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Abstract—As 5G evolves into a unifying connectivity fabric,
new capabilities will emerge, enabling and enhancing such
services as extended reality (XR), holographic telepresence,
and other high-speed immersive experience. These multimedia
applications demand strict latency, improved network capacity
and coverage, and mobility support. Multicast transmissions,
highly directional communications, and reconfigurable intelligent
surfaces (RISs), combined with artificial intelligence, are expected
to ensure such requirements. We present and solve the optimal
RIS deployment and orientation problem for cellular highly-
directional multicast connectivity based on the multilevel facility
location model. We then develop and test two artificial intelligence
alternatives, which offer a close-to-optimal solution with lower
computational complexity. Our numerical results demonstrate
that optimally deploying RISs enhances the average network
throughput and latency of directional multicasting.

Index Terms—5G NR, beyond 5G, multicasting, cellular net-
works, network planning, reconfigurable intelligent surfaces,
machine learning.

I. INTRODUCTION

The envisaged fifth generation (5G) New Radio (NR) and
beyond (B5G) mobile broadband communication offers un-
precedented breakthroughs in media service delivery [1]. As
5G and B5G evolve into a unifying connectivity fabric, new
capabilities will emerge, enabling and enhancing disruptive
services such as extended reality (XR), holographic telepres-
ence, and other high-speed immersive experience. Such mul-
timedia applications demand strict latency, improved network
capacity, coverage, and mobility support for a potentially high
number of concurrent users.

In such a challenging context, the multicast/broadcast ca-
pability provides cost-effective and resource-efficient deliv-
ery mechanisms to multiple end-users requesting the same
contents [2], [3]. Tailored point-to-multipoint communication
strategies can provide considerable capacity gain into the B5G
ecosystem for massive Internet of things (IoT) deployments,
vehicular communications, and future multimedia applications.
The 3rd Generation Partnership Project (3GPP) is working
on the novel multicast and broadcast services (MBS) for the

overall next-generation radio access network (NG-RAN) and
5G core network (5GC) perspectives [2].

Multicasting has traditionally been associated with omnidi-
rectional communication at sub-6 GHz frequency bands [4]. In
the last years, multicasting has gained momentum in highly
directional millimeter wave (mmWave) and terahertz (THz)
communications with massive multiple-input-multiple-output
(MIMO) [5], which bring new challenges related to high prop-
agation loss, severe signal attenuation due to blockage (e.g.,
human blockage of 15 dB), and reduced coverage [6]. The
ineffective handling of these impairments can considerably
reduce the multicast group’s quality of service (QoS).

Lately, a novel technological breakthrough, named reconfig-
urable intelligent surfaces (RIS), has been proposed to enrich
the scattering environment by enabling strong reflective signal
paths between the base station (BS) and end-users [7]. As
defined in [8], RIS is a planar surface comprising many low-
cost passive reflecting elements, able to induce an amplitude
and/or phase change to the incident signal independently.
Therefore, RIS-aided mmWave multicasting can reduce the
severe blockage effects in efficient resource management and
the corresponding QoS. Moreover, RISs can improve network
coverage without the deployment of numerous low-power BSs
leading to a cost reduction [9]. However, RIS has several open
research challenges yet to be addressed in its development and
implementation.

In [10], multicast video services aided by RIS technology
are investigated in high-traffic areas to optimize the 5G wire-
less transmission link and increase overall system capacity.
The proposal is validated at sub-6 GHz bands, which do not
capture the effect of propagation and blockage associated
with the mmWave. In [11], a capacity characterization for
RIS-assisted multiple-antenna multicasting is proposed. The
proposed approach considers a single RIS in a fixed location,
letting open the critical challenge of optimizing the RIS
deployment based on multicast users’ distribution and optimal
RIS orientation.

The deployment of RIS is a critical challenge that needs to
be addressed to fully leverage the benefits of highly directional
communication. In [12] and [13], the RIS deployment problem
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has been formalized and solved for unicast applications aided
by aerial-RIS scenarios and a relay system, respectively.
These proposals do not consider classic terrestrial scenarios,
multicasting capability, or RIS orientation. As a result, optimal
RIS deployment and orientation for use cases with multiple
users requesting the same multicast content over highly direc-
tional channels in the mmWave frequency band has not been
sufficiently examined.

