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Abstract
In this paper we study fundamental solutions for the Laplace-Beltrami operator
£ 0
Aafzxr:l_2<Af_ﬁ f>,
Xn 0Xy,
defined on smooth enough functions in R’} = {(x1,...,x,) € R" : x, > 0}. We

represent explicit formulas for the fundamental solutions. Moreover, we establish
fundamental solutions using Jacobi polynomials whenn = 3,5,7,....

1 Introduction

In this paper, fundamental solutions of the Laplace—Beltrami operator of the hyper-
bolic upper half-space are considered. This is a continuation of the previous research
by the authors in [6, 8—11], where we have looked at different special cases. In [12] the
first author and Vuojamo found the fundamental solution in terms of associate Legen-
dre functions of the second kind, but explicit representations in terms of elementary
functions of kernels were not presented.
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The theory is closely connected to to the axially symmetric potential theory created
by Weinstein [20]. Heinz Leutwiler [14] initiated the research of Laplace—Beltrami
equations connected to the differential equation of Weinstein. The general theory was
also researched by Ryan et al. [4] and it has also connections to research of iterated
Dirac operators of Ryan [19] (see [7]). It has interesting connections to hyperbolic
Brownian motion, see e.g. [5].

The Laplace—Beltrami operator is a geometric operator, i.e. its form depends on the
metric of the space. In this paper we consider the conformal metric of the hyperbolic
upper half-space. It is generally interesting because the operator is with non-constant
coefficients and thus considerably more difficult to handle than the constant coefficient
cases. In this paper, we point out that the parity of the treated space has a fundamental
effect on the shape of the fundamental solutions. We also state that in odd dimen-
sions the basic solution can be presented using Jacobian polynomials. There is no
corresponding construction in the even case. We will return to this case in the future.

The structure of the article is as follows:

e In Sect. 2, the necessary preliminaries and definitions are given.

e In Sect. 3, we consider fundamental solutions. Some examples are given.

e In Sect. 4, we simplify fundamental solutions in odd spaces using Jacobi
polynomials and compute examples.

2 Conformal Hyperbolic Upper-Half Space and Laplace-Beltrami
Operators

Consider the hyperbolic upper half-space
R = {(x1,...,x,) € R" : x,, > 0},
equipped with the metric

_dx12+---+dx,21

2
X

8H

The geometry of the hyperbolic space (R'}, gg) is well known and studied. The
geodesics are circular arcs perpendicular to the hyperplane x,, = 0, that is half-circles
whose origin is on x, = 0, and straight vertical lines parallel to the x,-axis.

The distance between two points x, y € R’} with respect to the metric gy is (see
e.g. Theorem 4.6.1 in [18])

dy(x,y) = arcosh A(x, y)

where s
lx — yl
Ax,y) =1+ —— (D
2XnYn
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is a symmetric invariant, where |x|? = x12 4+ 4 x,% is the usual Euclidean quadratic
form.
For n > 2 we define the conformal metric on the upper-half space by

where o € R. One reason to consider the preceding conformal metric is the simple
form of the associated Laplace—Beltrami operator

20

Baf =i (ar =220,

X, 0Xp,

(@)

where A = % + .4+ 88;2 is the Euclidean Laplacian. When o« = n — 2, we obtain

the hyperbolic Laplace operator

af
x,

Anypf = xIAf — (n —2) xp

If @ C R’} is open, a twice continuously differentiable function f : Q& — R is called
a-hyperbolic harmonic if

af

x,%Af—axna =0.

Xn

If « = n — 2, we call an a-hyperbolic harmonic function just hyperbolic harmonic.
Heinz Leutwiler initiated the research of hyperbolic harmonic functions and their func-
tion theory in [15, 16]. It has been continued intensively by the first author, Leutwiler
and the second author and there is a book in preparation [8].

3 Fundamental Solution for A,

In this paper, we consider fundamental solutions of the operator A,. A fundamental
solution is a function H, ,(x, y) that satisfies the equation

AaHot,n( LY = wn—15(y),

in the distribution sense, where § is the usual Dirac delta distribution at y € R’ . In
above the w,,_| is the surface area of the unit ball $"~! ¢ R”. The necessary condition
is, that Hy , is singular at the diagonal x = y.

