
 
 

 
 

Jesse Christensen 

CUSTOMER SPECIFIC LOAD 
MODELLING AND FORECASTING FOR 

SHORT-TERM OPERATIONAL 
PLANNING 

- the use of hourly smart meter data 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Master’s thesis 
Faculty of Information Technology and 

Communication Sciences 
Pertti Järventausta 

Kimmo Lummi  
December 2023 

 



i 
 

ABSTRACT 

Jesse Christensen: Customer Specific Load Modelling and Forecasting for Short-Term 

Operational Planning – the Use of Hourly Smart Meter Data 

Master’s thesis 

Tampere University 

Degree Programme in Electrical Engineering 

December 2023 
 

The ongoing energy transition towards sustainable energy, aiming to mitigate the effects of 
climate change is heavily transforming the entire electricity distribution sector. The surge of dis-
tributed, intermittent generation and electric vehicles along with increasing demand flexibility com-
plicates the management of the entire electrical grid. Many tasks distribution system operators 
face in their daily work depend on modelling and forecasting network loads. Due to fundamental 
changes in electricity consumption patterns, load modelling is more difficult than ever, and exist-
ing load models have turned obsolete. Many distribution system operators in Finland and globally 
still rely on simple peak load estimation models and load profiles based on outdated measurement 
data in modelling and forecasting network loads, showcasing a need for new solutions. 

Meanwhile, the transition towards smarter grids has opened new opportunities in load model-
ling, especially via the replacement of traditional electricity meters with smart meters, giving re-
mote access to accurate load measurements from the entire network. The use of metering data 
for creating improved load modelling and forecasting methods has been researched, and many 
studies show promising results. This thesis employs a constructive research approach to develop 
a novel method for estimating and forecasting the loads of individual low-voltage network cus-
tomers by analysing historical measurement data. The main objective of this work is to determine 
whether accurate estimations and forecasts can be created merely by analysing customer-spe-
cific historical load measurements. 

MicroSCADA X is a product family by Hitachi Energy, comprising of multiple software and 
hardware solutions for distribution system control and supervision. DMS600, a software package 
of the product family, includes a distribution management system and a network information sys-
tem, used by distribution system operators to document, monitor and control their networks. Since 
the existing load modelling functionalities of DMS600 are outdated, the system offers a good 
platform for testing the newly developed load model in a real-life environment. 

In this work, the necessary theoretical background to understand the framework of this work 
is first covered. This includes examining the electricity metering process and presenting existing 
load modelling methods along with their use cases in distribution system management. The 
DMS600 software package is also introduced, and the weaknesses of its current load modelling 
functionalities are addressed. Once a theoretical background has been established, the process 
of designing the novel load modelling algorithm is reviewed. The algorithm is implemented into 
DMS600 and the accuracy of the new model is compared to the existing load profile model by 
creating an extensive set of short-term load forecasts for multiple real-life LV networks. The test 
set includes load forecasts for all seasons in three separate, relatively large urban LV networks. 

The results prove that directly utilizing historical measurements in creating customer-specific 
load forecasts can provide significant improvements to short-term load forecast accuracy when 
compared to tradition load profile based models. In addition, the work shows that this type of a 
model can easily be integrated into distribution management software. However, the developed 
model had a slight tendency to underestimate the loads. Also, due to the limited time frame, some 
important variables could not be incorporated into the model. This left room for future develop-
ment, while the results were extremely promising. 
 

 
Keywords: electricity distribution, load modelling, load profiling, short-term load forecasting, 
smart grids, smart meters 
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Käynnissä oleva energiamurros kohti kestävämpää energiantuotantoa ilmastonmuutoksen hil-
litsemiseksi muuttaa rajusti koko sähkönjakelualaa. Hajautetun tuotannon, sähköautojen ja kulu-
tusjouston lisääntyminen vaikeuttaa sähköverkon hallintaa. Monet jakeluverkkoyhtiöiden päivit-
täiset tehtävät riippuvat sähköverkon kuormitusten mallintamisesta ja ennustamisesta. Perusta-
vanlaatuiset muutokset sähkön kulutustavoissa ovat tehneet kuormien mallintamisesta vaikeam-
paa kuin koskaan, ja monet kuormitusmalit ovatkin nykyään vanhentuneita. Monet jakeluverkon 
haltijat luottavat edelleen yksinkertaisiin huippukuormamalleihin ja vuosikymmeniä vanhaan mit-
tausdataan perustuviin kuormitusprofiileihin kuormien mallinnuksessa ja ennustamisessa. Tämä 
kertoo uusien ratkaisujen tarpeesta. 

Siirtymä kohti älykkäämpiä sähköverkkoja on toisaalta avannut uusia mahdollisuuksia kuor-
mien mallinnukseen, etenkin kun perinteiset sähkömittarit on vaihdettu älymittareihin, jolloin tarkat 
kulutusmittaukset ovat jatkuvasti saatavilla koko verkosta. Mittarointidatan käyttämistä uusien 
kuormitus- ja ennustusmallien kehittämiseen on tutkittu ja tutkimustulokset ovat olleet lupaavia. 
Tässä diplomityössä hyödynnetään konstruktiivista tutkimustapaa uuden kuormitusmallin kehit-
tämiseksi, jonka tavoite on arvioida ja ennustaa yksittäisten pienjänniteverkkojen asiakkaiden 
kuormituksia historiallisen datan perusteella. Työn päätavoite on selvittää, voidaanko tarpeeksi 
tarkkoja arvioita ja ennusteita muodostaa puhtaasti asiakaskohtaisen historiallisen kulutusdatan 
avulla. 

MicroSCADA X on Hitachi Energyn tuoteperhe, joka muodostuu useista jakeluverkkojen hal-
lintaan ja ohjaamiseen suunnitelluista ohjelmistoista ja laitteistoista. DMS600, joka on yksi tuote-
perheen ohjelmistopaketeista, sisältää käytöntukijärjestelmän ja verkkotietojärjestelmän, joilla ja-
keluverkon haltijat voivat dokumentoida, valvoa ja hallita verkkojaan. Koska DMS600:n nykyiset 
kuormitusmallit ovat vanhentuneet, se tarjoaa hyvän alustan tässä työssä kehitetyn kuormitus-
mallin testaamiseen todellisessa ympäristössä.  

Tässä työssä käydään ensin läpi työn viitekehyksen ymmärtämiseen vaadittava teoreettinen 
tausta. Tähän sisältyy sähkön mittausprosessin tarkastelu sekä nykyisten kuormitusmallien ja nii-
den käytännön käyttötarkoitusten esittely. Lisäksi esitellään DMS600-ohjelmistopaketti ja sen ny-
kyisten kuormitusmallien heikkoudet. Teoreettisen taustan jälkeen käydään läpi ja perustellaan 
uuden kuormitusmallin suunnitteluprosessi. Algoritmi implementoidaan DMS600-järjestelmään ja 
uuden mallin tarkkuutta vertaillaan nykyiseen kuormitusprofiileihin perustuvaan malliin luomalla 
kattava otanta lyhyen aikavälin kuormitusennusteita useille pienjänniteverkoille. Testijoukko si-
sältää ennusteita kaikille vuodenajoille kolmessa erillisessä urbaanissa pienjänniteverkossa. 

Tulokset osoittavat, että historiallisten mittausten suora käyttö yksittäisten asiakkaiden kuor-
mitusten ennustamisessa voi tuottaa merkittäviä parannuksia ennustustarkkuuteen verrattuna 
perinteiseen kuormitusprofiileihin perustuvaan malliin. Lisäksi työ osoittaa, että tämäntyyppinen 
malli voidaan helposti integroida osaksi jakeluverkkojen hallintaohjelmistoja. Uusi malli osoitti kui-
tenkin taipumusta kuormien pieneen aliarviointiin. Lisäksi käytettävissä olevan ajan rajallisuuden 
vuoksi joitakin merkittäviä muuttujia ei voitu sisällyttää malliin. Nämä tekijät jättivät tilaa jatkoke-
hitykselle, vaikka tulokset olivatkin todella lupaavia. 

 
 
Avainsanat: sähkönjakelu, kuormitusten mallinnus, kuormitusten profilointi, lyhyen aikavälin 
kuormitusennustaminen, älykkäät sähköverkot, älymittarit 
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1. INTRODUCTION 

During the past decade, electrical grids and electricity consumption habits have been 

undergoing arguably the greatest transformation since the widespread inception of elec-

tric power in the late 19th century. The recent changes stem from the ongoing energy 

transition from fossil fuels to renewable energy resources, as an effort to combat global 

warming. The transition takes place over numerous domains of the society, with the en-

ergy sector leading the way. Not only is electricity production switching from coal and oil 

to wind and solar, but electrical grids are also becoming smarter and more controllable, 

electric vehicles are taking over the market, and individual consumers are becoming 

small-scale producers of renewable energy. 

While society becomes ever more dependent on electricity and the world population con-

tinues to grow, overall electricity consumption is on a steady rise [1]. Even more im-

portantly, consumption habits are changing rapidly. As storing electricity in large scale is 

still not feasible, the intermittency of renewables is channeling consumption to times 

where electricity is available. This elasticity of demand is primarily controlled by the fluc-

tuating prices of electricity. Along with major consumers, individual households are start-

ing to adapt their consumption in accordance with electricity prices. Besides demand 

elasticity, electric cars and new heating solutions are rapidly changing electricity con-

sumption patterns. These changes are making it ever more difficult to model and predict 

electrical loads in networks. 

Successful management of distribution networks requires accurate modelling and fore-

casting of electrical loads across the grid. Load models are the foundation of distribution 

system state estimation (DSSE) and load forecasts, which are needed for network plan-

ning and operational planning, among other uses. In Finland, load estimation and fore-

casting has traditionally been based on customer class load profiles, where customers 

are divided into groups based on their type and all customers are assumed to conform 

to the group average. These load profiles are mostly based on old load research studies 

and as consumption patterns have changed, the profiles have largely turned obsolete 

and no longer accurately represent actual consumption. While recent changes have 

made predicting loads more challenging, advancements in technology have also offered 

new tools for monitoring what happens across the grid, such as automatic meter reading. 

Nowadays, practically all consumption locations are equipped with smart electricity 
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meters that provide plenty of useful data for distribution system operators (DSOs), such 

as accurate load data, electricity quality measurements and information on outages. 

When it comes to load modelling, measurements from smart meters offer great potential 

in improving existing methods. 

This master’s thesis aims to study how the electrical loads of individual low voltage net-

work customers could be estimated and forecast using smart meter data. While using 

smart meter measurements to improve load modelling has been studied in literature, 

using the historical consumption of individual metering points to create customer-specific 

estimations and forecasts has not been proposed. Using constructive research as a 

methodology, this work seeks to develop a straightforward customer-specific load mod-

elling algorithm. To test the developed model, the algorithm will be implemented into 

MicroSCADA X DMS600, a software package designed for DSOs to manage their net-

works. Developed by Hitachi Energy (previously ABB Power Grids), the software con-

sists of a network information system (NIS) and a distribution management system 

(DMS). The model will be tested in a real-life distribution network using actual smart 

meter measurements from a Finnish DSO, which will be imported into DMS600 data-

base. The accuracy of the newly developed load model will be compared to existing load 

modelling methods. To provide a necessary theoretical framework, the thesis first exam-

ines how electrical loads are generally modeled as part of distribution network manage-

ment, and how electricity consumption data is collected in the first place. 

The conducted research does not aim to create a comprehensive solution to load mod-

elling using smart meter data, but rather study whether estimating individual loads purely 

based on historical data could be used to improve the current load estimations used in 

management software. Due to the limited time frame and the technical difficulty of imple-

menting a functional load model into network management software, the research fo-

cuses solely on modelling low voltage network loads and creating short-term forecasts, 

which are most useful in operational planning. The abovementioned restrictions also 

subject limitations to the developed load model, which will be addressed later in the the-

sis. Ultimately, this thesis aims to provide foundation for further research on the utilization 

of smart meter data in load modelling and intends to prove that even basic metering data 

analysis can provide improvements to existing load modelling methods. 
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2. BACKGROUND TO LOAD MODELLING 

This chapter aims to provide necessary background knowledge to understand the frame-

work of this thesis. In the beginning, the process of measuring electricity usage is ex-

plained, and recent evolution of electricity usage patterns is analysed. Subsequently, 

different load modelling methods are briefly introduced. The last subchapter will finally 

provide a practical view on how load profiles and other load modelling methods are used 

by distribution system operators in managing electrical grids. 

2.1 Electricity metering 

Measuring electricity usage is fundamental for the operation of distribution and electricity 

retailing companies. Traditionally, electricity usage measurements were only used for 

billing purposes. The early electricity meters were analogue, meaning that physically vis-

iting each measurement location was necessary to record the reading. Manually reading 

thousands of meters was extremely labour-intensive and costly. The measurements 

were thus read very infrequently: as rarely as once per year. Customers had to be billed 

with an estimation of their consumption and the bills had to be corrected with each read-

ing of actual measurement data. As the old meters only measured cumulative electricity 

usage, the operators couldn’t easily get information on electric power quality or faults in 

low voltage networks. They also had no accurate information on the consumption pat-

terns of individual customers. Eventually, the digital revolution and development of wire-

less communication technologies paved the way for the inception of remotely readable, 

smart electricity meters. 

