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Abstract—Modern Edge Computing devices execute applica-
tions that must meet strict latency requirements as per traditional
standardization activities. Achieving the needed performance
implies a need for efficiency in all aspects, thus, flexible solutions
are needed. In this Ph.D. project, we address this issue for error-
tolerant applications by using Coarse-Grained Reconfigurable
Arrays (CGRAs) enriched with Approximate Computing (AxC)
features. To do so, we aim to develop a CGRA architecture
modeling, mapping, and hardware generation flow complete with
AxC hardware primitives and significance analysis.

Index Terms—approximate computing, coarse-grained recon-
figurable array, computation offloading, mapping

I. INTRODUCTION

Effectively tackling the communication demands of the
increasingly popular Internet of Things domain requires pow-
erful, distributed computing at the network Edge [1]. Related
applications are diverse, and, fortunately, many show resilience
to constrained computational errors [1]. The latter permits
energy and latency savings through Approximate Computing
(AxC), while reconfigurability can address the former. In
this Ph.D. project, we will explore the combination of these
features in Coarse-Grained Reconfigurable Arrays (CGRAs).
These architectures comprise mesh arrays of Processing El-
ements (PEs) that integrate routing, arithmetic, logic, and
buffering hardware, see Fig. 1. CGRAs shine in scenarios
where the high-overhead, bit-level reconfigurability of Field-
Programmable Gate Arrays (FPGAs) is unnecessary. Integrat-
ing multiple AxC techniques into CGRAs remains largely
unexplored with initial results being promising [2].

Working with CGRAs requires a powerful yet flexible tool
flow. Therefore, we are developing CGRAgen, aiming to:
1) mitigate a lack of well-engineered open-source flows for
mapping Data Flow Graphs (DFGs) to diverse CGRAs, and
2) enable design space exploration on CGRAs integrating
AxC features. CGRAgen is developed in Scala and comprises
modules designed to be self-contained and, as far as possible,
non-reliant on third-party libraries. Initially, it was closely
modeled after CGRA-ME [3] but has since been upgraded
substantially. This paper introduces CGRAgen, provides pre-
liminary mapping and hardware generation results, and dis-
cusses prospective directions for future work.
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Fig. 1: Overview of a generic CGRA architecture with external
control, interconnect, and buffer logic [4].

II. THE CGRAGEN FLOW

Like other open-source CGRA flows [3], [5], CGRAgen
models applications as DFGs whose nodes represent logic or
arithmetic operations and edges the data dependencies between
these. We describe DFGs in a subset of the DOT language,
requiring that 1) nodes define the opcode attribute that deter-
mines which PEs they can be mapped to, and 2) edges define
the operand attribute that indicates their arithmetic position in
the sink operation, in addition to their source and sink nodes.
Internal to CGRAgen, this representation is transformed into
an actual graph before mapping. So far, we have resorted to
describing DFGs manually but aim at automating this with a
traditional compiler flow as in other open-source tools [3], [5].
We also intend to add a significance analysis pass that assigns
approximation modes to operations given quality constraints
of individual outputs to simplify using AxC techniques.

As part of our aim to simplify design space exploration,
we adopt and reduce the XML-based Architecture Description
Language (ADL) of CGRA-ME [3]. It stands out greatly
compared with the involved languages used in other flows [6],
[7] but suffers from syntactic sugar extensions that complicate
parsing without adding major value. Our reduced ADL enables
describing heterogeneous CGRAs with templated, hierarchi-
cal PEs based on a set of pre-defined primitives. Within
CGRAgen, architectures are represented in two formats: 1)
as abstract modules with ports, sub-modules, and connections
between these, and 2) as Modulo Resource Routing Graphs
(MRRGs) commonly used for mapping [3], [8]. We have
extended the formats to support parameterizable latencies and
initiation intervals for operations in Arithmetic Logic Unit



TABLE I: Mapping results in order of increasing runtime.

Application # operations # values Min. II Runtime
I/O const. logic

2×2 convolution 5 4 7 15 1 5s
2nd order poly. 2 2 3 7 1 17s
4th order poly. 2 4 7 15 1 193s
4-point DCT 8 2 10 24 1 6821s
3×3 convolution 10 9 17 35 2 33009s
Sobel operator 9 3 16 33 1 60691s

(ALU) primitives. We also aim to integrate approximation
modes with verified, guaranteed quality levels to support AxC.

CGRAgen uses an Integer Linear Programming (ILP)-based
mapper, which assumes that the PEs operate in lockstep. While
this approach is functional, it is not flawless; ILP solvers
are known for being slow, and the model size using the
constraints from [3] quickly grows, even for small CGRAs.
As a result, in anticipation of wanting to explore alternative
mapping algorithms, like in [5], CGRAgen is designed to
be extensible and its mapping representation has full support
for multi-cycle contexts. To automate the use of AxC, we
will extend the mapper to consider the approximation modes
supported by the application and architecture too.

Recently, we have extended CGRAgen with a hardware
backend capable of generating Verilog descriptions of arbitrary
module templates. Like Pillars [6], we base this extension on
the Chisel [9] Hardware Description Language (HDL) as it
integrates well with the existing flow and permits the genera-
tion of dynamically defined hardware modules, including their
IO. We find that these facets greatly cut down design times
while likely reducing the error proneness of hand-written HDL
generators and templates common to existing flows [3], [7].
This hardware backend is the main focus of our current efforts
as we aim to 1) optimize code generation to avoid unnecessary
redundancies; 2) extend support to generate entire CGRAs;
and 3) integrate support for AxC techniques, starting with
approximate arithmetic units [2], [10].

III. PRELIMINARY RESULTS

CGRAgen can currently map simple DFGs to complex
CGRAs and generate hardware descriptions of any template
module. To illustrate this, we include mapping results of a
handful of DFGs, inspired by that of [2, Table VI], targeting a
4×4 CGRA with HyCUBE-inspired [11] PEs equipped with
crossbar-style routing. Four of the PEs share a register file.
The results, included in Table I, are well in line with prior
work [3] and highlight that the ILP-based mapper suffers
from very long execution times, underlining the need for
integrating alternative, likely heuristic-based algorithms to
speed up mapping [5].

To demonstrate the hardware generation capabilities, we
generate Verilog descriptions of the simple PE shown in Fig. 1.
For this experiment, we assume neighbor-only connections
and a fully combinational ALU that supports addition and
subtraction operations. The corresponding module template
comprises only 16 ADL statements, of which eight define
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Fig. 2: Resource utilization and maximum clock frequencies
for a PE targeting a Xilinx Zynq UltraScale+ FPGA.

its IO. We synthesize and implement the design for a Xilinx
Zynq UltraScale+ FPGA using Vivado 2022.2 and report the
resulting utilization and maximum clock frequency numbers
in Fig. 2. The design does not use any DSP primitives.

IV. CONCLUSION

In this paper, we introduced CGRAgen, a CGRA archi-
tecture modeling, mapping, and hardware generation flow.
CGRAgen aims to extend upon existing work with AxC fea-
tures, including hardware primitives and significance analysis.
In its current state, the flow’s ILP-based mapper can map
simple DFGs to complex architectures, and its hardware back-
end can generate Verilog descriptions of individual PEs. Once
complete, the flexibility of CGRAgen will permit fast and easy
design space exploration of, potentially heterogeneous, CGRA
architectures and the effects of AxC.
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