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Abstract—This paper focuses on indirect model predictive
control (MPC) for variable speed drives, such as induction and
synchronous machine drives. The optimization problem underly-
ing indirect MPC is typically written as a standard constrained
quadratic programming (QP) problem, which requires a QP
solver to find the optimal solution. Although many mature QP
solvers exist, solving the QP problems in industrial real-time
embedded systems in a matter of a few tens of microseconds
remains challenging. Instead of using the complex general-
purpose QP solvers, this paper proposes a geometrical method for
isotropic machine drives and an analytical method for anisotropic
machine drives to find the optimal output voltage. This is done
by examining and subsequently exploiting the geometry of the
associated optimization problems. Both methods are simple,
and easy to implement on industrial control platforms. The
effectiveness of the proposed geometrical and analytical methods
is demonstrated by experimental results for an induction machine
drive and an interior permanent-magnet synchronous machine
drive, respectively.

Index Terms—Model predictive control (MPC), quadratic pro-
gramming (QP), induction machine (IM), interior permanent-
magnet synchronous machine (IPMSM).

I. INTRODUCTION

MODEL predictive control (MPC) has rapidly emerged
in power electronics over the past decade due to the

increase of the computational power available in real-time
control platforms [1]–[4]. Thanks to its capability of dealing
with system constraints, MPC is a promising alternative to
the standard control methods, i.e., field-oriented control (FOC)
and direct torque control (DTC), for drive systems [5]–[8].

A. State of the Art

Generally, MPC for drive systems can be classified into
two main categories, i.e., direct MPC and indirect MPC,
depending on whether there is a modulator or not. Direct MPC
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Figure 1. Direct and indirect MPC structures.

directly applies the switching signals to the power converter
without requiring an intermediate modulation stage [9], see
Fig. 1(a). By doing so, direct MPC obtains an excellent
transient performance [1], [2]. Direct MPC can be split into
three groups, i.e., MPC with hysteresis bounds [10], MPC
with implicit modulator [11]–[13], and MPC with reference
tracking, see Fig. 2. Direct MPC with reference tracking,
also referred to as finite-control-set MPC (FCS-MPC), is the
method most favored in academia due to its well-reported
advantages such as its intuitive design procedure and straight-
forward implementation. FCS-MPC can be further divided
into three subgroups according to the methods for solving the
optimization problems, i.e., enumeration-based MPC [2], [6],
[14], heuristic-preselection-based MPC [5], [7] and branch-
and-bound-based MPC [15]–[19]. The most common used
solution for direct MPC with short horizons is the so-called
exhaustive enumeration method. With this method all the ad-
missible switching states are enumerated, and the cost function
is evaluated for each switching state. The switching state
with the lowest cost is directly applied to the converter. Due
to its straightforward implementation, the enumeration-based
MPC has become the most popular MPC method for power
electronics in the last decade [20], [21]. However, exhaus-
tive enumeration quickly becomes computationally intractable
when the prediction horizon increases. Hence, for long-horizon
direct MPC, more sophisticated optimization methods are
proposed. One is the so-called heuristic preselection strategy
which is based on the assumption that the discrete-valued
solution is normally close to the real-valued solution, i.e., the
unconstrained solution of the direct MPC problem [5], [7].
Because of this, only a limited number of candidate integer so-
lutions (i.e., switch positions) is evaluated in the optimization
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Figure 2. State-of-the-art MPC methods in power electronics.

procedure. Another more efficient approach relies on branch-
and-bound techniques. In [15], the authors proposed the sphere
decoding algorithm (SDA) as an effective branch-and-bound
technique to reduce the computational burden for multistep
direct MPC. Recently, to further mitigate the computational
cost of direct MPC under transient conditions, some modified
SDAs are proposed in [17]–[19].

However, the absence of the modulation stage in direct MPC
leads to increased harmonic distortions and spread harmonic
spectra due to the variable switching frequency. Such increased
distortions can lead to increased iron and copper losses in
the machine. Although some fixed switching frequency di-
rect MPCs have been proposed to improve the steady-state
performance [12], [22], the modulator-based indirect MPC,
see Fig. 1(b), has been gaining more attention, due to its
deterministic harmonic spectra and fixed switching frequency
(i.e., deterministic power losses) [23]–[26]. The indirect MPC
can be split into two groups, namely explicit MPC and implicit
MPC, according to the different approaches for solving the
optimization problem. Explicit MPC solves the optimization
problem offline for all possible states with multiparametric
quadratic programming (mpQP) solvers. Because of this, it
was among the first MPC methods developed for power elec-
tronics due to the low online computational requirements [27]–
[29]. However, it requires significant memory resources to
store the offline-computed control law and this limits its
applicability to optimization problems of very small size.

Owing to the recent development of open-source and com-
mercial QP solvers for real-time embedded systems and the
increase of the computational power, the implicit MPC has
been gaining popularity in the electrical drive community in
the last five years [26], [30]–[33]. The optimization problem
of indirect MPC under consideration of system constraints

is typically formulated as a constrained QP problem [34]
and it is solved online by some iterative solver based on
approaches such as active set, interior point and gradient
projection methods [35]. Based on these approaches, more
and more commercial off-the-shelf QP solvers for embedded
systems come out in the last decades, e.g., quadprog (active
set and interior point methods), qpOASES (active set method)
and FiOrdOs(gradient method); a comprehensive assessment
of these solvers is given in [36]. Among these, qpOASES is
the most popular QP solver in the power electronics and drives
community, see, e.g., [30], [37]–[39]. However, these off-the-
shelf QP solvers are based on general-purpose algorithms and
not tailored for power electronics applications, which require
real-time solutions in the range of few tens of microseconds,
and thus they cannot get the solution in a very efficient way for
power electronics applications. Furthermore, the off-the-shelf
QP solvers have specific requirements about the embedded
software and hardware, hence they only can be implemented
on a limited range of control platforms.

To address the aforementioned drawbacks, some custom-
made QP solvers are proposed for electrical drive systems.
In [31], [40], the tailored active set method is employed for
online solving the constrained QP problem in permanent-
magnet synchronous machine (PMSM) drives. In [12], [13],
an efficient QP solver based on gradient projection method is
implemented for an induction machine and a six-phase PMSM
drive systems. However, in the implementation of these self-
designed solvers, practitioners have to deal with the complete
mathematical background of numerical optimization in detail.
This hinders the wide spread of indirect MPC in electrical
drives community.

