
Aleksi Mäki-Penttilä

UNCERTAINTY-AWARE MPC FOR

AUTONOMOUS RACING

Bachelor’s thesis

Faculty of Information Technology and Communication Sciences

Examiners: Reza Taheri and Reza Ghabcheloo

December 2023



i

ABSTRACT

Aleksi Mäki-Penttilä: Uncertainty-aware MPC for autonomous racing
Bachelor’s thesis
Tampere University
Bachelor’s Programme in Computing and Electrical Engineering
December 2023

Autonomous racing has emerged as a challenging platform for evaluating state-of-the-art con-
trol algorithms used in self-driving vehicles. In this context, Model Predictive Control (MPC) is
commonly utilized to meet the complex control requirements inherent to the task. However, accu-
rate real-time modeling of nonlinear vehicle dynamics poses a significant challenge and frequently
results in model discrepancies. These modeling errors can not only adversely affect control per-
formance, but also compromise the safety of the control system.

Recognizing this limitation, recent works have demonstrated how data-driven dynamics mod-
els such as neural networks and Gaussian processes can be utilized to reduce modeling error.
Concurrently, robust control techniques such as tube-MPC and stochastic MPC have been shown
to mitigate the impact of modeling errors effectively, by taking the imperfect nature of the dynamics
model in to consideration during the design phase.

This thesis enriches existing research by analyzing the robustness properties of an uncertainty-
aware MPC. The adopted approach combines a first-principles based dynamics model with a
sparse Gaussian process (GP), which is trained online to correct errors present in the nominal
dynamics model. The model uncertainty is taken in to account by tightening the MPC constraints
based on the variance predictions of the GP, which are propagated through the prediction horizon.

While previous research has investigated this combined approach, it has primarily empha-
sized lap time improvements, rather than offering a detailed analysis of its robustness properties.
This thesis aims, through simulation experiments, to investigate whether this integrated approach
manifests increased robustness, notably in slippery road conditions and when the tire properties
change due to degradation. Unlike lap times, which hold limited relevance for commercial ap-
plications, robustness serves as a more pertinent metric for improving commercial autonomous
vehicles. Consequently, the findings may offer valuable insights into the broader applicability of
these methods beyond autonomous racing.

Keywords: Model Predictive Control, Autonomous driving, Machine learning, Robust control
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TIIVISTELMÄ

Aleksi Mäki-Penttilä: Epävarmuustietoinen MPC autonomista kilpa-ajoa varten
Kandidaatintutkielma
Tampereen yliopisto
Faculty of Information Technology and Communication Sciences
Joulukuu 2023

Autonomisesta kilpa-ajosta on kehittynyt haastava evaluointialusta itseohjautuvien ajoneuvojen
ohjausalgoritmeille. Malliprediktiivinen säätö (MPC) on usein käytetty menetelmä tässä yhteydes-
sä. Tehtävään liittyvän reaaliaikavaatimuksen vuoksi säätimessä käytettävän prosessimallin on
tasapainoteltava mallinnustarkkuutta ja säätimen suoritusaikaa. Tämä kompromissi johtaa usein
mallinnusvirheisiin, jotka voivat heikentää säätimen suorituskykyä sekä pahimmassa tapauksessa
vaarantaa järjestelmän turvallisuuden.

Mallinnusvirheiden aiheuttamien ongelmien lieventämistä on käsitelty useissa edeltävissä tut-
kimusartikkeleissa. Etenkin viimeaikaiset tutkimukset ovat kiinnittäneet huomiota neuroverkkojen
sekä Gaussin prosessien kaltaisten koneoppimismenetelmien hyödyntämiseen mallinnusvirhei-
den pienentämiseksi. Toinen vakiintunut lähestymistapa on tube-MPC:n kaltaisten robustien sää-
tömenetelmien käyttö, joissa mallinnusvirheen olemassaolo huomioidaan jo suunnitteluvaiheessa.

Tämä tutkielma laajentaa aikaisempaa ymmärrystä asiaan liittyen tutkimalla stokastista mal-
liprediktiivistä säätöä autonomiseen kilpa-ajoon sovellettuna. Tutkittavassa säätöjärjestelmässä
prosessimalli koostuu fysiikan lakeihin perustuvasta matemaattisesta mallista, jonka ennusteita
korjataan harvan Gaussin prosessin avulla. Prosessimalliin liittyvä epävarmuus huomioidaan tiu-
kentamalla säätimen rajoitteita Gaussin prosessin varianssiennusteiden perusteella.

Kuvailtua säätöjärjestelmää on käsitelty aikaisemmissa julkaisuissa, mutta kyseisten tutkimus-
ten painopisteenä ovat olleet pelkästään parannukset kilpa-ajon kierrosaikoihin ideaaleissa olo-
suhteissa. Poiketen tästä lähestymistavasta, tämä työ tutkii säätöjärjestelmän robustisuutta, simu-
loimalla kilpa-ajoa haastavissa olosuhteissa, kuten sateen liukastamalla radalla. Toisin kuin pa-
rannukset kierrosaikoihin ideaaleissa olosuhteissa, järjestelmän kyky sietää haastavia olosuhtei-
ta saattaa toimia parempana mittatikkuna säätömenetelmän soveltuvuudesta autonomisen kilpa-
ajon ulkopuolelle, kuten kaupallisiin itseajaviin autoihin.

Avainsanat: Malliprediktiivinen säätö, Itseajavat autot, Koneoppiminen, Robusti säätö

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1. INTRODUCTION

Despite the prevalence of safety features in modern vehicles, traffic accidents remain a

leading non-age related cause of death globally [1]. Many such accidents are due to

human error, underscoring the potential for autonomous vehicles to enhance road safety

[2]. Multiple companies have already demonstrated Level 4 autonomous systems, which

operate fully autonomously within specific settings, but achieving universal Level 5 au-

tomation requires further research [3, 4, 5]. The rise of the commercial autonomous

vehicle industry has also stimulated research interest in autonomous racing, with com-

petitions like Formula Student Driverless and the Indy Autonomous Challenge offering

platforms for innovation [6]. Insights from these competitions could benefit commercial

autonomous vehicles by improving control algorithms for challenging tasks like collision

avoidance and driving on low-friction road surfaces.

Model Predictive Control (MPC) is a widely adopted control approach both in commercial

autonomous vehicles and autonomous racing [7]. The effectiveness of MPC is critically in-

fluenced by the fidelity of the employed dynamics model. In real-time applications such as

autonomous driving, a compromise must often be made between computational tractabil-

ity and model fidelity, resulting in inherent modeling errors. These modelling errors can

not only degrade the performance in tasks like lane keeping, but also cause the vehicle

to spin out of control, thus having severe safety implications. Recent advancements have

explored not only machine learning techniques to improve modelling accuracy, but also

robust MPC formulations that mitigate the effects of modelling error [8, 9, 10].

This thesis conducts a comprehensive review of relevant literature, and drawing upon

methodologies outlined in [9, 11], examines the application of uncertainty-aware MPC

in autonomous racing. Diverging from previous studies [9, 12], this thesis primarily in-

vestigates the robustness properties of the chosen method, achieved by simulating rac-

ing scenarios under varying tire properties and track conditions. Performance is bench-

marked against a nominal system to quantify improvements. The simulations utilize ’As-

setto Corsa Competizione’, a video game that, despite not being tailored for research,

provides a sophisticated vehicle dynamics model well-suited for the study. The thesis is

structured as follows: Chapter 2 reviews prior work; Chapter 3 lays out the necessary

background information; Chapter 4 details the implementation; Chapter 5 presents the

findings; and Chapter 6 discusses the conclusions.
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2. RELATED WORK

A broad overview of autonomous racing as a field of research can be obtained from a

recent survey published in [7]. The survey findings reveal that among various control

approaches, model predictive control (MPC) is the predominant choice in a variety of

autonomous racing competitions. It can also be observed, that regardless of the exact

control algorithm being used, most participants in these competitions employ a modular

control approach, which involves separate planning and control algorithms. The planning

algorithm, such as the ones detailed in [13, 14], is tasked with finding a time-optimal

trajectory through the race track. This is often accomplished with nonlinear optimization,

which needs to be done in a non-real-time manner due to computational constraints.

