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Abstract In this article we go through some crucial developments regarding the
equality of the ordinary least squares estimator and the best linear unbiased esti-
mator in the general linear model. C.R. Rao (Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability. University of California
Press, Berkeley, pp. 355–372, 1967) appears to be the first to provide necessary
and sufficient conditions for the general case when both the model matrix and the
random error term’s covariance matrix are possibly deficient in rank. We describe
the background of the problem area and provide some examples. We also consider
some personal CRR-related glimpses of our research careers and provide a rather
generous list of references.
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1 Introduction and background

Let us begin by quoting the beginning of Chapter 10, entitled “BLUE”, of theMatrix
Tricks Book by Puntanen, Styan & Isotalo (2011):
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Over the years, one of our favourite research topics in linear models has been the equality
between OLSE and BLUE of Xβ. In Proposition 10.1 [in the present article Theorem 4]
we collect together some necessary and sufficient conditions for their equality. We find this
collection very useful andwe believe it includes several interesting linear algebraic problems.

While preparing this book, for a long time the title of this chapter was “OLSE vs BLUE”,
but the simpler version “BLUE” describes better the matrix tricks under consideration. In
the sections of this chapter we consider, for example, the best unbiased linear predictors,
BLUPs, and mixed models.

We will closely follow the article “The equality of the ordinary least squares
estimator and the best linear unbiased estimator” in The American Statistician by
Puntanen & Styan (1989), the most cited joint paper by these authors, as well as
the articles by Baksalary, Puntanen & Styan (1990b) and by Puntanen & Styan
(1996): “A brief biography and appreciation of Calyampudi Radhakrishna Rao, with
a bibliography of books and papers”. Our aim is to give an easy-to-read review for
a non-expert of the area and illustrate the role of C.R. Rao in its development. This
article contains no new technical results, makes no claim at completeness; this is a
brief survey—but we believe that the years after 1989 have matured our insight into
this area. Browsing again through the old material was very interesting. Hopefully
we can express this in what follows.

To give some perspective, we start by going through some background in the
spirit of Puntanen & Styan (1996).

In 1954 C.R. Rao received some data collected in Japan in order to study the
long-term effects of radiation on atom bomb casualties in Hiroshima and Nagasaki.
The statistical analysis involved finding a matrix to replace the inverse of X′X,
where X is the model matrix in the linear model and X′ stands for its transpose;
here the matrix X′X was singular. This led to a pseudoinverse which was introduced
by Rao (1955) in Sankhyā. This was the same year that Penrose (1955) published
his paper on generalized inverses. Rao then discovered that the key condition for a
generalized inverse G of a matrix A was the equation AGA = A, introducing the
notation G = A−. The calculus of generalized inverses and the unified theory of
linear estimation were then presented by Rao (1962), in the Journal of the Royal
Statistical Society, Ser. B. The subject of generalized inverses was further developed
leading to the monograph (1971a) with Sujit Kumar Mitra entitled Generalized
Inverse of Matrices and its Applications.

As a sidetrack, below is an excerpt from S.K. Mitra’s interview, carried out
in February 1993 in the Indian Statistical Institute, New Delhi, see Puntanen &
Styan (2012). Professor Mitra was replying to the following question: When was the
decision made that you will start writing that book with Professor Rao?

In 1967 we had a summer school at the ISI, with a lot of students participating. Often new
areas of statistics and mathematics were exposed to the students during these six weeks of
summer. I was in fact once the programme director of such a summer school.

As a member of the summer school, I was able to get the best of C.R. Rao’s papers and
manuscripts. So I taught a course in the summer school and then by the time I had completed
the course, I myself had some new results. In fact my first two papers on generalized inverses,
which appeared in 1968, were essentially papers that appeared in their first form in these
summer schools.



OLSE vs BLUE 3

Professor C.R. Rao had at that time already decided to write a book on generalized
inverses all by himself. It was also announced as a forthcoming publication of the Statistical
Publishing Society in Calcutta. He must have seen my new results and in a few days he
invited me be a co-author. That is how that book started.

Using the concept of generalized inverse, Rao (1971, 1973c) further developed a
unified theory for linear estimation, noting that generalized inverses were particularly
helpful with explicit expressions for projectors. We wish to cite a few words from
the Appendix of the article by Rao (1971). The title of the Appendix was “The Atom
Bomb and Generalized Inverse”. Below the first and last paragraph of the Appendix
are quoted.

The author was first led to the definition of a pseudo-inverse (now called generalized inverse
or g-inverse) of a singular matrix in 1945–1955 when he undertook to carry out multivariate
analysis of anthropometric data obtained on families of Hiroshima and Nagasaki to study
the effects of radiation due atom bomb explosions, on request from Dr. W.J. Schull of
the University of Michigan. The computation and use of a pseudo-inverse are given in a
statistical report prepared by the author, which is incorporated in Publication No. 461 of the
National Academy of Sciences, U.S.A., by Neel & Schull (1956). It may be of interest to the
audience to know the circumstances under which the pseudoinverse had to be introduced.

It is hard to believe that scientists have found in what has been described as the greatest
tragedy a source for providing material and simulation for research in many directions.

2 What is OLSE, what is BLUE?

Let us quickly recall the definition of the ordinary least squares estimator, OLSE,
and the best linear unbiased estimator, BLUE, and before that, the linear statistical
model under discussion. We will consider the general linear model

y = Xβ + ε , or shortly the triplet M = {y,Xβ,V} , (1)

where X is a known n × p model matrix, y is an observable n-dimensional random
vector, β is p-dimensional vector of unknown but fixed parameters, and ε is an
unobservable vector of random errors with expectation E(ε) = 0, and covariance
matrix cov(ε) = V. We will denote µ = Xβ so that E(y) = µ = Xβ. Often the
covariance matrix is of the type σ2V, where σ2 is an unknown positive constant.
However, in our considerations σ2 has no role. The nonnegative definite matrix V
is known and can be singular. If V is not known things get much more complicated;
for the so-called empirical best linear unbiased predictors in the linear mixed model,
see, for example, Haslett & Welsh (2019).

Then somewords about the notation. The symbolsA−,A+,A′,C (A), andC (A)⊥,
denote, respectively, a generalized inverse, the (unique) Moore–Penrose inverse, the
transpose, the column space, and the orthogonal complement of the column space
of the matrix A. Notation A− refers to any matrix satisfying AA−A = A and A+
satisfies the four Moore–Penrose conditions. By (A : B) we denote the partitioned
matrix with Aa×b and Ba×c as submatrices. The symbol A⊥ stands for any matrix
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satisfying C (A⊥) = C (A)⊥. Furthermore, we will use PA = AA+ = A(A′A)−A′
to denote the orthogonal projector (with respect to the standard inner product) onto
the column space C (A), and QA = I − PA, where I refers to the identity matrix of
appropriate order. In particular, we denote shortly

H = PX , M = In − PX . (2)

A linear statistic By is said to be a linear unbiased estimator, LUE, for the
parametric function Kβ, where K ∈ Rq×p , if its expectation is equal to Kβ, i.e.,

E(By) = BXβ = Kβ for all β ∈ Rp, i.e., BX = K . (3)

When C (K′) ⊆ C (X′) holds, Kβ is said to be estimable.