B. Contribution

Hence, different from the numerical-method-based QP
solvers, this paper provides an alternative way to solve the
optimization problem in the electrical drives with problem-
specific methods, i.e., geometrical and analytical methods,
in a simple and efficient way. These methods are proposed
based on the analysis of the constraints and geometry of the
optimization problem. In three-phase voltage source inverter-
fed drive systems, the constraint of the inverter output voltage
is always hexagonal in an orthogonal (αβ) frame, which can
simplify the approach to determine the optimal solution. In
recent research works [41], [42], algorithms are proposed to
reduce computational burden by considering the hexagonal
voltage constraints and the number of violated constraints.
However, these methods do not make most the geometry
of the optimization problem to further simplify the design
approach. For isotropic and anisotropic machine drive systems,
the contour lines of the MPC problem are in deterministic
shapes. In particular, the contour lines of the MPC problem
for isotropic machine drives, e.g., induction machine (IM),
have circular shape. Then the optimization problem can be
simplified to a problem of determining the shortest distance
between a point and a line segment. With this observation,
this paper proposes a simple geometrical method to obtain the
optimal solution for isotropic machines.
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Figure 3. Two-level three-phase voltage source inverter driving the machine.

In anisotropic machine drive systems, e.g., interior
permanent-magnet synchronous machine (IPMSM), the con-
tour lines are elliptical and the geometrical method does not
guarantee the optimal solution. In this case, an analytical
method is proposed to calculate the optimal point on the fixed
constraint line segment. These two purposed-built methods are
both simple and easy to implement on any control platforms.
In the remainder of this paper, the IM and IPMSM drives will
be used as the examples of isotropic and anisotropic machine
for the modelling and demonstrating the proposed methods.

The main contributions of this paper are summarized in the
following.

1) A complete mathematical analysis of the geometry of
the indirect MPC problems for IM and IPMSM drive
systems is given based of the system parameters.

2) A geometrical method for induction IM drives and an
analytical method for IPMSM drives is proposed to find
the optimal applied voltage.

3) A comprehensive performance assessment is provided
based on experimental results. The presented results
show that the two proposed methods achieve exactly the
same control performance as QP solvers but with less
computational cost.

C. Paper Structure

This paper is structured as follows. Section II summarizes
the mathematical models of the IM and IPMSM drives. Section
III introduces the MPC scheme for electrical drives and
the voltage constraints of the two-level inverter. A complete
mathematical analysis of the geometry of the MPC problems
for IM and IPMSM drives is detailed in Section IV. The
proposed geometrical method for IM drives and analytical
method for IPMSM drives is described in Sections V and VI,
respectively. The experimental results are presented in Section
VII, and conclusions are drawn in Section VIII.

II. MATHEMATICAL MODEL OF THE SYSTEM

Induction machines (isotropic machines) and IPMSMs
(anisotropic machines) are the most common options in vari-
able speed drive systems. In this section, a generic model
for IM and IPMSM drive systems in the dq frame and the
formulation of the control problem are presented.

The examined system consists of a three-phase two-level
voltage source inverter and a motor, as shown in Fig. 3. The
dc-link voltage is assumed to be constant and equal to its

nominal value Vdc. The modeling of the system as well as the
formulation of the control problem are done in the dq rotating
reference frame. Therefore, the Park transformation matrix

Tp =

[
cos θ sin θ

− sin θ cos θ

]
(1)

is employed to map a variable xαβ = [xα xβ ]
⊤ in the αβ

frame into a variable xdq = [xd xq]
⊤ in the dq frame, i.e.,

xdq = Tpxαβ . θ is the angle between the α-axis of the αβ
frame and the d-axis of the dq frame.

A. Induction Machine (isotropic machine)

The dynamics of the squirrel-cage IM can be fully described
by the differential equations that involve the stator current is =
[id iq]

⊤ and the rotor flux ψr = [ψrd ψrq]
⊤.1 Consider the dq

reference frame rotating with the stator angular frequency ωs.
This leads to [16], [43][

dis
dt
dψr

dt

]
=

[
− I2
τs

− ωsJ ( I2τr − ωrJ)
Lm

D
LmI2
τr

(ωr − ωs)J − I2
τr

]
︸ ︷︷ ︸

EIM

[
is

ψr

]
+

[
I2Lr

D

02

]
︸ ︷︷ ︸
FIM

us

(2)

with

I2 =

[
1 0

0 1

]
, J =

[
0 −1

1 0

]
, 02 =

[
0 0

0 0

]
, us =

[
ud

uq

]
,

where ωr is the electrical angular speed of the rotor, Rs (Rr)
is the stator (rotor) resistance, Lls (Llr) is the stator (rotor)
leakage inductance, Lm is the mutual inductance, and us is
the stator voltage in the dq frame, which is equal to the output
voltage of the inverter. Moreover, τs = LrD/(RsL

2
r +RrL

2
m)

and τr = Lr/Rr are the transient stator and rotor time
constants, respectively, where the constant D is defined as
D = LsLr−L2

m, with the stator self-inductance Ls = Lls+Lm

and the rotor self-inductance Lr = Llr + Lm.

B. IPMSM (anisotropic machine)

The dynamic model of the IPMSM can be described by

dis
dt

=

[
−Rs

Ld
ωr

Lq

Ld

−ωr
Ld

Lq
−Rs

Lq

]
︸ ︷︷ ︸

EIPMSM

is +

[
1
Ld

0

0 1
Lq

]
︸ ︷︷ ︸
FIPMSM

us +

[
0

−ωr
ψf

Lq

]
︸ ︷︷ ︸

w(t)

,

(3)

where Ld and Lq are the stator inductance on d- and q-axis,
respectively, and ψf is the permanent magnet flux linkage.

C. Generic State-space Representation

Choosing the stator voltage us as the input vector u, i.e.,
u = us = [ud uq]

⊤ and the stator current is as the output
vector y, i.e., y = is = [id iq]

⊤, both models described

1To simplify the notation, the subscript dq for vectors in the dq frame is
omitted
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Figure 4. Block diagram of the indirect MPC scheme for electrical drives.

in (2) and (3) can be written with the generic state-space
representation

dx(t)

dt
= Ex(t) + Fu(t) +w(t) (4a)

y(t) = Cx(t) , (4b)

where the state vector is x = [id iq ψrd ψrq]
⊤ for IM, or

x = [id iq]
⊤ for IPMSM and w(t) is 0 for IM. The output

matrices C for IM and IPMSM are

CIM =

[
1 0 0 0

0 1 0 0

]
and CIPMSM =

[
1 0

0 1

]
, respectively.

