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ABSTRACT

We report on an investigation into the use of creaky voice in Finnish speech using a
corpus of individuals recorded three times in their lives over a span of approximately
40 years. Classification of creak by hand is very time consuming. Automatic
detection of creak on the other hand is unreliable, especially with non-optimal field
recordings, such as the ones in our corpus. Using sparse hand marked data to train
a classification algorithm applied to large scale automatic data, we have been able
to combine evidence from both sources and extend the scope of the analysis and
increase the precision of estimates. Our results indicate that some individuals living
in Helsinki and Tampere have changed the amount of creak they use during their
lifetime. However, no general trend was observed for all speakers examined. All
of our speakers used at least some creak already in the 1970s, some very little and
others quite a lot. Use of creak can be fairly stable for an entire one hour interview,
but it can also be fairly volatile, varying within a single interview. In addition to the
proportion of creak used by speakers, we have also begun to investigate where creak
is more likely to occur. Results indicate that creak is more prevalent in the final
half of interpause intervals, which gives some support to suggestions that creak may
be associated with end of utterance in Finnish or that creak may be one way for a
speaker to conserve airflow.
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Table 1: Longitudinal corpus of Finnish spoken in Helsinki [1]; Lon-
gitudinal corpus of Finnish spoken in Tampere [2]

1. Introduction

In this paper we present an overview of our ongoing analysis of creak
as part of a larger project analyzing a longitudinal corpus of Finnish
speakers in the 1970s, 1990s and 2010s [1, 2]. We have been looking 1970
at various prosodic features including how or indeed whether in-

dividual adults’ F'0 distributions have changed over this period of

approximately 40 years [3]. We became interested in the incidence 1990 1997
of creaky voice in our corpus, originally because of the difficulties

creaky voice causes for F'0 measurement, but also to see whether

individuals’ use of creaky voice has changed over the years.

Helsinki ~ Tampere

1977 interviews with informants in
3 age groups: approximately
20-, 40- and 6o-year olds
former informants interviewed
again (Helsinki & Tampere),
additional young informants
recruited (Helsinki)

Languages always change, speech communities are varied, and

2010 2019 informants interviewed a 3rd time,
idiolects also change in many ways. We know from previous work informants interviewed a 2nd time,
with this corpus that F'0 distribution can change dramatically dur- additional young informants
ing the course of adulthood [3]. For instance, we found that
women’s F'0 dropped between the ages 20 and 40, regardless of
when they were born. Also, the range of F'0 (dispersion) increased 2. Corpus

for almost all subjects from age 20 to 40 to 6o.

How much can phonation behavior, such as use of creak,
change in the lifetime of an individual? It has been suggested that
use of creak is increasing not just in English [4], but in Finnish as
well [5, 6]. Is such a trend observable in the behavior of individual
Finnish speakers from 1970 to 1990 to 20102

The approximately hour long interviews utilized in this research be-
long to alongitudinal corpus of speakers living in two major Finnish
cities, Helsinki and Tampere, collected for use in sociolinguistic re-
search starting in the 1970s ([1, 2], cf. Table 1). During these inter-
views the interviewers speak very little, most of the speech is pro-
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duced by the interviewee. The corpus represents a combination of
panel survey (some of the same speakers were reinterviewed at suc-
cessive periods) and trend survey (some of the speakers were chosen
based on matching background variables) [cf. 7, pp. 43-112].

Six speaker subcorpus. In this article we restrict attention to six
speakers from the panel survey part of the corpus, that is, speak-
ers that were recorded three times, in the 1970s, 1990s and 2010s.
Such a panel survey comprising three time points is still relatively
rare world wide. Three of our speakers are from Helsinki and three
are from Tampere. All of them belong to the same age group (or co-
hort), the only one that was interviewed three times, approximately
20 years old at the time of the first interview in the 1970s. In what
follows they are referred to using the pseudonyms Anneli, Anita,
Antti (from Helsinki), Taina, Tiina, Tuomo (from Tampere). Our
subcorpus thus includes a total of 18 interviews. In the future we
plan to examine more speakers and other age cohorts from this cor-
pus.

Hand marked phonation data.  For the six speakers in our sub-
corpus we have available a small amount of hand marked labels clas-
sifying speech into four phonation based categories: U = unvoiced
(e.g. stops, fricatives), V = chest voice, C = creak, and W = whis-
per. Because marking by hand is very time consuming, we only have
a sparse random sample of hand classified speech for each interview.