Definition 1 The linear unbiased estimator By is the best linear unbiased estimator,
BLUE, of estimable Kβ if By has the smallest covariance matrix in the Löwner
sense among all linear unbiased estimators of Kβ:

cov(By) ≤L cov(B#y) for all B# : B#X = K , (4)

that is, cov(B#y) − cov(By) is nonnegative definite for all B# : B#X = K .

Under the model {y,Xβ,V}, the ordinary least squares estimator, OLSE, for β is
the solution minimizing the quantity ‖y − Xβ‖2 with respect to β yielding to the
normal equation X′Xβ = X′y . Thus, if X has full column rank, the OLSE of β
is β̂ = (X′X)−1X′y = X+y. In the general case, the set of all vectors β̂ satisfying
X′Xβ̂ = X′y, can be written as

β̂ = (X′X)−X′y + [Ip − (X′X)−X′X]t , (5)

where (X′X)− is an arbitrary (but fixed) generalized inverse of X′X and t ∈ Rp is
free to vary. On the other hand, every solution to the normal equations can be written
as β̂ = (X′X)−X′y for some (X′X)−.

Of course, it is questionable whether it is quite correct to call β̂ an estimator
when it is not unique (after y is being observed); it is merely a solution to the normal
equations; “This point cannot be overemphasized”, as stated by Searle (1971, p. 169).
In this context we wish to cite also the following from Searle (2000, p. 26):

One of the greatest contributions to understanding the apparent quirkiness of normal equa-
tions of non-full rank (as is customary with linear models), which have an infinity of
solutions, is due to Rao (1962). Using the work of Moore (1920) and Penrose (1955), he
showed how a generalized inverse matrix yields a solution to the normal equations and how
that solution can be used to establish estimable functions and their estimators—and these
results are invariant to whatever generalized inverse is being used. Although the arithmetic of
generalized inverses is scarcely any less than that of regular inverses, the use of generalized
inverses is of enormous help in understanding estimability and its consequences.

If Kβ is estimable, then Kβ̂ = K(X′X)−X′y, i.e., the OLSE of Kβ is unique
whatever choice of β̂, i.e., whatever (X′X)− we use. This can be seen from Lemma
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2.2.4 of Rao & Mitra (1971a) which states that for nonnull matrices A and C the
following holds:

AB−C = AB+C for all B− ⇐⇒ C (C) ⊆ C (B) & C (A′) ⊆ C (B′) . (6)

In particular, choosing (X′X)− as (X′X)+ and using X+ = (X′X)+X′, we can write
Kβ̂ = K(X′X)+X′y = KX+y.

For K = X we have

OLSE(Xβ) = X(X′X)−X′y = XX+y = PXy = Hy = µ̂ . (7)

Obviously µ̂ = Hy is a LUE for Xβ. Let By be another LUE of Xβ, i.e., B satisfies
BX = X and thereby BH = H = HB′. Thus, under the model {y,Xβ, In }:

cov(By) = cov[Hy − (H − B)y] = cov(Hy) + cov[(H − B)y] ≥L cov(Hy) , (8)

and so we have proved a simple version of the Gauss–Markov theorem:

Theorem 1 Under the model {y,Xβ, In }, the OLSE of Xβ is the BLUE of Xβ, or
shortly

µ̂ = OLSE(Xβ) = BLUE(Xβ) = µ̃ , (9)

and for any estimable Kβ, OLSE(Kβ) = BLUE(Kβ).

When (9) holds, we will use phrases like “OLSE is BLUE”. The claim concerning
estimable Kβ in Theorem 1 can be confirmed by observing that due to estimability,
Kβ = LXβ for some L and thereby OLSE(Kβ) = LOLSE(Xβ) = LHy. Actually,
under {y,Xβ,V}, the statements OLSE(Xβ) = BLUE(Xβ) and OLSE(Kβ) =
BLUE(Kβ) for all estimable Kβ are equivalent. It is clear that β is estimable if and
only if X has full column rank.

Consider now the model M where V is positive definite, and suppose that V1/2

is the positive definite square root of V. Premultiplying M by V−1/2 gives the
transformed model M# = {V−1/2y, V−1/2Xβ, In }. In light of Theorem 1, the BLUE
of Xβ under M# equals the OLSE under M# and thus

BLUE(Xβ |M#) = µ̃(M#) = X(X′V−1X)−X′V−1y = PX;V−1y , (10)

where PX;V−1 is the orthogonal projector onto C (X) when the inner product matrix
is V−1. Here is a crucial question: is the BLUE of Xβ under M# the same as under
M , in other words, has the transformation done via V−1/2 any effect on the BLUE
of Xβ? The answer is that there is no effect and that

PX;V−1y = BLUE(Xβ |M ) = BLUE(Xβ |M#) = OLSE(Xβ |M#) . (11)

The result (11), sometimes referred to as the Aitken-approach, see Aitken (1935),
Farebrother (1990, 1997) and Searle (1996), is well known in statistical textbooks.
Farebrother (1990) points out that Aitken’s contribution to the subject was to show
that a least squares estimator of β minimizing (y − Xβ)′V−1(y − Xβ) could be
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obtained by premultiplying the model {y,Xβ,V} by an n × n matrix D satisfying
DVD′ = In . However, Aitken did not show that this estimator was the best linear
unbiased estimator.

The property that the transformation via V−1/2 has no effect on the BLUE is
phrased as “V−1/2y is linearly sufficient forXβ”; see, e.g., Baksalary &Kala (1981a,
1986) and Haslett et al. (2021).

Example 1. [Very simple model.] Let us consider a linear model y = xβ + ε, where
cov(y) = V. Then

OLSE(β) = β̂ = (x′x)−1x′y , var( β̂) = (x′x)−2x′Vx , (12a)

BLUE(β) = β̃ = (x′V−1x)−1x′V−1y, var( β̃) = (x′V−1x)−1, (12b)

where “var” refers to the variance. Now we have var( β̃) ≤ var( β̂), i.e.,

(x′V−1x)−1 ≤ (x′x)−2x′Vx , i,e., (x′x)2 ≤ x′V−1x · x′Vx , (13)

which is a special case of the famous Cauchy–Schwarz inequality. It is well known
that the equality in (13) holds if and only if

Vx = λx , for some λ ∈ R , (14)

and hence x is an eigenvector of V corresponding to eigenvalue λ. Condition (14) is
just a version of Anderson’s (1948) condition for the equality of OLSE and BLUE;
see the beginning of Section 3 below. Notice that putting x = 1, a vector of ones,
shows that the arthmetic mean ȳ is BLUE whenever V has its row totals equal, i.e.,
V1 = λ1 for some scalar λ.

