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Data-Driven Compound Identification in Atmospheric Mass
Spectrometry

Hilda Sandström, Matti Rissanen, Juho Rousu, and Patrick Rinke*

Aerosol particles found in the atmosphere affect the climate and worsen air
quality. To mitigate these adverse impacts, aerosol particle formation and
aerosol chemistry in the atmosphere need to be better mapped out and
understood. Currently, mass spectrometry is the single most important
analytical technique in atmospheric chemistry and is used to track and
identify compounds and processes. Large amounts of data are collected in
each measurement of current time-of-flight and orbitrap mass spectrometers
using modern rapid data acquisition practices. However, compound
identification remains a major bottleneck during data analysis due to lacking
reference libraries and analysis tools. Data-driven compound identification
approaches could alleviate the problem, yet remain rare to non-existent in
atmospheric science. In this perspective, the authors review the current state
of data-driven compound identification with mass spectrometry in
atmospheric science and discuss current challenges and possible future steps
toward a digital era for atmospheric mass spectrometry.

1. Introduction

In this perspective article, we review the current state of data-
driven mass spectrometry in atmospheric science. We focus on
automated compound identification, which refers to the large-
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scale identification of molecules facilitated
by digital tools, open knowledge, and data
sharing practices. The past 50 years have
seen the emergence of large mass spectral
databases, which are filled with mass spec-
tra for a variety of compounds.[1,2] Mass
spectral databases are used during com-
pound identification and the development
of data-driven identification tools. As a re-
sult, many research fields, which rely on
high-throughput mass spectrometry, have
been able to improve, accelerate, and au-
tomate data analysis of mass spectrometry
experiments. However, in atmospheric sci-
ence, we believe that there is room for a
broader application and more specific de-
velopment of such tools. Here, we outline
the potential and current barriers for data-
driven compound identification in atmo-
spheric mass spectrometry.

Atmospheric science includes the study
of all chemical and physical processes that

occur in the atmosphere. These processes drive a complex, in-
terlinked system with global impact. The chemical composition
of the atmosphere mostly consists of nitrogen and oxygen gas
(around 99%), followed by noble gases (about 1%), water vapor
(≈ 0.01–4%), and carbon dioxide (0.04%). In addition, the atmo-
spheric gas mixture contains a vast number of trace gases, includ-
ing methane and carbon monoxide (around 2 ppm and 100 ppb,
respectively); inorganic vapors, such as nitrogen and sulfur com-
pounds (e.g., NO, NO2 and HNO3, and SO2, COS, and CS2); and a
substantial number of organic compounds from either biogenic
or anthropogenic emissions (e.g., terpenes and polyaromatics).
These trace gases all transform in the atmosphere through reac-
tions initiated by sunlight.[3–5]

Trace gases can alter the atmospheric composition at any given
time. Certain trace gases are very reactive and have short life-
times, while others are practically nonreactive and persist for far
longer periods, allowing them to transport over long distances.
Trace gas emissions of organic compounds enter the atmosphere
mainly in reduced and poorly water-soluble forms. Through ox-
idation, the organic compounds increase their affinity for the
condensed phase (see Figure 1). This means they can be scav-
enged by liquid droplets and airborne particles. One example of
this complex multi-phase chemistry is secondary organic aerosol
particle generation. Secondary organic aerosol particles form
via rapid gas-phase oxidation of emitted volatile organic com-
pounds (VOCs) into low-volatile reaction products that can grow
atmospheric aerosol particles,[6–8] or form them directly.[9–11] An
autoxidation process drives this gas-to-particle conversion by
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Figure 1. Particles in the atmosphere form through complex processes spanning multiple spatial-scales. First, emissions of volatile compounds enter
the atmosphere and oxidize into lower volatility compounds. These low-volatility compounds eventually form clusters which, in turn, can grow into
atmospheric nanoparticles. Mass spectrometry has become the measurement method of choice to study atmospheric molecular processes like these.
Introducing data-driven methods such as machine learning to the mass spectrometry workflow can help unlock the full analytical potential of mass
spectrometry and provide unprecedented insight into atmospheric processes.

generating a sequence of progressively more oxygenated
and often isomeric, reaction products from the same par-
ent hydrocarbon.[12,13] With each oxygenation step, the re-
actant molecules become better at condensing into smaller
nanoparticles.[14,15]

The volatility of a compound and its tendency to form at-
mospheric secondary organic aerosol particles can be described
conceptually by the volatility basis set.[14,16,17] The basis set con-
tains information on the vapor concentration and oxygen content
(the oxygen to carbon ratio, O:C, or the average carbon oxidation
state, OSc) and correlates the volatility evolution with structural
changes. The most oxygenated, and generally also the most po-
lar, compounds contribute most to aerosol particle formation and
typically have the highest O:C ratios and lowest saturation vapor
concentrations. The most extreme cases are the so-called ultra-
low volatile organic compounds (ULVOCs) with saturation vapor
concentrations lower than 3 × 10−9 μg m−3.[10,14,16,17] At the oppo-
site end of the volatility basis set scale, we find the most volatile,
and the least polar, organic compound gases.

The shear number of emitted volatile organic compounds,
combined with the many aforementioned reaction schemes, lead
to a combinatorial explosion of possible reaction products. The
number of different, emitted volatile organic molecules is esti-
mated to lie in the thousands or even millions.[18,19] Through
atmospheric reactions, each emitted volatile organic compound
multiplies into thousands of reaction products. For example, a de-
cane molecule (10-carbon alkane) with around 100 isomers could
already yield over one million distinct compounds.[18]

Understanding the complex atmospheric chemistry behind
aerosol particle formation is an important and challenging task.
Efforts to map atmospheric compounds and processes contribute
to a better basic knowledge of the chemistry in one of Earth’s
largest and most complex systems. The atmospheric chemistry
leading to particle formation also contributes to air pollution and
climate change. Aerosol particle pollution has adverse effects on
air quality and human health,[20] contributing to 7–9 million pre-
mature deaths annually.[21,22] Additionally, aerosol particles im-
pact the climate by reflecting and absorbing solar radiation, an

effect addressed in climate models used by the Intergovernmen-
tal Panel on Climate Change (IPCC) to inform and guide legis-
lation and action plans for climate change mitigation.[23] In this
context, compound identification could, for example, help to de-
velop a better understanding of particle growth, an important fac-
tor in determining aerosol–cloud interactions.[24] Small changes
in our understanding of aerosol particle growth could alter the
number of cloud condensation nuclei by 50% and, thus, affect
the outcome of climate models.[14] In this perspective, we pro-
pose merging experimental mass spectrometry techniques with
data-driven approaches, such as machine learning, to accelerate
identification of new atmospheric compounds (see Figure 1).

