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A B S T R A C T

In the context of multi-label text classification (MLTC), Binary Relevance (BR) stands out as one of the
most intuitive and frequently employed methodologies. It tackles the MLTC task by breaking it down into
multiple binary classification problems. However, BR has faced conceptual criticism due to its omission of
label dependency information. To address this limitation, numerous studies have concentrated their efforts
on enhancing the incorporation of label dependencies and document features. This resulted in substantial
improvements in the performance of MLTC models. While the question of whether models incorporating
label dependency information consistently outperform BR models remains unanswered, the prevailing opinion
suggests their superiority. In this paper, we present evidence that challenges this widely held belief. Our
numerical results across various text datasets demonstrate that an optimized binary relevance convolutional
neural network (BR-CNN) can outperform advanced multi-label learning models explicitly designed to leverage
label dependency information as well as advanced Binary Relevance (BR) models. Our result underscores the
competitiveness of a BR-CNN approach for MLTC and emphasizes the versatility of the BR model family as a
customizable option. More fundamentally, our findings contribute to the ongoing discourse surrounding label
dependency and provide valuable insights into the efficacy of the binary relevance approach.
1. Introduction

Multi-label classification (MLC) has gained significant popularity, as
it allows for assigning multiple labels to an input instance [1–4]. This
type of classification is not only of theoretical interest but finds also
practical applications in various real-world problems, including image
classification, music classification, gene function classification, disease
classification and document classification [5–10]. Unfortunately, MLC
poses significant challenges due to several factors. First, dealing with
high-dimensional data and complex correlations among labels presents
difficulties for efficiently handling such information. Second, the com-
plexity of the problem increases significantly with the number of
classes. Third, the nature of the task respectively the type of data may
have a significant impact on the learning model. All these challenges
together make MLC a very demanding learning task, which explains
the sustained interest in addressing and solving this type of problem.
To make this problem more manageable, in this paper, we focus
exclusively on the multi-label text classification (MLTC) task [11,12]
because a method may not be universally applicable to different data
types, e.g., text data, image data, audio data or sensory data.

The most intuitive approach to multi-label classification is to trans-
form the problem into multiple binary classification problems where
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each binary problem is considered as an one-vs-rest classifier [13].
This reduces the difficulty of the learning task considerably and is
commonly referred to as binary relevance (BR) classification. Unfortu-
nately, BR approaches discard label dependency information [14,15].
In order to also utilize the label dependency information, extensions
of BR methods have been proposed. One of the first methods utilizing
label dependency information are classifier chains [14]. This approach
uses an ordering of labels in a chain-like structure where the predic-
tion of each label takes the predictions of all preceding labels of the
chain into account. This sequential approach allows classifier chains
to capture dependencies between labels and to potentially improve
their performance compared to binary relevance classifiers. However,
a drawback of classifier chains is that the order of the chain influences
the learning behavior and the results. Furthermore, classifier chains are
computationally very demanding.

In recent years, the field of multi-label classification has seen signif-
icant advancements, particularly in utilizing explicit label dependency
information to improve classification outcomes. With the advent of
deep learning extensive studies have been conducted, focusing on pop-
ular architectures such as Convolutional Neural Networks (CNN) [16,
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17], Recurrent Neural Networks (RNN) [18,19], and transformer mod-
els like BERT [20,21]. Each method tackles the challenge of capturing
label dependencies using deep learning techniques from a distinct per-
spective. As a consequence, binary relevance (BR) methods appear to be
falling out of favor, particularly in the context of deep learning-based
BR methods. While some work has been done on proposing multi-
label learning methods with built-in binary relevance modules, either as
individual prediction layers or auxiliary predictors providing feedback
to the main predictor [19], recent studies have also explored the usage
of traditional classifiers. For example, Rastin et al. [22] proposed a
novel training schedule for binary relevance k-Nearest Neighbor, and
Kumar et al. [23] compared several BR methods based on traditional
machine learning methods for movie genre classification.

These observations suggest that the utilization of deep learning-
based BR methods has received limited research attention. One possible
explanation for this is the significant time investment required to
train multiple binary classifiers, particularly when dealing with a large
number of classes. Additionally, optimizing deep learning networks can
be a very challenging task. It is worth noting that deep learning archi-
tectures intrinsically possess the ability to handle multi-label learning
by adjusting the final prediction layer of the network. However, at
this point it is unclear whether this transition from binary to multi-
label learning within deep learning architectures has a detrimental or
beneficial impact on the performance.

In this paper, we aim to close this gap by investigating deep
learning-based BR methods for MLTC. Specifically, we will train and
optimize several commonly used deep learning architectures based
on a binary relevance transformation. We compare their performance
with alternative BR methods and the best performing methods utilizing
label dependency information from the literature. As we will see,
the optimization of the deep learning BR methods is non-trivial but
necessary to achieve a competitive performance. Furthermore, in order
to obtain comprehensive insights into the working mechanisms of the
best performing BR architecture, we study learning curves and the
influence of the number of classes. For obtaining robust results, we
study four widely used benchmark datasets: Arxiv Academic Paper
Dataset (AAPD) [24], Reuters-21578 [25], MIMIC-III [26] and Reuters
Corpus Volume I (RCV1-v2) [27].

Overall, our study will allow to address the following five research
questions:

1. What deep learning architecture gives the best BR model?
2. Can a BR method without label dependency information out-

perform the best performing multi-label methods utilizing label
dependency information?

3. How does the performance of a deep learning-based BR method
change when adjusting the prediction layer to facilitate multi-
label classification?

4. Does the number of classes have a significant impact on the
selection of the best performing method?

5. Do the results depend on the characteristics of the text data?

In summary, we will show that our contribution not only introduces a
best performing deep learning binary relevance method called BR-CNN
for MLTC by exploring multiple deep learning binary relevance archi-
tectures, but also adds valuable insights to the ongoing fundamental
debate regarding the consistent superiority of methods that incorporate
label dependency information over traditional BR methods. We will
show that a well optimized BR-CNN can surpass the performance of
the most effective methods for MLTC documented in the literature. This
suggests the superiority of BR-CNN on several benchmark datasets. Our
work also enhances our understanding of how to effectively leverage
deep learning within the context of BR methodologies.

