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ARTICLE INFO ABSTRACT

Keywords: This study proposes a methodology for detecting anomalies in the manufacturing industry using a self-
Anomaly detection supervised representation learning approach based on deep generative models. The challenge arises from the
Time-series data limited availability of data on defective products compared with normal data, leading to degradation in the

Generative adversarial network

A ' performance of deep learning models owing to data imbalances. To address this limitation, we propose a
Boosting algorithm

process that leverages the Gramian angular field to transform time-series data into images, applies StyleGAN for
image augmentation of anomalous data, and utilizes a boosting algorithm for classifier selection in supervised
learning. Additionally, we compared the accuracy of the classifier before and after data augmentation. In
experimental cases involving CNC milling machine data and wire arc additive manufacturing data, the proposed
approach outperformed the approach before augmentation, resulting in improved precision, recall, and F1-score
for anomaly detection. Furthermore, Bayesian optimization of the hyperparameters of the boosting algorithm
further enhanced the performance metrics. The proposed process effectively addresses the data imbalance
problem, and demonstrates its applicability to various manufacturing industries.

1. Introduction Time-series data analysis must consider not only temporal depen-
dencies but also sensor-to-sensor relationships. Traditional statistical
Advances in computers and sensors have facilitated the handling and machine learning methods have successfully analyzed univariate

of vast amounts of data, enabling reliable system management. Vari-
ous applications are now collecting meaningful time-series data using
sensors, with applications in weather forecasting, medicine, economics,
and smart factories contributing to flexible system management (Choi
et al., 2021). However, the analysis of time-series data from various
sensors poses unique challenges.

time-series data by employing techniques such as seasonal and trend
decomposition using loess (STL) (Cleveland et al., 1990), ARIMA (Box
et al., 1970), and Holt-Winters exponential smoothing (Winters et al.,
1960). However, rapid advancements in technology have resulted in a
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substantial increase in multivariate time-series data, rendering conven-
tional analytical methods impractical. Deep learning, which is emerging
as a solution to complex data problems, has witnessed remarkable
achievements across various domains.

Recently, numerous studies have been conducted on time-series data
analysis based on deep learning. The success of convolutional neural
networks (CNNs) and recurrent neural networks (RNNs) has resulted
in an era of deep learning, and the variations of CNNs (Bai et al.,
2018) and RNNs (Hochreiter et al., 1997) have achieved remarkable
performance for classification and forecasting with sequence data that
are difficult to analyze. This success has led to various applications
of deep learning in time-series data analysis. However, deep learning
models are highly dependent on the training data. In particular, time-
series data analysis involves various problems with the training data.
Moreover, collecting data over a long period inevitably results in an
imbalance between the normal and abnormal data. In supervised learn-
ing, the imbalance between normal and anomalous data complicates
model training. Therefore, unsupervised learning methods are widely
used for time-series data analyses. LSTM-AE (Hsieh et al., 2019), MAD-
GAN (Li et al., 2019), and LSTM-VAE (Park et al.,, 2018) based on
RNN, BeatGAN (Zhou et al., 2019), TCN-GMM (Liu et al., 2019), and
TCN-ms (He and Zhao, 2019) based on CNN, MSCRED (Zhang et al.,
2019) and RSM-GAN (Khoshnevisan et al., 2020) based on ConvLSTM,
and a mixture of two neural networks, MTAD-GAT (Zhao et al., 2020)
based on GTA (Chen et al., 2021) and TFT (Lim et al., 2021) based on
Attention are widely used for time-series data analysis.

In manufacturing processes, data scarcity and imbalance are es-
pecially prevalent challenges when applying deep learning models.
Owing to the extended data collection periods, most of the available
data pertain to normal operations, whereas only a limited portion
corresponds to anomalies (Wen et al., 2021). This data imbalance poses
obstacles to the development of reliable artificial intelligence models.

To address data imbalance, data augmentation methods are actively
researched in the domain of deep learning. However, time-series data
augmentation introduces additional complexity. Preserving time depen-
dencies and accounting for intervariable relationships in multivariate
time-series data augmentation are challenging. Furthermore, specific
augmentation methods may be ineffective for anomaly detection in
time-series data classification.

In real-world classification tasks, imbalanced data is a frequent chal-
lenge where the sizes of different classes’ samples vary significantly.
This issue is also encountered in the manufacturing industry, where
data may have missing labels or suffer from class imbalances, leading
to difficulties in the learning process. Researchers introduced self-
supervised representation learning (SSRL) (Vincent et al., 2008; Pathak
et al.,, 2016; Donahue et al., 2016), which comprises a pretext task
and a downstream task to address data imbalance. In SSRL, the pretext
task is initially solved, and then the model parameters obtained during
this task are applied to the downstream task, which represents the
ultimate problem that the user aims to solve. In the context of anomaly
detection models that use the imbalance ratio (IR) problem, the pretext
task involves the discovery of meaningful latent representations using
generative models. The downstream task resulting from a pretext task
is typically a classification model.

As an illustrative example from the domain of generative modeling,
the pretext task entails reconstructing the original input while con-
currently acquiring meaningful latent representations. The denoising
autoencoder (Vincent et al., 2008) was purposefully designed to restore
an image from a partially corrupted version or one that includes
random noise. This design was inspired by the remarkable human
capacity to recognize objects in pictures despite the presence of noise,
suggesting the extraction and isolation of crucial visual features from
noise. Another innovative approach is the context encoder (Pathak
et al., 2016), which is trained to fill the missing regions of an image
based on a binary mask. The model was trained using a combination
of reconstruction and adversarial losses, with the mask defining the
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areas to be removed irrespective of their shape. The introduction of
bidirectional generative adversarial networks (GANs) (Donahue et al.,
2016) enhances the process by incorporating an additional encoder that
learns the mapping from the input to the latent variable. This enhance-
ment further refines the representation learning process, leading to an
improved performance in downstream tasks.