Atmospheric scientists utilize a combination of laboratory and
field-campaign spectrometry experiments to map out the intri-
cacies of atmospheric chemistry leading to particle formation
(Figure 2). Field-campaigns generate numerous experimental
spectra of compound mixtures. Such mixtures often contain un-
known compounds and have a composition that varies between
measurement sites. Meanwhile, laboratory experiments can, for
example, be used to create reference spectra to aid the identifi-
cation and tracking of atmospheric compounds.[25–28] In a data-
driven approach, existing experimental infrastructures would
be coupled to data science frameworks. Reference compounds
shared in data infrastructures can function as training data for
automated compound identification tools. Such digitization of
atmospheric mass spectrometry could then expedite compound
identification in laboratories and field measurements and help
us to gain basic knowledge of the chemistry guiding particle for-
mation (Figure 2).

2. Mass Spectrometry as a Window into
Molecular-Level Atmospheric Processes

Much of what is currently known about atmospheric molecular-
level processes was obtained with mass spectrometry. While
mass spectrometers primarily provide data on the molecular
mass and formula, the molecular formula alone often cannot
uniquely identify a compound.[29] To gain additional insight into
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Figure 2. Data-driven compound identification in atmospheric mass spec-
trometry requires an integration of experiments and data science frame-
works. Laboratory experiments can be used to create reference spectra for
atmospheric compounds (1). Field measurements produce large amounts
of mass spectrometry data of unknown compounds (2). Reference spectra
and field measurements can be collected in shared data repositories (3).
Data-driven (e.g., machine learning-based) compound identification tools
can be trained with reference spectra and be used to identify new com-
pounds measured in field campaigns or laboratories thereby increasing
our basic knowledge of atmospheric processes (4).

molecular structures, mass spectrometry can be combined with
techniques such as chromatographic separation,[30] induced
fragmentation (MS/MS[31,32] and electron ionization [EI] mass
spectrometry[33]) ion mobility spectrometry,[34,35] ionization
characteristics,[36–38] and spectroscopy methods.[19] Such com-
bined approaches have the potential to identify compounds and
address a wide range of research questions, including those
requiring high-throughput analysis. However, the use of mass
spectrometry in atmospheric science faces many challenges,
which we outline below.

Figure 3 shows examples of mass spectrometric techniques
used to study different compounds in atmospheric chemistry.[39]

In the introduction, we alluded to the fact that atmospheric chem-
istry (gas, molecular clusters, and particles) involves compounds
with widely different volatility. Since mass spectrometry is inher-
ently a gas-phase detection method, any specimen must first be
volatilized. For this purpose, specialized techniques have been
developed to study low-volatile molecules with mass spectrome-
try.

The experimentally resolvable fraction of compounds, in
terms of their volatility, has expanded steadily, as techniques
have improved.[31,40] For example, large biomolecules have been
detected using several spray ionization sources (e.g., electro-
spray ionization [ESI][41,42] and atmospheric pressure photoion-
ization [APPI]),[43–45] and surface-bound species by desorption
techniques such as matrix-assisted laser desorption ionization
(MALDI).[31,46] Particulate bound targets, the constituents of
nanoparticles, can be detected through direct aerosol sampling
by, for example, using an aerodynamic lens with subsequent
flash vaporization and EI ionization in aerosol mass spectrom-
etry (AMS),[47] or by collecting the particles onto a filter (or wire)

Figure 3. Example overview of mass spectrometric techniques and com-
plementary separation techniques (in italicized font), used to study atmo-
spheric compounds ranging from molecules in the gas-phase, clusters to
aerosols, and aerosol surfaces. The arrows at the bottom of the figure indi-
cate the inverse relation between measurable scale and detectable volatil-
ity. EI, electron ionization; DMA, differential mobility analysis; IMS, ion
mobility spectrometry; CI, chemical ionization; ESI, electrospray ioniza-
tion; EESI, extractive electrospray ionization; AMS, aerosol mass spec-
trometry; MALDI, matrix-assisted laser desorption ionization; FIGAERO,
filter inlet for gas and aerosols; TDCI, thermal desorption chemical ioniza-
tion; FAB, fast atom bombardment; BBI, bursting bubble ionization; ISAT,
interfacial sampling with an acoustic transducer.

with subsequent rapid thermal desorption vaporization of the
condensed-phase constituents. The latter is, for example, applied
in chemical ionization mass spectrometry (CIMS)[48,49] detection
(with, e.g., filter inlets for gas and aerosols [FIGAERO][50] or
thermal desorption multi-scheme chemical ionization inlet [TD-
MION][51]).

Of the atmospheric compounds, the volatile gas-phase or-
ganic molecules are commonly investigated with either gas-
chromatography mass spectrometry (GC-MS)[52] or proton trans-
fer reaction mass spectrometry (PTRMS).[53] The least volatile
fraction (corresponding to the lowest gas-phase concentrations)
can generally only be measured by atmospheric pressure inter-
face (Api) CIMS methods employing anion attachment.[7,10,54]

Finding techniques that are applicable to the whole range of
molecular species present in the atmosphere is a major challenge
in atmospheric mass spectrometry, and multiple techniques are
currently required to cover the whole volatility range (Figure 3).

Besides a broad compound coverage, the ideal mass spec-
trometric technique in atmospheric science should be able to
analyze ambient gas-phase samples directly without the need for
sample pre-treatment.[55] However, such techniques are rare and
are often limited by, for example, sampling requirements (e.g.,
limited time resolution resulting from the necessary temporal
spacing of compounds as they pass through a chromatographic
column), sensitivity, and interference from background com-
pounds (e.g., spectral overlaps in spectroscopic techniques).[56,57]

Api-CIMS is popular because it can sample ambient air, usually
through a differentially pumped interface (see, e.g., ref. [58]).
Samples do not need to be pre-treated, which enables direct, on-
line analysis. While various methods exist for analyzing aerosols
in real-time, such as resonance multiphoton ionization[59,60]

and secondary electrospray ionization,[61] we will focus here on
Api-CIMS due to its user-friendliness, reliability, and robustness.
Api-CIMS can operate continuously for months, even in field
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conditions. Without sample pre-treatment, Api-CIMS can be
coupled with other research methodologies, which provide com-
plimentary information, such as ion mobility.[34,35] Api-CIMS
is most commonly applied in ambient field measurements and
environmental chamber campaigns where it is combined with
several other measurement techniques.[7,62–66]

The atmospheric composition at a research site can be mon-
itored for days, weeks, or sometimes even years. These time-
consuming field campaigns are characteristic of atmospheric
mass spectrometry and set atmospheric science apart from other
research fields that use mass spectrometry (e.g., metabolomics or
pharmaceutics).[67] Field instruments usually produce relatively
long time series for a selected group of target ion signals.[36,37]

At the opposite end of the time spectrum, specimen can also be
collected on a filter or a filament and then analyzed within a few
minutes in an Api-CIMS[38,50,51] enabling high-throughput stud-
ies of aerosol particles. While early quadrupole-based Api-CIMS
instruments were by necessity only monitoring selected target
ions, modern mass spectrometric methods measure the whole
mass spectrum continuously.[31] The field measurements are of-
ten performed up to a mass resolution of 200 000 (the higher the
mass resolution, the smaller the resolvable changes in the tar-
get mass), which generates large amounts of data that make data
analysis challenging. Currently, only a fraction of compounds in
atmospheric mass spectrometry measurements are definitively
identified due to the various challenges we will review in the
next section.[19] Two possible mass spectrometry approaches exist
that are suitable for compound identification following or during
field campaigns. For example, compounds collected on-site can
be analyzed later in the laboratory with chromatography and frag-
mentation mass spectrometry.[68–70] Alternatively, current devel-
opments for improved compound identification by other mass
spectrometry techniques used during field-campaigns are ongo-
ing and outlined below.

