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Abstract—This paper presents and assesses parameter estima-
tion methods for multi-phase permanent magnet synchronous
machines. More specifically, three different methods are consid-
ered, namely, a step-response method for identifying the stator
resistance and absolute inductance values, a Fourier analysis-
based method to obtain the harmonics in the permanent magnet
flux-linkage, and a methodology to acquire the flux-linkage maps.
To verify the effectiveness of the methods in question, experi-
mental tests based on a six-phase PMSM drive are performed,
and the results are compared with those acquired with finite-
element-analysis simulations. Finally, to promote open science
and make the findings of this work publicly available, all results
are published within the open-source UltraZohm project.

Index Terms—Open science, parameter identification, multi-
phase, PMSM, harmonics, FEA, flux-linkage maps

I. INTRODUCTION

Over the last decades, variable speed drives with multi-
phase winding configurations have gained a lot of attention
in the scientific community thanks to their fault-tolerant op-
erating capabilities. As a result, they have been increasingly
adopted in fault-tolerant applications, such as autonomous
driving, more-electric aircraft or decentralized energy conver-
sion [1]. Nevertheless, the aforementioned favorable operation
comes at a cost of a more complex description of the electro-
magnetic behavior of the machine. For the design of model-
based control algorithms, such as field oriented control (FOC)
or model predictive control (MPC), precise knowledge of the
model parameters is crucial. Therefore, effective parameter
identification methods are required to ensure successful control
of multi-phase machines.

For conventional three-phase permanent magnet syn-
chronous machines (PMSMs), a fundamental-wave model in
the rotor-fixed rotating (dq) frame is the common modeling
approach [2]. Parameter identification methods for such ma-
chines that focus mainly on the identification of the stator
resistance, inductances or flux-linkage maps, and permanent
magnet (PM) flux-linkage, have already been widely inves-
tigated in the literature [3]–[7]. Contrary to this, for multi-
phase machines in general, and PMSMs in particular, only
a few relevant works have been published [8]–[11]. Besides
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that, experimental results have rarely been compared to finite-
element-analysis (FEA) simulations to provide a meaningful
verification of the computed parameters.

Motivated by the above, this paper provides a detailed de-
scription of a parameter identification method for all harmonic
subspaces of multi-phase PMSMs based on [10]. By applying
the method proposed in [10] to six-phase PMSMs, the model
of the machine in question is derived by employing the vector
space decomposition (VSD) approach [12] and presented in
Section II. Following, Section III introduces methods for
the parameter identification of all the sub-systems of six-
phase PMSMs. In Section IV, relevant experimental results
are presented and compared to an FEA model. It is worth
mentioning that the measurement algorithms are implemented
using the UltraZohm, an open-source rapid-control prototyp-
ing platform [13], [14]. The algorithms and the respective
measurement results are therefore available to the public. The
paper concludes with Section V.

II. MULTI-PHASE PERMANENT MAGNET SYNCHRONOUS
MACHINE MODELING

One of the most common approaches for modeling multi-
phase machines is the VSD approach [12], which can also
be derived from the theory of symmetrical components [15].
It can be interpreted as a generalized form of the Clarke
transformation. The VSD transformation matrix TVSD is de-
pendent on the geometric distribution of the windings and the
number of phases of the machine and decomposes the stator
currents into several independent orthogonal subspaces. For
the considered six-phase machine shown in Fig. 1 and with
its three orthogonal planes, the VSD matrix can be written as

TVSD =
1
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Applying (1) to the natural phase quantities of the sta-
tor currents is

a1→c2 = [ia1 ib1 ic1 ia2 ib2 ic2]
T , results
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Fig. 1: Left: Winding configuration in the stator- and rotor-fixed coordinate systems with δ = 2
3π, and γ = π

6 . 1N and 2N refer
to the two possible neutral point configurations, namely 1N stands for the case where the neutral points of both three-phase
winding subsets Na1→c1 and Na2→c2 are connected, while 2N for the case where the neutral points are not connected. Right:
Cross-section of the six-phase PMSM, showing the winding distribution and rotor geometry of the FEA model.

in the decomposed stator-fixed VSD current components
is

VSD’ = [iα iβ iX iY i0+ i0− ]
T , given by

is
VSD’ = TVSDis

a1→c2 . (2)