GANs have demonstrated remarkable performance in various do-
mains, including data generation, augmentation, and anomaly detec-
tion (Singh et al., 2020; Hertlein et al., 2021; Luo et al., 2021). Their
success has been extended to the manufacturing industry, with applica-
tions such as defect data generation, design structure data generation,
and mechanical defect data augmentation. In the biomedical sector,
gathering data often requires deep expertise and a prolonged duration,
making it challenging to combat data deficiencies. The gene expression
generator (GEG) (Farou et al., 2020) is an innovative adaptation of the
GAN, specifically tailored to generate data in the biomedical domain.
By utilizing the GEG for data augmentation, noticeable improvements
have been observed in the classification accuracy for various biomed-
ical purposes. In the domain of speech emotion recognition (SER),
the lack of diverse emotional speech data presents substantial per-
formance constraints. An end-to-end text-to-speech (TTS) system built
on an extended Tacotron 2 architecture (Latif et al., 2023) incorpo-
rated a conditional encoder in its generative model structure. This
revamped TTS model showed a significant enhancement in the perfor-
mance metrics for SER tasks. Originally conceptualized for computer vi-
sion tasks, GANs exhibit certain limitations when extrapolated to time-
series data. Both discrete-variant and continuous-variant GANs (Brophy
et al., 2023) have potential applications in an array of time-series
datasets. FA-GAN (Li et al., 2023) introduced a pioneering framework
capable of generating category texts. It strategically employs a feature
encoder to extract the conditional contextual information, thereby
facilitating the creation of diverse sentences. Simultaneously, the model
utilizes a category encoder to embed categorical data, enabling control
within the latent space, which underscores its potential for generating
a multitude of category texts. GANs find utility in numerous domains
and continually contribute to performance enhancement via a plethora
of methodologies.

In this study, we propose an image data enhancement approach
to augment time-series data utilizing the Gramian angular field (GAF)
(Wang et al., 2015). This image data augmentation method trans-
forms time-series data into images that are further augmented using
a GAN. By balancing normal and anomalous data, this augmented
time-series image data address data imbalance issues. We propose a
machine learning-based framework for time-series anomaly detection
using a balanced dataset. The proposed framework employs a SSRL
approach that augments a limited amount of data, which are then
utilized as training data for the anomaly detector. Among several
boosting algorithms, the most accurate machine-learning model was
selected for anomaly detection. Additionally, we compared the accu-
racy achieved with and without data augmentation by the GAN using
boosting algorithms.

The remainder of this paper is structured as follows. Section 2
discusses previous research on data augmentation. Section 3 presents
the proposed methods for the experimental data and the necessary
steps. Section 4 details the experiments, validation methods, and re-
sults. Section 5 presents the experimental results. Finally, Section 6
provides the concluding remarks and outlines potential future research
directions.

2. Related work
2.1. Augmentation of time-series data
Research on time-series data augmentation is being conducted con-

tinuously. Moreover, developing methods for augmenting various types
of data while preserving the characteristics of the original data remains
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a challenge. Until recently, the investigated time-series data augmenta-
tion methods could be broadly divided into two categories: basic and
advanced approaches.

Basic approaches are methods that have been used in many fields
for a long time and can be divided into three categories: time domain,
frequency domain, and time-frequency domain. Basic approaches aug-
ment data in a rule-based manner, making it difficult to augment
time-series data in the way that best represents their characteristics.

Advanced approaches can be divided into three broad categories:
decomposition methods, statistical generative models, and learning-
based methods. Decomposition methods typically employ STL or Ro-
bust STL (Wen et al., 2019). STL decomposes time-series data into
trends, seasonality (periodic), and the remainder. The decomposed
components are used to generate time-series data. Time-series data are
generated using deterministic and stochastic components. The stochas-
tic component is generated by building a residual-based statistical
model, such as the autoregressive (AR) model.

2.2. Generative adversarial networks

GAN is a successful model in data generation modeling. In this
method, adversarial learning is realized between a generator and dis-
criminator, where the discriminator learns until it can no longer distin-
guish between real data and the fake data produced by the generator.
In time-series data extensions, the basic learning method is the same,
but the network structure of the GAN is changed.

Statistical generative models use statistical models to model time-
series data. Most statistical generative models generate time-series data
by assuming that the current timestamp is dependent on previous
timestamps. In other words, it is difficult to expect good performance
for multivariate or complex time-series data.

Learning-based models are time-series data augmentation models
that utilize deep learning. Generative models include statistical models
and neural networks. Currently, the neural networks primarily used for
time-series data augmentation are enhanced with GANs. A GAN is a
successful data generation model. The GAN trains in such a manner
that the discriminator competes with the generator until it cannot
distinguish between real data and the fake data produced by the
generator. In time-series data augmentation, the GAN uses the same
basic learning method and is examined in a manner that changes the
network structure. A recurrent GAN (R-GAN) (ekri et al., 2019) for
time-series data was examined to address the lack of time-series data
and the defect problem. This was proposed as a way to set up a
GAN in an LSTM to generate time-series data. A similar performance
was shown for data trained on datasets generated by the R-GAN and
models trained on real data, demonstrating the ability to generate
GANs configured with recurrent neural networks. TimeGAN (Yoon
et al., 2019) comprises four networks that generate time-series data.
It consists of a sequence generator and discriminator using an RNN,
embedding function, and recovery function. After obtaining the true
latent code using the embedding function and the latent code generated
by the sequence generator, the latent code is mapped to the time-series
data using the recovery function. The sequence discriminator classifies
the latent codes as true or false. By utilizing these four networks, the
TimeGAN generates time-series data. In this study, we extend the data
through a GAN that generates time-series images obtained via the GAF
rather than a GAN using an RNN.

2.3. Boosting algorithms

Boosting is a prominent ensemble technique in machine learning
that leverages the combination of multiple sequential weak learners to
enhance prediction or classification performance. It aims to address the
challenge of overfitting, in which a single model becomes excessively
tailored to the training data. The fundamental principle of boosting en-
sembles is to aggregate the outcomes of weak models by training them
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on data and subsequently integrating their predictions or classifications
for new instances.

Introducing a sequential aspect, boosting algorithms incorporate
the idea of iteratively refining weak learners by explicitly considering
the errors of preceding models. This concept is further expanded to
gradient boosting machines (GBM), wherein weak learners are selected
to continuously minimize the loss gradient.

Several boosting algorithms have been proposed, including XG-
Boost, adaptive boosting (AdaBoost), and gradient boost. Among them,
XGBoost, which is based on gradient boosting, has gained signifi-
cant recognition owing to its exceptional accuracy and efficiency. In
the context of this study, one of the reasons for opting for XGBoost
is its advanced optimization capability. It offers a fast and scalable
tree-boosting system equipped with parallel processing, pruning, reg-
ularization, and missing-value handling. These characteristics are vital
when dealing with high-dimensional and complex data, particularly in
the anomaly detection domain. XGBoost has been successfully applied
in diverse scientific domains to effectively address anomaly detection
challenges.

AdaBoost focuses on training algorithms by assigning higher weig
hts to misclassified instances, thus emphasizing on learning from chal-
lenging cases. Consequently, AdaBoost was specifically selected for its
relevance to anomaly detection. It excels at classifying outliers that
pose difficulties near the classification boundaries. Moreover, AdaBoost
is widely acknowledged as a straightforward and efficient approach
that enhances the prediction performance without introducing undue
algorithmic complexity.