2.1.1 Automatic meter reading and smart metering 

Automatic meter reading (AMR) refers to the technology that allows automated collection 

of consumption data from electricity meters. While often used synonymously in everyday 

language, a distinction can be made between AMR devices and smart meters. While 

AMR as a term only addresses remote reading of meters, smart meters are usually de-

fined as being capable of two-way communication [2]. This means that smart meters not 

only send data but can also receive it. Modern smart meters can receive direct com-

mands, allowing for example remote disconnection and reconnection, and remote acti-

vation of load control relays [3]. The current generation of advanced metering solutions 

has also given birth to a new concept, advanced metering infrastructure (AMI). AMI can 

be seen as the top-level definition for a complete advanced metering system, containing 
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everything involved in the metering process such as all hardware and software [2], [4]. 

Two-way flow of information is generally seen as a prerequisite for advanced metering 

systems. As this thesis purely depends on measurement data received from electricity 

meters and practically all locations in Finland are nowadays equipped with smart meters, 

the term smart meter will be used here onward when referring to electricity meters and 

related measurement data. 

The introduction of remotely readable meters completely revolutionized the electricity 

measurement process, eliminating the need for physical visits to premises. AMR systems 

started to become more and more common in the beginning of the 21st century and soon 

governments and regulatory bodies also started to recognize the immense benefits of 

these systems, such as reduced costs, improved customer service and the opportunities 

for enhancing grid management. In 2009, the European Union issued a directive for 

member states to deploy smart meters under EU energy market legislation. In practice, 

the target was to provide 80% of end consumers with smart electricity meters by 2020 in 

countries where the effects of the roll-out were deemed positive in a cost-benefit analy-

sis. [5] As a result, the replacement of traditional meters with new smart meters began 

very quickly. By the end of 2014, nearly all electricity usage points in Finland were al-

ready equipped with smart meters. 

2.1.2 Power balance and measurement intervals 

At all times, the production and consumption of electricity must be equal. In Nordic coun-

tries, this power balance is traditionally settled hourly, which means that for each hour, 

electricity market operators attempt to balance their production and consumption in ad-

vance. However, the actual outcome will always have deviations to the plans and as a 

result, there is a separate balancing power market for acquiring or selling the necessary 

power needed to balance the actual production and consumption. In the Nordic power 

system, the transmission system operator (TSO) of each country is responsible for main-

taining the nationwide electrical balance. The power balance at each time can easily be 

monitored by measuring the frequency of the electricity grid. When there is more produc-

tion than consumption in the grid, the frequency rises over the nominal frequency of 50.0 

Hz. Correspondingly, the frequency drops if there is more consumption than production. 

[6] 

After electricity delivery, market operators are required to submit the actual production 

or consumption data to the TSO for balance analysis. In Finland, the data is submitted 

to a system called Datahub. Launched by the Finnish TSO Fingrid in February 2022, 

Datahub presents a centralized information exchange system for all electricity market 
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operators. The system offers an equal and secure platform for exchanging data between 

all electricity market operators. [7], [8] For DSOs, this means providing actual measure-

ments from electricity meters. Since the power balance in the grid is traditionally ob-

served hourly, electricity usage is usually recorded in an hourly interval as well. Many 

modern smart meters already record usage on shorter time intervals, such as 5 or 15 

minutes. In this case, the time series are combined into an hourly series in the control 

system. However, as intermittent production such as wind and solar power becomes 

more widespread, electricity production becomes more prone to rapid fluctuations. As a 

result, all of Europe is now transitioning towards a more accurate, quarter-hourly imbal-

ance settlement period. The new 15-minute settlement period will be rolled out in phases. 

The initial introduction of the new settlement period took place in May 2023 in Finland, 

while the day-ahead market is scheduled to switch to a 15-minute time interval in 2025. 

In the process, all smart meters will also be reconfigured to measure electricity usage in 

15-minute windows. [6], [9] 

2.1.3 Measurements and communication 

Typically, smart meters are configured to measure energy flow and certain power quality 

factors. The flow of energy is measured bidirectionally: energy inserted from customer 

to the grid is recorded along with energy taken from the grid. In terms of power quality, 

typical measurements are voltage, current and frequency, as well as active and reactive 

power. In addition, smart meters record some predetermined events. These events can 

for example be outages of different duration, significant voltage drops and surges, or 

zero faults. The meters store all information until it is read by the control system. [3], [10] 

Multiple different technologies and configurations can be used for communication be-

tween remotely read meters and the central database. The most cost-efficient and relia-

ble solution for each case depends on many factors, such as geographical location and 

the coverage of applicable networks. The most frequently used communication technol-

ogies are PLC (Power-Line Communication), cellular networks, and RF (radio frequency) 

[2], [3], [11]. 

PLC is a wired communication method where data is carried on a conductor using a 

standardized frequency area. In other words, the data is transferred in the physical elec-

trical grid. The main advantage of PLC is the cost-efficiency of utilizing existing infra-

structure. The downside of PLC is that the connection to the meter breaks in case of an 

outage. The connection also breaks if the meter is installed behind the customer’s main 

switch and the switch is turned off. For this reason, new meters are usually installed 

before the main switch so that the meter can stay online even if the switch is turned off. 
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Cellular networks are the primary technology used for wireless metering data transfer. 

Data transfer over mobile networks allows reliable communication over long distances 

and mobile networks typically have excellent coverage.  GPRS is the prevalent technol-

ogy in current implementations. It represents a second generation (2G) service for trans-

ferring data in the GSM network. While GPRS is currently by far the most used wireless 

metering data communication method, the newer generation technologies, mainly 4G 

and 5G, are expected to become more common with the development of smart grids. 

[2], [11] 

Smart meters can communicate with the central remote reading system either directly or 

indirectly through a concentrator hub. Direct communication is commonly referred to as 

P2P (point to point) and is mostly used in sparsely populated areas. In densely populated 

areas, a common configuration is to first transfer measurement data from a group of 

meters to concentrator hubs, and then wirelessly transfer the data from the hub to the 

remote reading system. [2], [11] An illustration of a widely used PLC/GPRS communica-

tion setup is presented figure 1. 

 

Figure 1: Smart meter communication using a combination of PLC and GPRS 

In the system depicted by figure 1, PLC is first used to transfer measurement data from 

a set of consumers to concentrator hubs, often located in distribution transformers. 

GPRS is then used to further transfer the data wirelessly to the central remote reading 

system. 
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2.2 Recent changes in electricity consumption patterns 

Electricity consumption habits have changed drastically during the past decades. This 

transformation has taken place across every sector, producing lots of uncertainty and 

complexity in terms of load forecasting, or modelling electrical consumption patterns. 

These changes are attributable to numerous phenomena, such as the evolution of heat-

ing solutions, electric vehicles, distributed generation, electricity price volatility and shifts 

in different domains of industry. As the state of distribution networks becomes dependent 

on an increasing amount of variables and unpredictability, system operators are forced 

to develop their practices in actively controlling the grid. [12] This subchapter aims to 

offer a brief overview on why and how the consumption patterns have recently under-

gone a vast shift, mostly focusing on changes in Finnish consumption habits, although 

most trends are universal and thus taking place all over the world. 

Heating is globally the largest end-use of energy with around a 50% share of global final 

energy consumption [13]. While the majority of global heating energy demand is still 

covered with fossil fuels, most of the heating energy in Finland originates from renewable 

resources. In Finland, district heating is the largest source of heat energy for residential 

and service buildings. While district heating traditionally depends on fossil fuels, most of 

the heat is nowadays obtained from biomass. Direct electricity heating follows district 

heating as the second largest source of residential heating in Finland. [14] The heating 

industry has lately been revolutionized by the surge of heat pumps as a more efficient 

alternative to heating. While heat pumps effectively utilize electricity to transfer heat, their 

efficiency is often much higher than the one of direct electricity heating. Measured by 

coefficient of performance (COP), heat pumps are usually able to transfer more thermal 

energy than the work it requires. For example, with a COP of 4, a heat pump could trans-

fer 4 kWh of thermal energy by using only 1 kWh of electrical energy. Thanks to their 

relatively low investment cost and ability to be used also for cooling purposes, air-source 

heat pumps are currently a very common addition to heating solutions in residential and 

service buildings. 

In Finland, the total number of air-source heat pumps has steadily increased from virtu-

ally zero to over 500 thousand units since the beginning of the millennium [15]. Although 

the growth has started to level in Finland, global heat pump sales are still climbing. 
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Figure 2 shows the annual growth rate of air-source heat pump sales globally and in 

Europe in 2021 and 2022. 

 

Figure 2: Air-source heat pump sales growth rates in 2021 and 2022. Modified from 

[16] 

Due to their limited capacity, however, air-source heat pumps are often used alongside 

traditional direct electricity heating. Despite having a larger investment cost, ground-

source heat pumps have also surged as a stand-alone solution for residential heating, 

already surpassing direct electricity in new residential buildings [14]. Due to the in-

creased efficiency, the use of heat pumps can decrease the amount of electricity needed 

for heating, while the use for cooling might lead to increased electricity usage during hot 

periods. However, the efficiency of air-source heat pumps decreases significantly when 

outside temperature drops, which limits the benefit of heat pumps systems during cold 

periods [17]. One study even reported higher electricity consumption in households with 

heat pumps compared to households with direct electricity heating during the coldest 

periods of the year [18]. Nevertheless, heat pumps generally provide an improvement to 

heat transfer efficiency and lower overall electricity consumption. Heat pumps are also 

easy and rapid to control, providing the possibility for consumers to optimize their usage 

to times of low electricity prices. 

One of the largest forces to alter electricity consumption patterns is the proliferation of 

electric vehicles (EVs) and the related infrastructure. The electrification of transportation 

affects the electricity consumption patterns in many ways across the entire grid. Firstly, 

EVs have very powerful batteries and thus require a lot of electricity to charge. This leads 
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to increased overall electricity consumption. Secondly, to enable tolerable charging 

times, especially public charging stations need a very high charging current. For exam-

ple, a single Tesla Supercharger can have an electric power supply of up to 250 kW [19], 

so it’s clear that a widespread charging infrastructure immensely increases the stress on 

the distribution networks. On the other hand, EVs could potentially be used to push elec-

tricity back to the grid from the battery at times of excessive demand. This technology is 

referred to as vehicle-to-grid (V2G). While the technology is still at a very early stage, it 

could potentially be used to widely balance the grid in the future. Even before a break-

through in V2G, smart charging alone provides a degree of demand flexibility, affecting 

the load profile of EV households. In smart charging, the charging process is controlled 

to balance the load demand curve. [20] 

EVs also cause a significant time shift in electricity usage. Most EV owners charge their 

vehicles at home overnight, which greatly increases electricity consumption during 

nighttime. The advantage of added nightly consumption is that it can increase the bal-

ance between electricity production and usage as night hours are generally a time of low 

usage and lower electricity prices. However, if many EVs are charged simultaneously in 

the same area, local congestion problems, such as unacceptable voltage deviations, 

could still occur. Conversely, the use of public speed charging stations might lead to an 

increase in electricity demand during peak hours, which could again lead to congestion 

problems. These problems could be mitigated with smart charging. [20] 

Similarly testing the strength of distribution networks, distributed energy resources 

(DER), especially wind and solar power, are transforming electricity production from cen-

tralized, large power plants to small-scale generation scattered all around the grid. As 

intermittent energy sources depending on weather conditions, distributed generation 

complicates maintaining the balance between load and production and introduces many 

power quality risks into the grid. In addition, the addition of wind and solar power de-

creases the amount of inertia in the electrical grid. Traditional power plants produce in-

ertia through the kinetic energy stored in the massive generators. Inertia keeps the grid 

frequency more stable when load or production changes, adding stability to the power 

system. Wind and solar power do not produce inertia to the grid, thus decreasing the 

amount of inertia. [21] While the abovementioned issues complicate distribution network 

operation, the phenomenon that alters consumer electricity consumption patterns is the 

growing number of private photovoltaic (PV) systems. As PV technology has advanced, 

the investment cost of a small system has reduced to a point where acquiring a system 

is feasible for individual customers. Along with the increased solar cell efficiency, even a 

rather small system can produce a useful amount of power to supplement the ordinary 
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grid connection, or even replace it in secondary residences. Naturally, the addition of a 

PV system changes the consumption pattern of a customer significantly. Not only does 

the customer take less electricity from the grid, but the PV production is likely to intermit-

tently exceed the personal load which in practice means that the customer will insert 

electricity into the distribution network. The intermittent production also complicates mod-

elling the loads of customers with PV systems. 