In (2), iα and iβ relate to the fundamental component
of the current as well as the 12kαβ ± 1 harmonics, with
kαβ = {1, 2, 3, . . .}, iX and iY to the 6kXY ± 1 harmonics,
with kXY = {1, 3, 5, . . .} and i+0 , i−0 to the 3k0 harmonics,
with k0 = {1, 3, 5, . . .}. As per [10], using the Park transfor-
mation

TP(ϑel) =

[
cos(ϑel) sin(ϑel)
− sin(ϑel) cos(ϑel)

]
, (3)

with the electrical rotor position ϑel for the αβ components
and −ϑel for the XY components, and applying it to is

VSD’

results in

is
VSD = T’

P(ϑel)is
VSD’ =

TP(ϑel) 02 02

02 TP(−ϑel) 02

02 02 I2

 is
VSD’ ,

(4)
where is

VSD = [id iq ix iy i0+ i0− ]
T . With the current

components in the transformed space, the machine model can
be written as [10]

udqs = Rsi
dq
s + ωelJψ

dq
s +

d

dt
ψdqs (5a)

uxys = Rsi
xy
s − ωelJψ

xy
s +

d

dt
ψxys (5b)

u0
s = Rsi

0
s +

d

dt
ψ0
s , (5c)

where u□
s are the decomposed stator voltages, Rs is the per-

phase stator resistance, J =

[
0 −1
1 0

]
, ωel is the electrical

rotational speed, and ψs
□ are the decomposed flux-linkages.

Depending on the machine under consideration, ψs
□ can

be modeled using absolute inductances or differential induc-
tances. Low-order harmonics of the PM flux-linkage can also
be considered.

III. PARAMETER IDENTIFICATION METHODS

In this section the parameter identification methods under
discussion are presented. The first method identifies the stator
resistance and absolute inductances by examining the current
response to a voltage step in the respective axis. For this
method a fundamental-wave model with constant machine
parameters is sufficient, while saturation and cross-coupling
effects are neglected. The second method obtains the low-
order PM flux-linkage harmonic parameters. Moreover, when
saturation and cross-coupling need to be respected, methods
for measuring the flux-linkage maps for each subspace are
also presented. Finally, FEA approaches that compute the
aforementioned parameters are briefly discussed as they are
used for benchmarking purposes.

A. Step Response Method

As presented in [5] for the quantities in the dq-subsystem,
the phase resistance Rs and inductances Ls

□ can be identified
when applying a voltage step in the respective axis. This
is done through curve-fitting of a function to the measured
current response using the Levenberg-Marquardt (LM) solver.
This method can also be used for the xy- and 0-subsystems
when operating the machine in 1N configuration by applying
proper voltage steps such that the respective currents are
excited.

In this work, the aforementioned approach is employed to
estimate the parameters in question. To this end, a voltage
step is applied in the axis of interest by means of a two-level



voltage-source inverter (VSI) while having the rotor d-axis
aligned with the stator α-axis. Following, the measured current
responses are compared with the results acquired by solving
the differential equation of the respective voltages, i.e.,

î□s (t) =
u□s
R̂s

(
1− e

−
R̂s ·t

L̂□
s

)
, (6)

where î□s (t) is the estimated current step response, u□s is
the applied voltage in the respective subspace, e is the Euler
number, t is the time, while R̂s and L̂□

s are the estimated
phase resistance and inductances, respectively. The latter are
eventually calculated by minimizing the error between the
solution of (6) and the measured step response with the
help of the aforementioned LM-algorithm. A more detailed
description of this approach can be found in [5].

B. Permanent Magnet Flux-Linkage And Harmonics

For obtaining the permanent magnet (PM) flux-linkage the
machine is externally driven at constant speed by a load
machine. The phase voltages are measured and analyzed by
means of discrete Fourier transformation (DFT). In doing so,
the PM flux-linkage amplitudes of the fundamental and the
dominant low-order harmonic components, namely, the 3rd,
5th, 7th and 9th, are found. Following, each harmonic PM
flux-linkage amplitude is calculated with

ψhpm =
ûh,a1→c2
s

hωel
, (7)

where ψhpm and ûh,a1→c2
s are the amplitudes of the h-th

harmonic of the PM flux-linkage and measured voltage, re-
spectively.

C. Flux-Linkage Map Identification

Besides the resistance and absolute inductance values iden-
tified by the step-response method (see Section III-A), it is
desirable to identify the flux-linkage maps. This is particularly
important when nonlinear machines are of interest as well
as when cross-coupling and saturation effects need to be
respected. The basic idea of the identification procedure can
be found in [10].