To bring this gap, this work addresses the RIS deployment
and orientation problem for B5G highly-directional multicast
connectivity. We present the optimal RIS deployment and
orientation based on a multilevel facility location problem
formulation. We then develop and test artificial intelligent
alternatives to offer a close-to-optimal solution to the RIS
deployment and horizontal orientation problem. The proposed
frameworks are examined through system-level simulations,
with a particular emphasis on network throughput, latency,
and accuracy of machine learning (ML) algorithms.

The rest of this paper is organized as follows. Section II
illustrates our system model. Section III describes the RIS
deployment framework and the proposed supervised ML algo-
rithms. In Section IV, the numerical results and corresponding
analysis are presented. Finally, the conclusions are drawn in
Section V.

II. SYSTEM MODEL

This section outlines a representative RIS-assisted multicast
system illustrated in Fig. 1 and summarizes our modeling
assumptions on the deployment, antenna, propagation, and
blockage models.

We consider a 5G NR/B5G cellular outdoor deployment
where NUE user equipment (UE) devices from set NUE =
{1, ..., NUE} are scattered about the plane according to some
independent homogeneous point process. An NR BS transmits
multimedia data to NUE UEs utilizing directional mmWave
multicast transmissions operating at the central frequency of
fc = 28GHz.

The NR BS is equipped with planar antenna arrays with
radiation patterns similar to a conical space. The antenna gain
can be calculated as follows [14]:

Gtx = D0ρ(α), (1)

where D0 represents the maximum directivity along the an-
tenna boresight and ρ(α) ∈ [0; 1] is a linear function scaling
the directivity D0. We note that ρ(α) depends on the angular
deviation of the transmit/receive direction from the antenna
boresight α, whereas D0 depends on the number of antenna
elements NAE.

We consider an urban scenario and characterize the propa-
gation pattern according to the 3GPP urban microcell (UMi)
Street Canyon path loss model [15]. UEs can also experience
blockage by small- and large-scale objects. Specifically, NLoS
state describes blockage by a large static object (e.g., buildings
and permanent structures), while a blocked state with 15 dB
attenuation occurs when the path between the BS and a
UE (or a multicast group) is obstructed by a human body

Human bloc

BS-RIS-multicast group

Transmission links:

Direct BS-multicast group 

Link blockage

Fig. 1. Illustration of considered RIS-assisted multicast system.

and foliage [16]. Therefore, the following four states are
experienced by multicast group users: (i) LoS non-blocked,
(ii) LoS blocked, (iii) NLoS non-blocked, and (iv) NLoS
blocked states.

The associated UMi path loss measured in dB is given by:

LdB(y) = β + 10ζ log10 y + 20 log10 fc, (2)

where fc is the carrier frequency in GHz, y is the three-
dimensional (3D) distance between the BS and the UE in m,
whereas β and ζ are the blockage and propagation coefficients,
respectively. Namely, ζ = 2.1 and ζ = 3.19 correspond to LoS
and NLoS states, whereas β = 32.4 and β = 47.4 represent
non-blocked and blocked states. The linear scale representation
of (2) is written as: L(y) = (102 log10 fc+

β
10 )yζ .

The total received power Prx at the UE is calculated as

Prx = PtxGtxGrxL
−1(y) =

PtxGtxGrx

L(y)
, (3)

where Gtx is the transmit antenna gain, Grx is the receive
antenna gain, and L(y) is the linear path loss. We recall that
the UE with the worst channel conditions defines the channel
conditions of the multicast group.

The LoS probability may be defined as in [15]:

pL(x) =

{
1, x ≤ 18m,

18 + xe−
x
36 − 18e−

x
36 , x > 18m,

(4)

where x is the two-dimensional (2D) distance between the BS
and a multicast UE.

The human blockage probability pB at distance x can be
calculated as provided in [17]:

pB(x) = 1− e
−2λBrB

[
x

hB−hUE
hBS−hUE

+rB

]
, (5)

where λB is the blocker density, hB and rB are the blocker
height and radius, hBS is the BS height, and hUE is the UE
height, hB ≥ hUE.