Field campaigns often employ soft ionization approaches such
as Api-CIMS, which minimize ion fragmentation. In Api-CIMS,
reagent ions attach to target molecules (adduction mode), reveal-
ing molecular formula information. Details on the molecular
structure can be obtained by coupling Api-CIMS with molecu-
lar fragmentation techniques (MS/MS).[71] Varying the reagent
ion increases sensitivity and selectivity, with detectable target
ion concentrations ranging down to 10−4 cm−3.[15,54,72,73] New
methods, for example, selected ion flow tube mass spectrome-
try (SIFT-MS) and specialized CIMS,[74] have been developed to
improve compound identification by varying the ion–molecule
interaction. Noteworthy is the 2019 development of the MION
inlet platform,[55] facilitating rapid transitions between ionization
modes (e.g., nitrate in anion mode[75] and aminium- or proton-
transfer in the cation mode[76]). MION has already increased the
number of detectable atmospheric molecules[55,77] and further
methodological synergy promises even better compound identi-
fication in atmospheric mass spectrometry.[72,78]

Summarizing this section, atmospheric science is in a state
of dichotomy. Field campaigns have produced large amounts of
data, but these data are not labeled and have not been uploaded
to mass spectral databases (see following sections). Moreover, the
development of data-driven compound identification tools and
the accuracy of the tools after deployment relies on the produc-
tion and analysis of coherent high-quality reference data.[68–70]

The vast atmospheric compound space, the heterogeneity of stud-
ies (field vs laboratory), and the multiple mass spectrometric tech-
niques have produced a data landscape that is difficult to navi-
gate. Standardization procedures for data collection, processing,
and analysis are still lacking. Combined, these challenges have
aggravated compound identification in atmospheric science.

3. Compound Identification with Mass
Spectrometry

The identification of unknown compounds and processes is
the holy grail of atmospheric mass spectrometry. To identify
unknown processes and compounds is challenging, requiring
suitable identification techniques and a high-accuracy identifi-
cation method. Since only a few hundred atmospheric com-
pounds out of potentially millions have been identified in aerosol
samples,[68–70] the chemical space of atmospheric compounds re-
mains largely uncharted. We also note that, while compound
identification is important for gaining basic knowledge of atmo-
spheric chemistry and for use in particle formation modeling,[79]

atmospheric mass spectrometry studies are diverse in type and
aim. Some studies do not require compound identification, such
as: I) inventorying compounds based on their properties, II) real-
time monitoring, or III) monitoring known sources or processes
(for a review, see ref. [19]). In these example cases, it can be suf-
ficient to track a molecular or elemental composition, or specific
compounds and sources, which are easier objectives than com-
pound identification.

In this perspective, we focus on compound identification. We
have identified three factors that most affect the accuracy of com-
pound identification in mass spectrometry that we will present in
more detail in the following: the chosen experimental technique,
the compound identification method (or tool), and the existence
of reference standards.

Mass spectrometry methods are able to identify compounds to
a varying degree. In 2015, Nozière et al. introduced the I-factor to
quantify the identification accuracy of a mass spectrometry tech-
nique in terms of the ability to narrow down the number of plau-
sible candidate structures.[19] In the best case, only one plausi-
ble structure is identified and the I-factor is equal to one. If the
identification method is not able to discern between isomers of
the molecular formula, the I-factor goes up to the number of iso-
mers (two or higher). Uncertainties in the determination of the
molecular formula can further increase the I-factor.

Nozière et al. used the I-factor to compare atmospheric mass
spectrometric techniques in terms of their compound identifi-
cation ability.[19] The best I-factors were achieved when two or
more techniques, such as chromatography and mass spectrome-
try, were combined. Fragmentation mass spectrometry methods
such as tandem mass spectrometry and EI mass spectrometry,
coupled to chromatography methods, reached I-factors of 1–3.
The I-factor of soft ionization techniques like CIMS were esti-
mated around 4–40 at the time of publication. The newly devel-
oped MION-CIMS method, which uses multiple ion chemistries
(see Section 2), has the potential to achieve similarly low I-factors
as the combination of two or more techniques given above.[55,56]

The data produced by mass spectrometry techniques are used to
isolate candidate structures with the help of a compound identi-
fication method.
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The identification accuracy of compound identification meth-
ods and tools varies and is determined by their ability to match
a recorded spectrum to a molecular structure. In Section 5, we
summarize these tools and their principles. The performance of
a compound identification tool is measured by the Top-k accu-
racy. Unlike the I-factor, which quantifies the ability of a mass
spectrometry technique to resolve the identity of a compound, the
Top-k accuracy gives the percentage of instances in which the cor-
rect compound is found among the k best matching compounds
during a compound search. For example, a benchmark study in
ref. [80] reported a Top-1 accuracy of 39.4 (and a Top-10 accuracy
of 74.8) for their highest-ranking identification tool. This means
that the tool identified the correct molecular structure in two out
of five cases (Top-1 accuracy of 39.4) and found it among the
ten best matches in three fourths of all cases (Top-10 accuracy
of 74.8). Here, it should be noted that the absolute numbers are
highly dependent on both the data size used in training and the
molecular database used to retrieve candidate molecular struc-
tures. Moreover, the recorded mass spectrum’s quality and type
can limit the compound identification method’s ability to provide
reasonable candidate structure suggestions.

The accuracy of a compound identification tool often depends
on the existence of appropriate reference standards, that is, mea-
sured mass spectra of compounds, which are either identical or
similar to the unknown compound. In the compound identifi-
cation process, most approaches search for the measured spec-
trum, or a very similar one, in a database. Even if the identi-
fication method does not employ a spectral database search, it
has still likely been developed, parameterized, or trained with
data from one or more such databases. In atmospheric science,
the lack of reference standards is a large barrier for effective
compound identification,[15,19,56] which we will return to later in
this perspective.

In the digitization of compound identification in atmospheric
mass spectrometry, machine learning will naturally play a large
role. As we will detail in the next section, machine learning tools
are already utilized to automate and improve analysis and pro-
cessing of mass spectrometry data in other fields (see a recent
review in ref. [81]). Figure 4 illustrates a typical mass spectrom-
etry data acquisition process. In atmospheric mass spectrome-
try, machine learning is already applied to some, but not all, of
the steps outlined in Figure 4. Machine learning models have
been trained on different atmospheric mass spectrometry data
(like AMS, PTRMS, ESI-mass spectrometry, single particle mass
spectrometry, and inductively coupled plasma mass spectrome-
try) for aerosol classification and source apportionment and[82–90]

prediction of composition[91–94] and properties.[95,96] Moreover,
a recent review highlighted the role of machine learning in
data pre-processing during measurements of volatile organic
compounds.[97] Thus, machine learning is being integrated into
the data analysis of atmospheric mass spectrometry, but little at-
tention is currently devoted to compound identification. GC-MS
machine learning models for molecular formula annotation of
atmospheric, halogenated compounds,[98] or for molecular prop-
erty and quantification factor prediction,[69] are two notable ex-
ceptions.

