the x- and the y-axis and is only used during training
and the Flatten layers turn a tensor into a vector.

In the last layer, denoted as Dense (4), we apply a linear mapping from the feature vector
f ∈ RN to a 4-vector

q
�

|C |
�

�ρ,θ
�

=
N
∑

j=1

A|C | j f j(ρ) + b|C | ,

with one entry for each allowed |C | = 0,1, 2,3, with trainable parameters A|C | j ∈ R4×N and
b|C | ∈ R4.

Finally, we use the softmax function

[softmax(x)]i =
exp(x i)
∑K

j=1 exp(x j)
, for x ∈ RK ,

to squeeze q into a vector resembling a probability distribution

p
�

|C |
�

�ρ,θ
�

= softmax
�

q
�

|C |
�

�ρ,θ
��

,

with p
�

|C |
�

�ρ,θ
�

≥ 0 and
∑

|C | p
�

|C |
�

�ρ,θ
�

= 1. As a loss function we use the categorical
cross-entropy given by

L= −
∑

(ρ,|C |)∈Dmini-batch

log(p(|C |
�

�ρ;θ )) .

6.5 Details of the neural network ensembles

The ensembles in the main text consist of two or more neural networks which are trained
individually using different initial weights and biases. In addition, each network is trained
using a slightly different dataset. These datasets are sampled from the original dataset with
redraw and are of the same size as the original dataset. This way of constructing an ensemble
is called bagging [34].

As a computationally cheaper variant, one can also use “snap shots” of a single neural
network at different training times. In Fig. 10 we show this for the case where n snapshots of
the same neural network at adjacent training epochs form an ensemble of strongly correlated
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Figure 9: Exemplary training curve of one of the networks used in the main text.
In gray, accuracy of the network evaluated on the training data. In blue, accuracy
of the network evaluated on unseen “validation” data from the same distribution as
the training data. Such validation data is accessible during training and can be used
to decide when to stop training. The performance gap with respect to the training
data indicates some overfitting. We therefore expect that with more training data
our results could be improved further. In red, accuracy of the network evaluated on
the Shiba test data, which can not be used for performing or terminating the training
process. The large fluctuations between adjacent training epochs illustrate the need
for reducing the variance of the generalization using ensembles.

networks. As for the ensembles in the main text, the fluctuations between adjacent training
epochs are strongly reduced. However, the average performance is lower than that of the
ensembles of independently trained neural networks and the variance across the ensembles is
greater. In addition, we observe that the performance declines slightly after hitting its peak
during the training progresses. This is likely because as the training progresses, the changes
in the neural network at adjacent training epochs become smaller and smaller and therefore
the networks in the ensemble become more and more correlated.

Figure 10: Same as Fig. 2, but instead of n independent networks, here each ensem-
ble consists of n instances of the same network at adjacent training epochs (“running
average”). The mean prediction accuracy (line) and the standard deviation (shaded
region) have been calculated using the same 13 neural networks as in Fig. 2. Average
accuracy of n = 1 : 0.927± 0.015, n = 2 : 0.936± 0.011, n = 4 : 0.940± 0.008, and
n= 8 : 0.943± 0.007.
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