Consequently, this initial trajectory is typically post-processed with a real-time sampling

based planner, examples of which can be found in [15, 16]. The purpose of this post-

processing step is to compensate for any deviation from the optimal velocity profile, while

also taking in to account the presence of other vehicles, which are typically ignored in the

inital planning step. The resulting trajectory is then used as a reference for a real-time

trajectory-following control algorithm, often based on Linear Quadratic Regulator (LQR) or

MPC [17, 18]. The effectiveness of this modular methodology has been demonstrated in

the Indy Autonomous Challenge (IAC), where at least two separate teams adopted such

an approach to control a real-world race car [19, 20].

Alternatively, some studies have combined both planning and control tasks into a single

real-time MPC problem. This has been demonstrated using two methodologies. The first

approach, based on contouring MPC [21], employs innovative cost functions to represent

the racing task in the original Cartesian coordinate space [22]. The second approach

recasts vehicle dynamics in to a curvilinear coordinate system, allowing the application of

a standard quadratic cost function [23]. The former approach has been demonstrated on

a real race car in the Formula Student Driverless (FSD) competition [24].

Due to being intertwined within the control algorithm itself, the accuracy of the vehicle

dynamics model bounds the performance achievable with any MPC scheme. However,

the real-time nature of the autonomous racing task places constraints on the complex-

ity of the dynamics model. This limitation becomes evident when comparing the models

used in prior work, such as [24], with the more comprehensive models discussed in liter-

ature for general purpose vehicle dynamics modeling [25]. Recognizing these limitations,
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recent works have investigated various machine learning techniques for dynamics model-

ing within MPC. For instance, Multilayer Perceptron neural networks have demonstrated

superior performance over first-principle-based models for autonomous vehicle control

in [8]. Although large neural networks have the capacity to represent complex phenom-

ena, the associated computational cost can be excessive for real-time MPC with small

sampling times. This issue has been addressed in [26] by using linearized neural net-

works, demonstrating improvements against various other modeling approaches in the

task of quadcopter control. Beyond neural networks, Gaussian Processes (GPs) have

been used not only to correct modeling inaccuracies in nominal vehicle dynamics models

[9, 27], but have also been employed as learnable safety constraint functions [28]. No-

tably, to address the limitations arising from how poorly GPs scale with the size of the

training dataset, sparse GP approximations have been used in [9].

Building on the discussion of vehicle dynamics representation, it is beneficial to explore

how uncertainties in these models are accounted for in control strategies. Robust and

stochastic MPC techniques have been developed, at least in part, to address this ex-

act issue [29, p. 193-203]. In the realm of autonomous racing, robust MPC has been

employed in the form of tube-MPC to control a real-world race car both in Roborace and

the IAC, demonstrating improved safety by reducing acceleration constraint violations [10,

18]. Separately, another line of research builds on foundational studies [11] to create an

uncertainty-aware MPC. This innovative approach explicitly considers model uncertainty

by utilizing the variance predictions of a GP dynamics model in conjunction with with ap-

proximate uncertainty propagation [9]. When evaluated on a real race car, this method

achieved a noteworthy 10 % reduction in lap times. However, the system’s capability to

tolerate variable track conditions remains a promising yet unvalidated hypothesis.

Given that the task of autonomous racing is often formulated as a nonlinear MPC problem,

it should be noted that the stability and safety analysis of nonlinear MPC remains an

open research problem, and practical applicability to real-world systems often presents

challenges [29, pp. 163-166]. One could consider the absence of any stability analysis in

prior work [18, 22, 24] as anecdotal evidence of this. Recently the explicit integration of

Control Lyapunov Functions (CLF) and Control Barrier Functions (CBF) into the nonlinear

MPC problem has received research attention, highlighting a promising avenue towards

a generally applicable method to address the aforementioned issues [30, 31].

Finally, to provide a full view of the autonomous racing landscape, it is worth mentioning

that end-to-end (E2E) approaches such as imitation- and reinforcement learning have

also garnered attention in autonomous racing research [7]. While such E2E approaches

have the potential to take full advantage of high-dimensional sensor data, produced by

e.g. camera and LIDAR, their black box nature can make safety assessment challenging.

For this reason, some works have incorporated forms of uncertainty awareness in an

attempt to enhance safety [32, 33].
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3. THEORY

The objective of this chapter is to provide a brief yet comprehensive introduction to the

theoretical frameworks that underpin the implementation of uncertainty-aware MPC. The

chapter begins with an introduction to Gaussian Process regression, a robust machine

learning technique for system identification. A sparse approximation method more suit-

able for real-time control applications is also presented. The chapter then explores the

fundamentals of MPC, detailing its problem formulation and distinguishing between its

linear and nonlinear forms. Important stability and safety properties are discussed, along

with different categories of MPC, such as robust and stochastic variants.

3.1 Gaussian process regression

Gaussian processes are non-parametric models widely recognized for their robust per-

formance in regression tasks, even with limited amounts of training data. Similar to linear

regression, Gaussian process regression treats the data D = {(xi, yi), i = 0, ..., N} as

if it was generated by:

y = f(x) +w, (3.1)

where the additive noise term w ∼ N (0, σ2
n) corrupts the observations y of the under-

lying function f(x). The goal of the regression task is to find f(x), which in the case of

Gaussian process regression is a distribution over functions, such that any finite number

of function samples are jointly Gaussian:

f(x) ∼ GP (m(x), k(x, x′)). (3.2)

The distribution of functions concept is illustrated in Figure 3.1, which also depicts how the

mean and standard deviation of the function distribution can be considered as the output

of a Gaussian process. The Gaussian process is parameterized by the mean function

m(x) and covariance kernel k(x, x′) defined as:

m(x) = E[f(x)], (3.3a)

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))], (3.3b)
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which together describe the the prior distribution of the Gaussian process, representing

the initial knowledge about f(x) before any training data is considered. [34, p. 13] While

the prior distribution itself is not generally useful for making predictions, it serves as a

foundation upon which the posterior distribution is built. Utilizing Bayesian formalism,

the posterior distribution is derived by conditioning the prior distribution on the available

training data. Effectively, the posterior distribution serves as a trained regression model,

enabling predictions f ∗ for previously unseen data points x∗ based on the knowledge ac-

quired from the training data. Figure 3.1 illustrates the process of computing the posterior

distribution from the prior, leveraging the training data.

Figure 3.1. The prior distribution, depicted in part (a) of the figure, is conditioned on four
training data points, yielding the posterior distribution shown in part (b). In both plots,
ten functions are sampled from their respective distributions and displayed with reduced
opacity in the background.

In practice the mean function is often set as m(x) = 0 to simplify both notation and pos-

terior computation [34, p. 27]. However, it’s worth noting that choosing a non-zero mean

function can incorporate prior knowledge into the model, potentially enhancing predictive

accuracy in data-sparse regions. Despite this, the choice of the mean function generally
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has a minor impact on the performance of regression compared to the covariance ker-

nel, which plays a more pivotal role. The outputs of a Gaussian process are derived by

interpolating training data based on the similarity between input variables x and x′. This

similarity is quantified using the covariance kernel k(x, x′), underscoring the kernel’s im-

portance in the model. As an example, the commonly used squared exponential kernel is

defined as follows:

k(x, x′) = σ2
f exp(−

||x− x′||2

2λ2
), (3.4)

where the variance term σf and length scale λ are hyperparameters [34, p. 83-84].

Specifically, the variance term σf dictates the magnitude of the variance away from any

given training data points, while the length scale λ governs how quickly this maximum

variance is attained as one deviates from a training point. Although the hyperparameters

of the squared exponential kernel may be intuitively adjusted in a one-dimensional setting,

this becomes increasingly impractical in higher-dimensional spaces or when employing

more complex covariance kernels. Consequently, optimal parameters are commonly de-

termined through optimization techniques, such as gradient descent.

