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Automatic classification of
hyperkinetic, tonic, and
tonic-clonic seizures using
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Introduction: This study evaluated the accuracy of motion signals extracted from
video monitoring data to di�erentiate epileptic motor seizures in patients with
drug-resistant epilepsy. 3D near-infrared video was recorded by the Nelli® seizure
monitoring system (Tampere, Finland).

Methods: 10 patients with 130 seizures were included in the training dataset, and
17 di�erent patients with 98 seizures formed the testing dataset. Only seizures
with unequivocal hyperkinetic, tonic, and tonic-clonic semiology were included.
Motion features from the catch22 feature collection extracted from video were
explored to transform the patients’ videos into numerical time series for clustering
and visualization.

Results: Changes in feature generation provided incremental discrimination
power to di�erentiate between hyperkinetic, tonic, and tonic-clonic seizures.
Temporal motion features showed the best results in the unsupervised clustering
analysis. Using these features, the system di�erentiated hyperkinetic, tonic and
tonic-clonic seizures with 91, 88, and 45% accuracy after 100 cross-validation
runs, respectively. F1-scores were 93, 90, and 37%, respectively. Overall accuracy
and f1-score were 74%.

Conclusion: The selected features of motion distinguished semiological
di�erences within epileptic seizure types, enabling seizure classification to distinct
motor seizure types. Further studies are neededwith a larger dataset and additional
seizure types. These results indicate the potential of video-based hybrid seizure
monitoring systems to facilitate seizure classification improving the algorithmic
processing and thus streamlining the clinical workflow for human annotators in
hybrid (algorithmic-human) seizure monitoring systems.
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1. Introduction

Overall, 30% of patients diagnosed with epilepsy suffer from uncontrolled seizures

despite the adequate use of anti-seizure medications (ASM) (1). Drug-resistant epilepsy

(DRE) causes an increased risk of mortality and morbidity (2) and sudden unexplained

death in epilepsy (SUDEP) (3). Accurate seizure documentation is essential to optimize

the treatment of epilepsy. Previous research studies have demonstrated inaccuracies related

to seizure diaries (4, 5), which has given an impetus for the development of various
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seizure detection systems, aiming for more objective seizure

documentation. Though seizure detection systems have improved

seizure documentation, seizure classification based on videos or

other data can still be challenging (6–8).

The International League Against Epilepsy (ILAE) has recently

published new guidelines for the classification of epileptic seizures

(9). ILAE seizure classification categorizes seizures based on their

focal or generalized onset, level of awareness, and non-motor

and motor manifestations. Seizures can also be classified based

on semiology, only highlighting the relevance of the observable

ictal motor and other manifestations without electrophysiological

information from EEG. In semiological classification, motor

manifestations are depicted as simple or complex based on the

complexity of the movement (10–12). Laterality (left, right, or

bilateral) and chronological order of the symptoms are additional

classification features (10, 13).

Video-based methods in the detection of epileptic seizures

have been widely studied with high sensitivity and specificity for

detection performance (14). Studies have shown promising results

in the analysis of semiological features by utilizing convolutional

neural networks (CNN) and long short-term memory (LSTM) in

facial and body movement analysis (15), deep learning methods

(16), and movement trajectories (17) in body movement analysis

and ictal sound recordings in seizure semiology analysis (18).

However, automatic seizure classification is a less explored topic.

Temporal lobe epilepsy (TLE) and frontal lobe epilepsy (FLE)

have been differentiated by utilizing movement trajectories (19) or

quantitative movement analysis (20). Infrared and depth sensors

were used in 3D video data to differentiate between seizures in FLE,

TLE, and non-epileptic events reaching a cross-subject f1-score (a

metric to assess machine-learning predictive skill) of 0.833 when

differentiating between FLE and TLE seizures and of 0.763 when

differentiating between FLE, TLE, and non-epileptic events from

each other (21). However, only a few studies have evaluated the

performance of deep learning in the analysis of multiple distinct

motor seizure types.

The Nelli seizure monitoring system is an audio/video-based

semi-automated (hybrid) seizure monitoring platform that uses

computer vision and machine learning to identify kinematic

data (motion, oscillation, and audio) commonly associated with

seizures with a positive motor component and human experts

to visually assess these epochs (22). Moreover, the utility of the

hybrid (algorithm-human) system for reviewing nocturnal video

recordings to significantly decrease the workload and to provide

accurate classification of major motor seizures (tonic-clonic, clonic,

and focal motor seizures) has been demonstrated (23). The

potential to differentiate seizure types by utilizing algorithmic

signal profiles was first explored in a previous case study (24). Even

though Nelli
R©
’s algorithmic performance in seizure detection has

been demonstrated in previous validation studies (25), the potential

of the algorithmic part of the system to classify seizure types has not

been previously explored.