Mainly due to the intermittency of wind and solar power, the electricity prices in Europe 

have seen a steep volatility increase over the past few years. In 2022, already 23,5% of 

EU’s net electricity generation were covered by wind and solar, which means that a large 

portion of the total capacity relies on the weather conditions [22]. At times of excellent 

wind conditions, the electricity prices inside the Nord Pool exchange have been ex-

tremely low, and vice versa. For example, the system price of the Nord Pool day-ahead 

market has recently gone negative on multiple occasions [23].  This price volatility has 

further been emphasized by Europe’s challenging geopolitical situation which has di-

rectly affected typically stable resources, such as natural gas [22]. The fluctuation of 

prices naturally channels consumption into times when the electricity prices are low. In 

Finland, the electricity prices of most individual consumers have traditionally been tied 

to a fixed-price contract, but contracts tied to the Nord Pool day-ahead prices have be-

come more and more common [24]. This goes in tandem with the availability and ease 

of implementing home automation: as technology advances, it has become easier for 

consumers to concentrate their loads to times of low electricity prices. From a power 

balance perspective, the responsiveness of consumer consumption to market prices is 

beneficial, as it acts as a form of demand response. However, if the loads of individual 

customers are no longer tied to personal habits but fluctuating market prices, estimating 

and forecasting the loads becomes extremely difficult. 

The transforming consumption patterns are also attributable to various other changes. 

These include for example: 

• Shifts in different industries, such as agriculture, retail, transportation, and con-

struction: In developed countries, the number of farms has plummeted due to the 

increased efficiency requirements for sustaining a profitable business, favouring 

larger farm sizes with advanced mechanization. Retail is shifting from brick-and-

mortar stores to e-commerce. Transportation is ongoing an increase in electrifi-

cation, also in public transport. Modern buildings are designed for maximal en-

ergy efficiency, focusing on insulation and minimizing all energy waste. Similar 

trends are visible in nearly all industries, each contributing to the shift in con-

sumption patterns. 
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• Technological advancements: Appliances have become more energy-efficient 

and LED lighting has become predominant, which reduce electricity consump-

tion. At the same time, many mechanical appliances and machines have turned 

electrical, which in turn increases consumption. 

• Political decisions and greener policies: As an effort to combat global warming 

and increase sustainability, governments and political entities have introduced a 

wide variety of regulations to incite energy efficiency at both consumer and busi-

ness levels. These regulations have a second-hand impact on nearly all sectors 

of the society. 

The constantly evolving electricity consumption highlights the need for flexible and dy-

namic load models that no longer rely on conventional tendencies. 

2.3 Overview on load modelling 

In electricity distribution, load modelling often refers to the mathematical representation 

of the network parameter relationships (such as power, voltage, and frequency) [25]. 

However, in the context of this thesis, the goal of load modelling is to help estimate the 

current network loading state, as well as to forecast network loads. The need to model 

current loads arises from the fact that the exact state of each point in a distribution net-

work is never known with certainty. Receiving exact loads in real-time from every elec-

tricity meter is not currently feasible, and measurement points are mostly present in ma-

jor network nodes, such as substation feeders. Load models are used to gain the best 

possible estimate of the network loads using the available information and tools. Often a 

combination of real-time measurements, historical data analysis and forecasting tech-

niques is needed to achieve the most accurate possible system state estimation. Fore-

casting future loads is a somewhat similar task, as is also requires equivalent load mod-

els. Depending on the application, models are expected to answer different questions: 

often the interest lies in peak loads, but sometimes minimum loads or average power 

over a certain period are also needed. In this subchapter, some of the most common 

traditional and state-of-the-art load modelling methods and tools will be presented. 

2.3.1 Velander’s formula 

Velander’s formula is a traditional and simple method for estimating peak loads using 

annual energy and predetermined, customer group specific coefficients. It is best suited 

for estimating the peak load of a large group of consumers because in practice, the loads 
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of individual customers do not conform to the assumptions of Velander’s formula. The 

peak load of a customer group is calculated with the formula 

𝑃𝑚𝑎𝑥 = 𝑘1 ∙ 𝑊 + 𝑘2 ∙ √𝑊,     (2.1) 

where Pmax is the group’s peak demand in kilowatts (kW), k1 and k2 are the Velander 

coefficients for the group, and W is the group’s annual consumption in megawatt hours 

(MWh). The Velander coefficients are determined with practical experience and meas-

urements to best reflect actual loads. Different customer groups can be assigned with 

separate coefficients to factor in consumption habit differences. [26], [27]  

When different customer groups are assigned with separate coefficients, one line section 

might feed customers with varying Velander’s factors, whereupon Velander’s formula 

cannot be used directly to calculate the section peak power. The peak power of such a 

line section can be calculated with the equation 

𝑃𝑚𝑎𝑥 = ∑ 𝑘1𝑖𝑊𝑖
𝑛
𝑖=1 +√∑ 𝑘2𝑖𝑊𝑖

𝑛
𝑖=1     (2.2) 

where Pmax is the section’s peak load, 𝑘1𝑖 and 𝑘2𝑖 are each group’s Velander coefficients 

and 𝑊𝑖 is the annual consumption of each group. 

Since Velander’s formula only estimates the peak power and doesn’t give information 

about how the load varies in quantity and over time, it is most useful for network planning, 

where each network component needs to be chosen so that they can withstand the max-

imum load that could occur, with some additional buffer. 

2.3.2 Load profiling 

In general, a load profile depicts electrical loads in discrete time intervals. A load profile 

can portray any source of consumption with any time interval, for example the average 

daily electric load of Finland could be shown for a period of one year. Load profiles are 

typically displayed as graphs with the electrical load on the vertical axis and time on the 

horizontal axis. Distribution system operators are often interested in knowing hourly 

loads for either individual customers or, for simplicity’s sake, a group of similar custom-

ers. Consequently, the term load profiling usually refers to a statistical method where 

customers with similar consumption patterns are categorized into groups, often referred 

to as customer classes, and a general representation of the group’s load curve is estab-

lished. 
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An example of a graphical load curve, representing hourly electrical loads over a period 

of one week, is shown in figure 3. 

 

Figure 3: Example of a graphical load curve. Data retrieved from DMS600. 

Because the example load curve is based on actual consumption data from a group of 

customers, some qualities typical to electricity consumption are clearly visible: It is easy 

to see that the consumption is very different during the weekend and weekdays. Mean-

while, the consumption pattern is extremely similar between weekdays. Also, a charac-

teristic load peak is visible on weekday mornings and evenings. In Finland, grouping 

customers with similar consumption patterns and analysing the groups’ behaviour is a 

well-established means of load modelling. Next, the history and current state of customer 

classification and customer class load profiles in Finland will be briefly presented. 

Before the introduction of automatic meter reading, load research was very laborious as 

it required collecting data manually from individual customers. The first nationwide load 

research project in Finland began in 1983, organized by the Finnish Association of Elec-

tricity Supply (currently named Finnish Electricity Association, operating under Finnish 

Energy). A total of 42 electricity utilities collaborated in this research, in which the hourly 

consumption of almost 1200 customers were collected. The research included two meas-

urement periods that took place during the 1980’s. Based on their consumption habits, 

customers were divided into multiple classes based on their purpose, such as housing, 

industry, service, and agriculture. Each category was further divided into subclasses: for 

example, housing was divided into different subclasses based on building type and 
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heating solution. The objective of the classification was to divide consumers into groups 

where electricity usage is similar enough that it depicts the consumption of an individual 

customer with decent accuracy. After extensive data analysis, 46 unique customer class 

load profiles were eventually published in 1992. The load profiles include expected hourly 

loads, load deviations and temperature dependencies for each customer class. [26] 

When the measurements were analyzed, the average power for each two-week period 

of the year, as well as relative two-week indices, were calculated for each customer 

class. In other words, the year was split into 26 two-week periods. The relative two-week 

index gives the percentage difference between the average power of the two-week pe-

riod compared to the average power of the entire year. For example, if the two-week 

index is 125, the average power of this two-week period is 25% higher than the average 

power of the whole year. In addition to the two-week periods, hourly indices were calcu-

lated for each day of the week, separately for summer and winter. Since the consumption 

on different weekdays is very similar, all weekdays are assumed to be identical in order 

to limit the data that needs to be processed. Saturdays (or eves) and Sundays (or public 

holidays) are analyzed separately. [26] 

The correlation between electrical load and outside temperature is called temperature 

dependency. The dependency was factored in the load profiles using the following for-

mula: 

𝑞𝑎(𝑡) = 𝑞0(𝑡) + 𝛽 ∙ ∆𝑇(𝑡)     (2.3) 

where 𝑞𝑎(𝑡) is the actual measured electric power at time t, 𝑞0(𝑡) is the electric power at 

normal temperature at time t, 𝛽 is the temperature dependency coefficient and ∆𝑇(𝑡) is 

the temperature difference between measured and normal temperatures at time t [26]. 

The customer class load profiles published in 1992 remain the only publicly available 

extensive set of load profiles. As a result, they are still widely used by distribution system 

operators. Afterwards, multiple load research projects have been conducted for individ-

ual operators or consortiums. These projects have resulted in improved and updated 

load profiles, but their use is limited to the participants. Many companies have also cre-

ated individual load profiles for major customers with smart meter data. While the 1992 

load profiles have been extremely useful for distribution companies and electricity market 

operators, they have become obsolete because the electricity consumption habits have 

changed significantly over the past 30 years, as examined in the previous subchapter. 

The concept of load profiling is not strictly limited to Finland. Other countries have con-

ducted similar load research studies in order to create equivalent load curves that repre-

sent typical electricity consumption of certain customer groups. For example, in 1991, 
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the Swedish Association of Electric Utilities (Svenska Elverksföreningen) published a 

report which contained load curves for a large set of customer classes. The load curves 

were obtained after analysing metering data collected from electricity end users. [28] 

As another example, load profiles have long been used for facilitating imbalance settle-

ments in the United Kingdom. Traditional electricity meters were unable to measure elec-

tricity consumption in accordance with the half-hour imbalance settlement period used in 

the UK. To avoid having to install half-hourly electricity meters to all locations, eight basic 

load profiles were created which would be used along with readings from existing elec-

tricity meters to create half-hourly settlements. This method was applied to all customers 

below 100kW maximum demand. Today, the load profile assisted imbalance settlements 

are still used in the UK, although for an increasingly smaller group of customers. A tran-

sition is underway to measure electricity consumption in accordance with the half-hourly 

period in all locations. [29] 

2.3.3 Clustering 

Clustering is a general data analysis technique which aims to divide data points into 

groups based on similarities. A group where each object is similar to each other is called 

a cluster. As clustering is a high-level concept used in many fields of science for various 

data types, hundreds of different clustering algorithms have been developed. Clustering 

can be used for numerous applications, such as customer segmentation, trend detection, 

data summarization and network analysis. Certain algorithms are best suited for certain 

types of applications, although finding and selecting the perfect algorithm for a specific 

purpose is often a near-impossible task. Due to the vast amount of distinct algorithms, 

they are often categorized by their main notion. For example, based on the used tech-

nique, clustering algorithms could be classified to probabilistic techniques, density-based 

techniques, distance-based techniques or hierarchical techniques. [30] 

In the context of electricity distribution, clustering can be used for grouping customers 

based on their consumption patterns. Instead of relying on predetermined customer clas-

ses, different clustering algorithms are used to identify customers that share similar load 

behavior. The main advantage of clustering compared to traditional customer class pro-

filing is that customers can be classified purely based on their load patterns rather than 

being automatically grouped by their basic type [31]. When new load profiles are created 

for each cluster, the new profiles can directly replace old customer class load profiles. 

Perhaps the most comprehensive literature review on the use of clustering for electricity 

consumer classification was conducted by DSc Antti Mutanen in his dissertation [32], 

where he also developed a novel method for creating and improving load profiles based 
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on metering data from electricity meters by utilizing clustering algorithms. In his review, 

Mutanen noted that multiple different algorithms have been proposed and studied for 

segmenting electricity consumers, but no consensus has been achieved on which 

method is best suited for the task, although the k-means algorithm produced good results 

in multiple studies. Eventually, Mutanen ended up using a two-stage weighed k-means 

algorithm for the new method. Different algorithms were also studied, but the weighed k-

means came out as the best overall solution. As the developed clustering method pro-

duced very promising results in load profiling, the key points of the model are shortly 

presented which also gives a solid example on how clustering can be used as a tool in 

load modelling. 

k-means is a distance- and centroid-based clustering method. In this type of a method, 

each cluster is represented by a centroid, in other words a central vector which can for 

example correspond to the mean of all the cluster data points. The similarity of data 

points is determined by their distance, most often the Euclidian distance, from the cen-

troids. In weighted k-means, each pattern vector is weighted. In this case of electricity 

customer classification, the vectors were weighted with the corresponding annual ener-

gies. Thanks to its simplicity and large experimental success, k-means is one of the most 

widely used clustering methods. One of the weaknesses of k-means is that the number 

of clusters needs to be determined beforehand, which is often difficult. The centroids 

must also be initialized and in practice, the initialization affects the final result accuracy. 

[30], [32] 

Through extensive iterative and practical analysis to mitigate possible sources of inac-

curacy, Mutanen proposed the following simplified workflow for creating new cluster load 

profiles from metering data: 

First, metering data is read, pre-processed, and validated. Then, temperature nor-

malization is performed to the data before calculating next year energy forecasts. 