3.1.1 Gaussian process inference

Having established the foundational definitions, the task of Gaussian process inference

can now be detailed. Initially, the matrixK(X,X ′) is defined to be the gram matrix, which

is constructed by evaluating the covariance kernel between all pairs of elements within

the input sets X and X ′:

K(X,X ′) =

⎡⎢⎢⎢⎣
k(x1, x

′
1) . . . k(x1, x

′
n)

...
. . .

...

k(xn, x
′
1) . . . k(xn, x

′
n).

⎤⎥⎥⎥⎦ (3.5)

Assuming a zero mean function for the prior, one can then define the joint prior distribution

of the training labels Y and the test outputs f ∗:⎡⎣Y
f ∗

⎤⎦ ∼ N

(︄
0,

⎡⎣K(X,X) + σ2
nI K(X,X∗)

K(X∗, X) K(X∗, X∗)

⎤⎦)︄, (3.6)

where X and X∗ are the sets of training and test inputs respectively [34, p. 16]. Con-

ditioning this joint prior distribution leads to the posterior distribution, characterized as a

multivariate Gaussian with mean µ(X∗) and covariance Σ(X∗). According to [34, p. 16],
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the posterior distribution can be formally expressed as:

p(f ∗|X, Y,X∗) ∼ N (µ(X∗),Σ(X∗)), (3.7a)

µ(X∗) = K(X∗, X)[K(X,X) + σ2
nI]

−1Y, (3.7b)

Σ(X∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]

−1K(X,X∗). (3.7c)

The posterior distribution in Equation (3.7) reveals an important consideration regard-

ing the computational complexity associated with Gaussian process inference. Specifi-

cally, the required precomputations for inference involve the inversion of the Gram matrix

K(X,X), an operation with a computational complexity of O(n3), where n is the number

of training data points. Subsequent to this matrix inversion, the computation of predic-

tive means can be executed in O(n) time complexity, whereas the computation of the

predictive covariance requires O(n2) time complexity. [35] Due to these computational

demands, naive implementations of Gaussian process inference are generally confined

to relatively modest-sized datasets.

3.1.2 Sparse Gaussian process inference

The computational complexity outlined in Section 3.1.1 underscores the necessity for

a sparse approximation technique that offers improved computational efficiency. While

numerous sparse approximations have been proposed, this thesis employs the inducing

inputs method introduced by [35]. The fundamental concept is to identify a concise subset

of inducing inputs, denoted as X̄ , to act as a representative for the entire training set X .

Consequently, the computational complexity becomes governed bym instead of n, where

m is the number of inducing points in X̄ and n is the number of training inputs in X . By

denoting Ȳ as the pseudo target associated with X̄ , the posterior distribution for the

sparse Gaussian process can be written as [35]:

p(f ∗|X̄, Ȳ , X∗) ∼ N (µ(X∗),Σ(X∗)), (3.8a)

µ(X∗) = K(X∗, X̄)Q−1
m K(X̄,X)[Λ + σ2I]−1Ȳ , (3.8b)

Σ(X∗) = K(X∗, X∗)−K(X∗, X̄)[K(X̄, X̄)−1 −Q−1
m ]K(X̄,X∗), (3.8c)

where Λ and Qm are defined as follows:

Λ = diag(λ), (3.9a)

λn = K(xn, xn)−K(xn, X̄)K(X̄, X̄)−1K(X̄, xn), (3.9b)

Qm = K(X̄, X̄) +K(X̄,X)[Λ + σ2I]−1K(X, X̄). (3.9c)

The time complexity for the required precomputations using the sparse approximation

is O(m2n). Subsequently, the time complexity for computing the mean and covariance
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predictions are O(m) and O(m2), respectively [35]. Importantly, although the computa-

tional complexity is nearly identical to a scenario where X = X̄ , the full training data X

still provides valuable information. This contribution is manifested through the covariance

matrix K(X̄,X) allowing for a more robust model that leverages the full dataset. De-

spite this property, it is important to acknowledge that the sparse approximation is only

representative of the full GP in the near vicinity of the inducing points X̄ .

3.2 Model Predictive Control

Originating in the 1980s as a control strategy tailored for the process control sector, Model

Predictive Control (MPC) has since demonstrated its versatility across a broad spectrum

of applications, including humanoid robotics and autonomous vehicle technology. The

core principle of MPC is to transform the original control problem into a constrained op-

timization problem, solvable through standard techniques in mathematical optimization.

Consistent with seminal text [29, p. 486], the following equations provide the general

multiple shooting problem formulation for MPC:

min
x,u

lf (xN) +
N−1∑︂
i=0

l(xi, ui), (3.10a)

s.t x0 = xinitial, (3.10b)

xi+1 = f(xi, ui), i = 0, ..., N − 1 (3.10c)

xi ∈ X , i = 1, ..., N − 1 (3.10d)

ui ∈ U , i = 0, ..., N − 1 (3.10e)

xN ∈ Xf , (3.10f)

where l(x, u) is the cost function, lf (x) is the terminal cost function and f(x, u) is the

discrete-time dynamics function. The states x and controls u are constrained to lie in their

respective sets X and U , and as a special case the terminal state xN is constrained to lie

in the terminal set Xf . The objective of the problem described in Equation (3.10) is to find

the optimal x∗ and u∗ that minimize the cumulative cost over a fixed prediction horizon N,

while adhering to all constraints. By designing an adequate cost function which encodes

the control task, such that minimal cost corresponds to optimal performance, one can

represent arbitrarily complex control tasks as an optimization problem.

The utilization of a prediction horizon facilitates long-term control strategies, which is cru-

cial for solving tasks that require intricate planning. Importantly, although the solution

yields a sequence of control inputs u∗, only the first one u∗0 is applied to the system be-

fore the optimization problem is resolved, resulting in a closed-loop control strategy. Fur-

thermore, it is assumed that each control u∗0 is held piece-wise constant between MPC

iterations.
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3.2.1 Linear vs nonlinear MPC

The formulation of the MPC problem, as outlined in Equation (3.10), is highly flexible,

making no specific assumptions regarding the cost function, dynamics function, or con-

straint sets. However, the selection of these elements influence the complexity of the

underlying optimization problem, making it advantageous to adhere to certain guidelines

in formulating the MPC problem whenever possible. Specifically, it is often beneficial to:

1. Ensure that both the cost function l(x, u) and the terminal cost function lf (x) are

quadratic terms.

2. Represent the discrete dynamics f(x, u) as a linear system.

3. Use linear inequalities to define polyhedral constraint sets X , U and Xf .

When these conditions are met, the optimization problem can be formulated as a convex

Quadratic Program (QP) [36, p. 152]. Formulating the problem as a convex QP is pre-

ferred, since efficient solvers exist for this class of optimization problems [37]. Although

the assumption of linear dynamics can be limiting for highly nonlinear systems, various

strategies can be effectively employed to circumvent this constraint. For example, Lin-

ear Time-Varying (LTV) MPC uses separate linear models for each step in the prediction

horizon. These models are typically attained via a first-order Taylor approximation:

f(xi, ui) ≈
∂f(x∗i+1, u

∗
i+1)

∂x
(x∗i+1 − xi) +

∂f(x∗i+1, u
∗
i+1)

∂u
(u∗i+1 − ui)

+ f(x∗i+1, u
∗
i+1),

(3.11)

where (x∗, u∗) is the previous solution to the optimization problem. The approximation

method in Equation (3.11) is only accurate in the vicinity of the linearization point. Conse-

quently, significant variations in solutions between iterations can lead to issues stemming

from imprecise dynamics representations.