BS-RIS-multicast group links may enhance direct BS-
multicast group transmissions by improving the channel con-
ditions on the worst multicast UE in the group. Therefore,
we assume that RISs with MSE × NSE reflective elements of
sMSE × sNSE size are deployed in the area of interest [18].

We consider RIS operating in the far-field region, then the
distances between different RIS elements and the BS may be
approximated as the distance between the BS (or source) and



the center of the RIS, dSR, i.e., Dm,n ≈ dSR. By analogy, the
distance between RIS elements and a multicast group may be
approximated as the distance between the RIS center and the
multicast group (RIS-Destination), i.e., dm,n ≈ dRD.

The total received power at the multicast UE through the
RIS can be obtained as in [19]:

Prx =

(∑
q

√
Ptx|Γq|GtxGrx

L(dSR)L(dRD)
ejϕq

)2

, (6)

where L(dSR) is the BS-RIS path loss, L(dRD) is the RIS-
multicast UE path loss, ϕq represents the phase delay of the
signal received through the q-th reflective element, and Γq is
the q-th reflective element reflection coefficient calculated as:

Γq = e−jφqG
e
iG

e
rϵb , (7)

where φq is the phase difference induced by the q-th reflective
element, Ge

i is the RIS gain in the incoming wave direction,
Ge

r is the RIS gain in the received wave direction, and ϵb is the
RIS element efficiency, which can be expressed as the ratio
of transmit signal power emitted by the RIS to the received
signal power by the RIS.

The data rate of a RIS-enhanced link can be calculated
employing the Shannon-Hartely theorem:

D[Gbps] = W × 10−9 log2

(
1 +

Prx

N0W

)
, (8)

where W is the operating bandwidth in Hz, and N0 is the
power spectral density of noise.

III. PROPOSED FRAMEWORK

This section describes the proposed optimal RIS deployment
framework and the setup of the employed ML algorithms to
deal with the complexity of the optimal solution.

A. Optimal RIS Deployment
We consider a set of multicast groups Ngroup =

{1, . . . , Ngroup}. We assume that RISs can be deployed in a
set of candidate sites, LRIS = {1, . . . , LRIS} and with a fixed
orientation, Lθ = {1, . . . , Lθ}. Moreover, we define a set of
possible locations for the BSs as LBS = {1, . . . , LBS}. The
data rate experienced by the i-th multicast group served by
the RIS located at node j with orientation l and BS placed at
site k, Dijkl, is obtained as per (8).

To formulate the optimal RIS deployment problem in B5G
cellular multicast networks, we define a binary indicator uijkl

to denote RIS and BS assignment for multicast groups. Let
uijkl = 1 if multicast group i is served by the RIS at site j
with orientation l and the BS at site k, and uijkl = 0 otherwise.
We also define RIS location as a binary indicator xjl. Let
xjl = 1 if a RIS is deployed at node j with orientation l, and
xjl = 0 otherwise. By analogy, we define BS location as a
binary indicator yk. Specifically, yk = 1 if a BS is deployed at
site k, and yk = 0 otherwise. We, therefore, have the following
constraints:

uijkl ≤ xjl, i ∈ Ngroup, j ∈ LRIS, k ∈ LBS, l ∈ Lθ, (9)

uijkl ≤ yk, i ∈ Ngroup, j ∈ LRIS, k ∈ LBS, l ∈ Lθ. (10)

We then assume the constraints on the maximum number
of RISs and BSs to be deployed:

1 ≤
∑

j∈LRIS

∑
l∈Lθ

xjl ≤ NRIS, 1 ≤
∑

k∈LBS

yk ≤ NBS. (11)

Furthermore, a single orientation of the RIS can be utilized
during the RIS deployment at any node j:∑

l∈Lθ

xjl ≤ 1, j = j0, (12)

where j0 ∈ LRIS is one of the possible sites where a RIS can
be placed.