Gradient boosting, which is recognized as one of the most potent
machine learning algorithms, constructs a robust ensemble model by
combining multiple weak models. This is achieved by iteratively ad-
justing the predictions in a direction that minimizes the gradient of
the loss function. This characteristic is particularly advantageous in the
context of imbalanced data, which is a prevalent challenge in anomaly
detection tasks. The superior performance, robustness, and adaptability
to anomaly detection tasks contributed to the selection of gradient
boosting in this study. Its effectiveness in maximizing the prediction
accuracy and mitigating overfitting has been empirically established.

Within the proposed methodology, the aforementioned boosting
algorithms are leveraged to augment unbalanced data using the latent
space features generated by a GAN. These augmented features are then
incorporated into a classifier, thereby improving the anomaly detection
performance.

3. Methods
3.1. Problem statement

In this study, we considered anomalies in time interval w of mul-
tivariate time-series data with N variables. The time series data are
written as s = [s,, ..., 5;;,,]. The time series data s, € RV for time t
are represented by the values of N variables from the N-dimensional
vector. We converted s into a single image i. Our goal is to augment
anomalous data to solve the data imbalance problem. StyleGAN (Kar-
ras et al.,, 2020) is used to learn the latent space of the converted
image dataset I. We increase the anomaly detection performance by
augmenting the anomalous data in the learned latent space. If there is
an anomaly in the time interval, we label it as False (0).

3.2. Image embedding methodology for time-series data

As shown in Fig. 1, the framework of the proposed method is that
time-series data are converted into images through the GAF, and the
converted images are mapped to the latent space with a StyleGAN.
Anomaly data were augmented in the latent space. Data augmentation
solves data imbalance problems and creates an anomaly detector using
boosting algorithms.
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Fig. 1. Proposed framework for anomaly detection.

The method proposed in this study used the anomaly detection
method after converting time-series data into image data. Recently,
deep learning models that deal with image data have achieved re-
markable progress compared with methods that deal with multivariate
time-series data in the process of deep learning evolution. Therefore,
the multivariate time-series data were converted into image data. The
GAF method was used to convert the data into images.

The GAF expresses time-series values in terms of angles and radius,
generates a Gramian matrix, and converts the matrix to an image by
matching it to pixels. The time series data for the jth window for image
transformation is represented by S; = [$,41, Sr425 S1435 -+ » Stqw—1s St
sp = [X1 %y .. »XN_1 1 Xn ], Which is the vector of values for each
sensor at time ¢, w denotes the observation window size, and N signifies
the number of sensors. Each s, is a scaled time series vector, denoted
by s, =[xy, X3 ... » X5 ,], Which is transformed into an N-dimensional
vector using an element-wise Arccos operation.

Time-series data are represented by s; € RNXw N variables and
window size w. s; is converted into one image i; using the GAF, which
then converts the time series into a matrix in two stages. The equations
for these two stages are as follows:

{¢ = arccos(s,); ¢ € [0, 7]

r=LreRtrew
w

@

First, the angle and radius of each time step are obtained, and then
the Gramian matrix using the calculated angle and radius is calculated.

cos(¢; + ¢;) cos(¢py + dy)

GAF = : ()
cos(py +p+1) cos(pn + dn)

The elements of each matrix are computed as pixels and converted into
an image, as shown in Fig. 2.

3.3. Generative adversarial network-based latent space learning

The time-series data converted into images are mapped to a low-
dimensional representation space using a GAN. The learning process
for the GAN follows this sequence. First, the collected normal and
anomalous data are labeled and then fed into StyleGAN, which serves
as a data representation tool. StyleGAN is used as a data representation

tool because the latent space is a good representation of data features,
and when learning with labels, the latent space is represented according
to the labels. StyleGAN provides a representation of the latent vectors
of input data. In the training process, convergence of the loss function
is guaranteed even with a small amount of training data. The proposed
study uses StyleGAN for the following reasons. The trained StyleGAN
is used to represent the latent space. From the dataset collected using
StyleGAN, the sample latent vectors z,,.,; and z,,,.,, in the latent
space are extracted (sampled) according to the ratio of the dataset.
The sampled latent vectors express the distributions of normal and
abnormal situations in the latent space of the dataset, as shown in
Fig. 3.

3.4. Data augmentation

The latent space of time-series data was obtained through the latent
space learning process. The latent space obtained through the GAN was
used to augment the data. Latent spaces are divided into anomalous
and normal spaces. In time-series anomaly detection, the data imbal-
ance between normal data and anomaly data affects the classification
performance of machine learning algorithms. We extract data from the
latent space to augment the data and solve data imbalance problems
using the augmented data. Normal data with sufficient samples can be
mapped to the latent vector z,,,,,, € R’>>'? using the StyleGAN. Using
normal data n, a training dataset was created X, ,.a irain € R712

The proposed methodology maps anomaly data to a latent vector
Zanomaty € RPS12, just like normal data. X ,,omary rain € R™1? should
be configured using m anomalous data points (m < n) when anomalous
data are much less than normal data. That is, in a given data space
X anomaty train» the data are augmented using the interpolation technique
shown in Fig. 4. The training dataset X, € R?™312 s obtained by
matching the same dimensions of X and X, to nx512
by augmenting anomaly data.

The data in the latent space z;nomaly is augmented using interpo-
lation between the coordinates of each point. For example, as shown
in Fig. 4, we obtained 512-dimensional latent vector values for the ith
anomaly and the (i+1)th sample. If the ratio of normal to anomalous
data is 3:1, which means an imbalance ratio of 3, the anomalous data
should be doubled. To achieve this, we can set two interpolation points

train

anomaly_train normal_train
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Fig. 2. Image augmented results of both the normal and the anomaly cases of the time series data using GAN.

Before Augmentation After Augmentation

Fig. 3. Scatter plot of normal (purple) and anomaly (yellow) features before (left) and after (right) augmentation in latent space. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Description of the data augmentation by interpolation of the anomaly data in latent space. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 5. Time-series data of the CNC milling machine: (a) normal cases, (b) abnormal cases.

between the ith anomaly and (i+1)th sample, as shown in Fig. 4, and
generate augmented data (Fig. 4, orange line) using the interpolated la-
tent vector values. This results in an equal ratio of normal-to-anomalous
data. The quantity of augmented data can be controlled by adjusting the
parameter that determines the number of interpolated latent vectors
between the neighboring latent vectors in z;pomaly-

3.5. Anomaly detection algorithm

Training is performed by assigning the anomaly and the normal
label to the training data set obtained from the latent space. By using
data augmentation, we expect the dataset to be available for machine
learning. We detected anomalies through classification using boosting
algorithms. Data extracted from the latent space can solve this problem
using a 512-dimensional feature data classification method. We em-
ployed the best boosting algorithm among various boosting algorithms
as the classifier for our experimental technique.

