
Noname manuscript No.
(will be inserted by the editor)

gpuRIR: A Python Library for Room Impulse
Response Simulation with GPU Acceleration

David Diaz-Guerra · Antonio Miguel ·
Jose R. Beltran

Received: date / Accepted: date

Abstract The Image Source Method (ISM) is one of the most employed tech-
niques to calculate acoustic Room Impulse Responses (RIRs), however, its
computational complexity grows fast with the reverberation time of the room
and its computation time can be prohibitive for some applications where a
huge number of RIRs are needed. In this paper, we present a new implemen-
tation that dramatically improves the computation speed of the ISM by using
Graphic Processing Units (GPUs) to parallelize both the simulation of mul-
tiple RIRs and the computation of the images inside each RIR. Additional
speedups were achieved by exploiting the mixed precision capabilities of the
newer GPUs and by using lookup tables. We provide a Python library under
GNU license that can be easily used without any knowledge about GPU pro-
gramming and we show that it is about 100 times faster than other state of
the art CPU libraries. It may become a powerful tool for many applications
that need to perform a large number of acoustic simulations, such as training
machine learning systems for audio signal processing, or for real-time room
acoustics simulations for immersive multimedia systems, such as augmented
or virtual reality.
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1 Introduction

The simulation of the acoustics of a room is needed in many fields and ap-
plications of audio engineering and acoustic signal processing, such as train-
ing robust Speech Recognition systems [1] or training and evaluating Sound
Source Localization [2] or Speech Enhancement [3] algorithms. Although there
are many low complexity techniques to simulate the reverberation effect of a
room in real time, as the classic Schroeder Reverberator [4], some applications
require an accurate simulation of the reflections causing the reverberation. The
information of all those reflections is gathered in the Room Impulse Response
(RIR) between the source and the receiver positions, which allows to simulate
the reverberation process by filtering the source signal with it. Our goal in this
work is to provide a fast method to obtain these RIRs.

The Image Source Method (ISM) is probably the most used technique
for RIR simulation due its conceptual simplicity and its flexibility to modify
parameters such as the room size, the absorption coefficients of the walls, and
the source and receiver positions. We can simulate any level of reverberation by
modifying the room size and the absorption coefficients, but the computational
complexity of the algorithm grows fast as the number of reflections to simulate
increases. In addition, many applications require the computation of multiple
RIRs for several source and receiver positions, e.g. to simulate a moving source
recorded with a microphone array. Furthermore, with the increasing popularity
of Machine Learning techniques, the need for computing randomly generated
RIRs on the fly for huge datasets in a reasonable time is constantly increasing.

Firstly developed to support the graphics computations of video-games,
Graphics Processing Units (GPUs) are today one of the best and cheapest
ways to increase the speed of many algorithms that can be expressed in a
parallel form. Despite parallelizing most of the stages of the ISM is quite
straightforward, to the best of our knowledge, only [5] proposed to implement
it in GPUs. Although they showed that using GPUs it was possible to speed-
up the RIR simulations, they did not provide the code of their implementation
and the acoustic signal processing and audio engineering communities have not
embraced their approach. In addition, they used an overlap-add strategy with
atomic operations to combine the contributions of each image source, which
strongly reduces the level of parallelism. In this paper, we present a new GPU
implementation with a higher degree of parallelism, which allows us to achieve
higher speed-ups with cheaper GPUs. Motivated by the performance boost
obtained with the use of lookup tables (LUTs) in the CPU implementations,
we also study its use in our GPU implementation. Finally, we propose a 16-bit
precision implementation which can increase even more the simulation speed
in the newer GPUs with mixed precision support.

Table 1 shows some state of the art implementations of the ISM and com-
pare some of their main characteristics. We can see how our implementation is
the only one with GPU acceleration that is available as a free and open source
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Table 1 Comparison of some state of the art ISM implementation

RIR generator [6] pyroomacoustics [7] [8] [5] gpuRIR

Open source library (language) 3(Matlab and Python) 3(Python) 3(Matlab) 7 3(Python)
Implementation language C++ Python and C++ Matlab CUDA CUDA
Fractional delays 3 3 3 3 3
Negative reflection coefficients 7 7 3 7 3
Diffuse reverberation model 7 7 3 7 3
GPU acceleration 7 7 7 3 3
Lookup table implementation 7 3 7 7 3
Mixed precision implementation 7 7 7 7 3

library1 and how it includes some features (further explained in section 2.2)
that are not included in other Python libraries. Using our library does not
require any knowledge about GPU programming, but just having a CUDA
compatible GPU and the CUDA Toolkit, and it can be installed and used as
any CPU RIR simulation library.

The contributions of the paper are the following: (i) we present a new
parallel implementation of the ISM which fits better with the newer GPUs
architectures than the only alternative available in the literature, (ii) we discuss
how to increase the performance of GPU programs with several techniques
such as using Lookup Tables or 16-bit precision floating point arithmetics,
(iii) we present a new Free and Open Source Python library exploiting this
implementation, and (iv) we compare it against several state of the art ISM
implementations and show how ours is two orders of magnitude faster than
them.