Given the potential of deep-learning methods to differentiate

seizure types and the need for a tool to assist in seizure

classification, novel methods to classify specific seizure types using

video monitoring and deep learning are needed. One recent

development on this frontier has been the catch22 feature collection

(26). The catch22 project has implemented over 7,700 time-series

features from multiple science fields to find the best-performing

statistics for time-series classification, finally selecting the top 22

features for their software library to perform feature extraction or

dimension reduction for time-series analysis. These features have

been applied successfully in a wide range of scientific problems:

e.g., tree deformation detection in winds (27), hydroclimatic

data processing (28), human breast cancer cell detection (29),

commercial sales prediction (30), or cardiometabolic risk detection

(31). They have not been previously applied for video-based

seizure classification.

The aim of this study was to evaluate the performance of

a novel signal algorithm model in classifying tonic, tonic-clonic,

and hyperkinetic seizures by utilizing motion and oscillation

signal profiles. This study further examines the previously

recognized potential of the Nelli system to automatically classify

aforementioned seizure types by utilizing signal profiles and deep

learning to take a step toward automatic seizure classification.

2. Methods

2.1. Patient population

A total of 27 patients with focal DRE were enrolled in the study.

The study protocol and informed consent forms were reviewed and

approved by the ethics committee of Tampere University Hospital.

Signed informed consent was obtained from each participant. All

patients were on two or more ASMs, and some of them were also

treated with vagal nerve stimulation (VNS) therapy. Each patient

was monitored from 4 to 8 weeks in a home setting for 7–11.5 h per

night (average 9.19 h, median 9.25 h). Unequivocal seizures from

previous recording sessions of enrolled patients were utilized only

if they lacked unequivocal seizures in the latest monitoring period.

Training patients were selected partly from a recent interventional

study (22) and partly from Nelli
R©
post-market surveillance (PMS)

recordings, and testing patients were selected from Nelli
R©

PMS

recordings with the requirement that, for each subject, at least three

unequivocal seizures of these three seizure types of interest were

recorded during Nelli
R©
registration and they had been described in

detail in previous video-EEG reports. Due to the exclusion criteria

listed above, 130 seizures from 10 patients formed a cohort for the

model training, including four patients from the previous study

(22). The testing patient cohort consisted of 98 seizures from 17

patients, who were not included in the training phase, to evaluate

the performance of the model. Patient demographics and seizure

counts are presented in Table 1.

2.2. Video monitoring

Video monitoring was performed by NEL (Neuro Event Labs,

Tampere, Finland) using the Nelli
R©

seizure monitoring system

consisting of a camera and a microphone installed at the patient’s

bedside in their home so that the patient stays in sight of the

camera during periods of rest. Video data from all patients were

manually annotated. The epochs of suspected seizure events were

reviewed by expert epilepsy annotators. Previous VEM (video-

EEG monitoring) reports obtained before the start of the study
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TABLE 1 Patient demographics and clinical characteristics.

Characteristics Training phase (n = 10) Testing phase (n = 17)

Age range (years) 18–46 18–58

Mean age (years) 34.5 33.8

Gender

Male 5 (50%) 10 (58.8%)

Female 5 (50%) 7 (41.2%)

Seizure type Training phase Testing phase

Patients Seizures Patients Seizures

Tonic-clonic 4 12 3 6

Hyperkinetic 5 73 7 41

Tonic 3 44 7 51

Total 10
∗

129 17 98

∗Two patients contributed more than one seizure types.

were used for the assessment of behavioral features of seizures

that occurred during Nelli monitoring. Seizures were classified

by professionals according to the ILAE 2017 classification (9).

Suspected seizure events were excluded from further analysis if

they were not unequivocally identified as seizures by comparing

them to previous VEM reports which were considered a feasible

reference standard for the phase two study as previously suggested

(32). Seizures were considered unequivocal to a seizure type if they

were identified based on VEM reports and they shared similar

manifestations as described in classification guidelines. All seizures

belonging to the hyperkinetic, tonic, or tonic-clonic seizure type

categories were included. These three seizure types were the most

common in available recordings, providing a sufficient number

of seizures for further analysis. Seizure semiology was defined

according to semiological classification guidelines (10, 12) for

each seizure type, using additional descriptors for the observable

movements during a seizure. Seizure semiologies for each patient

have been presented in Supplementary material 1.