From the temperature normalized time series data, the pattern vectors can be 

calculated, which describe the average hourly loads of each hour of the year. 

Next, before the first weighted k-means clustering stage, the largest customers 

are separated from the data as they shall be calculated an individual load profile. 

After the first clustering stage, clear outliers are filtered and selected for individual 

load profiling. Then, a second weighted k-means clustering stage will be per-

formed. After outliers are classified to their closest clusters, new load profiles can 

be formed from each cluster centroid. Once temperature dependency parameters 

and standard deviations are calculated for all load profiles, the method is com-

pleted. [32] 
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While it was found that the optimal number of clusters cannot be unquestionably deter-

mined beforehand, the above method produced very good results in improving the ac-

curacy of load profiling. It was also shown that the developed model can easily be imple-

mented into existing distribution system management software. [32] 

The model developed by Mutanen acts as a great example of how clustering can be 

used as a tool to create improved load profiles. As pointed out, clustering is an extremely 

widespread concept, and many different approaches could be taken on the use of clus-

tering for classifying electricity customers. 

2.3.4 Artificial neural networks 

Artificial neural networks (ANNs) are a branch of machine learning that have quite re-

cently risen to everyone’s attention due to the groundbreaking technological advance-

ments they have produced. From revolutionizing image recognition and machine trans-

lations to creating remarkably advanced artificial intelligence models, neural networks 

are the backbone of many applications exploited in our everyday lives. Neural networks 

are inspired by the structure of brains: a neural network is essentially a graph, where 

nodes, called artificial neurons, are connected to other neurons. Neurons can transmit 

data to the neurons it is connected to. The signals are actual numbers, and some neu-

rons can process the data between signals. Neural networks can be trained with a large 

set of sample input data. During the training phase, the difference between the desired 

output and the actual network output is minimized. The use of neural networks for elec-

tricity customer classification as well as creating load forecasts has been studied. Cus-

tomer classification with the help of neural networks is essentially a form of complex 

clustering. Perhaps a larger benefit could be achieved in load forecasting since forecast-

ing electrical loads is notoriously difficult due to the stochasticity of electricity consump-

tion, and because neural networks are a rather well-established tool for nonlinear regres-

sion. How the general neural network concept is turned into a functional model capable 

of solving complex tasks is complicated and not relevant for this thesis. Instead, the key 

points of two studies where neural networks are utilized in load forecasting are shortly 

introduced as examples. 

In [33], an ANN model was developed for creating 24 hour forecasts for MV/LV substa-

tions loads. Load measurements with a 30-minute interval were collected from two sub-

stations in France for a total of 540 days between years 2009 and 2011. Two separate 

models were developed: one that forecasts the daily average load, while the other fore-

casts the intraday loads in intervals of 30 minutes. Measurements from the first one-year 

period were used in training the models and the remaining data was used as a test set. 
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Different input variables were given to the two models. The average power model used 

only load and temperature variables, while the intraday model used cycle variables and 

day type variables in addition to the load and temperature variables. To assess the fore-

cast accuracy, the mean absolute errors (MAE) and mean absolute percentage errors 

(MAPE) were calculated and compared between the neural network model and two sim-

ple reference models. The reference models used were a naive model and a time series 

model. The naive model used real historical consumption from a similar day as a direct 

forecast, while the time series model was a regression model that combined a day type 

variable with a temperature dependency model and a Fourier component periodic model. 

The results showed that the neural network model produced more accurate forecasts 

than the reference models, with MAPE being 12.9%, 11.0% and 10.3% for the naive 

model, time series model and neural network model, respectively. 

Another similar but more recent study was conducted in [34]. This study proposed a more 

sophisticated deep learning model for short-term load forecasting, combining two neural 

network concepts, convolutional neural network (CNN) and long short-term memory 

(LSTM), into one model. Hourly measurement data collected from Italy from a period of 

three years (2015-2017) was used in training and testing the model. Data from the first 

two years was used in training, leaving the data from the last year for testing purposes. 

As input variables, load data from the past 21 days was used for producing a forecast 

for the following 24 hours. The forecast accuracy was compared against well-known ma-

chine learning algorithms, namely random forest (RF), decision tree (DT) and DeepEn-

ergy (DE).  Across 8 separate test periods, the average MAPE was 3.96%, 4.37%, 4.79% 

and 5.78% for the new model, DeepEnergy, DE and RF, respectively. Therefore the new, 

more sophisticated model produced an improvement in load forecasting accuracy when 

compared to popular machine learning algorithms. 

Although neural networks are considerably more complex than traditional load forecast-

ing approaches, they arguably provide better accuracy in load prediction. However, their 

very complexity makes neural network models difficult to implement in actual power grid 

management systems. For this reason, distribution system operation still relies on more 

traditional load forecasting methods.  

2.4 Load models in distribution system operation 

Load models have a wide range of use cases and applications in distribution network 

operation and related businesses. Earlier in this chapter, different techniques used to 

model, estimate, and forecast electrical loads were presented. Next, the practical appli-

cations of these methods are examined. 
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One of the key purposes of load modelling is distribution system state estimation (DSSE), 

often performed by the DMS. As mentioned earlier, the exact state of each node in the 

network is not known because of the limited number and accuracy of measurements. 

Like the name suggests, the objective of DSSE is to estimate the most likely present 

state of the network. DSSE typically utilizes two types of data in determining the system 

state: actual real-time measurements and pseudo-measurements. Real-time measure-

ments are typically received through SCADA and originate from primary substations and 

occasional measurement points across the grid. The measurements are typically either 

voltage and current magnitudes, or active and reactive power pairs. Due to the limited 

number of actual measurements, the state estimator requires additional data to fill the 

gaps. This is achieved with pseudo-measurements, which are not actual measurements 

but are used in state estimation like real-time ones. [12], [35] In a load profile based 

model, the load estimations derived from the profiles can be directly used as pseudo-

measurements in DSSE. The accuracy of DSSE can be further improved by verifying 

that the sum of pseudo-measurements from a feeder match the real-time measurement 

from the same feeder, and correcting the pseudo-measurement values if the total load 

does not match. Different algorithms can be used for the state correction. [12], [36] 

Load modelling methods are also very useful for the generation of short-term load fore-

casts and their subsequent use in operational planning. In distribution network operation, 

short-term forecasting typically means forecasting loads for up to one week into the fu-

ture [34]. The forecasts can be used for planning maintenance outages and congestion 

planning, for example. To minimize the disturbance experienced by network customers, 

distribution system operators naturally want to schedule maintenance outages to times 

of minimal consumption. Short-term forecasts can be used to detect risks of congestion, 

i.e. times when the grid capacity isn’t sufficient to distribute power to all locations. Net-

work overloads could cause violations in power quality, so it’s important to identify con-

gestion risks in case load shedding or curtailment is necessary. [37] Since somewhat 

reliable weather forecasts are available for one week, they can be used to improve the 

accuracy of short-term load forecasts. 

In addition to short-term forecasts, DSO’s sometimes need longer-term forecasts for dif-

ferent purposes. This refers to forecasting loads over 1 week into the future, which is 

analogously based on load modelling. Most commonly, long-term forecasts are needed 

for network planning. Loading scenarios throughout the entire year are needed when the 

network structure changes to ensure that the network is adequately dimensioned. Also 

considering load or generation changes that could possibly take place during the fore-

seeable life cycle of the network components is important. Overestimating the loads 
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results in economically wasteful investments, while underestimating the loads potentially 

leads to challenges in power supply. [38] For this reason, the accuracy of the forecasts 

is of major concern to distribution system operators. Traditionally, the interest is in the 

network peak loads, as they set the minimum capacity of each network component. How-

ever, with the increasing number of distributed generation, DSOs are nowadays more 

and more interested in times of lowest loads, as low loads coupled with distributed gen-

eration could lead to power quality issues, namely overvoltage, in the network [39]. 

In addition to system state estimation and load forecasting, load models and especially 

customer type load profiles also serve more mundane purposes. Firstly, customer class 

load profiles are the foundation of tariff design, for both DSOs and electricity retailers. 

This is an extremely important function; not only must the fees be fair and equal for a 

public commodity, but tariff design can also contribute to grid control, for example by 

factoring peak loads and reactive power usage in billing. Secondly, when new electricity 

connections are added to the distribution network, the operator must estimate the cus-

tomer’s annual energy consumption since historical data does not yet exist. Load profiles 

can also be used by businesses to identify potential customers for load optimization so-

lutions, such as peak load management or reactive power compensation services. Over-

all, load modelling has a large variety of use cases, some of which require classifying 

customers based on their load patterns, while some might benefit from individual load 

estimation. 
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3. MICROSCADA X PRODUCT FAMILY 

MicroSCADA X is a product family developed by Hitachi Energy, designed to be a com-

plete solution for electrical network automation and control. The product portfolio in-

cludes multiple software solutions as well as supporting hardware. In this chapter, the 

software relevant for this work, DMS600 and SYS600, are briefly introduced. These ap-

plications are often used hand in hand to manage the entire network. Since this thesis 

includes implementing a new feature into DMS600, this software package is presented 

in more detail and only a short introduction is given to SYS600. In the DMS600 introduc-

tion, the current implementation for load modelling in DMS600 is presented and its weak-

nesses are analysed. 

MicroSCADA X SYS600 is a supervisory control and data acquisition (SCADA) software 

used for real-time high-level monitoring and control over an electrical network. DMS600 

on the other hand is a distribution management software package consisting of two sep-

arate programs: DMS600 Network Editor (NE) and DMS600 Workstation (WS). DMS600 

NE is a network information system (NIS) used primarily for modelling and documenting 

the electrical network, while DMS600 WS is a distribution management system (DMS), 

which in turn is used for monitoring and controlling the state of the network. [40] The 

basic structure and communication between the applications is presented in figure 4: 

 

Figure 4: Communication and basic structure of a DMS/SYS setup 
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DMS600 applications are designed to run on Microsoft Windows or Microsoft Server op-

erating systems. Data is stored into two separate SQL databases. As the name implies, 

the network database is used for storing all information on the network components, 

whereas the DMS database contains primarily operational information, such as data on 

outages and switching states. DMS600 utilises Windows Service based background 

add-ins for both internal and external communication. In this figure, internal communica-

tion means sharing data between different DMS600 instances and modules, primarily 

handled by DMS WebSocket Service, which uses a secure WebSocket protocol. [40] 

External communication refers to communication between DMS600 and several external 

interfaces. Most importantly, DMS600 communicates with SYS600, which is imple-

mented with an OPC connection between DMS Service and SYS600. DMS Service in-

cludes a specific OPC communication module called ExternalOPCDAClient, which con-

nects to the OPC server on the side of SYS600. This allows real-time data transfer be-

tween the two systems. In addition to SYS600, external interfaces can include for exam-

ple a trouble call centre, an AMI system, or a field crew tracking interface. While the 

MicroSCADA X applications are designed to run in tandem, they can also be used sep-

arately in joint with systems from other suppliers. For example, multiple Finnish custom-

ers operate a NIS developed by TietoEVRY along with the DMS600 Workstation. Simi-

larly, different SCADA applications can be used with the DMS600 package using the 

previously mentioned OPC data access. Different modules have been designed for data 

import from external applications to facilitate integration between these systems. [40], 

[41] 

3.1 MicroSCADA X SYS600 

As mentioned earlier, SYS600 is the SCADA system of MicroSCADA X family. By far the 

most widespread application of the product family, SYS600 is used globally by thousands 

of customers. SYS600 includes many functionalities for monitoring, controlling and ana-

lysing the status of distribution networks. The main view is the process display, which 

shows substation diagrams and connections between substations. The display can be 

used to operate remotely controlled switching devices in real-time. In addition to the net-

work topology, the display can also show alarms, faults and important measurements.  
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The process display is presented in figure 5. 

 

Figure 5: The process display of SYS600 with three separate substations 

Besides the process display, SYS600 also offers separate displays for events, alarms 

and trends. The trends display shows different measurements, such as power, voltage 

and current, as a function of time. Together with measurements reports, this information 

can be used by the operator to monitor electrical quality and analyse the cause of anom-

alies, for example. 

3.2 MicroSCADA X DMS600 

The DMS600 software package consists of two main applications, DMS Network Editor 

and DMS Workstation, usually abbreviated simply as NE and WS. Next, the main func-

tionalities of NE and WS will be presented before getting into the current load modelling 

implementation of DMS600. 