Sampling was carried out as follows: Random measurement
points were generated using a script in Praat [8], and the speech
signal (excluding pause) within an approximate 1.2 s window sur-
rounding the measurement points was classified by hand into inter-
vals marked U, V, C, or W. Sampling continued until at least 200
intervals were labeled covering a total of at least 30 s of speech sam-
pled from the first quarter of each interview.

Annotation was carried out by a professional phonetician (the
firstauthor) in Praat using both the spectrogram display and the sig-
nal display and then adjusting boundaries by checking intervals au-
ditorily with headphones. The acoustic criteria utilized were those
enumerated in [9], although no attempt was made to distinguish
between different types of creak.

3. Analysis of hand marked data

The raw percentages for our sparse hand marked data are shown in
Fig. 1. It would appear that the amount of creak may differ from
speaker to speaker and year to year, but to make inferences based on
this data we need to use a statistical model. Estimating uncertainty
is necessary for judging any differences we may be interested in—e.g.
“How sure are we that percentage of creak has increased?” With a
suitable statistical model Bayesian inference can be based on poste-
rior distributions of the parameters in the model.

In the present case, it is important to model durations (or
putting it another way, the density of shifts in phonation), not just
raw percentages, in order to assess uncertainty. For instance, sup-
pose for the sake of argument that periods of creaky voice (and non-
creaky voice) lasted on average for several hours. In that case a one
hour sample would tell us relatively little. If, on the other hand they
alternated several times each minute, a one hour sample would yield
a fairly precise estimate of creak percentage.

One possible statistical model is a simple Markov process in
which there is a set of probabilities (dependent on the present state)
that the process will stay in its present state or jump to any other
possible state. In the present case the states would be the possible
phonation classes, with pause acting as starting and stopping states.
A Markov process implies that so-called sojourn times (the time the

process remains in one state) follow an exponential distribution.
This in turn means that the standard deviation of log sojourn time is
7/v/6 & 1.28255. For our hand marked data the sample standard
deviation of log durations for phonation states ranges from about
0.25 to 0.95. This clearly indicates that a simple Markov model is
inadequate for our data.

Instead of a simple Markov model, we employ a semi-Markov
process model, which includes separate Log-Normal duration (so-
journ) distributions. This model is illustrated in Fig. 2. Each possi-
ble state has its own Log-Normal distribution (with two parameters,
mean and variance) indicating how long the process remains in that
state. At the end of this duration the process changes state accord-
ing to a set of probabilities (dependent on current state), just as in
the simple Markov model (except that transition to the same state
is not allowed). Naturally, all parameters (transition prababilities,
means and variances for duration distributions) are allowed to vary
by speaker and interview.

Using two parameter Log-Normal distributions for duration
allows more flexibility than the simple Markov model described
above (which is equivalent to a semi-Markov model with single pa-
rameter exponential duration distributions). For still more flexibil-
ity three parameter Weibull distributions have also been used [10].

Posterior distributions for standard deviations of effects in the
semi-Markov model are shown schematically in Fig. 3. These give
an indication of how important the various effects are. If an effect s
completely irrelevant, its standard deviation would be zero, since all
parameters differing only in that effect should be the same. A large
standard deviation indicates that parameters for the effect in ques-
tion differ a great deal and the effect is therefore relatively important
[1, 12].

It can be seen in Fig. 3 that the magnitude (or mean) parameter
and dispersion (or standard deviation) parameter both vary greatly
according to phonation type, which is not unexpected. For instance,
overall, mean duration of voiced segments is greater than the mean
duration of other types. Any overall (main) effect of interview year
on duration distibution is relatively small, as is the main effect for
speaker. Most interactions for duration distribution parameters are
also fairly small, with the exception of the TYPEX SPEAKER inter-
action for duration distribution mean. This interaction indicates
that the differences in magnitude of durations for different types
(for instance, how much longer voiced segments are on average com-
pared to creaky segments) are also different for different speakers.
In other words, some speakers spend a longer time in a certain state
than other speakers do. There are also sizeable differences between
speakers in the transition probability parameters, as indicated by
the SPEAKER effect for transition probabilities in Fig. 3 (YEAR and
YEAR X SPEAKER effects are also definitely non-zero, but smaller in
size).