By using the forward Euler approximation, the discrete-time
state-space model of the system is of the form

x(k + 1) = Ax(k) +Bu(k) + d(k) (5a)
y(k) = Cx(k), (5b)

with k ∈ N, A = I + ETs, B = FTs and d(k) = w(k)Ts,
where the dimension of the identity matrix I is 4 for IM and
is 2 for IPMSM, and Ts is the sampling interval.

To simplify the illustration of the voltage constraints, it is
better to use the αβ-plane voltage as the input vector in (5),
rather than the dq-plane voltage. Hence, in the following parts
of this paper, we have u = us,αβ = [uα uβ ]

⊤. In this case,
the input matrix is transformed as B = FTpTs, where Tp is
the Park transformation matrix shown in (1).

III. MODEL PREDICTIVE CURRENT CONTROL OF IM AND
IPMSM DRIVE

The control problem of MPC with reference tracking over
a finite prediction horizon can be addressed through the
minimization of the general cost function [34]

J =

Np−1∑
j=0

∥y∗(k+1+j)−y(k+1+j)∥22+
Nu−1∑
i=0

λ∥∆u(k+i)∥22,

(6)

where ∥·∥22 is the square of 2-norm, y∗ and y are the
reference and predicted value of the output, Np and Nu are the
prediction and control horizon, λ is the weighting factor with
λ ≥ 0, and ∆u is the input increment which can be denoted
as

∆u(k) = u(k)− u(k − 1). (7)

In this paper, we only consider the most commonly used one-
step predictive control, i.e., Np = 1 and Nu = 1. With (5b)
and (7), cost function (6) can be simplified as

J = ∥i∗s (k + 1)− is(k + 1)∥22 + λ∥u(k)− u(k − 1)∥22. (8)

The first term in (8) penalizes the predicted stator current error
at the next time step k+ 1 and the second term penalizes the
control effort at time step k.

A. Quadratic Programming (QP) Problem Formulation

With the state-space model expressed in (5), the cost func-
tion (8) can be written as

J =∥CB︸︷︷︸
M

u(k) +CAx(k) +Cd(k)− i∗s(k + 1)︸ ︷︷ ︸
r

∥22

+ λ∥u(k)− u(k − 1)∥22
=∥Mu(k) + r∥22+λ∥u(k)− u(k − 1)∥22.

(9)

At time step k, x(k), d(k), u(k − 1) and i∗s (k + 1) are
known and r can be regarded as a constant. Therefore, the
only unknown variable of the cost function at time step k is
u(k).
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By expanding the square of the 2-norm in (9), the cost
function J can be expressed as

J =
1

2
u(k)⊤(2M⊤M + 2λI︸ ︷︷ ︸

H

)u(k)

+ (2M⊤r − 2λu(k − 1)︸ ︷︷ ︸
f

)⊤u(k)

+ r⊤r + λu⊤(k − 1)u(k − 1)︸ ︷︷ ︸
c (constant)

=
1

2
u⊤(k)Hu(k) + f⊤u(k) + c.

(10)

Dropping the constant c, the optimization problem results in
the unconstrained QP problem2

minimize
u

J =
1

2
u⊤Hu+ f⊤u, (11)

where H is the Hessian matrix. In our case H is positive
definite, meaning that (11) is a convex QP. In the absence
of the constraints, the convex QP problem can be solved by
setting the gradient of (11) equal to zero

∇J = 0. (12)

Then the unconstrained solution is computed as3

u∗
unc = −H−1f . (13)

B. Voltage Constraints

1) Incircle: For three-phase two-level inverters, the feasible
output voltage region is represented by a hexagonal convex
region in the αβ stationary frame as shown in Fig. 5. However,
in many practical applications, the output is limited to the
incircle of the hexagon (also called linear modulation region)
to simplify the design of control algorithms, because the
mathematical representation of the hexagonal constraint is
more complex [32], [44], [45]. The incircle constraint can be
presented as

u2α + u2β ≤ R2, (14)

where R = Vdc√
3

is the radius of the incircle.
In transients, the unconstrained solution (13) may often

exceed the incircle voltage limit. To deal with this in practice,
the commanded voltage is often limited to the incircle by
means of scaling. More specifically, when u∗

unc is out of the
incircle, the saturated voltage u∗

sat is obtained by scaling u∗
unc

to the incircle voltage limit with

u∗
sat =

u∗
unc√

u∗2α,unc + u∗2β,unc
R. (15)

Otherwise, when the u∗
unc is in the incircle, then we have

u∗
sat = u

∗
unc.

In [32], the aforementioned incircle saturation with scaling
is applied to simplify the optimization problem for the implicit
MPC in a PMSM drive. Although this implicit unconstrained

2To simplify the notation, in the following part of this section the time
indication from u(k) is omitted

3The superscript * represents the reference value for the modulator.
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2Vdc
3

Vdc√
3

Vdc
2

1
uβ = −

√
3uα + 2Vdc√

3

2 uβ = Vdc√
3

3
uβ =

√
3uα + 2Vdc√

3

4
uβ = −

√
3uα − 2Vdc√

3

5 uβ = −Vdc√
3

6
uβ =

√
3uα − 2Vdc√

3

Figure 5. Voltage constraints of the voltage source inverter (VSI).

MPC with incircle saturation, referred to as saturated MPC in
the remainder of this paper, has good performance in steady
state, it results in a sluggish response in transients due to the
underutilization of the dc-link voltage. On the contrary, the
indirect MPC fully utilizes the dc-link voltage and achieves
better dynamic behavior by considering the hexagon voltage
constraints. Hence, in the following proposed methods, the
hexagon is used as the constraints to improve the dynamic
response.

2) Hexagon: The six border line segments of the hexagon
can be expressed as six linear equations shown in Fig. 5. These
equations, i.e., constraints, can be written in the compact form

√
3 1

0 1

−
√
3 1

−
√
3 −1

0 −1
√
3 −1


︸ ︷︷ ︸

G

[
uα

uβ

]
︸ ︷︷ ︸
u

≤



2Vdc√
3

Vdc√
3

2Vdc√
3

2Vdc√
3

Vdc√
3

2Vdc√
3


︸ ︷︷ ︸

g

. (16)

In doing so, the standard inequality constraint can be expressed
as

Gu ≤ g. (17)

With the above, the MPC optimization problem that accounts
for the hexagon voltage constraints can be written as a standard
constrained QP of the form

minimize
u

J =
1

2
u⊤Hu+ f⊤u (18a)

subject to Gu ≤ g, (18b)

Constrained convex QPs such as (18) are typically solved
with approaches such as active set, interior point and gradient
projection methods [35]. The complete block diagram of the
implicit MPC scheme with QP solver for electrical drives is
shown in Fig. 4.