This paper is organized as follows. In the next section, we discuss
related work about BR methods and multi-label learning methods that
are the best performing methods for various datasets. In Sections 3
and 4, we discuss all methods and data we use for our analysis and
in Section 5 we present our numerical results. This paper finishes with
2

a discussion and a conclusion.
2. Related work

From the literature, one finds that binary relevance (BR) [1] is a
widely used approach for multi-label text classification and one reason
therefor is its simplicity. A drawback of BR is that it ignores information
from label correlations which could be utilized to further improve the
outcome of multi-label classification [28]. In fact, many suggest that
label correlations are essential for obtaining optimal results for multi-
label classification [16,24]. Consequently, substantial efforts have been
devoted for exploring possibilities of leveraging label dependencies
to improve the learning task [18,19,21,24]. However, despite these
endeavors, a definitive guideline concerning the superiority of the
usage of label dependency information for MLTC remains elusive, and
it is unclear whether such methods are in general superior compared
to BR methods.

Another interesting point to note is that despite the widespread
adoption of deep learning [29], the utilization of deep learning-based
Binary Relevance (BR) methods remains surprisingly limited. Conse-
quently, many BR methods employed in practice rely on traditional
classifiers such as Support Vector Machines (SVM) [30] or simplistic
neural network architectures, which are lacking the complexity and
expressiveness of more advanced deep learning models [31,32]. Un-
fortunately, this reliance on weaker baselines may lead to misleading
conclusions regarding the effectiveness of novel methods that leverage
label dependency information or deep learning architectures, as they
may appear as significant advancements compared to less sophisticated
BR approaches.

In the following, we will briefly review some BR methods and the
best performing MLTC methods utilizing label dependency information
from the literature.

2.1. Binary relevance approaches

As results from the literature show, see [33–38], deep learning
methods such as Convolutional Neural Networks (CNN) and Recur-
rent Neural Networks (RNN) are generally good at processing tex-
tual information and have been widely applied in text classification
tasks. Additionally it has been shown that CNN are good at extracting
position-invariant features from the input for text classification [39].
However, there is a lack of detailed studies in the literature on optimiz-
ing the BR transformation of CNN or RNN variants. For this reason, we
select CNN, LSTM and GRU as our base classifier for the deep learning
BR which we optimize. We will evaluate their effectiveness on several
benchmark datasets to answer our research questions. In addition, we
use BR-SVM [1], BR-support [40], and BR-decoder [19] as BR baseline
methods from the literature. In the following, we will elaborate on all
the Binary Relevance (BR) methods employed in our analysis.

• BR-SVM: Boutell, Matthew R., et al. [1] proposed a simple way
to deal with a multi-label classification tasks by decomposing the
problem into multiple binary classifications using for each a linear
Support Vector Machine (BR-SVM). Each class is trained for an
individual BR-SVM and there are no interactions between the
classes considered. Hence, if present, label dependency informa-
tion among classes is lost in this way of learning.

• BR-support: Wang, Bingyu, et al. [40] proposed a training and
prediction pipeline to enhance the learning of multi-label out-
comes of many classifiers with respect to the F1-score. This
procedure includes a support inference, a tuned and combined
L1 and L2 regularization, and a so called General F-score Max-
imizer (GFM) for making the prediction. Their findings demon-
strated that their proposed pipeline could significantly enhance

the performance of multiple methods.
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• BR-decoder: Tsai, Che-Ping, and Hung-Yi Lee [19] introduced
a new multi-label learning architecture based on an encoder–
decoder. The idea of their method is to take advantage of a
RNN-based label dependency learning framework to alleviate ex-
posure bias from a predefined order of labels by using a recursive
label prediction structure. Their method consists of 3 basic com-
ponents including a bidirectional LSTM-based encoder, a RNN
decoder with sequential prediction of labels using an attention
LSTM, and a binary relevance decoder module using a MLP. Both
decoders operate individually on the encoded features from the
encoder.

• CNN: Yoon Kim [41] modified the structure of a traditional
convolutional neural network, making it operational for textual
inputs by representing it as a two-dimensional array. Such a CNN
offers an efficient way to consider features that correspond to N-
grams of neighbor words. CNN can be utilized in either BR or a
multi-label manner. The multi-label version is referred as ML-CNN
where the output layer operates on a multi-label input by utilizing
a sigmoid function and a threshold function. The BR version is
referred to as BR-CNN which will be introduced in next section.

• LSTM (Long Short-Term Memory): LSTM [42] was propose by
Sepp Hochreiter and Jürgen Schmidhuber and is a variant of
recurrent neural networks (RNN). The term ‘‘Long Short-Term
Memory’’ implies the capability to store information on a short
term and long term basis, which is ideal for processing textual
information. The four main blocks of a LSTM are cell state, input
gate, forget gate, and the output gate. These elements collectively
facilitate both local and long-term memory for processing inputs.
Similar to CNN, LSTM can be transformed to perform multi-label
learning by modifying the last prediction layer. We refer to the
multi-label version of LSTM as ML-LSTM and the BR version as
BR-LSTM.

• GRU (Gated Neural Networks): GRU [43] is another variant of
RNN which has similar components as LSTM but with lesser
parameters and gates. Both GRU and LSTM are RNN variants and
are equally powerful in text classification. However, it has been
shown that LSTM performs slightly better than GRU, while GRU
boasts better time complexity [44]. We refer to the multi-label
version of GRU as ML-GRU and the BR version as BR-GRU.

.2. Multi-label dependency methods

In contrast to BR approaches there are multi-label dependency
ethods that are trying to utilize label dependency information. In the

ollowing, we provide a brief discussion of three important methods
e will later use for our analysis together with ML-LSTM, ML-GRU and
L-CNN. It is important to note that these methods are known to give

he most competitive results for the AAPD and Reuter-21578 datasets,
hich we will also use for our detailed comparison study. We will focus
ur scope of research on the methods themselves without any sophisti-
ated pre/post-processing pipelines, hence, some alternative techniques
or multi-label learning such as multi-label feature selection [45,46]
nd classifier chains [14] will remain to be explored in future studies.

• BERT with Balanced Loss (BERT-BL): Huang, Yi, et al. [47] pro-
posed a distribution balancing loss (BL) function for applications
in natural language processing. Such a loss function is especially
suited for the learning of multi-label classification where the
data have a long-tailed class frequency distribution. The reason
therefor is that methods with such a loss function are able to
address the label imbalance issue and in addition can utilize
label dependency information to enhance the performance. In the
following, we will refer to this model as BERT-BL.
3

• Label-Embedding Bi-directional Attentive Model (LBA): Liu,
Naiyin, Qianlong Wang, and Jiangtao Ren proposed a novel
architecture based on BERT [20]. LBA extends BERT by adding
label-embeddings and a bi-directional attention mechanism to
help BERT to learn relations from label dependency informa-
tion on both the sequence- and token-level. They pointed out
that BERT often struggles to fully harness token-level text rep-
resentations and label embeddings. LBA is widely considered
the first approach to exploit such information by using a BERT
architecture. Importantly, their results showed a very competitive
performance for several datasets, including the data from Reuters.