The optimal multi-RIS deployment problem in 5G NR/B5G
cellular networks with multicast communications can be there-
fore modeled as follows:

max
∑

i∈Ngroup

∑
j∈LRIS

∑
k∈LBS

∑
l∈Lθ

Dijkluijkl, (13)

s.t.(9), (10), (11), (12).

We solve (13) using a branch and bound algorithm, which
decomposes the problem into sub-problems. The algorithm
provides an initial upper and lower bound of the solution
and then proceeds to improve them by solving the discovered
sub-problems until their difference is less than a fixed value
or the elapsed time/number of iterations exceed a predefined
threshold.

As the optimal multi-RIS deployment problem in B5G
multicast systems represents a special case of the facility
location problem, which has been proven to be NP-hard [20],
we implement supervised ML algorithms to obtain the close-
to-optimal solution of the problem in a reasonable time.

B. Supervised Multiclass Classification ML Algorithms

Once the optimal multi-RIS deployment problem is solved,
we can exploit the correlation between the ML algorithm
inputs and the optimal solution that maximizes Dijkl. From
an ML perspective, we aim to find the corresponding j and
l values for each multicast group i. To achieve this, we
define the problem as a supervised ML multiclass classification
problem [21], representing our training samples as (X, y),
where X ∈ {x1, x2, . . . , xF } f and y ∈ {y1, y2, . . . , yC}
coresponds to F features and C classes, respectively. In this
context, C represents the problem space defined by all possible
combinations of RIS locations and orientations LRIS×Lθ. The
goal of the training process is to obtain a learning model
H, such that H(X) = y for unseen samples of a testing
dataset [21].

The features that best fit our multiclass classification prob-
lem space include the coordinates XY Zworst

i,k of the worst
channel quality user uworst

i,k in the multicast group, the set
of distances between uworst

i,k and the LRIS RIS locations,
dworst
i,k , as well as xj,l and Ngroup. Then, X is defined as

{XY Zworst
i,k , dworst

i,k , xj,l, Ngroup}.



We generate a dataset of 20000 samples to train our ML
models based on our optimal multi-RIS deployment solu-
tion. We use the Python library SMOTE (Synthetic Minority
Oversampling Technique) [22] to oversample the minority
classes and train the ML multiclass classification models with
a balanced dataset. The training process of the ML algorithms
includes data processing to avoid outliers, data normalization
(Min-Max scaling method), a train/test split (80% and 20%
for the training and testing, respectively), grid-search and k-
fold cross-validation (with k = 10). Finally, the algorithms are
evaluated through specific error metrics such as classification
accuracy, F1 score, precision, and recall [23].

To find the optimal learning model H, we evaluate the
performance of several scikit-learn natives multiclass clas-
sifiers and binary classifiers with One-vs-One (OVO) strat-
egy and One-vs-Rest (OVR) [23]. After multiple iterations,
the best performance is achieved with Extra-Trees Classifier
(ETC) [24] used as a binary classifier on top of an OVR
strategy, ETC-OVR.

IV. NUMERICAL RESULTS

This section collects the numerical results on RIS deploy-
ment and orientation in multicast cellular networks through
our optimal RIS deployment framework and supervised ML
algorithms.

We consider a 50m × 50m UMi Street Canyon open area
with a BS operating at 28 GHz and 30 UEs [15]. Since BS
deployment is widely studied in the literature, we assume that
the BS is in the middle of the area of interest and employs
a linear antenna array with {128, 64, 32, 16, 8, 4, 2, 1} × 4
antenna elements. Moreover, we adopt a fixed transmit power
of 33 dBm. Then, we assume that the UEs are already split
into multicast groups since multicast group formation is out of
the scope of this paper. However, we note that our algorithms
are compatible with any group formation strategy [25].

We assume that the channel state information (CSI) is
known for both BS-UE and RIS-enhanced links [26], and each
reflective element has a unit-gain reflection coefficient, i.e.,
|Γq| = 1, and signals reflected by different reflective elements
arrive aligned in phase at the receiver [27]. RISs are composed
of 4096 reflective elements having a unit efficiency, ϵb = 1,
and a size equal to λ/8 [28]. Finally, we summarize the default
simulation parameters in Table I.