We will next address the reasons for the gap between the per-
ceived demand and utility of smart, high-throughput compound
identification tools for atmospheric mass spectrometry and the

Figure 4. Data processing and analysis steps in a mass spectrometry ex-
periment which have been performed using machine learning methods.
Spectral information is extracted through data processing and analysis.
Data processing serves to mitigate statistical effects such as batch-to-
batch variations, or missing data. Other processing steps include peak
processing, alignment, integration, and annotation. Conversely, data anal-
ysis aids in the classification or detection of molecules and the identifica-
tion of chemical pathways to the observed molecules. ANN, artificial neu-
ral network; CNN, convolutional neural network; RF, random forest model;
SVM, support vector machine.

lack of corresponding availability of such tools. We will also iden-
tify the major barriers for introducing compound identification
techniques in atmospheric mass spectrometry. A key to both
these points are currently available mass spectral databases and
their link to the success story of machine learning for compound
identification in the field of metabolomics.

4. Mass Spectral Databases

Digital mass spectrometry libraries with reference mass spec-
tra, so called mass spectral databases, have been used for com-
pound identification since the 1960s.[1,2] Over time, mass spec-
tral databases have grown in size and usage, partly as a result
of increased data processing and storage capabilities as well as
adoption of open science practices. Table 1 summarizes a selec-
tion of mass spectral databases that are hosted by research insti-
tutions, or distributed by companies and mass spectrometry ven-
dors. The mass spectral data are either collected through research
community contributions (e.g., refs. [99–105]), or curation of sci-
entific publications, measurements, and computations (e.g., refs.
[106–113]).

By design, mass spectral databases either cover a specific com-
pound space or aim for some level of generality. However, in re-
ality, the data in large mass spectral databases tend to reflect the
interest of the primary users and contributors. This is evident in
Table 1, which includes specific mass spectral databases created

Adv. Sci. 2023, 2306235 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2306235 (5 of 17)
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Table 1. List of select mass spectrometry databases. The list is divided into open access (top) and commercial (bottom). Data volumes reflect the state
in August 2023 (the data were taken from an associated webpage or publication). GC, gas chromatography; MS, mass spectrometry; FAB, fast atom
bombardment; MS/MS, tandem MS; LC, liquid chromatography; MSn, tandem mass spectrometry done with n fragmentation stages.

Name Website Description Reference

Global Natural Product Social Molecular
Networking (GNPS)

gnps.ucsd.edu The database contains 26 485 unique structures (when full structure is
available). The GNPS database contains data contributions from the
public and other mass spectral libraries.

[99]

Golm Metabolome Database gmd.mpimp-golm.mpg.de Public database maintained by the Max Planck Institute of Molecular Plant
Physiology containing 26 590 mass spectra. Has GC-MS spectra for 2222
metabolites and 3651 reference substances.

[100]

Human Metabolome Database (HMDB),
v5

hmdb.ca Freely available database containing experimental and predicted mass
spectra. The database has predicted and experimental GC-MS spectra for
74 944 and 3000 compounds, respectively, as well as predicted and
experimental LC-MS/MS spectra for 206 809 and 4064 compounds,
respectively. HMDB also contains predicted retention times and collision
cross sections.

[106]

LipidBank lipidbank.jp Curated database containing > 6000 lipids and their spectral information
(EI-MS, FAB-MS),

[107]

LipidBlast fiehnlab.ucdavis.edu an in silico tandem mass spectral library for lipid identification containing
predicted spectra for 119 200 compounds. Provides a tool for users to
predict new spectra for their molecules, available in MS-Dial software.

[108]

Lipid Maps Structure Database (LMSD) lipidmaps.org LMSD is a database of >48 169 lipid structures, 26 122 of which were
determined experimentally and 22 047 of which were generated
computationally. LMSD has links to in-house (500 lipid standards) and
external (54 877 MS and MS/MS spectra for 7210 lipids from MassBank
of North America) mass spectrometry resources.

[101]

MaConDa, v1 maconda.bham.ac.uk Freely available, manually annotated database of 200 known small molecule
contaminants and their LC-MS and GC-MS peaks. Contains un-annotated
data. Downloadable and searchable in batch format.

[109]

MassBank (EU), v2023.09 massbank.eu Public repository of >96 449 mass spectra of ⩾ 15 500 molecules in
metabolomics, exposomics, and environmental samples.

[102]

MassBank of North America (MoNA) mona.fiehnlab.ucdavis.edu Auto-curated public database with experimental and computational mass
spectra of > 650 292 compounds. Includes quality estimation of the mass
spectra.

[103]

Advanced Mass Spectral Database
(mzCloud)

beta.mzcloud.org Commerical database maintained by HighChem LLC, Slovakia with
manually curated high-resolution LC-MS/MS spectra for 26 417
compounds.

[105]

RIKEN tandem mass spectral database
(ReSpect) for phytochemicals

spectra.psc.riken.jp A curated database with 8649 tandem mass spectra of 3595 plant metabolite
compounds collected from scientific literature in 2011 and authentic
standards. Has grown since and now contains 9017 (+368) spectra.

[104]

Maurer/Wissenbach/Weber LC-MSn

Library of Drugs, Poisons, and their
Metabolites, (2nd edition)

sciencesolutions.wiley.com LC-MSn library of over 2270 compounds and over 3600 of their metabolites
curated for forensic use.

[112,113]

Metlin Gen2 (Mass consortium) massconsortium.com METLIN is a highly curated commercial database with experimental spectra
on over 930 000 molecular standards (2023) (LC-MS/MS). All molecular
standards were analyzed in positive and negative ionization modes and at
four different collision energies (0, 10, 20, and 40 eV).

[114–116]

NIST Tandem and Electron Ionization
Mass spectral library, 2023 release

chemdata.nist.gov Curated spectra of 51501 compounds (tandem) and 347 100 (EI), mainly
metabolites, drugs, pesticides, peptides, and lipids. Also contains a
retention index database, including predicted values.

[110]

LipidSearch (Thermofisher) thermofisher.com Computational database containing in-silico LC-MS and LC-MS/MS spectra
for > 1.7 million lipid compounds.

[111]

Wiley Registry of Mass Spectral Data
2023

sciencesolutions.wiley.com A curated GC-MS library with 873 000 spectra of 741 000 unique
compounds with relevance to applications in environmental,
forensics/toxicology, metabolomics, pharmaceutical, biotech,
food/cosmetics, defense/homeland security, and more.

[117]

Wiley Registry of Tandem Mass Spectral
Data - MS for ID

sciencesolutions.wiley.com A curated LC-MS/MS library with spectra for 1163 compounds including
illicit drugs, pharmaceutical compounds, pesticides, and other small
bioorganic molecules.