• Label correlation aware multi-label text classification (LACO):
The LACO model by Zhang, Ximing, et al. [21] addresses the error
propagation and overfitting problem from a sequence label pre-
diction architecture. LACO extends BERT by introducing a joint
embedding to obtain a text and label representation. Additionally,
besides the native prediction layer, they also added a further label
co-occurrence prediction layers. In terms of performance, numer-
ical results demonstrated that LACO exhibits a highly competitive
performance on the AAPD and RCV1-v2 datasets.

3. Methods

In this section, we describe the methods we use for our analysis. In
the following, we distinguish between methods from two families, the
LD (label dependency) family and the BR (binary relevance) family,
which we define as follows.

Definition 3.1 (LD Family). Methods from the LD family utilize explic-
itly label dependency information for MLTC.

Definition 3.2 (BR Family). Methods from the BR family do not utilize
label dependency information for MLTC.

Examples for methods from the LD family that we use for our
analysis are BERT-BL, LBA and LACO and methods from the BR family
we use are BR-SVM, BR-support, BR-decoder, BR-CNN and BR-LSTM
and BR-GRU. All of these methods, except our fine-tuned BR-CNN,
have been introduced previously. For this reason, we describe next the
BR-CNN in detail.

3.1. Working mechanism of the BR-CNN

The convolutional neural network (CNN) structure we use is illus-
trated in Fig. 1, see [41]. From this structure one can see that the raw
texts are first preprocessed to become tokens and then each token is
mapped to a vector word embedding of 300 length. Let 𝑥𝑖 ∈ 𝑅300

denote the token at the 𝑖th position of the input sequence of total length
𝑙. The next layer is the convolutional layer where convolution filters
𝑤 ∈ 𝑅𝑛×300 will be applied to the 𝑛-gram of the input sequence 𝑥𝑖∶𝑖+𝑛−1
to extract abstract features at position 𝑖. Each convolution operation
results in a feature map 𝑐𝑖 given by

𝑐𝑖 = 𝑓 (𝑤 ∗ 𝑥𝑖∶𝑖+𝑛−1 + 𝑏). (1)

Here, 𝑓 denotes an activation function, 𝑏 denotes the bias term, and
∗ is the convolution operation. With a step size of 1, the convolution
operation will be applied to 𝑥𝑖∶𝑖+𝑛−1, 𝑖 ∈ {1, 2, 3,… , 𝑙}, resulting in a
feature map

𝐶 = [𝑐1, 𝑐2, 𝑐3,… , 𝑐𝑙−𝑛+1]. (2)

After the convolutional layer, a max-pooling operation will be applied
to each feature map 𝐶 to extract the maximum value from the cor-
responding feature map. A vector collection of pooled values will be
formed from all these feature maps

𝑃 = [max(𝐶1),max(𝐶2),… ,max(𝐶𝑗 )] (3)

where 𝑗 is the total the number of different filters. The final feature
vector 𝑃 will be fully connected to 2 output neurons to obtain the
probability of binary classes �̂�0 and �̂�1.
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Fig. 1. The structure of the convolutional neural network (CNN) we use in our analysis as BR-CNN. This CNN consists of a word embedding layer, convolutional and pooling
layers. The last layer of this network is fully connected.
3.1.1. Weight scaling for BR-CNN
In general, the loss function in a neural network is used to calculate

the distance between the predicted label and the true label. Frequently,
cross-entropy is used for this operation [48]. Then the calculated loss
is used for the backward propagation to fine-tune the parameters of
the network. However, a common problem is the imbalance of samples
in the classes leading to overfitting. Usually, this problem can be
explained by the contribution of the loss values from the more frequent
class, which is in such a case much larger than the loss values from the
other class. In this case, it may be desirable to adjust the loss values for
both classes in accordance with certain weights. Properly scaling the
loss can mitigate the influence of overly frequent classes and promote
a more effective learning behavior.

For the scaling of the loss, we use the following weight parameters
given by:

𝑊0 =
1
𝑁0

, 𝑊1 =
𝛼
𝑁1

(4)

In Eq. (4), 𝑁0 corresponds to the total number of negative samples, 𝑁1
is the number of positive samples and 𝛼 is the scaling parameter. The
resulting weights 𝑊0 and 𝑊1 correspond to the assigned weights of the
negative samples and positive samples respectively. It is interesting to
note that for our data usually 𝑁0 > 𝑁1 holds. For this reason, we use 𝛼
values of 1, 10, and 100, which allow to increase the impact of positive
samples by increasing the value of 𝛼 and respectively of 𝑊1.

As a consequence, the calculation of the weight-scaled binary cross
entropy loss for sample 𝑘 is given by:

𝐿𝑘 = −(𝑊0(𝑦𝑘 ⋅ 𝑙𝑜𝑔(�̂�0𝑘)) +𝑊1((1 − 𝑦𝑘) ⋅ 𝑙𝑜𝑔(1 − �̂�1𝑘))) (5)

Here 𝑘 = {1, 2, 3,… , 𝐾} where 𝐾 is the total number of samples and
𝑦𝑘 is the true label of sample 𝑘 which is either 0 or 1. Furthermore,
�̂�0𝑘 is the predicted probability for sample 𝑘 on class 0, and �̂�1𝑘 is the
predicted probability for sample 𝑘 on class 1.

From this follows the final loss, 𝐿, given by

𝐿 = 1
𝐾

𝐾
∑

𝑘=1
𝐿𝑘. (6)

Overall, 𝐿 corresponds to the average value of 𝐿 over all instances.
4

𝑘

4. Data

For our numerical analysis, we use four datasets that have been
previously used as benchmark data: AAPD, Reuters-21578, MIMIC-
III and RCV1-v2. AAPD contains 54 different classes, Reuters-21578
contains 90, MIMIC-III contains 10 and RCV1-v2 contains 101 classes.
An overview of the statistics of all 4 datasets can be seen in Table 1.

4.1. Arxiv Academic Paper Dataset (AAPD)

The AAPD data were proposed by Yang, Pengcheng, et al. [24]. This
dataset consists of abstracts and the corresponding subjects of 55,840
papers collected from the field of computer science from the Arxiv
website. In total, the abstracts are assigned to 54 different subjects cor-
responding to classes where each instance can be assigned to multiple
classes (but having at least one label).