While these are interesting details, the main purpose of using
this model is to be able to estimate the amount or proportion of
creak being used. With the semi-Markov model it is possible to cal-
culate the expected proportion of time spent in each state, and we
explore these main results in Section s for the case of creak (see also
Fig. 7), after first considering the use of automatic creak detection.

4. Utilizing automatic creak detection
algorithms

Because hand marking is very time consuming, it would be ad-
vantageous to be able to detect creak in the audio signal automat-
ically. However, automatic classification of creak is a very chal-
lenging task, especially with non-optimal field recordings, such
as the ones in our corpus. So far attempts to find an ade-
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quate creak detection algorithm to use with our recordings have
been disappointing. In what follows we utilize two algorithms:
detect_creaky_voice() inthe covaREP-repository ([13], [14],
hereafter referred to as coOvareP) and creakByRoughness ()
based on the concept of psychoacoustic roughness ([1s], [16], here-
after referred to as ROUGH). Both are available as MATLAB soft-
ware packages [17]. Because initial investigation revealed that signal
intensity can have a large effect on the outcome of these algorithms,
all recordings were normalized to 70 dB using Praat [8] prior to anal-
ysis.

4.1. Evaluation of algorithms and compari-
son with hand marked data

COVAREP correlates with our tiny hand marked samples fairly well
for some interviews, but fairly poorly for others. The so-called Area
Under the Receiver Operating Curve (AUROC or simply A’) pro-
vides one way to measure this. It is a measure of discriminating
power, which can be interpreted as the probability that a randomly
selected creaky frame gives a higher cOvAREP value than a ran-
domly selected non-creaky frame, so that A’ = 0.5 would indicate
no separation of creak and non-creak based on COVAREP, whereas
A" = 1 would indicate complete separation [18]. Estimated A’ for
coVAREP applied to our hand marked data ranges from 0.768 to
0.977 (see Table 2).

Table 2: AUROC (A’): Estimated probability that a randomly se-
lected creaky sample receives a higher value than a randomly selected
non-creaky sample

1970 1990 2010

Anneli  covarer  0.928 0.945 0.834
ROUGH 0.825 0.794 0.680

Anita covarer 0.936 0.915 0.862
ROUGH 0.737 0.653 0.665

Antti covarer 0.922 0.768 0.790
ROUGH 0.707 0.665 0.650

1977 1997 2019

Taina covarer  0.866 0.920 0.945
ROUGH 0.682 0.751 0.820

Tiina covarer  0.865 0.905 0.933
ROUGH 0.708 0.688 0.752

Tuomo  covarer 0.871 0.808 0.977
ROUGH 0.561 0.673 0.667

Possible covAREP scores fall in the range [0, 1] and are meant to
be interpreted as probability of creak, but they do not generally cor-
respond to estimates of creak percentage based on the hand marked
sample. In fact the level and reliability of the COVAREP scores can
vary drastically for the same speaker from year to year, so it is not pos-
sible to determine a single threshold for all interviews—often any
inference regarding increase or decrease of creak would be possible
depending on the choice of threshold.

Similar comments apply to the ROUGH scores, although in gen-
eral ROUGH fares a bit worse than covarep. Estimated A’ for
ROUGH applied to our hand marked data ranges from o0.561 to 0.825
(see Table 2). Possible ROUGH scores fall in the range [0, 00), and
can be easily converted to a supposed creak probability with a score
of one corresponding to p = 0.5, i.e. to the boundary between
creak being less probable or more probable than not. Again, these
raw scores do not generally correspond to estimates of creak percent-
age based on the hand marked sample, and the level and reliability

of the ROUGH scores can vary drastically even for the same speaker
from year to year, just as was the case for the COVAREP scores.

4.2. Combining evidence

Ideally we would like to combine the evidence from our reliable but
sparse hand classification with large scale automatic classification
data, the reliability of which is open to question. The situation is
shown schematically in Fig. 4. At some points in time, for instance
point (a) in Fig. 4, we have information from three sources. Most of
the time, however, for instance point (b) in Fig. 4, we only have the
COVAREP and ROUGH scores available.