3.2.1 DMS600 NE 

The most important function of NE is to generate the network model into the network 

database. NE also creates a separate binary file of the network model. This binary file 

can be read by WS to recreate the same network model. [40] As a network information 

system, NE also includes many functionalities for network management, such as network 

calculation, network planning, reliability analysis and asset management.  As shown ear-

lier in figure 2, external data can also be imported to the network database. This com-

monly includes background maps and data from an external customer information sys-

tem (CIS). NE supports both raster and vector maps, and different background maps can 
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be configured for each zoom level. Besides map settings, NE is used to configure many 

general settings used in both NE and WS, such as component symbols and network 

colouring preferences. [36] 

The main user interface of NE is presented in figure 6: 

 

Figure 6: Overview of NE displaying a medium voltage network 

The main window displays the entire medium voltage (MV) network by default, including 

all substations, line sections and components (disconnectors, circuit-breakers, fuses 

etc.). Low voltage (LV) networks can be loaded either separately for each MV/LV sub-

station or as a cluster from a designated area. By using the embedded editing mode, the 

user can freely modify the network in the main window by for example removing or add-

ing different nodes or line sections. A separate planning mode can be used for creating 

network plans. Each plan is stored separately in the database and can be executed at 

any time to insert the changes into the general network model. [36] 

3.2.2 DMS600 WS 

Workstation serves the operative side of electrical network management. Typically uti-

lised by the operative personnel of distribution network companies, WS offers various 

functionalities for monitoring and controlling medium and low voltage networks. Some of 

the main functionalities offered by WS are fault management, operational simulations, 

switching planning, field crew management, alarms, and reporting services. [40] 
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As previously stated, WS reads the binary network file created by NE to recreate the 

network model. The main user interface is very similar to NE as can be seen in figure 7. 

 

Figure 7: Overview of WS displaying both MV and LV networks 

Despite sharing the same network model, WS offers very different functionalities than 

NE. When linked with a SCADA application such as SYS600, WS receives switch states 

from remotely controlled devices in real time via OPC connection. Switching states can 

also be controlled in WS and the state changes are sent to remote devices by first noti-

fying SCADA, which in turn sends the control command to the physical device. For re-

mote controlled switches, clicking a switch in WS opens a control dialog identical to that 

of SYS600. [36] 

One of the most important functionalities of WS is advanced fault management. Nowa-

days, WS offers a completely automated solution for fault management called FLIR 

(Fault Location, Isolation, and supply Restoration). FLIR utilises fault current calculations 

and fault detector data to automatically create sequences that can isolate the fault and 

restore electricity to as many customers as possible before the fault can be repaired. 

FLIR is also capable of automatic trial switchings that can further help locate the fault in 

the case where fault current and detector data is insufficient in definitively locating the 

fault. Even without FLIR, WS can perform fault location calculations without trial switch-

ings and propose basic restoration sequences. [36] 

Another fundamental segment of WS is operational planning. In distribution network op-

eration, intentional or unexpected outages are an everyday occurrence. Unexpected out-

ages are often caused by rough weather conditions or human error, while planned out-

ages are sometimes needed for maintenance work, for example. By preparing switching 
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plans in advance, it is ensured that switchings are performed in a safe and reliable man-

ner. In WS, the operator can also analyse the expected loads to determine the least 

disturbing time for a planned outage and use the switching planning functions to create 

and execute necessary switchings. [36] 

3.3 Load modelling in DMS600 

Currently, DMS600 features two methods for load modelling: Velander’s formula and 

load curves. The desired load model is typically chosen during installation, but the selec-

tion can also be later changed in NE settings. [36] In practice, Velander’s formula is 

typically used by non-Finnish DMS600 operators and load curves by domestic operators. 

The reason for this is simple: most countries have no history in creating load curves from 

measurement data and the DMS default curves are based on Finnish consumption hab-

its and thus unprofitable for foreign operators. 

3.3.1 Velander’s formula 

Velander’s formula was theoretically presented in chapter 2. As mentioned, the Velander 

coefficients could be defined separately for multiple different customer groups. However, 

DMS600 only allows defining one set of Velander coefficients for calculations. The de-

fault values for k1 and k2 are 0.28 and 0.08, respectively. These default values can also 

be changed in NE settings. [36] As Velander is not useful for estimating the loads of 

individual customers, load forecasts are only available in MV networks when the Ve-

lander model is in use. 

3.3.2 Load curves 

Compared to Velander’s formula, load curves provide a more comprehensive solution 

for load modelling. While Velander’s formula can only be used to estimate peak loads of 

entire customer groups, load curves model the electricity consumption of individual cus-

tomers, which varies in quantity and over time. The principles of load curves were already 

presented in chapter 2 so we will now review how the use of load curves is implemented 

in DMS600. 

The default installation of DMS600 contains a small set of load curves from the 1992 

load research study. However, since the predefined load curves are obsolete and in-

creasingly inaccurate, practically all domestic DMS600 operators have created their own 

set of load curves from metering data. The importation and creation of new load curves 

is supported in DMS600. In addition to creating general, customer class specific load 

curves, it’s typical to create individual load curves for major customers. The largest 
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consumers often have quite unique consumption habits that wouldn’t fit very well to a 

general customer class load profile. Moreover, the electricity demand patterns of these 

customers are often more constant than those of typical households and thus an individ-

ual, measurement history based load curve can be a very accurate way of modelling 

their consumption. Due to the creation of individual load profiles, many DMS operators 

have dozens or even hundreds of separate load curves in use. 

For load estimation purposes, DSOs ordinarily assign each customer to a predefined 

group based on their type, such as function and heating solution. For example, apartment 

houses with district heating and without an electric sauna could be one customer group. 

Each group has their own load curve. This information is stored in the operator’s cus-

tomer information system. DMS600 receives this information along with the general cus-

tomer information importation and saves it to the customer table in the network database. 

The load curve itself consists of two binary files that contain the load data from the cor-

responding customer or customer group. All load curves are scaled to a total consump-

tion of 10 MWh (10,000 kWh). One binary file contains hourly load data from the entire 

year, while the other binary file includes hourly deviation data. The deviation curve pro-

vides information on how much the demand on similar times fluctuates. DMS600 base 

installation includes a separate tool for examining and editing load curves, called 

LoadCurve.exe. The load curve tool features three separate views: day, week and the 

whole year. The week view is presented first in figure 8. 

 

Figure 8: Week view of an hourly load data file opened in LoadCurve.exe 

When opening a load curve, the first week of the year is shown by default. The week 

view splits the week into 42 sections, covering 4 hours each. In other words, each column 



28 
 

tells the average load of a 4-hour period. The user can select which week is displayed in 

the Week Number control. Clicking one of the weekday buttons will bring forth the day 

view of the corresponding day of the week in question, as displayed in figure 9. 

 

Figure 9: Day view of an hourly load data file opened in LoadCurve.exe 

The day view is more intuitive: it shows the load of each hour of the day. Lastly, by 

clicking the Display Year Load button, the tool displays the average load of each week 

of the year. Figure 10 presents the year load view. 

 

Figure 10: Year view of an hourly load data file opened in LoadCurve.exe 
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The basic functionality is same across all views. Exact loads are displayed by hovering 

over the columns. The load values can be edited by simply dragging columns to the 

desired values. 

When load curves are in use, both NE and WS offer the possibility to see a graphical 

load forecast for any node or node section for the upcoming week. In WS, the user can 

select to forecast the next 1-168 hours for MV networks while in NE, the whole week is 

always displayed. In MV networks, the graph consists of four curves: voltage, reactive 

power, active power, and active power with estimation correction. The active power curve 

is based on the sum of customer class specific load profile curves which are scaled with 

the customer yearly energy consumptions. The expected value for each exact hour is 

presented, which corresponds to a 50% confidence range. The estimation curve displays 

forecasted active power calculated by Esti, an estimation program that uses real-time 

power measurements to improve the accuracy of the load profile based modeling. Esti 

is only used in MV networks. [36] Example of a MV section load curve (forecast) can be 

seen in figure 11: 

 

Figure 11: Load curve (forecast) for a MV network node section 

The user can freely edit the graph settings, including the color, markers and width of 

each curve, the axes scaling and the graph type. For example, a bar chart can be 

selected instead of the default plot line. In figure 11, the active power curves are 

purposefully highlighted. 

When a load forecast is requested in LV networks, the whole week is always displayed. 

Since Esti isn’t applicable to LV networks, the graph doesn’t contain an estimation curve. 

Instead, a load statistical confidence curve is displayed. This curve displays a confidence 
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coverage according to a statistical factor. The default statistical factor is 1.6, which 

means that the load displayed by the confidence curve is the expected value + 1.6 * 

standard deviation [36]. In traditional load profiling,  the load dispersion of similar 

customers at a specific time is assumed to be normally distributed [26]. This means that 

the factor 1.6 corresponds to around a 90% confidence range. In other words, the actual 

load is below the shown value with 90% certainty. The statistical factor can be freely 

selected in NE settings. Figure 12 shows an example of a load forecast for a LV network 

node section. 

 

Figure 12: Load curve (forecast) for a LV network node section with a 1.3 statistical 

factor 

This graph uses a statistical factor of 1.3, which corresponds to around an 80% 

confidence range. Since the active power curve displays a 50% confidence range, the 

confidence curve always shows a higher value, as it presents a higher confidence range. 

With a statistical factor of 1.6, the confidence curve values would naturally be even 

higher. 

The load curves together with the estimation tool offer the most accurate method for 

system state estimation in DMS600. As examined in chapter 2, distribution system state 

estimation and load forecasting are extremely important in network operation. 

3.3.3 Weaknesses of current implementation 

The current load modeling features in DMS600 that were presented earlier in this chapter 

are not ideal for estimating and forecasting modern day electrical load patterns. While 

acting as a novel conceptual approach to load modelling, the model that is developed as 
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part of this work also aims to improve the load modelling functionalities in the DMS600 

software. The main defects of the existing load modelling methods have already been 

examined so this subchapter will only shortly revise the weaknesses in DMS600 load 

modelling functionalities. 

The DMS600 base installation only features a small batch of customer class load curves. 

These curves alone cannot encompass all the varying electricity consumption patterns 

present in today’s electrical grids. As a result, customers are inevitably assigned to clas-

ses to which they don’t fully adhere to. In addition, the existing load curves originate from 

a load research study from decades ago, so the load patterns no longer accurately rep-

resent the current electricity consumption. To mitigate this issue, practically all DMS600 

operators have imported multiple additional load curves into the software. While the im-

portation of external load curves is supported at a basic level, this creates tons of exces-

sive work for the DSO. 

Another deficiency of traditional load profiling is that a possible change in customer class 

is often left undetected. For example, if a customer with direct electricity heating installs 

a heat pump, their consumption pattern changes dramatically which would require mov-

ing the customer to another customer class. However, these types of changes are rarely 

reported to the DSO by the customers. As a result, an increasing number of customers 

remain assigned to wrong customer classes. Besides incorrect profile assignment, an-

other issue with load profiling is that there is always a certain number of customers that 

do not conform to any customer class load profile. Especially large consumers, such as 

industrial customers, can have very distinctive consumption patterns. For these custom-

ers, creating an individual load profile is often required, which relies on manual labor in 

the current implementation. 

All the abovementioned problems could be solved to some degree with a customer spe-

cific load model. When load estimation is done individually, purely based on historical 

consumption data, any possible changes in consumption habits are automatically con-

sidered, albeit with a certain delay. There would no longer be a need to classify custom-

ers to specific groups, which reduces the inaccuracies caused by generalization. Also, 

this would solve the problem with customers that do not clearly belong to any group. 

Despite its deficiencies, load profiles offer a much more comprehensive solution to load 

modeling in DMS600 than the alternative: Velander’s formula. Since the existing load 

profiles are only applicable to Finnish electricity consumers, foreign grid operators must 

rely on Velander’s formula for load modelling. As explained earlier, Velander’s formula 

is not the most versatile method as it is only suitable for roughly estimating the peak 
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loads of larger customer groups. In theory, the model developed in this work could be 

used by foreign customers in addition to the domestic market, but it would require provid-

ing metering data in the specific format used by Finnish DSO’s, which might not be fea-

sible for many foreign operators. 



33 
 

4. DESIGNING A CUSTOMER SPECIFIC LV 

NETWORK LOAD MODEL 

Based on the presented background knowledge on load modelling so far, the focus can 

be shifted into developing a novel algorithm for modelling and forecasting LV network 

loads with historical measurement data. In the beginning of this chapter, the process of 

importing metering data into DMS600 is briefly examined. This serves as the backbone 

for implementing the new load model and gives knowledge on how metering data is 

stored and transferred in Finland. Afterwards, designing the new algorithm and imple-

menting the model into DMS600 is examined, and a straightforward test scenario is pro-

posed to determine the accuracy of the newly developed model. 

4.1 Smart meter data 

Before a new load modelling and forecasting algorithm can be implemented and tested 

in a real-life network, time series data needs to be imported into the DMS600 database. 

This subchapter will briefly introduce the file format uniformly used to transfer time series 

data in Finland, which will also be used to import data to DMS600. Furthermore, a short 

overview of how metering data files can be imported and stored in the DMS database is 

given. For this thesis, an extensive set of actual smart meter measurements was re-

ceived from a DSO operating in Western Finland. This included metering data from their 

entire network for the past 4 years, adding up to a total of around 500 million separate 

measurements. 

4.1.1 Transfer file format 

In order to collect, transfer and handle measurement data from smart meters, a some-

what standardized data format is needed. As measurement data is essentially tabular 

data in huge quantities, a delimiter-separated value (DSV) format is a natural approach. 