Although these QP methods came out several decades ago
in the numerical optimization field, solving the QP problems
in industrial real-time embedded systems in a matter of a few



6

tens of microseconds remains challenging. For the design of
QP solvers for drive systems, readers can refer to works like
[12], [46] (gradient projection method) and [31], [40], [47]
(active set method). Different from these works, this paper
proposes simple and efficient methods to find the optimal
solution for the constrained MPC of electrical drives, instead
of using complex QP solvers.

IV. ANALYSIS

A. Unconstrained Solution inside the Hexagon

Firstly, let’s consider the simplest case when the uncon-
strained solution (13) is inside the hexagon. In this case, the
voltage constraints have no influence on the results. Hence,
the optimal solution is the unconstrained solution

u∗
opt = u

∗
unc = −H−1f . (19)

B. Unconstrained Solution outside the Hexagon

Another case is when the unconstrained solution is outside
the hexagon. In this case, we have to take the contour of the
cost function and the voltage constraints into consideration.
Since the Hessian matrix H determines the shape of the
contour for a quadratic function, with the help of (10) it can
be written as

H = 2M⊤M + 2λI = 2 (CB)
⊤
(CB) + 2λI, (20)

where C and B depend only on the parameters of the drive.
1) Contour of Cost Function for IM: When the induction

machine drive is considered, (20) becomes

H =

(
2L2

rT
2
s

D2
+ 2λ

)[
1 0

0 1

]
. (21)

In this case, H is a scalar matrix4, and the contour lines of
(18a) are circular, as shown in Fig. 6(a). The analysis of IM
also can be extended to any isotropic machine, e.g., surface-
mounted permanent magnet synchronous machine (SPMSM).

2) Contour of Cost Function for IPMSM: When IPMSM
drives are of interest, the Hessian matrix H becomes

H = 2T 2
s

 cos2 θ
L2

d
+ sin2 θ

L2
q

+ λ
T 2
s

sin θ cos θ
L2

d
− sin θ cos θ

L2
q

sin θ cos θ
L2

d
− sin θ cos θ

L2
q

sin2 θ
L2

d
+ cos2 θ

L2
q

+ λ
T 2
s

 .
(22)

Since Ld ̸= Ld in IPMSMs, the Hessian matrix H is symmet-
ric but not a scalar. Hence, the contour lines of the associated
optimization problem (18) are elliptical, see Fig. 6(b).

In the following, two different methods are proposed for IM
and IPMSM drives depending on the type of the contour map.

4A scalar matrix is a type of square matrix in which its principal
diagonal elements are all equal and off-diagonal elements are all zero. It
is a multiplicative constant of an identity matrix.

O A

B

u∗
opt

u∗
unc

(a) IM.

O A

B

u∗
opt

u∗
unc

(b) IPMSM.

Figure 6. Contour line for IM and IPMSM

V. PROPOSED GEOMETRICAL METHOD FOR IM DRIVES

As shown in Fig. 7, if the unconstrained solution, e.g., point
G, is outside the hexagon, then the optimal solution u∗

opt will
locate on the borderline AB. As discussed in Section IV,
contour lines of the indirect MPC problem (18) for IM drives
are circular. In this case, the value of the cost function only
depends on the distance between unconstrained solution G and
the constrained solution on the line segment AB. Hence, the
problem of minimizing the cost function becomes a problem of
determining the closest point on AB to G. Observing Fig. 7, it
can be deduced that the optimal solution (point H) should be
the closest point to G, i.e., the point on the line segment AB
that leads to AB⊥GH . The remainder of this section focuses
on the calculation of H in αβ coordinate.

In Fig. 7,
−−→
OG can be expressed as

−−→
OG =

−→
OI +

−→
IG,

where point I is on the extension line of the line segment OA
with IG ∥ OB. With

−→
OI = d′1 ·

−→
OA and

−→
IG = d′2 ·

−−→
OB, we

have −−→
OG = d′1 ·

−→
OA+ d′2 ·

−−→
OB, (23)

where d′1 and d′2 are the coefficients that show the utilization
of

−→
OA and

−−→
OB, respectively. As

−→
OA and

−−→
OB are known, then

(23) can be rewritten as

u∗
unc =

[
u∗α,unc
u∗β,unc

]
︸ ︷︷ ︸

−−→
OG

= d′1

[
2Vdc

3

0

]
︸ ︷︷ ︸

−−→
OA

+d′2

[
Vdc

3
Vdc√

3

]
︸ ︷︷ ︸
−−→
OB

. (24)

With (24), the coefficients can be obtained as

d′1 =
3u∗α,unc −

√
3u∗β,unc

2Vdc
, and d′2 =

√
3u∗β,unc
Vdc

. (25)

The coefficients in (25) are only for the situation when u∗
unc

locates in Sector 1. For the general situation, the angle θ given
by

θ = atan2
(
u∗β,unc, u

∗
α,unc

)
, θ ∈ (−π, π] (26)

can be used to determine the sector and then the value of d′1
and d′2 for a given sector can be obtained based on Table I.

Then, the optimal solution u∗
αβ,opt can also be described as

u∗
αβ,opt =

−−→
OH =

−→
OJ +

−−→
JH,

where point J is on the line segment OA with JH ∥ OB.
Similarly, with

−→
OJ = d1 ·

−→
OA and

−−→
JH = d2 ·

−−→
OB, we have

u∗
αβ,opt = d1 ·

−→
OA+ d2 ·

−−→
OB, (27)
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Figure 7. Proposed geometrical method for IM drive.

Table I
COEFFICIENTS

Sector θ d′1 d′2

1
(
0, π

3

] 3u∗
α,unc−

√
3u∗

β,unc

2Vdc

√
3u∗

β,unc

Vdc

2
(
π
3
, 2π

3

] 3u∗
α,unc+

√
3u∗

β,unc

2Vdc

−3u∗
α,unc+

√
3u∗

β,unc

2Vdc

3
(
2π
3
, π

] √
3u∗

β,unc

Vdc

−3u∗
α,unc−

√
3u∗

β,unc

2Vdc

4
(
−π,− 2π

3

] −3u∗
α,unc+

√
3u∗

β,unc

2Vdc
−

√
3u∗

β,unc

Vdc

5
(
− 2π

3
,−π

3

]
− 3u∗

α,unc+
√
3u∗

β,unc

2Vdc

3u∗
α,unc−

√
3u∗

β,unc

2Vdc

6
(
−π

3
, 0

]
−

√
3u∗

β,unc

Vdc

3u∗
α,unc+

√
3u∗

β,unc

2Vdc

where d1 and d2 are the coefficients that show the utilization
of

−→
OA and

−−→
OB, respectively. Different from the unconstrained

solution outside the hexagon, the optimal solution u∗
αβ,opt on

the borderline meets the following relationship

d1 + d2 = 1. (28)