In principle, expanding the statistical model to take into
account the additional information provided by covarer and
ROUGH scores is straight forward from the point of view of Bayesian
analysis. We can simply model the additional scores as coming from
distributions depending on the sometimes known (hand classified),
but mostly unknown states. Computationally, however, this is chal-
lenging. The hand marked data used for the semi-Markov model
consists of durations of observed continuous stretches of creak and
other states, combined with observed transitions from one state to
another. Automatic detection data, on the other hand, is sampled
(typically every 10 ms), so we need to convert to a discrete (ie. sam-
pled) version of the model, leading to an explosion of data, even
for the relatively small samples of speech corresponding to the hand
classified data. This drawback is made worse by the fact that the goal
is to utilize entire interviews each lasting approximately an hour, so
that computation virtually comes to a standstill. Optimizing com-
putational routines can help somewhat, but not enough to make
the use of an expanded semi-Markov model feasible.

Of course it is an open question whether adding large amounts
of unreliable data will actually increase the precision and reliabil-
ity of estimates. If the computational challenge could be tackled,
we would be able to rapidly expand analysis to our entire database,
which includes many more speakers and different age groups.

4.3. Probabilistic classification trained with
hand marked data

Given a probability p; of classification as creak for each sample i,
a rough estimation of credible intervals (c1) for total percentage of
creak can be estimated using the Poisson-Binomial distribution (re-
membering to divide by the sample size to estimate a proportion
rather than the total number of creaky samples). Exact quantiles
for Poisson-Binomial distributions can be computed [19], [20], but
even this is computationally prohibitive when the number of sam-
ples is high as in the present case. An easily computed alternative is
to use simulation to calculate quantiles. This has the added advan-
tage that uncertainty in the individual creak probabilities p; can be
handled at the same time.

The value of the COVAREP creak function is already in the form
of a probability (0 < p; < 1), so in principle this procedure could
be applied to the raw COVAREP scores. However, it is clear that
these raw scores interpreted as probabilities do not correspond to
creak percentages, at least for the hand marked data set (most often
they greatly underestimate the amount of creak). Likewise the raw
roughness scores (0 < 7; < 00) can easily be converted to prob-
abilities (using p; = 7i/(1 + r4)), but again these values do not
provide reliable estimates of creak percentage.

An alternative procedure is to train a probabilistic classification
algorithm as a function of the raw scores. There are many types of
such algorithms, here we utilize a simple (easily calculated and easy
to interpret) logistic regression model based on the raw scores trans-
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Figure 4: Combining evidence from three sources

formed to the real plane.

(i, i) = (wi,y:) = (logit(c;), log(rs)) (1)

Estimated probability of creak can thus be expressed according to
the logistic regression model as

IOglt(pz) = /30 + /BCOVAREP - T+ BROUGH “Yi (2’)

The parameters of the model (B0, Beovarer, Broven) are allowed to
vary by interview (17 degrees of freedom) based on the hand marked
data, thus taking into account the clear differences in how the raw
scores behave for different recordings.
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Figure 5: Estimated standard deviations of logistic regression param-
eters; 17 degrees of freedom
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Figure 6: Estimated logistic regression parameters for all interviews

The results of fitting a Bayesian logistic classification model to
our (hand marked) data are shown in Fig. 5, showing estimated stan-
dard deviations of parameters, and Fig. 6, showing estimates of indi-
vidual parameters. From the posterior standard deviation estimates
(Fig. 5), it can be seen that the intercept parameter 3o varies widely
(has a large, non-zero standard deviation), indicating that different
interviews vary widely in how much the automatic measures under-
estimate (or overestimate) creak probability. If 8o = 0, then the raw
score (¢, 1) = (0.5, 1) corresponds to the expected 50 % creak
boundary; if 5o > 0, then creak is under-estimated (creak proba-
bility is higher than the raw scores indicate), and if B0 < 0, then
creak is over-estimated. It can be seen in Fig. 6 that creak is generally
underestimated, with the exception of Anita : 1990, Antti : 1990 and
especially Tuomo : 1997, for which creak is overestimated.

Posterior standard deviation estimates for Scovarer and Brovans
are much smaller, but are also clearly non-zero (cf. Fig. s), indicat-
ing that the interviews also differ in how clearly the scores separate
creak from non-creak. Estimates of Bcovarer a0d Broven are all posi-
tive (Fig. 6), which means thatlarger scores do correspond to greater
creak probability, as expected (negative values would mean the op-
posite). The larger these parameters are, the more effectively the
scores separate creak from non-creak. The fitted logistic regression
model provides the required estimated creak probability for each
sample, given the values of COVAREP and ROUGH, so that based on
these probability estimates a creak percentage cI can be calculated,
for an entire interview or for some a priori defined subset, taking
into account the uncertainty of the estimates by using simulation as
discussed above.