When Fingrid’s Datahub project began, a need for a documented, clearly standardized 

data format for exporting and importing time series data emerged. Eventually, a new data 

format called standard ASCII format (SAF) was introduced. Today, all Finnish DSOs are 

required to submit measurement data from their networks to Datahub as SAF files. Since 

all Finnish DSOs are already required to compile their metering data into SAF files, the 

same format will be used in importing the data to DMS600. 
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An example of a SAF file is presented in figure 13: 

 

Figure 13: Example of SAF file contents, directly from [42] 

The same SAF file format is also used for transferring gas grid time series data into Gas 

Data Hub, the gas counterpart of Datahub [43], [44]. For this reason, the format offers a 

wide variety of data fields and formatting options, not all of which are relevant for elec-

tricity metering data. 

As the example shows, SAF is one type of DSV with each value separated with semico-

lons. The purpose of each row is indicated with a three-letter abbreviation. The following 

abbreviations, also present in the data example above, are commonly used for electricity 

metering data: 

• EXH – Export header 

• TSH – Time series header 

• TSV – Time series value 

• EXT – Export trailer 
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Each file always begins with an export header row (EXH) and ends with and export trailer 

(EXT) row. The export header mainly tells the export processing time. All times in SAF 

files are in the format YYYYMMDDhhmmss+XX, where XX is the UTC offset. [42] 

The function of time series header (TSH) rows is to give information about the following 

time series value (TSV) rows. Among other details, a TSH row tells the start and end 

time of the reporting period, the metering point code, as well as the unit and time step of 

the measurements. The TSV rows then simply include the start time of the interval and 

the associated value as a decimal number. [42] 

4.1.2 Database solution 

As mentioned earlier in chapter 3, DMS600 almost always features two separate data-

bases, one for operational data and one for network data. Since the metering data is a 

somewhat separate entity and the amount of data is very large (dozens of gigabytes), 

creating a separate database for the data could be reasonable to avoid flooding already 

large databases. However, that would complicate implementing both the data importa-

tion and application extensions that access and handle the data, since all existing 

DMS600 functionality is based on a two-database system. For this reason, it was decided 

to store the metering data in the existing network database of DMS600. 

Not every piece of data included in the SAF files is relevant for calculating a load estimate 

or forecast. The necessary information, along with the structure of the new table created 

into the network database for storing the measurements is presented in table 1. The data 

types were selected to match the specifications given in the technical description of SAF 

files [42]. 

Table 1: The structure of the measurements table 

Column name Data type Additional information 

MeteringPointCode nvarchar(35) Primary key, not null 

MeasurementDateTime datetime Primary key, not null 

Value float Not null 

Unit nvarchar(6) Not null 

LoadType nvarchar(35) Primary key, not null 

 

The metering point code can be used directly to identify the customer and the grid con-

nection in DMS600. The unit and load type are relevant information because the meter-

ing data can also include reactive power measurements alongside active power meas-

urements. The unit used to measure reactive power is volt-ampere reactive (var), while 
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active power is measured with watts (W). The load type is reported separately in the TSH 

rows, with P+ or P- signifying active power measurements, and Q+ or Q- signifying re-

active power measurements. P+ indicates ordinary active power taken from the grid, 

while P- is designated for production, i.e. active power fed into the grid. Meanwhile, Q+ 

refers to inductive power (positive reactive power caused by inductive loads) and Q- 

refers to capacitive power (negative reactive power caused by capacitive loads). 

The table’s primary key was determined to be a composite, consisting of the metering 

point code, measurement date and time, and load type, since the combination of these 

three values is always unique. Also, these are the main filters used when performing 

queries into the table, and a clustered index is automatically created on the primary key, 

which speeds up the queries. 

4.1.3 Importing metering data 

It was briefly mentioned in chapter 3 that DMS600 includes a service framework called 

DMS Service. In practice, DMS Service runs and keeps track of many separate back-

ground services that are responsible for a wide variety of tasks, related to for example 

communication, fault management and timed data transfer. It is often necessary to import 

or export data between DMS600 and different customer systems and for this reason, 

many different modules for data transfer have been implemented into DMS Service. Con-

sequently, implementing a new service module for handling the importation of metering 

data seems reasonable. The service framework also includes ready-made functionality 

for automated operation, as well as logic for connections to DMS databases. 

As suggested, a new service module was written in C# to handle metering data importa-

tion. Through an existing graphical interface called Service Monitor, the user can config-

ure the importation process. For example, the user can select whether outdated meas-

urements are automatically deleted from the database after the import, as they are no 

longer useful for the new load model. One at a time, the import module reads all SAF 

files from a folder path given by the user. The file is first read to memory into a list of 

rows. The data is then parsed row by row and saved to temporary tables in the C# code 

in batches of 5000 rows. Each batch is then saved to the database table described ear-

lier. However, each SAF file is saved to the database in one transaction, so that in case 

of a failure in reading, parsing, or saving the data inside one file, the transaction can be 

rolled back. The user is presented with progress loggings on the service monitor. 

Reading, parsing, and saving hundreds of millions of rows can be very time consuming. 

For this reason, the efficiency of the importation is vital but even more importantly, normal 

operation must be able to continue despite an ongoing import. Consequently, nearly all 
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functions in the import module were written to be asynchronous, meaning that the pro-

cessing thread can run other tasks in parallel, and normal system operation can continue. 

Naturally, the large bunch of historical data only needs to be imported once, when the 

system is taken into use. Afterwards, the import can be scheduled to run for example 

every night or once a week to bring in new measurements. With a much smaller data 

set, the import is no longer time and performance consuming. 

4.2 Developing a smart meter data based load model 

Now that the necessary measurement data can be saved into the database, a novel load 

model can be designed and implemented into the DMS600 software for testing. In this 

subchapter, the general algorithm is first designed and reasoned. The algorithm is then 

turned into a model that is implemented into DMS600 Workstation. 

4.2.1 Mitigating load stochasticity 

As examined in chapter 2, the use of smart meter measurement data has been studied 

in literature to improve load modelling. However, the focus has mainly been in developing 

new load profiles, improving existing profiles and classifying customers to clusters based 

on their consumption habits. Directly using the historical measurements of individual cus-

tomers to create customer specific load estimates and forecasts has not been proposed, 

albeit in his dissertation, DSc Antti Mutanen noted that past year measurements should 

not directly be used to estimate individual loads as they fail to factor in temperature dif-

ferences, calendar changes or the stochastic nature of electricity consumption [32]. In 

this thesis, estimating individual loads purely using historical data is attempted while try-

ing to mitigate some of the defects stated by Mutanen. In short, this means using statis-

tical analysis to calculate an estimate for the load of one hour by using directly compa-

rable historical measurements as data points. 

Maybe the greatest difficulty in estimating the average load of a single hour based on 

historical data is indeed the stochasticity of electrical loads. While some network cus-

tomers, such as industrial consumers, might adhere to a stable and repetitive load curve, 

most consumers are individual households that have rather unpredictable consumption 

patterns. Many home appliances operate on a relatively high power (multiple kilowatts), 

which drastically changes the load on a one-hour period. For example, an ordinary elec-

tric sauna stove might have a maximum power of 10 kW. This effect is emphasized in 

apartments with district heating since their base consumption is usually low. One can 

imagine that this leads to a scenario, where comparing, say, the hour between 19:00 and 

20:00 every Thursday, gives very different results based on whether a stovetop or an 



38 
 

electric sauna was used or not. The sporadic nature of individual consumption is demon-

strated in figure 14. The figure shows the hourly loads of three randomly selected house-

hold customers from one week in July 2023. The loads are actual measurements. All 

three customers are from the same LV network, and they are all apartments with district 

heating. The figure also includes the statistical load curve of this specific customer class. 

 

Figure 14: Average hourly loads of three similar customers and the customer class 

load curve. Data from July 2023. 

The fact that the loads of all three customers are systematically lower than the associated 

load curve is somewhat irrelevant and mostly because the customer class load curve is 

scaled to an annual consumption of 10,000 kWh. The more important takeaway is that 

the shape of the customer consumption curves is nowhere near the load curve; they are 

also very different with each other. The base load of each customer can be observed to 

be low, while each series contains multiple distinct load spikes at varying times. The 

peak power is thus very high compared to the average power, but the duration of each 

peak is very short. This type of behavior is typical to household electricity consumption. 

The unpredictability balances out when the number of consumers increases as chance 

variation decreases, which is also the base of load profiling. The sum of 100 similar con-

sumers is already very likely to mirror the customer class load curve behavior. [26] How-

ever, the problem persists if we attempt to forecast the loads of an individual consumer. 

While the problem of stochasticity cannot be fully mitigated, using multiple data points 

for each customer will inevitably lower the relative error, similarly to summing up the 

loads of multiple customers to form a load curve. This raises a new question: which time 
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points are directly comparable with each other? It is apparent that the same exact hour 

of the same day from last year is a valid data point. For this thesis, it was decided that 

data from the past 4 years is usable. Older data becomes progressively more unreliable, 

and it would unnecessarily increase the amount of raw data that needs to be imported 

and stored. Meanwhile, using less data would decrease the amount of data points, also 

adding unreliability to the analysis. 

Traditional load profiling utilizes a three-way model where the week consists of week-

days, Saturdays and Sundays/holidays [26]. In other words, all weekdays are assumed 

to be identical, and all public holidays are assumed to produce similar load patterns than 

Sundays. Using this same approach provides us with more data points for load calcula-

tions: If weekdays are assumed identical, it is safe to assume that the load of the same 

hour from yesterday or two days ago is comparable to the estimated hour. Seasonal 

variance does however start to play a role as we move further from the observed point 

in time. While the average temperature is not likely to have a significant difference in a 

span of one week, there is likely a meaningful difference in a span of three weeks. Sim-

ilarly to using data from previous years, a balance between more data points and the 

accuracy of each point needs to be balanced. For the new load model, it was decided to 

use the measurements from past three weeks. 

So far, it was determined to utilize the corresponding hours from the past three weeks, 

and the exact same hours from the past 4 years as the base data for the new load esti-

mation algorithm. In practice, this means that for weekdays, we get 19 data points: 15 

from the past three weeks and 4 from the past years. For Saturdays and Sundays, we 

only get 7 data points, as there are only three corresponding days in the previous three-

week period. Hypothetically, this would suggest that the estimation will be more accurate 

for weekdays. Also, due to the higher number of data points, the measurements from 

past weeks have more weight for weekdays. 

4.2.2 Eliminating outliers 

As stated, electricity consumption has a large variance and thus historical data is likely 

to include extreme values that should be discarded from the calculations. A common 

approach to finding outliers or extreme values in a data set is to calculate the standard 

deviation of the data and determine outliers based on their distance from the mean or 

expected value. However, the presence of extreme values in the data strongly affects 

the standard deviation and mean value, which makes this method unreliable when ana-

lyzing a small data set. The amount of data points in this case is very small which means 

that even one outlier would significantly affect the mean and standard deviation value. 
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The data is also not normally distributed. To reliably find outliers from such data, we 

could use the median absolute deviation (MAD) measure. 

MAD is a robust method for measuring statistical dispersion in a data set that is not 

normally distributed. It is not dependent of mean and standard deviation and thus not 

affected by the presence of extreme values. [45] The use of MAD for outlier detection is 

demonstrated in the following example: 

Consider the following data set that consists of 9 values: (0, 2, 3, 4, 4, 5, 7, 8, 12). 

The median value of this set is 4. As such, the absolute deviations of each number 

from the median are (4, 2, 1, 0, 0, 1, 3, 4, 8), which is sorted into (0, 0, 1, 1, 2, 3, 

4, 4, 8). The median of this set, in other words the median absolute deviation of 

the original data, is 2. 

To determine which values in the set are outliers, a boundary needs to be set. For ex-

ample, one could determine that all values that are over 2 MADs away from the median 

should be flagged as outliers. With this threshold, only the value 12 would be considered 

an outlier. This seems like a reasonable conclusion when looking at the data set. The 

cutoff boundary can be freely selected. An iterative approach is often needed to find the 

best solution for each data type. 

4.2.3 Weighting data points 

After the outliers have been flagged and removed from the data set, all remaining data 

points can be assumed valid. The value of each data point still needs to be considered. 

It is evident that a data point from yesterday reflects the current status better than a data 

point from four years ago. Assigning weights to each data point and calculating a 

weighted average is a straightforward way to assess the data. Analogously to the bound-

aries of outlier elimination, an iterative approach is often the easiest solution for deter-

mining optimal coefficients. Consequently, an educated guess was made. To begin with, 

the weights were assigned based on data recency as displayed in table 2. 

Table 2: Initial weights assigned to data points 

Data age < 1 week 1-2 weeks 2-3 weeks 1 year 2 years 3 years 4 years 

Weight 1.0 0.6 0.2 0.8 0.6 0.4 0.2 

 

Data from the previous week was deemed most reliable. Firstly, it is most recent and 

thus not affected by fundamental changes in consumption patterns or seasonal changes. 