We might ask how “bad” the OLSE could be with respect to the BLUE. One
natural measure for the relative efficiency of OLSE is the ratio of their variances:

φ = eff( β̂) =
var( β̃)
var( β̂)

=
(x′V−1x)−1

(x′x)−1x′Vx(x′x)−1
=

(x′x)2

x′Vx · x′V−1x
. (15)

Clearly we have 0 < φ ≤ 1 , where the upper bound is obtained if and only if
OLSE equals BLUE. The lower bound of φ can be obtained from the Kantorovich
inequality; see, e.g., Watson et al. (1997),

τ21 :=
4λ1λn

(λ1 + λn )2
≤

(x′x)2

x′Vx · x′V−1x
= eff( β̂) = φ, (16)

where λ1 ≥ λ2 ≥ · · · ≥ λn > 0 are the eigenvalues ofV. The lower bound is obtained
when x is proportional either to t1 + tn or to t1 − tn ; in short, x is proportional to
xbad = t1 ± tn , where T = (t1 : t2 : . . . : tn ) is the matrix with ti being the
orthonormal eigenvectors of V corresponding to eigenvalues λ1, λ2, . . . , λn . �

Consider then the covariance matrices of OLSE and BLUE when X has a full
column rank and V is positive definite. Then under M = {y,Xβ,V},
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cov(β̂) = (X′X)−1X′VX(X′X)−1, cov(β̃) = (X′V−1X)−1, (17)

and we have the Löwner ordering

(X′V−1X)−1 ≤L (X′X)−1X′VX(X′X)−1. (18)

If X does not have a full column rank then Xβ̃ = µ̃ = X(X′V−1X)−X′V−1y and

cov(µ̃) = X(X′V−1X)−X′ ≤L HVH = cov(µ̂) . (19)

What is now interesting is that the difference cov(β̂) − cov(β̃) has an alternative
representation, expressed in Theorem 2 below. Among the first places where Theo-
rem 2 occurs are probably the papers by Khatri (1966, Lemma 1) and Rao (1967,
Lemmas 2a–2c); see also Rao (1973a, Problem 33, p. 77).

Theorem 2 Consider the linear model M = {y,Xβ,V}, where X has full column
rank and V is positive definite, and denote H = PX,M = In −H. Then

(a) cov(β̃) = (X′V−1X)−1 = (X′X)−1[X′VX − X′VM(MVM)−MVX](X′X)−1

= X+[V − VM(MVM)−MV](X+)′

= cov(β̂) − (X′X)−1X′VM(MVM)−MVX(X′X)−1,
(b) cov(β̂) − cov(β̃) = X+VM(MVM)−MV(X+)′,
(c) cov(µ̂) − cov(µ̃) = HVH − X(X′V−1X)−X′ = HVM(MVM)−MVH ,
(d) X(X′V−1X)−X′V−1 = In − VM(MVM)−M = H −HVM(MVM)−M .

In (c) and (d) the matrix X does not need to have full column rank.

Actually, instead ofM, Rao (1967, Lemmas 2a–2c) used a full column rankmatrix
Z spanning C (X)⊥. Thus, for example,

(X′V−1X)−1X′V−1 = X+ − X+VZ(Z′VZ)−1Z′. (20)

It is noteworthy that for a positive definite V we have

Ṁ : =M(MVM)−M = V−1/2PV1/2MV−1/2

= V−1/2(In − PV−1/2X)V−1/2 = V−1(In − PX;V−1 ) . (21)

Thus the BLUE’s residual can be expressed as y− µ̃ = VṀy and the “weighted sum
of squares of errors” is

SSE(V) = (y − µ̃)′V−1(y − µ̃) = y′Ṁy , (22)

while the corresponding quantity in model {y,Xβ, In } is SSE(I) = y′My.
What does it mean to have the equality OLSE = BLUE? There is no problem

if this equality is interpreted as a short version of the phrase “Hy has the minimal
covariance matrix in the sense of Definition 1”. On the other hand, for example in
the full rank model, we might ask what is the “real meaning” of the equality

Hy = X(X′V−1X)−X′V−1y = PX;V−1y ? (23)
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Estimator Hy is a random vector as is PX;V−1y; this is so before observing y. The
equality of two random vectors requires a specific definition and the essential matter
is how the set of possible realized values of the response variable y is defined. Notice
that we do not make a notational difference between the random vector y and its
realized value.

The model M is said to be consistent if the observed value of y lies in C (X : V):

y ∈ C (X : V) = C (X : VX⊥) = C (X : VM) = C (X) ⊕ C (VM) , (24)

where ⊕ refers to the direct sum. For the equality C (X : V) = C (X : VM), see, e.g.,
(Rao, 1974, Lemma 2.1). Let A and B be m × n matrices. Then, in the consistent
model M , the estimators Ay and By are said to be equal with probability 1 if

Ay = By for all y ∈ C (X : V) , i.e., A(X : V) = B(X : V) , (25)

which further can be written as A(X : VM) = B(X : VM). Often we drop off the
phrase “with probability 1”. In (23) the vector y varies through C (X : V) = Rn

and thus (23) becomes the equality between the multipliers H and PX,V−1 . For the
consistency of the linear model, see, e.g., Rao (1973a, p. 297), and Baksalary et al.
(1992).

We will use short notations like Ay = BLUE(µ | M ) = µ̃ = µ̃(M ) . Thus the
equality OLSE(µ) = BLUE(µ), i.e., µ̂ = µ̃ means that

Hy = Ay for all y ∈ C (X : V) , (26)

where A is a matrix providing the µ̃. There is an infinite number of such matrices
A when rank(X : V) < n, but under a consistent model the realized value of Ay is
unique.

Example 2. [Equality of OLSE and PX;V+y.] Denoting PX;V+ = X(X′V+X)+X′V+,
one might be curious to know under which condition PX;V+y equals µ̂ (w.p. 1). This
happens if and only if X(X′V+X)+X′V+(X : V) = H(X : V) , i.e.,

(i) X(X′V+X)+X′V+X = X , and (ii) X(X′V+X)+ X′PV = HV. (27)

Postmultiplying (ii) in (27) by V+X and using (i) yields X = HPVX and thereby
X′X = X′PVX, i.e., X′QVX = 0, so that C (X) ⊆ C (V). This is the result obtained
by Baksalary & Kala (1983). It becomes particularly interesting if we utilize the
following fact, see Zyskind & Martin (1969) and Mitra & Rao (1968, p. 286):

X(X′V+X)+X′V+y = BLUE(Xβ) ⇐⇒ C (X) ⊆ C (V) . (28)

This means that PX;V+y equals µ̂ only if they equal µ̃. The model where C (X) ⊆
C (V), is often called a weakly singular linear model. Actually then PX;V+y is invari-
ant for any choice of generalized inverses involved. �
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3 Year 1967: a good one for the OLSE = BLUE

As noted by Puntanen & Styan (1989, p. 154), the first condition for the equality
between OLSE and BLUE of Xβ was obtained by Anderson (1948, p. 92):

Let X and V have full rank. If the p columns of the n × p matrix X are linear combinations
of p of the eigenvectors of V, then OLSE is BLUE.

Anderson’s result was published in Skandinavisk Aktuarietidskrift (from 1973: Scan-
dinavian Actuarial Journal), and as Anderson says in his interview in Statistical
Science (DeGroot, 1986, p. 102): “As a result it did not get a great deal of attention
. . . So from time to time people discover that paper.”