The final result is not a fully Bayesian analysis, since COVAREP
and ROUGH scores are taken as given, rather than modeled as the re-
sult of a stochastic process. Also, unlike the semi-Markov model ap-
plied above to the hand marked data, the model ignores the dynamic
aspect of creak, even though creak probabilities at nearby times are
obviously not independent. However, this approximate model does
not assume absolute independence, but only conditional indepen-
dence of samples (given the explanatory variables COVAREP and
ROUGH), so this is perhaps not so problematic, and we may hope
that much or even most of the interdependence between nearby
samples is captured by the COVAREP and ROUGH scores.

5. Results and discussion

We now turn to a discussion of various questions considered in the
light of the available data and the results of the statistical analyses.
Fig. 7 shows several estimates of the percentage of creaky voice
for each of our six speakers’ three interviews. First of all, for con-
venience, the raw percent of creak calculated from the sparse hand
marked data is copied from Fig. 1. Also shown is an estimate (pos-
terior distribution characterized by median, 50 % c1 and 95% cr)
of the expected creak percent based on a Bayesian analysis of the

65



100
Anneli Anita Antti Taina Tiina Tuomo

904

80
o 791
E
S 601
<
ot
8 504
o
& 40
1S}
X 304 = ?.E. +_ =

= _ '+'
ot g 1= o4 t=
.*-5 -+-E- = =
E—2
10 i .LE
+ 4 =
1970 1990 2010 1970 1990 2010 1970 1990 2010 1977 1997 2019 1977 1997 2019 1977 1997 2019
Figure 7: Various estimates of creak percent. —: raw percent for hand marked data; 0 : posterior median, 50 % CI, 95 % cI for semi-Markov

model applied to hand marked data; 5: estimated median and 95 % c1 for entire interview, based on cOvAREP and ROUGH logistic regression

model trained with hand marked samples.

semi-Markov model applied to the sparse hand marked data. This
is the amount of creaky voice expected in the long run, given that
the stochastic process characterized by the semi-Markov model con-
tinues unchanged. The posterior distribution indicates uncertainty
left after incorporating the data, it does not indicate expected varia-
tion in the process itself. Lastly, an estimated median and 95 % c1is
shown for the portion of creaky voice in each interview, based on the
hybrid analysis using a trained logistic regression model applied to
the COVAREP and ROUGH scores sampled every 10 ms for the entire
interview.

There are some obvious differences in the estimates for the dif-
ferent anaylses. First of all, the 95% c1 are much narrower for the
logistic regression analysis compared to the semi-Markov analysis.
This is perhaps expected, given that it is based on much more data.
Itdoes, in any case, show that addingalarge amount of relatively un-
reliable data did result in more precise estimates. In most cases the
two analyses show similar patterns, which also gives us confidence
in the results. There are also some interesting discrepancies, which
we discuss further in Section s.2.

5.1. Has creak increased in Finnish?

It has been suggested that use of creak is increasing in some lan-
guages, at least in English [4], but also including Finnish [s]. Can
we see evidence of this in our data?

Some changes between interviews in the amount of creak an in-
dividual uses are apparent already in the less precise estimates from
the semi-Markov analysis. It is fairly clear that creak percentage has
increased for Anita and Antti from 1990 to 2010, and for Tazna from
1977 t0 1997. These differences are born out by the more precise es-
timates from the logistic regression analysis. Also additional clear
differences emerge due the increased precision, the largest being a
decrease in creak for Anneli from 1970 to 1990 (although she still has
alarge amount of creak in 1990 and 2010), a decrease for Taina from
1997 to 2019, and an 7ncrease for Tiina from 1977 to 1997 and from
1997 tO 2019.

These major changes are summarized schematically in Table 3.
It can be readily observed that if there is a possible weak overall ris-
ing trend, certainly not all of our speakers follow this trend. There
are many changes in level of creak to be seen within the lifetime of
individuals, but with only six speakers we already see at least five dif-
ferent patterns of change over the three interviews.