The fundamental solutions are presented in terms of associated Legendre functions
of the second kind. Associated Legendre functions are defined by (see e.g. 8.703 in
(13D
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AT+ p+ 1)@ - D5

Ql(z) = Rk
v+l puptip (,0 + E)

2F

IR R S D BN N
_v y 7_ y _; _;_ b
PV TR T VTR T VTS

where I is the usual gamma function and ; F} is the hypergeometric function defined
with power series representation (see e.g. [1, 2, 13])

e ¢]

2F1(a,bic;) =)

m=0

b
(a)m ( )m " 3)
() m!
for |z| < 1,and a, b, c € C with ¢ # 0, —1, =2, .. .. In the hypergeometric function
the Pochammer symbol is defined by

@ _Tlg+m)
Dn="rg T

qgq+1)--- (g +(m—1)). “)
Hence the hypergometric function terminates if a or b is a negative integer.

A reader should observe that the preceding definition for a associated Legendre
function is up to the constant ¢’V the usual one, see e.g. in [13].

In [5] the following theorem is verified.

Theorem 3.1 Let x and y be distinct elements in R, and a € R. Denote r, =
dy (x,y). Define

o .
_ 7 ifa =0,
P = { —%, ifa < 0.
(a) Ifn € Nandn > 3, the fundamental solution is

at2—n a42-n

X Y
Hyp(x,y) = nz,,_g—n

n_z n
7T (%)
at+2—n  a42—n 2
: —n
= Xn : Yn > sinh Th8py.n (rn),

(e =1) 7 0,7 Gxo )

where

n—4—2py

8oun rn) =C (@, n) A" 2 2F
<2pa—n—|—4 200 —n+6 2p4 +3 1 )
4 ’ 4 ’ 2 cosh?ry,

and
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(b) If n = 2, the fundamental solution is
Ho2 (x5, 3) = i %t Qp, O(x, 1))
= x,7 v arcoth (A(x, ¥)) gp, (A(x,¥)),
where

0p, ) 20, ()
arcoth (1) ln(Hl)

8 0u ) =

We can compute the first explicit example.

Example 3.2 Consider the case « = 0. Using the integral representation 8.712 in [13],
we have

R FTo+u+)R2-17 ! ol 2\?
" _ _ n=p _
o8 = P T (o1 1) /_I(A ) (1 t) dr,

that is,

. n 2 _ _
QOTZ(X)= (Z)Q Lk /((k—t)‘*—ldz

F(%)(Az—l)T
n—2

((x )= oo+ )**)

Applying (1), we conclude

2—n 2—n
255" 2on 2o T
Hoa (5:9) = fyin’ ((2-1) 07 x(x.w)
2
_ 1
- n=2
(n—2)22x2 2 (=1
1
. L
(}1—2)22x2 2 A+ 1)

where y = (y1,..., Yn_1, —Vn)-

The previous example tells us that fundamental solutions should always be thought
of as unique in the sense that some function of the operator’s kernel can be added to
them. This feature can be utilized when searching for Green’s functions, in which case
the added function takes care of the needed boundary values.
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The second example shows that the fundamental solution may be also product of
known harmonic fundamental solutions.

Example 3.3 If « =2 — n and n > 3 we use the formula (see e.g. [13, 3.666])

To+u+1)EE@-D"1

1 _
Qo) = 20T (p + 1)

T
/ (A +cos)* P~V (sin)>* T dr  (5)
0

and the Legendre dublication formula, and obtain

2—n
272 2= p2
Ha—nn (x.5) B (12 =1) T 0L Gy
2

T
T(n—2)x2"y2" (22 1)ZT sin" 3 tdt
22 (3)T (23
B r(n—z)r(j)
2 (BT () b=y = 5
1

SIS

T -2y =3
Example 3.4 If n =2 and y € R2, then
Hop (x,y) =Infx =3 —In|x —y|.
Indeed, if n = 2 and o = 0, we compute by virtue of 8.821 (3) in [13]

In(A+1) —In(x — 1)

Hop (x,y) = Q)(A (x, ) = .

3.1 Fundamental a-Hyperbolic Harmonic Functions Inductively

In the theory of harmonic functions, if you know the fundamental harmonic functions
in R? and R3, you may obtain the formula for fundamental harmonic functions in all
dimensions simply by differentiating with respect to the » which is the distance from
the origin. We are aiming to give a similar result for a-hyperbolic harmonic functions,
but the formula depends on the parity of the space.

We recall an important tool.