To optimize the seizure signal analysis and minimize the effect

of the background noise of the video event, seizure video clips

were cropped from the raw data by a professional epileptologist.

Videos were cropped so that they included the seizure onset and

the assumed ending of the seizure activity by comparing the seizure

manifestations in recorded video events and VEM reports. The

postictal phase was left out of the analysis. For each seizure type and

patient, the medians of motion, audio and oscillation signal were

calculated using the method described in Section 2.3.

2.3. Signal generation from video data

The model of the system has been described in the previous

proof-of-concept study (24) in detail. Similarly, the system relies

on motion and oscillation biomarkers.

To create a motion signal, a background subtraction method

by Zivkovic and Van Der Hejden (33) was combined with a

stereo correspondence filter (34) based on semi-global matching

(implemented in OpenCV). The background subtraction model

created a binary mask of the moving parts of the image, and

the proportion of the moving pixels in an image defined a one-

dimensional motion signal for a video.

For movements with an oscillatory component (as present in

tonic-clonic seizures), an optical flow-based method was utilized.

By using this method, a time-series motion vector field was created.

This vector field was utilized to construct a path history, where

only the unbroken paths during a period of 1 s were analyzed

for direction reversal (a reversal is each change in direction over

90◦). An oscillation frequency of 2.5Hz was previously found to

be a good filter for separating ictal oscillation from paroxysmal

events (24).

2.4. Clustering analysis

To separate hyperkinetic, tonic, and tonic-clonic seizures,

unsupervised data representations were explored. A common

technique for data visualization and exploration was used;

a cluster diagram where a data sample is represented

by a point on a 2D chart that is inspected by a human

or a clustering algorithm to find meaningful structures

(clusters) to solve a problem. Since the samples are usually

multidimensional, they must be transformed by dimensional

reduction algorithms into 2D space before drawing the

diagram. After the original data are projected into lower

dimensions, the diagram axes do not have any particular unit

or meaning.

After the complete feature extraction from the patient videos,

the time series of motion and oscillation signals were reduced

in two dimensions. Each time series was transformed to lower

data space by extracting time-series statistical features in order

to have low and fixed data dimensions. The seizures had

varying duration and variable length time series, but a fixed

data dimension for conducting a principal component analysis

(PCA) for the data reduction into 2D was used. To analyze ictal

motion characteristics in the video data, motion features from

the catch22 feature collections were utilized in this study. During
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the initial experimentation, 22 statistics were calculated by the

catch22 library (26) from the training set and fed into PCA.

With the final 2D data, cluster plots were created representing

the seizures in different colors to visualize their distribution. The

discrimination power of 22 statistics was further analyzed on the

training set, and the original catch22 feature set was then reduced

to five features before the PCA step by visually observing the

relatively unchanging cluster diagram after incrementally removing

redundant features.

Data clustering can be especially applied for data visualization,

but separate training and testing steps were implemented in

this experimentation. The dimension reduction methods were

first used for the training patient group to develop an initial

visualization and to find the most optimal parameters for

seizure differentiation. After the training phase, the computed

PCA coefficients were applied to the testing patient data for

projecting the testing data points by the same dimension

reduction transformations into the 2D data space and assessing the

performance of the model by visual evaluation of data points and

then by classification analysis discussed below. In the final step,

agglomerative clustering was used to discover clusters on the image

and observe how the unsupervised cluster represents the different

seizure types.

2.5. Classification analysis

Unlike the unsupervised clustering analysis that is based on

dimension reduction and cluster identification on 2D plots, a

classification method was also employed in this study to assess

the performance of a supervised learning approach. A better

insight can be given to the discriminative power of the extracted

features by analyzing the same data using these different techniques

because the first method reduces the data dimension drastically

while the second method works on the time-series directly.

Note that the time-series of the pixel statistics are already a

heavily reduced data dimension compared to the original video

frames. A deep-learning network (multivariate long short-term

memory with fully connected layers—MLSTM-FCM) specialized

for time-series classification (35) was built on the training set to

classify the data points of hyperkinetic, tonic, and tonic-clonic

seizures and make predictions for unseen data points of the

testing set. The implementation was based on the tsai library

(36). The hyperparameters were an RNN layer count of 2, a

hidden neuron count of 200, and RNN and FCN dropouts of

0.05. The previous clustering method transformed the time series

into 2D data with dimensional reduction techniques (catch22,

PCA), and the MLSTM-FCN model worked on the time series

directly, processing and classifying a time series into a single

seizure category.