Secondly, data from less than one week ago is likely to reflect the prevailing weather 

trend at least with some accuracy. As we move further away from the present date, data 
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reliability quickly deteriorates due to possible seasonal changes. Thus, the data between 

2 and 3 weeks of age is assigned a rather low weight. When it comes to data from pre-

vious years, the main sources of unreliability are weather variance and fundamental 

changes in consumption habits. Even if the data from previous years presents the same 

day of the year, the prevailing weather trends can be very different between separate 

years, particularly during spring and autumn when large temperature variances are fre-

quent. However, previous year data still provides a highly comparable baseline since the 

time of the year is exactly the same. As for fundamental changes, for example the ac-

quisition of a heat pump would significantly change the consumption pattern, thus turning 

older data somewhat useless. For this reason, the weights are systematically reduced 

according to the data recency. Once the data is prioritized, a weighted average can be 

calculated. 

4.2.4 Model implementation 

To summarize, the following superficial algorithm is proposed for creating a customer 

specific load forecast: 

1) Fetch metering data from the past three weeks and past four years for the corre-

sponding hours. 

2) Find and eliminate outliers using median absolute deviation (MAD). 

3) Assign weights for different measurements, prioritizing more recent measure-

ments separately for data from past weeks and past years. 

4) Calculate a weighted average from the measurements separately for each hour. 

This will be the load estimation for each hour. 

When fetching past data, the same weekday is searched from the database. For exam-

ple, the last year’s and last week’s equivalent for Friday 12th of May 2023 would be 

Friday 13th of May 2022 and Friday 5th of May 2023, respectively. Public holidays oc-

curring on weekdays could skew the results and should optimally be considered, even if 

the outlier elimination might remove some of the deviating data. Due to the limited im-

plementation time frame, the consideration of public holidays was left out of the forecast 

algorithm. However, the author suggests a high priority for this as a future improvement. 

The above algorithm shall be the base of first model implementation into DMS600. The 

model was first implemented into DMS Workstation’s LV network calculation. In DMS, 

LV networks are separately loaded into memory by command. When an LV network is 

being loaded, the load of each node section in the network is calculated. Traditionally, 

the program first loads all the electricity connection objects into memory. Each object 
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contains information about how many customers belonging to each load curve are con-

tained in that connection, as well as each customer’s annual energies. Many connections 

only have one customer, but for example apartment buildings contain multiple custom-

ers, which could potentially belong to different load curves. With the load curve numbers 

and annual energies, the load of each node can be estimated. These can then be 

summed to estimate the load of each section in the network. With the metering data 

model, when an LV network is loaded, all metering point codes that include measure-

ments in the database are saved into the LV network object. The new estimation algo-

rithm is then used to separately calculate a load estimate for each customer. 

Explained with more detail in chapter 3, a short-term load forecast can be requested for 

any node or section in the LV network in DMS600 Workstation. The program then pre-

sents a graph that includes a forecast for active power, active power statistical confi-

dence, reactive power, and voltage for the next 168 hours from the calculation time, in 

other words for the following week. The metering data model will replace the calculations 

behind the active power curve in the backend. Since the developed model does not con-

tain information about load statistical dispersion, the active power statistical confidence 

curve will be identical to the standard active power curve. If the metering data model fails 

to calculate a reliable estimation, the old load curves will be used, which means that the 

statistical confidence curve will also be visible for the faulty period. An example of a 

successful metering data estimation is presented in figure 15. 

 

Figure 15: One week load forecast in Workstation using metering data calculations 
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As can be seen, the statistical confidence curve is identical to the active power curve 

and thus not visible. From a user experience perspective, the best approach would be to 

not include the statistical curve at all when it serves no purpose. However, the curve is 

an easy way to instantly tell whether the metering data calculations were successful or 

not, and thus it was kept to facilitate this work. 

In this work, the model is only implemented into LV network calculation and short-term 

forecasts in DMS600 Workstation. While in theory, the same logic of calculating the loads 

of each individual customer could be extended to MV network load calculations, it was 

quickly noticed that for DMS600, the implementation would be very laborious and time 

consuming. As explained in chapter 3, DMS600 calculates MV network loads by com-

bining load curve information with estimation correction, the latter of which uses real-

time measurements to adjust the load curve estimation. The entire MV network is always 

calculated at once so due to the massive number of customers, separately calculating 

loads from metering data for each customer in the whole network is very likely too ineffi-

cient. Instead, the calculation should be performed for a limited area, such as one sub-

station. The basic estimation derived from load curves could be replaced with a sum of 

all downstream customer load estimations calculated with the metering data model. How-

ever, since the implementation for LV networks was already demanding, it was decided 

to keep the scope of this thesis on LV network modelling. 

4.3 Designing a test scenario 

Now that a functional model has been implemented, a test scenario can be designed to 

determine the accuracy of the new model. The short-term load forecast tool in Work-

station contains the option to export the graph data into a csv file. This allows us to gather 

data from both the metering data model and the old load curve model. The CSV files can 

be taken to excel, where the data can be analyzed. Due to the large variance in electrical 

loads, mainly caused by load stochasticity and temperature differences, a large sample 

size is required to achieve reliable results. Data should also be collected from different 

seasons, as electricity consumption patterns differ systematically according to the sea-

son. 

To address these preconditions, data will be collected from three large, arbitrary LV net-

works, from all four seasons. The networks 1, 2 and 3 have a total of 187, 175 and 166 

customers, respectively. In other words, data from a total of 528 real-life customers shall 

be collected. Each LV network will be analyzed separately as a sum of all the loads inside 

the network. The time periods to be analyzed are October 2022, January 2023, April 

2023, and July 2023. The metering data from the first week of these four months will be 
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pulled from the database, and a short-term load forecast will be created for these four 

weeks using both the old load curves and the new metering data based model. This can 

be done by setting the calculation time in Workstation to for example 1/1/2023 12:00 and 

then requesting the load forecast for the entire LV network, which would then give a load 

forecast for the first week of January. The data will be exported to an excel spreadsheet 

where the data will be analyzed. Three key error metrics will be calculated and presented 

to offer a comprehensive evaluation of the model accuracy. 
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5. RESULTS AND ANALYSIS 

Actual measurements, metering data based forecasts and load curve forecasts were all 

collected and analysed according to the methods described in chapter 4. Before the final 

results are displayed and dissected, some observations from the testing phase and con-

sequent corrective actions are presented. 

Initially, the threshold for outlier elimination was set to be 2 times MAD. This threshold is 

a rather standard approach in outlier elimination [46]. The initial tests showed that the 

calculated load forecasts were systematically lower than the actual loads. While the av-

erage error seemed reasonable, systematically providing too low load forecasts would 

be harmful, as loads should rather be overestimated than underestimated in operational 

planning. The reason for the systematic error was not obvious, so calculation parameters 

were one by one altered to find the cause. Eventually, it turned out that the systematically 

small estimations were caused by the outlier elimination. While the outlier elimination 

used the same threshold for eliminating relatively large and small results, the algorithm 

eliminated significantly more large values than small values, thus negatively affecting the 

load estimation. This is likely caused by the nature of electricity consumption: As exam-

ined earlier, in residential use, loads are at the base level most of the time. Larger spikes 

in loads are typically caused by the use of powerful household appliances, or in Finland, 

heating up an electric sauna. Powerful appliances are only used intermittently, albeit still 

regularly, so the load spikes they cause should not be entirely neglected in load calcula-

tions. However, as the load is near base level most of the time, the median value and 

the median absolute deviation stay rather low, which results in the elimination of almost 

any larger values. This hypothesis was proven right by temporarily removing the outlier 

detection from the calculations: this resulted in a much more evenly distributed error 

when the calculations were compared to actual measurements. However, to no surprise, 

the calculated values were now systematically a tad too high. 
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Figure 16 shows an example of the relative forecast error with the initial outlier elimina-

tion, as well as the relative error without any outlier elimination. 

 

Figure 16: Example of the forecast relative error with the initial outlier elimination and 

without any outlier elimination 

The abovementioned issues are clearly visible in the graph: with the initial outlier elimi-

nation, the forecasted values are systematically too low, but if outliers are not eliminated 

at all, the forecast includes frequent spikes where the loads are highly overestimated. 

This suggested that some outlier elimination is still needed for abnormally large values. 

Simply raising the threshold for outlier elimination would likely provide an improvement 

to how large values are handled but would probably result in complete negligence of 

abnormally small values. A small example to depict the issue: 

Consider the following set of values: 0, 1, 1, 2, 2, 3, 6, 7, 14. As explained in 

chapter 4, the median value of this set is 2 and the MAD would be 1. With a 

threshold of 2 * MAD, the values 6, 7 and 14 would all be eliminated. While the 

value 0 could be seen as an outlier since an electrical load cannot physically be 

any lower, it is not eliminated because the base load is so low. Meanwhile, values 

6 and 7 seem like values that maybe should be included.  

This phenomenon suggested that a different threshold should be used for small and large 

values. A narrower threshold is needed for small values and a broader one for large 
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values. The optimal thresholds were tested iteratively to see which boundaries provided 

the most accurate estimations compared to actual measurements. In the end, a threshold 

of 1,5 * MAD was selected for the values smaller than the median and 5 * MAD for values 

higher than the median. If these thresholds would be used for the data set in the earlier 

example, the values 0 and 14 would get eliminated, while the previously eliminated val-

ues 6 and 7 would be included. This also seemed to produce the best results in real life 

scenarios, in terms of both the absolute error and the distribution of too low and too high 

estimations. For comparison to the initial threshold and to the lack of outlier elimination, 

figure 17 shows the new threshold forecast added to the example shown in figure 16. 

 

Figure 17: The forecast relative error with the new MAD thresholds added to the exam-

ple shown in figure 16 

The graph shows an improvement in both directions; especially the high error peaks of 

too high forecast values were largely removed. While the average error is still a tad neg-

ative, indicating that the newly forecasted values were a bit underestimated, the average 

error is smaller and more evenly distributed. Since this threshold combination produced 

best results, the final results were gathered using this modification to the initial algorithm. 
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To analyze the load model accuracy, the relative error (RE), mean absolute error (MAE) 

and root mean squared error (RMSE) was calculated for both the old load curves and 

the new load model. The errors were calculated separately for each hour of each one-

week period for the three LV networks, and then combined into averages for each metric. 

The relative error tells how many percents the forecasted value differed from the actual 

value on average. The percentage is calculated from absolute differences. All average 

metrics are presented in table 3. 

Table 3: The average errors of load curve forecasts and metering data model fore-

casts, compared to actual measurements 

 

The results clearly indicate that the new load model produced significantly better fore-

casts than the existing load curves. In nearly all occasions, the accuracy of the metering 

data based forecast was better. As a hypothesis, it was suspected that the largest vari-

ance in the forecast accuracy would be caused by seasonal variance. For example, if 

the observed week in January would have been much colder than in previous years, the 

loads could have been noticeably higher than expected. However, the accuracy variance 

inside single LV networks is uniformly quite small. Instead, the largest factor to affect 

accuracy seems to be the observed LV network. With all metrics, the metering data 

model performed worst in LV network 2. This suggests that the historical consumption in 

this network was less stable than in the other networks. Conversely, the load curve fore-

cast accuracy was not worse in LV network 2 than other networks. 

 

 

 

 

LV Network Time period
Load curve           

RE (%)

Metering data   

RE (%)

Load curve      

MAE (kW)

Metering data 

MAE (kW)

Load curve    

RMSE (kW)

Metering data 

RMSE (kW)

1 July 2023 18.71 6.73 9.02 3.06 10.54 4.44

1 April 2023 21.67 8.09 11.74 4.49 13.96 6.06

1 January 2023 12.87 7.92 9.26 5.91 12.54 7.86

1 October 2022 18.50 5.57 10.76 3.54 12.55 4.92

2 July 2023 18.80 19.04 7.82 7.95 10.43 10.84

2 April 2023 20.06 16.34 10.31 7.97 12.87 10.68

2 January 2023 23.88 15.85 10.31 7.97 12.87 10.68

2 October 2022 23.93 15.85 9.20 7.31 11.82 10.02

3 July 2023 30.79 10.28 8.23 3.22 10.02 4.81

3 April 2023 25.34 12.31 8.68 4.53 10.29 5.98

3 January 2023 20.66 10.22 8.29 4.62 10.35 6.26

3 October 2022 26.47 11.23 8.98 4.44 10.94 6.29

Avg error % 21.81 11.62 9.39 5.42 11.60 7.40
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Table 4 presents a summary of all the average errors for both forecast methods. 

Table 4: Summary of the forecast error metrics 

 

The relative error shows a decrease of almost 50% with the metering data model. On 

average, the load curve forecast was 9.39 kW off the actual value for each hour, while 

the corresponding error was 5.42 kW for the metering data forecast. In RMSE, the errors 

are initially squared, which emphasizes larger deviations. Compared to other metrics, 

the improvement provided by the new model was smaller when measured with RMSE. 

This suggests that the metering data model is slightly more prone to outliers. Regardless, 

the accuracy of the metering data model was still significantly better when compared to 

the load curves. 