The boosting (Chen et al., 2015) algorithm is one of the machine
learning ensemble techniques that combine several weak learners and
converts them into strong ones. The boosting algorithm learns the data
based on the number of weak learners after random sampling with the
first sample in the first learner and then uses the error with the second
sample in the second learner to proceed with the learning. Overfitting
is prevented as learning proceeds, and a strong learner can be obtained
through iterative continuous learning.

In this study, we utilized three types of boosting algorithms: gra-
dient boost, AdaBoost, and XGBoost, to classify augmented data in a
reduced 512-dimensional latent vector space into anomaly and normal
data. The gradient boost (Friedman, 2002) classifier uses decision
trees as base learners. AdaBoost (Freund et al., 1996) is an adaptive
boosting algorithm that assigns weights to poorly classified features
using a gradient boost classifier. XGBoost (Chen et al., 2015), which
was proposed to address the limitations of gradient boosting, is another
algorithm considered in this study. After applying these three boosting
algorithms, we selected the best boosting algorithm as the classifier.

4. Experimental results

The results of applying the proposed augmented-based anomaly
detection technique to facility sensor data are detailed in the following
sections.

4.1. Demonstration case 1: computer numerical control (CNC) milling
machine data

4.1.1. Dataset and its pre-processing

In the paper, we utilized the PHM 2010 dataset (PHM Society, 2010)
to validate the proposed method. We experimented involving milling
machine sensor data x, = [f,. f}, [, Uy, 0, U, AE] € RI2000<7 were £,
are the force values of the x-axis, y-axis, z-axis and, v,,v,, v, represent
force values of the x-axis, y-axis, z-axis and, AE is an acoustic emission
sensor value, respectively. The sensor data from the milling machine
were seven-dimensional, consisting of three-dimensional force, three-
dimensional vibration, and AE-RMS. In this study, we converted the
force and vibration data into vector size values. The ratio of normal
data to anomalous data in the dataset used in the experiment was 5:1.

Fig. 5 illustrates the original time series of the CNC machining data.
Fig. 5. a shows the normal cases and Fig. 5. b presents abnormal cases.
When comparing abnormal and normal situations, it was apparent that
the former exhibited higher values of vibration, force, and AE signals. In
addition, the patterns exhibited greater fluctuations. These deviations
can be attributed to increased tool wear on the CNC cutter (see Fig. 5).

For generating GAF images (Fig. 6), the input to the GAF consists
of the 2-norm values of 7-dimensional vibrations, force, and acoustic
emission, which are calculated as follows:

s, =LA + ol + AEZ, 3
Wfill =/ f3+ 17+ /2. @
||U,||=\/v)2(+v§+v§ 5)
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Fig. 6. GADF image of the CNC: (a) normal cases, (b) anormal cases.

The 2D representation of the GAF obtained using Eq. (2), which is
the input of Eq. (3) in CNC machining, has a physical meaning that
corresponds to the maximum energy of the signals.

When vibration, force, or sound increases, the input value of the
GAF also increases. A large input value is then transformed into a
2D image of the GAF, which is displayed as a line-shaped value. By
examining the characteristics of the signal, the 2D GAF representation
allows for effective analysis in abnormal situations.

4.1.2. Evaluation and performance measures

We consider precision, recall, and F1-Score as classification per-
formance evaluation metrics. The values were calculated using the
following equation:

precision = % (6)
recall = _TIP ()
TP+ FN

_ 2 X precision X recall

F1 ®

precision + recall

where TP, TN, FP, and FN are the numbers of true positives, true neg-
atives, false positives, and false negatives, respectively. This is a good
performance assessment method for the detection of data-unbalanced
anomalies. It uses test data to evaluate accuracy.

4.1.3. Five-fold-cross-validation result for the experiments

In general, to create a machine learning model for improving its
performance, we divide the dataset into training data (train set) and
test data (test set). However, if we repeatedly evaluate the model’s
performance and adjust the parameters using a fixed test set, the model
will eventually become one that performs well only on the test set. This
phenomenon in which the model is overly trained on the test set and
performs poorly on other real-world datasets is called overfitting.

To prevent such overfitting, cross-validation is necessary. By using
cross-validation, we can make use of all the data in the dataset for
training, thereby improving the model’s performance and accuracy and
creating a more generalized model.

The experiments were conducted using stratified 5-fold cross-
validation. This approach distributes a dataset in a manner that main-
tains similar label distributions in the training and validation datasets.
The performance of the model was evaluated using precision, recall,
and F1-score as the evaluation/performance metrics for each fold. The
results for the evaluation metrics are summarized in Table 1

The proposed methodology summarizes the results of showing the
performance of the self-supervised representation learning classifica-
tion by the two experiments. In the latent space of StyleGAN, before
and after applying the proposed method (data augmentation), perfor-
mance evaluations of anomaly detection and of each boosting algorithm
were conducted. Table 1 compares the performance of the anomaly
detector before and after the anomaly data augmentation. The ratio of
data before augmentation was 5:1, indicating that the system lacked
considerable anomalous data, as in a typical system.

When performing anomaly detector learning, if there is insufficient
anomaly data, the value of recall, which represents the rate at which
anomaly data was detected, is low as 0.9988 (XGBoost), 0.9848 (Ad-
aBoost), and 0.9792 (gradient boost) in Table 1. If the anomaly detector
determines that the anomaly is normal, it can be fatal to the system.
Therefore, the performance of classifier models must be improved.
After data augmentation to improve the performance, the evaluation
metric (F1-score) of the anomaly detector improves significantly, and
the recall increases for all models when the ratio of normal data to
anomalous data is the same (1:1), as presented in Table 1. Thus, the
data augmentation method may be a good alternative for analytical
detection.

4.2. Demonstration case 2: WAAM welding data

For verification purposes, WAAM 3D printing data was utilized in
Fig. 7. The data included the current, voltage, and wire feed rate
(WFR) recorded across three channels. The normal and abnormal states
can be identified by examining the 3D geometry of the printer. The
material employed for the printing process was AM70, with a thick-
ness of 1.2 mm. The target of the printing, the length of the printed
wall, measures 160 mm. Geometric data, including 3D points and .stl
files were exported from the laser scanner, specifically the HEXAGON
METROLOGY 77 series. Fronius Explorer data consisted of event logs
for each layer during the printing process. Logs were stored at a
sampling rate of 0.1 s.