[118]
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Figure 5. Example of listed contents in mass spectral databases. a) The
reported compound coverage of the NIST 23 tandem mass spectral li-
brary. b) The different reported mass spectrometric techniques in the Eu-
ropean MassBank. These two databases represent general mass spec-
tral databases. E&L, extractables and leachables; CI, chemical ionization;
B, bombardment; GC, gas chromatography; EI, electron ionization; TOF,
time-of-flight; ESI, electrospray ionization; Q, QQ, QQQ, single, double,
triple quadrupole instrument; LC, liquid chromatography; EI-B, electron
bombardment ionization; QFT, quadrupole Fourier transform; ITFT, induc-
tively coupled plasma Fourier transform.

for and by the metabolomics community. These databases con-
tain predominantly small molecules called metabolites, found
in organisms, cells, or tissues. As in atmospheric science, mass
spectrometry is used in metabolomics to identify and quantify
molecules of interest. The plethora of mass spectral databases
in metabolomics can be attributed to open science initiatives in
the research field and the ensuing rapid growth over the past
25 years. As a result, large, general mass spectral databases con-
tain mostly metabolites (see also Figure 5a),[102,103,110] despite no
stated limitation or constraints on the compound coverage. For
this reason, we have decided to highlight metabolomics in this
perspective and to use it as a comparative example for develop-
ments in atmospheric science. Besides metabolites, other com-
mon compound classes in general databases include molecules
found in drug or environmental samples (see an overview of
NIST 2023 tandem mass spectral library in Figure 5a).

Mass spectral databases provide data collected with a variety
of mass spectrometric techniques. As can be seen in Table 1,
some databases focus on only one technique, such as LC-
MS/MS,[101,104,105,108,111–113,116,118] or GC-MS,[100,107,117] while oth-
ers provide data from two or more techniques.[99,102,103,106,109,110]

The most common technique is LC-MS/MS mass spectrometry
followed by GC-MS. For example, the MassBank of North Amer-
ica contains approximately 30 times fewer MS1 spectra (22 500)
than tandem mass spectra (including all MSn) (May, 2023). As

expected, these most common mass spectrometric techniques
found in mass spectral databases are those that facilitate com-
pound identification (see Section 3).

The number of compounds in the mass spectral databases
of Table 1 varies considerably, although a direct comparison of
the database size is complicated by the non-standardized way
in which the size is reported (e.g., number of ions, number of
unique compounds, or number of spectra). The reported data
volume of mass spectral libraries either increases continuously
or with new versions. The data volumes listed in Table 1 reflect
the state in August 2023. LipidSearch by Thermofisher is the
largest mass spectral database with spectra for over 1.7 million
lipid ions. Massbank of North America is the largest open access
database with spectra for over 650 000 compounds. The smallest
database reports spectra for only 200 compounds.[109] The me-
dian size of all databases reported in Table 1 is 26 485 (average
> 290 000). However, the databases overlap in terms of the com-
pounds they cover.[119] The total amount of compounds offered
by all databases together is therefore likely less than the sum of
their individual compound counts.

Synthetic (i.e., computational) mass spectra have been im-
portant for creating large mass spectral databases. Table 1
also lists mass spectral libraries with computationally pre-
dicted (so called in silico) tandem mass spectra or GC-MS
spectra.[101,103,106,108,111,116] For example, LipidBlast is a purely
computational database, which also provides a tool for users to
build their own tandem mass spectrometry database.[108] The mo-
tivation for generating computational databases, and sometimes
combining them with experimental ones, is the need to accel-
erate data collection. The large number of predicted mass spec-
tra can greatly increase the average mass spectral database size.
For example, HMDB contains experimental LC-MS/MS spectra
for approximately 4000 compounds, but computational spectra
for more than 200 000 compounds. The quality and information
content of in silico spectra is, however, still a subject of debate.

The retention time provides useful additional information and
is often enough for correct compound annotation in LC- and GC-
mass spectrometry. However, for certain isomeric compounds,
even the simple chromatographic separation does not provide
a positive compound identification and further separation can
be necessary.[120] Retention times in GC-MS are collected in
MassBanks,[102,103,121] GMD,[100] and NIST23,[110] among others.
In addition, computationally predicted retention times are sup-
plied in, for example, HMDB.[106] However, retention times tend
to vary significantly between laboratories, which hampers their
utility for compound identification. Machine learning techniques
can help in alleviating this problem (see Section 5).

Vinaixa and colleagues have reviewed features of mass spec-
tral databases in 2016.[119] They identified beneficial features such
as open access, downloadable, large size, curation, data from
different platforms, functionality to merge spectra, inclusion of
chemical standards, and addition of unknown compounds. On
the adverse side, they list commercial licenses, lack of curation
and spectrum information, limited sample sources, only nega-
tive polarity mode, or only computational data. The review also
surmises that there might be a trade-off between too many and
too few instrument types as well as collision energies. Following
Vinaixa et al., we summarize some features of the mass spectral
databases in Tables 1 and 2.

Adv. Sci. 2023, 2306235 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2306235 (7 of 17)
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Table 2. Features of the mass spectrometry databases. Open access, partial or full free access to mass spectral data; Data upload, users can contribute
with data; Comp. data, contains computationally (in silico) generated mass spectra; Exp. data, experimental mass spectrometry data; collects unknowns,
collects and adds unknown spectral queries; machine learning tools, has associated machine learning tools.

Open
access

Data
upload

Computational
data

Experimental
data

Collects
unknowns

Machine
learning

tools

Global Natural Products Social Molecular Networking (GNPS) ✓ ✓ ✓ ✓ ✓

Golm Metabolome Database ✓a) b) ✓ ✓ ✓

Human Metabolome Database (HMDB), v5 ✓ ✓ ✓ ✓ ✓

LipidBank ✓ ✓

LipidBlast ✓ ✓c) ✓

Lipid Maps Structure Database (LMSD) ✓ ✓ ✓ ✓

MaConDa, v1 ✓ ✓ ✓

MassBank (EU), v2023.09 ✓ ✓ ✓ ✓d)

MassBank of North America (MoNA) ✓ ✓ ✓ ✓

Advanced Mass Spectral Database (mzCloud) ✓ ✓

RIKEN tandem mass spectral database (ReSpect) for
phytochemicals

✓ ✓

Maurer/Wissenbach/Weber LC-MSn Library of Drugs,
Poisons, and their Metabolites, (2nd edition)

✓

Metlin Gen2 (Mass consortium) ✓

NIST Tandem and Electron Ionization Mass spectral library,
2023 release

✓

LipidSearch (Thermofisher) ✓ ✓

Wiley Registry of Mass Spectral Data 2023 ✓

Wiley Registry of Tandem Mass Spectral Data—MS for ID ✓

a)For academic and non-commercial use; b)Download page contains non-redundant mass spectra that were calculated from available multiple replicate spectra; c)Provides
a tool to make your own database with computational data; d)Stores spectra of compounds tentatively identified.