ThatAnderson’s condition is also necessarymay be deduced from results obtained
byWatson (1951, 1955). Watson was discussing the efficiency of OLSE showing the
necessity of Anderson’s condition for p = 1.

Magness&McGuire (1962) appear to be the first to show that this condition is both
necessary and sufficient, though Anderson (1972, p. 472) mentioned that sufficiency
was essentially given in his 1948 paper. Interestingly, Magness & McGuire (1963)
published the following “Acknowledgment of priority”:

Theorem 2 of the authors’ paper 1962 is a special case of Equation (3.5) of Watson (1955).
Also, the fact that least squares and minimum variance estimates are equally efficient when
the regression vectors are eigenvectors of the noise covariance matrix is apparently known
and is referred to by Watson. The authors regret having overlooked Professor Watson’s
outstanding prior contribution.

It seems that Zyskind, in an invited paper presented at the 1962 Institute of Math-
ematical Statistics Annual Meeting, was the first author to consider the equality of
the OLSE and BLUE when X has rank less than p, see Zyskind (1962) which is an
abstract of his talk. The covariance matrix was still assumed positive definite.

Goldman&Zelen (1964) allowed the covariancematrixV to be possibly singular;
they obtained a similar eigenvector condition to that of Anderson (1948), namely
C (X) = C (T[r ]) where T[r ] is an n× r matrix whose columns are the r eigenvectors
corresponding to r nonzero eigenvalues of V with r = rank(X). As shown later by
Zyskind (1967, p. 1098) the nonzero requirement is not needed.

Rao (1967, 1968) appears to be the first to provide further necessary and sufficient
conditions for the general case when both X and V are possibly deficient in rank. In
1965 at the Fifth Berkeley Symposium, Rao (1967, p. 364) presented the following
two conditions, each of which is both necessary and sufficient for the equality of the
OLSE(Xβ) and the BLUE(Xβ):

(i) X′VX⊥ = 0 , i.e., HVM = 0 , (ii) V = αIn + XAX′ + X⊥B(X⊥)′, (29)

for some scalar α and some symmetricA andB so thatV is nonnegative definite. It is
clear that (i) is equivalent toC (VX) ⊆ C (X) ,which becomes equality ifV is positive
definite. Rao (1968, p. 68) emphasized that “the basis of the proof is the following:
the necessary and sufficient condition that a statistic is a minimum variance unbiased
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estimator is that it has zero covariance with statistics whose expectation is identically
zero (Rao, 1965, pp. 185, 257) [referring to the first edition of Rao (1973a)].”

Notice that the case (ii) of (29), which is sometimes called “Rao’s structure”,
occurs in the mixed linear model, where y = Xβ + Xu + X⊥v + e, and u, v and e
are uncorrelated random vectors with zero expectations and covariance matrices Γ,
Θ, and σ2In , respectively. See also Mitra & Rao (1969) for properties of specific
structures of V.

Zyskind (1967, Th. 2) who referred to Rao (1967), gave, without any restrictive
rank assumptions, eight necessary and sufficient conditions under which OLSE
is BLUE, thus extending the results he gave in 1962. Kempthorne (1975), in the
obituary for Zyskind (1929–1974), writes:

Zyskind’s interest in the method of least squares led to a rather remarkable set of papers.
. . . A subsequent (1967) paper laid out the bulk of the story with respect to equality of OLSE
and BLUE. . . . The importance of this whole line of work is underscored by the occurrence
of related work by W.H. Kruskal, C.R. Rao and G.S. Watson, as well as others.

Because Rao gave his paper in 1965 and Zyskind (1967) refers to it, we credit
Rao as the first author to have established HVM = 0; see Baksalary & Kala (1983,
pp. 119 and 240) and Kempthorne (1976, p. 217). In his Acknowledgements Zyskind
(1967) writes: “I wish to thank Professor C.R. Rao for permitting me to see a copy
of the final version of his manuscript (1967) before its publication.”

Wemight cite an interesting piece fromRao’s interview byDeGroot (1987, p. 59):

Rao: There was another incident recently in which somebody claimed priority because he
had mentioned a result slightly less general than mine in an abstract in the Annals. You can
say anything in an abstract. If it is right, you can claim credit and priority.

DeGroot: Yes. Take a chance; maybe it will be right. There is no serious screening of
abstracts. I think that’s OK, as long as everyone realizes that the results are not necessarily
correct or original.

Rao: Actually when that person wrote the full paper on the basis of the abstract, I was a
referee and it turned out that this result was also not correct as stated.

Rao (1968, p. 259) further commented on Zyskind (1967) and Watson (1967) in
the following way (in our notation):

Inmy previous paper 1967, I gave details of the proof of (29)whenV andX′X are nonsingular
and mentioned that the same proof holds more generally for singular V and X′X. I omitted
the details in the latter as the extension was extremely simple, and not relevant to the main
theme of the paper.

In a recent paper, Zyskind (1967) thought that there may be some difficulty in proving
the condition (29) in its widest generality when V is singular. Watson (1967) writes that,
“Rao (1965) [referring to the Fifth Berkeley Symposium] remarks that his result is true for
V singular and rank of X is below p. Some skill with generalized inverses might show the
proof is still valid.” In view of these remarks and other statements it seems necessary to
elaborate the earlier proof.

An early description of the coordinate-free approach to linear models was made
by Kruskal (1961, 1968). Watson (1967, p. 1682) wrote:



OLSE vs BLUE 11

In some 1962 correspondence with Dr. M.E. Muller and the author, Professor W. Kruskal
indicated a coordinate-free proof of the necessity and sufficiency when X, but not V, is
possibly not of full rank. This result is particularly simple to prove because, instead of
working with β̂ and β̃ he uses µ̂ = Xβ̂ and µ̃ = Xβ̃. He states that “µ̂ = µ̃ if and only if
C (VX) = C (X)”. The author hopes that Professor Kruskal’s result will appear in the near
future.

In an interview by Zabell (1994, p. 294), Kruskal mentions, referring to his 1968
paper: “That started out as an exercise, an exam exercise in the course I was giving,
and then Geoff Watson came along with much the same material; he encouraged me
to try for publication.”

Herr (1980, p. 46), in an interesting article “On the history of the use of geometry
in the general linear model”, commented on various approaches to handle linear
models. About Kruskal he writes the following:

These two papers. Kruskal (1968, 1975), are elegant examples of the analytic geometric
approach to linear models. In Kruskal (1968), the question of equality of simple least
squares and best linear unbiased estimates, which was considered in Zyskind (1967) and
Watson (1967), is treated using a coordinate-free approach. The comparison of the parts of
the three papers dealing with this question is very instructive. The simplicity and beauty of
the coordinate-free approach is clearly demonstrated by such a comparison.

In Kruskal (1975), an analytic geometric approach is used with such skill and grace
that the paper ought to be required reading for anyone who might be tempted to deal with
generalized inverses.