Table 3: Change in creak percent for individuals

19705 — 19908 — 2010s
(age 20 — age 40 — age 60)

Anneli Ny —
Anita, Antti — Va
Taina N N
Tiina N N
Tuomo — —

5.2. How stable is creak rate?

In the case of F'0, we found previously that a speaker’s distribu-
tion is fairly constant over the period of a single interview, and mea-
surements restricted to a total of slightly more than 30 s sampled
throughout the first quarter were sufficient to provide an excellent
approximation of this distribution [3]. What about creak? Isa3o's
sample enough? Isan hour long sample enough? Can creak rate vary
within an hour long interview as much or more than it does from
one interview to the next, 20 years later?

To help answer this question we divided each interview into
six sections approximately ten minutes in duration, always dividing
at a pause. As mention above, one of the advantages of the logis-
tic regression analysis is the possibility of estimating a cI for creak
percentage restricted to some a priori grouping. Here the samples
are grouped into successive periods of speech within each interview.
The results, showing how creak level varies within the interview, are
shown in Fig. 8. It is immediately obvious, at least for some speak-
ers, that some 10 minute periods in an interview are quite differ-
ent than others in terms of creak rate. This is perhaps clearest for
Anneli :1970. The rate of creak estimated for the fifth 10 minute
stretch of speech is much higher than the rest. She utilized much
more creak for an extended period of time at that point in her inter-
view. This also explains why Anneli : 1970 exhibits one of the largest
discrepancies for the two methods of estimating creak rate, as shown
in Fig. 7: the semi-Markov analysis is based on data from the first
quarter of each interview, whereas the logistic regression analysis use
data from the entire interview.

At the same time there does not appear to be any consistent
trend (rising or falling) for running creak rate. Depending on the in-
terview, creak may stay relatively stable throughout, it may rise, fall,
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(cf. Fig. 7).

or follow a more varied pattern. Overall, it does appear that within
interview variation is generally smaller than the differences observed
for one speaker between interviews, so perhaps a one hour interview
does provide a fairly stable overview of an individual’s use of creak at
that point in life, but without data from successive hours of speech,
even this conclusion is very weak.

5.3. Where is creak most likely?
In addition to proportion (or overall probability) of creak used by
speakers, we have also begun to investigate where creak is more likely
to occur. We have looked at two hypotheses in particular, based on
the findings of other studies. If creak is a potential marker of end of
utterance or end of speaker’s turn in Finnish [21], we would expect
to find that creak is more prevalent towards the end of interpause in-
tervals. As far as signaling end of turn this effect might be expected
to be weak at best in our corpus, given that there is little turn tak-
ing (the interviewer generally talks much less than the interviewee).
Based on respiratory data, it has also been suggested that creak may
be one way for a speaker to conserve airflow and therefore produce
longer stretches of speech before breathing [22].

To investigate this further, we divided all samples in each inter-
view into two groups, one comprising the initial half of each inter-
pause interval, the other comprising the final half of each interpause

interval. The results of using the logistic regression analysis to esti-
mate CIs for creak percentage restricted to these groups is shown in
Fig. 9. It can be seen that overall creak percentage is consistently
higher for samples in the final half of a interpause interval. This
holds true for each of our 18 interviews.

This surprisingly robust finding is compatible with the idea that
creak is associated in Finnish with end of utterance. However, a sim-
ilar finding (“tendency to creak towards the end of turns”) has been
reported for Estonian dialog [23], even though creak was found not
to be associated with turn-taking. And of course creaky voice can-
not always signal end of utterance, given that there is often a size-
able amount of creak in the initial halves of interpause intervals. Al-
though we do not have respiratory data to accompany our acoustic
data, the idea of conserving airflow also gains some support from
the pattern in Fig. 9.

Besides predicting more creak towards the end of interpause in-
tervals, the airflow hypothesis also suggests that creak might be more
prevalent during longer interpause intervals. To investigate this,
the interpause intervals for each interview were divided into four ap-
proximately equal groups based on their duration, from shortest to
longest, so that the total duration for each group was approximately
one quarter of the total duration of all interpause intervals com-
bined. Estimated creak percentage for these four duration groups is
shown in Fig. 10. It would appear that there may be a very weak cor-
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relation between creak and interpause interval duration for some in-
terviews (clearest for Anneli : 1970, Anneli : 1990 and Taina : 2019),
but in these cases it seems to be mostly restricted to a difference be-
tween the shortest interpause intervals (first group, with less creak)
compared to the other interpause intervals.