The reminder of this paper is structured as follows. We review the ISM in
section 2, section 3 explains how we have parallelized it, and section 4 presents
the Python library. Finally, in section 5, we compare the performance of our
library against three of the most commonly used RIR simulation libraries and
section 6 concludes the paper.

2 The Image Source Method (ISM)

The Method of Images has been widely used in many fields of physics to solve
differential equations with boundary conditions, but its application for RIR es-
timations was originally proposed by Allen and Berkley [9]. In this section, we
first review their original algorithm and then explain some of the improvements
that have been proposed to improve both its accuracy and computational per-
formance.

1 The code, the documentation, the installation instructions, and examples can be found
in https://github.com/DavidDiazGuerra/gpuRIR

https://github.com/DavidDiazGuerra/gpuRIR
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Fig. 1 Image sources for a two dimensional room. The red square and the blue dot represents
the receiver and the source and the blue circumferences represents the image sources. The
solid green line represents one of the multiple reflection paths and the dashed green line the
direct path of the equivalent image source. The black dot is the origin of the coordinates
system.

2.1 Original Allen and Berkley algorithm

The main idea behind the ISM is to compute each wave-front that arrives to
the receiver from each reflection off the walls as the direct path received from
an equivalent (or image) source. In order to get the positions of these image
sources, we need to create a 3D grid of mirrored rooms with the reflections
of the room in each dimension; as shown in Fig. 1 simplified to 2D for an
example.

If the number of images we want to compute for each dimension are Nx, Ny
and Nz, then we define a gridN of image sources n = (nx, ny, nz) : d−Nx/2e ≤
nx < dNx/2e, d−Ny/2e ≤ ny < dNy/2e and d−Nz/2e ≤ nz < dNz/2e (where
d·e stands for the round toward positive infinity operator). The coordinates
of the position of each image pn = (xn, yn, zn) are calculated using its grid
indices, the position of the source and the dimensions of the room; as an
example, the component x would be calculated as

xn =

{
nxLx + xs if nx is even

(nx + 1)Lx − xs if nx is odd
, (1)

where L = (Lx, Ly, Lz) is the size of the room and ps = (xs, ys, zs) is the
position of the original source. The y and the z coordinates can be obtained
similartly.

https://rdcu.be/b8gzW
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The distance dn from the image source n to a receiver in the position
pr = (xr, yr, zr), and therefore the delay of arrival τn, is trivial if we know the
image source position:

dn = ||pr − ps||, (2)

τn =
dn
c
, (3)

where || · || denotes the Euclidean norm and c is the speed of sound.
In order to calculate the amplitude with which the signals from each im-

age source arrive to the receiver, we need to take into account the reflection
coefficients of the walls of the room. We define βx0 as the reflection coefficient
of the wall parallel to the x axis closest to the origin of the coordinates system
and βx1 as the farthest; βy0, βy1, βz0 and βz1 are defined equivalently. Finally,
if we define βn as the product of the reflection coefficients of each wall crossed
by the path from the image source n to the receiver, its amplitude factor will
be

An =
βn

4π · dn
. (4)

Knowing the amplitude and the delay for each image, we can easily obtain
the RIR as the sum of the contribution of each image source:

h(t) =
∑
n∈N

An · δ(t− τn), (5)

where δ(t) is the Dirac impulse function.

2.2 Improvements to the original algorithm

2.2.1 Fractional delays

In order to implement (5) in the digital domain, we need to deal with the fact
that the values of τn may not be multiples of the sampling period. The original
algorithm proposed to just approximate the fractional delays by the closest
sample, however, the error introduced by this approximation is too high for
some applications, such as Sound Source Localization with microphone arrays.
In [10], Paterson proposed to substitute the Dirac impulse function by a sinc
windowed by a Hanning function:

δ′(t) =

{
1
2

(
1 + cos 2πt

Tω

)
sinc(2πfct) if− Tω

2 < t < Tω

2

0 otherwise
, (6)

where fc is the cut-off frequency, Tω is the window length, and the sinc function
is defined as sinc(x) = sin(x)/x. This is motivated by the low pass anti-aliasing
filter that would be used if the RIR was recorded with a microphone in the
real room. A window duration of Tω = 4 ms and a cut-off frequency equal to
the Nyquist frequency, i.e. fs/2, are typically used.

https://rdcu.be/b8gzW
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Using the Paterson approach with Tω = ∞ is equivalent to compute (5)
in the frequency domain as the sum of complex exponential functions as pro-
posed in [11] [12], but using shorter window lengths reduces the computational
complexity of the algorithm.

2.2.2 Negative reflection coefficients

Using positive reflection coefficients as proposed in [9] generates a low fre-
quency artifact that must be removed using a high-pass filter. In addition,
while a RIR recorded in a real room has both positive and negative peaks,
all peaks generated by the ISM are positive. Using negative reflection coeffi-
cients as proposed in [12] solve both problems without the need for adding any
posterior filter to the ISM algorithm.