Eaton, also a great promoter of the coordinate-free approach, see his papers (1970;
1978), wrote in (2007, p. 265):

The direct effect of Kruskal (1968), a marvelous paper, is relatively easy to describe. In
coordinate-free language, here is a statement of the main result of that paper:
The Gauss–Markov and least squares estimators are the same if and only if the linear
manifold of the mean vector is an invariant subspace of the covariance.
[C (VX) ⊆ C (X), in our notation.]

Anderson (1971, p. 563) gave a quite different rank criterion for the equality
of OLSE and BLUE in the form of rank-additivity, assuming V and X be of full
rank. George Styan (1973) extended this criterion by removing the restriction on the
rank of X. Below is George’s description (in our notation) on this development, see
O.M. Baksalary & Styan (2005, p. 16).

I think that the first paper by Jerzy Baksalary I read was Baksalary & Kala (1977), which
I reviewed for Mathematical Reviews. In that paper it is shown that in the linear model
{y, Xβ, V} the best linear unbiased estimator of Xβ equals the ordinary least-squares
estimator if and only if

rank(X′T1) + rank(X′T2) · · · + rank(X′Ts ) = rank(X) , (30)

where V has s distinct eigenvalues and T1, T2, . . . , Ts are matrices of corresponding
orthonormalized eigenvectors. Here X can be less than full column rank and V may be
singular. The result for X possibly of less than full column rank but with V positive definite
was established by me in 1973, extending the earlier result with X of full column rank and
V positive definite due to Anderson (1971, p. 561).
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The paper by Baksalary & Kala (1977) prompted me to read further papers by Baksalary
and Kala, and [. . . old reminiscences . . . ] on 27 August 1980 both Jerzy Baksalary and
Radosĺaw Kala met me at the main railway station in Poznań.

A very different modification of the problem of when the OLSE is the BLUE
originates from McElroy (1967). We present it here in a generalized version due to
Zyskind (1969) and Baksalary & van Eijnsbergen (1988): Given a matrix U, such
that rank(U) ≤ n − 1, when does µ̂ = µ̃ hold for every model matrix X satisfying
C (U) ⊆ C (X).

We have now more or less covered the development of the OLSE vs BLUE saga
up till the end of the 1970s, having the role of Professor Rao in mind. There is a lot
of interesting literature after that (as well as before) that we have no space to discuss.
However, we might wish to mention

• Gouriéroux & Monfort (1980), Baltagi (1989), McAleer (1992) and Larocca
(2005) providing econometric examples and references;

• Chapter 8 of Rao & Mitra (1971a), and Mathew & Bhimasankaram (1983a,b)
reviewing conditions for optimality and validity of least-squares theory;

• Baksalary & Kala (1978, 1980) and Haberman (1975) who studied the Euclidean
distance between OLSE and BLUE.

We may also mention Yongge Tian who in numerous papers has studied OLSE vs
BLUE matters using so-called matrix rank methods, see, e.g., Tian (2013), Tian &
Zhang (2016), and Puntanen, Styan & Tian (2005).

The model M can be extended to the case when we wish to predict a “new
future” value of y∗, assumed to be coming from y∗ = X∗β + ε∗, where X∗ is a
known q × p matrix and ε∗ is a q-dimensional random error vector. We assume
that cov(y, y∗) = V12 is known. For conditions of Ay being the best linear unbiased
predictor, BLUP, for y∗, minimizing the covariance matrix of the prediction error,
see, e.g., Goldberger (1962), Christensen (2011, p. 294), and Isotalo & Puntanen
(2006, p. 1015). For relations between OLSE, BLUE and BLUP, see, e.g., Watson
(1972), Baksalary & Kala (1981b) and Haslett et al. (2014).

We feel it appropriate, though not fully related toOLSE vs BLUE, to complete this
section (where the main year was 1967), by mentioning that on 5 April 1967, C.R.
Rao left Calcutta for London and attended the induction ceremony to the Fellowship
of the Royal Society, on 6 April 1967. This prompted Professor P.C. Mahalanobis to
use the following words in his speech on 12 February 1968, see Mahalanobis (1969,
p. 239):

I should now like to say, briefly, how proud I feel that C.R. Rao was elected a Fellow of the
Royal Society last year. He came to the Institute in January 1941 to learn statistics. I feel
proud that my direct pupil is now in the Royal Society. In India, we have a saying Putrat
ichhyet parajayam. One wishes for defeat by his son. I have no children. In India there is
also the alternative version Sishyat ichhyet parajayam. One wishes for defeat by his pupil. It
is my great happiness to admit defeat by my pupil.
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4 OLSE = BLUE: conditions

Theorem 3 Consider the general linear modelM = {y,Xβ,V}. ThenOLSE(Xβ) =
BLUE(Xβ) if and only if any of the following equivalent conditions holds. (Note: V
is replaceable with V+ and H and M can be interchanged.)

(i) HV = VH , (ii) HV = HVH , (iii) HVM = 0 ,
(ii) X′VX⊥ = 0 , (v) C (VX) ⊆ C (X) , (vi) C (VX) = C (X) ∩ C (V) ,

(vii) HVH ≤L V , i.e., V −HVH is nonnegative definite,
(viii) HVH ≤rs V , i.e., rank(V − HVH) = rank(V) − rank(HVH) , i.e., HVH and

V are rank-subtractive,
(ix) C (X) has a basis consisting of r eigenvectors of V , where r = rank(X) ,
(x) rank(T′1X) + · · · + rank(T′sX) = rank(X) , where Ti is a matrix consisting of

the orthogonal eigenvectors w.r.t. the ith largest eigenvalue λ (i) of V; λ (1) >
· · · > λ (s) ,

(xi) T′iHTi = (T′iHTi )2 for all i = 1, 2, . . . , s ,
(xii) T′iHT j = 0 for all i, j = 1, 2, . . . , s , i , j ,
(xiii) C (Ti ) = C (Ti ) ∩ C (X) ⊕ C (Ti ) ∩ C (M) for all i = 1, . . . , s ,
(xiv) the squared nonzero canonical correlations between y andHy are the nonzero

eigenvalues of V−HVH for all V−,
(xv) V ∈ V1 = {V ≥L 0 : V = HAH +MBM , A ≥L 0 , B ≥L 0 } ,
(xvi) V ∈ V2 = {V ≥L 0 : V = XCX′ + X⊥D(X⊥)′, C ≥L 0 , D ≥L 0 } ,
(xvii) V ∈ V3 = {V ≥L 0 : V = αI+XKX′+X⊥L(X⊥)′, α ∈ R , K = K′, L = L′ } .

Some sources for the above statements are given in Section 3. For collections of
the proofs, see Alalouf & Styan (1984) and Puntanen et al. (2011, Ch. 10). Notice
the somewhat peculiar statements (vii), (viii) and (xiv); they appear in Baksalary &
Puntanen (1989, 1990a,b). Some further conditions are given by O.M. Baksalary et
al. (2013, Th. 5).