An alternative approach involves the use of the system’s actual nonlinear dynamics, which

results in a variant known as nonlinear MPC. In nonlinear MPC, the optimization problem

becomes a Nonlinear Program (NLP), typically assumed to be non-convex. Even if the

loss function and constraints are carefully chosen, achieving convexity with nonlinear dy-

namics is generally impractical. The issue of convexity is pivotal in optimization, as it

assures the existence of a unique global minimum. In non-convex problems, multiple

local minima can exist, posing the risk that the solver might converge to a suboptimal so-

lution. [29, pp. 487–488] The computational burden associated with solving a non-convex

NLP, even to a local minimum, is significantly greater than that of a convex QP, making

linear MPC the preferred choice for time-sensitive applications. Besides convexity, an-

other issue that warrants consideration is the numerical stability of the discrete dynamics

f(x, u), which result from integrating the continuous-time dynamics fc(x, u). This integra-
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tion can cause numerical issues, especially for stiff nonlinear systems [29, pp. 500–501].

Nevertheless, owing to advancements in embedded computing and the development of

highly optimized Sequential Quadratic Programming (SQP) optimization frameworks [38,

39], which iteratively approximate the nonlinear problem as a convex QP, it has become

increasingly feasible to employ nonlinear MPC in real-time applications.

3.2.2 Stability of MPC

The stability of any closed-loop control system is a crucial attribute to analyze, espe-

cially for systems like autonomous vehicles, which have the potential to cause fatal ac-

cidents. In the realm of linear MPC, stability properties are generally well-established,

although not as straightforward as the ones that can be derived for e.g. Linear Quadratic

Regulators (LQR). Stability of linear MPC is often demonstrated by designing the cost

function l(x, u), terminal loss function lf (x) and terminal set Xf in a way that satis-

fies certain assumptions. These assumptions enable the finite-horizon value function

V N
0 = lf (xN) +

∑︁N−1
i=0 l(xi, ui) to be treated as a Control Lyapunov Function (CLF). [29,

pp. 112–119, 136–138] Lyapunov functions V (x) are energy-like scalar measures of the

state x, which can be used to determine stability and asymptotic behaviour of a system

with respect to some equilibrium point xe. This concept is extended to control systems

via CLFs, which incorporate the control input u into the stability analysis [40, pp. 234–

238]. Mathematically, to indicate asymptotic stability, a CLF needs to satisfy the following

properties:

V (x) > 0 for x ̸= xe, (3.12a)

V (x) = 0 for x = xe, (3.12b)

∃ u s.t. V̇ (x, u) < 0 for x ̸= xe, (3.12c)

which implies that with specific control inputs, all initial states converge towards xe as

time approaches infinity. The required properties for a CLF can be further tightened to

show exponential stability, which bounds the time that it takes for a system to converge

to xe. [40, pp. 57–61, 70–73] Identifying a globally valid CLF can be challenging in the

context of MPC due to the presence of constraints, therefore a local CLF is typically used

instead [29, p. 136]. Formally, a local CLF states that there exists a constant value c, such

that the sub-level set Ωc := {x ∈ Rn : V (x) < c} satisfies the properties in Equation

(3.12). The set Ωc is then referred to as the region of attraction, and can be viewed as an

inner approximation of the stabilizable region within the state space. [40, pp. 73–79]

Extending the stability concepts from linear to nonlinear MPC comes with considerable

challenges, many of which are detailed in [41]. For example, a seemingly straightforward

approach involves utilizing linearizations of the nonlinear system to derive a local CLF,
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paralleling methods used with linear systems [29, pp. 139–141]. However, a complication

arises because the underlying NLP is typically solved only to a local minimum, resulting

in a variant called suboptimal MPC [29, pp. 147–149]. Consequently, additional consid-

erations are required to ensure the validity of such an approach [42]. Arguably many of

these challenges stem from trying to design the nonlinear MPC problem in such a way,

that finding an optimal solution implies stability, which is not true by default in a finite hori-

zon setting. In contrast, some recent works have incorporated the stability conditions in

Equation 3.12 as explicit constraints in the MPC optimization problem [30, 31]. This more

direct approach sidesteps many of the common challenges, at the cost of a more com-

plex MPC problem. It is important to recognize, however, that the endeavor to develop a

local CLF persists across methodologies, frequently requiring iterative refinement to en-

hance the region of attraction. In pursuit of efficiency in this process, techniques rooted

in optimization, as demonstrated in [43], have shown promise in facilitating the automatic

synthesis of local CLFs.

3.2.3 Recursive feasibility and safety of MPC

Equally vital for ensuring reliable operation of the system is the notion of recursive fea-

sibility, which states that if the solution to the optimization problem in Equation (3.10) is

applied at iteration k, then the problem needs to remain feasible at iteration k + 1. Fea-

sibility in this context refers to the existence of a solution that satisfies all constraints. To

provide the theoretical framework for guaranteeing recursive feasibility, one first defines

R as the set of states for which all constraints can be satisfied using some control input

u. This set R is assumed to be control invariant, meaning that for any state xi ∈ R there

exists a control input u that ensures the subsequent state xi+1 also lies within R. With

an initial state xi ∈ R and a control invariant terminal set Xf , the recursive feasibility of

the optimization problem in Equation 3.10 is guaranteed, provided there are no external

disturbances. [29, pp. 111–112] However, while such a theoretical framework can be

used to formally express the requirements for recursive feasibility, the exact computation

of these control invariant sets is challenging except for some special cases [29, p. 166].

Fortunately, the field of safety critical control has produced practical tools, such as Hamilton-

Jacobi (HJ) reachability and Control Barrier Function (CBF), which can be used to com-

pute control invariant sets for a system. By extension, these methods can be used to

ensure the forward recursive property for MPC. The HJ reachability method provides a

systematic approach to compute a maximal control invariant set S for a system, however,

it is known to be intractable for large problems [44, 45]. The CBF method on the other

hand is well suited for large problems, but typically requires a handcrafted component and

only produces a subset C of the maximal control invariant set S [45, 46]. Formally, a CBF

is a Lyapunov like function h(x) which defines the safe, control invariant set C as follows:
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C := {x ∈ Rn : h(x) ≥ 0}, (3.13a)

s.t. ∃u ḣ(x, u) ≥ −β(h(x)) for all x ∈ C, (3.13b)

where β(h(x)) is a class K function, i.e. positive definite and strictly increasing. Intuitively,

the choice of β controls the rate at which h(x) can descend towards the set boundary,

affecting how conservative the resulting controller is. In the context of MPC, h(x) could be

interpreted, e.g., as a distance measure to an obstacle that we want to avoid a collision

with. The CBF then ensures that when nearing the point of collision, there always exists

a control input u that moves us further away from the obstacle. The practical integration

of CBFs to a MPC problem formulation has been demonstrated in [31].

3.2.4 Robust and stochastic MPC

The stability and feasibility guarantees presented in Section 3.2.2 rely on the assumption

of a perfect dynamics model and the absence of external disturbances. These assump-

tions are generally unrealistic in real-world applications, which has motivated the devel-

opment of specialized MPC frameworks that account for these factors. These frameworks

are often categorized into two main types: robust MPC and stochastic MPC. According to

[29, p. 193], both of these approaches work in the same principal manner. The problem

described in Equation (3.10) is adapted such that the discrete dynamics are represented

by f(x, u, w) instead, where the disturbances and model uncertainties are encapsulated

in the term w ∈ W . In the case of additive disturbance, the resulting dynamics are of the

form f(x, u, w) = f(x, u) + w.

The divergence between the two approaches arises when considering the properties of

the set W . Robust MPC assumes a bounded W , indicating that disturbances and model

uncertainties are limited and well-defined. Under these conditions, it is often possible to

design a controller that is robust to disturbances by considering the worst-case scenario.

A practical example of robust MPC is tube-MPC, where the system is confined to operate

within a tube, that represents the region where the system can tolerate the worst case dis-

turbances. [29, pp. 223–228] In contrast, stochastic MPC operates under the assumption

that W is unbounded. This necessitates a probabilistic approach, focusing on satisfy-

ing probabilistic constraints when arbitrarily large disturbances may occur. Probabilistic

constraints, as described by [29, pp. 246–248], can be expressed in the form:

P (x ∈ X ) > 1− ϵ, (3.14)

where P (x ∈ X ) denotes the probability of x being in the constraint set X , and ϵ signifies

the maximum acceptable probability of violating the constraint.
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4. IMPLEMENTATION

This chapter presents the system utilized to gather the results for this study. Initially,

an overview of the simulation environment and the driving software is provided. Sub-

sequently, the chapter introduces the essential components for the implementation of

uncertainty-aware MPC, focusing on the vehicle dynamics model and the contouring cost

function. The chapter concludes by detailing the uncertainty-aware MPC problem formu-

lation. The code used in this work is fully available at [47].