4.2.1. Dataset and preprocessing

The data consists of current, voltage, and wire feeding speed (WFS)
data for normal WAAM (Fig. 7.a.1, a.2, and a.3). These data were used
to validate the proposed process. These values are shown in (Fig. 7.
a.l, a.2, and a.3). It is evident that the current, voltage, and WFS
were maintained during normal WAAM. Specifically, when performing
normal 3D printing, the current was 150 A, the voltage was 16 V,
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Table 1

Fig. 7. Experimental setup for WAAM welding data.

Anomaly detection accuracy in terms of precision (%), recall (%), and Fl-score, on datasets with ground-truth anomalies for
stratified 5-fold cross-validation for CNC data with imbalance ratio = 5.

Method Before augmentation After augmentation
Fold Precision Recall Fl-socre Precision Recall F1-score
1 0.9967 0.9833 0.9899 0.9967 0.9967 0.9967
2 0.9992 0.9958 0.9975 0.9992 0.9992 0.9992
XGBoost 3 0.9933 0.9867 0.9899 0.9950 0.9950 0.9950
4 0.9924 0.9825 0.9874 0.9975 0.9975 0.9975
5 0.9992 0.9958 0.9975 0.9983 0.9983 0.9983
Averaged 0.9962 0.9888 0.9924 0.9973 0.9973 0.9973
1 0.9907 0.9742 0.9822 0.9909 0.9908 0.9908
2 0.9959 0.9992 0.9975 0.9925 0.9925 0.9925
AdaBoost 3 0.9916 0.9783 0.9848 0.9901 0.9900 0.9900
4 0.9891 0.9858 0.9875 0.9876 0.9875 0.9875
5 0.9933 0.9867 0.9899 0.9942 0.9942 0.9942
Averaged 0.9921 0.9848 0.9884 0.9911 0.9910 0.9910
1 0.9975 0.9875 0.9924 0.9967 0.9967 0.9967
2 0.9959 0.9792 0.9873 0.9983 0.9983 0.9983
Gradient Boost 3 0.9942 0.9708 0.9821 0.9926 0.9925 0.9925
4 0.9942 0.9708 0.9821 0.9975 0.9975 0.9975
5 0.9975 0.9875 0.9924 0.9975 0.9975 0.9975
Averaged 0.9959 0.9792 0.9873 0.9965 0.9965 0.9965

and the WFS remained at approximately 5. However, in cases where
the 3D printing result was defective, as shown in Fig. 8, there was an
increase in the voltage and current values, and the WFS decreased to
approximately 3.

For each layer, the time series results are shown for 26 layers in
Fig. 9a.1, 30 layers in Fig. 9a.2, 40 layers in Fig. 9a.3, and 19 layers in
Fig. 9b.1. Each layer comprised three channels and 114 data samples,
resulting in a total measurement time of 11.4 s. Before converting the
image, a window was set to truncate the data, ensuring a clear visibility
of the feature point values (window size = 50). After normalization to
a value between 0 and 1, GAF image embedding was performed. The
image conversion results corresponding to the normal and abnormal
voltage, current, and WFS situations are depicted in Fig. 10. The
StyleGAN2-adaptive data augmentation (ADA) was trained based on
these images.

4.2.2. Evaluation and performance measures

In this experiment, we also used the same performance evaluation
metrics as in Section 4.1.2. We consider the precision (Eq. (6)), recall
(Eq. (7)), and Fl-score (Eq. (8)) as the classification performance
evaluation metrics. We transformed the time series into GAF images
using WAAM data and trained StyleGAN2-ADA with the transformed
images. From StyleGAN2-ADA, we extracted latent vectors and ex-
tracted feature points. After data augmentation using StyleGAN2-ADA
on the extracted latent vectors, we trained XGBoost, AdaBoost, and
gradient boost.

4.2.3. Five-fold-cross-validation in the experiments

We performed the same process for WAAM data as outlined in Sec-
tion 4.1.3. The experiments utilized a Stratified 5-fold cross-validation
to ensure a comprehensive evaluation. Metrics (precision, recall, and
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Fig. 8. Geometry of the WAAM experiment: normal cases (a.1, a.2, a.3) and anormal case (b.1).
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Fig. 10. GADF image of the WAAM: normal cases (a.1, a.2, a.3) and anormal case
(b.1).

Fl-score) were used to assess the performance of the model for each
fold. The summarized results for these evaluation metrics can be found
in Table 2.

The proposed methodology presents a comprehensive analysis of
the self-supervised representation learning classification performance,
accomplished through two experiments conducted in the latent space of
StyleGAN. These experiments encompass the evaluation of the anomaly
detection performance and effectiveness of each boosting algorithm,
both before and after applying the proposed method, which incorpo-
rates data augmentation. Table 2 compares the performance of the
anomaly detector before and after anomaly data augmentation. Before
augmentation, the initial data ratio was 5:1, highlighting the significant
scarcity of anomalous data, which is a common observation in similar
systems.

Insufficient anomaly data during the training of the anomaly de-
tector results in low recall values, indicating a poor rate of anomaly
detection as demonstrated in Table 2 (0.8583 for XGBoost, 0.9667
for AdaBoost, and 0.7879 for gradient boost). After augmenting the
data to enhance performance, there was a significant improvement in
the evaluation metric (F1-score) of the anomaly detector. In addition,
the recall increases for all models when the ratio of normal data to
anomalous data is balanced at 1:1, as presented in Table 2. These results
highlight the effectiveness of the proposed method.

5. Discussion about experiments results
5.1. Comparison with existing baseline limits

5.1.1. Image embedding of the GAF

Detecting anomalies by image embedding, like the Gramian angular
field (GADF), offers advantages over analyzing time-series data. Image
embedding provides a more intuitive interpretability, enabling domain
experts to understand and track patterns easily. Anomalies that appear
as single points in the time series can be represented as intersecting
lines in the GADF, thus enhancing the visualization of anomalies.
Spectrograms, such as short-time Fourier transforms (STFT), enable the
depiction of the signal strength for repetitive cycles in an image format.
Overall, leveraging image embedding and spectrograms improves the
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interpretability and representation of characteristic features in anomaly
detection.

In the proposed approach, multivariate time series data is trans-
formed into images using GAF, and anomaly detection is performed
through GAN-based data augmentation. This method offers several key
advantages over other techniques such as the Markov transition field
(MTF) and short-time Fourier transform (STFT), which encode time
series into images.

The first advantage of the proposed approach is the preservation
of information. The GAF effectively preserves the temporal order and
pattern information of the time-series data. While MTF is based on
variations and STFT transforms time-series data into images using
time-frequency analysis, these methods may sometimes fail to capture
complex patterns or sequential information in the time domain. In
contrast, the GAF effectively preserves such information, which is
crucial for pattern-based anomaly detection.