Example 3. [Centering the model.] Consider the partitioned linear model

M12 = {y, 1α + X0βx , In } , where X0 ∈ R
n×k, (31)

and 1 ∈ Rn is a vector of ones. Assume that X = (1 : X0) has full column rank.
Premultiplying M12 by the centering matrix C = In − P1 yields the centered model

M12·1 = {Cy, CX0βx , C} . (32)

In this centered model we have a singular covariance matrix and hence it may seem
that finding a BLUE would be problematic. However, corresponding to condition (v)
of Theorem 3 we have now C (C · CX0) ⊆ C (CX0) and thus

BLUE(βx |M12·1) = OLSE(βx |M12·1) = (X′0CX0)−1X′0Cy := β̂x . (33)

On the other hand, it is standard textbook material that β̂x is the BLUE for βx in the
partitioned model M12. Thus centering has no effect on the BLUE of βx, and so Cy
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is a linearly sufficient statistic for βx in M12. Centering is a simple example of the
model reduction, i.e., premultiplyingM12 = {y,X1β1+X2β2,V} byM1 = In −PX1 ,
yielding to

M12·1 = {M1y, M1X2β2, M1VM1} , (34)

see, e.g., Groß & Puntanen (2000) and Chu et al. (2004, 2005). �

Example 4. [Intraclass correlation.] Consider V which has the intraclass correlation
structure (of which the centering matrix C is an example), that is, V is of the type
V = (1−%)In+%11′, where− 1

n−1 ≤ % ≤ 1. In this situationHV = (1−%)H+%H11′,
and thereby HV = VH if and only if

H11′ = 11′H . (35)

We can conclude that (35) holds if and only if 1 is an eigenvector ofH, i.e.,H1 = λ1 .
The eigenvalues of H are 0 and 1, with multiplicities n − rank(X) and rank(X),
respectively. Hence (35) holds, i.e., OLSE = BLUE, if and only if 1 ∈ C (X) or
1 ∈ C (X)⊥. �

5 The fundamental BLUE equation

Theorem 4 below provides so-called fundamental BLUE equations.

Theorem 4 Consider the linear model M = {y,Xβ,V}. Then the linear estimator
Gy is the BLUE for µ = Xβ if and only if G ∈ Rn×n satisfies the equation

G(X : VX⊥) = (X : 0) . (36)

Moreover, let Kβ, where K ∈ Rq×p , be estimable so that C (K′) ⊆ C (X′). Then By
is the BLUE of Kβ if and only if B ∈ Rq×n satisfies the equation

B(X : VX⊥) = (K : 0) . (37)

For the proofs, see, e.g., (Rao, 1973b, p. 282) and for coordinate-free approach
(Drygas, 1970, p. 55) and Zmyślony (1980). For further proofs see, for example, Groß
(2004), Kala (1981, Th. 3.1), Puntanen, Styan &Werner (2011), and Puntanen et al.
(2011, Th. 10). Baksalary (2004) provides a proof which he describes as follows:
“From the algebraic point of view, the present development seems to be the simplest
from among all accessible in the literature till now”.

Of course, in (37) and (36) we can replace X⊥ with M = In − PX. Equation
(36) is always solvable for G while (37) is solvable whenever Kβ is estimable.
Solutions are unique if and only if rank(X : V) = n. The solution for G satisfying
G(X : VM) = (X : 0) can be expressed, for example, in the following ways:
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G1 = (X : 0)(X : VM)−, G2 = In − VM(MVM)−M , (38a)
G3 = H −HVM(MVM)−M , G4 = X(X′W−X)−X′W−, (38b)

where W belongs to the class of matrices

W = {W ∈ Rn×n : W = V + XUX′, C (W) = C (X : V)} . (39)

In (39) U can be any p × p matrix as long as C (W) = C (X : V) is satisfied; see,
e.g., Baksalary et al. (1990a, Th. 2), Baksalary &Mathew (1990, Th. 2) and Harville
(1997, p. 468). The general solution to (36) can be expressed as Gi + NiQW where
Ni ∈ R

n×n are free to vary. For the relations between the representations of the
BLUEs, see, e.g., Albert (1973), Rao (1978, 1979), Rao &Mitra (1971b) and Searle
(1994).

The covariance matrix of the µ̃ = BLUE(Xβ) can be expressed as

cov(µ̃) = HVH −HVM(MVM)−MVH = V − VM(MVM)−MV
= X(X′W−X)−X′ − XUX′, (40)

where W = V + XUX′ ∈ W; see, e.g., Baksalary et al. (1990a) and Isotalo et al.
(2008a,b). Notice that

cov(µ̂ − µ̃) = cov(µ̂) − cov(µ̃) = HVM(MVM)−MVH . (41)

Corresponding to (22), the weighted sum of squares of errors in the general case is

SSE(W) = (y − µ̃)′V−(y − µ̃) = y′Ṁy , where Ṁ =M(MVM)−M. (42)

Suppose that we have two models A1 = {y,Xβ,V1} and A2 = {y,Xβ,V2}, which
have different covariancematrices. Thenwe can ask, for example, what is needed that
every representation of the BLUE of Xβ under A1 remains BLUE under A2. Mitra
& Moore (1973) give a very clear description of the different problems occurring.
Let G be such a matrix that Gy is the BLUE for Xβ under A1, Then we say that Gy
remains BLUE under A2 if the following implication holds:

G(X : V1M) = (X : 0) =⇒ G(X : V2M) = (X : 0) . (43)

It appears that every representation of the BLUE for Xβ under A1 remains BLUE
under A2 and only if any of the following equivalent conditions hold:

(i) C (V2M) ⊆ C (V1M) , (ii) V2 = αV1 + XAX′ + V1MBMV1 , (44)

for some α ∈ R, and A and B such that V2 is nonnegative definite. It is clear that
even if (44) holds, the covariance matrices ofGy under A1 and A2 may be different;
see, e.g., Rao & Mitra (1971b, Ch. 8). For the proof of (44) and related discussion,
see, e.g., Mitra & Moore (1973, Th. 4.1–4.2), and Rao (1968, Lemma 5) and Rao
(1971, Th. 5.2, Th. 5.5). For a special note on the interpretation of (i) for V2 = In ,
see Markiewicz et al. (2010).
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6 The relative efficiency of OLSE

In this section we follow closely Puntanen et al. (2011, Sec. 10.8) to take a brief look
at the relative efficiency of OLSE with respect to the BLUE. Consider the linear
model M = {y,Xβ,V}, where X has full column rank and V is positive definite.
Then by Theorem 2,

cov(β̂) = (X′X)−1X′VX(X′X)−1, cov(β̃) = (X′V−1X)−1, (45a)

cov(β̂) − cov(β̃) = (X′X)−1X′VM(MVM)−MVX(X′X)−1 := D . (45b)

The relative efficiency, so-called Watson efficiency, see Watson (1955, p. 330), of
OLSE vs BLUE is defined as the ratio of the determinants of the covariancematrices:

eff(β̂) =
|cov(β̃) |

|cov(β̂) |
=

|X′X|2

|X′VX| · |X′V−1X|
=
|cov(β̂) − D|
|cov(β̂) |

. (46)