While the presented metrics give a decent overview of the forecast accuracy, they do 

not show how the errors are distributed around the actual value. If the forecasted values 

are consistently too small or too large, it is likely that the model has a systematic defect 

even if the error is small on average. Overall, the error was positive (forecasted value 

too high) in 31.3% of all data points for the new load model. For load curves, 51.4% of 

errors were positive. This result suggests that the load curves produce more evenly dis-

tributed errors, and that the metering data model produces an excessive number of low 

values. However, when looking at the relative error distribution, the load curve forecast 

relative error is 25.4% when the error is positive, and 17.4% when the error is negative. 

The corresponding figures are 10.2% and 11.8% for the metering data model. Therefore, 

despite having an almost even amount of positive and negative errors, the positive errors 

of the load curve forecasts are relatively larger. This aspect is more balanced with the 

metering data model. Taking that into account, the error distribution still suggests slight 

defects in the developed model. 

 

 

 

 

 

 

 

RE (%) MAE (kW) RMSE (kW)

Load curve 21.81 9.39 11.60

Metering data 11.62 5.42 7.40
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Next, one measurement period from each network will be observed in more detail and 

distinctive forecast errors are analyzed. Figure 18 displays the hourly load curve forecast, 

metering data forecast and the actual measurements for network 1 (187 customers) for 

the first week of January 2023. 

 

Figure 18: Forecasts and actual measurements for network 1 in January 2023 

Compared to the stochasticity of individual customer loads shown in chapter 4, the load 

curve adheres to the actual consumption rather well now that a large of number of sep-

arate loads are summed up. However, the metering data forecast mimics the actual 

measurement curve slightly better. For this period, both forecasts were relatively accu-

rate, as can also be seen from table 3. According to the Finnish Meteorological Institute 

(FMI), the week’s end was rather cold [47], which might explain why the metering data 

estimates were slightly too low. However, most customers in this network have district 

heating, which greatly reduces the load temperature dependency. The loads of Friday 

are distinctively different from other weekdays; this is because Friday 6/1/2023 was 

Epiphany, which is a public holiday in Finland. 
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Figure 19 shows a similar graph for network 2 (175 customers), for the first week of April 

2023: 

 

Figure 19: Forecasts and actual measurements for network 2 in April 2023 

Compared to the previous example, both models struggle with forecasting the loads of 

this period, although the metering data forecast mimics the actual measurement curve’s 

shape more closely, especially in the beginning. In 2023, Easter occurred on the first 

week of April, which likely explains the discrepancies towards the end of the week. De-

spite this, the forecasted loads are too systematically too low. While FMI reported colder 

night temperatures than usual during the first week of April [48], the nightly loads are 

quite accurately modeled before Easter and the largest differences occur at daytime. 

This suggests that abnormal weather conditions were not the culprit behind forecast er-

ror. 
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As the last example, figure 20 contains the forecasts for network 3 (166 customers), for 

the first week of July: 

 

Figure 20: Forecasts and actual measurements for network 3 in July 2023 

In this example, the load curve forecast deviates significantly from the actual measure-

ments. With an average relative error of over 30%, this was the worst load curve forecast 

performance during the study. The metering data forecast quite accurately conforms to 

the measurement curve shape, although the forecasted values are again systematically 

a little low. The metering data model struggled particularly with the afternoon and evening 

load spikes that occurred daily. According to FMI, the first week of July was colder than 

usual in the whole country [49], but again, the nightly loads seem to be accurately fore-

casted which suggests that weather conditions were not the main source of error. 

The deeper analysis of weekly forecasts showed that the largest forecast errors occur 

during peak loads, and in these scenarios the loads are usually underestimated. This is 

logical, since load peaks are very unlikely to repeat at the same exact time and with the 

same amplitude, so the calculation data likely includes smaller values, lowering the fore-

casted value. This deduction also suggests that the metering data model should overes-

timate some peak loads, i.e. the model should be likely to forecast higher peaks than are 

actually measured. While not visible in the graphs above, this was also a common source 

of error. This is also indicated by the earlier observation that over 30% of errors were 
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overestimations and that the error magnitude was similar with positive and negative er-

rors. 

Overall, when short-term load forecasts were analyzed, a significant increase in load 

modeling accuracy was noticed with the metering data model. When the weekly fore-

casts were dissected, the developed model seemed to be slightly prone to underestimat-

ing the peak loads. This is problematic to some degree, since the main use case of short-

term forecasts is operational planning, which specifically relies on peak loads. However, 

even if the peak amplitudes are slightly underestimated, the peak hours seem to be cor-

rectly identified, which is useful for operational planning. 
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6. FUTURE DEVELOPMENT POSSIBILITIES 

The load model developed in this thesis provided significant accuracy improvements 

compared to the old load curves. However, the developed model is far from comprehen-

sive; it includes simplifications and neglected factors, which were not possible to imple-

ment in the time frame of this thesis. This chapter briefly examines how the metering 

data based model could be improved in the future to further increase the estimation and 

forecast accuracy, and provide value in more areas than mere short-term load forecast-

ing. 

As mentioned earlier, the developed model does not factor in load temperature depend-

ency. Temperature dependency is one of the most consistent and well-known factors 

that affect electrical loads. Weather forecasts are usually accurate to some degree for 

the following week, so adding the predicted temperatures to load forecast calculations 

could improve the accuracy of short-term forecasts. However, while the temperature de-

pendency is rather easy to model with known equations, implementing it into the algo-

rithm and further into the management software is not entirely straightforward. Since the 

metering data model is based on individual historical consumption, the temperature de-

pendency of these past measurements also needs to be considered. Thus, obtaining the 

weather forecast for the upcoming week is not enough: historical weather data corre-

sponding to the past measurements is also needed, or alternatively some temperature 

dependency correction needs to be embedded into the measurement data. While the 

implementation might be somewhat laborious, this would be a clear way of improving the 

model. 

Another deficiency in the developed model that was already addressed earlier is that 

public holidays are not accounted for. The detailed load forecast graphs shown in chapter 

5 demonstrate how largely a public holiday affects the load pattern of a weekday. Imple-

menting this into the model is rather simple, as it would only require maintaining a list of 

the public holidays in the particular region and treating public holidays as Sundays in the 

model. 

One factor that increasingly influences electricity consumption patterns is the price of 

electricity. Consumers are shifting to market-price electricity contracts with an accelerat-

ing pace, which means that more and more consumers will direct consumption to times 

of low electricity prices. While this phenomenon is still not very significant, it is likely to 

play a large role in the future. While the effect of electricity price could be feasibly 
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implemented into the load forecast model, some further research would be needed on 

the relation between loads and electricity prices. 

The results of this thesis showed that the developed model had a slight tendency to 

underestimate load peaks. This suggests that there is room for improvement in the load 

accuracy. The estimation algorithm used in this thesis was quite straightforward and 

likely a more sophisticated approach could yield better results. For example, the author 

suspects that the outlier elimination used in this thesis is not perfect, resulting in the loss 

of some of the higher load values, which could explain the struggle in peak load fore-

casting. Different forecast algorithms are highly studied in literature, and for example 

machine learning based solutions could provide more tools to mitigate the effect of load 

stochasticity on forecasting. 

The model implementation into DMS600 only included the use of active power load 

measurements. While this was sufficient for conducting research on the model accuracy, 

factoring in all measurement types is essential for real-life distribution system operation. 

In addition to active power loads, the measurement files can also include active power 

production and reactive power measurements, as explained in chapter 4. The importa-

tion module created for this thesis is already capable of handling all measurement types 

so full support in DMS600 would only require some extensions to the load calculations 

in the program core. Taking the production measurements into account is very straight-

forward as the electricity production of a customer can simply be summed up with the 

corresponding load measurements. Meanwhile, factoring in the reactive power measure-

ments in DMS600 is also relatively simple since the existing algorithm can also be used 

in reactive power calculations. 

Lastly, the model in this thesis was only implemented and tested in LV networks and only 

for system state estimation and short-term load forecasts. The model could be developed 

further and extended to MV networks. In DMS600, MV network load calculations include 

the estimation tool that improves load model predictions by utilizing real-time load meas-

urements mostly from feeders. Combining this estimation tool with the new load model 

could provide greatly improved MV network calculation and load forecasting. Also, the 

model could be extended to be able to calculate rational long-term forecasts. Long-term 

forecasts cannot rely on past week calculations, and only utilizing the past year meas-

urements from the same hour might not be sufficient for creating accurate forecasts. 

Consequently, the algorithm would need some further logic to handle long-term fore-

casts. 
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7. CONCLUSIONS 

Distribution system management is becoming ever more difficult due to the drastic 

changes required across the electricity grid to support energy transition towards more 

sustainable electricity production. Among other things, distributed generation and the 

growing number of electric vehicles and load automation complicate maintaining power 

balance and power quality across the grid. The related fundamental changes in electricity 

consumption patterns increase the stochasticity of electrical loads, making load model-

ling and forecasting increasingly difficult. Distribution system operators depend on accu-

rate load models to estimate and forecast network loads in everyday network manage-

ment. The existing load models are obsolete, and no longer match the present-day elec-

tricity consumption, creating a need for new load modelling solutions. 

This Master’s thesis studied whether the historical consumption of individual customers 

could be directly used in estimating customer loads and creating short-term load fore-

casts in low-voltage networks. A constructive research approach was taken to develop 

a novel load model, which was implemented into a real-life distribution management soft-

ware. The software in question was the DMS600 distribution system management soft-

ware package developed by Hitachi Energy. To support development and provide the 

necessary data for testing, smart meter measurements from the last 4 years were re-

ceived from the entire network of a distribution system operator operating in Western 

Finland. Before developing the novel model, a necessary theoretical background was 

established. This included examining how electricity is measured and how loads are 

generally modelled and forecasted in distribution networks. The practical applications of 

these models were also explored. Lastly, the DMS600 software package and its load 

modelling functionalities were presented. 

The developed algorithm is a rather straightforward statistical model that uses historical 

data to separately estimate customer-specific loads for each hour. In other words, if the 

load of an MV/LV substation is estimated, the load of each related customer is calculated 

separately for each hour and summed up to form an hourly load estimate for the substa-

tion. The historical data consisted of measurements from comparable hours: in practice, 

the loads from corresponding hours from the past three weeks, as well as the loads of 

the exact same hours from past 4 years were used. The algorithm first identifies and 

eliminates outliers using median absolute deviation, after which the remaining measure-

ments are assigned with weights based on their recency. A weighted average is used to 
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form the final load estimation. The outlier elimination boundaries were iteratively deter-

mined. 

The algorithm was implemented into the DMS600 Workstation, which is a distribution 

management system that traditionally uses either Velander’s formula or load profiles as 

a load modelling method. Velander’s formula is only capable of estimating the peak loads 

of larger customer groups, while load profiles offer a more comprehensive solution. How-

ever, as load profiles only exist in countries where load profiles have been formed 

through load research, they are only available in a handful of countries. Since the imple-

mentation is based on load data provided in the standardized format used in Finland, the 

main contribution of the actual implementation serves Finnish operators. However, the 

general concept is applicable to load modelling in any country. 

To study the accuracy of the newly developed load model, a test scenario was designed. 

The developed model and the existing load profile model of DMS600 were used to create 

one-week load forecasts across all seasons in three separate, relatively large urban low 

voltage networks. For each hour, the forecasted values by both models were compared 

to actual measurements to determine their accuracy. The selected error metrics were 

relative error, mean absolute error and root mean squared error. On average, the meter-

ing data model produced more accurate results than the load profile model by all metrics. 

The relative error was cut down to almost a half with the metering data model producing 

an average 11.6% relative error compared to an average relative error of 21.8% with the 

load profile model. 

Despite the promising results, the developed model had some defects. The model had 

a slight tendency to underestimate loads, which is not optimal for operational planning. 

The largest errors occurred during peak loading hours. However, the model was able to 

correctly identify the load peaks, which is perhaps the most important factor for opera-

tional planning. Apart from a slight underestimation, the forecasted values were usually 

more accurate than the values forecasted by the load profile model. Due to the limited 

timeframe for this work, incorporating some variables with significant importance was not 

feasible. This included for example implementing load temperature dependency together 

with weather forecasts into the model, as well as factoring in public holidays occurring 

on weekdays. In terms of future development, the author highly recommends including 

these variables in possible future iterations of the load model for increased accuracy. 

While these factors are most influential, forecasting also involves various other variables 

that could be considered in future development. 
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Overall, the load estimation and forecasting model developed in this thesis showed 

promising results. This work proves that the historical measurements of individual cus-

tomers can in fact be used to create customer-specific load forecasts that improve the 

accuracy over traditional load profiling. In addition, it was shown that this type of a model 

can easily be integrated into distribution management software, which is a key factor for 

real-life applications. However, the implemented model is still quite limited. Besides ad-

dressing the mentioned defects, expansion to estimate and forecast medium voltage 

network loads is highly recommended. This, in turn, raises a potential efficiency problem, 

as the number of customers and thus the number of necessary calculations increases 

heavily when shifting from low voltage to medium voltage networks. Utilizing recent smart 

meter measurements for continuous load estimation and forecasting is an area that is 

not extensively researched. The author hopes for further research on related topics along 

with concrete improvements to existing distribution management software. 
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