Lemma3.5 [6] Let Q be an open set contained in R'|. A function f : @ — R
n—a—2

is a-hyperbolic harmonic if and only if the function g (x) = x, > f(x) is the

eigenfunction of the hyperbolic Laplace operator corresponding to the eigenvalue

Yna = 3 ((@+ D? = (n — 1)?), that is

g 1
x%Ag—(n—Z)xnax ZZ
n

(((x + )%= (n— 1)2> g (6)
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We are looking for eigenfunctions of the hyperbolic Laplace operator depending
only on XA. Then the hyperbolic Laplace operator has the following representation.

Proposition 3.6 [9] Lera € R If f : R", — R is twice continuously differentiable
and depending only on A = A (x, a) then

Ay f () = (A2 =1) S G +nif ().

We need to reformulate the properties of associated Legendre functions for our used
notations

Lemma3.7 Ifp > —%, nw=>0z€C and|z| > 1, then

EToA ~ ~
(2 =1) 2222 =+ 10 @y 0 - 0+ D20 @,
~02 =DM @ =(p—pu+ D0 @~ (p+u+ DAOEG).
Proof Since

Q4 (2) = e MmOl (2),

’Q\Z"rl (Z) — e—(ll.-l—l)i:r[ Qg-‘rl (Z) — _e—pLi.T[ Qg-l—l (Z) ,

we obtain the result from the corresponding formulas for the associated Legendre
functions 8.732 and 8.734 given in [13]. O

Applying the previous lemma and the induction principle, we deduce the following
property.

Theorem 3.8 Let p > —% and u > 0. If m € N, then

I3
2

_ pm—1 amfl ()\.2 _ 1)_

Ak
2 2 Am—1+ _ m—1 QP )
(2-1) Qr 1t (1) = (1) T ,

where A > 1.

Proof We first prove the assertion for m = 1 and for any real T > 0. Comparing the
left side of identities of the previous corollary, we obtain

9307 (A R ~
(Az _ 1) 30, ™ _ —(A? - 1)%Qf,+1 M)+ 10, V).

Dividing by (A> — 1)% both sides of the equality, we compute further

1905 (1) 1A ()
oA (A2 - 1)% ’

—0rM =t -1)
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Using the preceding formula, we compute

0 (}‘2 - 1)_% QZ () 2 -5 Ar+1
- ——(2-1) T oo, )

which implies that the resulthold form = 1 and forall ¢ > 0. The induction hypothesis
is that

Qs

(2=1)"F oy = -1

s (A2 _ 1)_% Qg )
OAS

holds for some s € N and all u© > 0. Applying (7) for T = u + s, we obtain

st 2 —BE St
- ~ aI(Ar=1)" 0")
22— 1) 2 uts+1l oy — 4
( % *) N

Applying the induction hypothesis, we conclude

IEEF'N

s+l R as+l ()\2 _ 1)_7 QIL ()\)
2 2 +s+1 _ s+1 P

(2-1) T ot =1y T :

Consequetly, by the general induction principle the result holds for all m € N. O
The key tool is the results connecting different eigenvalues.

Proposition 3.9 Let 8 and y be real numbers. If f : 11,00 — R is four times
differentiable solution of the equation

(2=1) 7 G+ Brr ) =vF @)
then g (\) = f' (\) satisfies the equation
(2 =1)g" G+ (B+22g )=~ B
Proof We just compute

ye=vf 0= (2=1) fO W) +2f" )+ B B+ Brf" ()
= (A =1)g" )+ B+Drg M)+ g
completing the proof. O

Applying the previous proposition, it is relatively simple to verify the result.
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Theorem 3.10 Assume that B € {0, 1} andy € R. Ifs € Nand f : 11,00 — Ris
(s + 2) times differentiable solution of the equation

(2=1) "0+ Gy =v s
then the function g (\) = %) (1) satisfies the equation

" 4 o o . =0
<K2—1>g (W) + 25 + B) Ag <x>=m_§§)glmg i-jiﬁzl :

Proof The previous lemma implies that the result holds for s = 1. Assume that the
result holds for some s € N. Then the function 2 (A) = f () ()) satisfies the equation

2 " ’ _ (y—(G6—-Ds)g ifp=0
(x —1)h (A) + 25 + B) Mh (x)_{(y_sz)g s 1

Using the previous lemma we obtain that the function g (A) = 2’ (1) = f G+ ()
satisfies the equation

2 1 , _Jy—=G6-1Ds—-25)g ifp=0
(2 -1)g" M+ ee+D+pig <A>—{(y_sz_2S_1)g s

_{(y—(s+1)s)g ifg=0
“ly-6+D?Hg ifp=1"

Hence the result holds for s 4 1, completing the proof. O
Applying the previous result and Proposition 3.6, we obtain easily the general formulas.