We have 0 < eff(β̂) ≤ 1, with eff(β̂) = 1 if and only if β̂ = β̃. Moreover, the
efficiency can be expressed as

eff(β̂) = |Ip − X′VM(MVM)−MVX(X′VX)−1 | = |[cov(β̂)]−1 · cov(β̃) |

= (1 − κ21) · · · (1 − κ2p ) = θ21 · · · θ
2
p , (47)

where κ1 ≥ κ2 ≥ · · · ≥ κp ≥ 0 and θ1 ≥ θ2 ≥ · · · ≥ θp > 0 are the canonical
correlations between X′y andMy, and β̂ and β̃, respectively. Notice that

cov
(
β̂
β̃

)
=

(
cov(β̂) cov(β̃)
cov(β̃) cov(β̃)

)
=

(
(X′X)−1X′VX(X′X)−1 (X′V−1X)−1

(X′V−1X)−1 (X′V−1X)−1

)
, (48)

and thus the squared canonical correlations between β̂ and β̃ are the eigenvalues of
the matrix product [cov(β̂)]−1 cov(β̃)[cov(β̃)]−1 cov(β̃):

{θ21, . . . , θ
2
p } = ch

[
[cov(β̂)]−1 cov(β̃)

]
, (49)

where ch(·) denotes the set of the eigenvalues of the matrix argument. On account
of (49), we see, as claimed in (47), that indeed

θ21 · · · θ
2
p = |[cov(β̂)]−1 · cov(β̃) | . (50)

The efficiency formulas (47) in terms of κi’s and θi’s were first introduced by
Watson (1967, p. 1686) and by Bartmann & Bloomfield (1981), respectively. It can
be shown that the nonzero canonical correlations between X′y andMy are the same
as those between Hy and My. For further references on the relative efficiency and
canonical correlations, see, e.g., Chu et al. (2004, 2005) and Drury et al. (2002).

As regards the lower bound of the OLSE’s efficiency, Bloomfield & Watson
(1975) and Knott (1975) proved the following inequality:
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eff(β̂) ≥
4λ1λn

(λ1 + λn )2
·

4λ2λn−1
(λ2 + λn−1)2

· · ·
4λpλn−p+1

(λp + λn−p+1)2
= τ21 τ

2
2 · · · τ

2
p , (51)

where λi = chi (V) = ith largest eigenvalue and τi = ith antieigenvalue of V; it is
assumed that p ≤ n/2. The concept of antieigenvalue was introduced by Gustafson
(1972); see also Gustafson (2006, 2012) and Rao (2007).

Assuming that p ≤ n/2, the minimum of φ is attained when X is chosen as
(t1 ± tn : t2 ± tn−1 : . . . : tp ± tn−p+1) , where ti are the orthonormal eigenvectors
of V with respect to λi . The inequality (51) was originally conjectured in 1955 by
Durbin (see Watson 1955, p. 331), but first established (for p > 1) only twenty years
later by Bloomfield & Watson (1975) and Knott (1975). For further proofs (and
related considerations), see Khatri & Rao (1981, 1982).

Another measure of efficiency of OLSE, introduced by Bloomfield & Watson
(1975), is based on the Frobenius norm of the commutator HV − VH:

ψ = 1
2 ‖HV − VH‖2F =

1
2 trace(HV − VH)(HV − VH)′ = ‖HVM‖2F . (52)

Bloomfield & Watson (1975) proved that ψ ≤ 1
4
∑p

i=1(λi − λn−i−1)2, and that the
equality is attained in the same situation as the minimum of φ.

Rao (1985a) studied the trace of the difference between the covariance matrices
of the OLSE and BLUE of Xβ:

η = trace[cov(Xβ̂) − cov(Xβ̃)] = trace[HVH − X(X′V−1X)−1X′] . (53)

Styan (1983) considered (53) when p = 1 and Liski et al. (1992) considered the
upper bound of the trace of HVM(MVM)−MVH.

We can now conveniently complete this section with a somewhat curious remark.
Namely, in the references of Rao (1985a, p. 255), it is said: “Simo Puntanen, Personal
communication, 1982.” The story behind is that Simo indeed was communicating
with Professor Rao about the upper bound of (53) explaining it to be a tough problem.
So, Professor Rao conveniently decided to solve the problem.

7 Personal glimpses and conclusions

The matrix algebra related to matters like the equality of OLSE and BLUE is not
apparently everybody’s cup of tea and some discussion in the literature appears
to be rather critical. One of the most critical is by Kempthorne (1989) writing as
his comment on Puntanen & Styan (1989): “I suggest that Zyskind and Rao gave
the bulk of the story and that the flood of papers since their work has added only
trivially, arcanely, and (usually) uselessly.” Sengupta & Jammalamadaka (2003,
p. 311) agreed with Kempthorne’s criticism. Searle (1989), however, gives some
supporting remarks on the importance of the OLSE vs BLUE topic and according
to Harville (1990), “Puntanen and Styan’s (1989) article should be very useful to
anyone with an interest in linear-model theory”. Baksalary (1988, p. 98) states that
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“The importance of this problem is due to the fact that such conditions characterize
which (unknown) dispersion structures can be ignored without consequence to best
linear unbiased estimation.”

In any event, we still find this area offering unexpected and interesting matrix
problems. Over the years, in our teaching (not only in research) we have attempted
to make our students familiar with the matrix algebra related to OLSE and BLUE
matters: we have found it very educational. One evidence of our interest is the book
Formulas Useful for Linear Regression Analysis and Related Matrix Theory: It’s
Only Formulas But We Like Them, by Puntanen, Styan & Isotalo (2013).

When DeGroot (1987, p. 60) asked Professor Rao for his favourite publications,
part of the answer was the following:

Rao: . . . A second set of papers I like are mostly in the analysis of repeated measurements
and in singular linear models, i.e., when the design and covariance matrices are deficient in
rank. I developed generalized inverses of matrices for dealing with such problems. . . .

There is some important interesting personal history between the authors and
Professor Rao that we briefly wish to mention. First, while spending his sabbatical
in Finland from September 1975 to August 1976, the third author, George, visited
C.R. Rao in spring 1976 in New Delhi. He sent a postcard to Simo:

En route, Calcutta – Bombay, 27 March 1976. Unbelievable that we’ve been gone six weeks
already & will be back in two. Spent a hectic month in Delhi; wrote two papers. Hope C.R.
Rao will visit Helsinki in mid-June. Relaxed for three days in Kathmandu, . . . Greetings,
George.

C.R. Rao did not come to Finland in 1976 but indeed he did so in 1983, 1985,
1987 (twice), and 1990. He attended three conferences organized in Tampere and
in 1985 received an Honorary PhD. In June 1987 he attended a conference but in
January he was an opponent on the thesis defence of Simo. The thesis was entitled
“On the Relative Goodness of Ordinary Least Squares Estimation in the General
Linear Model”.

Actually Simo met C.R. Rao for the first time in Sheffield, UK, in August 1982,
at the first ICOTS Conference (see the website), which George also attended. During
this conference Simo invited C.R. Rao to be a keynote speaker in a statistical confer-
ence in Tampere in 1983. Rao replied: “I’ll come if you George will come too.” So
they both certainly came—and wrote papers for the Proceedings, see Rao (1985b)
and Styan (1985).