Mass spectrometry data pipelines and infrastructures are im-
portant to further grow mass spectral databases and to facil-
itate data management, curation, and reproducibility.[122] For
example, Pedrioli and colleagues developed the open, vendor-
independent data representation mzXML in 2004, which enables
cross-platform data analysis and management.[123] In addition,
a plethora of freely available software has been developed to
facilitate mass spectrometry data processing and upload, such
as OpenMS,[124] TidyMass,[125] XCMS,[126,127] metaboscape,[128]

progenesis,[129] mztab-m,[130] mzMine,[131] and MS-DIAL.[132]

Furthermore, the GNPS database offers a feature-based molecu-
lar networking tool, which connects feature processing to molec-
ular network modeling.[133]

Another important data management feature mitigates prove-
nance variability. In LC-MS/MS mass spectrometry (as in other
soft ionization techniques), data collected at different experimen-
tal conditions can vary in appearance. To mitigate such spectral
variability, certain database providers have developed the concept
of spectral trees[114] and merged spectra[121] that combine spectra
collected under different conditions for the same analyte.

5. Compound Identification: Approaches and
Software

Compound identification is the primary purpose of mass spectral
databases. Traditionally, compounds were identified by searching
libraries or databases for matches. With the emergence of digi-

tal mass spectral databases, more sophisticated approaches were
developed, such as in silico fragmentation,[134–138] fragmentation
trees,[125,139–141] and machine learning approaches.[139,142–145]

In the traditional library search, the measured mass spectrum
is compared to all spectra in a mass spectral database. The com-
pound is identified (be it correctly or not) as the one with the most
similar mass spectrum, out of those in the database. A mass spec-
tral library search is inherently limited by the size of the database,
which typically is some orders of magnitude smaller than the tar-
get compound space.[146]

State-of-the art compound identification methods also
use database information but go significantly beyond library
searches. Classical rule-based in silico fragmentation methods
rely on a pre-defined set of chemical bond fragmentation rules to
predict mass spectra,[146] while combinatorial in silico fragmen-
tation methods search all possible fragmentation paths.[134–137]

During compound identification, spectra predictions are made
for all entries in a compound database and compared to the mea-
sured spectrum to find the best match. In contrast to traditional
mass spectral library searches, in silico fragmentation methods
search through compound databases (e.g., PubChem) and not
through mass spectral libraries. Compound databases cover a
larger portion of chemical space than mass spectral databases
and are thus less limited in content and size. Rule-based in silico
fragmentation methods are limited by the available fragmenta-
tion models that rely on heuristic bond energies (measured or
estimated), while combinatorial methods generally need to limit

Adv. Sci. 2023, 2306235 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2306235 (8 of 17)

 21983844, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202306235 by T

am
pere U

niversitaet Foundation, W
iley O

nline L
ibrary on [09/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

Figure 6. Schematic of the operating principle of most machine learning
based compound identification tools. A machine learning model learns to
map a mass spectrum to a feature space, here represented by a molec-
ular fingerprint vector. In a second step, the similarity is scored between
the predicted fingerprint and the molecular fingerprints of a compound
database. ML, machine learning; MS/MS, tandem mass spectrometry.

the amount of fragmentation allowed by the model. In a similar
vein, fragmentation tree methods find the optimal fragmentation
tree that matches a recorded spectrum. Fragmentation trees are
used for de novo molecular formula annotation through Gibbs
sampling and Bayesian statistics.[141,147] In in silico fragmenta-
tion and fragmentation tree methods, machine learning is not
necessarily a component but can be included (e.g., competitive
fragmentation modeling [CFM] method).[136–138]

The third category of compound identification algorithms
is referred to as machine learning approaches, which are
emerging as powerful property and structure inference tools
in spectrometry.[148] Figure 6 illustrates the working prin-
ciple of most compound identification machine learning
algorithms.[139,142–145] In the first step, a mass spectrum is
mapped to a feature space represented by a so-called finger-
print. A fingerprint is a vector that encodes the presence or
absence of certain molecular features or their counts. Molec-
ular fingerprints can be calculated in different ways from a
molecular representation, like a 2D molecular geometry (e.g.,
refs. [149, 150]). The mapping from spectra to molecular finger-
prints requires a reference dataset of spectrum–molecule pairs.
Supervised machine learning algorithms are then trained to
assign fingerprints to spectra. Examples include kernel meth-
ods, such as support vector machines,[142] vector valued ker-
nel ridge regression,[143,151,152] and multiple kernel learning sup-
port vector machines,[80,125,139,144] or a combination of deep learn-
ing and multiple kernel learning.[145] In the second step, the
fingerprint vector is compared to the molecular fingerprints
of compounds in compound databases. Moreover, compounds
not present in any database can be annotated through hybrid
searches.[110,153–155] Additional information channels such as LC
retention times,[154,156–159] pairwise retention orders[160] or reten-
tion indices[154,156–159] (both relating to the retention order of
compounds from LC), or collision cross sections[161] can fur-
ther improve the identification success. For retention time data,
the heterogeneity of data across different laboratories is a hin-

drance because the retention times depend on the configura-
tion of the chromatograph. Machine learning techniques have
been developed to standardize retention times across different
laboratories[162] and learn from the relative retention times of
molecules,[163,164] which are known to be more invariant across
laboratories than absolute retention times.[160]

Open access mass spectral databases containing high-quality
reference mass spectra have been essential for the develop-
ment of machine learning-based compound identification. For
example, FingerID,[142] IOKR,[143] Adaptive,[145] CSI:FingerID
1.0,[139] and CSI:FingerID 1.1[80] were all trained using different
sets of compounds from different libraries (MassBank, GNPS,
MassHunter Forensics/Toxicology PCDL library [Agilent Tech-
nologies, Inc.], and NIST17), with sizes ranging from approxi-
mately 1200 to 16 083 compounds. The increase in compound
identification accuracy during the past decade can largely be at-
tributed to the growth of the spectral databases. In these exam-
ples, Agilent Technologies, Inc. and the NIST mass spectral li-
brary are the only commercial datasets.

In summary, a variety of approaches and software are now
available for compound identification. Open access mass spec-
tral databases have been integral to the development of machine
learning approaches and have facilitated the emergence of data-
driven mass spectrometry in metabolomics. We will review in the
next section how this insight, concepts, tools, and infrastructures
can be transferred to atmospheric science.

6. Toward Data-Driven Compound Identification in
Atmospheric Mass Spectrometry

In principle, all compound identification approaches we re-
viewed in this perspective could be directly used in atmospheric
science. Suitable training or reference data, however, might be
a limiting factor. The identification success rate would strongly
depend on the number of atmospheric compounds in available
mass spectral databases, or at least on the similarity between
these compounds and those in the databases. Furthermore, the
preferred mass spectrometric techniques in atmospheric science
may differ from those prevalent in current databases. While com-
pound identification algorithms may be able to extrapolate to the
chemical space of atmospheric compounds, such generalization
would be algorithm dependent and likely incur large uncertain-
ties. We will address these points and propose an action plan
to improve data-driven compound identification in atmospheric
science. We start off by highlighting general challenges faced
in the adoption of mass spectral databases for data-driven com-
pound identification.