4.1 Simulation environment and driving software

Assetto Corsa Competizione (ACC) was selected as the simulation environment for this

thesis due to its highly detailed vehicle dynamics simulation. While other simulators were

considered, including the Formula Student Driverless simulator [48], the Learn To Race

simulator [49], and a Simulink model created by the TUM autonomous racing team [50],

none seemed to match ACC in simulation detail. The inability of ACC to simulate sen-

sor data, such as from cameras and LIDAR, did not detract from its suitability given the

deliberate focus on the aspects of control rather than perception or environment sensing.

The lack of a programming API in ACC necessitated an unconventional approach to fa-

cilitate communication between the simulation and the driving software, accomplished by

reading the shared memory of ACC, and by utilizing an emulated game controller. The

driving software, developed in Python, operates with two main loops: an observation loop

and a control loop. The observation loop polls the shared memory at 100Hz to gather ve-

hicle state data such as velocities and accelerations. The control loop runs at 20Hz, using

the vehicle state data to compute control inputs via MPC, which are then transmitted back

to ACC using the emulated game controller.

The car’s state information serves dual purposes: immediate control and as training data

for a sparse GP. Notably, the training data goes through a learning buffer, which is es-

sential since ACC’s shared memory does not provide angular acceleration, requiring the

application of a Savitzky-Golay filter to derive a smooth estimate from the angular veloc-

ity data [51]. Despite the predominantly noise-free nature of the data, this step is also

beneficial to remove any outliers. A comparison of the car states required for control and

learning against the data available from shared memory is shown in Table 4.1.
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State name Used for control Used for learning Available

Position and heading Yes No Yes

Linear velocity Yes Yes Yes

Angular velocity Yes Yes Yes

Linear acceleration No Yes Yes

Angular acceleration No Yes No

Table 4.1. Vehicle states, their usage and availability.

The MPC controller is implemented using Acados, an open-source optimal control frame-

work [38]. The associated sparse GP model is integrated in to the optimization problem

using Casadi symbolics [52], with the necessary precomputations done using PyTorch.

Due to compatibility issues with linear algebra libraries that Acados relies on, the MPC

controller must operate within a Linux environment. In contrast, the chosen simulator

functions exclusively on Windows. To reconcile this, the Windows Subsystem for Linux

(WSL2) facilitates the execution of the MPC controller, isolating it from the main driving

software. Communication between the driving system and the MPC controller is effi-

ciently managed through a gRPC node, ensuring minimal latency. The overall system

architecture, which integrates these components, is illustrated in Figure 4.1.

Figure 4.1. The system architecture.
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4.2 Vehicle dynamics modelling

In alignment with prior work [9], this thesis divides the task of vehicle dynamics modeling

into two specific components: nominal and auxiliary dynamics. The nominal dynamics

are represented by a first-principles based model, which serves as the baseline frame-

work for capturing the vehicle’s behaviour. On the other hand, the auxiliary dynamics are

represented by a sparse GP, which attempts to account for phenomena not encompassed

by the nominal model.

4.2.1 Nominal vehicle dynamics

The nominal vehicle dynamics in this thesis are represented by a dynamic single track

bicycle model, which has seen application in numerous preceding studies [9, 22, 24].

The bicycle model employed here has eight states, which are governed by the following

differential equations:

fc(x, u) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋcar

ẏcar

θ̇

v̇x

v̇y

ω̇

ϕ̇

δ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vx · cos(θ) + vy · sin(θ),

vx · sin(θ) + vy · cos(θ),

ω,

Fx

m
+ vyω,

1
m
· (Ffy · cos(ϕ) + Fry)− vxω,

1
I
· (Ffy · lf · cos(ϕ)− Fry · lr)

∆ϕ

∆δ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.1a)

where m is the car mass, I is the car inertia, and lr and lf are the distances from car

center of mass to the rear and front wheel axles respectively. The model inputs are the

rate of change for both the steering angle ϕ and acceleration command δ, denoted ∆ϕ

and ∆δ respectively. The bicycle model and the associated coordinate system is depicted

in figure 4.2.

The lateral forces Ffy and Fry are produced by a simplified variant of the Pacejka tire

model [53], which only considers lateral wheel slip:

Ff/ry = Df/r · sin(Cf/r · atan(Bf/r · αf/r)), (4.2)

where [Df/r, Cf/r, Bf/r] are learnable parameters, and the front (αf ) and rear (αr) lateral
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tire slip angles are computed as:

αf = atan2(vy + ω · lf , vx)− ϕ, (4.3a)

αr = atan2(vy − ω · lr, vx). (4.3b)

The longitudinal force Fx is described by the following simplistic drive train model:

Fx = (Km0 +Km1vx)δ −Kr0(1− tanh(Kr1vx))−Kr2v
2
x, (4.4)

where Km0, Km1, Kr0, Kr1 and Kr2 are learnable parameters.

x

y

θ

vxvy

ω

l r

l f

Ffy

ϕ

Fry
Fx

Figure 4.2. Depiction of the dynamic single track bicycle model.

For use within MPC, the continuous time dynamics fc(x, u) described in Equation (4.1)

are converted to discrete-time dynamics f(x, u) via the 4th order Excplicit Runge-Kutta

method:

k1 = fc(x, u), (4.5a)

k2 = fc(x+
h

2
· k1, u), (4.5b)

k3 = fc(x+
h

2
· k2, u), (4.5c)

k4 = fc(x+ h · k3, u), (4.5d)

f(x, u) =
h

6
· (k1 + 2k2 + 2k3 + k4), (4.5e)

where h denotes the sampling time [29, pp. 477–479]. The Runge-Kutta method was

chosen here over the simpler Euler method to improve numerical stability.
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4.2.2 GP vehicle dynamics

It can be observed from Equation (4.1) that the position states, denoted as [x, y, θ], are

governed exclusively by kinematic equations, thereby rendering them negligible sources

of modeling error. Consequently, the GP dynamics apply corrections only to the ve-

locity states [vx, vy, ω]. To align this approach with prior work [9], a selection matrix

BGP = [03x3, I3x3,02x3] is introduced. With this matrix, the targets of the GP dynamics

can be formulated as the residuals between the actual and predicted states, expressed

mathematically as:

Y = B†
GP (x− fc(x, u)) = dtrue(z) +w, (4.6)

where † is the pseudo-inverse operator and dtrue(z) represents the true residuals cor-

rupted by noise w. The regression features z are defined as z = CGPx, which with

the selection matrix CGP = [03x3, I5x3], results in z = [vx, vy, ω, ϕ, δ]. Notably, unlike

prior work, the continuous-time dynamics were chosen as the target via the use of fc,

since it accommodates the use of nonuniform sampling times later on. By adopting this

framework, the GP dynamics will yield a distribution defined as:

YGP ∼ GP (µd(z),Σd(z)), (4.7)

where µd(z) and Σd(z) are the mean and covariance of the residual dynamics.