2.2.3 Diffuse reverberation

In order to properly simulate a RIR, we need to use values of Nx, Ny and Nz
high enough to get all the reflections which arrive in the desired reverberation
time. Since the delays of the signals of each image source are proportional
to their distance to the receiver, and the distance is to the image index, the
number of images to calculate for each dimension grows linearly with the
reverberation time, and, therefore, the number of operations in (5) grows in a
cubic way.

A popular solution to allow the simulation of long reverberation times in
a reasonable time is decomposing the RIR in two parts: the early reflections
and the late, or diffuse, reverberation. While the early reflections need to be
correctly simulated with the ISM method to avoid loosing spatial information,
the diffuse reverberation can be modeled as a noise tail with the correct power
envelope. In [8], Lehmann and Johansson propose using noise with logistic
distribution and the technique introduced in [13] to predict the power envelope.

Although the technique presented in [13] generates better predictions of
the power envelope obtained in real rooms, its computational complexity is
quite high. Therefore, for the sake of computational efficiency, we decided to
use a simple exponential envelope following the popular Sabine formula [14].
According to this model, the reverberation time T60 that takes for a sound to
decay by 60 dB in a room, is

T60 =
0.161V∑
Siαi

, (7)

where V is the volume of the room and Si and αi = 1 − β2
i are the surface

area and the absorption coefficient of each wall2; and the power envelope of

2 It should be noted that, as done in [9], we are defining the absorption ratio α as a quotient
of sound intensities (energies) while the reflection coefficient β is defined as a quotient of
pressures (amplitudes).

https://rdcu.be/b8gzW
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Table 2 Kernels and functions of the CUDA implementation

CUDA functions Description Time (%)

calcAmpTau kernel Equations (3) and (4) 0.68
generateRIR kernel Sincs computation and initial sum (5) 90.34
reduceRIR kernel Parallel sum (5) 1.07
envPred kernel Power envelope prediction 0.03
generate seed pseudo cuRAND function (diffuse reverberation) 7.78
gen sequenced cuRAND function (diffuse reverberation) 0.01
diffRev kernel Diffuse reverberation computation 0.01
CUDA memcpy [CPU to GPU] 0.00
CUDA memcpy [GPU to CPU] 0.06

the RIR is

P (t) =

{
A exp

(
log10

(
T60

20

)
(t− t0)

)
if t > t0

0 otherwise
. (8)

Therefore, knowing T60, we can easily estimate A from the early reflections
simulated with the ISM and then multiply the logistic-distributed noise by√
P (t) to simulate the diffuse reverberation.

3 Parallel implementation

As shown in Fig.2, the parallel computation of the delays and the ampli-
tudes of arrival for the signals from each image source and their sinc functions
is straightforward since there are not any dependencies between each image
source, and computing RIRs for different source or receiver positions in paral-
lel is also trivial. However, the parallelization of (5) involves more problems,
as the contributions of all the image sources need to be added to the same
RIR.

It is worth mentioning that, though it would be possible to compute RIRs
from different rooms in parallel, we choose to implement only the paralleliza-
tion of RIRs corresponding to the same room. This was because the number
of image sources to be computed depends on the room dimensions and the
reverberation time and to compute different rooms in parallel we would have
needed to use the worst case scenario (i.e. the smallest room and higher re-
verberation time) for all of them, which would have decreased the average
performance.

In order to implement the ISM in GPUs, we decided to use CUDA [15] and
divide our code into the kernels3 listed in Table 2. For illustrative purposes,
we show in Table 2 the average proportion of time employed by each kernel
to compute a standard case of 6 RIRs with T60 = 1 s using the ISM method

3 A CUDA kernel is a function that, when is called, is executed N times in parallel by N
different CUDA threads in the GPU. For more details, see the CUDA programming guide:
https://docs.nvidia.com/cuda/cuda-c-programming-guide/

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://rdcu.be/b8gzW
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Fig. 2 ISM parallel implementation. Our library actually computes some of the sincs se-
quentially, which leads to a more efficient memory use. The reduction sum is detailed in
Fig.3

for the 250 first milliseconds and the diffuse model for the following 750ms
using a Nvidia™ GTX 980Ti. It can be seen how the bottleneck is located at
the beginning of the computation of (5), which is due to the high amount of
sinc functions that are needed to be computed. The following sections provide
further details about the implementation of the different parts of the algorithm.