The first author of the present paper, Augustyn Markiewicz, has two joint articles
with C.R. Rao, published in 1992 and 1995. The third coauthor of those papers was
Jerzy K. Baksalary (1944–2005), a prolific Polish linear algebra and linear models
lover. Those papers deal with the admissibility concept and the consistency of the
linear model; see also C.R. Rao’s comments on Jerzy’s career in O.M. Baksalary &
Styan (2005, p. 16).

https://iase-web.org/Conference_Proceedings.php?p=ICOTS_1_1982
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developments. Sankhyā Ser. A, 64, 453–507. DOI

Drygas, H. (1970). The Coordinate-Free Approach to Gauss–Markov Estimation. Springer, Berlin.
DOI

Eaton, M.L. (1970). Gauss–Markov estimation for multivariate linear models: A coordinate free
approach. Ann. Math. Stat., 41, 528–538. DOI

Eaton, M.L. (1978). A note on the Gauss–Markov Theorem. Ann. Inst. Stat. Math., 30, 181–184.
DOI

Eaton, M.L. (2007). William H. Kruskal and the development of coordinate-free methods. Statist.
Sci., 22, 264–265. DOI

Farebrother, R.W. (1990). Weighted least squares and the Gauss–Markov model. [Letter to the
Editor] Am. Stat., 44, 191. DOI

Farebrother, R.W. (1997). A.C. Aitken and the consolidation of matrix theory. Linear Algebra Appl.,
264, 3–12. DOI

Goldberger, A.S. (1962). Best linear unbiased prediction in the generalized linear regression model.
J. Am. Stat. Assoc., 58, 369–375. DOI

Goldman, A.J., Zelen, M. (1964). Weak generalized inverses and minimum variance unbiased
estimation. J. Res. Nat. Bur. Standards Sect. B, 68, 151–172. DOI

Gouriéroux, C., Monfort, A. (1980). Sufficient linear structures: econometric applications. Econo-
metrica, 48, 1083–1097. DOI

Groß, J. (2004). The general Gauss–Markov model with possibly singular dispersion matrix. Stat.
Pap., 45, 311–336. DOI

Groß, J., Puntanen, S. (2000). Estimation under a general partitioned linear model. Linear Algebra
Appl., 321, 131–144. DOI

Gustafson, K. (1972). Antieigenvalue inequalities in operator theory. Inequalities, III (Proc. Third
Sympos., Univ. Calif., Los Angeles. (O. Shisha, ed.) Academic Press, New York, pp. 115–119.

Gustafson, K. (2006). The trigonometry of matrix statistics. Int. Stat. Rev., 74, 187–202. DOI
Gustafson, K. (2012). Antieigenvalue Analysis. World Scientific, Singapore. DOI
Haberman, S.J. (1975). How much do Gauss–Markov and least square estimates differ? A

coordinate-free approach. Ann. Stat., 3, 982–990. DOI
Harville, D.A. (1990). Comment on Puntanen and Styan (1989). [Letter to the Editor] Am. Stat.,

44, 192. DOI
Harville, D.A. (1997).Matrix Algebra From a Statistician’s Perspective. Springer, New York. DOI
Haslett, S.J., Isotalo, J., Kala, R., Markiewicz, A., Puntanen, S. (2021). A review of the linear

sufficiency and linear prediction sufficiency in the linear model with new observations. Multi-
variate, Multilinear and Mixed Linear Models. (K. Filipiak, A. Markiewicz & D. von Rosen,
eds.) Springer International Publishing, Cham, pp. 265–318. DOI

https://www.jstor.org/stable/2684165
http://dx.doi.org/10.1007/978-1-4419-9816-3
http://www.jstor.org/stable/25053394
http://www.jstor.org/stable/25053408
https://projecteuclid.org/euclid.ss/1177013823
https://projecteuclid.org/euclid.ss/1177013438
http://www.jstor.org/pss/25051405
http://www.springer.com/us/book/9783540053262#aboutBook
https://projecteuclid.org/euclid.aoms/1177697093
https://doi.org/10.1007/BF02480212
https://projecteuclid.org/euclid.ss/1190905523
https://www.jstor.org/stable/2684165
https://doi.org/10.1016/S0024-3795(96)00398-9
http://dx.doi.org/10.1080/01621459.1962.10480665
http://dx.doi.org/10.6028/jres.068b.021
https://www.jstor.org/stable/1912172
http://dx.doi.org/10.1007/BF02777575
http://dx.doi.org/10.1016/S0024-3795(00)00028-8
https://projecteuclid.org/euclid.isr/1153748792
https://doi.org/10.1142/8247
https://www.jstor.org/stable/3035526
https://www.jstor.org/stable/2684165
http://dx.doi.org/10.1007/b98818
https://link.springer.com/chapter/10.1007/978-3-030-75494-5_11


22 Markiewicz-Puntanen-Styan

Haslett, S.J., Isotalo, J., Liu, Y., Puntanen, S. (2014). Equalities between OLSE, BLUE and BLUP
in the linear model. Stat. Pap., 55, 543–561. DOI

Haslett, S.J., Welsh, A.H. (2019). Empirical best linear unbiased prediction (EBLUP). Wiley Stat-
sRef: Statistics Reference Online. stat08180. Wiley, Chichester. 10 pp. DOI

Herr, D.G. (1980). On the history of the use of geometry in the general linear model. Am. Stat., 34,
43–47. DOI

Isotalo, J., Puntanen, S. (2006). Linear prediction sufficiency for new observations in the general
Gauss–Markov model. Comm. Stat. Theory Methods, 35, 1011–1023. DOI

Isotalo, J., Puntanen, S., Styan, G.P.H. (2008a). A useful matrix decomposition and its statistical
applications in linear regression. Commun. Stat. Theory Methods, 37, 1436–1457. DOI

Isotalo, J., Puntanen, S., Styan, G.P.H. (2008b). The BLUE’s covariance matrix revisited: a review.
J. Stat. Plann. Inference, 138, 2722–2737. DOI

Kala, R. (1981). Projectors and linear estimation in general linear models. Commun. Stat. Theory
Methods, 10, 849–873. DOI

Kempthorne, O. (1975). George Zyskind 1929–1974 [Obituary]. Am. Stat., 29, 106–107. DOI
Kempthorne, O. (1976). Best linear unbiased estimation with arbitrary variance matrix. Essays

in Probability and Statistics: A Volume in Honor of Professor Junjiro Ogawa. (S. Ikeda, ed.),
Shinko Tsusho, Tokyo, pp. 203–225.

Kempthorne, O. (1989). Comment [on Puntanen and Styan (1989)]. Am. Stat., 43, 161–162. DOI
Khatri, C.G. (1966). A note on a MANOVAmodel applied to problems in growth curves. Ann. Inst.

Stat. Math., 18, 75–86. DOI
Khatri, C.G., Rao, C.R. (1981). Some extensions of the Kantorovich inequality and statistical

applications. J. Multivariate Anal., 11, 498–505. DOI
Khatri, C.G., Rao, C.R. (1982). Some generalizations of the Kantorovich inequality. Sankhyā Ser. A,
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