The second advantage of the proposed approach is the ability to
represent data visually. The GAF transformation allows visualization of
the original time series data. This visual representation is important in
the context of anomaly detection, because a GAN can easily process
images. However, the visual representations produced by MTF and
STFT may often be less intuitive.

The third advantage of the proposed approach is the ability to
capture complex interactions. GAF effectively captures complex pat-
terns and interactions in time-series data. This aspect is particularly
emphasized during the transformation process into images, which are
often missed by MTF and STFT.

Lastly, the proposed approach allows for efficient computation. The
GAF is computationally efficient and enables the processing of large
and complex time-series datasets. In contrast, STFT requires careful
adjustment of the window size and overlap, whereas GAF does not have
these tuning factors. Therefore, the advantages of GAF demonstrate
why it is preferred over MTF or STFT in anomaly detection research.

Remark 1. The sensitivity of small anomalies varies depending on
the resolution of the image embedding. With a 256 x 256 image size,
the proposed image-embedding scheme can visualize local and small
anomalies, particularly variations of 0.1 ¢ in the time series. To achieve
this, we first normalized the time series during the data preprocessing
stage, bringing it within the interval [-1, 1]. The normalized input is
then embedded into GAF images.

5.1.2. Rationale for adopting StyletGAN2-ADA and hyperparameters used
in verification

To facilitate a detailed analysis of local features, it is necessary to
employ techniques such as Style-GAN and ProgressiveGAN, which excel
at generating high-resolution images. StyleGAN excels in capturing
intricate details. In contrast to traditional GANs, which rely on a single
latent vector z as the input and cannot independently modify small
specific parts, StyleGAN adopts a different architecture. It incorporates
the concept of “w” obtained through the mapping network and inserts
it into the style layer responsible for each resolution. This allows the
expression of local feature points with high resolution.

Unlike traditional GANs that use a single latent vector “z” and can-
not modify specific parts independently, StyleGAN employs a unique
architecture. It integrates the latent vector of the mapping network
into the style layer for each resolution, thereby allowing the precise
expression of high-resolution local features. By contrast, it is difficult
for the autoencoder (AE) to generate images that capture the temporal
local features of the time series, as shown in Fig. 11.

In the proposed methodology, we utilized StyleGAN2-ADA for im-
age generation in high-dimensional spaces. StyleGAN2-ADA is an en-
hanced version of StyleGAN2 that introduces methodologies for general
GAN training. It addresses the issue of overfitting by adaptively adding
noise to the training dataset and improving the image generation
quality.
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(a) (b)

Fig. 11. Comparison of the image generating model: (a) proposed (StyleGAN2+ADA), (b) autoencoder, (c) beta-autoencoder, (d) variation autoencoder.

Table 2

Anomaly detection accuracy in terms of precision (%), recall (%), and Fl-score, on datasets with ground-truth anomalies for
stratified 5-fold cross-validation for WAAM data with Imbalance ratio = 5.

Method Before augmentation After augmentation
Fold Precision Recall Fl-socre Precision Recall Fl-score
1 0.9750 0.8750 0.9158 0.9979 0.9979 0.9979
2 1.0000 1.0000 1.0000 0.9701 0.9686 0.9687
XGBoost 3 0.9750 0.8333 0.8872 0.9979 0.9979 0.9979
4 0.9750 0.8333 0.8872 0.9742 0.9728 0.9728
5 0.9500 0.7500 0.807 1.0000 1.0000 1.0000
Averaged 0.9750 0.8583 0.8994 0.9880 0.9874 0.9875
1 1.0000 1.0000 1.0000 0.9959 0.9958 0.9958
2 1.0000 1.0000 1.0000 0.9836 0.9833 0.9833
AdaBoost 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4 0.975 0.8333 0.8872 0.9742 0.9728 0.9728
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Averaged 0.9950 0.9667 0.9774 0.9907 0.9904 0.9904
1 0.7206 0.7961 0.7444 0.9959 0.9958 0.9958
2 0.8333 0.9474 0.8722 1.0000 1.0000 1.0000
Gradient Boost 3 0.9524 0.6667 0.7250 1.0000 1.0000 1.0000
4 0.8070 0.8070 0.8070 0.9742 0.9728 0.9728
5 0.7807 0.7222 0.7452 0.9979 0.9979 0.9979
Averaged 0.8188 0.7879 0.7788 0.9936 0.9933 0.9933
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Anomaly detection accuracy using SMOTE algorithm with CNN (ResNet50V2 backbone) in terms of precision (%), recall (%),
and F1-score, on datasets with ground-truth anomalies for Stratified 5-fold cross-validation for CNC data with Imbance ratio

=5.

Method Before augmentation After augmentation
Fold Precision Recall Fl-socre Precision Recall F1-score
1 0.2667 0.0667 0.1067 0.4494 0.1667 0.2432
2 0.3103 0.0792 0.1262 0.2787 0.0708 0.1130

XGBoost 3 0.3443 0.0875 0.1395 0.2262 0.0792 0.1173
4 0.3333 0.0917 0.1438 0.3099 0.0917 0.1415
5 0.3636 0.0833 0.1356 0.2923 0.0792 0.1246
Averaged 0.3236 0.0817 0.1304 0.3113 0.0975 0.1479
1 0.3582 0.1000 0.1564 0.3265 0.0667 0.1107
2 0.3065 0.0792 0.1258 0.2885 0.0625 0.1027

AdaBoost 3 0.2812 0.0750 0.1184 0.2321 0.0542 0.0878
4 0.3699 0.1125 0.1725 0.3333 0.0750 0.1224
5 0.4375 0.1167 0.1842 0.2034 0.0500 0.0803
Averaged 0.3507 0.0967 0.1515 0.2768 0.0617 0.1008
1 0.2000 0.0125 0.0235 0.3077 0.0167 0.0316
2 0.3103 0.0375 0.0669 0.1667 0.0125 0.0233

Gradient Boost 3 0.2308 0.0125 0.0237 0.3750 0.0250 0.0469
4 0.3478 0.0333 0.0608 0.2105 0.0167 0.0309
5 0.4074 0.0458 0.0824 0.2727 0.0125 0.0239
Averaged 0.2993 0.0283 0.0515 0.2665 0.0167 0.0313

Table 5

Anomaly detection accuracy in terms of precision (%), recall (%), and Fl-score, on
datasets with ground-truth anomalies for stratified 5-fold cross-validation for IR ratio