4.2. Reuters-21578

The Reuters data are a collection of Reuters newswire stories col-
lected between the period from 1987 to 1991 [25]. The dataset contains
more than 20,000 documents and each document is manually anno-
tated into 90 unique categories corresponding to classes. The data have
been also widely used as benchmark dataset for text classification [49].
For our analysis, we use the ApteMod version of Reuters-21578 which
has 10,788 documents in total. For our analysis, we follow the train-
ing/testing splitting used by [50] which separates the data into 7769
training instances and 3019 testing instances.

4.3. MIMIC-III

The MIMIC-III (Medical Information Mart for Intensive Care) data
[26] is a publicly available dataset providing a large variety of clin-
ical information of patients. In our study, we used the annotated
discharge summaries from the work [26] where up to 1610 discharge
summaries were annotated into 10 different categories. Given the dis-
charge summaries, the task is to predict the corresponding phenotypes
where each discharge summary (corresponding to a patient) can be
assigned to more than one phenotype. For this reason, also, phenotype
categorization represents a multi-label text classification problem.
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Table 1
Overview of the data characteristics for the four datasets from AAPD, Reuters-21578,
MIMIC-III and RCV1-v2 we use for our analysis. Number of frequent classes correspond
to the number of classes that have at least 5% of true labels of the total training
samples, while number of rare classes indicate the labels with less than 0.1%.

AAPD Reuters-
21578

MIMIC-III RCV1-v2

Training size 5,3840 7769 1207 23,149
Testing size 1000 3019 403 781,265
Average tokens per sample 153 80 2067 122
Number of classes 54 90 10 101
Average number of labels per sample 2.40 1.23 1.56 3.24
Number of frequent classes (>5%) 17 5 10 16
Number of rare classes (<0.1%) 0 26 0 10

4.4. RCV1-v2

The Reuters Corpus Volume I (RCV1-v2) data [27] is a another
commonly used benchmark dataset for multi-label text classification. It
is composed by more than 800,000 newswire stories and each story is
manually annotate into 103 different classes (101 in the training set).
RCV1-v2 is an extended version of Reuters-21578. We followed the
same training/testing partitioning of the data from the original work
in [27].

5. Results

In this section, we present our numerical results. First, we study
the optimization of the BR methods in details. Second, we conduct a
comparison between all MLTC models. Third, we investigate learning
curves of the best performing BR method and LACO. Fourth, we study
the impact of the number of classes on the performance. Fifth, we
conduct an ablation study for the best performing BR method.

5.1. Optimization of BR-CNN

In this subsection, we study the optimization of BR models. Specifi-
cally, we study the tuning of the parameters of the BR-CNN. In order to
obtain the best performing BR-CNN, one needs to optimize its structure
and parameters. This includes the fine-tuning of filter window sizes,
the number of windows per window size, the embedding sizes and the
weight scaling of the loss function. Based on this optimization process,
we select the combination of parameters that provides the best results.

We perform fine-tuning for all classes, although one of the advan-
tages of employing binary relevance learning in multi-label learning
problems is the ability to apply the fine-tuning process to each individ-
ual class. However, such an approach would be very time consuming.
When discussing the results from a comparative analysis in Section 5.2
this approach will be substantiated by the results.

In Fig. 2, we show the results of the optimization process of BR-CNN
for the AAPD data. The vanilla BR-CNN uses a 1 × 1 filter window
size, 100 filter windows per window size and an embedding size of
50 without weight scaling. We start the optimization process firstly by
adding larger sizes of filter windows as in Fig. 2(a). Here we observe a
stable performance after adding a filter window size of 1 × 5. Then
we increase the number of filter windows per window size, as in
Fig. 2(b). From this we see that 300 filter windows per window size
gives the best performing model. Thereafter we change the size of the
embedding from 50 to 300. As one can see from Fig. 2(c), we find the
best performing model using an embedding size of 300.

The optimization process for the Reuters-21578 data follows a sim-
lar pattern. Specifically, when optimizing parameters such as the filter
indow size, the number of filter windows, the embedding size, and

he weight scale, we obtain very comparable results to those observed
or the AAPD data, as shown in Fig. 2(a) to (c). A parallel optimization
attern is evident for the MIMIC-III and RCV1-v2 datasets, with the
5
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Table 2
Parameters settings for BR-LSTM and BR-GRU as used for our analysis.

Hyperparameters BR-LSTM BR-GRU

Number of layers 1 1
Number of neurons 512 512
Bidirectional Yes Yes
Optimizer Adam Adam
Embedding Same as BR-CNN Same as BR-CNN

Table 3
Results for a comparison between multi-label deep learning methods (top) and BR
methods (middle) for micro- and macro-F1-scores. Bottom: Summary of the performance
difference between top performing BR and the top performing (SOTA) label dependency
utilizing method on AAPD and Reuters-21578.

Model AAPD Reuters-21578

Micro Macro Micro Macro

BERT-BL [47] 0.721 0.565 0.906 0.647
LBA [20] 0.721 0.571 0.908 0.675
LACO [21] 0.749 0.612 0.880 0.600
ML-LSTM [42] 0.660 0.478 0.815 0.350
ML-GRU [43] 0.670 0.495 0.850 0.439
ML-CNN [41] 0.715 0.520 0.852 0.470

BR-SVM [1] 0.646 0.529 0.851 0.402
BR-support [20] 0.696 0.545 0.855 0.440
BR-decoder [19] 0.700 0.521 0.861 0.446
BR-LSTM [42] 0.680 0.501 0.830 0.390
BR-GRU [43] 0.720 0.563 0.870 0.465
BR-CNN 0.750 0.645 0.891 0.558

𝛥𝐹 (BR∕SOTA) (+0.1%) (+5.1%) (−1.8%) (−17%)

exception of embedding tuning for MIMIC-III. In the case of MIMIC-III,
a fixed dimension of 50 is used, based on word2vec pre-trained on all
the summaries from the MIMIC-III dataset.