It can also be observed from Fig. 7 that
−−→
HK =

−→
JI =

−→
OI −

−→
OJ,

where point K is on the line segment IG with HK ∥ OA.
With

−→
OI = d′1 ·

−→
OA and

−→
OJ = d1 ·

−→
OA, it follows that

−−→
HK = (d′1 − d1) ·

−→
OA. (29)

Similarly, it can be shown that
−−→
KG = (d′2 − d2) ·

−−→
OB (30)

Moreover, since it holds that

∠GHK = ∠HGK =
π

6
, (31)

it follows that
|
−−→
HK| = |

−−→
KG|. (32)

O

A

BC

D

E F

P0

u∗
opt = P1

u∗
unc

G

Zoom in

O

A

BC

D

E F

P0

u∗
opt = P1

u∗
unc

G

Zoom in

Figure 8. Proposed analytical method for IPMSM drive.

Substituting
−−→
HK and

−−→
KG with (29) and (30) yields

d′1 − d1 = d′2 − d2. (33)

With (28) and (33), d1 and d2 can be easily found, i.e.,

d1 =
d′1 − d′2 + 1

2
, (34a)

d2 =
d′2 − d′1 + 1

2
. (34b)

Finally, with (27) and (34), the optimal reference voltage
u∗
αβ,opt is derived. This simple and direct procedure is also

illustrated in Fig. 9.
Note that the proposed geometrical method is an intuitive

approach. Although similar approaches have been used in for
overmodulation and saturation in drive systems, e.g., [48],
they merely compute the control action with traditional linear
controllers, and then simply saturate it to the hexagon with
different strategies, e.g., minimum voltage amplitude error and
minimum voltage phase error methods, which cannot always
guarantee the optimal solution for control objectives, e.g., sta-
tor current. Here the proposed MPC-based geometrical method
formulates the control problem into a constrained QP problem
and obtains the solution based on the analysis of the contour
map of the cost function. In doing so, the characteristics of
isotropic machines are considered, and control and saturation
are done at the same time, i.e., in a coordinated manner, hence
the optimal solution can be guaranteed.

VI. PROPOSED ANALYTICAL METHOD FOR IPMSM
DRIVES

Since the contour maps of the MPC problem for IPMSM
drives has elliptical form, the geometrical method proposed
in the previous section is not applicable. To rectify this issue,
an analytical method is proposed in this section to obtain the
optimal solution u∗

opt when the unconstrained solution u∗
unc

is out of the hexagon.
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Similar to the geometrical method, the sector for u∗
unc

is determined with (26). Taking Fig. 6(b) as example, if
u∗
unc locates in Sector 1, it is first assumed that the optimal

constrained solution u∗
opt is on one borderline of the hexagon

which is in the same sector as u∗
unc (here is borderline AB).

Without loss of generality, this borderline can be expressed as

uβ = auα + b, (35)

where the coefficients a and b can be determined based on θ
according to Table II.

Table II
BOUNDARY

Sector θ a b

1
(
0, π

3

]
−
√
3 2Vdc√

3

2
(
π
3
, 2π

3

]
0 Vdc√

3

3
(
2π
3
, π

] √
3 2Vdc√

3

4
(
−π,− 2π

3

]
−
√
3 −2Vdc√

3

5
(
− 2π

3
,−π

3

]
0 −Vdc√

3

6
(
−π

3
, 0

] √
3 −2Vdc√

3

Second, the cost function in (9) can be rewritten as

J =

∥∥∥∥∥
[
m11 m12

m21 m22

]
︸ ︷︷ ︸

M

[
uα

uβ

]
+

[
r1

r2

]
︸︷︷︸
r

∥∥∥∥∥
2

2

+ λ

∥∥∥∥∥
[
uα

uβ

]
︸ ︷︷ ︸
u(k)

−

[
uα0

uβ0

]
︸ ︷︷ ︸
u(k−1)

∥∥∥∥∥
2

2

(36)
Inserting (35) in (36) leads to a quadratic function of uα

J = aqu
2
α + bquα + cq, (37)

where aq , bq and cq are coefficients which are given in
Appendix A. It is obvious that aq > 0, so (37) reaches the
minimum at5

u0α = − bq
2aq

. (38)

With (35), uβ can be obtained as

u0β = −abq
2aq

+ b. (39)

Accordingly, the angle of this solution is

θ0 = atan2
(
u0β , u

0
α

)
. (40)

Following, the constraints in (17) are simplified as

θ ∈ (θmin, θmax], (41)

where θmin and θmax are the angles of the two endpoints of
the line segment AB as listed in Table II.

If θ0 meets the constraint in (41), then [u0α u
0
β ]

⊤ locates on
the line segment AB, as illustrated in Fig. 6(b). This yields

u∗
opt =

[
u0α

u0β

]
, (42)

5The superscript 0 represents the initial guess point, and the superscript
1 represents the second guess point.

Start

Measure is(k), ωr

Calculate is(k + 1): (5)
Read i∗s (k + 1), u(k − 1)

Get J : (8)-(10)

Compute u∗
unc: (13)

Gu ≤ g

u∗
opt = u∗

unc:
(13)

H is scalar
matrix

θ: (26)

d′1, d′2: Tab. I
(see, e.g., (25))

d1, d2: (34)

u∗
opt: (27)

θ: (26)

Rewrite J : (37)

u0
α, u0

β , θ0: (38)-(40)

(θmin, θmax]:
Tab.II

u∗
opt = u0

αβ :
(42)

JX :
(e.g. JA:(43))

u1
α,u1

β ,J1:
(35)-(39)

J1 ≤ JX

u∗
opt = u1

αβ :
(45)

u∗
opt = uX

αβ

(e.g. uA
αβ : (46))

End

yes no

yes no

noyes

no

yes

Analytical Method

Geometrical Method

Figure 9. Flowchart of the proposed implicit MPC methods for IM and
IPMSM drives.

Otherwise, θ0 is in an adjacent sector and [u0α u
0
β ]

⊤ is on the
extension of the line segment AB, e.g., point P0 in Fig. 8.
In this case, P0 in Sector 6 cannot be the solution in the
pre-selected sector 1. For this reason, point A ([uAα uAβ ]

⊤) is
considered as the sub-optimal solution. The value of the cost
function for point A is

JA = aqu
A
α

2
+ bqu

A
α + cq. (43)

Note that for this part of the procedure described in Fig. 9,
JX is used to denote the sub-optimal solution, where X stands
for one of the six vertices of the hexagon, i.e., A, B, ..., F in
Fig. 8.