3.1 Amplitudes and delays computation

For computing (3) and (4), we use calcAmpTau kernel, which computes se-
quentially each RIR but parallelizes the computation for each image source.
Although parallelizing the computations for each RIR would have been possi-
ble, since Nx ·Ny ·Nz is generally greater than the number of RIRs to compute,
the level of parallelization is already quite high and, as shown in Table 2, fur-
ther optimizations of this kernel would have had a slight impact on the final
performance of the simulation.

https://rdcu.be/b8gzW
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3.2 Computation and sum of the contribution of each image source

The computation of (5) is the most complex part of the implementation as
it implies a reduction operation (the sum of the contributions of each image
source into the final RIR), which is hard to parallelize since it would imply
several threads writing in the same memory address, and the calculation of a
high number of trigonometric functions. We can see it as creating a tensor with
3 axis (each RIR, each image source, and each time sample) and summing it
along the image sources axis. However, the size of this tensor would be huge
and it would not fit in the memory of most GPUs.

To solve this problem, we first compute and sum a fraction of the sources
contributions sequentially, so the size of the tensor we need to allocate in the
GPU memory is reduced; we do that through generateRIR kernel. Specifi-
cally, each parallel thread of this kernel performs sequentially the sum of 512
images for a time sample of a RIR. This sequential sum reduces the degree of
parallelism of the implementation but, since the number of threads is already
high enough to keep the GPU always busy, it does not decrease the perfor-
mance. It should be noted that, although all the threads can potentially run
in parallel, the number of threads which actually run in parallel is limited by
the number of CUDA cores of the GPU and, if we have more threads than
CUDA cores, many threads will be queued and will run sequentially.

After that, we use reduceRIR kernel recursively to perform the reduction
in parallel by pairwise summing the contribution of each group of images
as shown in Fig.3. Performing the whole sum in parallel would lead to all
the threads concurrently writing in the same memory positions, which would
corrupt the result.

It can be seen in Table 2 how most of the simulation time is expended in
generateRIR kernel, this is due to the high amount of sinc functions that
need to be computed and it also happens in the sequential implementations.
However, thanks to the computing power of modern GPUs, we can compute
many sinc functions in parallel and therefore reduce the time we would have
needed to sequentially compute them in a CPU. We analyze the implementa-
tion of these sinc functions using lookup tables (LUTs) in section 3.5 and its
performance in section 5.2.

3.3 Diffuse reverberation computation

For the diffuse reverberation, we first use envPred kernel to predict in par-
allel the amplitude and the time constant of each RIR. After that, we use
the cuRAND library included in the CUDA Toolkit to generate a uniformly
distributed noise (the functions generate seed pseudo and gen sequenced

in Table 2 belong to this library) and we finally transform it to a logis-
tic distributed noise and apply the power envelope through diffRev kernel,
which parallelizes the computations of each sample of each RIR. The function
generate seed pseudo generates the seed for the cuRAND random number

https://rdcu.be/b8gzW
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Fig. 3 Parallel reduction sum of the sincs (each level is performed by a call to
reduceRIR kernel). The sum must be performed pairwise to avoid several threads to con-
currently write in the same variable. The sums of each time sample are also performed in
parallel.

generator and it is only called when the library is imported, not every time a
new RIR is calculated.

3.4 Simulating moving sources

As an application example of the library, it is possible to simulate a moving
source recorded by a microphone array. In this case, we would need to compute
the RIR between each point of the trajectory and each microphone of the
array and filter the sound source by them using the overlap-add method. In
sequential libraries, the complexity of the filtering is negligible compared to
the RIR simulation; however, in our library, thanks to the performance of the
GPUs, we found that we also needed to parallelize the filtering process if we did
not want to be limited by it (specially for short reverberation times). To solve
this problem, our library is able to compute multiple convolutions in parallel
using the cuFFT library (included in the CUDA Toolkit) and a custom CUDA
kernel to perform the pointwise complex multiplication of the FFTs.

https://rdcu.be/b8gzW
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3.5 Lookup Tables (LUTs)

Motivated by the performance increase that the CPU implementations achieve
by using lookup tables (LUTs) to calculate the sinc functions (see section 5),
we also implemented it in our GPU library.

Our LUT stores the values of a sinc oversampled in a factor Q = 16 mul-
tiplied by a Hanning window:

LUT [n] =
1

2

(
1 + cos

2πn

QTω

)
sinc

(
π
n

Q

)
for n ∈

{
−Tω

2
Qfs, ...,

Tω
2
Qfs

}
(9)

and then we use linear interpolation between the closest entries of the table
to compute each sample of the sinc functions of each image source.

The main design choice we must make is to define the type of memory that
will be used to place the LUT. CUDA GPUs have, in addition to the regis-
ters of each thread, 4 different memories: shared, global, constant and texture
memory. On the one hand, shared memory is shared only between threads of
the same block and it has the fastest access, however it is generally lower than
100KB. On the other hand, global memory is shared by all the threads and
usually has several gigabytes, but it has the lower bandwidth and the higher la-
tency. Finally, constant and texture memories are read-only cached memories,
constant memory being optimized for several threads accessing to the same
address and texture memory being optimized for memory access with spatial
locality. Although constant memory has a lower latency than texture memory,
texture memory implements some features like several accessing modes and
hardware interpolation, which are extremely useful for the implementation of
LUTs. We implemented the windowed sinc LUT both in shared memory and
texture memory and obtained better performance with the texture memory
thanks to the hardware interpolation.