Consequently, for the forthcoming analysis employing BR-CNN, we
will use filter window sizes of 1 × 1, 1 × 2, 1 × 3, 1 × 4, and
× 5, each having 300 filter windows. We will apply a dropout rate

f 50% after max-pooling and utilize Glove-6B embeddings of length
00 for AAPD, Reuters-21578, RCV1-v2, and word2vec embeddings of
ength 50 for MIMIC-III. In all models, a weight scaling of 𝛼 = 1
ill be utilized. Additionally, during AAPD testing, we observed that
odels trained with two different sets of parameters yield the best

esults for macro-F1. Specifically, these two sets involve 300 and 400
ilter windows per window size, respectively, while keeping all other
arameters constant. We will select models with the highest F1 score
or each class from these sets and employ them to calculate the final
icro-F1 and macro-F1 scores.

A similar optimization process is conducted for both BR-LSTM and
R-GRU each using one recurrent layer followed by two fully connected

ayers of 256 neurons. The optimal hyperparameter configuration of
R-LSTM and BR-GRU is shown in Table 2.

.2. Comparison of methods

Using the optimized parameters of the BR-CNN, BR-LSTM and BR-
RU for the AAPD, Reuters-21578, MIMIC-III and RCV1-v2 data, we
an now compare the deep learning BR models with other meth-
ds from the literature. We summarizes the results of this analy-
is showing the performance of the methods in comparison with the
op performing MLTC methods utilizing label dependency information
BERT-BL, LBA, LACO) and baseline BR methods (BR-SVM, BR-support
nd BR-decoder). Furthermore, we study ML-CNN, ML-LSTM and ML-
RU which are the algorithm transformed versions of the correspond-

ng deep learning BR methods. Table 3 shows the results for AAPD
nd Reuters-21578 and Table 4 shows the results for MIMIC-III and
CV1-v2.

First, we would like to remark that the BR methods are quite

eterogeneous. That means BR-SVM and BR-support are both based on
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Fig. 2. Optimization of hyperparameter settings of the BR-CNN for AAPD data. (a) Impact of the filter window size. (b) Impact of the number of windows per window size added
based on the best performance from subfigure (a). (c) Impact of the embedding size based on the best performing model from (b).
Table 4
Results for a comparison between multi-label deep learning methods (top) and BR
methods (middle) for micro- and macro-F1-scores. Bottom:Summary of the performance
difference between top performing BR and the top performing (SOTA) label dependency
utilizing method on MIMIC-III and RCV1-v2.

Model MIMIC-III RCV1-v2

Micro Macro Micro Macro

BERT-BL [47] 0.620 0.623 0.880 0.701
LACO [21] 0.635 0.645 0.885 0.731
ML-LSTM [42] 0.260 0.200 0.815 0.590
ML-GRU [43] 0.330 0.315 0.824 0.618
ML-CNN [41] 0.636 0.632 0.854 0.670

BR-SVM [1] 0.458 0.452 0.852 0.662
BR-decoder [19] 0.412 0.405 0.867 0.671
BR-LSTM [42] 0.320 0.290 0.830 0.642
BR-GRU [43] 0.335 0.320 0.845 0.660
BR-CNN 0.725 0.728 0.872 0.692

𝛥𝐹 (BR∕SOTA) (+12.4%) (+11.4%) (−1.4%) (−5.3%)
6

traditional machine learning classifiers whereas BR-decoder, BR-CNN,
BR-LSTM and BR-GRU utilize deep learning. Regarding the results, from
Table 3 one can see that the results for the AAPD and Reuters-21578
data are different from each other. While for Reuters-21578, LBA is
overall best with a slight advantage over BERT-BL, for the AAPD data
BR-CNN is the top performer followed by LACO. However, for both
datasets, all the BR methods expect for BR-CNN are outperformed by
the top performing models LBA, LACO and BERT-BL. Looking at the
margins, we find for the AAPD data regarding the micro-F1 and macro-
F1 that BR-CNN is better by 0.13% and 5.10% respectively compared to
LACO. For the Reuters-21578 data, all of the BR methods are inferior to
LBA especially on macro-F1 while LBA outperforms BR-CNN by 17.0%.
The last line in Table 3 summarizes the performance difference between
the top performing BR and top performing (SOTA) label dependency
utilizing methods of the corresponding category.

For MIMIC-III and RCV1-v2, the results can be seen in Table 3. We
find that for MIMIC-III, BR-CNN tops the performance and outperforms
LACO by a large margin of 12.4% and 11.4% on micro-F1 and macro-
F1 respectively. As for RCV1-v2, the distances between F-scores for all
methods are the smallest within all the 4 datasets. LACO has the best
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Fig. 3. Learning curves for BR-CNN and LACO for the AAPD data. Performance in dependence on the size of the training data. (a) Micro-F1. (b) Macro-F1.
performance on both micro- and macro-F1, which outperforms the top
BR method BR-CNN by 1.4% and 5.3% respectively. The last line in
Table 4 summarizes again the performance difference between BR-CNN
and the top performing (SOTA) label dependency utilizing method of
the corresponding category.

Overall, for all the methods in the BR family, it is notable that
BR-CNN is the best performing BR method across all 4 datasets. Fur-
thermore, BR-CNN has also the top micro- and macro-F1 among all the
tested methods on the AAPD and MIMIC-III datasets. Another interest-
ing observation is that BR-GRU constantly outperforms BR-LSTM on the
4 datasets, even though BR-GRU has lesser parameters than BR-LSTM
and both have a similar structure.

In order to obtain insights into the computational complexity of the
top performing methods, we report the runtime of training BR-CNN and
the multi-label learning models. All the neural network models were
trained using a 4-way NV-LINK configuration of the Tesla V100. For
the AAPD data, training LACO with 40 epochs took approximately 2 h,
while training BR-CNN with 25 epochs and early stopping which stop
training if F1 score is not improving in 5 epoch, required approximately
1.6 h. For the Reuters-21578 data, training BERT-BL with 40 epochs
took approximately 0.6 h, and training BR-CNN with 20 epochs and
early stopping required approximately 2.3 h. In the case of MIMIC-III,
training BR-CNN took approximately 0.5 h with 15 epochs. Addition-
ally, LACO with 20 epochs took approximately 0.4 h, and BERT-BL
with 20 epochs took 0.5 h. For the training of RCV1-v2, BERT-BL with
30 epochs took approximately 5.4 h and BR-CNN with 15 epochs took
approximately 12 h.