Our findings are compatible with other (not mutually exclu-
sive) hypotheses as well. For instance, it is known that F'0 and in-
tensity generally drop as speech progresses (declination), so the dif-
ference in creak percentage could reflect an association of creak with
low F'0 and low intensity [23].

6. Conclusions

6.1. Measuring creak

The availability of hand marked data is crucial to assessing creak
voice behavior. The main drawback of hand marked data is the time
involved in collecting it. It is possible to alleviate this drawback to
some extent by collecting sparse random samples over a wide range
of speech. In the present case we had sparse hand marked data cov-
ering together at least 200 phonation state intervals totaling at least
30 s, sampled from approximate 15 minutes of speech. This density
of sampling is perhaps fairly adequate for reasonable estimates when
creak rate is stable within the range of sampling, but it would seem
that 15 minutes may not be a wide enough range, because it is poss-
ble for creak rate to vary considerably even within the approximately
one hour long interviews in our corpus.

Hand marked data in the form of a random sample of observed
phonation state durations and transitions between these states lends
itself to efficient analysis using a dynamical stochastic process model
such as the semi-Markov model considered here. Ideally we would
like to investigate the effects on creak behavior of such factors as ut-
terance length, pause length, position within the interpause inter-
val, etc. Effects corresponding to such possible trends can easily be
integrated into the dynamical statistical model for the purposes of
inference, but then a much larger sample would be needed to pro-
vide sufficient data for estimation.

Automatic creak detection algorithms hold out the promise of
extending analyses to large quantities of speech and many speakers.
However, it is apparent that automatic classification algorithms can-
not be trusted or taken at face value without checking their validity
for each speech sample examined. In addition to evaluating valid-
ity, in order to be useful they need to be calibrated by comparison
with reliable hand marked data. Once calibrated, however, they can
be very useful and make it possible to extend and sharpen the pic-
ture available with (sparse) hand marked data alone. Of course the
more reliable data is available (hand marked or otherwise), the bet-
ter the calibration will be and the clearer the picture will become.
Adding information from new automatic algorithms, evaluated and
calibrated, can increase precision even further.

6.2. Finnish creak

Based on our research it is obvious that there is wide variation in the
amount of creak Finnish speakers use, from speaker to speaker, at
different stages of a speaker’s life, and even at different times within
a single interview.

Is creak on the rise in Finnish speech? Possibly, although speak-
ers of Finnish have certainly used creak in the past—all of our speak-
ers used some creak in the 1970s, four out of six used a fairly large
proportion of creak (greater than 1o %). While it has been suggested
that use of creak is increasing in Finnish speech [s, 6], we did not
find a consistent trend for all of our speakers, although three of the

six did have more creak in the 2010s than in the 1970s.

Besides differing greatly from speaker to speaker, it appears the
amount of creak used can also vary during a speaker’s lifetime. How-
ever, no consistent trend was found as to how creak varies in a life-
time. With only six speakers we see at least 5 different patterns in
the direction of changes, from the 1970s to the 1990s to the 2010s,
or from age 20 to 40 to 6o (cf. Table 3).

There is variation in a speaker’s use of creak even within a single
interview, quite sizeable in some cases. Again, however, no consis-
tent trend was found for all interviews or all speakers. This raises
the question as to whether within-speaker differences observed for
interviews separated by 20 years genuinely reflect change in speak-
ers’ speech behavior, or whether they might simply reflect normal
variation in speakers’ daily behavior.

A surprisingly robust difference was observed for the amount
of creak in the initial half of interpause intervals as opposed to the
final half—for all speakers in all interviews there was more creak in
the final half. This may indicate that creak is indeed a marker of
utterance finality, it may be related to conserving breath, or it may
simply be related to lower average F'0 as the utterance progresses.

There is no strong evidence to link creak with duration of in-
terpause interval, although several interviews exhibit slightly less
creak for the shortest interpause intervals, and for one interview
(Annels : 1970) this difference is robust.

Of course, there is much more work to be done, and many open
questions. We intend to continue analyzing more speakers from this
large corpus. In addition to clarifying the extent of creak variation,
this will allow comparison with other age groups, examination of
various sociolinguistic factors, and possibly open the door to an-
swering questions about the functionality of creak in Finnish, past
and present.
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