We begin with the performance analysis of our optimal
RIS deployment framework. We consider a 3D grid of
400 possible RIS sites, as presented in Fig. 2. Moreover,
once deployed, we assume that each RIS holds an LoS
no-blockage condition towards both the BS and the
UEs [27] and must adopt one of the following possible
orientations: [0;π], [π/6; 7π/6], [π/4; 5π/4], [π/3; 4π/3],
[π/2; 3π/2], [2π/3; 5π/3], [3π/4; 7π/4], [5π/6; 11π/6],
[π; 2π], [−5π/6;π/6], [−3π/4;π/4], [−2π/3;π/3],
[−π/2;π2], [−π/3; 2π3], [−π/4; 3π/4], [−π/6; 5π/6].
As per [18], we assume that the optimal vertical orientation
of RIS is always π/2, i.e., the RIS is deployed vertically to

TABLE I
NUMERICAL SIMULATIONS DEFAULT PARAMETERS.

Parameter Value
Area of interest, wSA x lSA 50m x 50m [15]
Number of UEs, NUE 30
Number of multicast groups, Ngroup 4
Blockers density, λB 20 bl/m2

BS operating frequency, fc 28GHz
Bandwidth, WGHz 1GHz

Power spectral density of noise, N0 10−
174
10 W/Hz

Transmit power, Pt 1.9953W
Number of reflective elements,
MSE × NSE

4096

BS height, hBS 10m [15]
UE height, hUE 1.5m [15]
Blocker radius, rB 0.4m
Blocker height, hB 1.7m [15]
Number of BSs, NBS 1
Number of employable RISs, NRIS 2 - 6
Propagation coefficient, ζ 2.1 - 3.19 [15]
Blockage coefficient, β 32.4 - 47.4 [15], [16]
BS antenna array {128, 64, 32, 16, 8, 4, 2, 1} × 4
Packet Size 1 Gbit

Fig. 2. Example of optimal multi-RIS deployment and orientation in multicast
systems. Red circles, blue rhombus, green, and purple triangles are multicast
groups, white squares are possible RIS sites, green squares are optimal RIS
sites, and the green star is the BS.

the BS. In this work, we determine the optimal horizontal
orientation of RIS, which depends on the UEs’ locations.

A. Multicast-aided RIS Assessment

To evaluate the benefits of RIS-enhanced links for multicast
communications, we compare our RIS-aided solution with two
benchmarks: (i) Multicast without RIS and (ii) Unicast. In
the former case, the BS communicates with the users through
multicast communications employing Conventional Multicast
Scheme (CMS), wherein the data rate of a multicast group is
bounded by the user with the worst channel conditions. In the
latter one, sequential unicast BS-UE transmissions are con-
sidered. Generally, the use of multicast service delivery with
CMS results in more efficient resource utilization compared
to unicast communications. This advantage is particularly
noticeable when multicast users have similar and good channel
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Fig. 3. Average network throughput as function of number of multicast
groups.

conditions. In our numerical results, we extract users’ channel
conditions by employing (4) and (5). As shown in Fig. 3,
unicast communications have higher network throughput than
multicast communications due to poor channel conditions
for UEs in the multicast group affecting performance when
employing CMS. However, using RIS in multicast commu-
nications can improve UEs channel conditions for UEs and
increase throughput by an average of nearly 30% compared
to unicast.

One may also see that the network throughput of multicas-
ting, both with and without RIS, improves when the number
of multicast groups grows. This behavior can be explained by
the fact that we consider 30UEs, meaning that the increase
in the number of groups leads to a lower number of UEs per
group, which might be critical in directional multicasting.

Determining the optimal horizontal orientation of a RIS is
crucial for supporting cellular communications, as a RIS can
only provide coverage to the half-space in front of it. This
is especially important for multicast transmissions, as a RIS
cannot support a multicast group if any UE in the group is not
in its coverage area. Our simulations have shown that the most
effective horizontal orientations are those that provide wide
coverage of UEs, increasing the probability of simultaneously
reaching all multicast users in a group: [0;π], [π/2; 3π/2],
[π; 2π], [−π/2;π/2].