As point A is considered as the sub-optimal solution, the
line segment AF is considered as the new linear constraint. In
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A B C

D

E

F G

Figure 10. Setup of the electrical drives testbench. A: SEW Inverter for
PMSM, B: SEW Inverter for IM, C: dSPACE SCALEXIO real-time control
system, D:Interface, E: Oscilloscope, F: IM, G: IPMSM.

doing so, (35)-(39) are repeated to get a new solution [u1α u
1
β ]

⊤

and the corresponding value of the cost function J1. Note that
the optimal solution u∗

opt can only be in the sector where
the unconstrained solution u∗

unc locates, e.g., AB, or in the
adjacent sector where the initial guess point P0 locates, e.g.,
AF . Hence, line segments from other adjacent sectors, e.g.,
BC, are not considered, as explained in Appendix B.

Based on the above, if

J1 ≤ JA, (44)

point P1, as shown in Fig. 8, is the optimal solution

u∗
opt =

[
u1α

u1β

]
. (45)

Otherwise, point A becomes the optimal solution

u∗
opt =

[
uAα

uAβ

]
. (46)

The complete analytical procedure is illustrated in Fig. 9.

VII. PERFORMANCE EVALUATION

The performance of the proposed methods is examed in
the laboratory with two three-phase two-level inverters driving
an IM and an IPMSM. The real-time control platform is
a dSPACE SCALEXIO system, consisting of a 4GHz Intel
XEON processor and a Xilinx Kintex-7 field-programmable
gate array (FPGA). Two three-phase two-level SEW MDX
inverters are used to control the IM and the IPMSM, re-
spectively. The experimental setup is shown in Fig. 10. The

Table III
PARAMETERS FOR IM DRIVES

Parameter Symbol Value

Rated dc-link voltage Vdc 600 V
Rated power PR 4 kW
Rated voltage VR 400 V
Rated current IR 8.73 A
Rated stator frequency fR 50 Hz
Rated speed NR 1430 rpm
Pole pairs p 2
Stator resistance Rs 2.94 Ω
Rotor resistance Rr 0.67 Ω
Stator leakage inductance Lls 8.45 mH
Rotor leakage inductance Llr 8.45 mH
Mutual leakage inductance Lm 195.25 mH

Table IV
PARAMETERS FOR PMSM DRIVES

Parameter Symbol Value

Rated dc-link voltage Vdc 600 V
Rated power PR 3.7 kW
Rated voltage VR 369 V
Rated current IR 6.8 A
Rated stator frequency fR 87.5 Hz
Rated speed NR 1750 rpm
Pole pairs p 3
Stator resistance Rs 1.2 Ω
Stator d-axis inductance Ld 32.93 mH
Stator q-aixs inductance Lq 37.70 mH
Magnet flux linkage ψf 0.67 Wb

parameters of the IM and the IPMSM drives are given in
Tables III and IV, respectively. Finally, the sampling interval
Ts is 100 µs and the switching frequency is 5 kHz (asymmetric
sampling).6 Note that all results in the following are shown in
the per unit (p.u.) system.

A. Experimental Results for the IM Drive System

For an ac motor drive system in the rated condition, i.e.
rated dc-link voltage, rated speed and rated current, the uncon-
strained solution u∗

unc in the steady-state operation is always
inside the inverter output voltage limit (hexagon in Fig. 5).
More specifically, u∗

unc lies inside the incircle of the hexagon
at steady state. Hence, the optimal solution u∗

opt of MPC is
equal to u∗

unc in steady state. In this case, the unconstrained
MPC with incircle saturation (saturated MPC) u∗

sat is the same
as the solution of the constrained MPC in (18).

However, in the transient state, u∗
unc often goes outside

the voltage limit. In this case, the saturated MPC directly
saturates the output as per (15). The constrained MPC, on the
other hand, accounts for the voltage limit to find the optimal
switching vector. This implies that, at least in theory, the con-
strained MPC has the advantage of the optimal full utilization
of the dc-link voltage during transient operating conditions.
The following experimental results verify the effectiveness of
the proposed control methods in transient state.

Fig. 11 shows the experimental results for the IM drive
system with three control methods during a current reference

6For more details on modulation with asymmetric sampling, the reader
is referred to [49, Sect. 3.6].
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Figure 11. Experimental results for the IM drive system. From top to bottom, the waveforms are the d- and q-axis current idq , three-phase current iabc and
three-phase duty cycle dabc. In the waveforms of idq and iabc, the dashed lines are the reference currents and the solid lines are the measured currents from
the oscilloscope with a sampling frequency of 100 kHz.
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Figure 12. Output voltage of three different methods for the IM drive system

step change, i.e., unconstrained MPC with incircle saturation
(left), MPC with a QP solver (middle) and MPC with the
proposed geometrical method (right). Note that the adopted
QP solver for both the IM and IPMSM drives is the active set
method tailored to electrical drives presented in [40]. From top
to bottom, the waveforms are the d- and q-axis current idq ,
three-phase current iabc and three-phase duty cycle dabc. The
reference of iq jumps from 0 to 0.91 [p.u.] at time tk = 6 [ms].
As depicted on the top of Fig. 11, the experimental test under
discussion can be split into three time intervals, i.e., T1 (before
step), T2 (during step) and T3 (after step). T2 starts at the
instant the current reference is stepped up and ends when the
measured current reaches the reference value. As expected,
and verified in Fig. 11, the behavior of MPC with a QP solver

and MPC with the proposed geometrical method in the interval
T2 is similar, while it is faster than that of the saturated MPC.

For a detailed analysis of the experimental results, it is
also necessary to illustrate the output constrained and uncon-
strained reference voltage in the αβ-plane. In Fig. 12, the
points indicated by red square marks (□) are the unconstrained
solutions and the points indicated by blue plus marks (+)
are the constrained solutions. Fig. 12(a) shows the output
voltage of saturated MPC in the same time period as shown
in Fig. 12(a) (0 - 20 ms). The direction of the arrows (T1, T2
and T3) indicate the trajectory of output voltage changes in
time. During the interval T1, the IM drive operates at steady
state meaning that u∗

unc = u∗
sat. So u∗

unc (□) and u∗
sat (+)

coincide. The current reference is stepped up at tk, forcing
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Figure 13. Experimental results for the IPMSM drive system. From top to bottom, the waveforms are the d- and q-axis current idq , three-phase current iabc
and three-phase duty cycle dabc. In the waveforms of idq and iabc, the dashed lines are the reference currents and the solid lines are the measured currents
from the oscilloscope with a sampling frequency of 100 kHz.
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Figure 14. Output voltage of three different methods for the IPMSM drive system.

u∗
unc to be outside the hexagon at the next time step tk+1.