5.3. Learning curves

In order to examine the impact of the size of the training data
on the performance of the best performing algorithms, as found in
the previous section, we study the learning curves for BR-CNN and
LACO. For this analysis, the size of the training of the AAPD data is
successively reduced from 90%, 80%... to 10%. We train LACO and
BR-CNN for each subset and evaluate them on the same test set to
learn how the size of the training set affects the performance of both
methods.
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Fig. 3 shows the results for the learning curves. For decreasing
sizes of the training data there is a steady but moderate decrease in
the performance for both BR-CNN and LACO. Importantly, increasing
training sizes beyond 50% leads only to a very modest increase in
performance indicating that the total training data are sufficient to
reliably training both models. Furthermore, it is interesting to note that
for macro-F1 the BR-CNN is consistently better than LACO. In contrast,
for micro-F1 the top performing model changes but BR-CNN and LACO
are very similar across the different sizes of the training data.

5.4. Impact of the number of classes on the performance

For the next analysis, we aim to investigate the impact of the
number of classes on the performance. Since there is no single unique
procedure for selecting subsets of classes, we will examine three distinct
selection mechanisms to obtain these subsets of classes. Specifically, we
will study subsets from random sampling, the ranking of co-occurrence
levels and the ranking of class frequencies.

Random sampling: First, we study the selection of classes based
on random sampling. In order to obtain robust estimates, we average
over 5 independent runs. The results of this are shown in Fig. 4.
The x-axis shows the number of classes randomly sampled from all
available 54 classes. As one can see, the mean values for both macro-
F1 and micro-F1 are quite stable for BR-CNN and LACO. However,
the performance of LACO is more effected by the number of classes
than BR-CNN. Furthermore, the standard error is clearly increasing
for smaller subsets. This is reasonable because the variation becomes
larger when fewer classes are sampled. This variation points also to
a heterogeneity of the individual classes. We will come back to this
issue when ranking the classes according to the co-occurrence levels
and class frequencies.

Ranking of co-occurrence levels: Next, we repeat such an analy-
sis, but for the selection of classes based on co-occurrence levels. This
will allow to obtain a ranking of classes. We define the co-occurrence
level in the following way: For the AAPD data, we have 54 classes. Let
us call the (symmetric) co-occurrence matrix 𝐽 with 𝐽𝑖,𝑗 ∈ N, with 𝑖 =
{1,… , 54}, 𝑗 = {1,… , 54}. Here 𝐽𝑖,𝑗 indicates the number of instances
for which one can find label 𝑖 together with label 𝑗. Then, we divide
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Fig. 4. Random sampling of subsets of classes. Performance of BR-CNN and LACO for the AAPD data. (a) Micro-F1. (b) Macro-F1. The x-axis indicates the number of classes
obtained from random sampling.
each row of the matrix 𝐽 by its maximum value, i.e., 𝐽𝑖 = 𝐽𝑖∕𝑚𝑎𝑥(𝐽𝑖)
where 𝐽𝑖 corresponds to the 𝑖th row of matrix 𝐽 and 𝐽𝑖 is a standardized
vector. This gives a new matrix 𝐾 = (𝐽𝑖)54𝑖=1 with standardized rows.
From this we take the row summation given by

𝐶𝑖 =
54
∑

𝑗
𝐾𝑖,𝑗 . (7)

This is the final vector containing co-occurrence levels 𝐶𝑖 for each class
𝑖.

Fig. 5(a) shows the co-occurrences levels 𝐶𝑖 for all 54 classes of the
AAPD data. One can see that there are large differences between the
classes especially for small and large values of 𝐶𝑖 at the beginning and
end of the distribution.

For constructing subsets of classes, we start by selecting classes with
the smallest co-occurrence levels first. This way the ranking of the co-
occurrence levels is systematically utilized for obtaining subsets of a
certain size. The results for BR-CNN and LACO are shown in Fig. 5(b,c).
In contrast to the results from the random sampling, we observe now
a nonlinear dependency of the macro-F1 and micro-F1 on the size of
the subsets. However, the degree of nonlinearity is different for BR-
CNN and LACO. Specifically, for BR-CNN we find the maximum value
of macro-F1 and micro-F1 for the smallest subset, i.e., for 5 classes. Also
the maximum macro-F1 value for LACO is for 5 classes, however, the
maximum micro-F1 is observed for 35 classes.

Ranking of class frequencies: The last selection mechanism we
study is based on the ranking of class frequencies. That means, for
this selection, we rank order the classes according to their sample
frequencies belonging to a particular class. In Fig. 6(a), we show this
ranking for the AAPD data. For each class, the number of samples with
the corresponding label is shown. Based on this ranking, we study two
different types of subsets. For the first, we select subsets starting on the
right-hand-side of the class frequency distribution and for the second,
we start on the left-hand-side. That means, the first selects the smallest
classes whereas the second selects the largest classes.

The result of this analysis are shown in Fig. 6(b), and (c). For all of
these subsets, BR-CNN performs better than LACO and the differences
are typically larger than the standard error. An interesting observation
8

is that the number of classes alone does not provide a conclusive indica-
tion of performance. Specifically, when considering the ascending order
of the classes (left side), the best performance of BR-CNN and LACO is
achieved with the largest number of classes (which is 20). However, in
the case of the descending order (right side), the best performance is
achieved with the smallest number of classes (which is 5).

We repeat this analysis for the Reuters-21578 data and the results
are shown in Fig. 7. The size of the subsets of classes corresponds to
30, 50, 60, 70 and 80 for Fig. Fig. 7(b) (class ranking in ascending
order) and 5, 15, 40, 60 and 80 for Fig. Fig. 7(c) (class ranking in
descending order). In Fig. 7(b) one can again observe a nonlinear
behavior for BR-CNN and BERT-BL. Interestingly, for Fig. 7(c), we see a
different behavior than for Fig. 7(b). Here BR-CNN performs better for
smaller subsets of classes while for larger subsets BERT-BL is better. The
distance between both models is even larger than the standard error.

Class-wise F1-scores: To complement our preceding analysis, we
study finally the individual (class-wise) F1-scores for AAPD and Reuters
-21578 for the best performing models in Table 3. The results are
shown in Fig. 8. Here the F1-score for each class is reported for BR-
CNN and LACO for AAPD (see Fig. 8(a)), and BR-CNN and BERT-BL
for Reuters-21578 (see Fig. 8(b)). As one can see from the figures, the
models’ behaviors for AAPD are more stable, while for the Reuters-
21578 data, we observe several classes with F1-scores of zero. This
indicates a severe heterogeneity within the data. We will come back
to this point in the next section.