1) dq Flux-Linkages: In the dq-subspace, currents are
mainly controlled by a proportional-integral (PI) controller.
Since imbalance between the two three-phase subsets leads
to a 2nd-order current harmonic, [10] proposes an additional
resonant (R) controller to compensate for it. Fig. 2 shows the
structure of the PIR controller in the dq-frame. With the help
of the load machine that keeps the rotational speed constant,
different set-points for the dq-currents are set such that the
entire operating range of the machine is covered. Subsequently,
the resulting voltage udqs and current idqs are measured at each
operating point along with the electrical frequency ωel. In a
last step, the dq flux linkages are computed with

ψdqs =
J−1

ωel
(udqs −Rsi

dq
s ) . (8)

PI
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Fig. 2: Control structure for dq-subspace flux-linkage identi-
fication.

PI

R6

T−1
P (−ϑel)

ixys,ref

−

ixys

ixys,e uxys,ref uXYs,ref

6ωe

Fig. 3: Control structure for xy-subspace flux-linkage identi-
fication.

Note that the above-mentioned measurement campaign needs
to be performed at a constant machine temperature to ensure
that the stator resistance Rs does not change, and thus bias
the results of (8).

2) xy Flux-Linkages: Assuming that the 5th and 7th cur-
rent harmonics are dominant, a PIR controller according to
Fig. 3 is employed. In the xy-subspace, the resonant controller
compensates for the non-sinusoidal PM-flux linkage effects.
Since this subspace rotates with −ϑel, the R-component of
the controller is set for 6ωel. This way, both, the 5th and
7th current harmonics are effectively compensated for. As for
the PI-component of the controller, it controls the xy-current
vector over the whole operating range of the machine. The
flux-linkage ψxys is then calculated based on the corresponding
measured voltages and currents, i.e.,

ψxys = −J−1

ωel
(uxys −Rsi

xy
s ) , (9)

where uxys , ixys , and ωel are the measured quantities.
3) Zero Flux-Linkages: For creating the zero-subspace flux-

linkage maps, the stator winding terminals have to be con-
nected as shown in Fig. 4. This allows for the independent
control of the i0+s and i0−s currents [10]. Since the 3rd
harmonic is the dominant component of the PM flux-linkage
in this configuration, the zero-subspace coordinate system is
rotated at 3ωel. Similarly to the dq- and xy-subspaces, this
enables the control of the current over the entire operating
range by means of a PI-controller. Moreover, this controller is
augmented with an R-component to compensate for higher-
order triplen current harmonics, see Fig. 5. In line with
the previous subspaces, the flux-linkage in this subspace is
calculated with

ψ0
s =

J−1

3ωel
(u0

s −Rsi
0
s ). (10)
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Fig. 5: Control structure for zero-subspace flux-linkage iden-
tification.

D. FEA model

To compare and validate the performance of the above-
mentioned identification techniques, an FEA model is em-
ployed. The model determines the flux-linkage maps at dif-
ferent load points in all considered systems. The FEA model,
shown in Fig. 1, is designed with ideal current excitation
to eliminate current harmonics and their effects on the flux-
linkage calculation. With the inverted VSD matrix T−1

VSD, it
is possible to define specific load points in the dq, xy or
0+0−-subsystem and calculate the corresponding values of
is
a1→c2 = [ia1 ib1 ic1 ia2 ib2 ic2]

T . The mechanical rotor
position in the 2D magneto static FEA design is varied over
one electrical period to analyze the harmonics and cross-
coupling effects in each subsystem. For generating the flux-
linkage maps, the mean value in each axis is computed over
one electrical period. During the map calculation in one
subsystem, the current values in the other two must be set to
zero. This is required as, e.g., due to the magnetic saturation
in the stator a current excitation in the xy-subsystem leads to
a distorted magnetic field, and thus to a change of the flux-
linkage in the dq-subsystem.