Theorem 3.11 Let yy o = § (( + D)? — (n — 1)?) and o € R. Let f € C* (]1, 00[) .

(a) If f satisfies the differential equation

(=) 1+ s G =naf G
n—1
then the "5 :th derivative g (\) = f ( 2 ) (X) satisfies the differential equation
2

(ﬁ - 1) g" (V) +nrg’ (A) = Ynag (1)

forall oddn € N.
(b) If f satisfies the differential equation

(2 =1) 1" ) =v2uf @
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n
then the 5 :th derivative g (A) = f (2) (A) satisfies the equation
(32 =1)g" 60+ 2008’ 1) = Yanag ()

forall evenn € N.

Applying the previous theorem, we immediately deduce the fundamental solutions
depending on the parity of the space. We will denote Q,, := Qg and observe, that
they are usual Legendre functions.

Theorem 3.12 Letn € Nandn > 2.
(a) Ifn is even, then the fundamental a-hyperbolic harmonic function is given by

n—2 a+2—n a+2-n

=D'Txy 2y 2 0T 0, (0
27T (%) '

Hyn(x,a) =

and v o
Hy2 (x,y) = X7 yn Qp, (1)

() If n = 2m + 1 is odd, then the fundamental solution has the representation

|

o —n o —n 71 2 — 7

(_1)m—l x%y’% am (()\' - 1) N Q/%a ()L)>

Hyp (x,y) = n—2 m—1
271 (2) A

NS

and

a—1 a—1
5,7 el
Xn™ Yn~ €

sinh ry,

Th

HO{,3 (-x’ )’) =

Proof The first assertion follows from [13, 8.752 (4)].

H, ,y) = :
a2 (*.) JT sinh ry,
Assume next that n = 2m + 1. Applying Theorem 3.8 for u = % and

(r? )ZTQC,T » (2 —) O 0
2"7 rg)

27T (3)

—~
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B (_l)m—l gm—1 ()»2 _ 1)_% Qéﬂ )
2T () ot

where

1 - Pa+l r'n
()LZ _ 1) 1 @/%)a ) = M.

ﬁsinh I

O
For « = n — 2 the fundamental solution 4, was computed by Ahlfors [3, p.57]
1ot (1=
hy (x,y) = 512 J 1 ds
Tx=al
and in [9] it was proved by the authors that
o 1
hy (x,y) = / —dt. (8)
G

In order to verify that the equality of the fundamental solutions H,_» , and h, we
need a simple observation.

Lemma3.13 Ifp > —%, w=>0and A > 1, then

Cp+DA0EM) = (p+w) QbW =(p—pn+1) Qb 1)

and therefore

foranyn e Nandn > 2.

Proof Applying [13, 8.732 (2)], we deduce
Cp+DAQL ) =(p—pn+DO M) —(p+w) Q) ;)
Since
0 () =e MOl (2),
forall v > —% we obtain the assertion

Qp+DA0E ) —(p+mw) Oh_ W) =(p—pu+1) 0L ).
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2 2

Since p = "5= > 0, substituting u = 5 and p = , we obtain the final statement

(=120, () - (n—l)@% () =0.

Theorem3.14 Ifn € Nandn > 2, then

Hy2n (A (x,y)) =hp (x,y).

Proof We first prove the assertion for even n. Assume first that n = 2 and denote
A=A (x,a). Then

A © 1 1 1
H =Qo(\) = ——dt=-In(A+1)—-In(A—1).
0.2 (x,y) = Qo (1) A 7] FIn@+ D=5 -1)

If niseven and n > 2, applying [13, 8.752 (4), 8.824], we obtain

1 ) 2
n—2,n = V3 . -1 E
o2 ) = o (»-1)" 2.nm
_ - H'z TZQTZ()
27T (2) T
n— n—2

completing the proof using (8) in even case.
In odd case we first we note that

L1
VZ2-1)TE 0100 s
Hy3(x,y) = L= =cothry, — 1.