After the automatic analysis of the data points of the

testing set, we evaluated the performance of the deep-learning

network by calculating the accuracy of the classification of

hyperkinetic, tonic, and tonic-clonic seizures. Based on the

classification, the overall accuracy of the model was determined.

The description of the method used in this study is presented in

Figure 1.

FIGURE 1

Summary of the method.

3. Results

3.1. Unsupervised clustering analysis

Adjunctive changes in the feature generation enabled

improved discrimination power to differentiate between tonic-

clonic, hyperkinetic, and tonic seizures. Two different motion

feature setups, static motion features (Figure 2) and temporal

motion features (Figure 3), were used to compare the feasibility of

the features. Oscillation tracking was not included in these figures,

as it did not improve the seizure cluster formation in clustering

analysis (see Supplementary material 2). Although the data points

are grouped in different shapes in this case compared to Figure 3,

the general considerations do not change, and many tonic-clonic

points and a considerable fraction of the clonic points appear in

the hyperkinetic cluster.

The static motion features are the original time series extracted

from the videos while the temporal features are a delta derivative

time series calculated by a lag (a fixed duration, e.g. 1 s), often

referred to as time-series lag difference or delta function measuring

the change over time. Delta values were calculated with a difference

between the current value and a past value (e.g., 1 s before). In all

figures, tonic-clonic, hyperkinetic, and tonic seizures were marked

as green, blue, and orange, respectively, indicating training phase

results, and light green, light blue, and light orange, respectively,

indicating testing phase results.

In Figure 2A, a cluster of tonic-clonic and tonic seizures

appeared on the left side and hyperkinetic seizure clusters appeared

on the right side of the figure. This cluster is visually noticeable in

the training phase, while the hyperkinetic cluster spreads to both

sides of the figure in the testing phase. Different types of seizures

were interspersed in the center of the figure, and hyperkinetic

seizures were infused in the left cluster among the tonic-clonic
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FIGURE 2

Clustering analysis of tonic-clonic, hyperkinetic, and tonic seizures using static motion features in the training and testing phase (A). The second
figure shows the agglomerative clustering results (B).
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FIGURE 3

Clustering analysis of tonic-clonic, hyperkinetic, and tonic seizures using temporal motion di�erence features in the training and testing phase (A).
The second figure shows the agglomerative clustering results (B).
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and tonic seizures. The tonic-clonic seizure does not represent

a coherent, separate structure among the data points. Figure 2B

shows unsupervised clustering results and the agglomerative

clustering isolated the tonic and hyperkinetic clusters successfully

on the left and right sides.

In Figure 3A, the clusters switched sides: hyperkinetic and

tonic clusters were clearly separate, but the majority of tonic-

clonic seizures were part of the hyperkinetic seizure cluster

region. The hyperkinetic seizure cluster was plotted clearly on

the left side of the figure in both the training and testing

phases. The tonic seizure cluster was more dispersed in the

testing phase than in the training phase. Tonic-clonic seizures

did not separate from hyperkinetic seizures in either of the

phases when this motion feature was used. In Figure 3B,

the agglomerative clustering discovered two clusters, one for

hyperkinetic and one for tonic seizures. The tonic seizures are

spread above the hyperkinetic seizures on the left side and

the clustering was not able to include this upper part in the

tonic cluster.

3.2. Performance analysis

To analyze the performance of the method, incremental

analysis was done in addition to unsupervised clustering analysis.

By training a deep-learning network based on the background

subtraction signal and comparing the results with original

annotations, we calculated the accuracy of the seizure classification

method. We ran a leave-one-out cross-validation of the deep-

learning method. The cross-validation was then repeated 100

times to calculate an estimation of the unbiased accuracy and

its confidence interval since the model performance has some

variability between each training run because the deep-learning

training is not deterministic with the random weight initialization.

Our method achieved an overall mean accuracy of 74.68%

and an f1-score of 74.26%. The hyperkinetic, tonic, and tonic-

clonic seizures had mean accuracies of 91.03, 87.90, and 45.12%,

respectively. The mean f1-scores were 92.83, 89.79, and 37.18%,

respectively. The hyperkinetic and the tonic seizures had very

similar accuracy and f1-score values, while the f1-score of the tonic-

clonic seizure was lower by 8%, compared to the accuracy value.