As shown in the zoomed in part of Fig. 12, u∗
sat is limited to

the incircle and is different from u∗
unc. In the next 29 steps

(interval T2), u∗
sat remains on the border of the incircle and

it moves counterclockwise. As the measured current gradually
reaches its reference value, u∗

unc also gradually gets closer to
u∗
sat. From Fig. 12(a) it becomes clear that the interval T2 lasts

2.9 ms (29Ts). From tk+30 onwards, the measured current is
at its reference value and the drive reaches steady state again.
In this period (interval T3), the u∗

unc and u∗
sat are inside the

incircle and overlap again. In Fig. 12(b) and Fig. 12(c), the
current reference is also stepped up at tk. Different from the
method in Fig. 12(a), MPC generates the optimal switching
vector considering hexagon constraints. In interval T2, the

solution for MPC with a QP solver u∗
qp and the solution for

MPC with the proposed geometrical method u∗
geo stay on the

border of the hexagon and move counterclockwise. The MPC
with a QP solver and with the proposed method use 40%
less time (T2 = 18Ts = 1.8 ms) to reach the new reference
value. Fig. 12(b) and Fig. 12(c) also show that MPC with
the proposed geometrical method generates almost the same
output voltage as with the QP solver.7

7In theory, these two methods should give the same results and this is
validated by simulations. Here the slight difference is due to the experimental
environment, e.g., stochastic measurement noise and parameter variation in
different tests.
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B. Experimental Results for the IPMSM Drive System

As analysed in Section IV, contour map of the IPMSM
MPC problem is ellipsoidal, thus rendering the geometrical
method unsuitable for such drive systems. To address this,
MPC with the proposed analytical solution is applied to the
IPMSM system. As with the IM drive system, the dynamic
behaviour of the proposed analytical solution for IPMSM drive
system is tested by applying a positive current step to the
system (iq from 0 to 1 p.u.) as shown in Fig. 13. Obviously, the
proposed analytical method has almost8 the same performance
as the QP solver, and these two MPC methods have much
faster transient response than the saturated MPC.

Fig. 14 shows the output voltage of the three different
methods for the IPMSM drive system. As before, intervals
T1 and T3 correspond to the steady-state operation, while the
transient takes place during interval T2. The current reference
is stepped up at tk forcing u∗

unc to be outside the hexagon at
the next time step tk+1. u∗

sat is saturated to the incircle in the
next 46 steps (T2 = 46Ts = 4.6 ms) as shown in the zoomed
in part of Fig. 14(a). In Fig. 14(b) and Fig. 14(c) we can
see that optimal solutions of MPC with a QP solver u∗

qp and
the proposed analytical method u∗

anly are on the border of the
hexagon for the next 30 steps (T2 = 30Ts = 3 ms); the current
reaches the reference at tk+30 with 34% less time compared
with MPC which saturates the unconstrained solution.

C. Steady-State Performance in Overmodulation Region

This paper focuses on the design of fast solving methods for
indirect MPC that improves the dynamic performance of ac
drives in the presence of output voltage constraints. From the
results shown in Figs. 11 to 14 it can be seen that MPC either
with a QP solver or with the proposed solving methods enters
into the overmodulation (also called non-linear modulation)
region only momentarily, i.e., during transients, when full
utilization of the dc-link voltage is required. After the tran-
sient, the converter operates in the linear modulation region.
This process is also referred to as dynamic overmodulation
scheme [50].

On the other hand, the steady-state operation of indirect
MPC in the overmodulation region is an emerging research
topic in the field of electrical drives [51], [52]. Hence, the
proposed methods are also examined for drive systems oper-
ating in the overmodulation region at steady state. To avoid
repetition, only the performance of MPC with the proposed
analytical method for IPMSM drives is examined here, see
Fig. 15 and 16. The geometrical method for IM drive systems
has similar behavior. Usually, the drive system can enter
overmodulation range by increasing the speed of the motor.
Due to the limitation of the hardware in the used motor test
bench, the IPMSM cannot run at a very high speed. Hence,
the dc-link voltage is decreased instead of increasing the speed
such that operation in the overmodulation region is achieved.
In Fig. 15, from left to right, the dc-link voltages Vdc = 450V,
Vdc = 420V and Vdc = 400V are applied, respectively, and
the speed is controlled at 1200 rpm.

8Here the slight difference is also due to the experimental environment.

In Fig. 15(a), the IPMSM is operated at the border of the
linear modulation region9 (m ≈ 0.907). In Fig. 15(b) and
in Fig. 15(c), the IPMSM operates in overmodulation region
I and overmodulation region II, respectively. Fig. 16 shows
the output voltage of the proposed method in the different
modulation regions. In Fig. 16(a), the output voltage is on
the incircle of the hexagon. In Fig. 16(b), the output voltage
mainly moves along the hexagon except when being close to
the six vertices, as also indicated by the duty cycle waveforms
in Fig. 15(b). In Fig. 16(c), the output voltage is always on
the boundaries of the hexagon, as can also be seen from the
saturated duty cycle waveforms in Fig. 15(c).

All the results in Fig. 15 and 16 indicate that MPC with
the proposed solving methods can successfully operate the
IPMSM drive in the overmodulation region although there
exists a small offset between the reference and measured
current. This can be clearly observed from the q-axis current
in Fig. 15(c). This problem can be solved by integrating
a harmonic reference generator (HRG) into the proposed
MPC methods. Readers can refer to [51], [52] for the design
of HRG for indirect MPC. Moreover, with the HRG, the
working region of the indrect MPC can be extended to six-step
operation.

D. Comparison of the Dynamic Performance

To enable a visual comparison, the current responses on the
q-axis of all the methods for IM and IPMSM drive systems
are presented in Fig. 17. iq,anly and iq,qp (see the red line)
are the current responses of MPC with the analytical method
and MPC with a QP solver, respectively. The blue line (iq,geo)
is the current response of MPC with the geometrical method,
and the green line (iq,sat) is the current response of saturated
MPC.

As can be observed in Fig. 17(a), iq,anly, iq,qp and iq,geo
have the same dynamic performance, which means that the
analytical method can also be applied to isotropic machines,
e.g., IMs and SPMSMs. However, as shown in Fig. 9, the
geometrical method is much simpler than the analytical meth-
ods, hence, it is still recommended to use it with isotropic
machines.