JT sinh ry,

The assertion holds for n = 3, since

[ee) 1 1 1 1— 2
/ —dt = —/ , 2s ds
Ax,y) (t2 _ ])7 2 % s
_ A+1+JA—1
) r—1 L+

A
=—14+ ——— =cothr, — 1.
A2 —1
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Assume that the result holds for odd n > 3, that is

1 -2 n2
Hyon ((x,0) = —— (32 =1) © 0,5 (i (x,a)
27 () :
Jowiti
= —dt.
Ax.a) (12 —1)2
Applying the differential formula (3.8) form = 1, u = % and p = 5, we obtain,
we obtain
2 0 =~ (2 1) 0 )
T e :
_n=2 .n=2
1 a(r-1"F 0,2

[N E]

By virtue of Lemma 3.13, we infer the identity

n=2

2 —~
, @) -1n—=2)0,

n=2 n—
2

0, W=@m—-1202 L (@)
2 2 2
Applying the induction hypothesis, we obtain further
1 2 - 57
(%)
) g
o n=-2(2-1)"% 0,2 ()
=(n—2)A/ —dt — — z
@)t 0
Hence we have
n—1 o 1
—Hy 2 (V) = —dt
502-1)"T 0% (@)
_(n—l)k 1 _ (n—2) A
n ()\2 _ 1)7 HZ%F (%) oA

Applying the partial integration, we deduce

00 00 2
e
ro(12-1)? (32 -1)? Eo(r2—1) 7
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o 1
:n/ —ndt
- )

+n/°° dt 3 A
A (tz_l)% (2-1)?

B

whicn by solving the formula for "n;l I — L __dr implies that

(-1 =

n—1 % 1 o0 dt A 1
/ ﬂdtz—/ o T [
noBi (12-1)2 (- 1)T (a2 -1y

Hence

e dt 2—n)A 1
—Ip n42 ()\) = _/ nt2 + ( ”) [
A (t2_1) 2 n ()\2_1)2

_n=2 _n=2
n—2) d(R2—1)" 7 Qé(z)

- n—1
n2 72T (%) A

n—2 _.n=2
0 ()»2 - 1)7T 0,2 @ _n
_ 7 _ (42 _ 457
I - (A 1) Q% @
—A(AZ— 1)_Z QZ%Z (2)
d(x2 - 1)*% QE )
= —A 2
A

Finally, using the induction hypothesis, we conclude

o dt 2—n)Ar 1
— Iy n42 A) = _/ P + n
ro(2=1)7 noo(2-1)2
_n=2 an=2
(11— 2% I —1)" 7 Qé(z)

n2"7Tr (4) o

© dt 2—-n)A 1
S - ﬂ
A (t2_1) 2 n ()\2_1)2

P 0 dt -
(n—2)x b (2-1)2
n IA
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__/”L
- A (IZ_I)%’

completing the proof. O

4 Connections to Jacobi Polynomials

Let v € R\(—N) and 8 € R, and n € N. The Jacobi polynomials of degree n is
defined in terms of hypergeometric functions by

(@ + Dy

PP (2) = o

1-z
2F1<—n,n+a+,3+l;oz+l; 5 ) 9)

for z € C. Jacobi polynomilas satisfy the following useful formula.

Proposition 4.1 (Rodrigues formula). Let z be real and n a non negative integer. The
Jacobi polynomials have the property

- atr d

n
(a,B) _
B @ =0 dz

((1— 2™ (1 +2)f ).

The second associated Legendre function is defined by

"
1 z+1\2 -z
Pl = — Fi{—vv+l—p — 10

v @ F(l—u)<z—1> ’ 1( nrT 2 ) 1o

converging |1 — z| < 2, where u € R\N. Let us first prove the following connection
between the second Legendre function and Jacobi polynomials.

Proposition4.2 [fa € R\(—N) and m € N, then

m! z—1 3
P,%(z) = P*= (7).
m @ = F i atm (z-l—l) w0 (@)

Proof We write

"
1 z—1\2 1—z
P')= —— | —— Fi|—v, 1; 1 ;
1 (2) F(l+u)<z+1> 2 1( v L4 — )

and

a a+1 1-z
Prfza’ a)(Z)Z(m—')szl <—m,m+1;a+1; 5 )
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Hence, we obtain

P (2) L (=1, RPN ek
=—|— —m,m+ 1, a; ——
m T Ay \zr1) ! 2

_ m! 1 z—1\2 ple— (o)
@+ 1D, TAd+a) \z+1 m

Using (4), we have

m! z—1 3
P, %z) = P> (7).
m &= et <z+1> m @

O

Hence, we can represent the fundamental solution using a Jacobi polynomial (see also