Table 4 of WAAM data.
. . - o o )
Anomaly d.etectlon accuracy in ter.ms of prec%s?on (%), recall (A))., ar'nd Fl-score, (?n Method Gradient Boost
datasets with ground-truth anomalies for stratified 5-fold cross-validation for IR ratio
of CNC data. Fold Precision Recall Fl-socre
Method XGBoost 1 0.9979 0.9974 0.9977
Fold Precision Recall Fl-socre 2 0.9800 0.9738 0.9764
IR =25 3 0.9839 0.9791 0.9811
1 0.9958 0.9958 0.9958 4 1.0000 1.0000 1.0000
2 0.9901 0.9900 0.9900 5 0.9979 0.9740 0.9764
IR = 10.0 3 0.9950 0.9950 0.9950
4 0.9918 0.9917 0.9917 Averaged 0.9883 0.9849 0.9863
5 0.9975 0.9975 0.9975 1 0.9959 0.9958 0.9958
Averaged 0.9940 0.9940 0.9940 2 1.0000 1.0000 1.0000
IR = 5.0 3 1.0000 1.0000 1.0000
1 0.9967 0.9967 0.9967 4 0.9742 0.9728 0.9728
2 0.9992 0.9992 0.9992 5 0.9979 0.9979 0.9979
IR = 5.0 3 0.9950 0.9950 0.9950
4 0.9975 0.9975 0.9975 Averaged 0.9936 0.9933 0.9933
5 0.9983 0.9983 0.9983 1 0.9898 0.9958 0.9958
Averaged 0.9973 0.9973 0.9973 2 0.9959 0.9958 0.9958
IR = 10.0 3 1.0000 1.0000 1.0000
1 0.9935 0.9933 0.9934 4 0.9686 0.9664 0.9664
2 1.0000 1.0000 1.0000 5 1.0000 1.0000 1.0000
IR =25 3 0.9983 0.9979 0.9981
4 0.9979 0.9983 0.9981 Averaged 0.9909 0.9933 0.9903
5 0.9973 0.9971 0.9972
Averaged 0.9974 0.9973 0.9974

One distinguishing feature of StyleGAN2-ADA lies in its architec-
ture, which comprises a style-based generator and a multi-step dis-
criminator. This architectural configuration enables the style-based
generator to exert precise control over distinct styles in each layer, af-
fording fine-grained manipulation of the synthesized images. Moreover,
through the implementation of adversarial learning dynamics between
the generator and discriminator, StyleGAN2-ADA facilitates the produc-
tion of high-quality images, further enhancing its effectiveness in image
synthesis.

During the training process, we employed the R1 regularization
term to optimize the implemented network. This regularization method
alleviates mode collapse issues and improves the quality of the gener-
ated images.
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In our experimental setup, we adhere to the default configuration
of StyleGAN2-ADA. The image resolution was set to 256 x 256 pixels,
striking a balance between visual fidelity and computational efficiency.
With a batch size of 16, we ensured efficient optimization using the
Adam optimizer with a learning rate of 0.001 to update the network
parameters effectively. These choices were aligned to achieve optimal
performance and quality in the synthesis of high-dimensional images.

5.1.3. Comparison with image classification performance of CNN model

In this subsection, we present a comparison of two distinct method-
ologies aimed at evaluating the effectiveness of augmentation tech-
niques within the latent space. The first methodology is the proposed
method, which is a detection approach that uses the data augmentation
of latent vectors using StyleGAN. The second methodology focuses on
anomaly detection by augmenting time-series data using the synthetic
minority oversampling technique (SMOTE).
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Table 6
Hyperprameter of the XGBoost model.
Hyperparameter Default value Range Descrpition
colsample_bytree 1 [3, 10] colsample_bytree is the subsample ratio of columns
when constructing each tree. Subsampling occurs
once for every tree constructed.
gamma 0.0 [0,5] A node is split only when the resulting split gives
a positive reduction in the loss function.
max_depth 6.0 [3, 10] The maximum depth of a tree.
min_child_weight 1 [1, 10] It defines the minimum sum of weights of all
observations required in a child.
reg_alpha 0.0 [0,1] L1 regularization term on weights analogous to
Lasso regression.
Table 7
Hyperparameter of the gradient boost model.
Hyperparameter Default value Range Description
min_samples_split 2 [2, 10] minimum number of samples required to
split an internal node.
min_samples_leaf 1 [1,10] Minimum number of samples required to be
at a leaf node.
min_weight_fraction_leaf 0.0 [0, 0.5] Minimum weighted fraction of the sum
total of weights (of all the input samples)
required to be at a leaf node.
max_depth 3 [1, 10] Maximum depth of the individual regression
estimators.
min_impurity_decrease 0.0 [0.0, 3.0] A node will be split if this split induces a
decrease of the impurity greater than or
equal to this value.
Table 8 the WAAM data, the verification was performed using a dataset with an
Hyperparameter of the XGBoost model for CNC data. IR of 5. This is a common scenario in manufacturing where the majority
Hyperparameter Default value Optimized value of the data represent the normal state
colsample_bytree 1 1 It was observed in Zhu et al. (2020) that as the IR value increases,
. 0.0 0.07736 o . . .
g”m";a " 6.0 20 the classification result deteriorates. To address this, the proposed
max_dep . . ) . . i
min_child weight 1 1.0 approach generates data with an IR of 1 by creating image embeddings
reg_alpha 0.0 1.0 using Style-GAN2-ADA. The results of the experiment on the IR value

For the augmentation of time series data, we employed the SMOTE
technique to enrich anomalous time series datasets. Subsequently, the
augmented time-series data were encoded using the advanced GAF
method.

The encoded data was then employed as input for a ResNet50V2
backbone model, a deep neural network architecture that finds
widespread application in contemporary research. Binary classifica-
tion training is performed by leveraging this backbone architecture.
Throughout the training process, the backbone model extracted feature
vectors with 512 dimensions, which were subsequently harnessed to
construct an anomaly detector using the XGBoost algorithm. The deci-
sion to configure the feature vector dimension to 512 was motivated
by the desire to align it with the dimensionality of the latent vectors in
StyleGAN.

As a result, it was observed that the anomaly detector based on
time series data augmentation exhibited relatively lower performance
(Table 3) compared to the latent space augmentation-based anomaly
detector (Table 1). This phenomenon can be interpreted as arising from
the complexity of augmenting time-series data, considering the inter-
actions between sensors and temporal dynamics inherent to time-series
data.

5.2. Guideline of the imbalance ratio

In this paper, for the CNC data, the first verification was conducted
using a dataset with an IR of 5 for the normal and abnormal states. For
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can serve as a guide for other researchers applying this approach in
practice.