3.6 Mixed precision

Since the Pascal architecture, the NvidiaTM GPUs include support for 16-
bit precision floats and are able to perform two 16 bit operations at a time.
To exploit this feature, we developed the kernels generateRIR mp kernel and
reduceRIR mp kernel, which compute two consecutive time samples at a time
so we can halve the number of threads needed. We focused on these kernels
and did not optimise the others because, as shown in Table 2, most of the
simulation time is spent in them.

CUDA provides the data type half2, which contains 2 floating point num-
bers of 16 bits, and several intrinsics to operate with it. These intrinsics allow
to double the number of arithmetic operations that we can perform per sec-
ond; however, we found that the functions provided to compute two 16-bit
trigonometric functions were not as fast as computing one 32-bit function.
To increase the simulation speed, we developed our own sinpi(half2) and
cospi(half2) functions. For the sine function we first reduce the argument

https://rdcu.be/b8gzW
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to the range [-0.5, 0.5], then we approximate the sine function in this range
by

sin(πx) ≈ 2.326171875x5 − 5.14453125x3 + 3.140625x (10)

and finally, multiply the result by -1 if the angle was in the second or the third
quadrant. The coefficients of the polynomial are the closest numbers that can
be represented with half precision floats to those of the optimal polynomial
in a least-squares sense. Equivalently, for the cosine function, we used the
polynomial:

cos(πx) ≈ −1.2294921875x6 + 4.04296875x4 − 4.93359375x2 + 1 (11)

with the advantage that, since we only used it for computing the Hanning win-
dow in (5), we do not need to perform argument reduction or sign correction.

The polynomial evaluation can be efficiently performed with the Horner’s
method:

bn = an

bn−1 = an−1 + bnx

...

p(x) = b0 = a0 + b1x

(12)

where ai are the coefficient of the n degree polynomial p(x) we want to evaluate
and the computation of bi can be done in parallel for two different values of x
using the CUDA intrinsic hfma2(half2) that performs the fused multiply-
add operation of the two elements of three half2 variables at a time. More
information about polynomial approximation of transcendental functions can
be found in [16].

Obviously, working with half precision representation reduces the accuracy
of the results. We found that the most critical part was in subtracting t− τn.
Working with 16-bit precision floats, we can only represent 3 significant figures
accurately, so, when t grows, we lose precision in the argument of the sinc
function which leads to an error which increases with the time; when t grows
we expend the precision in the integer part and we don’t represent accurately
the fractional part. To solve this issue, we perform the subtraction with 32
bits arithmetic and then we transform the result to 16-bit precision. Working
this way, we have always maximum precision in the centre of the sinc and the
lower accuracy is outside the Hanning window.

Unfortunately, the hardware interpolation of the texture memory does not
support 16-bit arithmetic, so the mixed precision implementation is not com-
patible with the LUT.

4 Python library

We have included the previous implementation in a Python library that can
be easily compiled and installed using the Python packet manager (pip) and

https://rdcu.be/b8gzW
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be used as any CPU library. The library provides a function which takes as
parameters the room dimensions, the reflections coefficients of the walls, the
position of the source and the receivers, the number of images to simulate
for each dimension, the duration of the RIR in seconds, the time to switch
from the ISM method to the diffuse reverberation model, and the sampling
frequency and it returns a 3D tensor with the RIR for each pair of source and
receiver positions. Information about the polar pattern of the receivers and
their orientation can be also included in the simulation.

We also provide some python functions to predict the time when some level
of attenuation will be reached, to get the reflections coefficients needed to get
the desired reverberation time (expressed in terms of T60, i.e. the time needed
to get an attenuation of 60 dB), and to get the number of image sources to
simulate in each dimension to get the desired simulation time without loss
reflections. Finally, we include a function to filter a sound signal by several
RIRs in order to simulate a moving source recorded by a microphone array.
In the repository of the library some examples can be found about how to
simulate both isolated RIRs and moving sources.

Since the use of the LUT to compute the sinc function improves the per-
formance in most of the cases and the precision loss is negligible (see section
5.2), its use is activated by default, but the library provides a function to
deactivate it and use the CUDA trigonometric functions instead. In order to
exploit the mixed precision capabilities of the newer GPUs, it has a function to
activate it and use the 16-bit precision kernels instead of the 32-bit; activating
it automatically deactivates the use of the LUT.

Since the library was developed, we have used it to train a sound source
tracking system based on a 3D Convolutional Neural Network simulating the
training signals as they were needed instead of creating a pre-simulated dataset
[17]; this approach has the advantage of being equivalent to have an infinite-
size dataset, but it would have been unfeasible with the simulation times of
previous libraries. Other authors have also used it to train deep learning sys-
tems [18,19,20,21] and to evaluate signal processing techniques [22,23].