To train the residual dynamics online, data is fed from the simulator to the GP as depicted

in Figure 4.1. When the GP training data buffer is full, it is updated based on the poste-

rior variance of all current data points, computed according to Equation (3.7). If a new

candidate point has a higher posterior variance than the median of all current points, the

point with the lowest posterior variance gets replaced. Additionally, to encourage contin-

uous learning, the posterior variance of each existing data point is scaled by λ, which is

computed as:

λi = e−
(t−ti)

2

h , (4.8)

where λi refers to the scaler for point i, t is the current time, ti is the time when point i was

added and h is a hyperparameter. This scaling procedure, also adopted in [9], ensures

that as the vehicle dynamics evolve through time, old data points get replaced with more

relevant ones.
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4.2.3 Combined dynamics

Using the variance propagation equations presented in [12], the combined discrete-time

dynamics, which are now a distribution, can be expressed as:

µx
i+1 =

˜︁f(µx
i , ui), (4.9a)

Σx
i+1 = BGP

(︁
h2 · Σd(CGPµ

x
i )
)︁
BT

GP +∇x
˜︁f(µx

i , ui)Σ
x
i

(︂
∇x
˜︁f(µx

i , ui)
)︂T

, (4.9b)

where i denotes the prediction stage, h is the sampling time and ˜︁f(µx
i , ui) is defined as:

˜︁f(µx
i , ui) = f(µx

i , ui) + h · BGPµ
d(CGPµ

x
i ). (4.10)

As Equation 4.9 reveals, the Euler-method was used to discretize the GP dynamics. It

should be noted that the variance update in 4.9 is merely a linear approximation, since

the exact computation would be intractable [54].

4.3 Contouring control

Inspired by previous works [9, 22, 24], the racing problem is formulated as an instance of

Model Predictive Contouring Control (MPCC) [21]. In MPCC, the primary objective is to

closely follow a two-dimensional reference path as fast as possible. This is realized by a

nonlinear, non-convex cost function penalizing deviations perpendicular to the reference

path and incentivizing forward progress along it.

The reference path is represented by arc-length parameterized functions rx(s) and ry(s)

which output the x and y coordinates for any path position s ∈ [0, L], where L is the

total arc length of the path. In the context of autonomous racing, the contouring error Ec

is then defined to be the lateral deviation between the car [xcar, ycar] and the reference

path [rx(scar), ry(scar)], where scar is the projection of car coordinates that minimizes the

following optimization problem:

scar = min
s

(︃
(xcar − rx(s))

2 + (ycar − ry(s))
2

)︃
. (4.11)

Continuously solving Equation (4.11) inside the MPC problem would be computationally

intractable, which is addressed by using the additional state ŝ in the MPC formulation.

The state ŝi represents the approximate path position of the car at prediction step i, and

is governed by the simple dynamics:

ŝi+1 = ŝi + νi, (4.12)
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where ν ∈ [0, νmax] is the corresponding control variable. With this formulation the opti-

mization problem in Equation (4.11) can be precomputed once before each MPC iteration

to get the initial car path position ŝ0, after which the car path position is updated each

prediction step using Equation (4.12). To control the approximation quality of ŝ, the lag

error El is introduced. It is defined as the arc length distance between scar and ŝ. Neither

the quantities Ec or El can be computed exactly without the real path position scar, which

leads to the following approximations being used instead [21]:

Êc = sin(ψ(ŝ)) · (xcar − rx(ŝ))− cos(ψ(ŝ)) · (ycar − ry(ŝ)), (4.13a)

Êl = − cos(ψ(ŝ)) · (xcar − rx(ŝ))− sin(ψ(ŝ)) · (ycar − ry(ŝ)), (4.13b)

ψ(ŝ) = atan2
(︃
∇ry(ŝ)
∇rx(ŝ)

)︃
. (4.13c)

Importantly, the approximation Ec ≈ Êc is accurate when we have a sufficiently small

approximate lag error Êl. The resulting contouring scheme is visualized in Figure 4.3.

(xcar, ycar)

scar

ŝ
El

Ec
Êl

Êc

ψ(scar)

Figure 4.3. Depiction of the contouring errors, shown here with the race track center line
as a reference path.

The fastest approach through the reference path is encouraged by maximizing the ap-

proximate path progress ŝ while minimizing the approximate contouring error Êc. The

approximate lag error Êl needs to also be minimized to ensure the approximations re-
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main accurate. This leads to the contouring cost function:

lc(x, u) = kcÊc − ksŝ+ klÊl, (4.14)

where kc, ks and kl are weights used to tune the behaviour of the method. Importantly,

to ensure a small approximation error, the weights should be selected such that kl ≫

ks + kc. The ratio of ks and kc is application specific, however in a racing scenario it is

beneficial to set ks ≫ kc, since additional constraints can be used to enforce that the car

stays within race track boundaries.

4.4 Uncertainty-aware MPC problem formulation

Using the ingredients from Section 4.2 and Section 4.3 the uncertainty-aware MPC can

now be formulated. First, the following state constraints are enforced for all stages of the

optimization problem: ⎡⎣ϕmin

δmin

⎤⎦ <
⎡⎣ϕ
δ

⎤⎦ <
⎡⎣ϕmax

δmax

⎤⎦ , (4.15a)

⎡⎢⎢⎢⎣
0

∆ϕmin

∆δmin

⎤⎥⎥⎥⎦ <
⎡⎢⎢⎢⎣
ν

∆ϕ

∆δ

⎤⎥⎥⎥⎦ <
⎡⎢⎢⎢⎣
νmax

∆ϕmax

∆δmax

⎤⎥⎥⎥⎦ . (4.15b)

Next, a constraint is introduced to limit the combined longitudinal and lateral acceleration

of the vehicle. The adoption of this constraint is essential due to the limitations of the

pure lateral slip tire model used in the nominal dynamics, which tends to overestimate

the tire force during combined slip scenarios. Although recent findings suggest that the

actual constraint is more accurately represented by a diamond shape, as discussed in

[18], an ellipsoidal constraint is used here instead. This aligns with prior work [9, 24], and

minimizes the number of nonlinear constraints. Consequently, the following constraint is

used to limit the longitudinal (ax) and lateral (ay) accelerations:(︄
ax +Kax

âx −
√︁

Σd(z)ax

)︄2

+

(︄
ay

ây −
√︁

Σd(z)ay

)︄2

< 1, (4.16)

where âx and ây symbolize the maximum permissible accelerations, which are readily

identifiable from a GG-diagram derived from experimental data. In contrast, ax and ay are

calculated using the nominal vehicle dynamics outlined in Equation (4.1) in conjunction
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with the GP dynamics mean predictions µd(z):

ax =
Fx

m
+ µd(z)ax, (4.17a)

ay =
2

m
· (Ffy · cos(ϕ) + Fry) + µd(z)ay, (4.17b)

where µd(z)ax and µd(x)ay specifically extract longitudinal and lateral accelerations. Un-

like prior work, the GP variance predictions Σd(z)ax and Σd(z)ax are used to tighten

the acceleration constraint in Equation (4.16). Additionally, inspired by [19], the following

terminal lateral acceleration constraint is incorporated:

ay = 0, (4.18)

which enforces a constant turn radius in the terminal phase. This addition was empirically

observed to enhance system stability.

In addition to acceleration constraints, the behaviour of the vehicle is further regulated by

imposing a constraint on the rear slip ratio:

−αrmax ≤ αr ≤ αrmax . (4.19)

This constraint serves as a crucial measure against oversteer, a very unstable operating

condition that is not accurately represented by the simplistic nominal dynamics model.

Following the constraints imposed on the vehicle dynamics, the vehicle is further restricted

to remain within the race track boundaries. This is accomplished using the following

constraint:

(cx(ŝ)− xcar)
2 + (cy(ŝ)− ycar)

2 <

(︃
cw(ŝ)

2

)︃2

−RGP (Σ
xy
i ), (4.20)

where cx(ŝ), cy(ŝ), and cw(ŝ) are arc-length parameterized splines that define the track’s

center line coordinates (x, y) and its width w. The term RGP (Σ
xy
i ) serves to reduce the

effective track width in response to the car’s positional uncertainty. It is calculated as:

RGP (Σ
xy
i ) =

√︂
χ2
2(1− ϵ)λmax(Σ

xy
i ), (4.21)

where χ2(1 − ϵ) denotes the chi-squared distribution’s quantile function for a given con-

straint violation probability ϵ, and λmax(Σ
xy
i ) selects the largest eigenvalue from the co-

variance matrix Σxy
i . The matrix Σxy

i signifies the x and y positional uncertainties at

stage i of the prediction horizon, computed using the uncertainty propagation mechanism

outlined in Equation (4.9). Constraints of this nature can be viewed as a practical imple-

mentation of the chance constraint in Equation (3.14) [11]. Figure 4.4 visually illustrates
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this concept, demonstrating the impact of position uncertainty on the track constraint.