6.1. Data Heterogeneity in Mass Spectrometry Databases

The content coverage of current mass spectrometry databases
is heterogeneous in terms of compounds, instruments, and ex-
perimental procedures. Tool and method developers, therefore,
face the challenge of balancing the available data volume, more
of which is beneficial for, for example, machine learning meth-
ods, against the increased effort of handling the heterogeneity
appropriately. Another challenge is the aforementioned coverage
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overlap, which could introduce biases in data-driven tools de-
rived from more than one database. The current extent of this
overlap is, unfortunately, not known, since the last investigation
by Vinaixa et al. dates back to 2016.[119] The heterogeneity of
available mass spectrometry techniques (see Figure 5b) presents
a further challenge but also an opportunity. The characteristics
of spectra produced by different mass spectrometry techniques
differ, which necessitates dedicated tool and method develop-
ment. In the long run, however, this technique diversity could be
advantageous since different spectrometries could complement
each other synergistically. With transfer learning, multivariate
machine learning models could be trained to convert between
techniques or operate directly on heterogeneous datasets.

In summary, in atmospheric science, much work is still re-
quired to assess the utility of existing databases, determine which
training data to include in new models, and to establish initial
identification tools for atmospherically relevant compounds. Be-
low, we provide a first assessment of the relevance of current
mass spectral libraries for data-driven atmospheric mass spec-
trometry. Investments in improved compound identification for
atmospheric science can be justified by the progress achieved in
other application domains, such as metabolomics, which have
been able to collect experimental data for tens of thousands of
compounds (see Section 4).

6.2. Compound Coverage of Atmospheric Molecules

As alluded to in Section 4, atmospheric compounds are currently
under-represented in mass spectral databases. Compound iden-
tification approaches that were developed for specific database
compounds will almost certainly perform worse for atmospheric
compounds than for compound classes in the databases. This is
true for traditional library searches, which can only identify struc-
tures stored in a mass spectral database, as well as for algorithms
built with database compounds and spectra.

How well compound identification algorithms perform for at-
mospheric compounds depends on the overlap of atmospheric
compound space with available mass spectral databases. Figure 7
shows a first visualization of this overlap. The figure presents
a t-stochastic neighborhood embedding (t-SNE) analysis for
three atmospheric molecular datasets (here referred to as
Gecko,[165,166] Wang,[167] and Quinones[168,169]) and two datasets
of drug and metabolite compounds, representative of those
in mass spectral databases (nablaDFT[170,171] and Massbank of
North America[103]). t-SNE clustered the compounds according to
the similarity of their (molecular) topological fingerprints.[149,150]

Figure 7 shows that the atmospheric compounds cluster closer to-
gether and are therefore more similar. Their clusters do, however,
not overlap strongly, which indicates that these three datasets
cover different parts of atmospheric compound space. The drug
and metabolite compounds form their own clusters, most no-
table is the dense ring of MassBank molecules surrounding
the clusters of the other datasets. The two drug and metabo-
lite datasets share some similarity in the inside of the ring, but
only the MassBank has some small overlap with the three at-
mospheric datasets. The implications of Figure 7 are: i) most
atmospheric compound classes are absent from mass spectral

Figure 7. Similarity between molecular datasets containing drug
molecules (nablaDFT), metabolites (Massbank of North America), and
atmospheric molecules (Gecko, Wang, and quinones) shown through t-
SNE clustering. The molecules were compared based on their topological
fingerprint.

databases; ii) most atmospheric compounds therefore belong to
a chemical space unknown by current compound identification
algorithms; iii) the performance of compound identification al-
gorithms in atmospheric science is unpredictable. Three tradi-
tional library searches report identification rates of only 2–35%
for atmospheric molecules,[68–70] providing further evidence for
our three suppositions.

The fact that atmospheric compounds differ from those in
available mass spectral databases implies that compound iden-
tification algorithms would have to be able to extrapolate to be
applicable in atmospheric science in the short term. Yet, classical
rule-based in silico fragmentation algorithms generalize poorly
due to built-in rule-sets for chemical bond fragmentation,[146]

while in silico fragmentation methods based on combinatorial
search (e.g., MetFrag, CFM-ID) are expected to do slightly bet-
ter. On the other hand, generalization is a common challenge
for machine learning models in chemistry.[172] For example, a
machine learning model is forced to generalize when it eval-
uates a new elemental composition,[173] molecular size,[174] or
functional group[175] that was not in the training data. Meth-
ods for quantifying uncertainty or confidence in a model’s pre-
diction have been developed through ensemble methods,[174,176]

Bayesian neural networks,[177] Gaussian process regression,[178]

support vector machines,[179] and Monte Carlo dropout.[180] In
metabolomics, it has been shown that machine learning methods
predicting molecular fingerprints from spectra out-perform in
silico fragmentation approaches.[80,164] However, it is not known
if this also holds true in atmospheric science, where the coverage
of the reference spectra of the relevant chemical space is signifi-
cantly smaller.
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Until atmospheric data are available in large enough quan-
tities in mass spectral databases, it would seem prudent to not
develop new compound identification methods or workflows
immediately for atmospheric science. Machine learning-based
approaches, for example, could instead evolve from existing
methods developed in other application domains by means
of transfer learning. For mass spectrometric techniques com-
monly found in mass spectral databases, such as tandem mass
spectrometry or EI-MS, transfer learning would be particularly
well-suited, as already developed models would likely only
have to be retrained on atmospheric data. However, for under-
represented techniques such as Api-CIMS, transfer learning
would not be applicable and new approaches would have to be
developed. Api-CIMS applications are currently flourishing in
atmospheric science (see Section 2)[34,35,50,51,55,74,76,77,181] but are
practically absent from current databases (e.g., less than 0.1% of
the European MassBank[102] data, see Figure 5b). If atmospheric
science is moving toward data-driven compound identification,
this severe lack of data needs to be addressed. In the following,
we outline an action plan to fill this data vacuum.

6.3. Action Plan

In this perspective, we reviewed the current challenges of im-
plementing data-driven methods for mass spectrometry in atmo-
spheric science. We next present practical strategies to overcome
the identified barriers. Our recommendations are summarized
in Figure 8 and expanded on in the following.