The accuracy and f1-scores of hyperkinetic and tonic seizures were

high by approximately 90% while the tonic-clonic seizure had only

45.12 and 37.18%, respectively. Regarding the confidence intervals

(p = 0.05), the hyperkinetic, tonic, and tonic-clonic seizures had

1.1, 1.5, and 4.2% for accuracy and 1, 1.5, and 4.1% for f1-scores,

respectively. The confidence intervals were similar for hyperkinetic

and tonic seizures, but more than double for tonic-clonic seizures.

As the low accuracy and its high confidence interval of tonic-

clonic seizures suggest, this seizure type was not recognized on

a satisfactory level because of the lack of enough patient data

to distinguish this seizure type from the other two types. This

result is on pair with our unsupervised clustering results where

the hyperkinetic and tonic seizures can be separated quite well,

but the tonic-clonic data points are spread around. The accuracy

and confidence interval of each seizure type are presented in

Table 2.

TABLE 2 The unbiased accuracy, f1-scores, and confidence intervals after

100 cross-validation runs.

Unbiased accuracy, f1-scores, and confidence
intervals after 100 cross-validation runs

Hyperkinetic
seizures

Tonic
seizures

Tonic-
clonic
seizures

Mean accuracy 91.03% 87.90% 45.12%

Confidence
intervals for
accuracy

±1.1% ±1.5% ±4.2%

F1-score 92.83% 89.79% 37.18%

Confidence
intervals for
f1-score

±1% ±1.5% ±4.1%

4. Discussion

In this study, we present a novel method for differentiating

between tonic-clonic, tonic, and hyperkinetic motor seizures based

on the automatic analysis of motion and oscillation signals from

previously annotated video data. This algorithmic component of

Nelli
R©

hybrid (algorithmic-human) seizure monitoring system

has been previously studied for automated seizure detection,

but in the present study, it was tested as an automated seizure

classification tool by applying adjunctive video and unsupervised

clustering analysis for the first time. We intended to develop

the differentiation algorithmic ability that would aid clinicians in

classifying seizures for Nelli
R©
hybrid seizure monitoring, which is

currently used in clinical practice (37). In the present study, our

model differentiated and classified hyperkinetic and tonic seizures

with a promising accuracy of 91 and 88%, respectively. However,

tonic-clonic seizures were classified with only 45% accuracy. The

f1-scores for hyperkinetic, tonic, and tonic-clonic seizures were 93,

90, and 37%, respectively.

Screening and differential diagnosis between different seizure

types are essential components in the detection of seizures and

the correct implementation of treatment (4). Seizure classification

relies on objective criteria of ictal observations of caregivers

or clinicians. Most motor seizures have distinguishable motor

manifestations that indicate a specific seizure type; however,

oftentimes, there are no eyewitnesses, especially, for nocturnal

seizures (4). However, depending on the motor manifestations

of seizures, seizure type classification can be difficult, even

with the help of seizures recorded on videos because seizure

semiology is often prone to inter-observer discrepancy due to

qualitative criteria reliance (observer bias) (38). Moreover, it is

very time- and resource-consuming to manually annotate and

classify seizures of each patient (39, 40). A system capable of

measuring seizure features qualitatively as well as quantitatively

would allow the detection of changes in seizure severity or seizure

propagation. Also, in case of multiple seizure types and high seizure

frequency during the monitoring period, automatic tools could

be useful to save time and resources in video annotation during

seizure monitoring. Automatic classification could also improve

seizure alarm systems by enabling alarms for different seizure
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types, which might be useful, especially in epilepsy monitoring

units or institutional settings. Furthermore, EEG-based automatic

seizure classification methods have already been examined with

promising results as a clinical application of the automatic seizure

classification tool (41).

In previous studies, automatic classification of epileptic seizures

from psychogenic non-epileptic events was conducted by a

multi-stream approach, reaching f1-scores and accuracy of 0.89

and 0.87, respectively, in seizure-wise cross-validation and 0.75

and 0.72, respectively, in leave-one-subject-out analysis (42).