Moreover, enhancing multicast communications through
RISs becomes even more vital in crowded areas to satisfy the
stringent requirements of the most recent multimedia services.
As shown in Fig. 4, multicast and unicast communications
performance are equal for four network users since having a
user for each multicast group corresponds to unicast transmis-
sions. Then, multicast communications latency deteriorates as
the number of UEs increases due to the higher probability
of having users with shoddy channel conditions in a multi-
cast group. In this case, RIS-aided multicast communication
experiences a degradation in performance as the number of
UEs increases (see the inclination of “Multicast without RIS”
compared to “Multicast+RIS”).
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Fig. 4. Average latency as function of the number of UEs with 4 multicast
groups.

TABLE II
MULTICLASS CLASSIFICATION LEARNING MODELS EVALUATION.

Algorithm Model Accuracy Precision Recall F1
ML-RPM HC=20 (%) 80.30 80.45 80.20 80.00
sML-RPM H1,2

C=10 (%) 88.00 88.00 88.90 87.77
sML-RPM H3,4

C=10 (%) 88.38 88.70 88.40 88.29

B. ML Algorithms Assessment

The dataset used for training the ML models was created
subject to the above assumptions. After data processing, we
identified that for the 99.9% of the samples, only four posi-
tions were selected from the total of 400 available positions.
The (x, y) coordinates (in meters) of such four RIS, regarding
Fig. 2, are (23, 23)1, (23, 27)2, (27, 23)3 and (27, 27)4, around
the BS located at (25, 25). From the ML perspective, the
remaining samples for other RIS positions, or not RIS (i.e.,
direct BS-multicast group link), were treated as outliers. Then
for our multiclass classification problem, we consider four
RIS positions with five possible orientations for a total of 20
potential classes (C = 20) for each dataset sample.

We identify our baseline multiclass classification suboptimal
ML RIS Placement for Multicasting solution as ML-RPM for
the problem space of C = 20, with a learning model HC=20

based on ETC-OVR. Moreover, regarding the identified sym-
metry of the classification problem space defined by the
four RIS positions around the BS, we consider an alternative
solution, training two independent ETC-OVR algorithms. The
first mode, H1,2

C=10 is for the samples corresponding to the RIS
positions (23, 23)1, (23, 27)2 with C = 10, and the second
one, H3,4

C=10 is for the samples with the RIS positions (27, 23)3
and (27, 27)4 with C = 10. The algorithm executes both
ML learning models for an unseen multicast group sample
and selects the solution that maximizes (8). We identify this
algorithm as sML-RPM. Table II summarizes the multiclass
classification assessment of the trained ML models.

As shown in Table II, the trained models for C = 10
achieve higher performance. The models learn the patterns
from a reduced problem space avoiding induced biases by the



symmetry of the four RIS locations and available orientations.
The penalty of sML-RPM is the increased computational
complexity since two ML algorithms must be run to select
the RIS position and orientation. The ML models, especially
the sML-RPM algorithm, can classify the dataset samples
with relatively good accuracy, precision, recall (sensitivity),
and F1 score and provide near-optimal RIS placement and
orientation results.

V. CONCLUSION

In mmWave multicast communications, RISs will play a
crucial role in enhancing the channel conditions of underper-
forming users in multicast groups, thereby improving overall
performance. Despite RISs potential benefits, much remains
to be explored regarding RIS deployment strategies that can
enable their practical utilization in real-world scenarios. In
this work, we formulated the RIS deployment and orientation
problem in 5G/B5G cellular networks with directional multi-
cast communications as a facility location problem. We first
solved the problem using a branch and bound algorithm and
evaluated the impact of RISs on multicast communications,
demonstrating the substantial benefits of RIS employment for
multicasting as the number of users and multicast groups vary.
We then utilized the resulting dataset from the optimal solution
for training ML multiclass classification algorithms.

The proposals of this study can be utilized as a valuable tool
for optimizing and analyzing RIS deployment in various sce-
narios. As a potential area of investigation for future research,
it will be essential to explore the impact of user mobility and
multi-reflection multi-RIS paths on RIS deployment to gain a
deeper understanding of practical RIS installation.
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