Due to the real-time demands of the task, computing RGP (Σ
xyi) directly within the opti-

mization problem proved unfeasible. To address this, the values were precomputed using

the previous MPC solution shifted forwards by one time step. This same approach was

applied to the variance terms in Equation (4.16). Additionally, due to the open loop na-

ture of the predictions, Σxy
i could potentially grow unbounded. Similar to previous work

[9], this issue was addressed empirically, by only computing Σxy
i for the first half of the

prediction horizon, beyond which it was kept constant.

Figure 4.4. Visualization of the constraint tightening procedure used in uncertainty-aware
MPC. As the car position uncertainty grows during the prediction horizon, the effective
track width is decreased to guarantee that the car does not exit the track.

The uncertainty-aware MPC is formulated with a nonlinear least squares objective, using

the cost function l(x, u) = ζTQζ , and a terminal cost function lf (x, u) = ζTf Qζf . Here Q

and Qf are diagonal matrices which contain the cost coefficients, and the vectors ζ and

ζf are defined as:

ζ =
[︂
Êc, Êl, Evx, (ν + 1), ϕ,∆ϕ,∆δ

]︂T
, (4.22a)

ζf =
[︂
Êc, Êl

]︂T
. (4.22b)

Here Êc and Êl are the contouring errors, computed as described in Section 4.3, and

Evx = v∗x(ŝ)− vx is the error from a target velocity profile v∗x(ŝ). Deviating from previous

works, the addition of a velocity profile helps the car find the optimal brake point in corners.
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With the above definitions, the resulting uncertainty-aware MPC problem formulation is:

min
x,u

lf (xN) +
N−1∑︂
n=0

l(xn, un), (4.23a)

s.t x0 = xinitial, (4.23b)

xi+1 = f(xi, ui) + h · BGPµ
d(xi, ui), i = 0, ..., N − 1 (4.23c)

(4.15a, 4.16, 4.19, 4.20), i = 1, ..., N − 1 (4.23d)

(4.15b), i = 0, ..., N − 1 (4.23e)

(4.15a, 4.18, 4.20). i = N (4.23f)

For clarity in notation, Equation (4.23d) defines the state constraint set X , Equation

(4.23e) defines the control constraint set U , and Equation (4.23f) defines the terminal

constraint set Xf .

4.5 Implementation details

The MPC described in Equation (4.23) was implemented using the Python interface

for Acados, which generated efficient C-code for execution. The HPIPM Sequential

Quadratic Programming (SQP) solver was employed for solving the problem [55]. To

enhance numerical conditioning, all state variables were scaled to similar magnitudes of

around 1. The prediction horizon was set to N = 50, which in conjunction with a nonuni-

form sampling grid, ranging linearly from 50 ms to 100 ms, resulted in a total lookahead

time of 3.75 s. During execution 5 SQP real-time iterations were allocated for solving

the problem, with 100 iterations allocated to the underlying QP solver. The delay from

measurement to control was compensated using the nominal dynamics model.

Since the ingegration of Control Lyapunov Functions (CLFs) and Control Barrier Func-

tions (CBFs) in to the optimization problem proved computationally prohibitive, all con-

straints were implemented as soft constraints to maintain feasibility. The stability of the

system was not studied beyond conclusions drawn empirically from simulations, which

seemed to indicate that a sufficiently large terminal contouring error coefficient along with

a terminal lateral acceleration constraint helped maintain stability.

The residual dynamics were modeled using independent sparse GPs for each output di-

mension, employing the Automatic Relevance Detection (ARD) kernel. Each GP was

allocated a separate dataset, limited to a maximum of 500 samples to balance detail with

computational tractability. For integration within the MPC, 20 inducing points were used,

which were strategically sampled from the prior solution, to ensure uniform temporal spac-

ing throughout the prediction horizon. The hyperparameters of the GP kernel, identified

offline from experimental data, were maintained constant during execution.
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5. RESULTS

The performance of the uncertainty-aware Model Predictive Control (MPC) scheme was

evaluated through a comparative analysis against a nominal MPC, which was structurally

identical to the uncertainty-aware MPC, except it did not incorporate residual Gaussian

Process (GP) dynamics or the associated constraint modifications.

The evaluation of each controller involved two experiments. Initially, both controllers

were assessed in ideal track conditions, identical to the scenario used to gather train-

ing data for the nominal dynamics. Next, the track conditions were made increasingly

slippery, to assess how the controllers handle modelling error caused by changes in

the environment. A video showcasing these experiments can be found at: https:
//youtu.be/SENTHq9ONTw.

5.1 Experimental setup

The experiments were conducted on the Ricardo Tormo circuit, which was selected due

to its flat elevation profile and variety of turn shapes, making it ideal for testing vehicle

dynamics. The track coordinates were manually collected from Google Maps API, and

consequently post-processed to be consistent with the in-game coordinates system. The

car used in the experiments was the Ferrari 488 GT3 Evo. All of the realism settings of

the game were enabled, and the artificial stability assist was disabled.

To produce a reference trajectory for both controllers, a trajectory planning problem was

solved offline using the nominal dynamics model and a contouring cost. This offline ap-

proach facilitated the use of a much longer planning horizon, and the employment of a

more robust NLP solver, specifically IPOPT. The track and the associated reference tra-

jectory is shown in Figure 5.1. The reference trajectory is not time-optimal, resulting in

a lap time of 1:35.40, while the record lap time for the track set by a human is 1:29:60.

Regardless, it should serve as a good representation of the best lap time attainable with

the used nominal dynamics model and the associated constraints.

https://youtu.be/SENTHq9ONTw
https://youtu.be/SENTHq9ONTw
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Figure 5.1. The race track and the reference trajectory.

The parameters for the nominal dynamics model and the GP kernel were identified from

experimental data, collected by manually driving around various tracks in ideal conditions

for roughly 2 hours. Covariance Matrix Adaptation (CMA) was used to fit the nominal

model parameters [56], while gradient descent was used to find the GP kernel parame-

ters. The MPC problem was identical for both controllers, including the cost coefficients,

constraints and solver settings, all tuned in a way that maximized the nominal controller

performance.

The identified nominal car parameters can be found in Appendix A1. All results were

collected on a desktop PC with an AMD Ryzen 3900x CPU, 64GB RAM and a NVIDIA

3090 GPU.

5.2 Performance in ideal conditions

In this experiment, both controllers drove 10 consequent laps in ideal conditions following

the reference trajectory shown in Figure 5.1. The track conditions were identical to those

under which data was collected for training the dynamics model. The main objective was

to establish a baseline for each controller when the dynamics are well known. Some

amount of robustness is expected from each controller even in this experiment, since the

track elevation profile, curbs or other track features are in no way considered, and could

thus be considered external disturbances.

To get a running start, the controllers drove a single lap before the result collection com-

menced. The GP dynamics were allowed to train during this initial lap. To avoid the results

from being skewed due to individual bad lap times, potentially caused by the non-real-time

nature of the evaluation setup, the worst lap time was discarded.
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The lap time results are presented in Table 5.1. The worst lap time is greyed out to

highlight it was not used when computing the mean and standard deviation.

Table 5.1. Comparison of lap times in ideal conditions: nominal MPC vs uncertainty-
aware MPC

Lap MPC (m:s) UCA-MPC (m:s)

Lap 1 1:37.87 1:36.53

Lap 2 1:37.73 1:36.14

Lap 3 1:37.69 1:36.09

Lap 4 1:37.68 1:35.71

Lap 5 1:37.65 1:35.71

Lap 6 1:37.79 1:35.73

Lap 7 1:37.91 1:35.75

Lap 8 1:37.79 1:35.74

Lap 9 1:37.75 1:35.71

Lap 10 1:37.78 1:35.74

Mean ± Std (Best 9) 1:37.75 ± 0.18 1:35.81 ± 0.16

As indicated in Table 5.1, the uncertainty-aware MPC (UCA-MPC) demonstrates a lap

time improvement of approximately 1.94 s or 2%. Notably, both controllers effectively

tolerated the accumulating variations in tire and brake temperatures, as reflected by the

small standard deviations in lap times.