[17])

Theorem 4.3 Let x,y € R and denote ry, = dj (x,y). If n > 3 is an odd integer
then

ANn=2 — —(pa+%)r o
ijz (cosh(rp)) = \/g (n 3>!e . : (7 e ) (coth(rp)) .
2

2 J/sinh(ry)
and
a+2—n 0(+2 —n
ﬁ )x, 2 ~at D (pyty~(out )
Hypn (x,y) = ( S T o L >(coth<rh)).
2

N“

2
r(3) sinh"T (ry)
Proof Assume n > 3 is odd. The formula 8.739 in [13] is in our case

V7T (pa +5)
/2 sinh(ry)

and using the formula 8.2.1 from [1], we have

A2 ﬁr(pa+2

0,2 (cosh(ry)) = 2) P,T_'Z“‘% (coth(rp)) .
2

/2 sinh(rp,)

The using Proposition (4.2), we obtain

T 3) ()
M) F(ﬂa"‘%)

pa+’
coth(rp) — 1
coth(rp) +1

QaTz (cosh(rp)) = P T 3 (coth(rp))

Q?z (cosh(rp)) =

patz —~(pats)
P,,(_3 : D) (coth(rp)) .
2
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We compute

coth(ry) — 1 _ coshr, — sinh ry,
coth(rp) + 1 " coshry, + sinhry,

— e 2

9

that is

An=2 _3 _(pa"l‘%)rh a.l,_l,_( +1
0,2 (COSh(”h)):\/g (” )!e : Pfi B6tD) i),

2 J/sinh(rp) =
Hence
at2—n 0(+2 —n
\/E 3V x, 2y ~Pat 2 (gt~ (pat D)
Han (o) = 22 n) e P,Ls ) o).
27 r(%) sinh"Z" (r3,) p
We can write the Jacobi polynomials as follows.
Proposition 4.4 Ifo € R\(—N) and m € N, then
m m+]) 1 7 — 1 J
P @) =T(a+m+1 ( < )
@ ( )Z(m—])'l"(a+j+1) 2
and
" (’”ﬂ) 1 eI

(o, —ax) —
P9 (coth(ry)) = ['(a +m + I)Z — DI2IT(@+ j+ 1) sinh/ (rp)

Proof Using (9) we have

_ (@4 1), e (—m);m+1); (1-z\/
(a,—x) _ n J J
En @ == J;) @+1); ! < 2 )

and using (—m); = (=i (m - J + 1), we have

pl—a) oy — @+ D i (m—j+1);m+1), (Z - 1)1‘
m m! i (o + 1)] ]' 2
Then applying (4) and I'(m + 1) = m!, we obtain

m—j+1Djm+1),; T(m+ DCm+1+ j)

m!j! C T(m—j+ D (m+ Dm!j!
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m+p (")

T m— it m— !

and using again (4), we conclude

. m (m+]) 1 z—1Y/
P (Z)—F(O‘+m+l)z(m—J)'F(Ol+J+1) ( 2 )
We compute
e—rh
coth(rp) — 1 = M’
and obtain
m (m+/) 1 eI

P~ (coth(ry)) = T(a +m + 1) Z

«(m — ! 2/T(a + j + 1) sinh/ (rp,)

Let us complete the paper by computing the following examples.

Example 4.5 If n = 3, we have Péa’_a) (coth(rp)) = 1 and

a=1 o=l

el el 1
Hy3(x,y) = x37 y3? e et
nam sinh(r)
Example 4.6 If n = 5, we have
1 (HJ) 1 eI

(o, —) _
P (coth(ry) = F(“+2)Z (1— ) 27T (@ + j + 1) sinh (ry)

Crwan 1 N 1 e h
=TI (« )<F(a+1) r(a+2)sinh(rh)>

—rp

= 1 .
o+ +sinh(rh)
and
JT x%y%e_(p“+%)’h (pa-i-%,—(pa-k%))
Has (v,y) = e =g P (coth(ry))
o

xg? ys? e et ( L3, e )
B 3 sinh?(ry) Pa 2 sinh(rp)
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a—3 a3 1
x 2y 2 e Pt 3
5 Vs . —r
= — h h
3 s () ((,Oa + 2) sinh(ry) + e )

a=3 a=3 1
x 2y 2 e Pt 1
_ 75 5 .
= o) ((pa + E) sinh(ry) + cosh(rh)> )
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