6.3.1. A1—Relevant Data

A paradigm shift toward data-driven mass spectrometry in at-
mospheric science could begin with access to relevant data (Sec-
tion 6). For atmospheric mass spectrometry, reference spectra
would have to be collected for the compounds taking part in atmo-
spheric chemistry, including the atmospheric gas-phase, small
clusters, and nanoparticles (see Section 2). The collection could
begin with representative compounds and expand from there.
Finding such relevant molecules is no simple feat because the
chemical space of atmospheric compounds is large and largely
uncharted. We suggest to use data-driven approaches, possibly
based on the volatility basis set description of atmospheric com-
pound space (see Section 1), to ensure data collection of com-
pounds with varying properties of interest, such as, for exam-
ple, volatility and O:C ratio. Data collection should furthermore
include the multiple mass spectrometry techniques used in at-
mospheric science for compatibility with existing databases and
compound identification tools, as well as for a holistic descrip-
tion of atmospheric chemistry. It is particularly important to in-
clude presently under-represented techniques (e.g., Api-CIMS, as
addressed in Section 6.2) to improve their data coverage in the
databases. The methodology portfolio could be augmented with
synthetic data generated with computational tools as discussed
further in A4 below. For example, computational studies in atmo-
spheric chemistry have shown that the binding energy between
molecules and reagent ions can be used to predict the experimen-
tally measured CIMS sensitivity (e.g., refs. [72, 78, 182]).

Figure 8. Our proposed action plan is designed to overcome the chal-
lenges hindering a successful implementation of data-driven mass spec-
trometry in atmospheric science. The plan contains five steps A1–A5.

6.3.2. A2—Standardization

To utilize the collected data in atmospheric science to its full
extent, standards and standardized practices for data collec-
tion, curation, management, and sharing need to be agreed on
and implemented. For certain mass spectrometric techniques
(e.g., EI-MS and MS/MS), such practices have already been
developed in other fields (e.g., metabolomics, see Section 4) to
ensure data standardization and reproducibility (e.g., platform-
independent data formats, data analysis pipelines, and spectral
trees or merged spectra). They could be directly applied to
atmospheric mass spectral data and should be embraced by
atmospheric scientists. Conversely, for techniques currently
under-represented in mass spectral databases (e.g., Api-CIMS),
appropriate standardization practices still need to be developed.
Such practices also need to consider the specific use cases in
atmospheric science (e.g., the lack of sample pre-treatment and
separation by chromatography). For example, Api-CIMS data
should be easy to standardize, because the number of different
Api-CIMS instruments used in the field has stayed relatively
small, with a dominant fraction of the data being acquired by
similar methods, such as chemical ionization atmospheric inter-
face time-of-flight (CI-Api-ToF) instrumentation, or the recently
introduced orbitrap CIMS systems.[54,58,181,183,184] For Api-CIMS,
the standardization of ion production and gas-phase sample
introduction is crucial for ensuring fully reproducible measure-
ments. The signal depends on specific ion–molecule reactions
and interaction time. Gas-phase chemical ionization is typically
linear and scalable, allowing for a wide range of ion concentra-
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tions for increased sensitivity. Normalizing measured signals
with the number of charge carriers (i.e., reagent ions) is essential
in Api-CIMS analysis to account for differences in the initial ion
pool. Digital CI-Api-ToF twins can aid in the standardization.[185]

6.3.3. A3—Infrastructure

Data collection and sharing require dedicated infrastructures. En
route toward data-driven science, atmospheric science could pro-
ceed in two different ways: i) establish dedicated mass spectral
databases for atmospheric science data that are operated by the
atmospheric science community, or ii) contribute atmospheric
science data to existing mass spectral databases. A dedicated
database in option (i) offers better control over the data (for ex-
ample, data curation, labeling, and quality control) but requires
concerted actions of key stakeholders and sustained funding.[186]

Adopting existing mass spectral databases as in option (ii) is
therefore easier in the short term. Contributing to an existing, in-
terdisciplinary mass spectral base promotes data sharing with the
broader mass spectrometry community, which expands the user
base. We recommend a third option, which is an amalgamation
of the two approaches above: curating dedicated databases that
can be local to research groups or consortia, but are regularly
uploaded and synchronized with large open access databases
(such as the MassBanks or GNPS). Dedicated databases could,
for example, be linked to collections of reference spectra of at-
mospheric compounds (e.g., refs. [25–28]). Such collections need
to grow to provide access to curated high-quality training data for
the data-driven method development. Meanwhile, data from field
campaign repositories containing data of unknown compounds
can be shared for compound identification. In addition, commu-
nity datasets, such as refs. [68, 166, 187, 188], could complement
data infrastructures. They offer distinct advantages such as hav-
ing been purposefully curated with design criteria like similarity
and balance in mind.

6.3.4. A4—Dedicated Machine Learning Methods

In Sections 5 and 6.2, we reviewed the potential and challenges of
available machine learning-based compound identification tools
in atmospheric science and observed that the identification per-
formance depends strongly on the availability of relevant data
(see A1). For tandem and EI-mass spectrometry, data are avail-
able for other compounds, and we propose to begin applying
existing machine learning techniques to atmospheric data and
to then refine the models accordingly. Over time, such models
could be improved through transfer-learning, possibly coupled
to active learning schemes, as new atmospheric data become
available (Section 6.2). For mass spectrometric techniques, which
lack existing machine learning models, but are used for com-
pound identification in atmospheric science (e.g., MION-CIMS),
new, dedicated models need to be developed. Figure 9 outlines
our proposal for a machine learning-based compound identifica-
tion scheme for MION-CIMS. The CIMS sensitivity for different
reagent ions acts as the molecule-specific MION-CIMS finger-
print. The machine learning model learns how to map the MION-
CIMS fingerprint to a molecular representation. The develop-
ment of such a new machine learning-based model could make

Figure 9. A proposed workflow for machine learning based compound
identification with MION-CIMS. The model learns how to map the
molecule specific MION-CIMS fingerprint (set of CIMS sensitivity values
for different reagent ions) to a molecular representation.

use of computational mass spectral databases until experimen-
tal counterparts become available (see A1). To that end, machine
learning could also assist in building computational databases by
expediting calculations of the binding energies used to predict
CIMS sensitivity.

6.3.5. A5—Community Endorsement

Wide-spread adoption of standardized data practices requires a
community wide effort. Together, the atmospheric science com-
munity needs to commit to open data sharing and publish-
ing. The data should preferably be shared through open access
databases, or with FAIR sharing rights,[189] if published with
commercial parties. Adoption of community-wide data practices
can be encouraged through education in data literacy and ma-
chine learning, for example, in summer schools, webinars, or
workshops. Further dissemination at atmospheric science con-
ferences and through research networks would create awareness
and rally the community to endorse the new paradigm.

7. Take-Home Message

In this perspective, we reviewed the current state and potential for
data-driven compound identification in atmospheric mass spec-
trometry. Although developments of experimental techniques
now enable monitoring and tracking of atmospheric chemical
processes, an accurate method for high-throughput compound
identification is still missing. Community-wide efforts to im-
prove data standardization and collection can support the tran-
sition toward reliable identification of atmospheric compounds
with mass spectrometry. Integration of data-driven approaches,
such as machine learning, into mass spectrometric data analy-
sis will facilitate knowledge gain. Concomitantly, a true paradigm
change requires a community endorsement and a combined ef-
fort to collect, curate, and share data in a standardized manner.
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Although the development of data-driven approaches requires
an initial time and resource investment, data-driven approaches
promise to be more efficient than the manual processing cur-
rently employed. Successful examples in parallel fields can be
used to guide and inform this shift toward a digital era in atmo-
spheric mass spectrometry.
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