The modeling accuracy of the nominal and GP-augmented models was next compared

using one-step-ahead prediction errors. To facilitate a direct comparison of errors, the

analysis was conducted using data from the 9 best laps of the uncertainty-aware MPC.

Table 5.2 lists the median of the absolute errors for both dynamics model types.

Table 5.2. Median one-step-ahead prediction errors in ideal conditions

Dynamics |ax| (m/s2) |ay| (m/s2) |ω̇| (deg/s2)
Nominal 0.52 0.67 7.89

Nominal+GP 0.35 0.39 3.91

Error reduction 32% 41% 50%

The data presented in Table 5.2 clearly illustrates a notable reduction in the error mag-

nitudes for all output dimensions, when using the GP-augmented model. To extend this

analysis, Figure 5.2 presents a density plot that graphically represents the distribution of

these absolute one-step-ahead prediction errors.
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Figure 5.2. Density plot of one-step-ahead absolute prediction errors in ideal conditions.

It is clear from visual inspection of the plot in Figure 5.2, that the GP-augmented model

demonstrates a significant reduction in the variance of errors, as evidenced by the tighter

concentration of the density curve around the lower error values. This indicates that the

GP-augmented model consistently predicts with fewer errors.

Regarding the computational performance, the nominal MPC had a mean solution time

of (16± 5) ms for the optimization problem, compared to (30± 6) ms for the uncertainty-

aware MPC. Notably, around 5 ms of the solution time for the uncertainty-aware MPC was

dedicated to precomputations associated with the sparse GP dynamics.

Finally, Figure 5.3 depicts a GG-diagram drawn with data from the fastest lap of each

controller, along with the acceleration constraint that was active. Notably, both controllers

utilize a similar amount of the allocated acceleration budget, but slightly larger constraint

violations can be observed for the nominal MPC. This observation is significant as it im-

plies that the nominal MPC may lead to increased tire wear due to its propensity for

marginally exceeding the acceleration constraints.
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Figure 5.3. Measured accelerations of the car during the fastest lap of each controller in
ideal conditions.

5.3 Performance in slippery track conditions

For this experiment, 10 individual laps were driven in increasingly slippery track condi-

tions, using the same reference trajectory as in the ideal conditions experiment. The best

lap from each controller’s 10 attempts was selected as the experimental outcome. The

results are shown in Table 5.3. Here Did Not Finish (DNF) indicates that the controller

did not manage a single successful lap within the 10 attempts. The weather conditions

correspond to presets available in ACC.

Table 5.3. Best lap times in various slippery conditions: nominal MPC vs uncertainty-
aware MPC

Controller Light rain Medium rain Heavy rain

MPC DNF DNF DNF

UCA-MPC 1:42.07 1:45.32 DNF

The data in Table 5.3 demonstrates the enhanced adaptability of the uncertainty-aware

MPC (UCA-MPC) to varying track conditions, achieving successful laps in all 10 attempts

under light rain and in 7 out of 10 attempts under medium rain conditions. Most of the

failures for both controllers occurred in turn 8, 11 and 14, as labeled in Figure 5.1. .

To assess the accuracy of both dynamics models in slippery track conditions, the median

one-step-ahead prediction errors were again computed using the same methodology as

in the ideal conditions experiment. The results are presented in Table 5.4.
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Table 5.4. Median one-step-ahead prediction errors in slippery track conditions.

Weather preset Dynamics |ax| (m/s2) |ay| (m/s2) |ω̇| (deg/s2)

Light Rain
Nominal 0.87 1.99 12.27

Nominal+GP 0.50 0.65 4.71

Error reduction: 42% 67% 61%

Medium Rain
Nominal 0.94 2.29 13.58

Nominal+GP 0.59 0.84 5.69

Error reduction: 37% 63% 58%

The data in Table 5.4 highlights significant reductions in the prediction error across all

output dimensions. However, even with the GP-augmented dynamics model, there is a

clear drop in predictive accuracy when the track conditions degrade. To complete this

analysis, a density plot of the errors from the medium rain scenario is shown in Figure

5.4.

Figure 5.4. Density plot of one-step-ahead absolute prediction errors in medium rain
conditions.



30

Upon visual examination of Figure 5.4, it becomes apparent that, when compared to the

data under ideal conditions in Figure 5.2, improvements in the ax error are less pro-

nounced in contrast to the other output dimensions. This observation may be attributed

to the slight downward slope of the track during turns 13 and 14. Neglecting the pitch and

roll information of the car results in a constant error that cannot be fully rectified. How-

ever, it is noteworthy that this factor appears to be considered in the Gaussian Process

(GP) variance predictions. Across all output dimensions and experimental conditions, a

minimum of 84% of the prediction error from the GP-augmented model falls within the

95% confidence interval computed using the predicted variance. This observation sug-

gests that, at least from a theoretical standpoint, the utilization of variance information is

justified in the constraint tightening scheme.

Concluding the analysis, an exploration of the distribution of GP training data is con-

ducted. The training data for each output dimension during the fastest lap in medium

rain conditions is superimposed on the track in Figure 5.5. Notably, the concentration

of training data in regions where failures occurred suggests that the selection scheme is

effectively prioritizing improvements in challenging regions.
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Figure 5.5. Representation of the training data of the sparse GP overlaid on the track.
The data corresponds to the fastest lap in the medium rain conditions, and includes an
initial lap, used to get a running start.
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6. CONCLUSION

This thesis investigated the integration of machine learning techniques with a stochastic

MPC framework to address the challenges posed by dynamics modeling errors. The com-

parative analysis, set within the realm of autonomous racing, indicates that the uncertainty-

aware MPC approach used in this thesis significantly improves the system’s resilience to

environmental changes and unexpected disturbances, in comparison to a conventional

MPC scheme. The results highlight that a first-principles dynamics model, although ade-

quate under optimal conditions, lacks robustness to environmental changes. In contrast,

the uncertainty-aware MPC not only improves performance in ideal conditions but also

ensures safe operation in moderately varying environments, as demonstrated in increas-

ingly slippery track conditions.

However, the adopted approach is not devoid of limitations. It imposes a considerable

computational burden, doubling the optimization problem’s solution time, when compared

to a conventional nonlinear MPC scheme. The system’s dependence on nonlinear MPC

also complicates the stability analysis of the control system, which contradicts the ob-

jective of enhancing safety. Moreover, the system is incapable of instantly adapting to

significant changes in the environment, as observed in the heavy rain experiments.

Future research should focus on evaluating the role of variance-based constraint tighten-

ing compared to relying solely on GP mean predictions for correcting nominal dynamics.

The consideration of additional state variables for a more precise representation of en-

vironmental influences is also a valuable direction. Specifically, incorporating tire-road

friction coefficient estimation into the model, potentially via camera observations, could

expedite adaptation to significant environmental shifts.
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APPENDIX A: PARAMETER VALUES

The nominal vehicle dynamics model parameters used are listed in Table A.1.

Parameter Value

Car mass 1000.24 kg

Car max steer 0.261 rad

Car lf 1.370 m

Car lr 1.359 m

Car inertia 2997.48 kg·m2

Tire Bf 18.74

Tire Cf -1.41

Tire Df 6580.13

Tire Br 29.97

Tire Cr -1.06

Tire Dr 7152.61

Drivetrain Km0 6531.97

Drivetrain Km1 68.07

Drivetrain Kr0 727.00

Drivetrain Kr1 -0.050

Drivetrain Kr2 1.91

Table A.1. Nominal vehicle dynamics model parameters
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