5.5. Ablation study

Finally, we study the independent effect of important components
of our BR-CNN to see how this affects its performance. This corresponds
to an ablation study. Originally, ablation studies have been introduced
in neurobiology to gain a better understanding of the functioning of the
brain [51,52]. Basically, an ablation study involves removing a specific
part of the brain to observe any resulting changes on its functional be-
haviors. Recently, a similar approach has been suggested to investigate
the working behavior of deep learning architectures [53,54]. In this
section, we perform an ablation study for our BR-CNN.
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Fig. 5. (a) Rank ordered co-occurrence levels for all 54 classes of the AAPD data based on values of the score 𝐶𝑖 (see Eqn. 7). (b) and (c) show results for subsets of classes based
on rank ordered co-occurrence levels given in (a). Performance of BR-CNN and LACO in dependence on the number of classes for AAPD data. The x-axis indicates the number of
classes.
Impact from removing components: We start by investigating the
effect of weight scaling we use in our BR-CNN. For this, we study BR-
CNN for all 4 datasets with and without application of a weight scaling
function. The results for the macro-F1 are shown in Table 5. As one can
see, with a weight scaling (first row) one can improve the macro-F1 on
BR-CNN for all the datasets, whereas without weight scaling (second
row) we see the most significant performance loss for the Reuters-
21578 dataset with 20.2%, followed by 18.6% for RCV1-v2. For the
other 2 datasets, which are having more balanced label frequency distri-
butions, the improvements are not significant with weight scaling. This
demonstrates numerically that weight scaling enhances the learning on
rare classes.

The next component we study is the pre-trained word embedding
vectors. For this, we remove the pre-trained word embeddings and
use only the randomly initialized word embeddings for our training.
We would like to note that all the parameters for the embedding are
still adjustable. Overall, all methods show a decrease in performance
(see third column) when the word embedding vectors are random
initialized. However, the amount of performance change depends on
the dataset.
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Table 5
Effect of an ablation study on the performance by modifying different components of a
BR-CNN. The shown numbers correspond to the macro-F1. Second row: Results without
weight scaling. Third row: Results without pre-train word vector.

AAPD Reuters-21578 MIMIC-III RCV1-v2

BR-CNN 0.645 0.558 0.725 0.692
- w/o weight scaling ↓ 0.620 ↓ 0.445 ↓ 0.718 ↓ 0.563
- w/o pre-train word vector ↓ 0.615 ↓ 0.504 ↓ 0.680 ↓ 0.645

Impact from the weight scaling parameter: The effects of the
weight scale function can be adjusted by the parameter 𝛼; see Eq. (4).
This allows us to investigate the effect of 3 different values of 𝛼, given
by 1, 10 and 100, to see its impact on macro-F1. The results of this
analysis can be found in Table 6. From this we discover a pattern for
all datasets that a value of 𝛼 = 1 provides the best results for BR-CNN
for all datasets. Further increasing the value of 𝛼 leads to a lowering
of the performance. On the other hand, it is interesting to note that
for Reuters-21578 and RCV1-v2 using 𝛼 values larger than 1 leads to
an improvement in the performance over the BR-CNN without weight
scaling (first row in Table 6).



Knowledge-Based Systems 284 (2024) 111286Z. Yang and F. Emmert-Streib
Fig. 6. (a) Rank ordered distributions of class frequencies for the AAPD data. The y-axis gives the number of samples having a certain class label. The specific number for every
5 classes is shown on the top of each figure. (b)–(c): Performance comparison between LACO and BR-CNN for subsets of classes based on the rank ordering of classes according
to the frequency of samples. Column (b): Results for the least frequent classes. Column (c): Results for the most frequent classes.
Table 6
Effect of different 𝛼 values on the weight scaling function. The shown numbers
correspond to the macro-F1.

BR-CNN AAPD Reuters-21578 MIMIC-III RCV1-v2

No weight scaling 0.620 0.445 0.718 0.563
𝛼 = 1 ↑ 0.645 ↑ 0.558 ↑ 0.725 ↑ 0.692
𝛼 = 10 ↓ 0.615 ↑ 0.542 ↓ 0.665 ↑ 0.670
𝛼 = 100 ↓ 0.575 ↑ 0.520 ↓ 0.420 ↑ 0.615

6. Discussion

Multi-label text classification (MLTC) is an intricate task because
the problem can be presented in a number of different ways. First,
one can distinguish between multi-label and binary relevance classifiers
where the former models are genuine multi-label classifiers while the
latter transform the task into multiple binary classifications. Based on
this, one can further distinguish between approaches that utilize deep
learning or label dependency information. This categorization is shown
in Fig. 9 including some methods. We would like to point out that in our
analysis, we did not use a classifier chain [14] because studies found
their inferiority to all the methods in Table 3, except BR-SVM [21,55].

In this paper, we explore a specific subset of Multi-Label Text
Classification (MLTC) methods, focusing on Binary Relevance (BR)
approaches within the realm of deep learning that do not rely on label
dependency information. This constitutes a specialized area because
within the MLTC community, there is a prevailing belief that lever-
aging label dependency information is essential for achieving optimal
results. Furthermore, in recent years, a majority of these methods have
been rooted in deep learning techniques. Specific examples for such
approaches are BERT-BL [47], LBA [20] and LACO [21].
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From our initial analyses using deep learning BR methods, we found
that an off-the-shelf version of BR-CNN, BR-LSTM and BR-GRU does
not give good performances. However, after careful optimization of the
many hyperparameters of the models (see, e.g., Fig. 2), we noticed a
considerable improvement of the models, especially for BR-CNN, after
applying a weight scaling function. In order to obtain more insights
into the performance of our BR-CNN, we conducted a comprehensive
comparison with the best performing methods based on BR and label
dependency information from the literature.

From this comparison (see Tables 3 and 4) we make a number of
interesting observations. First, BR-CNN is the overall best performing
classifier for the AAPD and MIMIC-III data. This observation under-
scores the fact that Binary Relevance (BR) not only competes favorably
with the best-established methods in the literature but can also surpass
them in terms of performance when applied to targeted datasets. This
is also demonstrated for various subsets of the AAPD and Reuters-
21578 data from our analysis (see, e.g., Figs. 4, 5 and 7). Second,
for all studied data (not only the ones shown in Tables 3 and 4) BR-
CNN is better than all other BR-based classifiers. Here it is important
to note that also BR-decoder, BR-LSTM and BR-GRU are based on
deep learning, hence, this is not the singular difference. Instead, in
our opinion it is the optimization of all components of the neural
network we use for our analysis that makes the difference. Third, the
binary relevance transformed versions of deep learning methods (BR-
CNN, BR-LSTM, BR-GRU) always outperform the algorithm adaptation
transformed versions (ML-CNN, ML-LSTM, ML-GRU) on all the datasets
we tested.