Hyperkinetic seizures have been automatically differentiated from

non-hyperkinetic seizures and sleep-related paroxysmal events

with 80% probability (43) and 80% accuracy (44). In another study,

CNNs and recurrent neural networks (RNNs) were combined to

automatically classify seizure videos into focal onset seizures and

focal to bilateral tonic-clonic seizures achieving 98.9% accuracy

(45). However, an automatic system that differentiates motor

seizures into three types has not been previously reported in

the literature. Our study reached a relatively good accuracy

in hyperkinetic and tonic seizure classification, and the results

from hyperkinetic seizure classification aligned with the previous

research study (43). However, tonic-clonic seizures were not

differentiated as accurately as the other two seizure types, which

weakens the performance, especially when considering the clinical

relevance of tonic-clonic seizure documentation in decreasing the

risk of SUDEP (46). However, in previous validation studies of the

Nelli
R©
seizuremonitoring hybrid (algorithmic-human annotation)

system, all tonic-clonic seizures were correctly categorized (23)

due to stereotypic and easily recognizable motor manifestations.

Since the tonic-clonic seizures cannot be separated in both the

clustering and the classification methods in this study, it suggests

that this limitation is not caused by the applied methods, but the

extracted time-series descriptor does not have discriminative power

for this task.

Catch22 was utilized to extract statistical descriptors to reduce

the data dimensionality of the training and testing sets drastically.

This library turned out to be suitable for this task as a collection

of the best statistics for time-series analysis across various science

fields. To select the statistical features with real discriminative

power for the current study, the redundant steps were removed

from the initial set one by one after inspecting the unaffected

cluster diagrams. The deep-learning experiment after the cluster

analysis confirmed the good overall discriminative power. Since

there were few tonic-clonic seizures compared to hyperkinetic and

tonic seizures, they were not distinguished as well as the other

seizures. This is not a by-product of catch22 or deep learning,

but a common phenomenon in machine learning when a class is

underrepresented in the learning task.

This study has several limitations. Our patient population

was quite small, and especially the number of tonic-clonic

seizures included in the study was low. The majority (>90%)

of seizures included in the study consisted of hyperkinetic and

tonic seizures, which may have affected the performance of

our model, and a dataset with more evenly represented seizure

types might improve the model development in future research.

Also, due to availability, we only included tonic, tonic-clonic,

and hyperkinetic seizures, which usually have recognizable motor

manifestations and are reliably classified by human annotators.

Seizures included in this study represented varying semiologies

even within a seizure type, as shown in Supplementary material 1,

which may have caused challenges in classification. A larger

patient group would enable further training of the model and

improve the statistical reliability of the results. However, running

cross-validation 100 times as done in our study was found

as one solution to this issue. The patient dataset consisted of

adult patients, which limits the generalizability of the results to

pediatric patients. Furthermore, we only tested seizures that were

confirmed to be seizures, and we did not have a category for

non-epileptic events involved, which may cause an overestimation

of the performance. However, previous studies that utilized our

system have shown the accuracy of automatic seizure detection

in various seizure types (43). The exclusion of non-epileptic

events from hyperkinetic seizures has been also reported with

relatively high accuracy (42). In addition, seizures with more subtle

motor manifestations can be challenging to detect automatically,

as previously reported (23), even though studies have shown

accurate detection for those seizures (16). However, seizures with

minor motor manifestations may be difficult to detect, even for

human annotators, which provides a topic for future development.

Furthermore, simultaneous analysis of more seizure types might

be challenging due to the similar motion and oscillation signal

profile such as myoclonic and tonic seizures, as well as tonic-

clonic and clonic seizures. There are other general limitations

related to video monitoring: a patient should stay in sight of the

camera, a caregiver should avoid being in the frame of the camera

to not affect the motion signal, and a blanket can impede the

movement of the patient. It is important to maintain the same

monitoring settings throughout the monitoring period to avoid

the effect of patient and environment-related factors on movement

detection (47).

5. Conclusion

The quantitative analysis with selected motion features

distinguished semiological differences between epileptic motor

seizures and enabled differentiation of hyperkinetic and tonic

seizure types from video data in patients with DRE. Our results

suggest that the motion signal profiles seem to allow motor

seizure differentiation and classification. The system achieved

a promising accuracy and f1-score of 74% in the testing

phase. Tonic and hyperkinetic seizures were classified with 91

and 88% accuracy, respectively, but accuracy for tonic-clonic

seizures was only 45%. The f1-scores of hyperkinetic, tonic,

and tonic-clonic were 93, 90, and 37%, respectively. Future

studies are needed with a larger and more robust dataset,

including additional motor seizure types and false positive

events. These developments hold the potential to streamline the

clinical workflow of video-based seizure monitoring systems by

providing a supporting tool for seizure classification. In summary,

despite the lack of accuracy in the classification of tonic-clonic

seizures, the results from the present study can be considered

a step forward toward an automatic seizure classification tool

for clinicians.
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