5.2.1. Demonstration case 1: computer numerical control (CNC) milling
machine data

Table 4 presents the performance of XGBoost when trained on
CNC data using 5-fold cross-validation. This demonstrates that as the
difference between the distributions of normal and anomalous data
decreases (indicated by a lower IR value that approaches 1), there is
an improvement in the precision, recall, and Fl-score performance.
For instance, in terms of the averaged F1-score, we observed values
of 0.9974 (IR = 2.5), 0.9973 (IR = 5.0), and 0.9940 (IR = 10.0). This
indicates that the best performance was achieved when the IR value
was 2.5.

5.2.2. Demonstration case 2: WAAM data

Similarly to the findings in the previous subsection, Table 5 presents
cases of the gradient boost performance when trained on WAAM data
using 5-fold cross-validation. As presented in Table 5, upon applying
the gradient boost, it is apparent that the Fl-score increases when the
imbalance ratio (IR) is set to 5.0, compared to IR = 10.0. However, at
IR = 2.5, the Fl-score experiences a decline to 0.9863. This outcome
can be explained by the influence of the data size. The CNC data (Ta-
ble 4) underwent experimentation with a dataset comprising 120,000
samples, and the WAAM (Table 5) featured a small dataset with only 94
samples for normal data and 20 samples for anomalies for each layer.
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Anomaly detection accuracy in terms of precision (%), recall (%), and Fl-score, on datasets with ground-truth anomalies for stratified

5-fold cross-validation for CNC data with Imbalance ratio = 5.

Method Before hyperparameter optimization After hyperparameter optimization
Fold Precision Recall F1-socre Precision Recall F1-score
1 0.9967 0.9967 0.9967 0.9992 0.9992 0.9992
2 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992

XGBoost 3 0.9950 0.9950 0.9950 0.9942 0.9942 0.9942
4 0.9975 0.9975 0.9975 0.9992 0.9992 0.9992
5 0.9983 0.9983 0.9983 0.9983 0.9983 0.9983
Averaged 0.9973 0.9973 0.9973 0.9980 0.9980 0.9980

Table 10
Hyperparameter of the gradient boost model for WAAM data.

Hyperparameter Default value Optimized value
min_samples_split 2 7
min_samples_lea f 1 9
min_weight_fraction_leaf 0.0 0.2137
max_depth 3 10
min_impurity_decrease 0.0 1.4879

To address this, the WAAM dataset was subject to augmentation
via StyleGAN2-ADA, resulting in 1200 normal data samples and 120,
240, and 480 anomaly data samples for IR = 10, IR = 5, and IR =
2.5, respectively. These augmented data were then leveraged to extract
latent vectors, upon which a classifier was trained to utilize boosting
algorithms.

In scenarios where significant data augmentation is performed on
a limited dataset, there exists a potential risk. Even with augmen-
tation using StyleGAN2-ADA, the generated images may not accu-
rately encapsulate defective data. If the augmented images predom-
inantly represent defective instances, this could lead to a decline in
classifier performance. Hence, when augmenting defective data using
StyleGAN2-ADA for a small dataset, it is imperative to determine an
appropriate augmentation ratio to uphold classifier efficacy.

5.3. Hyperparameter tuning

We proceeded with hyperparameter tuning. Among the boosting
algorithms, AdaBoost, gradient boost, and XGBoost, we found that
XGBoost had the highest F-1 score, which served as a performance
metric. Consequently, we utilized Bayesian optimization to fine-tune
the hyperparameters of XGBoost for the CNC data and gradient boost
for WAAM data.

Bayesian optimization is an approach employed to identify the opti-
mal set of parameters for machine learning or deep learning algorithms.
It explores the hyperparameter space to determine the values that min-
imize the loss function. Five parameters were subject to optimization,
and Tables 6 and 7 provide detailed explanations, default values, and
specified ranges for optimization purposes.

5.3.1. Demonstration case 1: computer numerical control milling machine
data

We optimized five hyperparameters of XGBoost on the CNC dataset
using Bayesian optimization. Table 8 lists the default and optimized val-
ues of the five hyperparameters. Table 9 summarizes the performance
metrics obtained through 5-fold evaluation. From Table 9, it is evident
that utilizing the optimized hyperparameters leads to an increase in the
Fl-score from 0.9973 to 0.9980, compared to the default values. This
confirms the efficacy of the proposed hyperparameter optimization in
improving the performance metrics and enhancing the reliability of the
classification model.
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5.3.2. Demonstration case 2: WAAM data

Similar to the previous subsection, we optimized five hyperparam-
eters of gradient boost on the WAAM dataset using Bayesian opti-
mization. In Table 10, we present the default values along with the
optimized values for these five hyperparameters. Table 11 provides an
overview of the performance metrics acquired via the 5-fold evaluation.
As presented in Table 11, there is an improvement in the Fl-score,
which increases from 0.9933 to 0.9983 with the utilization of the
optimized hyperparameters, in contrast to the default values.

6. Conclusion

In this study, we propose a novel method for detecting anomalies
using data augmentation techniques and manifold inverse mapping in
the latent space. The key feature of the proposed approach is its ability
to address the data imbalance problem by augmenting the data in the
latent space with both normal and abnormal data, which are effectively
trained using StyleGAN.

By employing the proposed method with the data imbalance prob-
lem resolved, we demonstrate its successful anomaly detection capabil-
ity on the CNC and WAAM datasets. The results showed a promising
performance in identifying anomalies in unbalanced datasets.

However, to further validate the effectiveness and applicability
of our method to a wider range of scenarios, we plan to conduct
additional research focusing on high-dimensional data. This allowed us
to thoroughly assess the performance and potential limitations of the
method in more complex and diverse datasets.

The significance of this study lies in its innovative approach to
anomaly detection, which not only addresses the data imbalance chal-
lenge but also leverages latent space augmentation for improved accu-
racy and generalization. With the success achieved in this study, we
believe that the proposed method has significant potential for prac-
tical applications in various real-world scenarios involving anomaly
detection and classification tasks.
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Table 11
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Anomaly detection accuracy in terms of precision (%), recall (%), and Fl-score, on datasets with ground-truth anomalies for stratified

5-fold cross-validation for WAAM data with Imbalance ratio = 5.

Method Before hyperparameter optimization After hyperparameter optimization
Fold Precision Recall Fl-socre Precision Recall F1-score
1 0.9959 0.9958 0.9958 0.9959 0.9958 0.9958
2 1.0000 1.0000 1.0000 0.9979 0.9979 0.9979

Gradient Boost 3 1.0000 1.0000 1.0000 0.9979 0.9979 0.9979
4 0.9742 0.9728 0.9728 1.0000 1.0000 1.0000
5 0.9979 0.9979 0.9979 1.0000 1.0000 1.0000
Averaged 0.9936 0.9933 0.9933 0.9983 0.9983 0.9983
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