5 Results

5.1 Base implementation

In order to show the benefits of using GPUs for RIR simulation, we have
compared our library against three of the most employed libraries for this
purpose: the Python version of the RIR Generator library presented in [6],
whose code is freely available in [24] and has been used, for example, in [3,
25,26]; the Python package pyroomacoustics presented in [7] that has been
employed in [27,28,29] among others; and the Matlab™ library presented in
[8], whose code is freely available in [30], and that has been used, for example,
in [2,31,32]. Since all the libraries are based on the ISM, whose acoustical
accuracy is well known, we focus on the computation time of each library.

https://rdcu.be/b8gzW
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Table 3 GPUs employed for the performance analysis

GPU model Architecture Memory Single Precision FLOP/s Memory Bandwidth

GTX 980 Ti Maxwell 6GB 5.6 TeraFLOP/s 337 GB/s
Tesla P100 Pascal 16GB 9.5 TeraFLOP/s 732 GB/s
Tesla V100 Volta 16GB 14.9 TeraFLOP/s 900 GB/s
Tesla T4 Turing 16GB 8.1 TeraFLOP/s 320 GB/s
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Fig. 4 Runtime of each library for computing different numbers of RIRs (Msrc) in a room
with size 3 m × 4 m × 2.5 m and T60 = 0.7 s. For the gpuRIR library, the solid line times
were obtained with the GTX 980 Ti GPU, the dashed lines with the Tesla P100, the dotted
lines with the Tesla V100, and the dash-dot lines with the Tesla T4.

Neither RIR Generator nor pyroomacoustics implement any kind of diffuse
reverberation model, so they are expected to have worse performance than
the Matlab™ library and our GPU library if we use it. The Matlab™ library
uses the formula presented in [13] to model the power envelope of the diffuse
reverberation, which is more complex than our exponential envelope model, so,
for the sake of a fairer comparison, we modified the Matlab™ implementation
to use a exponential model. The simulations with the sequential libraries and
the ones with the Nvidia™ GTX 980Ti were performed in a computer with
an Intel™ Core i7-6700 CPU and 16 GB of RAM, while the simulations with
the Nvidia™ Tesla P100 and V100 and T4 were performed in a n1-highmem-4
instance in the Google Cloud Platform™ with 4 virtual CPUs cores and 26 GB
of RAM memory; more details about the GPUs employed for the simulations
can be found in Table 3.

Fig.4 represents the runtime of the different libraries for computing differ-
ent numbers of RIRs in a room with size 3 m× 4 m× 2.5 m and T60 = 0.7 s.
It can be seen how our library can simulate a hundred times more RIRs in a
second than the Matlab™ library even with a GPU designed for gaming (the

https://rdcu.be/b8gzW


gpuRIR: A Python Library for RIR Simulation with GPU Acceleration 15

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T60 [s]

10-3

10-2

10-1

100

101

102

ru
nt

im
e 

[s
]

Runtime vs reverberation time

gpuRIR
gpuRIR (full ISM)
Matlab library
RIRgenerator
pyroomacoustics

Fig. 5 Runtime of each library for computing 128 RIRs in a room with size
3 m × 4 m × 2.5 m and different reverberation times. For the gpuRIR library, the solid line
times were obtained with the GTX 980 Ti GPU, the dashed lines with the Tesla P100, the
dotted lines with the Tesla V100, and the dash-dot lines with the Tesla T4.

Nvidia™ GTX 980 Ti). Using our library without any kind of diffuse reverber-
ation modeling, we have a similar execution time than the Matlab™ library,
which only computes the ISM until the RIR has an attenuation of 13 dB, and
we are also about a hundred times faster than the RIR Generator library. Fi-
nally, it is worth noting how pyroomacoustics performs quite similarly to our
library when we use a GTX 980 Ti and compute the whole RIR with the ISM
without using any diffuse reverberation model; this is due to the use of LUTs
to compute the sinc functions by pyroomacoustics (to confirm this hypothe-
sis we modified the code of pyroomacoustics to avoid the use of LUTs and
its performance degraded to the same results than RIR Generator). However,
using a faster GPU, i.e. the Tesla V100, our library can compute ten times
more RIRs in a second than pyroomacoustics even without using LUTs, since
we can set at full performance all the parallelization mechanisms presented in
section 3.

Comparing the performance of our library using different GPUs, we can
see how the lower results are obtained using the GTX 980 Ti, the Tesla P100
and T4 have a quite similar performance (being the T4 slightly faster), and the
better results are obtained with the Tesla V100 (being more than 5 times faster
than the GTX 980 Ti). This results are what we could expect for an algorithm
whose computation time is mostly limited by the number of operations that
we can perform per second, but it is worth noting how the Tesla T4 (with
the newer Nvidia™ GPU architecture) can outperform the Tesla P100 having
lower FLOP/s, memory bandwidth and power consumption.
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In Fig.5 we show the runtime of the different libraries for computing 128
RIRs in a room with size 3x4x2.5m and different reverberation times. We
can see again how our library is about two orders of magnitude faster than
the sequential alternatives which do not use LUTs. It must be said that our
library has some limitations because calculating a large number of RIRs with
high reverberation times may require more memory than it is available in the
GPU; however, using the diffuse reverberation model, this limitation appears
only for really high number of RIRs and reverberation times. Furthermore,
it would be always possible to batch the RIRs in several function calls to
circumvent this problem.