IV. EXPERIMENTAL RESULTS

A. Experimental Test Setup

Laboratory-based experiments were conducted using the
motor testbench shown in Fig. 6. A speed-controlled induction
machine serves as the load machine. The controlled six-
phase PMSM is driven by two three-phase, two-level inverters
with an Infineon 828-XCC silicon-carbide intelligent power-
module (SiC-IPM). The dc-link supply is provided by a bi-

Fig. 6: Lab testbench: 1: UltraZohm, 2: Load machine,
3: Six-Phase PMSM, 4: Two-level SiC-inverters,
5: Host computer, 6: Graphical user interface

directional lab power supply. Each inverter is equipped with
phase- and dc-link-voltage measurement as well as phase- and
dc-current measurement using Sensitec CAS5015SRA tunnel-
magneto-resistive current sensors. The voltage measurements
are low-pass filtered with a cut-off frequency of 2 kHz, which
is accounted for in all calculations. All measuring signals
are transmitted differentially to the employed rapid control
prototyping platform, i.e., UltraZohm [13], and converted by
the 16-bit ADCs LTC2311. The six-phase PMSM has PT100
temperature sensors mounted on each phase of the stator
winding that are evaluated using a temperature adapter board
with LTC2983 measurement ICs. The rotor speed and position
feedback are measured by means of a resolver. Finally, the
gate and temperature signals of the SiC-IPM are transmitted
through optical fibers. All the testbench parameters are shown
in Table I. As for the current controller, the PI part with
transfer function

Y (s)

E(s)
= Kp +

Ki

s
, (11)

is implemented on the UltraZohm. In the above expression,
Y (s) is the controller output, E(s) is the deviation of the
controlled variable, Kp is the proportional gain, Ki is the
integral gain and s is the complex Laplace frequency domain
parameter. As for the R-component of the controller, described
by

Y (s)

E(s)
=

Krs

s2 + ω2
R

, (12)

is implemented by impulse invariant discretization. In (12), Kr

is the proportional gain and ωR is the resonant frequency. All
controller gains are presented in Table II.

B. FEA and Testbench Results

This section presents and compares the results acquired via
FEA simulations and experimental tests.



TABLE I: Testbench parameters

Parameter Symbol Value Unit
Sampling frequency fs 10 kHz
Switching frequency fsw 10 kHz
Gate signal interlock time td 300 ns
Mechanical rotor speed nset 1200 min−1

for measurements
Dc-link voltage vdc 565 V
Rated stator current is,ampl,r 10 A

Rated rotor speed nr 3000 min−1

Rated torque Mr 28 Nm

TABLE II: Controller gains

Subspace PI R

Kp(Ω) Ki(
Ω
s
) Kr(Ω) ωR( rad

s
)

dq 10 1500 1000 2ωel

xy 15 500 1000 6ωel

zero 15 100 500 6ωel

Heuristically tuned controller gains

1) Step-Response Method: Fig. 7 shows the step responses
of ids and iys from the experimental setup. The machine is
operated in 1N configuration to also allow for currents in the
zero-subsystem and thus render the step-response identifica-
tion there possible. Prior to applying a voltage step in the
q-axis, the rotor is locked to ensure that it is standing still.
The presented results in Fig. 7 also show the estimated current
î□s (see (6)) after the optimization with the LM-algorithm. As
can be seen, the results of the optimization are very accurate
with R2 ≥ 0.9998 for all evaluated step responses. Moreover,
the resulting stator resistance and absolute inductance values
are shown in Table III. Therein, comparisons with the abso-
lute inductance values calculated from flux-linkage maps—
obtained from the FEA simulations in Fig. 9 and discussed in
Section IV-B3—are also provided.

2) PM Flux-Linkage Harmonics: For the measurement of
the PM flux-linkage harmonics, the switches of the inverters
are in tri-state mode and the six-phase PMSM is kept at
constant speed by the load machine. By measuring the induced
voltage at each phase and the rotational speed, the fundamen-

TABLE III: Estimated machine parameters from the step-
response method compared with FEA results

Parameter Symbol Step-Response FEA Unit

Winding resistance Rs 0.27 Ω

d-Axis inductance Ld
s 1.74 1.84 mH

q-Axis inductance Lq
s 3.80 4.15 mH

x-Axis inductance Lx
s 2.80 2.87 mH

y-Axis inductance Ly
s 2.65 2.89 mH

0+ -Axis inductance L0+
s 1.53 1.57 mH

0- -Axis inductance L0−
s 1.20 1.59 mH

0 0.05 0.1
0

5

10

15

0 0.05 0.1
0
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10

15

Fig. 7: Measured step responses of ids (top) and iys (bottom).
The blue lines show the measured currents, while the red lines
show those estimated with (6) after the LM-optimization.