In Fig. 17(b), iq,anly and iq,qp overlap as expected (see the
current shown in red). The green line is the current response
of saturated MPC, which, as expected, is the slowest method.
Moreover, to provide more insight, the geometrical method
is also employed for the IPMSM MPC problem. Although
the geometrical method is originally designed for isotropic
machines, e.g., IMs and SPMSMs, it still manages to find a
sufficiently good suboptimal solution for anisotropic machines,
such as IPMSMs, so long as the saliency ratio (Lq/Ld) of
the machine is close to 1. In the examined case, the saliency
ratio of the IPMSM is 1.14, so the iq,geo reaches the reference
current a little slower than iq,anly. The difference between
iq,geo and iq,anly becomes bigger with an increasing saliency
ratio.

9The modulation index m and the overmodulation region are defined in
this paper according to [53].
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Figure 15. Experimental results for the IPMSM drive system operating in the overmodulation region. From top to bottom, the waveforms are the d- and
q-axis current idq , three-phase current iabc and three-phase duty cycle dabc. In the waveforms of idq and iabc, the dashed lines are the reference currents
and the solid lines are the measured currents from dSPACE with a sampling frequency of 10 kHz. From left to right, the dc-link voltages Vdc = 450V,
Vdc = 420V and Vdc = 400V are applied, respectively.
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Figure 16. Output voltage of the proposed method for the IPMSM drive system operating in the overmodulation region.

E. Computational Burden
Since the computational burden is a key factor in the

evaluation of the solution for indirect MPC, the maximum
(i.e., worst-case scenario) turnaround times tmax of the four
discussed control algorithms applied to IPMSM drives are
summarized in Table V. Moreover, to better highlight the
benefits of the proposed solving methods and allow for more
meaningful conclusions, the two recently proposed fast solvers
from [41], [42] are also implemented on the same control
platform and their corresponding turnaround times are also
reported in Table V. It is worth mentioning that, the time in
Table V is only the computation time required for finding the
(sub)optimal solution with a given method and it does not
relate to the computation time of the whole control scheme.
As can be seen, unconstrained MPC with incircle saturation

and the proposed geometrical method demonstrate similar
computation times (0.7 µs and 0.8 µs). Note, however, that the
geometrical method shows much better dynamic performance
than the saturated MPC according to the results in Fig 17. The
computation time of MPC with the analytical method is 1.8
µs, which is still very small compared to that required with
the QP solver (3.7 µs). Note that the QP solver used here is
a tailored solver for electrical drives based on the algorithm
in [40]. Common off-the-shelf QP solvers for generic QPs
typically need much more computation time. For example, the
solvers developed in [41] and [42]—which are used here for
benchmarking purposes—are faster than off-the-shelf solvers,
such as the qpOASES [37], by a factor of four. Considering
the turnaround times reported in Table V, it can be deduced
that the proposed analytical and geometrical solving methods
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Figure 17. Comparison of the dynamic performance of different methods for IM and IPMSM drive systems.

Table V
THE MAXIMUM TURNAROUND TIME tmax OF THE DISCUSSED CONTROL ALGORITHMS RUNNING ON DSPACE.

Method Saturated
MPC

Geometrical
Method

Analytical
Method

Fast Solver
[41]

aVsIs
[42]

QP
Solver

Turnaround time
tmax (µs) 0.7 0.8 1.8 2.3 2.8 3.7

Proportion
relative to QP 19% 22% 49% 62% 76% 100%

clearly outperform such solvers.

The proportion of the computation times relative to that
of the QP solver are also listed in Table V. Although the
computation times differ when these methods are implemented
on different control platforms, the relative time remains the
similar to the one presented here. Hence, these proportions in
Table V indicate that both proposed methods can dramatically
reduce the computational burden while achieving favourable
dynamic performance, making them suitable for industrial
applications.

VIII. CONCLUSION

This paper presented two simple methods to solve the
optimization problem of indirect MPC for electrical drives in
a computationally efficient manner. By analysing the contour
maps of the indirect MPC optimization problem for IM and
IPMSM drive systems, the optimal solution can be found by
adopting a suitable computational method. More specifically,
a geometrical method is proposed for IM drives and an ana-
lytical method is proposed for IPMSM drives. Both proposed
algorithms are experimentally tested and compared with MPC
solved with tailored efficient QP solvers. The comparison
shows that the proposed methods have the same steady-state
and dynamic performance as MPC with QP solvers while
significantly reducing the computational burden. Based on
the presented analysis and result, it can be claimed that the
proposed solutions can be easily implemented on industrial
control platforms while still exploiting the superior perfor-
mance MPC typically achieves.

APPENDIX A
COEFFICIENTS FOR GEOMETRICAL METHOD

The coefficients of the quadratic function in (37) are

aq =(m11 +m12a)
2 + (m21 +m22a)

2 + λ(1 + a2),

bq =2((m11 +m12a)(m12b+ r1)

+(m21 +m22a)(m22b+ r2) + λ(ab− uα0 − auβ0)),

cq =(m12b+ r1)
2 + (m22b+ r2)

2

+λ(u2α0 + (b− auβ0)
2).

APPENDIX B
DETERMINATION OF VOLTAGE CONSTRAINTS

The analysis about which voltage constraints should be
considered in the analytical method is provided here. To this
aim, consider the case shown in Fig. 8 as example. In this
case, the unconstrained solution G locates in sector 1 and the
initial guess point P0 is in sector 6.

As shown in Fig. 18, sector 1 can be divided into 2 areas,
i.e., I and II. According to the analysis in Section IV, the
contour map of the indirect MPC problem for anisotropic
machine drives is elliptical. For the elliptical contour, when
G locates in area I, it is clear that the cost function at point
A is smaller than any other point on the line segment AB,
e.g., JA < JB . Moreover, for line segment BC, the gradient
descent direction is from C to B. In this case, JB is the smallest
along BC. This means JA is smaller than at any point on
BC. Hence, the constraints BC should not be considered in
the calculation of the optimal solution when P0 is in sector 6.

Similarly, when G is in area II, JA is still the smaller than
at any other point on BC. Nevertheless, it is possible that the
value of the cost function varies in a non-monotonic way along
AF implying that it exists a point P1 on AF with JP1 < JA.
In this case, AF needs to be checked.
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I II

Figure 18. Voltage constraints considered for analytical method.

Based on the above analysis it can be concluded that the
optimal solution is either in the sector where the unconstrained
solution locates, or in the sector adjacent to where the initial
guess point P0 is.
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