Considering the importance of the data on the results, we perform
a number of additional comparisons for studying this in more detail.
Specifically, when looking at the characteristics of the AAPD and
Reuters-21578 data one can see a heterogeneity within the data, e.g., by
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Fig. 7. (a) Rank ordered distributions of class frequencies for the Reuters-21578 data. The y-axis gives the number of samples having a certain class label. The specific number
for every 5 classes is shown on the top of each figure. (b)–(c): Performance comparison between BERT-BL and BR-CNN for subsets of classes based on the rank ordering of classes
according to the frequency of samples. Column (b): Results for the least frequent classes. Column (c): Results for the most frequent classes.
Fig. 8. Individual (class-wise) F1-scores for BR-CNN and LACO for AAPD (a) data and BR-CNN and BERT-BL for Reuters-21578 (b) data. The number of positive samples for each
class on the x-axis are the same as in Fig. 6(a) for AAPD and Fig. 7(a) for Reuters-21578.
ranking co-occurrence levels (see Fig. 5) and class frequencies (see
Figs. 6 and 7). For the class frequencies it is interesting to note that both
datasets have long tail distributions while Reuters-21578 has an even
longer tail than AAPD. Regarding the performance of the models, we
find a nonlinear dependency on the number of classes (for BR-CNN and
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LACO) meaning that by increasing the number of classes the learning
task is considerably more complicated putting potentially a limit on the
total number of classes that can be learned.

We also found that for both datasets where BR-CNN outperforms
SOTA methods, the number of frequent classes is essential to make such
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Fig. 9. Overview of combinations to categorize MLTC methods. Top table: Binary relevance-based approaches. Bottom table: Multi-label-based approaches.
a difference. According to Table 1, for MIMIC-III dataset, where all the
classes are frequently present during training, we observe the largest
performance gap between BR-CNN and novel architectures. For AAPD,
where no rare classes are present, BR-CNN also outperforms all novel
models but with a limited margin. For Reuters-21578 and RCV1-v2,
both datasets contain a portion of rare classes – some of the classes
even have under 4 training samples – one can observe inferior BR-CNN
in comparison to other methods.

One of the most interesting results, we find when studying the
number of classes added in ascending order according to the class fre-
quencies (see Fig. 6 b). Due to the fact that the first classes considered
are more difficult to learn (having fewer samples) an increase in the
number of classes leads to an improved performance. Importantly, this
is not a property of the BR-CNN but can be also observed for LACO.
Of similar interest is the fact that for smaller subsets of classes for
the Reuters-21578 data, BR-CNN can perform better than BERT-BL (see
Fig. 7 c)). This is important because BERT-BL is the better performing
model over all classes compared to BR-CNN (see Table Table 3). Both
findings demonstrate that general statements about methods cannot be
made without reference to the characteristics of the data. Overall, based
on our findings, we would like to argue that BR-CNN can perform as
well as the most competitive methods on targeted datasets.

Aside from these numerical findings, our study contributes to a more
fundamental discussion related to multi-label classification. Specifi-
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cally, according to [56] it seems opinio communis, which means the
generally accepted view or consensus, that an optimal prediction per-
formance for multi-label classification can only be achieved by methods
that explicitly take the dependencies between the labels of the classes
into consideration. Similar sentiments can be found widely, e.g., in [57–
59]. In summary, this consensus implies that for any given task, one
can always find a method from the LD (label dependency) family that
consistently outperforms any method from the BR (binary relevance)
family.

It is important to note, however, that while this prevailing view
exists, it has not been formally proven. Furthermore, it is worth high-
lighting that despite the perceived dominance of LD methods, there
are studies, such as Read et al. [14], cautioning against dismissing the
effectiveness of BR methods.

Our study challenges the prevailing consensus regarding the superi-
ority of LD (label dependency) methods, as evident from our results.
However, it is essential to provide context and perspective for this.
First, our focus was primarily on MLTC tasks, limiting the scope of
our study to text data. Consequently, we cannot ascertain if our results
extend to other data types such as image, audio or sensory data. A
problem with a comparison of methods among different data types is
that one cannot just apply the same analysis method to text, image or
audio data but each data type requires usually a non-trivial adaptation
of the analysis method. Hence, a comparison among data types is not
straight forward at all and it remains to be seen if different data types

favor different approaches.
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Second, our findings indicate that the results are influenced by
the characteristics of the text data, suggesting that no single method
universally outperforms others across all studied data. This implies that
text data from different domains, with distinct properties, may yield
different outcomes when applying different methods. From this one can
see that there is not only a difference between different data types but
also within the domain of text data itself. This heterogeneity is certainly
a reason for the observed complexity of MLC in general.

Third, until today the most effective approach to incorporating
label dependency information remains uncertain. For this reason, label
dependency information cannot ‘‘just’’ be added but this is a separate
research question that requires a dedicated analysis. Therefore, it is pos-
sible that future methods within the LD family may achieve improved
results, given advancements in methodology and techniques.

In summary, while our study challenges the prevailing consensus
and highlights certain limitations, it is crucial to consider the domain-
specific nature of our results and acknowledge the influence of the
characteristics of datasets.

7. Conclusion

Multi-label text classification (MLTC) presents a challenging task
that expands beyond binary classification. In general, such approaches
can be classified into two distinct model families: the label dependency
(LD) family and the binary relevance (BR) family. By emphasizing that
these two categories refer to model families allows to view members
from both families as adjustable methods which can be optimized and
fine-tuned for MLTC tasks. However, importantly, when aiming for an
optimal performance, it is commonly believed that methods incorpo-
rating label dependency information outperform those that transform
the multi-label classification task into multiple binary classifications
corresponding to BR methods.

As main result, we find that not only does a BR-CNN outperform
other advanced BR methods, but it can also outperform the best meth-
ods from the LD family on targeted data. That means BR-CNN is not
always the best but there are datasets for which this is the case. This
finding challenges the prevailing view that methods from the LD family
are universally superior to those from the BR family. Instead, it seems
that neither the LD nor the BR family is universally superior but opti-
mality is task dependent. While it remains to be seen how these results
translate to other data types, our results serve as a cautionary message
against dismissing BR methods. One reason we consider important
for obtaining our results is to realize that all methods from the LD
family, but also the BR family, are tunable and a comparison of both
requires the selection of the best method from each family. Otherwise
a comparison is unfair and featureless.
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