TABLE IV: Permanent magnet flux-linkage

Harmonic Order Symbol Testbench FEA Unit

Fundamental ψ1
pm 194 197 mV s

3rd ψ3
pm 5 4 mV s

5th ψ5
pm 0.8 0.7 mV s

7th ψ7
pm 0.6 0.4 mV s

9th ψ9
pm 0.3 0.1 mV s

tal and harmonic components of the PM flux-linkages are
computed with (7). The results are presented in Table IV
and compared with those from the FEA simulations. With
regards to the fundamental component ψ1

pm, the results match
very closely, demonstrating the effectiveness of the estimation
method. As for the harmonics, their amplitude is very low
in the specific machine, with the dominant harmonic being
the 3rd one, the amplitude of which is only 2% of the
fundamental component. As a result, measuring the harmonics
in the specific experimental setup is challenging. This becomes
even more difficult as the range and resolution of the voltage
measurement circuitry of the inverter is designed for 900V.
Therefore, high deviations in the results are anticipated and
fully justified. Nevertheless, the discussed method can accu-
rately estimate the harmonics as well, as shown in [10] where
the PMSM under test had pronounced harmonics in the PM
flux-linkage.

3) Flux-Linkage Maps: The flux-linkage maps for each
subspace are measured at a constant speed and machine



TABLE V: Flux-linkage maps comparison

Symbol RMSD (mVs)

ψd
s 1.79

ψq
s 2.38

ψx
s 1.78

ψy
s 2.13

ψ0+
s 1.54

ψ0−
s 1.59

temperature of 40 ◦C. In order to heat up the machine, the
current reference idqs,ref is set to (−is,ampl,r, is,ampl,r)

T until
the desired winding temperature is reached. If during the
measurement procedure, the temperature rises above 45 ◦C the
current reference idqs,ref is set to (0A, 0A)T and experiment is
paused until the winding temperature is within the temperature
hysteresis band of 5 ◦C. An automated measurement process
ensures this. The stator resistance determined by the step-
response method in conjunction with the measured tempera-
ture is tracked during the flux-linkage map measurement. This
allows accounting for the ohmic voltage drop in (8), (9), and
(10), while considering the correct stator resistance value.

Within the context of this experiment, the voltages, currents
and electrical frequency are measured. The flux-linkage value
for every current combination is calculated along with the
currently effective stator resistance. For the specific machine
under consideration, the flux-linkage maps are measured with
a grid step-size of 2.5A, within the range ±is,ampl,r. This
results in 81 operating points that must be measured for each
subspace. The testbench results are shown in Fig. 8. For
the FEA, all the operating points for computing flux-linkage
maps of all subspaces are simulated. The resulting phase
flux-linkages are then decomposed to their VSD components
with the help of (2) and (4) to obtain the results shown in
Fig. 9. To better assess the differences between the FEA and
experimental results, the root-mean-square deviation (RMSD),
i.e.,

RMSDψ□
s
=

√∑81
i=1 (ψ

□
s,FEA − ψ□

s,Testbench)
2

81
, (13)

over all 81 operating points of each flux-linkage map serves
as a performance metric, see Table V. As can be seen,
the averaged RMSD of each flux-linkage map is quite low,
indicating that the accuracy of the experimentally generated
maps are reasonably accurate. Therefore, it can be concluded
that the method in question can be successfully used with six-
phase PMSMs and deal with second-order phenomena, such as
cross-coupling and saturation, that arise in a real-world setting.

V. CONCLUSION

This paper presented a comparison of estimated machine
parameters resulted from FEA simulations and experimental
tests at the example of a six-phase PMSM. The results showed
that the examined parameter identification methods are able

to compute the parameters of multi-phase PMSMs from in-
system measurements at comparable precision with the FEA.
The stator resistance, all subsystem flux-linkage maps, induc-
tances, and low-order harmonics of the PM flux-linkage were
successfully identified with an overall deviation below 10%.
Moreover, these results, such as the flux-linkage maps, can
be further exploited to deduce other machine parameters, e.g.,
the absolute and/or differential inductances. Finally, it is worth
mentioning that in an attempt to promote open science, the
presented results are available to the scientific community as
they are published within the scope of the open-source project
UltraZohm.
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Fig. 8: Testbench results for the flux-linkages ψds , ψqs , ψxs , ψys , ψ0+
s and ψ0−

s .
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Fig. 9: FEA results for the flux-linkages ψds , ψqs , ψxs , ψys , ψ0+
s and ψ0−

s .