5.2 Lookup tables

Motivated by the huge speedup generated by the use of LUTs in the CPU
implementations (a factor 5 in Fig. 4) we replaced the trigonometric compu-
tations by a LUT as described in section 3.5. Tables 4 and 5 show the speedup
(defined as the runtime without using the LUT divided by the runtime using
it) for several numbers of RIRs and reverberation times using different GPUs.

We can see how our library obtains a speedup much lower than the obtained
by pyroomacoustics over CPU. This is due to the high computation power
of the GPUs, which makes the computation of trigonometric functions quite
efficient and therefore they are not so benefited by replacing computation
tasks by memory calls. Despite that, we can see how using LUTs is faster than
computing the trigonometric functions, i.e. the speedup is higher than 1.0, in
most of the cases, especially when the number of RIRs or the reverberation
time increases.

Among the studied GPUs, the Tesla P100 obtains the higher speedups
since it has a higher memory bandwidth compared with its computing power.
The GTX 980 Ti gets really humble speedups due it low memory bandwidth
and the Tesla V100, though it has the higher bandwidth, does not reach the
speedups obtained by the Tesla P100 due to its huge computing power. Finally,
it is interesting how the Tesla T4 obtains higher speedups than the GTX 980
Ti despite having a lower memory bandwidth; this might be due to some
optimizations introduced in the newer Turing architecture.

Fig. 6 shows the first 0.5 seconds of the RIR of a room with T60 = 1 s
computed with our GPU implementation working with single (32-bit) precision
trigonometric functions and the error introduced by replacing them by out
LUT. We can see how, as it could be expected, the error introduced by the use
of the LUT is negligible: three orders of magnitude lower than the amplitude
of the RIR.

5.3 Mixed precision

In case of using the 16-bit precision kernels, we are reducing the accuracy
of the simulation, so we need to analyze its impact. Fig. 6 also shows the
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Table 4 Lookup Table (LUT) and Mixed Precision (MP) simulation times and speedups
for computing different numbers of RIRs with T60 = 0.7 s

Number of RIRs
Diffuse reverberation model Full ISM

1 16 128 1024 1 16 128

Matlab Library 221,52 1,643.20 12,252.67 96,208.58 - - -

pyroomacoustics - - - - 242.35 3,6409.16 28,646.86

G
T

X
9
8
0

T
i Base [ms] 4.98 17.43 117.60 898.54 283.88 2,601.82 19,630.60

LUT [ms]
speedup

5.19
x0.96

16.64
x1.05

109.38
x1.08

834.38
x1.08

279.28
x1.02

2,434.33
x1.07

18,547.03
x1.06

MP [ms]
speedup

- - - - - - -

T
es

la
P

1
0
0 Base [ms] 5.81 13.86 79.28 596.02 115.5 7 1,661.35 12,879.31

LUT [ms]
speedup

5.97
x0.97

12.14
x1.14

63.90
x1.24

471.16
x1.27

86.86
x1.33

1,235.64
x1.35

9,397.40
x1.37

MP [ms]
speedup

5.52
x1.05

9.45
x1.47

45.49
x1.74

324.12
x1.84

59.46
x1.94

847.74
x1.96

6,493.92
x1.98

T
es

la
V

1
0
0 Base [ms] 4.76 7.13 28.14 195.69 37.62 447.04 3,403.60

LUT [ms]
speedup

5.01
x0.95

6.79
x1.05

23.66
x1.19

156.91
x1.25

30.66
x1.23

394.54
x1.13

2,595.97
x1.31

MP [ms]
speedup

4.55
x1.05

6.29
x1.13

19.57
x1.44

128.72
x1.52

21.76
x1.73

253.03
x1.77

1,900.52
x1.79

T
es

la
T

4

Base [ms] 5.80 10.95 73.49 582.79 117.00 1,612.79 10,188.68

LUT [ms]
speedup

5.63
x1.03

10.14
x1.08

63.75
x1.15

503.91
x1.16

81.37
x1.44

1,433.60
x1.13

8,870.68
x1.15

MP [ms]
speedup

4.80
x1.21

7.37
x1.43

43.28
x1.76

351.78
x1.66

58.45
x2.00

860.43
x1.87

5,693.29
x1.79

error introduced by computing the same RIR using our half (16-bit) precision
kernels. We can see how the error is 3 orders of magnitude lower than the
amplitude of the RIR at the beginning, which should be acceptable for most
of the applications; however, since the error does not decrease with the time
as much as the RIR does, the signal-to-error ratio deteriorates with the time.
Hopefully, this higher error correspond with the diffuse reverberation, where
its perceptual importance is lower.

Theoretically, a twofold speedup could be expected from working with 16-
bit precision floats instead of 32-bit floats, however, this speedup is generally
not reachable as the number of operations is not the only limiting factor of
many GPU kernels and some half2 functions are not as fast as its equivalent
single functions. Tables 4 and 5 show the speedup that our mixed precision
implementation achieve for several numbers of RIRs computed in parallel and
several reverberation times. We can see how the speedup is higher when the
workload increases, especially for long reverberation times where the opera-
tions per second are the main limiting factor of its performance and how the
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Table 5 Lookup Table (LUT) and Mixed Precision (MP) simulation times and speedups
for computing different numbers of RIRs with T60 = 0.7 s

T60 [s]
Diffuse reverberation model Full ISM

0.3 0.7 1.1 1.5 1.9 0.3 0.7 1.1

Matlab Library 2,573.67 12,078.52 39,330.40 94,946.73 136,522.39 - - -

pyroomacoustics - - - - - 1,854.08 23,253.22 90,960.54

G
T

X
9
8
0

T
i Base [ms] 8.90 118.00 627.15 2,016.40 5,073.48 731.59 19,657.05 -

LUT [ms]
speedup

8.62
x1.03

109.89
x1.07

588.90
x1.06

1,896.48
x1.06

4,769.68
x1.06

694.10
x1.05

18,466.15
x1.06

-

MP [ms]
speedup

- - - - - - - -

T
es

la
P

1
0
0 Base [ms] 8.97 80.78 416.57 1,349.47 3,289.13 494.33 12,875.14 76,383.87

LUT [ms]
speedup

7.39
x1.21

64.90
x1.25

321.97
x1.29

1,023.39
x1.32

2,452.18
x1.34

391.39
x1.26

9,406.31
x1.37

55,402.08
x1.38

MP [ms]
speedup

6.64
x1.35

45.18
x1.79

218.18
x1.91

699.95
x1.93

1,698.17
x1.94

258.96
x1.91

6,484.46
x1.99

38,393.03
x1.99

T
es

la
V

1
0
0 Base [ms] 5.80 28.81 125.02 379.13 896.97 141.86 3,400.95 19,935.71

LUT [ms]
speedup

5.95
x0.97

24.43
x1.18

101.85
x1.23

332.35
x1.14

690.02
x1.30

117.55
x1.22

2,594.15
x1.31

15,363.05
x1.30

MP [ms]
speedup

5.08
x1.14

19.80
x1.46

76.71
x1.63

220.66
x1.72

519.46
x1.73

87.48
x1.62

1,901.21
x1.79

11,052.52
x1.80

T
es

la
T

4

Base [ms] 6.43 73.22 385.88 1,376.26 2,862.44 465.76 10,139.45 57,596.94

LUT [ms]
speedup

6.59
x0.97

63.20
x1.16

344.66
x1.12

1,122.22
x1.23

2,406.75
x1.19

407.88
x1.14

8,812.73
x1.15

49,612.01
x1.16

MP [ms]
speedup

5.80
x1.11

43.93
x1.66

230.89
x1.67

770.90
x1.79

1,841.16
x1.55

270.88
x1.72

5,693.18
x1.78

31,377.01
x1.84

speedup achieved with the mixed precision implementation is always higher
than the achieved with the LUTs.

The mixed precision support was introduced with the Pascal architecture,
so it is not available in older models like the GTX 980 Ti. The Tesla P100
achieves speedups really close to 2 for high workloads. The speedups obtained
with the Tesla T4 are quite erratic and its increase with the workload is no
so clear than with other GPUs, but it is generally higher than the speedup
obtained with the Tesla V100.

6 Conclusions

We have presented a new free and open-source library to simulate RIRs that
uses GPUs to dramatically reduce the simulation time and it has been proved
that it is about one hundred times faster than other state of the art CPU li-
braries. To the best of out knowledge, it is the first library with these features
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Fig. 6 RIR computed with single (32-bit) precision trigonometric functions and the er-
ror introduced due to compute it using a lookup table (LUT) and half (16-bit) precision
functions (Mixed Precision).

freely available on the Internet, and it could allow to the acoustic signal pro-
cessing community, for example, to generate huge datasets of moving speaker
speech signals in a reasonable computation time or to compute the acoustics
of a Virtual Reality (VR) scene in real time.

We have studied different methods to increase the speed of our GPU im-
plementation, concluding that the best strategy is using 16-bit arithmetic, but
this is only compatible with the newer GPUs. On the other hand, using LUTs
stored in the GPU’s texture memory, though it generates lower speedups, is
compatible with most of the CUDA GPUs, so we have chosen to use this
implementation as our library default.

We expect this library to be a useful tool for the audio signal processing
community, especially for those who need to simulate large audio datasets
to train their models. Since it has been published as free and open-source
software, it can be easily upgraded to exploit the new features that future
generations of GPUs may bring, both by us as the original authors or by any
other researcher interested in it.
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